WO2014175152A1 - オキソ酸触媒の回収方法、及び再利用方法 - Google Patents

オキソ酸触媒の回収方法、及び再利用方法 Download PDF

Info

Publication number
WO2014175152A1
WO2014175152A1 PCT/JP2014/060899 JP2014060899W WO2014175152A1 WO 2014175152 A1 WO2014175152 A1 WO 2014175152A1 JP 2014060899 W JP2014060899 W JP 2014060899W WO 2014175152 A1 WO2014175152 A1 WO 2014175152A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxo acid
acid catalyst
phase
group
reaction
Prior art date
Application number
PCT/JP2014/060899
Other languages
English (en)
French (fr)
Inventor
北山健司
柴田光
鈴木崇将
上原和浩
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to US14/786,251 priority Critical patent/US20160074856A1/en
Priority to EP14788730.1A priority patent/EP2990110A4/en
Priority to JP2015513715A priority patent/JP6460981B2/ja
Publication of WO2014175152A1 publication Critical patent/WO2014175152A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/64Liquid treating or treating in liquid phase, e.g. dissolved or suspended using alkaline material; using salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/12Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with hydrogen peroxide or inorganic peroxides or peracids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/38Compounds containing oxirane rings with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D303/40Compounds containing oxirane rings with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals by ester radicals
    • C07D303/44Esterified with oxirane-containing hydroxy compounds

Definitions

  • the present invention relates to a method for easily and efficiently separating and recovering an oxo acid catalyst used in a reaction for oxidizing an organic compound with hydrogen peroxide and reusing the recovered oxo acid catalyst for an oxidation reaction of an organic compound.
  • Oxidizing agents are used in oxidation reactions such as the production of aldehydes and carboxylic acids by oxidation of primary alcohols, the production of ketones by oxidation of secondary alcohols, and the production of epoxy compounds and diols by oxidation of unsaturated compounds. .
  • the oxidizing agent As the oxidizing agent, hydrogen peroxide is attracting attention because it is inexpensive, does not exhibit corrosivity, and the by-product is water, which can reduce the environmental burden.
  • the conversion rate of the reaction substrate and the selectivity of the reaction product are low. For this reason, a metal catalyst is usually used in combination.
  • the metal catalyst since the metal catalyst is expensive, a method of recovering and reusing after completion of the reaction has been studied.
  • Patent Document 1 describes a method of adsorbing and separating a metal catalyst using a chelate resin.
  • the recovery rate was insufficient.
  • the cost is increased, and the reaction product is also adsorbed to the chelate resin, so that the yield of the reaction product is lowered.
  • Patent Documents 2 to 4 describe a method in which a metal catalyst is used in a state of being immobilized on a support and the like and separated and recovered by filtration after the reaction is completed. However, the recovery rate was insufficient. Another problem is that the activity is reduced because the metal catalyst becomes insoluble in the reaction solution when immobilized on a carrier or the like.
  • an object of the present invention is to provide a method for easily and efficiently recovering an oxo acid catalyst used in a reaction for oxidizing an organic compound with hydrogen peroxide without impairing the yield of the reaction product and the activity of the catalyst. There is to do.
  • Another object of the present invention is to provide a method for producing an oxide by oxidizing an organic compound with hydrogen peroxide using the oxo acid catalyst recovered by the above method to obtain a corresponding oxide.
  • the present inventors have determined that the oxoacid catalyst is changed from the organic phase to the aqueous phase or from the aqueous phase by adjusting the pH in the reaction system in the two-phase system of water / organic solvent. It can be transferred to the organic phase, can be easily separated from the reaction product contained in the organic phase, and the oxo acid catalyst can be recovered. Further, the oxo acid catalyst can be arbitrarily transferred between the aqueous phase and the organic phase. Can remove impurities present in the reaction system (impurities that are soluble in organic solvents and impurities that are soluble in water), and the oxo acid catalyst can be purified and recovered. It has been found that oxo acid catalysts have excellent catalytic activity and can be reused for the oxidation reaction of organic compounds. The present invention has been completed based on these findings.
