WO2018062231A1 - 角形二次電池 - Google Patents

角形二次電池 Download PDF

Info

Publication number
WO2018062231A1
WO2018062231A1 PCT/JP2017/034869 JP2017034869W WO2018062231A1 WO 2018062231 A1 WO2018062231 A1 WO 2018062231A1 JP 2017034869 W JP2017034869 W JP 2017034869W WO 2018062231 A1 WO2018062231 A1 WO 2018062231A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
lead
tab
group
Prior art date
Application number
PCT/JP2017/034869
Other languages
English (en)
French (fr)
Inventor
明秀 田中
和昭 浦野
小島 亮
高光 鎌田
佳佑 澤田
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2018062231A1 publication Critical patent/WO2018062231A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a rectangular secondary battery used for in-vehicle use.
  • a rectangular secondary battery has been used as an in-vehicle power source for supplying electric power to an electric motor or the like mounted on a vehicle such as an electric vehicle or a hybrid electric vehicle, or a power source for other devices.
  • a square secondary battery for example, a lithium ion secondary battery having a high energy density has attracted attention, and its research, development, and commercialization are rapidly progressing.
  • Patent Document 1 as an electrode group of a nonaqueous electrolyte battery, a plurality of positive current collecting tabs and a plurality of negative current collecting tabs are aligned from the end surface on one side in the winding axis direction in a flat shape. An electrode group with a protruding configuration is shown. In Patent Document 1, the tabs of the electrode group are stretched as they are, and are welded to the positive and negative current collector terminals through leads near the current collector plate.
  • Patent Literature 2 an electrode group of a nonaqueous electrolyte battery is stacked, and a plurality of positive electrode current collecting tabs and a plurality of negative electrode current collecting tabs are protruded with their positions aligned from one end face of the stacked group. Groups are shown.
  • the tabs of the electrode group are fixed to the positive and negative current collecting terminals via leads existing on one side.
  • the present invention has been made in view of the above points, and its object is to obtain a prismatic secondary battery with high productivity and reliability.
  • the prismatic secondary battery of the present invention that solves the above problems includes a storage element having a positive electrode tab group consisting of a plurality of positive electrode tabs protruding from one end and a negative electrode tab group consisting of a plurality of negative electrode tabs, and the positive electrode tab
  • a secondary battery comprising a positive electrode lead connected to a group and a negative electrode lead connected to the negative electrode tab group
  • the positive electrode tab group and the negative electrode tab group are arranged separately, and the positive electrode tab group Is clamped by the positive electrode lead, and the negative electrode tab group is clamped by the negative electrode lead.
  • the tabs protruding from the positive electrode and the negative electrode are each sandwiched between the leads, it is possible to prevent the tab from being bent or the tab direction from being random when joining the tab and the lead. Therefore, a square secondary battery with high productivity and reliability can be supplied.
  • FIG. 3 is a partial cross-sectional view above the prismatic battery of FIG. 2.
  • FIG. 3 is an exploded perspective view illustrating a positive electrode lead, a negative electrode lead, and a wound group in the first embodiment. The figure explaining the structure of a winding group.
  • FIG. 9 is an exploded perspective view illustrating a positive electrode lead, a negative electrode lead, and a wound group in Example 2.
  • FIG. 6 is an exploded perspective view illustrating a positive electrode lead, a negative electrode lead, and a wound group in Example 3.
  • FIG. 10 is an exploded perspective view illustrating a positive electrode lead, a negative electrode lead, and a wound group in Example 4.
  • FIG. 9 is an exploded perspective view illustrating a positive electrode lead, a negative electrode lead, and a wound group in Example 5.
  • FIG. 12 is an exploded perspective view illustrating a positive electrode lead, a negative electrode lead, and a wound group in Example 6.
  • this embodiment is not limited to the following contents and is disclosed in the present specification. Various changes and modifications can be made by those skilled in the art within the scope of the technical idea to be made.
  • components having the same function are denoted by the same reference numerals, and repeated description thereof may be omitted.
  • the prismatic secondary battery is a lithium ion secondary battery
  • the present invention is not limited to a lithium ion secondary battery, and other prismatic secondary batteries. It is applicable to.
  • the power storage element is created by the winding method, but the present invention is also effective for the power storage element created by the lamination method.
  • the lead is welded to a tab protruding from the electrode group, and assumes a role of securing a route until the tab and the current collector are connected.
  • a component installed to prevent fusing when the current collector plate and the tab are welded after the tab is stretched as it is is called a lead or an auxiliary lead.
  • the part that does not play the role of securing the path between the tab and the current collector plate only to prevent fusing when called is called a ribbon. Since the lead of Patent Document 1 and the lead of this patent have different roles, the names are the same, but the functions and shapes are greatly different.
  • Example 1 1 is an external perspective view of the lithium ion secondary battery according to the present embodiment
  • FIG. 2 is an exploded perspective view of the lithium ion secondary battery shown in FIG. The previous state is shown.
  • FIG. 3 is an example of a partial cross-sectional view above the lithium ion secondary battery.
  • the lithium ion secondary battery 1 has a configuration in which a power generation element 50 is accommodated in a battery container 2.
  • the battery container 2 includes a battery can 4 having an opening 4 a and a battery lid 3 that seals the opening 4 a of the battery can 4.
  • the power generation element 50 includes a wound group 40 that is wound in a flat shape in a state where a separator (not shown) is interposed between the positive electrode 41 and the negative electrode 42 and stacked.
  • the wound group 40 is accommodated in the battery container 2 via an insulating sheet (not shown).
  • FIG. 2 and FIG. 3 a state in which two wound groups 40 are inserted together is shown.
  • the number of wound groups 40 may be one or more according to the battery capacity. However, it can be accommodated according to the battery capacity.
  • the battery can 4 and the battery lid 3 are both made of an aluminum alloy, and the battery lid 3 is welded to the battery can 4 by laser welding.
  • the battery lid 3 is provided with a positive electrode terminal 61 and a negative electrode terminal 71 (a pair of electrode terminals) via first insulators 64 and 74 to constitute a lid assembly.
  • the battery lid 3 includes a gas discharge valve 13 that is opened when the pressure in the battery container 2 rises above a predetermined value and discharges the gas in the battery container 2;
  • a liquid injection port (not shown) for injecting a non-aqueous electrolyte into the battery container 2 is disposed, and the liquid injection port 11 is fitted with a liquid injection stopper 11 after the non-aqueous electrolyte is injected. Sealed by welding.
  • lithium hexafluorophosphate LiPF 6
  • LiPF 6 lithium hexafluorophosphate
  • the positive electrode terminal 61 and the negative electrode terminal 71 are arranged at positions separated from each other on one side and the other side in the longitudinal direction of the battery lid 3.
  • the positive electrode terminal 61 and the negative electrode terminal 71 have a connecting portion that is inserted into an opening hole (not shown) of the battery lid 3 and protrudes to the inside of the battery lid 3.
  • the positive electrode current collector plate 21 and the negative electrode current collector plate 31 are provided. Are electrically connected to each other.
  • the positive terminal 61 is made of aluminum or an aluminum alloy
  • the negative terminal 71 is made of copper or a copper alloy.
  • the positive electrode terminal 61 and the negative electrode terminal 71 are electrically insulated from the battery lid 3 by interposing a second insulator 65 inside the battery lid 3.
  • the positive electrode terminal 61 and the negative electrode terminal 71 are caulked at the ends of the connecting portions, respectively, so that the positive current collector plate 21 and the negative current collector plate 31 are interposed via the first insulator 64 and the second insulator 65. At the same time, it is fixed to the battery lid 3.
  • the positive electrode current collector plate 21 extends from the one end side in the longitudinal direction of the battery lid 3 along the lower surface of the battery lid 3 toward the center in the longitudinal direction, which is the cell center direction.
  • the positive lead 81 is joined and conducted.
  • the negative electrode current collecting plate 31 extends from the other end side in the longitudinal direction of the battery lid 3 toward the central side in the longitudinal direction along the lower surface of the battery lid 3, and is joined to the negative electrode lead 91 by, for example, laser welding in the elongated flat portion. Is conducted.
  • the method of joining the positive electrode current collector plate 21 and the negative electrode current collector plate 31 to the positive electrode lead 81 and the negative electrode lead 91 may be not only laser welding but also bonding or fixing by ultrasonic welding or caulking.
