WO2014175215A1 - 無アルカリガラス基板およびその製造方法 - Google Patents

無アルカリガラス基板およびその製造方法 Download PDF

Info

Publication number
WO2014175215A1
WO2014175215A1 PCT/JP2014/061168 JP2014061168W WO2014175215A1 WO 2014175215 A1 WO2014175215 A1 WO 2014175215A1 JP 2014061168 W JP2014061168 W JP 2014061168W WO 2014175215 A1 WO2014175215 A1 WO 2014175215A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkali
less
glass
terms
plane distribution
Prior art date
Application number
PCT/JP2014/061168
Other languages
English (en)
French (fr)
Inventor
博文 徳永
小池 章夫
昌也 欅田
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020157030193A priority Critical patent/KR101728976B1/ko
Priority to CN201480022660.8A priority patent/CN105121370B/zh
Priority to JP2015513746A priority patent/JP5991429B2/ja
Publication of WO2014175215A1 publication Critical patent/WO2014175215A1/ja
Priority to US14/919,814 priority patent/US9708211B2/en
Priority to US15/605,217 priority patent/US9963379B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0085Compositions for glass with special properties for UV-transmitting glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • C03C3/115Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron
    • C03C3/118Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron containing aluminium

Definitions

  • the present invention is a non-alkali glass that is suitable for various display substrate glasses, substantially does not contain an alkali metal oxide, can be easily formed into a plate shape, and the in-plane distribution of ultraviolet transmittance is suppressed. Regarding the substrate.
  • various display substrate glasses especially glass that forms a metal or oxide thin film on the surface, contain alkali metal oxides, so that alkali metal ions diffuse into the thin film and deteriorate the film characteristics.
  • the alkali-free glass is substantially free of alkali metal ions.
  • a flat panel display typified by a liquid crystal display (LCD)
  • two substrate glasses constituting the FPD in the case of LCD, a substrate glass provided with TFT elements and a color filter are provided).
  • the substrate glass is bonded using a curable resin.
  • the FPD includes components that have a problem with heat resistance such as a TFT element. Therefore, a photocurable resin is used as the curable resin, and the resin is cured by ultraviolet irradiation.
  • display substrate glass is required to have ultraviolet transparency, and Patent Documents 1 and 2 propose an alkali-free glass substrate in which the ultraviolet transmittance at 300 nm is 50 to 85% at a thickness of 0.5 mm. Has been.
  • the UV transmittance is uniform across the entire surface of the display substrate glass, that is, the in-plane distribution of UV transmittance is small.
  • a photopolymerizable monomer is added to the liquid crystal material filled in the liquid crystal layer of the LCD, and light irradiation is performed with the liquid crystal molecules tilted in a predetermined direction to form a polymer in the vicinity of the alignment film, whereby the liquid crystal
  • PSA polymer alignment stabilization
  • the substrate glass for display is required to have a small in-plane distribution of ultraviolet transmittance.
  • the in-plane distribution of the ultraviolet transmittance of the display substrate glass is large, it is necessary to change the ultraviolet irradiation conditions depending on the portion of the display substrate glass, and the yield of the liquid crystal display panel is lowered.
  • the display substrate glass used in the display device.
  • the substrate glass is etched using hydrofluoric acid or the like, and further physically polished as necessary. A thinning method is performed.
  • the substrate glass is thinned by performing an etching process or the like before forming the display device member on the surface of the substrate glass, the strength of the substrate glass is lowered and the amount of deflection is increased. Therefore, the problem that it cannot process in the existing manufacturing line arises.
  • the substrate glass is thinned by performing an etching process or the like after the display device member is formed on the surface of the substrate glass, the fineness formed on the glass surface of the substrate in the process of forming the display device member on the surface of the substrate glass. A problem of obvious scratches, that is, the occurrence of edge pits arises.
  • a thin substrate glass (thin substrate glass) is laminated with another supporting substrate glass to form a laminate, and a predetermined device for manufacturing a display device in that state.
  • a method of separating the thin substrate glass and the supporting substrate glass after the above process has been proposed (see Patent Document 4).
  • a method of separating the thin substrate glass and the support substrate glass a method of scanning and irradiating the surface of the substrate with a laser beam can be applied as in the method described in Patent Document 5.
  • the substrate glass for display is required to have a small in-plane distribution of light transmittance. When the in-plane distribution of the light transmittance is large in the display substrate glass, it is necessary to change the irradiation condition of the laser beam depending on the portion of the display substrate glass, and the yield of the display device is lowered.
  • the object of the present invention is to solve the above-mentioned drawbacks, high ultraviolet transmittance, small in-plane distribution of ultraviolet transmittance, high strain point, high Young's modulus, and easy to mold into a plate during substrate production. It is to provide a non-alkali glass substrate.
  • the present invention has a strain point of 680 ° C. or higher, a Young's modulus of 78 GPa or higher, and an ultraviolet transmittance at a wavelength of 300 nm of 40 to 85% in terms of a thickness of 0.5 mm.
  • the in-plane distribution of ultraviolet transmittance at 300 nm on a G6 size substrate is 1% or less in terms of thickness 0.5 mm, and the average cooling rate near the glass transition point determined by the rate cool method is 400 ° C./min or less.
  • the in-plane distribution of the average cooling rate is 40 ° C./min or less, and the SiO 2 50 to 73 in terms of mass percentage based on oxide.
  • the total amount of halogen elements is preferably 0.001 to 1% in terms of oxide-based mass percentage.
  • the alkali-free glass substrate of the present invention preferably has an in-plane distribution of Fe content (expressed in terms of mass percentage in terms of Fe 2 O 3 ) of 0.001 to 0.003%.
  • the present invention provides a method for producing an alkali-free glass having a composition of SiO 2 —Al 2 O 3 —RO (RO is one or more of MgO, CaO, BaO and SrO). Because A strain point of 680 ° C.
  • the average cooling rate in the vicinity of the glass transition point determined by the rate cool method is 400 ° C./min or less, the in-plane distribution of the average cooling rate is 40 ° C./min or less, and ultraviolet rays at a wavelength of 300 nm on a G6 size substrate.
  • the total amount of halogen elements is preferably 0.001 to 1% in terms of mass percentage based on oxide.
  • the in-plane distribution of Fe content is preferably 0.001 to 0.003% in terms of mass percentage in terms of Fe 2 O 3 .
  • the non-alkali glass substrate of the present invention can be easily formed into a plate shape during substrate production. Further, the alkali-free glass substrate of the present invention has a high ultraviolet transmittance and a small in-plane distribution of the ultraviolet transmittance, so that the yield is improved when used as a substrate glass for FPD.
  • the alkali-free glass substrate of the present invention contains SiO 2 , Al 2 O 3 , SnO 2 and Fe 2 O 3 as essential components, and B 2 O 3 , MgO, CaO, SrO, BaO and ZrO 2 are contained as optional components.
  • the composition range of each component will be described. If SiO 2 is less than 50% (mass%, the same unless otherwise specified), the strain point is not sufficiently increased, the thermal expansion coefficient is increased, and the density is increased. 52% or more is preferable, 54% or more is more preferable, and 56% or more is more preferable. In 73 percent, reduced solubility at the time of glass production, the temperature T 4 which is a temperature T 2 and 10 4 dPa ⁇ s glass viscosity becomes 10 2 dPa ⁇ s is increased, the liquidus temperature rises. It is preferably 70% or less, more preferably 68.5% or less, and even more preferably 67% or less.