  • the present invention relates to a method for recovering an oxo acid catalyst used in a reaction in which an organic compound is oxidized with hydrogen peroxide in a water / organic solvent two-phase system, the method comprising the following steps: Provide a method of recovery. Step 1: The pH of the reaction system is adjusted to 5.0 or more so that the oxo acid catalyst is transferred to the aqueous phase and the organic phase is removed.
  • the present invention also provides a method for recovering the above oxo acid catalyst, further comprising the following steps.
  • Step 2 Add organic solvent to form water / organic solvent two-phase system
  • Step 3 Adjust pH in reaction system to less than 5.0 and add phase transfer catalyst to convert oxo acid catalyst to organic phase And remove the aqueous phase
  • the oxo acid catalyst is an oxo acid containing at least one metal atom selected from tungsten, manganese, molybdenum, vanadium, niobium, tantalum, chromium, and rhenium, or a salt thereof.
  • a method for recovering an oxoacid catalyst is provided.
  • the present invention also provides a method for recovering an oxo acid catalyst used in a reaction for oxidizing an organic compound with hydrogen peroxide in a water / organic solvent two-phase system by the recovery method of the oxo acid catalyst.
  • a method for producing an oxide is obtained by oxidizing an organic compound with hydrogen peroxide in the presence of
  • a method for recovering an oxo acid catalyst used in a reaction in which an organic compound is oxidized with hydrogen peroxide in a water / organic solvent two-phase system comprising the following steps: .
  • the oxoacid catalyst according to [1] which further comprises the following steps Recovery method.
  • Step 2 Add organic solvent to form water / organic solvent two-phase system
  • Step 3 Adjust pH in reaction system to less than 5.0 and add phase transfer catalyst to convert oxo acid catalyst to organic phase [3] the oxoacid catalyst containing at least one metal atom selected from tungsten, manganese, molybdenum, vanadium, niobium, tantalum, chromium, and rhenium, or The method for recovering an oxo acid catalyst according to [1] or [2], which is a salt thereof.
  • the oxo acid catalyst is tungstic acid, manganic acid, molybdic acid, vanadic acid, tungstomolybdic acid, vanadomolybdic acid, vanadotungstic acid, manganese tungstic acid, cobalt tungstic acid, manganese molybdenum tungstic acid, phosphotungsten.
  • At least one selected from acids, phosphomanganic acid, phosphomolybdic acid, phosphovanadic acid, silicotungstic acid, silicomolybdic acid, arsenic tungstic acid, arsenic molybdic acid, phosphotungstomolybdic acid, phosphovanadomolybdic acid, and cytungstomolybdic acid The method for recovering an oxo acid catalyst according to [1] or [2], which is a seed compound or a salt thereof. [5] In any one of [1] to [4], the oxo acid catalyst is an oxo acid containing a metal atom, or an onium salt, alkali metal salt, alkaline earth metal salt, or transition metal salt thereof.
  • the phase transfer catalyst is represented by the following formula (1) (In the formula, R 1 to R 4 are the same or different and each represent a hydrocarbon group which may have a substituent. R 1 to R 4 represent a nitrogen cation formed by bonding selected 2 or 3 to each other.
  • the organic compound is a linear or branched aliphatic hydrocarbon having a carbon-carbon double bond, a compound containing a cycloalkene ring, and these are connected via a linking group or without a linking group.
  • the organic compound is represented by the following formula (a-1) (In formula (a-1), R 5 represents a hydrogen atom or an alkyl group, and R 6 represents a hydrogen atom, an alkyl group, an alkenyl group, a hydroxyl group, an alkoxy group, a carboxyl group, or an alkoxycarbonyl group) And / or the following formula (a-2) (In the formula (a-2), R 5 represents a hydrogen atom or an alkyl group, R 7 represents a single bond or a linear or branched alkylene group.