  • the winding group 40 includes a positive electrode tab group 111 and a negative electrode tab group 121 on one side in the winding axis direction.
  • the positive electrode lead 81 is connected to the positive electrode current collector plate 21 and the positive electrode tab group 111 of the winding group 40.
  • the negative electrode lead 91 conducts between the negative electrode current collecting plate 31 and the negative electrode tab group 121 of the wound group 40.
  • the positive electrode lead 81 and the negative electrode lead 91 are bonded in advance to the positive electrode tab group 111 and the negative electrode tab group 121 of the wound group 40 as shown in FIG.
  • the positive electrode tab group 111 and the negative electrode tab group 121 are sandwiched and joined from both sides in the flat thickness direction of the wound group 40 by a pair of positive electrode leads 81 and a pair of negative electrode leads 91.
  • the positive electrode lead 81 collectively connects the positive electrode tab group 111 of the positive electrode 41
  • the negative electrode lead 91 collectively connects the negative electrode tab group 121 of the negative electrode 42.
  • the positive electrode lead 81 and the negative electrode lead 91 are inserted into a through groove 102 provided at the bottom of the upper insulating plate 101, and are folded and stored in the upper insulating plate 101 as shown in FIG.
  • the positive electrode lead 81 is preferably an aluminum alloy and has a thickness of about 0.05 to 0.3 mm
  • the negative electrode lead 91 is preferably a copper alloy and has a thickness of about 0.05 to 0.3 mm.
  • Examples of a method for joining the positive electrode lead 81 and the positive electrode tab group 111 and a method for joining the negative electrode lead 91 and the negative electrode tab group 121 include ultrasonic welding and laser welding.
  • the connection from the tab to the current collector plate uses a lead, compared to the case where a plurality of tabs are stretched as they are, the bending of the tab and the short-circuited or bent portion due to the random direction of the tabs. Cutting at is difficult.
  • the lead since the lead is used, the material of the tab is a positive and negative foil, so that the selection of the positive and negative foils can be avoided.
  • the shape of the tab such as the thickness and length, has a higher likelihood than when the tab is stretched. In addition, it is easy to ensure flexibility on the path from the tab to the current collector plate.
  • the tabs protruding from the positive electrode and the negative electrode are each sandwiched by the leads, it is possible to prevent the tab from being bent and the tab direction from being random when the tab and the lead are joined. . For this reason, a square secondary battery with high productivity and reliability can be supplied.
  • the wound group 40 is inserted into the battery can 4 while being covered with an insulating sheet (not shown).
  • the upper insulating plate 101 is disposed above the wound group 40.
  • the upper insulating plate 101 is provided with a through groove 102 through which the positive electrode lead 81 and the negative electrode lead 91 are inserted.
  • FIG. 4 is a diagram illustrating the configuration of the wound group, and is an external perspective view in a state where the winding end side is developed
  • FIG. 5 is a projection view of the wound group shown in FIG.
  • the winding group 40 is configured by disposing a negative electrode 42 and a positive electrode 41, respectively, between which the first and second separators 43 are positioned and wound in a flat shape.
  • the winding group 40 is formed by rotating the winding spindle of the winding device and winding the first and second separators 43, the negative electrode 42 and the positive electrode 41 around the winding spindle.
  • the winding spindle is held between the first and second separators 43 that are wound around the winding spindle by rotating the winding spindle while holding the winding start spindles of the first and second separators 43.
  • the starting end of the positive electrode 41 is inserted into the first and second separators 43 so that either one of the first and second separators 43 is interposed between the starting end and the negative electrode 42.
  • the first and second separators 43, the negative electrode 42, and the positive electrode 41 are integrally wound and inserted between them.
  • the outermost peripheral electrode is the negative electrode 42, and at least one of the first and second separators 43 is wound further outside.
  • the first and second separators 43 have a role of insulating the positive electrode 41 and the negative electrode 42.
  • the negative electrode coating portion 42a of the negative electrode 42 is larger in the width direction than the positive electrode coating portion 41a of the positive electrode 41, whereby the positive electrode coating portion 41a is always sandwiched between the negative electrode coating portions 42a. Yes.
  • PVDF polyvinylidene fluoride
  • N a dispersion solvent
  • NMP methyl pyrrolidone
  • the present invention is not limited to this, and natural graphite capable of inserting and removing lithium ions and various artificial graphites are not limited thereto.
  • the material may be a carbonaceous material such as a material or coke, and the particle shape is not particularly limited to a scale shape, a spherical shape, a fiber shape, a lump shape, or the like.
  • the positive electrode 41 10 parts by weight of flaky graphite as a conductive material and 10 parts by weight of PVDF as a binder are added to 100 parts by weight of lithium manganate (chemical formula LiMn 2 O 4 ) as a positive electrode active material.
  • a positive electrode mixture was prepared by adding and kneading NMP as a dispersion solvent. This positive electrode material mixture was applied to both surfaces of a 20 ⁇ m thick aluminum foil (positive electrode electrode foil) leaving a plain current collecting part (positive electrode uncoated part). Thereafter, drying, pressing, and cutting were performed to obtain a positive electrode having a thickness of 90 ⁇ m, which does not include an aluminum foil.
  • lithium manganate is used as the positive electrode active material
  • other lithium manganate having a spinel crystal structure or a lithium manganese composite oxide partially substituted or doped with a metal element or A lithium cobalt oxide or lithium titanate having a layered crystal structure, or a lithium-metal composite oxide in which a part thereof is substituted or doped with a metal element may be used.
  • PVDF polytetrafluoroethylene
  • polyethylene polystyrene
  • polybutadiene butyl rubber
  • nitrile rubber Use polymers such as styrene butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethyl cellulose, various latexes, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene, acrylic resins, and mixtures thereof. be able to.
  • PTFE polytetrafluoroethylene
  • polyethylene polystyrene
  • polybutadiene butyl rubber
  • nitrile rubber Use polymers such as styrene butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethyl cellulose, various latexes, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene, acrylic resins, and mixtures thereof.
  • the positive electrode 41 has a positive electrode coating portion 41a in which a positive electrode active material mixture is applied to both surfaces of a positive electrode foil that is a positive electrode current collector, and a positive electrode active portion 41 is provided at one end in the width direction of the positive electrode foil.
  • a plurality of positive electrode tab groups 111 constituted by positive electrode uncoated portions (foil exposed portions) to which the material mixture is not applied are provided.
  • the negative electrode 42 has a negative electrode coating portion 42a in which a negative electrode active material mixture is applied to both surfaces of a negative electrode electrode foil that is a negative electrode current collector, and the negative electrode active portion 42 is disposed at the other end in the width direction of the positive electrode foil.
  • a plurality of negative electrode tab groups 121 configured by negative electrode uncoated portions (foil exposed portions) to which the material mixture is not applied are provided.
  • the positive electrode tab group 111 and the negative electrode tab group 121 are regions in which the metal surface of the positive electrode foil and the metal surface of the negative electrode foil are exposed, respectively, at a position on one side (same side) in the winding axis direction of the winding group 40. Be placed. 4 and 5, the positive electrode tab group 111 and the negative electrode tab group 121 are overlapped, but may not overlap as long as at least the positive electrode group tab 111 and the negative electrode tab group 121 are not in contact.
  • the positive electrode group tab can be prepared by adjusting the tab position after winding by adjusting the tab spacing so that it is in a suitable position when wound in advance.
  • the tab processing may be performed before pressing, after pressing, or during winding, but is preferably performed before pressing from the viewpoint of suppressing the bending after pressing.
  • the tab may be cut by press punching or using a rotary cutter.
  • FIG. 6 is an exploded perspective view for explaining a positive electrode lead, a negative electrode lead, and a wound group in the second embodiment.
  • Example 2 the shape of the positive electrode lead 81 and the negative electrode lead 91 is changed to a convex shape having a wide portion on the winding group 40 side. Further, in order to show the effect in an easy-to-understand manner, the positive electrode tab group 111 and the negative electrode tab group 121 of the winding group are changed to a shape that extends in a direction parallel to the winding axis in a range where they do not contact each other.