  • Al 2 O 3 suppresses the phase separation of the glass, lowers the thermal expansion coefficient, and raises the strain point. However, if it is less than 10.5%, this effect does not appear, and other components that increase the expansion coefficient are increased. As a result, the thermal expansion of the glass increases. It is preferably 12.5% or more, more preferably 14.5% or more, and further preferably 16.5% or more. If it exceeds 24%, the solubility of the glass during production may be deteriorated, or the devitrification temperature may be increased. It is preferably 23% or less, more preferably 22.5% or less, and even more preferably 22% or less.
  • B 2 O 3 is not essential, but can be contained in order to improve the melting reactivity of the glass during production, lower the devitrification temperature, and improve the BHF resistance. However, if the amount is too large, the strain point becomes low and the Young's modulus becomes small. 4% or less is preferable. In order to acquire said effect
  • MgO has the characteristics of increasing the Young's modulus while maintaining a low density without increasing the expansion coefficient in alkaline earths, and can be contained because it improves the solubility during glass production. However, if the amount is too large, the devitrification temperature increases, so the content is made 10% or less. It is preferably 8% or less, more preferably 7.5% or less, and even more preferably 7% or less. In order to acquire said effect
  • CaO has the characteristics of increasing the Young's modulus while maintaining the low density without increasing the expansion coefficient in alkaline earth following MgO, and can be contained because it improves the solubility during glass production.
  • the amount is too large, the devitrification temperature may increase, or a large amount of phosphorus, which is an impurity in limestone (CaCO 3 ), which is a raw material for CaO, may be mixed. It is preferably 10% or less, more preferably 8.5% or less, and even more preferably 7% or less. In order to acquire said effect
  • SrO can be contained without increasing the devitrification temperature of the glass and improving the solubility during glass production.
  • the amount is preferably 12% or less, more preferably 10.5% or less, and further preferably 9% or less.
  • 1.5% or more is preferable, 2% or more is more preferable, and 2.5% or more is further more preferable.
  • BaO is not essential, but can be contained to improve solubility during glass production. However, if the amount is too large, the glass expansion coefficient and density are excessively increased. It is preferably 13.5% or less, more preferably 10% or less, further preferably 8% or less, and particularly preferably 6% or less. In order to acquire said effect
  • ZrO 2 is made 5% or less in order to reduce the melting temperature during glass production or to promote crystal precipitation during firing. If it exceeds 5%, the glass becomes unstable or the relative dielectric constant ⁇ of the glass increases. 1.5% or less is preferable, 1% or less is more preferable, 0.5% or less is further preferable, and it is particularly preferable not to contain substantially.
  • the temperature T 4 at which the glass viscosity becomes 10 4 dPa ⁇ s increases, and the equipment and float molding used to mold the glass into a plate shape.
  • the life of the float bath casing structure and heater may be extremely shortened. It is preferably 10% or more, more preferably 11.5% or more, and further preferably 13% or more. If it exceeds 29.5%, there is a risk that the thermal expansion coefficient cannot be reduced. It is preferably 22% or less, more preferably 20% or less, and further preferably 18% or less.
  • SnO 2 is preferably contained for improving clarity during glass production.
  • SnO 2 generates O 2 gas in a glass melt obtained by melting glass raw materials.
  • SnO 2 is reduced from SnO 2 to SnO at a temperature of 1450 ° C. or more, and O 2 gas is generated and acts to grow bubbles greatly.
  • the glass raw material is melted at 1500 ° C. or higher.
  • Sn content in the glass is in terms of SnO 2, 0.01% or more. If SnO 2 is less than 0.01%, a clarification action during glass melting cannot be obtained. Preferably it is 0.05% or more, More preferably, it is 0.1% or more.
  • the glass may be colored or devitrified, so the Sn content in the glass is 1% or less, preferably 0.5% or less, more preferably in terms of SnO 2. 0.3% or less.
  • Sn content is not the input amount in a glass raw material but the quantity which remains in a glass melt. The same applies to the Fe content, the F content, and the Cl content described later.
  • Fe 2 O 3 has the effect of raising the temperature of the molten glass in the melting tank and lowering the melting temperature of the melting tank at the time of glass production due to the infrared absorption effect by Fe 2+ ions. Therefore, the Fe content in the glass is 0.005% or more in terms of Fe 2 O 3 , preferably 0.01% or more, more preferably 0.02% or more, and particularly preferably 0.04% or more. However, if it is too much, there is a problem of coloring the glass or lowering the ultraviolet transmittance, so the content is made 0.1% or less. 0.07% or less is preferable, 0.055% or less is more preferable, and 0.045% or less is particularly preferable.
  • a halogen element is not essential, but can be contained for improving clarity during glass production.
  • F and Cl are preferable from the viewpoint of clarity.
  • the content of F is less than 0.001% by mass, the clarification action during melting of the glass raw material may be reduced.
  • it is 0.005 mass% or more, More preferably, it is 0.01 mass% or more, More preferably, it is 0.02 mass% or more, Most preferably, it is 0.03 mass% or more.
  • the F content is more than 0.15% by mass, the strain point of the glass to be produced is lowered.
  • it is 0.12 mass% or less, More preferably, it is 0.1 mass% or less.
  • the clarification action during melting of the glass raw material is lowered.
  • it is 0.005 mass% or more, More preferably, it is 0.01 mass% or more.
  • the moisture concentration in the glass is lowered and the clarity is deteriorated.
  • it is 0.25 mass% or less, More preferably, it is 0.2 mass% or less.
  • content of a halogen element is 0.001 mass% or more in total.
  • the clarification action during melting of the glass raw material is lowered.
  • content of a halogen element is 1 mass% or less in total. If the content is more than 1% by mass, the strain point may be excessively lowered. Preferably it is 0.7 mass% or less, More preferably, it is 0.5 mass% or less.
  • the alkali-free glass substrate of the present invention does not contain an alkali metal oxide exceeding the impurity level (that is, substantially) so as not to cause deterioration of the characteristics of the metal or oxide thin film provided on the glass surface during panel manufacture.
  • PbO, As 2 O 3 Sb 2 O 3 is preferably not substantially contained.
  • the amount of impurities as impurities is preferably 23 mol ppm or less, more preferably 23 mol ppm or less, still more preferably 18 mol ppm or less, and particularly preferably 11 mol ppm or less.
  • the alkali-free glass substrate of the present invention can contain ZnO and SO 3 in a total amount of 5% or less in order to improve solubility, clarity and moldability during glass production.
  • the alkali-free glass of the present invention preferably has a strain point of 680 ° C. or higher, 690 ° C. or higher, more preferably 700 ° C. or higher, and even more preferably 710 ° C. or higher.
  • the alkali-free glass of the present invention has a Young's modulus of preferably 78 GPa or more, 79 GPa or more, 80 GPa or more, more preferably 81 GPa or more, and further preferably 82 GPa or more.
  • the alkali-free glass substrate of the present invention has an ultraviolet transmittance at a wavelength of 300 nm of 40 to 85% in terms of a thickness of 0.5 mm.
  • the ultraviolet rays used for bonding the two substrate glasses constituting the FPD are mainly ultraviolet rays having a wavelength of about 300 nm. If the two substrate glasses have a low ultraviolet transmittance at a wavelength of 300 nm, it takes a long time to bond the two substrate glasses with the ultraviolet curable resin. That is, even when the ultraviolet curable resin is irradiated with ultraviolet rays, it is easily absorbed by the substrate glass, so that it takes time to cure the resin.
  • the alkali-free glass substrate of the present invention has an ultraviolet transmittance at a wavelength of 300 nm of 40% or more in terms of a thickness of 0.5 mm. Therefore, when used as a substrate glass constituting an FPD, the ultraviolet curable resin is cured for a long time. Is not required.
