WO2014175426A1 - すべり軸受 - Google Patents
すべり軸受 Download PDFInfo
- Publication number
- WO2014175426A1 WO2014175426A1 PCT/JP2014/061697 JP2014061697W WO2014175426A1 WO 2014175426 A1 WO2014175426 A1 WO 2014175426A1 JP 2014061697 W JP2014061697 W JP 2014061697W WO 2014175426 A1 WO2014175426 A1 WO 2014175426A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oil
- narrow groove
- slide bearing
- oil grooves
- rotation direction
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/10—Construction relative to lubrication
- F16C33/1025—Construction relative to lubrication with liquid, e.g. oil, as lubricant
- F16C33/106—Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
- F16C33/107—Grooves for generating pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/02—Sliding-contact bearings for exclusively rotary movement for radial load only
- F16C17/022—Sliding-contact bearings for exclusively rotary movement for radial load only with a pair of essentially semicircular bearing sleeves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/10—Construction relative to lubrication
- F16C33/1025—Construction relative to lubrication with liquid, e.g. oil, as lubricant
- F16C33/103—Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/10—Construction relative to lubrication
- F16C33/1025—Construction relative to lubrication with liquid, e.g. oil, as lubricant
- F16C33/106—Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
- F16C33/1065—Grooves on a bearing surface for distributing or collecting the liquid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C9/00—Bearings for crankshafts or connecting-rods; Attachment of connecting-rods
- F16C9/02—Crankshaft bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2240/00—Specified values or numerical ranges of parameters; Relations between them
- F16C2240/30—Angles, e.g. inclinations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2240/00—Specified values or numerical ranges of parameters; Relations between them
- F16C2240/40—Linear dimensions, e.g. length, radius, thickness, gap
- F16C2240/42—Groove sizes
Definitions
- the present invention relates to a slide bearing technique, and more particularly to a slide bearing technique in which a half member in which a cylinder is divided into two in parallel to the axial direction is arranged vertically.
- a bearing for supporting an engine crankshaft and having a half crack structure in which two members divided into two cylindrical shapes are combined is known. Further, in order to reduce the sliding area of the bearing and obtain a friction reduction effect, there is a structure in which the width of the bearing is narrowed. However, when the bearing width was narrowed, the amount of spilled oil increased. Therefore, a bearing in which relief portions (narrow grooves) are formed on the entire circumference at both ends in the axial direction of the bearing is known (for example, see Patent Document 1).
- the present invention provides a plain bearing that can obtain a friction reduction effect and can suppress the total amount of oil spilled.
- a slide bearing in which a half member obtained by dividing a cylinder into two in parallel with the axial direction is arranged vertically, and at the downstream end in the rotational direction at the axial end of the lower half member.
- a narrow groove is provided in the circumferential direction from the mating surface to a predetermined bearing angle, and a peripheral edge is formed on the outer side in the axial direction of the narrow groove.
- the height of the peripheral edge portion is formed to be lower than the contact surface with the shaft of the slide bearing.
- a plurality of oil grooves narrower than the narrow groove are formed on the bottom surface of the narrow groove and the surface of the peripheral edge facing the slide bearing shaft.
- the plurality of oil grooves are formed in a direction parallel to the rotation direction.
- the plurality of oil grooves are formed in a direction orthogonal to the rotation direction.
- the plurality of oil grooves are formed in a direction crossing the rotation direction, and the plurality of oil grooves are inclined at a predetermined angle from the rotation direction.
- a plurality of oil grooves that are narrower than the narrow grooves are formed on the bottom surface of the narrow grooves and on the surface of the peripheral edge facing the slide bearing shaft.
- the plurality of oil grooves are formed in a direction parallel to the rotation direction.
- the plurality of oil grooves are formed in a direction orthogonal to the rotation direction.
- the plurality of oil grooves are formed in a direction intersecting the rotation direction, and the plurality of oil grooves are inclined at a predetermined angle from the rotation direction.