  • the lead shape of Example 2 can increase reliability by preventing the bending of the tab and the direction of the tab from being random when joining the tab and the lead by making the winding group side wide.
  • the current collector plate side narrow, it is possible to reduce the space required to connect from the wound group to the current collector plate and to improve lead flexibility. That is, by making the lead shape a convex shape having a wide portion on the winding group side, it is possible to easily suppress the bending of the tab and the randomization of the direction and secure the path from the winding group to the current collector plate. Can be made compatible.
  • the effect is exhibited by the shape of the wound group 40 as shown.
  • the tab group spreads around the winding axis, it is possible to increase the likelihood of the tab spacing between the positive and negative electrodes, so that productivity is improved.
  • productivity can be greatly improved, so the effect is great.
  • Example 2 demonstrated using the example which makes lead shape convex, it will not specifically limit if it is a shape with a wide part on the winding group side, and a narrow part on the current collecting plate side, for example L The same effect can be obtained with a lead shape such as a letter shape.
  • FIG. 7 is an exploded perspective view illustrating a positive electrode lead, a negative electrode lead, and a wound group in the third embodiment.
  • Example 3 the positive electrode lead 81 and the negative electrode lead 91 are changed to a shape in which bent portions protruding in the thickness direction of the winding group are provided on the winding group side.
  • Example 3 facilitates positioning when the tab and the lead are joined, and when the tab and the lead are joined, the wound group is damaged by pressing the wound group with the lead. The possibility can be lowered.
  • Example 3 a convex lead having a wide portion on the winding group side is taken as an example, but the same effect can be expected with a lead shape as in Example 1.
  • FIG. 8 is an exploded perspective view illustrating the positive electrode lead, the negative electrode lead, and the wound group in the fourth embodiment.
  • Example 4 one of the pair of positive leads 81 is changed to the positive ribbon 82 and one of the pair of negative leads 91 is changed to the negative ribbon 92, respectively.
  • the positive electrode tab group 111 and the negative electrode tab group 121 are sandwiched and joined from both sides in the flat thickness direction of the wound group 40 by the positive electrode lead 81 and the positive electrode ribbon 82, and the negative electrode lead 91 and the negative electrode ribbon 92.
  • the positive electrode lead 81 and the positive electrode ribbon 82 collectively connect the positive electrode tab group 111 of the positive electrode 41, and the negative electrode lead 91 and the negative electrode ribbon 82 collectively connect the negative electrode tab group 121 of the negative electrode 42.
  • the positive ribbon 82 is preferably made of an aluminum alloy with a thickness of about 0.05 to 0.3 mm
  • the negative electrode lead 92 is preferably made of a copper alloy with a thickness of about 0.05 to 0.3 mm.
  • the positive electrode lead 81 is stretched and connected to the positive electrode current collector plate 21.
  • the negative electrode lead 91 is extended and connected toward the negative electrode current collector plate 31.
  • the positive ribbon 82 and the negative ribbon 92 are not stretched.
  • Example 4 since one of the leads has a shorter ribbon than the lead, the parts can be simplified. In addition, since the number of connections from the winding group to the current collector plate is changed from two to one, the space required for the connection can be reduced.
  • FIG. 9 is an exploded perspective view for explaining the positive electrode lead, the negative electrode lead, and the wound group in the fifth embodiment.
  • Example 5 the shape of the pair of positive electrode lead 81 and negative electrode lead 91 is changed to one U-shaped lead.
  • FIG. 10 is an exploded perspective view for explaining the positive electrode lead, the negative electrode lead, and the wound group in the sixth embodiment.
  • Example 6 the shape of the positive electrode lead 81 and the negative electrode lead 91 is changed to a shape in which the positive electrode tab group 111 and the negative electrode tab group 121 of the winding group 40 are not sandwiched by a convex shape having a wide portion on the winding group 40 side. is doing.
  • the lead shape of Example 6 can increase reliability by preventing the bending of the tab and the direction of the tab from being random when joining the tab and the lead by making the winding group side wide. Further, by making the current collecting plate side narrow, it is possible to easily secure a route by reducing the necessary space to the current collecting plate and improving the flexibility. That is, by making the lead shape a convex shape having a wide portion on the winding group side, it is possible to easily suppress the bending of the tab and the randomization of the direction and secure the path from the winding group to the current collector plate. Can be made compatible.
  • a convex lead having a wide portion on the winding group side is parallel to the winding axis as long as the positive electrode tab group 111 and the negative electrode tab group 121 of the winding group 40 do not contact each other as shown in FIG. Demonstrate the effect in the shape spreading in the direction.
  • the tab group spreads in the direction parallel to the winding axis there is a greater risk that the tab will be bent or the direction of the tab will be random, but this can be prevented by pinching with a convex lead as in the present invention. I can do it.
  • the tab group spreads around the winding axis, it is possible to increase the likelihood of the tab interval.
  • the productivity can be greatly improved, so the effect is great.
  • Example 6 demonstrated using the example which makes lead shape convex, it will not specifically limit if it is a wide part on the winding group side, and a narrow part on the current collecting plate side, for example, L shape The same effect can be obtained with a lead shape such as
  • Example 6 compared to Example 3, the cost can be reduced by reducing the number of parts.
  • the effect of preventing the bending of the tab and the random direction of the tab when the tab and the lead are joined is as follows. Inferior.
  • the secondary battery of the present invention includes a storage element having a positive electrode tab group consisting of a plurality of positive electrode tabs and a negative electrode tab group consisting of a plurality of negative electrode tabs protruding from one end, and a positive electrode lead connected to the positive electrode tab group And a negative electrode lead connected to the negative electrode tab group, the positive electrode tab group and the negative electrode tab group are arranged separately, the positive electrode tab group is held by the positive electrode lead, and the negative electrode tab group is held by the negative electrode lead.
  • the tabs protruding from the positive electrode and the negative electrode are sandwiched between the leads, respectively, so that when the tab and the lead are joined, the bending of the tab and the tab direction are prevented from being random. I can do it. For this reason, a square secondary battery with high productivity and reliability can be supplied.
  • At least one of the pair of positive electrode leads or the pair of negative electrode leads has a shape that is wide on the power storage element side and has a narrow portion on the other side.
  • At least one of the plurality of positive electrode tabs and negative electrode tabs does not overlap one or more and spreads in a direction parallel to the direction in which the tabs protrude from the end of the electricity storage element.
  • Existing By combining a winding group in which the tab group extends in the direction parallel to the winding axis and a convex lead with a wide part on the winding group side, when vibration or impact is applied to the battery, the tab or lead Since such a force can be dispersed, the reliability of the battery against vibration and impact can also be improved.
  • At least one of the positive electrode lead and the negative electrode lead may be provided with a bent portion protruding in the thickness direction of the power storage element on the power storage element side.
  • At least one of the positive electrode lead and the negative electrode lead is a combination of a lead and a ribbon.
  • At least one of the pair of positive electrode leads or the pair of negative electrode leads is a U-shaped member.
  • the secondary battery according to the present invention is connected to the positive electrode tab group and a power storage element having a positive electrode tab group consisting of a plurality of positive electrode tabs and a negative electrode tab group consisting of a plurality of negative electrode tabs protruding from one end.
  • a positive electrode lead and a negative electrode lead connected to the negative electrode tab group, and at least one of the positive electrode lead and the negative electrode lead has a shape having a wide width on the power storage element side and a narrow portion on the other side.
  • At least one of the plurality of positive electrode tabs and negative electrode tabs does not overlap one or more but in a direction parallel to the direction in which the tab protrudes from the end of the power storage element. Spread and exist.
  • the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.