  • the ultraviolet transmittance of the glass substrate varies depending on the thickness of the substrate. In the present invention, in order to eliminate the influence of the thickness of the substrate, it was standardized to an ultraviolet transmittance in terms of a thickness of 0.5 mm.
  • the ultraviolet transmittance at 300 nm is preferably 45% or more, more preferably 50% or more.
  • the alkali-free glass substrate of the present invention has an ultraviolet transmittance at a wavelength of 300 nm of 85% or less in terms of a thickness of 0.5 mm. . Preferably it is 80% or less, More preferably, it is 75% or less.
  • the alkali-free glass substrate of the present invention has an in-plane distribution of the ultraviolet transmittance in addition to the ultraviolet transmittance at a wavelength of 300 nm being in the above range.
  • the in-plane distribution of ultraviolet transmittance at a wavelength of 300 nm is 1% or less, preferably 0.5% in terms of thickness 0.5 mm on a G6 size substrate (typically 1850 mm ⁇ 1500 mm). % Or less.
  • substrate glass which comprises FPD it is not necessary to change the irradiation conditions of an ultraviolet-ray according to the site
  • the alkali-free glass substrate of the present invention is a G7 size substrate (typically 1870 mm ⁇ 2200 mm) with an in-plane distribution of ultraviolet transmittance at a wavelength of 300 nm, and is 1% or less in terms of thickness 0.5 mm, and further 0 0.5% or less, more preferably a G8 size substrate (typically 2460 mm ⁇ 2160 mm), 1% or less, more preferably 0.5% or less in terms of thickness 0.5 mm. .
  • the in-plane distribution means a difference between the maximum value and the minimum value in the plane.
  • the average cooling rate and the in-plane distribution near the glass transition point determined by the rate cool method are shown below in order that the ultraviolet transmittance and the in-plane distribution satisfy the numerical range described above. Meet the conditions.
  • the ultraviolet transmittance changes depending on the proportion of divalent iron (so-called Redox) in the total iron contained in the alkali-free glass substrate.
  • the in-plane distribution of Redox exists in the alkali-free glass substrate
  • the in-plane distribution of ultraviolet transmittance occurs.
  • the presence of an in-plane distribution of the Fe content in the alkali-free glass substrate may cause an in-plane distribution of ultraviolet transmittance.
  • the in-plane distribution of Fe content is also small.
  • the in-plane distribution of the Fe content is preferably 0.001 to 0.003%.
  • the virtual temperature of glass obtained by cooling from a high temperature (rate cool) at a constant cooling rate and the cooling rate hold a linear relationship it is possible to define the virtual temperature instead as the cooling rate at the rate cool. it can.
  • this is the average cooling rate near the glass transition point determined by the rate cool method.
  • the average cooling rate in the vicinity of the glass transition point determined by the rate cool method is more specifically determined by the following procedure. An experiment in which the glass is held at a temperature about 100 ° C.
  • the in-plane distribution of redox of the alkali-free glass substrate can be reduced, and the in-plane distribution of ultraviolet transmittance is reduced. it can.
  • the alkali-free glass substrate of the present invention has an average cooling rate of 400 ° C./min or less and an in-plane distribution of the average cooling rate of 40 ° C./min or less.
  • the average cooling rate of the alkali-free glass substrate is 400 ° C./min or less
  • the ultraviolet transmittance of the alkali-free glass substrate is in the above-described range, and the in-plane distribution of the ultraviolet transmittance is reduced.
  • the in-plane distribution of the average cooling rate of the alkali-free glass substrate is 40 ° C./min or less ( ⁇ 20 ° C./min or less)
  • the in-plane distribution of the ultraviolet transmittance of the alkali-free glass substrate is sufficiently small, and G6 size
  • the thickness of the substrate is 1% or less in terms of a thickness of 0.5 mm.
  • the alkali-free glass substrate of the present invention preferably has an average cooling rate of 300 ° C./min or less and an in-plane distribution of the average cooling rate of 40 ° C./min or less ( ⁇ 20 ° C./min or less). More preferably, the average cooling rate is 220 ° C./min or less, the in-plane distribution of the average cooling rate is 30 ° C./min or less ( ⁇ 15 ° C./min or less), and the average cooling rate is 150 ° C./min. It is particularly preferred that the in-plane distribution of the average cooling rate is 30 ° C./min or less ( ⁇ 15 ° C./min or less).
  • the alkali-free glass substrate of the present invention can be produced, for example, by the following method.
  • the raw materials of each component that are normally used are formulated so as to be target components having a strain point of 680 ° C. or higher, a Young's modulus of 78 GPa or higher, and an ultraviolet transmittance at a wavelength of 300 nm of 40 to 85% in terms of thickness 0.5 mm.
  • This is continuously charged into a melting furnace and heated to 1500 to 1800 ° C. for melting.
  • An alkali-free glass substrate can be obtained by forming this molten glass into a predetermined plate thickness by various forming methods (float method, downdraw method, fusion method, etc.), and then cooling after slow cooling.
  • the average cooling rate is 400 ° C./min or less
  • the in-plane distribution of the average cooling rate is 40 ° C./min or less
  • the in-plane distribution of ultraviolet transmittance at a wavelength of 300 nm on a G6 size substrate is 0. It is necessary to manage the temperature conditions during molding and slow cooling so that it is 1% or less in terms of 5 mm.
  • Examples 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47 are Examples, Examples 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46 48 are comparative examples.
  • the temperature retention of the side walls of the forming furnace and the slow cooling furnace is strengthened, and the temperature distribution of the heater of the slow cooling furnace is adjusted by paying attention to the temperature distribution of the glass so that the temperature distribution of the glass becomes better than before (uniform). To be).
  • the temperature of the side wall portions of the forming furnace and the slow cooling furnace is as usual, and the thermal insulation is weaker than in the examples. .
  • Table 1 shows the glass composition (unit: mass%) of glasses 1 to 8, the thermal expansion coefficient at 50 to 350 ° C. (unit: ⁇ 10 ⁇ 7 / ° C.), strain point (unit: ° C.), glass transition point ( Unit: ° C), specific gravity, Young's modulus (GPa) (measured by ultrasonic method), high temperature viscosity value, T 2 (temperature at which glass viscosity ⁇ becomes 10 2 poise, unit: ° C) , And a temperature T 4 (temperature at which the glass viscosity ⁇ becomes 10 4 poise, unit: ° C.), devitrification temperature (unit: ° C.), photoelastic constant (unit: nm / MPa / cm) (measured by a disk compression method at a measurement wavelength of 546 nm).
  • Table 2 shows the glass used in Examples 1 to 48, average cooling rate (unit: ° C / min), in-plane distribution of average cooling rate (unit: ° C / min), and in-plane transmittance average at a wavelength of 300 nm (unit :%), And in-plane distribution (unit:%) of transmittance at a wavelength of 300 nm.
  • the size of the glass used in each example is G6 size (1850 mm ⁇ 1500 mm ⁇ 0.5 mm).
  • the average in-plane transmittance and the in-plane distribution of transmittance can be obtained by cutting out a plurality of samples of 50 mm ⁇ 50 mm from a G6 size plate and measuring the transmittance and refractive index of each sample.
  • the transmittance of the glass was measured with a Hitachi Ultraviolet Visible Near Infrared Spectrophotometer 4U-4100.
  • a precision refractometer KPR-2000 manufactured by Shimadzu Device Manufacturing was used.
  • the in-plane distribution of the average cooling rate is 40 ° C./min or less, and the in-plane distribution of the ultraviolet transmittance at a wavelength of 300 nm is 1 on a G6 size substrate. %, It is considered that the yield is improved when used as FPD substrate glass.
  • the alkali-free glass substrate of the present invention is suitable for various display substrate glasses because it can be easily formed into a plate shape and the in-plane distribution of ultraviolet transmittance is suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

