WO2014175426A1 - すべり軸受 - Google Patents

すべり軸受 Download PDF

Info

Publication number
WO2014175426A1
WO2014175426A1 PCT/JP2014/061697 JP2014061697W WO2014175426A1 WO 2014175426 A1 WO2014175426 A1 WO 2014175426A1 JP 2014061697 W JP2014061697 W JP 2014061697W WO 2014175426 A1 WO2014175426 A1 WO 2014175426A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
narrow groove
slide bearing
oil grooves
rotation direction
Prior art date
Application number
PCT/JP2014/061697
Other languages
English (en)
French (fr)
Inventor
克宏 芦原
悠一朗 梶木
裕紀 高田
暁拡 本田
村上 元一
Original Assignee
大豊工業株式会社
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大豊工業株式会社, トヨタ自動車株式会社 filed Critical 大豊工業株式会社
Priority to EP14788022.3A priority Critical patent/EP2990668B1/en
Priority to US14/786,826 priority patent/US9879725B2/en
Priority to CN201480022936.2A priority patent/CN105143691A/zh
Publication of WO2014175426A1 publication Critical patent/WO2014175426A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/107Grooves for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/022Sliding-contact bearings for exclusively rotary movement for radial load only with a pair of essentially semicircular bearing sleeves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/103Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/1065Grooves on a bearing surface for distributing or collecting the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C9/00Bearings for crankshafts or connecting-rods; Attachment of connecting-rods
    • F16C9/02Crankshaft bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/30Angles, e.g. inclinations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/42Groove sizes