Abstract

生産性や信頼性の高い角形二次電池を得ること。本発明の二次電池は、一方側の端部から突出した複数の正極タブからなる正極タブ群及び複数の負極タブからなる負極タブ群を有する蓄電要素と、正極タブ群に接続される正極リード及び負極タブ群に接続される負極リードと、を備え、正極タブ群と負極タブ群とはそれぞれ分離して配置され、正極タブ群は正極リードで挟持され、負極タブ群は負極リードで挟持される。

Description

角形二次電池
 本発明は、車載用途等に使用される角形二次電池に関する。
 従来から、例えば、電気自動車やハイブリッド電気自動車等の車両に搭載された電気モーター等に電力を供給する車載用電源又はその他の機器の電源として、角形二次電池が用いられている。このような角形二次電池として、例えば高エネルギー密度を有するリチウムイオン二次電池が着目され、その研究、開発及び商品化が急速に進められている。
 従来から、車両やその他の機器に使用される密閉型のリチウムイオン二次電池等においては高い生産性や信頼性が求められている。
 特許文献1には、非水電解質電池の電極群として、扁平状に捲回されて捲回軸方向一方側の端面から複数の正極集電タブと複数の負極集電タブとがそれぞれ位置を揃えて突出された構成の電極群が示されている。特許文献1では、電極群のタブがそのまま延伸し、集電板近辺でリードを介して正負極集電端子と溶接されている。
 特許文献2では、非水電解質電池の電極群が積層されて積層群の一方側の端面から複数の正極集電タブと複数の負極集電タブとがそれぞれ位置を揃えて突出された構成の電極群が示されている。特許文献2では、電極群のタブは片側に存在するリードを介して、正負極集電端子に固定されている。
特開2015-130251号公報 特開2013-161756号公報
 しかしながら、特許文献1の方法では、タブを延伸する距離が長いため、特にタブが複数になった場合にタブの折れ曲がりやタブの方向がランダムになることでの短絡や折れ曲がり部での切断による生産性や信頼性の低下が懸念される。また、タブの材質は正負極の箔であるため、正負極の箔の選定が限定的になってしまうことも懸念される。更に、タブの太さや長さなどの形状も限定的になってしまう。加えて、タブから集電板までの経路上での屈曲性の確保も必要となる。
 その対策として、特許文献2のようにリードを用いる方法が考えられる。しかしながら、リードを片方側のみで固定しようとした場合、タブとリードを接合する際にタブの折れ曲がりやタブの方向がランダムになることでの短絡や折れ曲がり部での切断による生産性や信頼性の低下が懸念される。
 本発明は、上記の点に鑑みてなされたものであり、その目的とするところは、生産性や信頼性の高い角形二次電池を得ることである。
 上記課題を解決する本発明の角形二次電池は、一方側の端部から突出した複数の正極タブからなる正極タブ群及び複数の負極タブからなる負極タブ群を有する蓄電要素と、前記正極タブ群に接続される正極リード及び前記負極タブ群に接続される負極リードと、を備えた二次電池において、前記正極タブ群と前記負極タブ群とはそれぞれ分離して配置され、前記正極タブ群は前記正極リードで挟持され、前記負極タブ群は前記負極リードで挟持されることを特徴とする。
 本発明によれば、正極電極及び負極電極から突出するタブは、それぞれリードで挟持されるため、タブとリードを接合する際にタブの折れ曲がりやタブの方向がランダムになることを防ぐことが出来るため、生産性や信頼性が高い角形二次電池を供給することができる。
 本発明に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本実施形態における角形電池の外観斜視図。 図1の角形電池の電池缶から取り外した分解斜視図。 図2の角形電池の上方の部分断面図。 実施例1における正極リードと負極リードと捲回群を説明する分解斜視図。 捲回群の構成を説明する図。 実施例2における正極リードと負極リードと捲回群を説明する分解斜視図。 実施例3における正極リードと負極リードと捲回群を説明する分解斜視図。 実施例4における正極リードと負極リードと捲回群を説明する分解斜視図。 実施例5における正極リードと負極リードと捲回群を説明する分解斜視図。 実施例6における正極リードと負極リードと捲回群を説明する分解斜視図。
 以下、本発明を実施するための形態(以下、適宜「本実施形態」と言う。)について詳細に説明するが、本実施形態は以下の内容に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。
 また、以下の実施形態では、角形二次電池がリチウムイオン二次電池の場合を例に説明するが、本発明は、リチウムイオン二次電池に限定されるものではなく、他の角形二次電池に適用可能である。
 また、以下の実施形態では、蓄電要素は捲回方式で作成されているが、積層方式で作成した蓄電要素に対しても本発明は有効である。
 また、以下の実施例で述べるリードの定義について説明する。本実施例で、リードは電極群から突出したタブと溶接され、タブと集電板が接続するまでの経路確保の役割を担っている物とする。特許文献1では、タブがそのまま延伸した後に、集電板とタブが溶接される際に溶断を防ぐために設置されている部品をリードもしくは補助リードと呼んでいるが、本特許ではそのように溶接される時に溶断を防ぐだけでタブと集電板までの経路確保の役割を担っていない部品はリボンと呼ぶことにする。特許文献1のリードと本特許のリードは役割が異なるため、名称は一緒であるが、機能や形状は大きく異なる。
 《実施例1》
 図1は、本実施の形態に係わるリチウムイオン二次電池の外観斜視図、図2は、図1に示されるリチウムイオン二次電池の分解斜視図であり、正極リード81、負極リード91の接合前の状態を示している。図3は、リチウムイオン二次電池の上方の部分断面図の一例である。
 リチウムイオン二次電池1は、図1及び図2、3に示すように、電池容器2内に発電要素50を収容した構成を有している。電池容器2は、開口部4aを有する電池缶4と、電池缶4の開口部4aを封口する電池蓋3とを有する。発電要素50は、正極電極41と負極電極42との間にセパレータ(図示せず)を介在させて重ね合わせた状態で扁平状に捲回した捲回群40を有している。捲回群40は、絶縁シート(図示せず)を介して電池容器2に収容されている。本実施例では、図2及び図3に示すように、捲回群40を2個合わせて挿入した状態を示しているが、捲回群40の数は電池容量に合わせて1個でも複数個でも電池容量に合わせて収容することができる。
 電池缶4及び電池蓋3は、共にアルミニウム合金で製作されており、電池蓋3は、レーザー溶接によって電池缶4に溶接される。電池蓋3には、第1の絶縁体64、74を介して正極端子61と負極端子71(一対の電極端子)が配設されており、蓋組立体を構成している。なお、電池蓋3には、正極端子61及び負極端子71の他に、電池容器2内の圧力が所定値よりも上昇すると開放されて電池容器2内のガスを排出するガス排出弁13と、電池容器2内に非水電解液を注入するための注液口(図示せず)が配置されており、注液口は、非水電解液の注入後に注液栓11が嵌合され、レーザー溶接によって封止される。非水電解液には、例えばエチレンカーボネートとジメチルカーボネートとを体積比で1:2の割合で混合した混合溶液中へ六フッ化リン酸リチウム(LiPF)を1モル/リットルの濃度で溶解したものを用いることができる。