 本発明は、歪点が680℃以上であり、ヤング率が78GPa以上であり、波長300nmにおける紫外線透過率が、厚み0.5mm換算で40~85%であり、G6サイズの基板での、波長300nmにおける紫外線透過率の面内分布が厚み0.5mm換算で1%以下であり、レートクール法で求められるガラス転移点付近の平均冷却速度が400℃/min以下であり、該平均冷却速度の面内分布が40℃/min以下であり、酸化物基準の質量百分率表示で、SiO50~73、Al 10.5~24、B 0~5、MgO 0~10、CaO 0~14.5、SrO 0~24、BaO 0~20、ZrO 0~5、SnO 0.01~1、Fe0.005~0.1、含有し、MgO+CaO+SrO+BaO が8~29.5である無アルカリガラス基板に関する。

Description

無アルカリガラス基板およびその製造方法
 本発明は、各種ディスプレイ用基板ガラスとして好適な、アルカリ金属酸化物を実質上含有せず、板状に成形するのが容易で、かつ、紫外線透過率の面内分布が抑制された無アルカリガラス基板に関する。
 従来、各種ディスプレイ用基板ガラス、特に表面に金属ないし酸化物薄膜等を形成するガラスでは、アルカリ金属酸化物を含有していると、アルカリ金属イオンが薄膜中に拡散して膜特性を劣化させるため、実質的にアルカリ金属イオンを含まない無アルカリガラスであることが求められる。
 液晶表示装置(LCD)に代表されるフラットパネルディスプレイ(FPD)の製造時、該FPDを構成する2枚の基板ガラス(LCDの場合、TFT素子が設けられた基板ガラスと、カラーフィルタが設けられた基板ガラス)を、硬化性樹脂を用いて貼り合わせる。
 この際、FPDには、TFT素子等の耐熱性が問題となる構成要素が存在するため、硬化性樹脂として光硬化性樹脂を使用し、紫外線照射により樹脂を硬化させる。このため、ディスプレイ用基板ガラスは紫外線透過性を有することが求められており、特許文献1および2では、300nmにおける紫外線透過率が厚み0.5mmで50~85%となる無アルカリガラス基板が提案されている。
 ディスプレイ用基板ガラスは、紫外線透過率が所望の範囲であることに加えて、ディスプレイ用基板ガラスの全面において、紫外線透過率が均一であること、すなわち、紫外線透過率の面内分布が小さいことが好ましい。たとえば、LCDの液晶層に充填する液晶材料中に光重合性モノマーを添加し、液晶分子を所定の方向にチルトさせた状態で光照射を行って配向膜近傍にポリマーを形成させ、それによって液晶材料の分子配向を安定化させるポリマー配向安定化(Polymer Stabilized Alignment;以下「PSA」という)技術がある(特許文献3参照)。この技術に対応するため、ディスプレイ用基板ガラスは、紫外線透過率の面内分布が小さいことが求められる。ディスプレイ用基板ガラスは、紫外線透過率の面内分布が大きいと、ディスプレイ用基板ガラスの部位によって、紫外線の照射条件を変更することが必要となり、液晶表示パネルの歩留まりが低下する。
 また、LCDや有機EL表示装置(OLED)、特にモバイルや携帯電話等の携帯型表示装置の分野では、表示装置の軽量化、薄型化が重要な課題となっている。この課題に対応するために、表示装置に用いるディスプレイ用基板ガラスの板厚をさらに薄くすることが望まれている。板厚を薄くする方法としては、一般に、表示装置用部材を基板ガラスの表面に形成する前または形成した後に、フッ酸等を用いて基板ガラスをエッチング処理し、必要に応じてさらに物理研磨して薄くする方法が行われる。
 しかしながら、表示装置用部材を基板ガラスの表面に形成する前にエッチング処理等をして基板ガラスを薄くすると、基板ガラスの強度が低下し、たわみ量も大きくなる。そのため既存の製造ラインで処理することができないという問題が生じる。
 また、表示装置用部材を基板ガラスの表面に形成した後にエッチング処理等をして基板ガラスを薄くすると、表示装置用部材を基板ガラスの表面に形成する過程において基板のガラス表面に形成された微細な傷が顕在化する問題、すなわちエッジピットの発生という問題が生じる。
 そこで、このような問題を解決することを目的として、板厚の薄い基板ガラス(薄板基板ガラス)を他の支持基板ガラスと貼り合わせて積層体とし、その状態で表示装置を製造するための所定の処理を実施し、その後、薄板基板ガラスと支持基板ガラスとを分離する方法等が提案されている(特許文献4参照)。
 薄板基板ガラスと支持基板ガラスとを分離する方法としては、特許文献5に記載の方法のように、基板表面にレーザビームをスキャン照射する方法も適用できる。
 この技術に対応するため、ディスプレイ用基板ガラスは、光線透過率の面内分布が小さいことが求められる。ディスプレイ用基板ガラスは、光線透過率の面内分布が大きいと、ディスプレイ用基板ガラスの部位によって、レーザビームの照射条件を変更することが必要となり、表示装置の歩留まりが低下する。
日本国特開2006-36625号公報 日本国特開2006-36626号公報 日本国特開2009-53544号公報 日本国特開2009-184172号公報 日本国特開2012-104093号公報
 近年、スマートフォンのような携帯用端末などの高精細小型ディスプレイでは、高品質のp-Si TFTの製造方法としてレーザーアニールによる方法が採用されており、さらにコンパクションを小さくするために歪点の高いガラスが求められている。また、ガラス基板の大板化、薄板化に伴い、搬送時のガラス基板のたわみ抑制のため、ヤング率が高く、比弾性率(ヤング率/密度)が高いガラスが求められている。本発明の目的は、上記欠点を解決し、紫外線透過率が高く、紫外線透過率の面内分布が小さく、歪点が高く、ヤング率が高く、基板製造時において板状に成形するのが容易な無アルカリガラス基板を提供することにある。
 上記した目的を達成するため、本発明は、歪点が680℃以上であり、ヤング率が78GPa以上であり、波長300nmにおける紫外線透過率が、厚み0.5mm換算で40~85%であり、G6サイズの基板での、300nmにおける紫外線透過率の面内分布が、厚み0.5mm換算で1%以下であり、レートクール法で求められるガラス転移点付近の平均冷却速度が400℃/min以下であり、該平均冷却速度の面内分布が40℃/min以下であり、酸化物基準の質量百分率表示で
SiO       50~73、
Al      10.5~24、
       0~5、
MgO        0~10、
CaO        0~14.5、
SrO        0~24、
BaO        0~20、
ZrO       0~5、
SnO       0.01~1、
Fe      0.005~0.1、
含有し
MgO+CaO+SrO+BaO が8~29.5である、
無アルカリガラス基板を提供する。
 本発明の無アルカリガラス基板は、ハロゲン元素の総量が、酸化物基準の質量百分率表示で、0.001~1%であることが好ましい。
 本発明の無アルカリガラス基板は、Fe含有量(Fe換算の質量百分率表示)の面内分布が0.001~0.003%であることが好ましい。
 また、上記した目的を達成するため、本発明は、SiO-Al-RO(ROはMgO、CaO、BaO及びSrOの1種以上)系の組成を有する無アルカリガラスを製造する方法であって、
 歪点が680℃以上、ヤング率が78GPa以上、波長300nmにおける紫外線透過率が厚み0.5mm換算で40~85%、酸化物基準の質量百分率表示で
SiO       50~73、
Al      10.5~24、
       0~5、
MgO       0~10、
CaO       0~14.5、
SrO       0~24、
BaO       0~20、
ZrO       0~5、
SnO       0.01~1、
Fe      0.005~0.1、
含有しMgO+CaO+SrO+BaO が8~29.5である無アルカリガラスになるようにガラス原料を調合する工程と、
 レートクール法で求められるガラス転移点付近の平均冷却速度が400℃/min以下であり、該平均冷却速度の面内分布が40℃/min以下であり、G6サイズの基板での波長300nmにおける紫外線透過率の面内分布が厚み0.5mm換算で1%以下となるように、成形時および徐冷時の温度条件を管理する工程と、
を含むことを特徴とする無アルカリガラス基板の製造方法を提供する。
 本発明の無アルカリガラス基板の製造方法は、ハロゲン元素の総量が、酸化物基準の質量百分率表示で、0.001~1%であることが好ましい。
 本発明の無アルカリガラス基板の製造方法は、Fe含有量の面内分布が、Fe換算の質量百分率表示で、0.001~0.003%でであることが好ましい。
 本発明の無アルカリガラス基板は、基板製造時において板状に成形するのが容易である。また、本発明の無アルカリガラス基板は、紫外線透過率が高く、かつ、紫外線透過率の面内分布が小さいため、FPDの基板ガラスとして使用した際に歩留まりが向上する。
 本発明の無アルカリガラス基板について説明する。
 本発明の無アルカリガラス基板(以下、「本発明のガラス基板」ともいう。)は、SiO、Al、SnOおよびFeを必須成分として含有し、B、MgO、CaO、SrO、BaOおよびZrOを任意成分として含有する。