Definitions

  • the present invention relates to a slide bearing technique, and more particularly to a slide bearing technique in which a half member in which a cylinder is divided into two in parallel to the axial direction is arranged vertically.
  • a bearing for supporting an engine crankshaft and having a half crack structure in which two members divided into two cylindrical shapes are combined is known. Further, in order to reduce the sliding area of the bearing and obtain a friction reduction effect, there is a structure in which the width of the bearing is narrowed. However, when the bearing width was narrowed, the amount of spilled oil increased. Therefore, a bearing in which relief portions (narrow grooves) are formed on the entire circumference at both ends in the axial direction of the bearing is known (for example, see Patent Document 1).
  • the present invention provides a plain bearing that can obtain a friction reduction effect and can suppress the total amount of oil spilled.
  • a slide bearing in which a half member obtained by dividing a cylinder into two in parallel with the axial direction is arranged vertically, and at the downstream end in the rotational direction at the axial end of the lower half member.
  • a narrow groove is provided in the circumferential direction from the mating surface to a predetermined bearing angle, and a peripheral edge is formed on the outer side in the axial direction of the narrow groove.
  • the height of the peripheral edge portion is formed to be lower than the contact surface with the shaft of the slide bearing.
  • a plurality of oil grooves narrower than the narrow groove are formed on the bottom surface of the narrow groove and the surface of the peripheral edge facing the slide bearing shaft.
  • the plurality of oil grooves are formed in a direction parallel to the rotation direction.
  • the plurality of oil grooves are formed in a direction orthogonal to the rotation direction.
  • the plurality of oil grooves are formed in a direction crossing the rotation direction, and the plurality of oil grooves are inclined at a predetermined angle from the rotation direction.
  • a plurality of oil grooves that are narrower than the narrow grooves are formed on the bottom surface of the narrow grooves and on the surface of the peripheral edge facing the slide bearing shaft.
  • the plurality of oil grooves are formed in a direction parallel to the rotation direction.
  • the plurality of oil grooves are formed in a direction orthogonal to the rotation direction.
  • the plurality of oil grooves are formed in a direction intersecting the rotation direction, and the plurality of oil grooves are inclined at a predetermined angle from the rotation direction.
  • the front view which shows the slide bearing which concerns on embodiment of this invention (A) The top view which shows the half member which comprises the slide bearing which concerns on 1st embodiment of this invention. (B) A sectional view taken along the line AA. (C) Similarly, a cross-sectional view along the line BB. (A) The graph (experimental value) which shows the relationship between an engine speed and friction average effective pressure (FMEP) reduction amount. (B) The graph (experimental value) which shows the relationship between an engine speed and the oil amount reduction amount per minute. (A) Reference sectional drawing which shows the half member which comprises the slide bearing which concerns on a 1st comparative example. (B) The reference sectional view showing the half member which constitutes the slide bearing concerning the 2nd comparative example.
  • FIG. 1 is a front view of the sliding bearing 1, and the vertical direction in the drawing is the vertical direction, and the front direction and the back direction in the drawing are the axial directions (front-rear direction).
  • the slide bearing 1 is a cylindrical member and is applied to a slide bearing structure of an engine crankshaft 11 as shown in FIG.
  • the plain bearing 1 is composed of two halved members 2 and 2.
  • the two halved members 2 and 2 have a shape obtained by dividing a cylinder into two in parallel to the axial direction, and are formed so that the cross section is a semicircular shape.
  • the half members 2 and 2 are arranged up and down, and mating surfaces are arranged on the left and right.
  • FIG. 2A shows the upper and lower half members 2.
  • the rotation direction of the crankshaft 11 is the clockwise direction when viewed from the front as indicated by the arrow in FIG.
  • the bearing angle ⁇ is 0 degree at the right end position in FIG. 2B, and the counterclockwise direction in FIG. 2B is positive. That is, in FIG. 2B, the bearing angle ⁇ at the left end position is defined as 180 degrees, and the bearing angle ⁇ at the lower end position is defined as 270 degrees.
  • a groove is provided in the circumferential direction, and a circular hole is provided in the center.
  • mating surfaces are arranged on the left and right of the upper half member 2.
  • a narrow groove 3 is formed at an end portion in the axial direction on the contact surface on the inner periphery of the lower half member 2.
  • the narrow groove 3 is provided in the lower half member 2.
  • two narrow grooves 3 are provided in parallel in the axial direction.
  • the narrow groove 3 is provided in a circumferential direction from the mating surface on the downstream side in the rotation direction of the crankshaft 11 (bearing angle ⁇ is 180 degrees) toward the direction in which the bearing angle ⁇ is positive (counterclockwise direction). It is done.
  • the narrow groove 3 is formed to have a width w. Further, the depth d of the narrow groove 3 is formed to be shorter than the height D from the outer peripheral surface of the half member 2 to the contact surface. Further, the peripheral edge 2a that forms the axially outer side surface of the narrow groove 3 has a height h from the outer peripheral surface of the half member 2 higher than the height D from the outer peripheral surface of the half member 2 to the contact surface. It is formed to be low. That is, the outer peripheral edge 2a in the axial direction is formed to be one step lower than the contact surface with the surrounding crankshaft 11.
  • the peripheral edge 2a is formed so as to be one step lower than the contact surface with the surrounding crankshaft 11, so that the crankshaft 11 is tilted and is in contact with only one end in the axial direction (a state where it comes into contact with one side) When it becomes, since the contact opportunity with the peripheral part 2a and the crankshaft 11 can be reduced, damage to the peripheral part 2a can be prevented.
  • peripheral edge portion 2a is formed so as to be one step lower than the surrounding contact surface, the gap at the axial end portion of the slide bearing 1 is widened, and the amount of sucked-back oil is increased and the total amount of oil spilled Is reduced.
  • FIG. 3 (a) is a graph showing the relationship between the engine speed and the friction average effective pressure (FMEP) reduction amount.
  • the triangle ( ⁇ ) is a friction average effective pressure (FMEP) reduction amount when the narrow groove 3 according to the present embodiment is provided.
  • a square ( ⁇ ) is a friction average effective pressure (FMEP) reduction amount when the narrow groove 13 shown in FIG. 4A is provided as a comparative example.
  • the peripheral edge portion 12a on the axially outer side of the narrow groove 13 shown in FIG. 4A has a height h from the outer peripheral surface of the half member 2 between the outer peripheral surface of the half member 2 and the contact surface. It is formed to have the same height as the height D.
  • a circle ( ⁇ ) is a friction average effective pressure (FMEP) reduction amount when the narrow groove 23 shown in FIG. 4B is provided as a comparative example.
  • the peripheral edge 22a on the axially outer side of the narrow groove 23 shown in FIG. 4B is such that the height h from the outer peripheral surface of the half member 2 is the same height as the bottom surface of the narrow groove 23. Is formed.
  • the narrow groove 3 according to the present embodiment As shown in FIG. 3A, compared to the case where the narrow groove 13 according to Comparative Example 1 and the narrow groove 23 according to Comparative Example 2 are provided, The amount of FMEP reduction increases. In particular, the FMEP reduction amount increases in a region where the engine speed is low.