- the front view which shows the slide bearing which concerns on embodiment of this invention (A) The top view which shows the half member which comprises the slide bearing which concerns on 1st embodiment of this invention. (B) A sectional view taken along the line AA. (C) Similarly, a cross-sectional view along the line BB. (A) The graph (experimental value) which shows the relationship between an engine speed and friction average effective pressure (FMEP) reduction amount. (B) The graph (experimental value) which shows the relationship between an engine speed and the oil amount reduction amount per minute. (A) Reference sectional drawing which shows the half member which comprises the slide bearing which concerns on a 1st comparative example. (B) The reference sectional view showing the half member which constitutes the slide bearing concerning the 2nd comparative example.
- FIG. 1 is a front view of the sliding bearing 1, and the vertical direction in the drawing is the vertical direction, and the front direction and the back direction in the drawing are the axial directions (front-rear direction).
- the slide bearing 1 is a cylindrical member and is applied to a slide bearing structure of an engine crankshaft 11 as shown in FIG.
- the plain bearing 1 is composed of two halved members 2 and 2.
- the two halved members 2 and 2 have a shape obtained by dividing a cylinder into two in parallel to the axial direction, and are formed so that the cross section is a semicircular shape.
- the half members 2 and 2 are arranged up and down, and mating surfaces are arranged on the left and right.
- FIG. 2A shows the upper and lower half members 2.
- the rotation direction of the crankshaft 11 is the clockwise direction when viewed from the front as indicated by the arrow in FIG.
- the bearing angle ⁇ is 0 degree at the right end position in FIG. 2B, and the counterclockwise direction in FIG. 2B is positive. That is, in FIG. 2B, the bearing angle ⁇ at the left end position is defined as 180 degrees, and the bearing angle ⁇ at the lower end position is defined as 270 degrees.
- a groove is provided in the circumferential direction, and a circular hole is provided in the center.
- mating surfaces are arranged on the left and right of the upper half member 2.
- a narrow groove 3 is formed at an end portion in the axial direction on the contact surface on the inner periphery of the lower half member 2.
- the narrow groove 3 is provided in the lower half member 2.
- two narrow grooves 3 are provided in parallel in the axial direction.
- the narrow groove 3 is provided in a circumferential direction from the mating surface on the downstream side in the rotation direction of the crankshaft 11 (bearing angle ⁇ is 180 degrees) toward the direction in which the bearing angle ⁇ is positive (counterclockwise direction). It is done.
- the narrow groove 3 is formed to have a width w. Further, the depth d of the narrow groove 3 is formed to be shorter than the height D from the outer peripheral surface of the half member 2 to the contact surface. Further, the peripheral edge 2a that forms the axially outer side surface of the narrow groove 3 has a height h from the outer peripheral surface of the half member 2 higher than the height D from the outer peripheral surface of the half member 2 to the contact surface. It is formed to be low. That is, the outer peripheral edge 2a in the axial direction is formed to be one step lower than the contact surface with the surrounding crankshaft 11.
- the peripheral edge 2a is formed so as to be one step lower than the contact surface with the surrounding crankshaft 11, so that the crankshaft 11 is tilted and is in contact with only one end in the axial direction (a state where it comes into contact with one side) When it becomes, since the contact opportunity with the peripheral part 2a and the crankshaft 11 can be reduced, damage to the peripheral part 2a can be prevented.
- peripheral edge portion 2a is formed so as to be one step lower than the surrounding contact surface, the gap at the axial end portion of the slide bearing 1 is widened, and the amount of sucked-back oil is increased and the total amount of oil spilled Is reduced.
- FIG. 3 (a) is a graph showing the relationship between the engine speed and the friction average effective pressure (FMEP) reduction amount.
- the triangle ( ⁇ ) is a friction average effective pressure (FMEP) reduction amount when the narrow groove 3 according to the present embodiment is provided.
- a square ( ⁇ ) is a friction average effective pressure (FMEP) reduction amount when the narrow groove 13 shown in FIG. 4A is provided as a comparative example.