 次に各成分の組成範囲について説明する。SiOは50%(質量%、以下特記しないかぎり同じ)未満では、歪点が充分に上がらず、かつ、熱膨張係数が増大し、密度が上昇する。52%以上が好ましく、54%以上がより好ましく、56%以上がさらに好ましい。73%超では、ガラス製造時における溶解性が低下し、ガラス粘度が10dPa・sとなる温度Tや10dPa・sとなる温度Tが上昇し、失透温度が上昇する。70%以下が好ましく、68.5%以下がより好ましく、67%以下がさらに好ましい。
 Alはガラスの分相性を抑制し、熱膨脹係数を下げ、歪点を上げるが、10.5%未満ではこの効果があらわれず、また、ほかの膨張係数を上げる成分を増加させることになるため、結果的にガラスの熱膨張が大きくなる。12.5%以上が好ましく、14.5%以上がより好ましく、16.5%以上がさらに好ましい。24%超では製造時におけるガラスの溶解性が悪くなったり、失透温度を上昇させるおそれがある。23%以下が好ましく、22.5%以下がより好ましく、22%以下がさらに好ましい。
 Bは必須ではないが、製造時におけるガラスの溶解反応性をよくし、失透温度を低下させ、耐BHF性を改善するため含有できる。しかし、多すぎると歪点が低くなり、ヤング率が小さくなるので5%以下とする。4%以下が好ましい。上記の作用を得るためには、0.5%以上が好ましく、0.8%以上がより好ましく、1%以上がさらに好ましく、1.2%以上が特に好ましい。
 MgOは、アルカリ土類の中では膨張係数を高くせず、かつ密度を低く維持したままヤング率を上げるという特徴を有し、ガラス製造時において溶解性も向上させるため含有できる。しかし多すぎると失透温度が上昇するので10%以下とする。8%以下が好ましく、7.5%以下がより好ましく、7%以下がさらに好ましい。上記の作用を得るためには、1%以上が好ましく、2%以上がより好ましく、3%以上がさらに好ましい。
 CaOは、MgOに次いでアルカリ土類中では膨張係数を高くせず、かつ密度を低く維持したままヤング率を上げるという特徴を有し、ガラス製造時における溶解性も向上させるため含有できる。しかし多すぎると、失透温度が上昇したり、CaOの原料である石灰石(CaCO)中の不純物であるリンが多く混入するおそれがあるため14.5%以下とする。10%以下が好ましく、8.5%以下がより好ましく、7%以下がさらに好ましい。上記の作用を得るためには、1%以上が好ましく、2%以上がより好ましく、3%以上がさらに好ましい。
 SrOは、ガラスの失透温度を上昇させず、ガラス製造時における溶解性を向上させるため含有できる。しかし、多すぎると膨脹係数が増大するおそれがあるため24%以下とする。12%以下が好ましく、10.5%以下がより好ましく、9%以下がさらに好ましい。上記の作用を得るためには、1.5%以上が好ましく、2%以上がより好ましく、2.5%以上がさらに好ましい。
 BaOは必須ではないがガラス製造時における溶解性向上のために含有できる。しかし、多すぎるとガラスの膨張係数と密度を過大に増加させるので20%以下とする。13.5%以下が好ましく、10%以下がより好ましく、8%以下がさらに好ましく、6%以下が特に好ましい。上記の作用を得るためには、0.1%以上が好ましく、0.5%以上がより好ましく、1%以上がさらに好ましい。
 ZrOは、ガラス製造時における溶融温度を低下させるために、または焼成時の結晶析出を促進するために、5%以下とする。5%超ではガラスが不安定になる、またはガラスの比誘電率εが大きくなる。1.5%以下が好ましく、1%以下がより好ましく、0.5%以下がさらに好ましく、実質的に含有しないことが特に好ましい。
 MgO、CaO、SrO、BaOは合量で8%よりも少ないと、ガラス粘度が10dPa・sとなる温度Tが高くなり、ガラスを板状に成形する際に使用する設備、フロート成形の場合はフロートバスの筐体構造物やヒーターの寿命を極端に短くする恐れがある。10%以上が好ましく、11.5%以上がより好ましく、13%以上がさらに好ましい。29.5%よりも多いと、熱膨張係数を小さくできないという難点が生じるおそれがある。22%以下が好ましく、20%以下がより好ましく、18%以下がさらに好ましい。
 SnOは、ガラス製造時における清澄性向上のために含有することが好ましい。SnOは、ガラス原料を溶解して得られたガラス融液中でOガスを発生する。ガラス融液中では、1450℃ 以上の温度でSnOからSnOに還元され、Oガスを発生し、泡を大きく成長させる作用をするが、泡をより効果的に大きくするために、好ましくは1500℃以上でガラス原料を溶解する。ガラス中のSn含有量はSnO換算で、0.01%以上である。SnOが0.01%未満では、ガラス溶解時における清澄作用が得られない。好ましくは0.05%以上、より好ましくは0.1%以上である。SnOが1%超だと、ガラスの着色や、失透が発生する恐れがあるため、ガラス中のSn含有量はSnO換算で1%以下、好ましくは0.5%以下、さらに好ましくは0.3%以下である。
 なお、Sn含有量は、ガラス原料における投入量ではなく、ガラス融液中に残存する量である。この点については、後述するFe含有量、F含有量、およびCl含有量についても同様である。
 ガラス中にSn4+を含有する場合、ガラスを冷却する過程において、ガラス中のSnが酸化されFeが還元されることにより、ガラスの紫外線透過率は上昇する。
 Feは、Fe2+イオンによる赤外線吸収効果により、ガラス製造時に溶解槽において溶融ガラスの温度を上げ、溶解槽の敷温度を下げる作用がある。そのため、ガラス中のFe含有量はFe換算で0.005%以上であり、0.01%以上が好ましく、0.02%以上がより好ましく、0.04%以上が特に好ましい。
 しかし多すぎるとガラスの着色や、紫外線透過率低下の問題があるので0.1%以下とする。0.07%以下が好ましく、0.055%以下がより好ましく、0.045%以下が特に好ましい。
 本発明の無アルカリガラス基板において、ハロゲン元素は必須ではないがガラス製造時における清澄性向上のために含有できる。この目的で使用するハロゲン元素としては、FおよびClが清澄性の観点から好ましい。
 Fは、含有量が0.001質量%未満だと、ガラス原料の溶解時における清澄作用が低下するおそれがある。好ましくは0.005質量%以上、より好ましくは0.01質量%以上、さらに好ましくは0.02質量%以上、特に好ましくは0.03質量%以上である。
 F含有量が0.15質量%超だと、製造されるガラスの歪点が低くなる。好ましくは0.12質量%以下、さらに好ましくは0.1質量%以下である。
 Cl含有量が0.001質量%未満だと、ガラス原料の溶解時における清澄作用が低下する。好ましくは0.005質量%以上、さらに好ましくは0.01質量%以上である。Cl含有量が0.35質量%超だと、ガラス中の水分濃度が低下し、清澄性が悪化する。好ましくは0.25質量%以下、さらに好ましくは0.2質量%以下である。
 なお、ハロゲン元素の含有量は総量で0.001質量%以上であることが好ましい。含有量が0.001質量%未満だと、ガラス原料の溶解時における清澄作用が低下する。好ましくは0.01質量%以上、さらに好ましくは0.03質量%以上である。
 また、ハロゲン元素の含有量は総量で1質量%以下であることが好ましい。含有量が1質量%超だと、歪点が低下しすぎるおそれれがある。好ましくは0.7質量%以下、さらに好ましくは0.5質量%以下である。
 なお、本発明の無アルカリガラス基板は、パネル製造時にガラス表面に設ける金属ないし酸化物薄膜の特性劣化を生じさせないために、アルカリ金属酸化物を不純物レベルを超えて(すなわち実質的に)含有しない。また、ガラスのリサイクルを容易にするため、PbO、As、Sbは実質的に含有しないことが好ましい。
 さらに同様の理由で、P含有量は実質的に含有しないことが好ましい。不純物としての混入量は23モルppm以下が好ましく、23モルppm以下がより好ましく、18モルppm以下がさらに好ましく、11モルppm以下が特に好ましい。
 本発明の無アルカリガラス基板は上記成分以外に、ガラス製造時における溶解性、清澄性、成形性を改善するため、ZnOおよびSOを総量で5%以下添加できる。
 本発明の無アルカリガラスは、歪点は680℃以上が好ましく、690℃以上、さらに700℃以上がより好ましく、710℃以上がさらに好ましい。
 本発明の無アルカリガラスは、ヤング率は78GPa以上が好ましく、79GPa以上、80GPa以上、さらに81GPa以上がより好ましく、82GPa以上がさらに好ましい。
 本発明の無アルカリガラス基板は、波長300nmにおける紫外線透過率が、厚み0.5mm換算で40~85%である。
 FPDの製造時、該FPDを構成する2枚の基板ガラスの貼り合わせに用いられる紫外線は、主として波長300nm付近の波長の紫外線である。2枚の基板ガラスが、波長300nmにおける紫外線透過率が低いと、紫外線硬化樹脂によって2枚の基板ガラスを貼り合わせるのに長時間を要する。すなわち紫外線硬化樹脂に対して紫外線を照射しても、基板ガラスに吸収されやすいため、樹脂を硬化させるのに時間がかかる。