  • FMEP is a value for seeing the tendency of friction, and the friction decreases as the FMEP reduction amount increases.
  • FIG. 3B is a graph showing the relationship between the engine speed and the oil amount reduction amount per minute.
  • the triangle ( ⁇ ) is the oil amount reduction amount per minute when the narrow groove 3 according to the present embodiment is provided.
  • the square ( ⁇ ) is the oil amount reduction amount per minute when the narrow groove 13 shown in FIG. 4A is provided as a comparative example.
  • the peripheral edge portion 12a on the axially outer side of the narrow groove 13 shown in FIG. 4A has a height h from the outer peripheral surface of the half member 2 between the outer peripheral surface of the half member 2 and the contact surface. It is formed to have the same height as the height D.
  • a circle ( ⁇ ) is an oil amount reduction amount per minute when the narrow groove 23 shown in FIG.
  • peripheral edge 22a on the axially outer side of the narrow groove 23 shown in FIG. 4B is such that the height h from the outer peripheral surface of the half member 2 is the same height as the bottom surface of the narrow groove 23. Is formed.
  • the peripheral edge portion 32 a that forms the axially outer side surface of the narrow groove 33 has a height h from the outer peripheral surface of the half member 2 that makes contact with the outer peripheral surface of the half member 2. It is formed to have the same length as the height D to the surface. In the present embodiment, the height h of the peripheral portion 32a is formed to be the same length as the height D to the contact surface. However, the present invention is not limited to this. For example, the peripheral portion 32a May be formed to be lower than the height to the contact surface.
  • a plurality of oil grooves 35 ⁇ / b> A that are narrower than the narrow grooves 33 are formed on the bottom surface of the narrow grooves 33.
  • the oil groove 35 ⁇ / b> A is formed in a direction parallel to the rotation direction of the crankshaft 11, and is provided on the entire bottom surface of the narrow groove 33.
  • a plurality of oil grooves 36 ⁇ / b> A are also formed on a contact surface that is a surface facing the crankshaft 11 of the peripheral portion 32 a.
  • the oil groove 36A is formed in a direction parallel to the rotation direction of the crankshaft 11, is a contact surface of the peripheral edge portion 32a with the crankshaft 11, and has the same length as the length of the narrow groove 33 in the longitudinal direction. Is provided.
  • the flow of oil is changed in the rotational direction (circular circle). (Circumferential direction).
  • the oil flows from the downstream side in the rotation direction to the upstream side.
  • the plurality of thin oil grooves 35A and 36A are formed in a cross-sectional view wave shape as shown in FIG.
  • a plurality of oil grooves 35 ⁇ / b> B thinner than the narrow grooves 33 can be formed on the bottom surface of the narrow grooves 33.
  • the oil groove 35 ⁇ / b> B is formed in a direction orthogonal to the rotation direction of the crankshaft 11, and is provided on the entire bottom surface of the narrow groove 33.
  • a plurality of oil grooves 36B are also formed on the contact surface, which is the surface facing the crankshaft 11 of the peripheral portion 32a.
  • the oil groove 36B is formed in a direction orthogonal to the rotation direction of the crankshaft 11, is a contact surface of the peripheral edge portion 32a with the crankshaft 11, and has the same length as the length of the narrow groove 33 in the short direction. Is provided.
  • the oil grooves 36B are arranged at equal intervals in the longitudinal direction, and the oil groove 36B on the most upstream side in the rotational direction is provided at the same bearing angle ⁇ as the upstream end of the narrow groove 33.
  • the plurality of thin oil grooves 35B and 36B are formed in a cross-sectional view wave shape as shown in FIG.
  • a plurality of oil grooves 35 ⁇ / b> C thinner than the narrow grooves 33 can be formed on the bottom surface of the narrow grooves 33.
  • the oil groove 35C is formed in a direction intersecting with the rotation direction of the crankshaft 11, and the plurality of oil grooves 35C are inclined at a predetermined angle ⁇ from the rotation direction, and are provided on the entire bottom surface of the narrow groove 33.
  • is configured to satisfy 0 ° ⁇ ⁇ 90 °.
  • a plurality of oil grooves 36 ⁇ / b> C are also formed on a contact surface that is a surface facing the crankshaft 11 of the peripheral portion 32 a.
  • the oil groove 36C is formed in a direction intersecting with the rotation direction of the crankshaft 11, and the plurality of oil grooves 35C are inclined at a predetermined angle ⁇ from the rotation direction, and the peripheral edge portion 32a contacts the crankshaft 11. It is provided on the surface.
  • the oil grooves 36 ⁇ / b> C are arranged at equal intervals in the longitudinal direction, and the oil groove 36 ⁇ / b> C on the most upstream side in the rotational direction is provided at the same bearing angle ⁇ as the upstream end portion of the narrow groove 33.
  • the oil flow can be reduced. It is guided in the direction of 36C.
  • the total amount of spilled oil is reduced by increasing the amount of sucked oil and decreasing the amount of spilled oil.
  • the oil grooves 35A, 35B, 35C, 36A, 36B, and 36C according to the present embodiment are provided so that the intervals are equal.
  • the present invention is not limited thereto. It is also possible to change.
  • oil grooves 36A, 36B, and 36C according to the present embodiment are formed so as to have a corrugated cross section.
  • the present invention is not limited thereto. Is also possible.
  • angle ⁇ of the oil groove 35C and the oil groove 36C according to the present embodiment is formed to be the same, but is not limited to this.
  • the angle ⁇ of the oil groove 35C is the same as that of the oil groove 36C. You may comprise so that it may become larger than angle (theta).
  • peripheral part 32b provided with the oil grooves 36A, 36B, and 36C according to the present embodiment is formed to have the same length as the height D from the outer peripheral surface of the half member 2 to the contact surface.
  • the present invention is not limited to this, and may be formed so as to be one step lower than the contact surface with the surrounding crankshaft.
  • the slide bearing 1 is formed by vertically arranging the half members 2 and 2 which are divided into two parallel to the axial direction, and is disposed downstream of the axial direction end of the lower half member 2 in the rotational direction.
  • a narrow groove 33 is provided in the circumferential direction from the side mating surface to a predetermined bearing angle ⁇ 1, and a peripheral edge portion 32a is formed on the outer side in the axial direction of the narrow groove 33.
  • a plurality of oil grooves 35A and 36A narrower than the narrow groove 33 are formed on the bottom surface of the narrow groove 33 and the surface of the peripheral edge portion 32a facing the crankshaft 11 of the slide bearing 1.
  • the plurality of oil grooves 35A and 36A are formed in a direction parallel to the rotation direction.
  • the plurality of oil grooves 35B and 36B are formed in a direction orthogonal to the rotation direction. With this configuration, the oil flow is guided in the axial direction of the crankshaft 11, so that the amount of sucked-back oil in the upstream portion is increased and the total amount of oil spilled is reduced.
  • the plurality of oil grooves are formed in a direction intersecting the rotation direction, and the plurality of oil grooves are inclined at a predetermined angle from the rotation direction. With this configuration, the oil flow is guided in the direction of the oil grooves 35C and 36C. Therefore, the amount of sucked-up oil increases and the amount of spilled oil decreases, so that the total spilled oil amount is reduced.
  • the present invention can be used for a slide bearing technology, and can be used for a slide bearing in which a half member in which a cylinder is divided into two in parallel with an axial direction is arranged vertically.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Sliding-Contact Bearings (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