  • P and q are the same or different and represent 0 or 1 (It is an integer greater than or equal to)
  • the recovery method of the oxo acid catalyst of the present invention has the above-described configuration, the reaction product and the oxo acid catalyst can be separated by a simple method of only pH control and liquid separation operation, and it is necessary to perform filtration treatment and adsorption treatment. Therefore, it is possible to avoid a reduction in the recovery rate associated with the treatment, and to efficiently recover the oxo acid catalyst. Furthermore, the oxo acid catalyst can be purified and recovered by a simple method involving only pH control and liquid separation operation. Therefore, it is very advantageous economically, can reduce the burden on the environment, and can greatly contribute to green chemistry.
  • the catalyst immobilized on a carrier or the like usually has a reduced catalytic activity
  • the oxidation reaction of the present invention is a reaction in which an organic compound is oxidized with hydrogen peroxide in the presence of an oxoacid catalyst in a water / organic solvent two-phase system.
  • the oxo acid catalyst of the present invention is a compound that catalyzes a reaction of oxidizing an organic compound with hydrogen peroxide.
  • a metal atom-containing oxo acid or a salt thereof from the viewpoint of high distribution rate to the aqueous phase when hydrogen peroxide is added to the reaction system.
  • the oxo acid may be a polyacid having a multinuclear complex structure (eg, Keggin type, Dawson type, etc.).
  • An oxo acid catalyst can be used individually by 1 type or in combination of 2 or more types.
  • metal atom-containing oxo acid examples include tungsten (W), manganese (Mn), molybdenum (Mo), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), and rhenium (Re).
  • Oxo acids containing at least one selected metal atom are preferred, such as tungstic acid, manganic acid, molybdic acid, vanadic acid, tungstomolybdic acid, vanadomolybdic acid, vanadotungstic acid, manganese tungstic acid, Cobalt tungstic acid, manganese molybdenum tungstic acid, or the like can be preferably used.
  • metal atom-containing oxo acid salt examples include onium salts, alkali metal salts, alkaline earth metal salts, and transition metal salts of the metal atom-containing oxo acids exemplified above.
  • the metal atom-containing oxo acid is other oxo acid (hereinafter sometimes referred to as “other oxo acid”) or a salt thereof (onium salt, alkali metal salt, alkaline earth metal salt, transition metal salt, etc. ).
  • other oxo acids or salts thereof include phosphorus atom (P), silicon atom (Si), or arsenic atom (As) -containing oxo acids or salts thereof.
  • Examples of the phosphorus atom-containing oxo acids or salts thereof include, for example, phosphoric acid, polyphosphoric acid (including pyrophosphoric acid and metaphosphoric acid), (poly) phosphate [for example, (poly) such as potassium phosphate and sodium phosphate Alkali metal phosphates; (Poly) alkaline earth metal phosphates such as calcium phosphate; (Poly) alkali metal phosphates such as potassium hydrogen phosphate and sodium hydrogen phosphate; (Poly) such as calcium hydrogen phosphate Alkaline earth metal hydrogen phosphate; (poly) aluminum phosphate salt (including aluminum pyrophosphate double salt) and the like.
  • phosphoric acid polyphosphoric acid (including pyrophosphoric acid and metaphosphoric acid)
  • poly phosphate for example, (poly) such as potassium phosphate and sodium phosphate Alkali metal phosphates; (Poly) alkaline earth metal phosphates such as calcium phosphate; (Poly)
  • the said compound containing a phosphorus atom can be used individually by 1 type or in combination of 2 or more types.
  • Examples of the silicon atom-containing oxo acid or salt thereof include silicic acid (orthosilicate, metasilic acid, etc.), and examples of arsenic atom-containing oxo acid or salt thereof include arsenic acid, arsenous acid, and the like. Can do.