 本発明の無アルカリガラス基板は、波長300nmにおける紫外線透過率が、厚み0.5mm換算で40%以上であるため、FPDを構成する基板ガラスとして使用した場合に、紫外線硬化樹脂の硬化に長時間を要することがない。
 ガラス基板における紫外線透過率は、基板の厚みによっても異なる。本発明では、基板の厚みによる影響を排除するため、厚み0.5mm換算の紫外線透過率に規格化した。
 300nmにおける紫外線透過率が、好ましくは45%以上、より好ましくは50%以上である。
 ただし、紫外線透過率が高くなりすぎると、紫外線を照射した際に、酸化物半導体でのVth特性シフトなど、TFT素子の特性が変化し、FPDの構成要素の特性が損なわれるおそれがある。
 本発明の無アルカリガラス基板は、波長300nmにおける紫外線透過率が、厚み0.5mm換算で85%以下であるため、耐熱性が問題となるFPDの構成要素が、紫外線照射時に破損するおそれがない。好ましくは80%以下、より好ましくは75%以下である。
 本発明の無アルカリガラス基板は、波長300nmにおける紫外線透過率が上記範囲であることに加えて、該紫外線透過率の面内分布が少ない。具体的には、波長300nmにおける紫外線透過率の面内分布が、G6サイズの基板(典型的には、1850mm×1500mm)で、厚み0.5mm換算で1%以下であり、好ましくは0.5%以下である。このため、FPDを構成する基板ガラスとして使用した場合に、基板ガラスの部位によって、紫外線の照射条件を変更する必要がない。
 本発明の無アルカリガラス基板は、波長300nmにおける紫外線透過率の面内分布が、G7サイズの基板(典型的には、1870mm×2200mm)で、厚み0.5mm換算で1%以下、さらには0.5%以下であることがより好ましく、G8サイズの基板(典型的には、2460mm×2160mm)で、厚み0.5mm換算で1%以下、さらには0.5%以下であることがさらに好ましい。
 なお、本明細書では、透過率に限らず、面内分布とは面内におけるその値の最大値と最小値の差を意味する。
 本発明の無アルカリガラス基板は、紫外線透過率およびその面内分布が上述した数値範囲を満たすために、レートクール法で求められるガラス転移点付近の平均冷却速度およびその面内分布が以下に示す条件を満たす。
 本願発明者が無アルカリガラス基板における紫外線透過率の面内分布について鋭意検討した結果、以下の知見が得られた。
(1)無アルカリガラス基板がFeを含有する場合、その紫外線透過率は、無アルカリガラス基板に含まれる全鉄のうちの2価の鉄の割合(いわゆるRedox)によって変化する。したがって、無アルカリガラス基板にRedoxの面内分布が存在する場合、紫外線透過率の面内分布が生じる。
 なお、無アルカリガラス基板中のFe含有量に面内分布が存在することによっても、紫外線透過率の面内分布が生じるおそれがある。このため、Fe含有量の面内分布も小さいことが好ましい。但し、Feの濃度の面内分布を極端に小さくすることは、製造上困難である。本発明では、Fe含有量(Fe換算)の面内分布が、0.001~0.003%であることが好ましい。Fe含有量(Fe換算)の面内分布0.001%未満を達成するには、冷却速度を後述する条件よりもさらに下げるか、ヒータ密度をかなり高くする必要があり、製造上困難である。一方、0.003%超だと、紫外線透過率の面内分布が発生するおそれがある。
(2)無アルカリガラス基板のRedoxは、ガラス製造時における溶解温度や冷却速度によって変化し、無アルカリガラス基板のRedoxの面内分布は、ガラス製造時における冷却速度に主として影響される。
(3)ガラスの冷却速度は、その製造工程によって一様ではなく、温度域によって冷却速度が異なる。しかしながら、一定冷却速度で高温から冷却(レートクール)して得られたガラスの仮想温度と冷却速度は線形の関係が成り立つことから、仮想温度をレートクール時の冷却速度として代わりに定義することができる。本明細書において、これをレートクール法で求められるガラス転移点付近の平均冷却速度とする。なお、レートクール法で求められるガラス転移点付近の平均冷却速度は、より具体的には以下のような手順で求められる。
 ガラスをガラス転移点より100℃程度高い温度にて10分間保持後、一定冷却速度にて冷却する実験を、0.1℃/分、1℃/分、10℃/分、100℃/分、1000℃/分にて実施し、すべてのガラスの屈折率を測定することで、屈折率と冷却速度の関係を検量線として得ることができる。その後、実際のサンプルの屈折率を測定し、検量線から冷却速度を求める。
 以下、本明細書において、『平均冷却速度』と記載した場合、レートクール法で求められるガラス転移点付近の平均冷却速度を意図する。
(4)平均冷却速度を所定の数値以下とし、かつ、その面内分布を小さくすれば、無アルカリガラス基板のRedoxの面内分布を少なくすることができ、紫外線透過率の面内分布を小さくできる。
 本発明の無アルカリガラス基板は、平均冷却速度が400℃/min以下であり、該平均冷却速度の面内分布が40℃/min以下である。
 無アルカリガラス基板の平均冷却速度が400℃/min以下であれば、無アルカリガラス基板の紫外線透過率が上述した範囲となり、紫外線透過率の面内分布が小さくなる。
 無アルカリガラス基板の平均冷却速度の面内分布が40℃/min以下(±20゜C/min以下)であれば、無アルカリガラス基板の紫外線透過率の面内分布が十分小さくなり、G6サイズの基板で厚み0.5mm換算で1%以下となる。
 本発明の無アルカリガラス基板は、平均冷却速度が300℃/min以下であり、該平均冷却速度の面内分布が40℃/min以下(±20゜C/min以下)であることが好ましく、平均冷却速度が220℃/min以下であり、該平均冷却速度の面内分布が30℃/min以下(±15゜C/min以下)であることがさらに好ましく、平均冷却速度が150℃/min以下であり、該平均冷却速度の面内分布が30℃/min以下(±15゜C/min以下)であることが特に好ましい。
 本発明の無アルカリガラス基板は、例えば次のような方法で製造できる。通常使用される各成分の原料を、歪点が680℃以上、ヤング率が78GPa以上、波長300nmにおける紫外線透過率が厚み0.5mm換算で40~85%となる目標成分になるように調合し、これを溶解炉に連続的に投入し、1500~1800℃に加熱して溶解する。この溶融ガラスを各種成形法(フロート法、ダウンドロー法、フュージョン法等)により所定の板厚に成形し、徐冷後切断することによって、無アルカリガラス基板を得ることができる。
 本発明では、平均冷却速度が400℃/min以下、該平均冷却速度の面内分布が40℃/min以下となり、G6サイズの基板での波長300nmにおける紫外線透過率の面内分布が厚み0.5mm換算で1%以下となるように、成形時、および、徐冷時の温度条件を管理する必要がある。ここで、平均冷却速度の面内分布を小さくするためには、成形時、および、徐冷時において、側面側からもガラスリボンを加熱することが好ましい。
 以下において例1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、35、37、39、41、43、45、47は実施例、例2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36、38、40、42、44、46、48は比較例である。
 各成分の原料を目標組成になるように調合し、溶解する。ついで実施例においては成形炉および徐冷炉の側壁部分の保温を強化し、ガラスの温度分布に着目して徐冷炉のヒータの温度分布を調整してガラスの温度分布が従来に比べ良くなるように(均一になるように)する。比較例においては、成形炉および徐冷炉の側壁部分の保温は通常の通りで実施例に比べ保温が弱く、ガラスの微小な温度分布に着目せずに従来通りに徐冷炉のヒータの温度分布を調整する。
 表1には、ガラス1~8のガラス組成(単位:質量%)と50~350℃での熱膨脹係数(単位:×10-7/℃)、歪点(単位:℃)、ガラス転移点(単位:℃)、比重、ヤング率(GPa)(超音波法により測定)、高温粘性値として、溶解性の目安となる温度T(ガラス粘度ηが10ポイズとなる温度、単位:℃)、とフロート成形性およびフュージョン成形性の目安となる温度T(ガラス粘度ηが10ポイズとなる温度、単位:℃)、失透温度(単位:℃)、光弾性定数(単位:nm/MPa/cm)(円板圧縮法により測定波長546nmにて測定)を示す。表2には、例1~48において使用するガラス、平均冷却速度(単位:℃/min)、平均冷却速度の面内分布(単位:℃/min)、波長300nmにおける面内透過率平均 (単位:%)、波長300nmにおける透過率の面内分布(単位:%)を示す。なお、各例において使用するガラスのサイズはG6サイズ(1850mm×1500mm×0.5mm)である。
 なお、平均面内透過率および透過率の面内分布をG6サイズの板から50mm×50mmの複数のサンプルに切り出し、各サンプルの透過率ならびに屈折率を測定することにより求めることができる。ガラスの透過率は日立紫外可視近赤外分光光度計4U-4100にて測定した。屈折率測定には島津デバイス製造製、精密屈折率計KPR-2000を使用した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