- the peripheral edge portion 12a on the axially outer side of the narrow groove 13 shown in FIG. 4A has a height h from the outer peripheral surface of the half member 2 between the outer peripheral surface of the half member 2 and the contact surface. It is formed to have the same height as the height D.
- a circle ( ⁇ ) is a friction average effective pressure (FMEP) reduction amount when the narrow groove 23 shown in FIG. 4B is provided as a comparative example.
- the peripheral edge 22a on the axially outer side of the narrow groove 23 shown in FIG. 4B is such that the height h from the outer peripheral surface of the half member 2 is the same height as the bottom surface of the narrow groove 23. Is formed.
- the narrow groove 3 according to the present embodiment As shown in FIG. 3A, compared to the case where the narrow groove 13 according to Comparative Example 1 and the narrow groove 23 according to Comparative Example 2 are provided, The amount of FMEP reduction increases. In particular, the FMEP reduction amount increases in a region where the engine speed is low.
- FMEP is a value for seeing the tendency of friction, and the friction decreases as the FMEP reduction amount increases.
- FIG. 3B is a graph showing the relationship between the engine speed and the oil amount reduction amount per minute.
- the triangle ( ⁇ ) is the oil amount reduction amount per minute when the narrow groove 3 according to the present embodiment is provided.
- the square ( ⁇ ) is the oil amount reduction amount per minute when the narrow groove 13 shown in FIG. 4A is provided as a comparative example.
- the peripheral edge portion 12a on the axially outer side of the narrow groove 13 shown in FIG. 4A has a height h from the outer peripheral surface of the half member 2 between the outer peripheral surface of the half member 2 and the contact surface. It is formed to have the same height as the height D.
- a circle ( ⁇ ) is an oil amount reduction amount per minute when the narrow groove 23 shown in FIG.
- peripheral edge 22a on the axially outer side of the narrow groove 23 shown in FIG. 4B is such that the height h from the outer peripheral surface of the half member 2 is the same height as the bottom surface of the narrow groove 23. Is formed.
- the peripheral edge portion 32 a that forms the axially outer side surface of the narrow groove 33 has a height h from the outer peripheral surface of the half member 2 that makes contact with the outer peripheral surface of the half member 2. It is formed to have the same length as the height D to the surface. In the present embodiment, the height h of the peripheral portion 32a is formed to be the same length as the height D to the contact surface. However, the present invention is not limited to this. For example, the peripheral portion 32a May be formed to be lower than the height to the contact surface.
- a plurality of oil grooves 35 ⁇ / b> A that are narrower than the narrow grooves 33 are formed on the bottom surface of the narrow grooves 33.
- the oil groove 35 ⁇ / b> A is formed in a direction parallel to the rotation direction of the crankshaft 11, and is provided on the entire bottom surface of the narrow groove 33.
- a plurality of oil grooves 36 ⁇ / b> A are also formed on a contact surface that is a surface facing the crankshaft 11 of the peripheral portion 32 a.
- the oil groove 36A is formed in a direction parallel to the rotation direction of the crankshaft 11, is a contact surface of the peripheral edge portion 32a with the crankshaft 11, and has the same length as the length of the narrow groove 33 in the longitudinal direction. Is provided.
- the flow of oil is changed in the rotational direction (circular circle). (Circumferential direction).
- the oil flows from the downstream side in the rotation direction to the upstream side.
- the plurality of thin oil grooves 35A and 36A are formed in a cross-sectional view wave shape as shown in FIG.
- a plurality of oil grooves 35 ⁇ / b> B thinner than the narrow grooves 33 can be formed on the bottom surface of the narrow grooves 33.
- the oil groove 35 ⁇ / b> B is formed in a direction orthogonal to the rotation direction of the crankshaft 11, and is provided on the entire bottom surface of the narrow groove 33.
- a plurality of oil grooves 36B are also formed on the contact surface, which is the surface facing the crankshaft 11 of the peripheral portion 32a.