 正極端子61及び負極端子71は、電池蓋3の長手方向一方側と他方側の互いに離れた位置に配置されている。正極端子61及び負極端子71は、電池蓋3の開口穴(不図示)に挿通されて電池蓋3の内側まで突出する接続部を有しており、正極集電板21及び負極集電板31にそれぞれ導通接続されている。
 正極端子61は、アルミニウムまたはアルミニウム合金で製作され、負極端子71は、銅または銅合金で製作されている。正極端子61と負極端子71は、それぞれ電池蓋3の内側に第2の絶縁体65が介在されており、電池蓋3から電気的に絶縁されている。正極端子61及び負極端子71は、それぞれ接続部の先端をかしめることによって、第1の絶縁体64及び第2の絶縁体65を間に介して、正極集電板21及び負極集電板31とともに電池蓋3に固定される。
 正極集電板21は、電池蓋3の下面に沿って電池蓋3の長手方向一方端側からセル中央方向である長手方向中央側に向かって延伸し、延伸した平坦部において、例えばレーザー溶接により正極リード81に接合されて導通される。負極集電板31は、電池蓋3の下面に沿って電池蓋3の長手方向他方端側から長手方向中央側に向かって延伸し、延伸した平坦部において、例えばレーザー溶接により負極リード91に接合されて導通される。なお、正極集電板21及び負極集電板31を、正極リード81及び負極リード91に接合する方法は、レーザー溶接だけでなく、超音波溶接やかしめによる接合、固定などでもよい。
 捲回群40は、捲回軸方向一方側に正極タブ群111と負極タブ群121を有しており、正極リード81は、正極集電板21と捲回群40の正極タブ群111との間を導通し、負極リード91は、負極集電板31と捲回群40の負極タブ群121との間を導通する。
 正極リード81及び負極リード91は、図4に示すように、捲回群40の正極タブ群111と負極タブ群121に予め接合される。正極タブ群111と負極タブ群121は、一対の正極リード81、及び、一対の負極リード91によって捲回群40の扁平厚さ方向両側から挟み込まれて接合される。正極リード81は、正極電極41の正極タブ群111を一括して接続し、負極リード91は、負極電極42の負極タブ群121を一括して接続する。
 正極リード81と負極リード91は、上部絶縁板101の底部に設置された貫通溝102に挿通されて、図3に示すように、上部絶縁板101内で折り曲げ収納される。正極リード81は、アルミニウム合金で厚さ0.05~0.3mm程度が望ましく、負極リード91は、銅合金で厚さ0.05~0.3mm程度が望ましい。正極リード81と正極タブ群111との接合方法、及び、負極リード91と負極タブ群121との接合方法としては、超音波溶接やレーザー溶接などがある。
 リードが薄すぎると大電流を流した際に熱の発生や抵抗上昇の要因となってしまう。また、リードが厚すぎると溶接性の低下と経路確保時の屈曲性の低下が懸念される。
 本発明では、タブから集電板までの接続はリードを用いているため、複数のタブをそのまま延伸する場合に比べて、タブの折れ曲がりやタブの方向がランダムになることでの短絡や折れ曲がり部での切断は起こりにくい。また、リードを用いるため、タブの材質は正負極の箔であるため、正負極の箔の選定が限定的になってしまうことも避けられる。更に、タブの太さや長さなどの形状も、タブを延伸する場合に比べて尤度が高い。加えて、タブから集電板までの経路上での屈曲性の確保も容易である。
 また、本発明では、正極電極及び負極電極から突出するタブは、それぞれリードで挟持されるため、タブとリードを接合する際にタブの折れ曲がりやタブの方向がランダムになることを防ぐことが出来る。このため、生産性や信頼性が高い角形二次電池を供給することができる。
 捲回群40は、絶縁シート(図示しない)に覆われた状態で電池缶4に挿入される。図2及び図3に示すように、捲回群40の上方には、上部絶縁板101が配置される。上部絶縁板101には、正極リード81と負極リード91が挿通される貫通溝102が設けられている。
 図4は、捲回群の構成を説明する図であり、巻き終わり側を展開した状態の外観斜視図、図5は、図4に示す捲回群の投影図である。
 捲回群40は、それぞれ負極電極42、正極電極41を配置して、その間には第1、第2セパレータ43が位置し、扁平状に捲回することによって構成される。捲回群40は、捲回装置の巻き軸スピンドルを回転させて、巻き軸スピンドルに第1、第2セパレータ43、負極電極42、正極電極41を巻き取ることによって形成される。例えば、巻き軸スピンドルに第1、第2セパレータ43の捲き始め端部を保持させて巻き軸スピンドルを回転させ、巻き軸スピンドルによって巻き取られる第1、第2セパレータ43の間に負極電極42の捲き始め端部を差し込み、次いで、負極電極42との間に第1、第2セパレータ43のいずれか一方が介在されるように正極電極41の捲き始め端部を第1、第2セパレータ43の間に差し込み、第1、第2セパレータ43、負極電極42、正極電極41を一体に巻き取ることにより形成される。
 捲回群40は、図4に示すように、最外周の電極が負極電極42であり、さらにその外側に第1、第2セパレータ43の少なくとも一方が捲回される。第1、第2セパレータ43は、正極電極41と負極電極42を絶縁する役割を有している。負極電極42の負極塗工部42aは、正極電極41の正極塗工部41aよりも幅方向に大きく、これにより正極塗工部41aは、必ず負極塗工部42aに挟まれるように構成されている。
 負極電極42においては、負極活物質として非晶質炭素粉末100重量部に対して、結着剤として10重量部のポリフッ化ビニリデン(以下、PVDFという。)を添加し、これに分散溶媒としてN-メチルビロリドン(以下、NMPという。)を添加、混練した負極合剤を作製した。この負極合剤を厚さ10μmの銅箔(負極電極箔)の両面に集電部(負極未塗工部)を残して塗布した。その後、乾燥、プレス、裁断して銅箔を含まない負極活物質塗布部の厚さが70μmの負極電極を得た。
 なお、本実施の形態では、負極活物質に非晶質炭素を用いる場合について例示したが、これに限定されるものではなく、リチウムイオンを挿入、脱離可能な天然黒鉛や、人造の各種黒鉛材、コークスなどの炭素質材料等でよく、その粒子形状においても、鱗片状、球状、繊維状、塊状等、特に制限されるものではない。
 正極電極41においては、正極活物質としてマンガン酸リチウム(化学式LiMn)100重量部に対し、導電材として10重量部の鱗片状黒鉛と結着剤として10重量部のPVDFとを添加し、これに分散溶媒としてNMPを添加、混練した正極合剤を作製した。この正極合剤を厚さ20μmのアルミニウム箔(正極電極箔)の両面に無地の集電部(正極未塗工部)を残して塗布した。その後、乾燥、プレス、裁断してアルミニウム箔を含まない正極活物質塗布部厚さ90μmの正極電極を得た。