 
 表から明らかなように、実施例のガラスはいずれも、平均冷却速度の面内分布が40℃/min以下であり、G6サイズの基板での、波長300nmにおける紫外線透過率の面内分布が1%以下となっていることから、FPD基板ガラスとして使用した際において、歩留まりが向上すると考えられる。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の範囲と精神を逸脱することなく、様々な修正や変更を加えることができることは、当業者にとって明らかである。
 本出願は、2013年4月23日付出願の日本特許出願2013-090141に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の無アルカリガラス基板は、板状に成形するのが容易であり、かつ、紫外線透過率の面内分布が抑制されているため、各種ディスプレイ用基板ガラスとして好適である。

Claims (6)

  1.  歪点が680℃以上であり、ヤング率が78GPa以上であり、波長300nmにおける紫外線透過率が、厚み0.5mm換算で40~85%であり、G6サイズの基板での、波長300nmにおける紫外線透過率の面内分布が厚み0.5mm換算で1%以下であり、レートクール法で求められるガラス転移点付近の平均冷却速度が400℃/min以下であり、該平均冷却速度の面内分布が40℃/min以下であり、酸化物基準の質量百分率表示で
    SiO       50~73、
    Al      10.5~24、
           0~5、
    MgO        0~10、
    CaO        0~14.5、
    SrO        0~24、
    BaO        0~20、
    ZrO       0~5、
    SnO       0.01~1、
    Fe      0.005~0.1、
    含有し
    MgO+CaO+SrO+BaO が8~29.5である、
    無アルカリガラス基板。
  2.  ハロゲン元素の総量が、酸化物基準の質量百分率表示で、0.001~1%である、請求項1に記載の無アルカリガラス基板。
  3.  Fe含有量の面内分布が、Fe換算の質量百分率表示で、0.001~0.003%である、請求項1または2に記載の無アルカリガラス基板。
  4.  SiO-Al-RO(ROはMgO、CaO、BaO及びSrOの1種以上)系の組成を有する無アルカリガラスを製造する方法であって、
     歪点が680℃以上、ヤング率が78GPa以上、波長300nmにおける紫外線透過率が厚み0.5mm換算で40~85%、酸化物基準の質量百分率表示で
    SiO       50~73、
    Al      10.5~24、
           0~5、
    MgO        0~10、
    CaO        0~14.5、
    SrO        0~24、
    BaO        0~20、
    ZrO       0~5、
    SnO       0.01~1、
    Fe       0.005~0.1、
    含有しMgO+CaO+SrO+BaO が8~29.5である無アルカリガラスになるようにガラス原料を調合する工程と、
     レートクール法で求められるガラス転移点付近の平均冷却速度が400℃/min以下であり、該平均冷却速度の面内分布が40℃/min以下であり、G6サイズの基板での波長300nmにおける紫外線透過率の面内分布が厚み0.5mm換算で1%以下となるように、成形時および徐冷時の温度条件を管理する工程と、
    を含むことを特徴とする無アルカリガラス基板の製造方法。
  5.  ハロゲン元素の総量が、酸化物基準の質量百分率表示で、0.001~1%である、請求項4に記載の無アルカリガラス基板の製造方法。
  6.  Fe含有量の面内分布が、Fe換算の質量百分率表示で、0.001~0.003%である、請求項4または5に記載の無アルカリガラス基板の製造方法。
PCT/JP2014/061168 2013-04-23 2014-04-21 無アルカリガラス基板およびその製造方法 WO2014175215A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020157030193A KR101728976B1 (ko) 2013-04-23 2014-04-21 무알칼리 유리 기판 및 그 제조 방법
CN201480022660.8A CN105121370B (zh) 2013-04-23 2014-04-21 无碱玻璃基板及其制造方法
JP2015513746A JP5991429B2 (ja) 2013-04-23 2014-04-21 無アルカリガラス基板およびその製造方法
US14/919,814 US9708211B2 (en) 2013-04-23 2015-10-22 Alkali-free glass substrate and method for producing same
US15/605,217 US9963379B2 (en) 2013-04-23 2017-05-25 Alkali-free glass substrate and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013090141 2013-04-23
JP2013-090141 2013-04-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/919,814 Continuation US9708211B2 (en) 2013-04-23 2015-10-22 Alkali-free glass substrate and method for producing same

Publications (1)

Publication Number Publication Date
WO2014175215A1 true WO2014175215A1 (ja) 2014-10-30

Family

ID=51791790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061168 WO2014175215A1 (ja) 2013-04-23 2014-04-21 無アルカリガラス基板およびその製造方法

Country Status (6)

Country Link
US (2) US9708211B2 (ja)
JP (1) JP5991429B2 (ja)
KR (1) KR101728976B1 (ja)
CN (2) CN105121370B (ja)
TW (1) TWI576325B (ja)
WO (1) WO2014175215A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199059A1 (ja) * 2017-04-27 2018-11-01 日本電気硝子株式会社 キャリアガラス及びその製造方法
KR20190044060A (ko) * 2016-08-23 2019-04-29 에이지씨 가부시키가이샤 무알칼리 유리
WO2019208584A1 (ja) * 2018-04-27 2019-10-31 Agc株式会社 無アルカリガラス
EP3383809A4 (en) * 2015-12-01 2019-12-11 Kornerstone Materials Technology Co., Ltd ALKALINO-EARTHOUS ALUMINOSILICATE GLASS WITH LOW BORON CONTENT AND BARIUM FREE AND ITS APPLICATIONS
WO2022239741A1 (ja) * 2021-05-10 2022-11-17 日本電気硝子株式会社 無アルカリガラス板

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105121370B (zh) * 2013-04-23 2017-08-08 旭硝子株式会社 无碱玻璃基板及其制造方法
KR20170137031A (ko) * 2015-04-03 2017-12-12 니폰 덴키 가라스 가부시키가이샤 유리
WO2017204167A1 (ja) * 2016-05-25 2017-11-30 旭硝子株式会社 無アルカリガラス基板、積層基板、およびガラス基板の製造方法
JP7044064B2 (ja) * 2016-08-05 2022-03-30 Agc株式会社 無アルカリガラス基板、積層基板、およびガラス基板の製造方法
WO2018116731A1 (ja) * 2016-12-19 2018-06-28 日本電気硝子株式会社 ガラス
CN106746601B (zh) 2016-12-30 2019-06-04 东旭集团有限公司 用于制备玻璃的组合物、玻璃制品及用途
CN107479228B (zh) * 2017-09-11 2020-08-25 京东方科技集团股份有限公司 显示模组及显示模组的制备方法
CN108947237A (zh) * 2018-07-27 2018-12-07 彩虹显示器件股份有限公司 一种低膨胀系数高应变点的无碱硅酸盐玻璃
JP7389400B2 (ja) * 2018-10-15 2023-11-30 日本電気硝子株式会社 無アルカリガラス板
CN112441743A (zh) * 2020-11-26 2021-03-05 河南旭阳光电科技有限公司 一种无碱玻璃组合物、无碱玻璃及制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036625A (ja) * 2004-06-23 2006-02-09 Nippon Electric Glass Co Ltd 無アルカリガラス基板
JP2006036626A (ja) * 2004-06-23 2006-02-09 Nippon Electric Glass Co Ltd 無アルカリガラス基板
JP2012082130A (ja) * 2010-10-06 2012-04-26 Corning Inc 高熱および化学安定性を有する無アルカリガラス組成物
WO2012103194A1 (en) * 2011-01-25 2012-08-02 Corning Incorporated Glass compositions having high thermal and chemical stability