- the oil groove 36B is formed in a direction orthogonal to the rotation direction of the crankshaft 11, is a contact surface of the peripheral edge portion 32a with the crankshaft 11, and has the same length as the length of the narrow groove 33 in the short direction. Is provided.
- the oil grooves 36B are arranged at equal intervals in the longitudinal direction, and the oil groove 36B on the most upstream side in the rotational direction is provided at the same bearing angle ⁇ as the upstream end of the narrow groove 33.
- the plurality of thin oil grooves 35B and 36B are formed in a cross-sectional view wave shape as shown in FIG.
- a plurality of oil grooves 35 ⁇ / b> C thinner than the narrow grooves 33 can be formed on the bottom surface of the narrow grooves 33.
- the oil groove 35C is formed in a direction intersecting with the rotation direction of the crankshaft 11, and the plurality of oil grooves 35C are inclined at a predetermined angle ⁇ from the rotation direction, and are provided on the entire bottom surface of the narrow groove 33.
- ⁇ is configured to satisfy 0 ° ⁇ ⁇ 90 °.
- a plurality of oil grooves 36 ⁇ / b> C are also formed on a contact surface that is a surface facing the crankshaft 11 of the peripheral portion 32 a.
- the oil groove 36C is formed in a direction intersecting with the rotation direction of the crankshaft 11, and the plurality of oil grooves 35C are inclined at a predetermined angle ⁇ from the rotation direction, and the peripheral edge portion 32a contacts the crankshaft 11. It is provided on the surface.
- the oil grooves 36 ⁇ / b> C are arranged at equal intervals in the longitudinal direction, and the oil groove 36 ⁇ / b> C on the most upstream side in the rotational direction is provided at the same bearing angle ⁇ as the upstream end portion of the narrow groove 33.
- the oil flow can be reduced. It is guided in the direction of 36C.
- the total amount of spilled oil is reduced by increasing the amount of sucked oil and decreasing the amount of spilled oil.
- the oil grooves 35A, 35B, 35C, 36A, 36B, and 36C according to the present embodiment are provided so that the intervals are equal.
- the present invention is not limited thereto. It is also possible to change.
- oil grooves 36A, 36B, and 36C according to the present embodiment are formed so as to have a corrugated cross section.
- the present invention is not limited thereto. Is also possible.
- angle ⁇ of the oil groove 35C and the oil groove 36C according to the present embodiment is formed to be the same, but is not limited to this.
- the angle ⁇ of the oil groove 35C is the same as that of the oil groove 36C. You may comprise so that it may become larger than angle (theta).
- peripheral part 32b provided with the oil grooves 36A, 36B, and 36C according to the present embodiment is formed to have the same length as the height D from the outer peripheral surface of the half member 2 to the contact surface.
- the present invention is not limited to this, and may be formed so as to be one step lower than the contact surface with the surrounding crankshaft.
- the slide bearing 1 is formed by vertically arranging the half members 2 and 2 which are divided into two parallel to the axial direction, and is disposed downstream of the axial direction end of the lower half member 2 in the rotational direction.
- a narrow groove 33 is provided in the circumferential direction from the side mating surface to a predetermined bearing angle ⁇ 1, and a peripheral edge portion 32a is formed on the outer side in the axial direction of the narrow groove 33.
- a plurality of oil grooves 35A and 36A narrower than the narrow groove 33 are formed on the bottom surface of the narrow groove 33 and the surface of the peripheral edge portion 32a facing the crankshaft 11 of the slide bearing 1.
- the plurality of oil grooves 35A and 36A are formed in a direction parallel to the rotation direction.
- the plurality of oil grooves 35B and 36B are formed in a direction orthogonal to the rotation direction. With this configuration, the oil flow is guided in the axial direction of the crankshaft 11, so that the amount of sucked-back oil in the upstream portion is increased and the total amount of oil spilled is reduced.