フリクション低減効果を得ることができ、総和の流出油量を抑えることができるすべり軸受を提供する。円筒を軸方向と平行に二分割した半割部材2・2を上下に配置したすべり軸受1であって、下側の半割部材2の軸方向端部に、回転方向下流側合わせ面から所定の軸受角度ω1まで円周方向に細溝3を設け、細溝3の軸方向外側に周縁部2aを形成した。また、軸方向外側の周縁部2aが周囲のクランクシャフト11との当接面よりも一段低くなるように形成されている。

Description

すべり軸受
 本発明は、すべり軸受の技術に関し、円筒を軸方向と平行に二分割した半割部材を上下に配置したすべり軸受の技術に関する。
 従来、エンジンのクランクシャフトを軸支するための軸受であって、円筒形状を二分割した二つの部材を合わせる半割れ構造のすべり軸受が公知となっている。また、前記軸受の摺動面積を減らし、フリクション低減効果を得るために、前記軸受の幅を狭くする構造がある。しかし、軸受の幅を狭くすると、流出油量が増加していた。そこで、前記軸受の軸方向両端部に、全周に逃げ部分(細溝)を形成した軸受が公知となっている(例えば、特許文献1参照)。
特表2003-532036号公報
 しかし、従来の全周に細溝を形成した軸受では、摺動面積減少により、負荷容量が低下し、良好な潤滑に必要な油膜厚さを確保することができず、且つ、総和の流出油量が多かった。
 そこで、本発明は係る課題に鑑み、フリクション低減効果を得ることができ、総和の流出油量を抑えることができるすべり軸受を提供する。
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。
 即ち、請求項1においては、円筒を軸方向と平行に二分割した半割部材を上下に配置したすべり軸受であって、前記下側の半割部材の軸方向端部に、回転方向下流側合わせ面から所定の軸受角度まで円周方向に細溝を設け、前記細溝の軸方向外側に周縁部を形成したものである。
 請求項2においては、前記周縁部の高さを前記すべり軸受の軸との当接面よりも低くなるように形成したものである。
 請求項3においては、前記細溝の底面及び前記周縁部の前記すべり軸受の軸と対向する面に前記細溝よりも細い複数の油溝を形成したものである。
 請求項4においては、前記複数の油溝は、前記回転方向と平行な方向に形成したものである。
 請求項5においては、前記複数の油溝は、前記回転方向と直交する方向に形成したものである。
 請求項6においては、前記複数の油溝は、前記回転方向と交差する方向に形成し、前記複数の油溝は、回転方向から所定の角度を傾斜させたものである。
 請求項7においては、前記細溝の底面及び前記周縁部の前記すべり軸受の軸と対向する面に前記細溝よりも細い複数の油溝を形成したものである。
 請求項8においては、前記複数の油溝は、前記回転方向と平行な方向に形成したものである。
 請求項9においては、前記複数の油溝は、前記回転方向と直交する方向に形成したものである。
 請求項10においては、前記複数の油溝は、前記回転方向と交差する方向に形成し、前記複数の油溝は、回転方向から所定の角度を傾斜させたものである。
 本発明の効果として、以下に示すような効果を奏する。
 すなわち、油膜圧力の発生を妨げない程度の細溝を設けることで、摺動面積を減らしつつ、フリクション低減効果を得ることができ、かつ、総和の流出油量を抑えることができる。
本発明の実施形態に係るすべり軸受を示す正面図。 (a)本発明の第一実施形態に係るすべり軸受を構成する半割部材を示す平面図。(b)同じくA-A線断面図。(c)同じくB-B線断面図。 (a)エンジン回転数と摩擦平均有効圧(FMEP)軽減量との関係を示すグラフ図(実験値)。(b)エンジン回転数と毎分油量軽減量との関係を示すグラフ図(実験値)。 (a)第一の比較例に係るすべり軸受を構成する半割部材を示す参考断面図。(b)第二の比較例に係るすべり軸受を構成する半割部材を示す参考断面図。 (a)本発明の別の実施形態に係るすべり軸受を構成する半割部材を示す平面一部拡大図。(b)同じくC-C線断面拡大図。 (a)本発明の別の実施形態に係るすべり軸受を構成する半割部材を示す平面一部拡大図。(b)同じくE-E線断面拡大図。 本発明の別の実施形態に係るすべり軸受を構成する半割部材を示す平面一部拡大図。
 次に、発明の実施の形態を説明する。なお、図1はすべり軸受1の正面図であり、図面の上下を上下方向、図面の手前方向及び奥方向を軸方向(前後方向)とする。
 まず、第一の実施形態に係るすべり軸受1を構成する半割部材2について図1及び図2を用いて説明する。
 すべり軸受1は円筒状の部材であり、図1に示すように、エンジンのクランクシャフト11のすべり軸受構造に適用される。すべり軸受1は、二つの半割部材2・2で構成されている。二つの半割部材2・2は、円筒を軸方向と平行に二分割した形状であり、断面が半円状となるように形成されている。本実施形態においては、半割部材2・2は上下に配置されており、左右に合わせ面が配置されている。クランクシャフト11をすべり軸受1で軸支する場合、所定の隙間が形成され、この隙間に対し図示せぬ油路から潤滑油が供給される。
 図2(a)においては、上側および下側の半割部材2を示している。なお、本実施形態においては、クランクシャフト11の回転方向を図1の矢印に示すように正面視時計回り方向とする。また、軸受角度ωは、図2(b)における右端の位置を0度とし、図2(b)において、反時計回り方向を正とする。すなわち、図2(b)において、左端の位置の軸受角度ωが180度となり、下端の位置の軸受角度ωが270度となるように定義する。