 また、本実施の形態では、正極活物質にマンガン酸リチウムを用いる場合について例示したが、スピネル結晶構造を有する他のマンガン酸リチウムや一部を金属元素で置換又はドープしたリチウムマンガン複合酸化物や層状結晶構造を有すコバルト酸リチウムやチタン酸リチウムやこれらの一部を金属元素で置換またはドープしたリチウム-金属複合酸化物を用いるようにしてもよい。
 また、本実施の形態では、正極電極、負極電極における塗工部の結着材としてPVDFを用いる場合について例示したが、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレンブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン、アクリル系樹脂などの重合体およびこれらの混合体などを用いることができる。
 正極電極41は、正極集電体である正極電極箔の両面に正極活物質合剤を塗布した正極塗工部41aを有し、正極電極箔の幅方向一方側の端部には、正極活物質合剤を塗布しない正極未塗工部(箔露出部)で構成された複数の正極タブ群111が設けられている。負極電極42は、負極集電体である負極電極箔の両面に負極活物質合剤を塗布した負極塗工部42aを有し、正極電極箔の幅方向他方側の端部には、負極活物質合剤を塗布しない負極未塗工部(箔露出部)で構成される複数の負極タブ群121が設けられている。正極タブ群111と負極タブ群121は、正極電極箔の金属面と負極電極箔の金属面がそれぞれ露出した領域であり、捲回群40の捲回軸方向一方側(同一側)の位置に配置される。図4および図5では、正極タブ群111と負極タブ群121は、重なっているが、少なくとも正極群タブ111と負極タブ群121が接触していなければ重なっていなくても良い。正極群タブは予め捲回した際に適した位置に来るようにタブの間隔を調整しておくことで、捲回後のタブ位置を調整して作成することが出来る。タブ加工は、プレス前およびプレス後、もしくは捲回中のいずれでも良いが、プレス後の湾曲の抑制の観点からはプレス前に行うことが好ましい。
 タブの形成方法に関しては、プレス打ち抜きによるカットや、ロータリーカッターの使用のいずれでも構わない。
 捲回群毎のタブの本数は、少なくとも複数あることを特徴とする。1本しかない場合は、電池の抵抗が高くなってしまうため好ましくない。
 《実施例2》
 次に、本発明の実施例2について図6を用いて説明する。図6は、実施例2における正極リードと負極リードと捲回群を説明する分解斜視図である。
 実施例2では、正極リード81および負極リード91の形状を捲回群40側に幅広部を有する凸形状に変更している。また、効果をわかりやすく示すため、捲回群の正極タブ群111と負極タブ群121はお互いが接触しない範囲で捲回軸に並行方向に広がっている形状に変更している。
 実施例2のリード形状は、捲回群側を幅広部にすることでタブとリードを接合する際のタブの折れ曲がりやタブの方向がランダムになることを防ぐ信頼性を上げることが出来る。また、集電板側を幅狭部にすることで捲回群から集電板まで接続するために必要なスペースを減らすこととリードの屈曲性の改善が期待出来る。即ち、リードの形状を捲回群側に幅広部を有する凸形状にすることで、タブの折れ曲がりや方向のランダム化の抑制と捲回群から集電板までの経路の確保を容易にすることを両立させることが出来る。
 捲回群側に幅広部を有する凸形状のリードは特に図6に示すような正極タブ群111と負極タブ群121が捲回群にお互いが接触しない範囲で捲回軸に並行方向に広がっているような捲回群40形状で効果を発揮する。タブ群が捲回軸に並行方向に広がっている場合、重なっている場合に比べてタブの折れ曲がりやタブの方向がランダムになるリスクが大きくなるが、本発明のように凸形状のリードで挟持することでそれを防ぐことが出来る。
 タブ群が捲回軸に広がっていても大丈夫であれば、正負極電極のタブ間隔の尤度を広げることが出来るため、生産性が改善する。特に、タブ間隔が等ピッチでも作成可能な場合、生産性が大幅に改善できるため、効果は大きい。
 さらに、タブ群が捲回軸に並行方向に広がっている捲回群と捲回群側に幅広部を有する凸形状のリードを組み合わせることで電池に振動や衝撃が加わった場合に、タブやリードにかかる力を分散化できるため、電池の振動や衝撃に対する信頼性も改善することが出来る。
 なお、実施例2では、リード形状を凸形状にする例を用いて説明したが、捲回群側に幅広部、集電板側に幅狭部な形状であれば特に限定されず、例えばL字型のようなリード形状でも同様の効果を得られることが出来る。
 《実施例3》
 次に、本発明の実施例3について図7を用いて説明する。図7は、実施例3における正極リードと負極リードと捲回群を説明する分解斜視図である。
 実施例3では、正極リード81および負極リード91の捲回群側に捲回群の厚さ方向に突出した折り曲げ部が設けられている形状に変更している。
 実施例3のリード形状は、タブとリードを接合する際の位置決めが容易になり、タブとリードを接合する際に、リードで捲回群を押すことによる捲回群へのダメージを与えてしまう可能性を下げることが出来る。
 なお、実施例3では、捲回群側に幅広部を有する凸形状のリードを例に挙げたが、実施例1のようなリード形状でも同様の効果が期待できる。
 《実施例4》
 次に、本発明の実施例4について図8を用いて説明する。図8は、実施例4における正極リードと負極リードと捲回群を説明する分解斜視図である。
 実施例4では、1対の正極リード81の一方を正極リボン82に一対の負極リード91の一方を負極リボン92にそれぞれ変更している。
 正極タブ群111と負極タブ群121は、正極リード81と正極リボン82、及び、負極リード91と負極リボン92によって捲回群40の扁平厚さ方向両側から挟み込まれて接合される。正極リード81と正極リボン82は、正極電極41の正極タブ群111を一括して接続し、負極リード91と負極リボン82は、負極電極42の負極タブ群121を一括して接続する。
 正極リボン82は、アルミニウム合金で厚み0.05~0.3mm程度が望ましく、負極リード92は、銅合金で厚み0.05~0.3mm程度が望ましい。
 その後、正極リード81は正極集電板21に向けて延伸され接続される。また、負極リード91は負極集電板31に向けて延伸され接続される。一方で、正極リボン82および負極リボン92は延伸されない。
 実施例4では、リードの一方をリードに比べて短いリボンにしているため、部品を簡略化できる。また、捲回群から集電板までの接続が2本から1本になっているため、接続に必要なスペースを小さくすることが出来る。
 一方で、接続が2本から1本に減っているため、大電流を流した際に熱の発生や抵抗上昇を招くおそれがある。また、捲回群に振動や衝撃が生じた場合に実施例1に比べて応力が分散されにくく、破断する恐れが高くなるため、信頼性が低下する。
 このように、メリットとデメリットが存在するため、一方をリードにするかリボンにするかは電池の形状や用途などによって決めるのが好ましい。一般的に大きな電池では大電流や振動の懸念が大きいのでリードを用いて、小さな電池では経路確保に課題があることが多いため、リボンを用いるのが好ましい。
 《実施例5》
 次に、本発明の実施例5について図9を用いて説明する。図9は、実施例5における正極リードと負極リードと捲回群を説明する分解斜視図である。