- the plurality of oil grooves are formed in a direction intersecting the rotation direction, and the plurality of oil grooves are inclined at a predetermined angle from the rotation direction. With this configuration, the oil flow is guided in the direction of the oil grooves 35C and 36C. Therefore, the amount of sucked-up oil increases and the amount of spilled oil decreases, so that the total spilled oil amount is reduced.
- the present invention can be used for a slide bearing technology, and can be used for a slide bearing in which a half member in which a cylinder is divided into two in parallel with an axial direction is arranged vertically.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Sliding-Contact Bearings (AREA)
- Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
Abstract
Description
すべり軸受1は円筒状の部材であり、図1に示すように、エンジンのクランクシャフト11のすべり軸受構造に適用される。すべり軸受1は、二つの半割部材2・2で構成されている。二つの半割部材2・2は、円筒を軸方向と平行に二分割した形状であり、断面が半円状となるように形成されている。本実施形態においては、半割部材2・2は上下に配置されており、左右に合わせ面が配置されている。クランクシャフト11をすべり軸受1で軸支する場合、所定の隙間が形成され、この隙間に対し図示せぬ油路から潤滑油が供給される。
下側の半割部材2の内周の当接面において、その軸方向の端部に細溝3が形成されている。
細溝3は下側の半割部材2に設けられる。本実施形態においては、細溝3は軸方向に並列して二本設けられている。詳細には、細溝3は、クランクシャフト11の回転方向下流側合わせ面(軸受角度ωが180度)から軸受角度ωが正となる方向(反時計回り方向)に向けて円周方向に設けられる。すなわち、下側の半割部材2においては、図2(b)の右側の合わせ面が回転方向上流側合わせ面、図2(b)の左側の合わせ面が回転方向下流側合わせ面となる。
細溝3の幅は、図2(c)に示すように、wとなるように形成されている。
また、細溝3の深さdは、半割部材2の外周面から当接面までの高さDよりも短くなるように形成されている。
また、細溝3の軸方向外側面を形成する周縁部2aは、半割部材2の外周面からの高さhが、半割部材2の外周面から当接面までの高さDよりも低くなるように形成されている。すなわち、軸方向外側の周縁部2aが周囲のクランクシャフト11との当接面よりも一段低くなるように形成されている。
細溝33の構成については、第一の実施形態に係る細溝3と同様の構成であるので、説明を省略する。
細溝33の軸方向外側面を形成する周縁部32aは、図5(b)に示すように、半割部材2の外周面からの高さhが、半割部材2の外周面から当接面までの高さDと同じ長さとなるように形成されている。
なお、本実施形態においては、周縁部32aの高さhを、当接面までの高さDと同じ長さとなるように形成されているが、これに限定するものではなく、例えば、周縁部の高さが、当接面までの高さよりも低くなるように形成されてもよい。
また、周縁部32aのクランクシャフト11と対向する面である当接面にも、複数の油溝36Aを形成している。油溝36Aは、クランクシャフト11の回転方向と平行な方向に形成しており、周縁部32aのクランクシャフト11との当接面であって、細溝33の長手方向の長さと同じ長さで設けられている。
細い複数の油溝35A及び36Aは、図5(b)に示すように、断面視波形状に形成されている。
図6に示すように、細溝33の底面には、細溝33よりも細い複数の油溝35Bを形成することもできる。油溝35Bは、クランクシャフト11の回転方向と直交する方向に形成しており、細溝33の底面全面に設けられている。
また、周縁部32aのクランクシャフト11と対向する面である当接面にも、複数の油溝36Bを形成している。油溝36Bは、クランクシャフト11の回転方向と直交する方向に形成しており、周縁部32aのクランクシャフト11との当接面であって、細溝33の短手方向の長さと同じ長さで設けられている。また、油溝36Bは長手方向に等間隔に配置されており、最も回転方向上流側の油溝36Bは、細溝33の上流側端部と同じ軸受角度ωに設けられている。
細い複数の油溝35B及び36Bは、図6(b)に示すように、断面視波形状に形成されている。