 上側の半割部材2の内周には円周方向に溝が設けられており、中心に円形の孔が設けられている。また、上側の半割部材2の左右に合わせ面が配置されている。
 下側の半割部材2の内周の当接面において、その軸方向の端部に細溝3が形成されている。
 細溝3は下側の半割部材2に設けられる。本実施形態においては、細溝3は軸方向に並列して二本設けられている。詳細には、細溝3は、クランクシャフト11の回転方向下流側合わせ面(軸受角度ωが180度)から軸受角度ωが正となる方向(反時計回り方向)に向けて円周方向に設けられる。すなわち、下側の半割部材2においては、図2(b)の右側の合わせ面が回転方向上流側合わせ面、図2(b)の左側の合わせ面が回転方向下流側合わせ面となる。
 細溝3の幅は、図2(c)に示すように、wとなるように形成されている。
 また、細溝3の深さdは、半割部材2の外周面から当接面までの高さDよりも短くなるように形成されている。
 また、細溝3の軸方向外側面を形成する周縁部2aは、半割部材2の外周面からの高さhが、半割部材2の外周面から当接面までの高さDよりも低くなるように形成されている。すなわち、軸方向外側の周縁部2aが周囲のクランクシャフト11との当接面よりも一段低くなるように形成されている。
 周縁部2aが周囲のクランクシャフト11との当接面よりも一段低くなるように形成されていることにより、クランクシャフト11が傾いて軸方向片側端部にのみ接触する状態(片当りする状態)となったときに、周縁部2aとクランクシャフト11との接触機会を減らすことができるため、周縁部2aの損傷を防止することができる。
 また、周縁部2aが周囲の当接面よりも一段低くなるように形成されていることにより、すべり軸受1の軸方向端部における隙間が広がり、吸い戻し油量が増えてトータルの流出油量が低減される。
 図3(a)は、エンジン回転数と摩擦平均有効圧(FMEP)軽減量との関係を示すグラフである。ここで、三角(△)は、本実施形態に係る細溝3を設けた場合の摩擦平均有効圧(FMEP)軽減量である。また、四角(□)は、比較例として図4(a)に示す細溝13を設けた場合の摩擦平均有効圧(FMEP)軽減量である。ここで、図4(a)に示す細溝13の軸方向外側の周縁部12aは、半割部材2の外周面からの高さhが、半割部材2の外周面から当接面までの高さDと同じ高さであるように形成されている。また、丸(○)は、比較例として図4(b)に示す細溝23を設けた場合の摩擦平均有効圧(FMEP)軽減量である。ここで、図4(b)に示す細溝23の軸方向外側の周縁部22aは、半割部材2の外周面からの高さhが、細溝23の底面と同じ高さであるように形成されている。
 本実施形態に係る細溝3を設けたことにより、図3(a)に示すように、比較例1に係る細溝13及び比較例2に係る細溝23を設けた場合と比較して、FMEP軽減量が増加する。特に、エンジン回転数が低い領域において、FMEP軽減量が増加する。ここで、FMEPとは、フリクションの傾向を見るための値であり、FMEP軽減量が増加するとフリクションが低減する。
 また、図3(b)は、エンジン回転数と毎分油量軽減量との関係を示すグラフである。ここで、三角(△)は、本実施形態に係る細溝3を設けた場合の毎分油量軽減量である。また、四角(□)は、比較例として図4(a)に示す細溝13を設けた場合の毎分油量軽減量である。ここで、図4(a)に示す細溝13の軸方向外側の周縁部12aは、半割部材2の外周面からの高さhが、半割部材2の外周面から当接面までの高さDと同じ高さであるように形成されている。また、丸(○)は、比較例として図4(b)に示す細溝23を設けた場合の毎分油量軽減量である。ここで、図4(b)に示す細溝23の軸方向外側の周縁部22aは、半割部材2の外周面からの高さhが、細溝23の底面と同じ高さであるように形成されている。
 本実施形態に係る細溝3を設けたことにより、図3(b)に示すように、比較例1に係る細溝13及び比較例2に係る細溝23を設けた場合と比較して、毎分油量軽減量が増加する。特に、エンジン回転数が高い領域において、毎分油量軽減量が増加する。
 次に、第二の実施形態に係る油溝35Aを有する細溝33について説明する。
 細溝33の構成については、第一の実施形態に係る細溝3と同様の構成であるので、説明を省略する。
 細溝33の軸方向外側面を形成する周縁部32aは、図5(b)に示すように、半割部材2の外周面からの高さhが、半割部材2の外周面から当接面までの高さDと同じ長さとなるように形成されている。
 なお、本実施形態においては、周縁部32aの高さhを、当接面までの高さDと同じ長さとなるように形成されているが、これに限定するものではなく、例えば、周縁部の高さが、当接面までの高さよりも低くなるように形成されてもよい。
 細溝33の底面には、図5に示すように、細溝33よりも細い複数の油溝35Aを形成している。油溝35Aは、クランクシャフト11の回転方向と平行な方向に形成しており、細溝33の底面全面に設けられている。
 また、周縁部32aのクランクシャフト11と対向する面である当接面にも、複数の油溝36Aを形成している。油溝36Aは、クランクシャフト11の回転方向と平行な方向に形成しており、周縁部32aのクランクシャフト11との当接面であって、細溝33の長手方向の長さと同じ長さで設けられている。
 細溝33の底面及び周縁部32aのすべり軸受1のクランクシャフト11との当接面に細溝33よりも細い複数の油溝35A及び36Aを形成したことにより、油の流れが回転方向(円周方向)へと誘導される。ここで、油は、回転方向下流側から上流側へと流れる。これにより、下流部での流出油量が減ってトータルの流出油量が低減される。