 実施例5では、1対の正極リード81および負極リード91の形状を1個のU字型のリードに変更している。
 実施例5のリード形状にすることで、部品点数を減らすことが出来るため、コストを下げることが出来る。
 一方で、1対のリードで挟み込む実施例1のようなやり方に比べて、タブをリードで挟み込むのが難しく、生産性が低下する。
 このように、メリットとデメリットが存在するため、リードを1対にするか、U字形状するかは溶接方法や溶接時の治具などを考慮しながら選ぶのが好ましい。
 《実施例6》
 次に、本発明の実施例6について図10を用いて説明する。図10は、実施例6における正極リードと負極リードと捲回群を説明する分解斜視図である。
 実施例6では、正極リード81および負極リード91の形状を捲回群40側に幅広部を有する凸形状で捲回群40の正極タブ群111と負極タブ群121は挟持されていない形状に変更している。
 実施例6のリード形状は、捲回群側を幅広部にすることでタブとリードを接合する際のタブの折れ曲がりやタブの方向がランダムになることを防ぐ信頼性を上げることが出来る。また、集電板側を幅狭部にすることで集電板までの必要スペース減と屈曲性改善による経路確保を容易にすることが出来る。即ち、リードの形状を捲回群側に幅広部を有する凸形状にすることで、タブの折れ曲がりや方向のランダム化の抑制と捲回群から集電板までの経路の確保を容易にすることを両立させることが出来る。
 捲回群側に幅広部を有する凸形状のリードは図6のように特に捲回群40の正極タブ群111と負極タブ群121が捲回群にお互いが接触しない範囲で捲回軸に並行方向に広がっている形状で効果を発揮する。タブ群が捲回軸に並行方向に広がっている場合、タブの折れ曲がりやタブの方向がランダムになるリスクが大きくなるが、本発明のように凸形状のリードで挟持することでそれを防ぐことが出来る。
 タブ群が捲回軸に広がっていても大丈夫であれば、タブ間隔の尤度を広げることが出来る。特に、タブ間隔が等ピッチでも作成可能な場合、生産性が大幅に改善できるため、効果は大きい。
 さらに、タブ群が捲回軸に並行方向に広がっている捲回群と捲回群側に幅広部を有する凸形状のリードを組み合わせることで電池に振動や衝撃が加わった場合に、タブやリードにかかる力を分散化できるため、電池の振動や衝撃に対する信頼性も改善することが出来る。
 なお、実施例6では、リード形状を凸形状にする例を用いて説明したが、捲回群側に幅広部、集電板側に幅狭部であれば特に限定されず、例えばL字型のようなリード形状でも同様の効果を得られることが出来る。
 実施例6は実施例3に比べると、部品点数を減らすことで低コスト化が出来るが一方で、タブとリードを接合する際のタブの折れ曲がりやタブの方向がランダムになることを防ぐ効果は劣る。
 このように、メリットとデメリットが存在するため、1対のリードで挟み込むか、片側のみにするかは溶接方法や溶接時の治具などを考慮しながら選ぶのが好ましい。
 以上、簡単に本発明についてまとめる。本発明の二次電池は、一方側の端部から突出した複数の正極タブからなる正極タブ群及び複数の負極タブからなる負極タブ群を有する蓄電要素と、正極タブ群に接続される正極リード及び負極タブ群に接続される負極リードと、を備え、正極タブ群と負極タブ群とはそれぞれ分離して配置され、正極タブ群は正極リードで挟持され、負極タブ群は負極リードで挟持される。このような構造にすることによって、正極電極及び負極電極から突出するタブは、それぞれリードで挟持されるため、タブとリードを接合する際にタブの折れ曲がりやタブの方向がランダムになることを防ぐことが出来る。このため、生産性や信頼性が高い角形二次電池を供給することができる。
 また、本発明の二次電池は、一対の正極リード又は一対の負極リードのうち少なくとも一つは、蓄電要素側に幅広で、もう一方側に幅狭部を有する形状である。このような構造にすることによって、タブとリードを接合する際のタブの折れ曲がりやタブの方向がランダムになることを防ぐ信頼性を上げることが出来る。また、集電板側を幅狭部にすることで捲回群から集電板まで接続するために必要なスペースを減らすこととリードの屈曲性の改善が期待出来る。即ち、リードの形状を捲回群側に幅広部を有する凸形状にすることで、タブの折れ曲がりや方向のランダム化の抑制と捲回群から集電板までの経路の確保を容易にすることを両立させることが出来る。
 また、本発明の二次電池は、複数の正極タブおよび負極タブのうち少なくとも一つは、1枚以上重ならず前記蓄電要素の端部からタブが突出している方向に平行な方向に広がって存在している。タブ群が捲回軸に並行方向に広がっている捲回群と、捲回群側に幅広部を有する凸形状のリードを組み合わせることで電池に振動や衝撃が加わった場合に、タブやリードにかかる力を分散化できるため、電池の振動や衝撃に対する信頼性も改善することが出来る。
 また、本発明に記載の二次電池は、正極リード又は負極リードのうち少なくとも一つは、蓄電要素側に蓄電要素の厚さ方向に突出した折り曲げ部が設けられることができる。このような構成にすることによって、タブとリードを接合する際の位置決めが容易になり、タブとリードを接合する際に、リードで捲回群を押すことによる捲回群へのダメージを与えてしまう可能性を下げることが出来る。
 また、本発明に記載の二次電池は、正極リード又は負極リードのうち少なくとも一方は、リードとリボンの組み合わせである。このような構造にすることによって、部品を簡略化できる。また、捲回群から集電板までの接続が2本から1本になっているため、接続に必要なスペースを小さくすることが出来る。
 また、本発明に記載の二次電池は、一対の正極リード又は一対の負極リードのうち少なくとも一つはU字形状の部材である。このような構造にすることによって、部品点数を減らすことが出来るため、コストを下げることが出来る。
 また、本発明に記載の二次電池は、一方側の端部から突出した複数の正極タブからなる正極タブ群及び複数の負極タブからなる負極タブ群を有する蓄電要素と、正極タブ群に接続される正極リード及び負極タブ群に接続される負極リードと、を備え、正極リード又は負極リードのうち少なくとも一方は、蓄電要素側に幅広で、もう一方側に幅狭部を有する形状である。
 また、本発明に記載の二次電池は、複数の正極タブおよび負極タブのうち少なくとも一つは、1枚以上重ならず前記蓄電要素の端部からタブが突出している方向に平行な方向に広がって存在している。
 以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 1 角形二次電池
 2 電池容器
 3 電池蓋
 4 電池缶
11 注液栓
13 ガス排出弁
21 正極集電板
31 負極集電板
40 捲回群
41 正極電極
41a 正極塗工部
42 負極電極
42a 負極塗工部
43 セパレータ
50 発電要素
61 正極端子
64 第1の絶縁体
65 第2の絶縁体
71 負極端子
81 正極リード
82 正極リボン
91 負極リード
92 負極リボン
101 上部絶縁板
102 貫通溝
110 正極タブ
111 正極タブ群
121 負極タブ群