図7に示すように、細溝33の底面には、細溝33よりも細い複数の油溝35Cを形成することもできる。油溝35Cは、クランクシャフト11の回転方向と交差する方向に形成し、複数の油溝35Cは、回転方向から所定の角度θを傾斜させており、細溝33の底面全面に設けられている。ここでθは、0°<θ<90°となるように構成されている。
また、周縁部32aのクランクシャフト11と対向する面である当接面にも、複数の油溝36Cを形成している。油溝36Cは、クランクシャフト11の回転方向と交差する方向に形成し、複数の油溝35Cは、回転方向から所定の角度θを傾斜させており、周縁部32aのクランクシャフト11との当接面に設けられている。また、油溝36Cは長手方向に等間隔に配置されており、最も回転方向上流側の油溝36Cは、細溝33の上流側端部と同じ軸受角度ωに設けられている。
このように構成することにより、吸い戻し油量が増えて流出油量が減ることでトータルの流出油量が低減される。
このように構成することにより、油が油溝35A・36Aに沿って流れるため、吸い戻し油量が増えて流出油量が減ることでトータルの流出油量が低減される。
このように構成することにより、油の流れが回転方向(円周方向)へと誘導されることにより、下流部での流出油量が減ってトータルの流出油量が低減される。
このように構成することにより、油の流れがクランクシャフト11の軸方向へと誘導されることにより、上流部での吸い戻し油量が増えてトータルの流出油量が低減される。
このように構成することにより、油の流れが油溝35C及び36Cの方向へと誘導されるため、吸い戻し油量が増えて流出油量が減ることでトータルの流出油量が低減される。
2 半割部材
2a 周縁部
3 細溝
11 クランクシャフト
Claims (10)
- 円筒を軸方向と平行に二分割した半割部材を上下に配置したすべり軸受であって、
前記下側の半割部材の軸方向端部に、回転方向下流側合わせ面から所定の軸受角度まで円周方向に細溝を設け、
前記細溝の軸方向外側に周縁部を形成したことを特徴とするすべり軸受。 - 前記周縁部の高さを前記すべり軸受の軸との当接面よりも低くなるように形成したことを特徴とする請求項1に記載のすべり軸受。
- 前記細溝の底面及び前記周縁部の前記すべり軸受の軸と対向する面に前記細溝よりも細い複数の油溝を形成したことを特徴とする請求項1に記載のすべり軸受。
- 前記複数の油溝は、前記回転方向と平行な方向に形成したことを特徴とする請求項3に記載のすべり軸受。
- 前記複数の油溝は、前記回転方向と直交する方向に形成したことを特徴とする請求項3に記載のすべり軸受。
- 前記複数の油溝は、前記回転方向と交差する方向に形成し、前記複数の油溝は、回転方向から所定の角度を傾斜させたことを特徴とする請求項3に記載のすべり軸受。
- 前記細溝の底面及び前記周縁部の前記すべり軸受の軸と対向する面に前記細溝よりも細い複数の油溝を形成したことを特徴とする請求項2に記載のすべり軸受。
- 前記複数の油溝は、前記回転方向と平行な方向に形成したことを特徴とする請求項7に記載のすべり軸受。
- 前記複数の油溝は、前記回転方向と直交する方向に形成したことを特徴とする請求項7に記載のすべり軸受。
- 前記複数の油溝は、前記回転方向と交差する方向に形成し、前記複数の油溝は、回転方向から所定の角度を傾斜させたことを特徴とする請求項7に記載のすべり軸受。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14788022.3A EP2990668B1 (en) | 2013-04-26 | 2014-04-25 | Sliding bearing |
US14/786,826 US9879725B2 (en) | 2013-04-26 | 2014-04-25 | Sliding bearing |
CN201480022936.2A CN105143691A (zh) | 2013-04-26 | 2014-04-25 | 滑动轴承 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-093842 | 2013-04-26 | ||
JP2013093842 | 2013-04-26 | ||
JP2014032101A JP6096689B2 (ja) | 2013-04-26 | 2014-02-21 | すべり軸受 |
JP2014-032101 | 2014-02-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014175426A1 true WO2014175426A1 (ja) | 2014-10-30 |
Family
ID=51791991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/061697 WO2014175426A1 (ja) | 2013-04-26 | 2014-04-25 | すべり軸受 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9879725B2 (ja) |
EP (1) | EP2990668B1 (ja) |
JP (1) | JP6096689B2 (ja) |
CN (1) | CN105143691A (ja) |