 細い複数の油溝35A及び36Aは、図5(b)に示すように、断面視波形状に形成されている。
 次に、第三の実施形態に係る油溝35Bを有する細溝33について説明する。
 図6に示すように、細溝33の底面には、細溝33よりも細い複数の油溝35Bを形成することもできる。油溝35Bは、クランクシャフト11の回転方向と直交する方向に形成しており、細溝33の底面全面に設けられている。
 また、周縁部32aのクランクシャフト11と対向する面である当接面にも、複数の油溝36Bを形成している。油溝36Bは、クランクシャフト11の回転方向と直交する方向に形成しており、周縁部32aのクランクシャフト11との当接面であって、細溝33の短手方向の長さと同じ長さで設けられている。また、油溝36Bは長手方向に等間隔に配置されており、最も回転方向上流側の油溝36Bは、細溝33の上流側端部と同じ軸受角度ωに設けられている。
 細溝33の底面及び周縁部32aのすべり軸受1のクランクシャフト11との当接面に細溝33よりも細い複数の油溝35B及び36Bを形成したことにより、油の流れがクランクシャフト11の軸方向へと誘導される。これにより、上流部での吸い戻し油量が増えてトータルの流出油量が低減される。
 細い複数の油溝35B及び36Bは、図6(b)に示すように、断面視波形状に形成されている。
 次に、第四の実施形態に係る油溝35Cを有する細溝33について説明する。
 図7に示すように、細溝33の底面には、細溝33よりも細い複数の油溝35Cを形成することもできる。油溝35Cは、クランクシャフト11の回転方向と交差する方向に形成し、複数の油溝35Cは、回転方向から所定の角度θを傾斜させており、細溝33の底面全面に設けられている。ここでθは、0°<θ<90°となるように構成されている。
 また、周縁部32aのクランクシャフト11と対向する面である当接面にも、複数の油溝36Cを形成している。油溝36Cは、クランクシャフト11の回転方向と交差する方向に形成し、複数の油溝35Cは、回転方向から所定の角度θを傾斜させており、周縁部32aのクランクシャフト11との当接面に設けられている。また、油溝36Cは長手方向に等間隔に配置されており、最も回転方向上流側の油溝36Cは、細溝33の上流側端部と同じ軸受角度ωに設けられている。
 細溝33の底面及び周縁部32aのすべり軸受1のクランクシャフト11との当接面に細溝33よりも細い複数の油溝35C及び36Cを形成したことにより、油の流れが油溝35C及び36Cの方向へと誘導される。これにより、吸い戻し油量が増えて流出油量が減ることでトータルの流出油量が低減される。
 なお、本実施形態に係る油溝35A・35B・35C・36A・36B・36Cはそれぞれの間隔が等間隔になるように設けているが、これに限定するものではなく、例えば、それぞれの間隔を変化させることも可能である。
 また、本実施形に係る油溝36A・36B・36Cは断面が波形状となるように形成しているがこれに限定するものではなく、例えば、断面視矩形波状や、三角波状に形成することも可能である。
 また、本実施形態に係る油溝35C及び油溝36Cの角度θは同じとなるように形成しているが、これに限定するものではなく、例えば、油溝35Cの角度θが油溝36Cの角度θよりも大きくなるように構成してもよい。
 また、本実施形態に係る油溝36A・36B・36Cが設けられた周縁部32bは、半割部材2の外周面から当接面までの高さDと同じ長さとなるように形成されているが、これに限定するものではなく、周囲のクランクシャフトとの当接面よりも一段低くなるように形成されることもできる。
 以上のように、円筒を軸方向と平行に二分割した半割部材2・2を上下に配置したすべり軸受1であって、下側の半割部材2の軸方向端部に、回転方向下流側合わせ面から所定の軸受角度ω1まで円周方向に細溝33を設け、細溝33の軸方向外側に周縁部32aを形成したものである。
 このように構成することにより、吸い戻し油量が増えて流出油量が減ることでトータルの流出油量が低減される。
 また、細溝33の底面及び周縁部32aのすべり軸受1のクランクシャフト11と対向する面に細溝33よりも細い複数の油溝35A・36Aを形成したものである。
 このように構成することにより、油が油溝35A・36Aに沿って流れるため、吸い戻し油量が増えて流出油量が減ることでトータルの流出油量が低減される。
 また、複数の油溝35A・36Aは、前記回転方向と平行な方向に形成したものである。
 このように構成することにより、油の流れが回転方向(円周方向)へと誘導されることにより、下流部での流出油量が減ってトータルの流出油量が低減される。
 また、前記複数の油溝35B・36Bは、前記回転方向と直交する方向に形成したものである。
 このように構成することにより、油の流れがクランクシャフト11の軸方向へと誘導されることにより、上流部での吸い戻し油量が増えてトータルの流出油量が低減される。
 また、前記複数の油溝は、前記回転方向と交差する方向に形成し、前記複数の油溝は、回転方向から所定の角度を傾斜させたものである。
 このように構成することにより、油の流れが油溝35C及び36Cの方向へと誘導されるため、吸い戻し油量が増えて流出油量が減ることでトータルの流出油量が低減される。
 本発明は、すべり軸受の技術に利用可能であり、円筒を軸方向と平行に二分割した半割部材を上下に配置したすべり軸受に利用可能である。
 1  すべり軸受
 2  半割部材
 2a 周縁部
 3  細溝
 11 クランクシャフト