Claims (8)

  1.  一方側の端部から突出した複数の正極タブからなる正極タブ群及び複数の負極タブからなる負極タブ群を有する蓄電要素と、
     前記正極タブ群に接続される正極リード及び前記負極タブ群に接続される負極リードと、を備えた二次電池において、
     前記正極タブ群と前記負極タブ群とはそれぞれ分離して配置され、
     前記正極タブ群は前記正極リードで挟持され、前記負極タブ群は前記負極リードで挟持されることを特徴とする二次電池。
  2.  請求項1に記載の二次電池において、
     前記一対の正極リード又は前記一対の負極リードのうち少なくとも一つは、前記蓄電要素側に幅広で、もう一方側に幅狭部を有する形状であることを特徴とする二次電池。
  3.  請求項2に記載の二次電池において、
     前記複数の正極タブおよび負極タブのうち少なくとも一つは、1枚以上重ならず前記蓄電要素の端部からタブが突出している方向に平行な方向に広がって存在していることを特徴とする二次電池。
  4.  請求項1~3のいずれか一項に記載の二次電池において、
     前記正極リード又は前記負極リードのうち少なくとも一つは、前記蓄電要素側に前記蓄電要素の厚さ方向に突出した折り曲げ部が設けられることを特徴とする二次電池。
  5.  請求項1~3のいずれか一項に記載の二次電池において、
     前記正極リード又は前記負極リードのうち少なくとも一方は、リードとリボンの組み合わせであることを特徴とする二次電池。
  6.  請求項1~5のいずれか一項に記載の二次電池において、
     前記一対の正極リード又は前記一対の負極リードのうち少なくとも一つはU字形状の部材であること特徴とする二次電池。
  7.  一方側の端部から突出した複数の正極タブからなる正極タブ群及び複数の負極タブからなる負極タブ群を有する蓄電要素と、
     前記正極タブ群に接続される正極リード及び前記負極タブ群に接続される負極リードと、を備えた二次電池において、
     前記正極リード又は前記負極リードのうち少なくとも一方は、前記蓄電要素側に幅広で、もう一方側に幅狭部を有する形状であることを特徴とする二次電池。
  8.  請求項7に記載の二次電池において、
     前記複数の正極タブおよび負極タブのうち少なくとも一つは、1枚以上重ならず前記蓄電要素の端部からタブが突出している方向に平行な方向に広がって存在していることを特徴とする二次電池。
PCT/JP2017/034869 2016-09-30 2017-09-27 角形二次電池 WO2018062231A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-195008 2016-09-30
JP2016195008A JP2018060599A (ja) 2016-09-30 2016-09-30 角形二次電池

Publications (1)

Publication Number Publication Date
WO2018062231A1 true WO2018062231A1 (ja) 2018-04-05

Family

ID=61759806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034869 WO2018062231A1 (ja) 2016-09-30 2017-09-27 角形二次電池

Country Status (2)

Country Link
JP (1) JP2018060599A (ja)
WO (1) WO2018062231A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112005416A (zh) * 2018-11-27 2020-11-27 株式会社Lg化学 圆柱型二次电池
WO2022237807A1 (zh) * 2021-05-14 2022-11-17 陕西奥林波斯电力能源有限责任公司 大容量电池的导电连接片、极柱、集流盘及导电连接结构
CN116779986A (zh) * 2023-08-18 2023-09-19 深圳海辰储能控制技术有限公司 储能装置与用电设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7463930B2 (ja) 2020-09-30 2024-04-09 トヨタ自動車株式会社 電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008027892A (ja) * 2006-07-18 2008-02-07 Lg Chem Ltd 新規な電極リード−電極タブ結合部を有する電極組立体及びこれを備えた電気化学セル
JP2011113960A (ja) * 2009-11-27 2011-06-09 Samsung Sdi Co Ltd 二次電池
JP2014167881A (ja) * 2013-02-28 2014-09-11 Sanyo Electric Co Ltd 電池及び電池の製造方法
CN205376627U (zh) * 2016-02-26 2016-07-06 宁德时代新能源科技股份有限公司 二次电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008027892A (ja) * 2006-07-18 2008-02-07 Lg Chem Ltd 新規な電極リード−電極タブ結合部を有する電極組立体及びこれを備えた電気化学セル
JP2011113960A (ja) * 2009-11-27 2011-06-09 Samsung Sdi Co Ltd 二次電池
JP2014167881A (ja) * 2013-02-28 2014-09-11 Sanyo Electric Co Ltd 電池及び電池の製造方法
CN205376627U (zh) * 2016-02-26 2016-07-06 宁德时代新能源科技股份有限公司 二次电池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112005416A (zh) * 2018-11-27 2020-11-27 株式会社Lg化学 圆柱型二次电池
WO2022237807A1 (zh) * 2021-05-14 2022-11-17 陕西奥林波斯电力能源有限责任公司 大容量电池的导电连接片、极柱、集流盘及导电连接结构
CN116779986A (zh) * 2023-08-18 2023-09-19 深圳海辰储能控制技术有限公司 储能装置与用电设备

Also Published As

Publication number Publication date
JP2018060599A (ja) 2018-04-12

Similar Documents

Publication Publication Date Title
JP5417241B2 (ja) 角形リチウムイオン二次電池および角形リチウムイオン二次電池の製造方法
US6379840B2 (en) Lithium secondary battery
JP6043428B2 (ja) 角形電池及び組電池
JP6086240B2 (ja) 非水電解液電池およびその製造方法
JP6198844B2 (ja) 組電池
US20170125778A1 (en) Rectangular Secondary Battery
JP2011216399A (ja) 角形リチウム二次電池
WO2018062231A1 (ja) 角形二次電池
JP6232213B2 (ja) 二次電池及びその製造方法
WO2013047515A1 (ja) 非水電解質二次電池
CN113330600B (zh) 锂二次电池用电极和锂二次电池
WO2017141613A1 (ja) 角形二次電池
JP5768002B2 (ja) 二次電池
JP2011054378A (ja) 非水電解液二次電池
JP2013222517A (ja) 角形二次電池
WO2019123932A1 (ja) リチウムイオン二次電池用正極及びそれを用いたリチウムイオン二次電池
JP6494159B2 (ja) 二次電池
JP6382336B2 (ja) 角形二次電池
JP2016178053A (ja) 角形二次電池
JP6752691B2 (ja) 二次電池
JP6235422B2 (ja) 二次電池
WO2019167357A1 (ja) 密閉型電池
JP2016143618A (ja) 角形二次電池
JP2015204236A (ja) 二次電池および電池モジュール
JP6752737B2 (ja) 角形二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17856180

Country of ref document: EP

Kind code of ref document: A1