WO (1) | WO2014175426A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190271355A1 (en) * | 2016-10-31 | 2019-09-05 | Taiho Kogyo Co., Ltd. | Half bearing |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9752044B2 (en) * | 2013-08-16 | 2017-09-05 | Ppg Industries Ohio, Inc. | Aqueous-based coating composition containing an oleoresinous component |
JP6266986B2 (ja) * | 2014-01-15 | 2018-01-24 | 大豊工業株式会社 | すべり軸受 |
JP2016161011A (ja) * | 2015-02-27 | 2016-09-05 | 大豊工業株式会社 | すべり軸受 |
JP6314103B2 (ja) * | 2015-02-27 | 2018-04-18 | 大豊工業株式会社 | すべり軸受 |
JP2016161014A (ja) * | 2015-02-27 | 2016-09-05 | 大豊工業株式会社 | すべり軸受の製造方法及びすべり軸受 |
JP6390852B2 (ja) * | 2015-02-27 | 2018-09-19 | 大豊工業株式会社 | すべり軸受 |
JP2016161013A (ja) * | 2015-02-27 | 2016-09-05 | 大豊工業株式会社 | すべり軸受 |
JP6181685B2 (ja) | 2015-02-27 | 2017-08-16 | 大豊工業株式会社 | すべり軸受の製造方法及びすべり軸受 |
JP6178354B2 (ja) * | 2015-02-27 | 2017-08-09 | 大豊工業株式会社 | すべり軸受 |
JP2016161016A (ja) * | 2015-02-27 | 2016-09-05 | 大豊工業株式会社 | すべり軸受の製造方法及びすべり軸受 |
JP6624559B2 (ja) * | 2015-12-17 | 2019-12-25 | 大豊工業株式会社 | すべり軸受 |
JP2017110765A (ja) * | 2015-12-17 | 2017-06-22 | 大豊工業株式会社 | すべり軸受 |
JP6724280B2 (ja) * | 2015-12-17 | 2020-07-15 | 大豊工業株式会社 | すべり軸受 |
JP2019031981A (ja) * | 2015-12-17 | 2019-02-28 | 大豊工業株式会社 | すべり軸受 |
JP2017110764A (ja) * | 2015-12-17 | 2017-06-22 | 大豊工業株式会社 | すべり軸受 |
JP6893770B2 (ja) * | 2016-10-31 | 2021-06-23 | 大豊工業株式会社 | 半割軸受 |
AT521246B1 (de) * | 2018-07-10 | 2019-12-15 | Miba Gleitlager Austria Gmbh | Gleitlagerelement |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH059461A (ja) * | 1991-07-02 | 1993-01-19 | Honda Motor Co Ltd | 摺動部材 |
JPH10231841A (ja) * | 1997-02-21 | 1998-09-02 | Daido Metal Co Ltd | すべり軸受 |
JPH10259827A (ja) * | 1997-03-18 | 1998-09-29 | Daido Metal Co Ltd | すべり軸受 |
JP2003532036A (ja) | 2000-05-03 | 2003-10-28 | デーナ、コーポレイション | 軸 受 |
JP2008115936A (ja) * | 2006-11-02 | 2008-05-22 | Toyota Motor Corp | コネクティングロッド |
WO2011098290A1 (en) * | 2010-02-11 | 2011-08-18 | Mahle International Gmbh | Bearing bush |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002155946A (ja) * | 2000-11-20 | 2002-05-31 | Daido Metal Co Ltd | 軸支承部材 |
JP5001871B2 (ja) * | 2008-02-08 | 2012-08-15 | 三菱重工業株式会社 | クロスヘッド軸受装置 |
JP5096992B2 (ja) | 2008-04-14 | 2012-12-12 | 大同メタル工業株式会社 | 内燃機関用すべり軸受 |
JP5621513B2 (ja) | 2010-11-02 | 2014-11-12 | 大豊工業株式会社 | すべり軸受 |
JP5895638B2 (ja) * | 2012-03-21 | 2016-03-30 | 大豊工業株式会社 | すべり軸受 |
-
2014
- 2014-02-21 JP JP2014032101A patent/JP6096689B2/ja active Active