Claims (10)

  1.  円筒を軸方向と平行に二分割した半割部材を上下に配置したすべり軸受であって、
     前記下側の半割部材の軸方向端部に、回転方向下流側合わせ面から所定の軸受角度まで円周方向に細溝を設け、
     前記細溝の軸方向外側に周縁部を形成したことを特徴とするすべり軸受。
  2.  前記周縁部の高さを前記すべり軸受の軸との当接面よりも低くなるように形成したことを特徴とする請求項1に記載のすべり軸受。
  3.  前記細溝の底面及び前記周縁部の前記すべり軸受の軸と対向する面に前記細溝よりも細い複数の油溝を形成したことを特徴とする請求項1に記載のすべり軸受。
  4.  前記複数の油溝は、前記回転方向と平行な方向に形成したことを特徴とする請求項3に記載のすべり軸受。
  5.  前記複数の油溝は、前記回転方向と直交する方向に形成したことを特徴とする請求項3に記載のすべり軸受。
  6.  前記複数の油溝は、前記回転方向と交差する方向に形成し、前記複数の油溝は、回転方向から所定の角度を傾斜させたことを特徴とする請求項3に記載のすべり軸受。
  7.  前記細溝の底面及び前記周縁部の前記すべり軸受の軸と対向する面に前記細溝よりも細い複数の油溝を形成したことを特徴とする請求項2に記載のすべり軸受。
  8.  前記複数の油溝は、前記回転方向と平行な方向に形成したことを特徴とする請求項7に記載のすべり軸受。
  9.  前記複数の油溝は、前記回転方向と直交する方向に形成したことを特徴とする請求項7に記載のすべり軸受。
  10.  前記複数の油溝は、前記回転方向と交差する方向に形成し、前記複数の油溝は、回転方向から所定の角度を傾斜させたことを特徴とする請求項7に記載のすべり軸受。
PCT/JP2014/061697 2013-04-26 2014-04-25 すべり軸受 WO2014175426A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14788022.3A EP2990668B1 (en) 2013-04-26 2014-04-25 Sliding bearing
US14/786,826 US9879725B2 (en) 2013-04-26 2014-04-25 Sliding bearing
CN201480022936.2A CN105143691A (zh) 2013-04-26 2014-04-25 滑动轴承

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-093842 2013-04-26
JP2013093842 2013-04-26
JP2014032101A JP6096689B2 (ja) 2013-04-26 2014-02-21 すべり軸受
JP2014-032101 2014-02-21

Publications (1)

Publication Number Publication Date
WO2014175426A1 true WO2014175426A1 (ja) 2014-10-30

Family

ID=51791991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061697 WO2014175426A1 (ja) 2013-04-26 2014-04-25 すべり軸受

Country Status (5)

Country Link
US (1) US9879725B2 (ja)
EP (1) EP2990668B1 (ja)
JP (1) JP6096689B2 (ja)
CN (1) CN105143691A (ja)
WO (1) WO2014175426A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190271355A1 (en) * 2016-10-31 2019-09-05 Taiho Kogyo Co., Ltd. Half bearing