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3800657B2 (ja) 1996-03-28 2006-07-26 旭硝子株式会社 無アルカリガラスおよびフラットディスプレイパネル
JP3804112B2 (ja) 1996-07-29 2006-08-02 旭硝子株式会社 無アルカリガラス、無アルカリガラスの製造方法およびフラットディスプレイパネル
JP5703535B2 (ja) * 2006-05-23 2015-04-22 日本電気硝子株式会社 無アルカリガラス基板
WO2008007676A1 (fr) 2006-07-13 2008-01-17 Asahi Glass Company, Limited substrat de verre sans alcalin, son processus de fabrication et panneaux d'affichage à cristaux liquides
JP2009053544A (ja) 2007-08-28 2009-03-12 Sharp Corp 配向安定化方法、ならびにそれを用いた液晶表示パネルおよび液晶表示装置の製造方法
JP5024087B2 (ja) 2008-02-05 2012-09-12 旭硝子株式会社 ガラス積層体、支持体付き表示装置用パネル、およびそれらの製造方法
CN102448901B (zh) * 2009-03-19 2015-11-25 日本电气硝子株式会社 无碱玻璃
CN102471134B (zh) 2009-07-02 2015-04-15 旭硝子株式会社 无碱玻璃及其制造方法
KR101738645B1 (ko) 2010-11-08 2017-05-23 삼성디스플레이 주식회사 터치 스크린 패널 및 그 제조방법
WO2012077609A1 (ja) 2010-12-07 2012-06-14 旭硝子株式会社 無アルカリガラスおよび無アルカリガラスの製造方法
KR101751569B1 (ko) 2010-12-27 2017-06-27 아사히 가라스 가부시키가이샤 무알칼리 유리 및 무알칼리 유리의 제조 방법
JPWO2013084832A1 (ja) 2011-12-06 2015-04-27 旭硝子株式会社 無アルカリガラスの製造方法
KR102009542B1 (ko) 2012-02-27 2019-08-09 에이지씨 가부시키가이샤 무알칼리 유리의 제조 방법
US9162919B2 (en) * 2012-02-28 2015-10-20 Corning Incorporated High strain point aluminosilicate glasses
CN104254500A (zh) 2012-04-27 2014-12-31 旭硝子株式会社 无碱玻璃及其制造方法
JP5702888B2 (ja) 2012-04-27 2015-04-15 旭硝子株式会社 無アルカリガラスおよびその製造方法
WO2013180220A1 (ja) 2012-05-31 2013-12-05 旭硝子株式会社 無アルカリガラス基板、および、無アルカリガラス基板の薄板化方法
EP2857367A1 (en) 2012-06-05 2015-04-08 Asahi Glass Company, Limited Alkali-free glass and method for producing same
KR102410236B1 (ko) 2012-06-05 2022-06-22 에이지씨 가부시키가이샤 무알칼리 유리 및 그 제조 방법
CN104350018B (zh) 2012-06-07 2018-10-19 Agc 株式会社 无碱玻璃及使用了该无碱玻璃的无碱玻璃板
WO2014087971A1 (ja) 2012-12-05 2014-06-12 旭硝子株式会社 無アルカリガラス基板
CN105121370B (zh) * 2013-04-23 2017-08-08 旭硝子株式会社 无碱玻璃基板及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036625A (ja) * 2004-06-23 2006-02-09 Nippon Electric Glass Co Ltd 無アルカリガラス基板
JP2006036626A (ja) * 2004-06-23 2006-02-09 Nippon Electric Glass Co Ltd 無アルカリガラス基板
JP2012082130A (ja) * 2010-10-06 2012-04-26 Corning Inc 高熱および化学安定性を有する無アルカリガラス組成物
WO2012103194A1 (en) * 2011-01-25 2012-08-02 Corning Incorporated Glass compositions having high thermal and chemical stability

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3383809A4 (en) * 2015-12-01 2019-12-11 Kornerstone Materials Technology Co., Ltd ALKALINO-EARTHOUS ALUMINOSILICATE GLASS WITH LOW BORON CONTENT AND BARIUM FREE AND ITS APPLICATIONS
KR20190044060A (ko) * 2016-08-23 2019-04-29 에이지씨 가부시키가이샤 무알칼리 유리
KR102403524B1 (ko) 2016-08-23 2022-05-31 에이지씨 가부시키가이샤 무알칼리 유리
WO2018199059A1 (ja) * 2017-04-27 2018-11-01 日本電気硝子株式会社 キャリアガラス及びその製造方法
JPWO2018199059A1 (ja) * 2017-04-27 2020-03-12 日本電気硝子株式会社 キャリアガラス及びその製造方法
JP7172996B2 (ja) 2017-04-27 2022-11-16 日本電気硝子株式会社 キャリアガラス及びその製造方法
JP2023011770A (ja) * 2017-04-27 2023-01-24 日本電気硝子株式会社 キャリアガラス及びその製造方法
JP7392916B2 (ja) 2017-04-27 2023-12-06 日本電気硝子株式会社 キャリアガラス及びその製造方法
WO2019208584A1 (ja) * 2018-04-27 2019-10-31 Agc株式会社 無アルカリガラス
KR20210005601A (ko) 2018-04-27 2021-01-14 에이지씨 가부시키가이샤 무알칼리 유리
JPWO2019208584A1 (ja) * 2018-04-27 2021-06-10 Agc株式会社 無アルカリガラス
WO2022239741A1 (ja) * 2021-05-10 2022-11-17 日本電気硝子株式会社 無アルカリガラス板

Also Published As

Publication number Publication date
JPWO2014175215A1 (ja) 2017-02-23
TW201500315A (zh) 2015-01-01
US20170260085A1 (en) 2017-09-14
KR20160002797A (ko) 2016-01-08
TWI576325B (zh) 2017-04-01
KR101728976B1 (ko) 2017-04-20
CN105121370A (zh) 2015-12-02
CN106396370A (zh) 2017-02-15
US20160039710A1 (en) 2016-02-11
CN106396370B (zh) 2018-11-09
US9963379B2 (en) 2018-05-08
JP5991429B2 (ja) 2016-09-14
US9708211B2 (en) 2017-07-18
CN105121370B (zh) 2017-08-08

Similar Documents

Publication Publication Date Title
JP5991429B2 (ja) 無アルカリガラス基板およびその製造方法
JP5233998B2 (ja) ガラス板およびその製造方法ならびにtftパネルの製造方法
JP6037117B2 (ja) ガラス及びガラス基板
US10173922B2 (en) Glass
US9663395B2 (en) Alkali-free glass and alkali-free glass plate using same
JP6187475B2 (ja) 無アルカリガラス基板
KR20160010350A (ko) 무알칼리 유리
TW201704168A (zh) 玻璃
WO2013065489A1 (ja) ガラス基板およびその製造方法
JP2016005999A (ja) ガラス
WO2015030013A1 (ja) 無アルカリガラス
WO2019208584A1 (ja) 無アルカリガラス
JP2022171721A (ja) ガラス
JP6323730B2 (ja) ガラス及びガラス基板
JP2018100217A (ja) ガラス及びガラス基板
JPWO2015041246A1 (ja) 無アルカリガラス
KR102291417B1 (ko) 무알칼리 유리
JP6172481B2 (ja) ガラス基板及びその製造方法
WO2014208524A1 (ja) 無アルカリガラス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480022660.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788488

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015513746

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157030193

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14788488

Country of ref document: EP

Kind code of ref document: A1