- 2014-04-25 EP EP14788022.3A patent/EP2990668B1/en active Active
- 2014-04-25 WO PCT/JP2014/061697 patent/WO2014175426A1/ja active Application Filing
- 2014-04-25 US US14/786,826 patent/US9879725B2/en active Active
- 2014-04-25 CN CN201480022936.2A patent/CN105143691A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH059461A (ja) * | 1991-07-02 | 1993-01-19 | Honda Motor Co Ltd | 摺動部材 |
JPH10231841A (ja) * | 1997-02-21 | 1998-09-02 | Daido Metal Co Ltd | すべり軸受 |
JPH10259827A (ja) * | 1997-03-18 | 1998-09-29 | Daido Metal Co Ltd | すべり軸受 |
JP2003532036A (ja) | 2000-05-03 | 2003-10-28 | デーナ、コーポレイション | 軸 受 |
JP2008115936A (ja) * | 2006-11-02 | 2008-05-22 | Toyota Motor Corp | コネクティングロッド |
WO2011098290A1 (en) * | 2010-02-11 | 2011-08-18 | Mahle International Gmbh | Bearing bush |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190271355A1 (en) * | 2016-10-31 | 2019-09-05 | Taiho Kogyo Co., Ltd. | Half bearing |
CN110214235A (zh) * | 2016-10-31 | 2019-09-06 | 大丰工业株式会社 | 半轴承 |
Also Published As
Publication number | Publication date |
---|---|
EP2990668A1 (en) | 2016-03-02 |
JP2014224601A (ja) | 2014-12-04 |
JP6096689B2 (ja) | 2017-03-15 |
EP2990668B1 (en) | 2017-08-30 |
US9879725B2 (en) | 2018-01-30 |
CN105143691A (zh) | 2015-12-09 |
EP2990668A4 (en) | 2016-05-11 |
US20160102707A1 (en) | 2016-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014175426A1 (ja) | すべり軸受 | |
JP5837896B2 (ja) | すべり軸受 | |
JP6185853B2 (ja) | すべり軸受 | |
WO2016136998A1 (ja) | すべり軸受 | |
JP6134636B2 (ja) | すべり軸受 | |
WO2014129595A1 (ja) | すべり軸受 | |
WO2016136995A1 (ja) | すべり軸受 | |
JP2016161016A (ja) | すべり軸受の製造方法及びすべり軸受 | |
JP6216226B2 (ja) | すべり軸受 | |
JP6323833B2 (ja) | すべり軸受 | |
JP6536774B2 (ja) | すべり軸受 | |
JP6166064B2 (ja) | すべり軸受 | |
WO2016136993A1 (ja) | すべり軸受 | |
JP6390852B2 (ja) | すべり軸受 | |
JP2016161018A5 (ja) | ||
JP6624559B2 (ja) | すべり軸受 | |
JP6724280B2 (ja) | すべり軸受 | |
JP2019031981A (ja) | すべり軸受 | |
JP6399576B2 (ja) | すべり軸受 | |
JP6541144B2 (ja) | すべり軸受 | |
JP2017110765A (ja) | すべり軸受 | |
JP2017110764A (ja) | すべり軸受 | |
JP2016161011A (ja) | すべり軸受 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480022936.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14788022 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 14786826 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2014788022 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014788022 Country of ref document: EP |