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9752044B2 (en) * 2013-08-16 2017-09-05 Ppg Industries Ohio, Inc. Aqueous-based coating composition containing an oleoresinous component
JP6266986B2 (ja) * 2014-01-15 2018-01-24 大豊工業株式会社 すべり軸受
JP2016161011A (ja) * 2015-02-27 2016-09-05 大豊工業株式会社 すべり軸受
JP6314103B2 (ja) * 2015-02-27 2018-04-18 大豊工業株式会社 すべり軸受
JP2016161014A (ja) * 2015-02-27 2016-09-05 大豊工業株式会社 すべり軸受の製造方法及びすべり軸受
JP6390852B2 (ja) * 2015-02-27 2018-09-19 大豊工業株式会社 すべり軸受
JP2016161013A (ja) * 2015-02-27 2016-09-05 大豊工業株式会社 すべり軸受
JP6181685B2 (ja) 2015-02-27 2017-08-16 大豊工業株式会社 すべり軸受の製造方法及びすべり軸受
JP6178354B2 (ja) * 2015-02-27 2017-08-09 大豊工業株式会社 すべり軸受
JP2016161016A (ja) * 2015-02-27 2016-09-05 大豊工業株式会社 すべり軸受の製造方法及びすべり軸受
JP6624559B2 (ja) * 2015-12-17 2019-12-25 大豊工業株式会社 すべり軸受
JP2017110765A (ja) * 2015-12-17 2017-06-22 大豊工業株式会社 すべり軸受
JP6724280B2 (ja) * 2015-12-17 2020-07-15 大豊工業株式会社 すべり軸受
JP2019031981A (ja) * 2015-12-17 2019-02-28 大豊工業株式会社 すべり軸受
JP2017110764A (ja) * 2015-12-17 2017-06-22 大豊工業株式会社 すべり軸受
JP6893770B2 (ja) * 2016-10-31 2021-06-23 大豊工業株式会社 半割軸受
AT521246B1 (de) * 2018-07-10 2019-12-15 Miba Gleitlager Austria Gmbh Gleitlagerelement

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059461A (ja) * 1991-07-02 1993-01-19 Honda Motor Co Ltd 摺動部材
JPH10231841A (ja) * 1997-02-21 1998-09-02 Daido Metal Co Ltd すべり軸受
JPH10259827A (ja) * 1997-03-18 1998-09-29 Daido Metal Co Ltd すべり軸受
JP2003532036A (ja) 2000-05-03 2003-10-28 デーナ、コーポレイション 軸 受
JP2008115936A (ja) * 2006-11-02 2008-05-22 Toyota Motor Corp コネクティングロッド
WO2011098290A1 (en) * 2010-02-11 2011-08-18 Mahle International Gmbh Bearing bush

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002155946A (ja) * 2000-11-20 2002-05-31 Daido Metal Co Ltd 軸支承部材
JP5001871B2 (ja) * 2008-02-08 2012-08-15 三菱重工業株式会社 クロスヘッド軸受装置
JP5096992B2 (ja) 2008-04-14 2012-12-12 大同メタル工業株式会社 内燃機関用すべり軸受
JP5621513B2 (ja) 2010-11-02 2014-11-12 大豊工業株式会社 すべり軸受
JP5895638B2 (ja) * 2012-03-21 2016-03-30 大豊工業株式会社 すべり軸受

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059461A (ja) * 1991-07-02 1993-01-19 Honda Motor Co Ltd 摺動部材
JPH10231841A (ja) * 1997-02-21 1998-09-02 Daido Metal Co Ltd すべり軸受
JPH10259827A (ja) * 1997-03-18 1998-09-29 Daido Metal Co Ltd すべり軸受
JP2003532036A (ja) 2000-05-03 2003-10-28 デーナ、コーポレイション 軸 受
JP2008115936A (ja) * 2006-11-02 2008-05-22 Toyota Motor Corp コネクティングロッド
WO2011098290A1 (en) * 2010-02-11 2011-08-18 Mahle International Gmbh Bearing bush

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190271355A1 (en) * 2016-10-31 2019-09-05 Taiho Kogyo Co., Ltd. Half bearing
CN110214235A (zh) * 2016-10-31 2019-09-06 大丰工业株式会社 半轴承

Also Published As

Publication number Publication date
EP2990668A1 (en) 2016-03-02
JP2014224601A (ja) 2014-12-04
JP6096689B2 (ja) 2017-03-15
EP2990668B1 (en) 2017-08-30
US9879725B2 (en) 2018-01-30
CN105143691A (zh) 2015-12-09
EP2990668A4 (en) 2016-05-11
US20160102707A1 (en) 2016-04-14

Similar Documents

Publication Publication Date Title
WO2014175426A1 (ja) すべり軸受
JP5837896B2 (ja) すべり軸受
JP6185853B2 (ja) すべり軸受
WO2016136998A1 (ja) すべり軸受
JP6134636B2 (ja) すべり軸受
WO2014129595A1 (ja) すべり軸受
WO2016136995A1 (ja) すべり軸受
JP2016161016A (ja) すべり軸受の製造方法及びすべり軸受
JP6216226B2 (ja) すべり軸受
JP6323833B2 (ja) すべり軸受
JP6536774B2 (ja) すべり軸受
JP6166064B2 (ja) すべり軸受
WO2016136993A1 (ja) すべり軸受
JP6390852B2 (ja) すべり軸受
JP2016161018A5 (ja)
JP6624559B2 (ja) すべり軸受
JP6724280B2 (ja) すべり軸受
JP2019031981A (ja) すべり軸受
JP6399576B2 (ja) すべり軸受
JP6541144B2 (ja) すべり軸受
JP2017110765A (ja) すべり軸受
JP2017110764A (ja) すべり軸受
JP2016161011A (ja) すべり軸受

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480022936.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788022

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 14786826

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014788022

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014788022

Country of ref document: EP