  • the metal atom-containing oxo acid may form a condensate with the other oxo acid.
  • the condensate include phosphotungstic acid, phosphomanganic acid, phosphomolybdic acid, phosphovanadic acid, silicotungstic acid, silicomolybdic acid, arsenic tungstic acid, arsenic molybdic acid, phosphotungstomolybdic acid, phosphovanadomolybdic acid, and kaitan. Examples include gustmolybdic acid.
  • the condensate may be a heteropolyacid having a polynuclear complex structure (eg, Keggin type, Dawson type, etc.).
  • the oxo acid catalyst of the present invention is a combination of at least one metal atom-containing oxo acid or salt thereof selected from the group consisting of tungsten, manganese, and vanadium, and a phosphorus atom-containing oxo acid or salt thereof. It is preferable to use it.
  • Phase transfer catalyst In the present invention, it is preferable to use a phase transfer catalyst together with the oxo acid catalyst. By using a phase transfer catalyst in combination, the catalyst efficiency can be improved.
  • a phase transfer catalyst a well-known and commonly used quaternary ammonium salt can be used.
  • Examples of the quaternary ammonium salt include compounds represented by the following formula (1).
  • R 1 to R 4 are the same or different and represent a hydrocarbon group.
  • the hydrocarbon group include an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and a group in which two or more of these are bonded.
  • the hydrocarbon group may have a substituent.
  • R 1 to R 4 may be bonded to each other by 2 or 3 selected to form a ring together with the nitrogen cation (N + ).
  • Examples of the alicyclic hydrocarbon group include C 3-12 cycloalkyl groups such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cyclododecyl groups.
  • aromatic hydrocarbon group examples include C 6-14 aryl groups such as phenyl and naphthyl groups (particularly, C 6-10 aryl groups).
  • Examples of the group in which an aliphatic hydrocarbon group and an alicyclic hydrocarbon group are bonded include, for example, a C 3-12 cycloalkyl-substituted C 1-20 alkyl group such as a cyclohexylmethyl group, and a C such as a methylcyclohexyl group. Examples thereof include a 1-20 alkyl-substituted C 3-12 cycloalkyl group.
  • Examples of the group in which an aliphatic hydrocarbon group and an aromatic hydrocarbon group are bonded include, for example, C 7-18 aralkyl groups such as benzyl group and phenethyl group (particularly C 7-10 aralkyl groups), and C such as tolyl group. 1-4 alkyl-substituted aryl groups and the like can be mentioned.
  • Examples of the substituent that the hydrocarbon group in R 1 to R 4 may have include a halogen atom (fluorine atom, chlorine atom, bromine atom, etc.), hydroxyl group, C 1-6 alkoxy group (methoxy, Ethoxy, propoxy, isopropyloxy, butoxy, isobutyloxy group, etc.), C 6-14 aryl optionally having substituents such as C 1-4 alkyl group, halogen atom, C 1-4 alkoxy group on the aromatic ring Oxy groups (phenoxy, tolyloxy, naphthyloxy groups, etc.), C 7-18 aralkyloxy groups (benzyloxy, phenethyloxy groups, etc.), C 1-12 acyloxy groups (acetyloxy, propionyloxy, benzoyloxy groups, etc.), carboxyl group, C 1-6 alkoxy - carbonyl group (methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, Butokish
  • Examples of the ring formed by combining two or more selected from R 1 to R 4 together with the nitrogen cation (N + ) include a pyrrole ring, a pyrrolidine ring, a pyridine ring, and a piperidine ring. .
  • the ring may have a substituent, and examples of the substituent include the same examples as the substituent that the hydrocarbon group in R 1 to R 4 may have.
  • X ⁇ is a counter anion (counter ion; monovalent anion) of an ammonium cation (quaternary ammonium ion) in the quaternary ammonium salt represented by formula (1).
  • Halide ion fluoride ion, chloride ion, iodide ion, etc.
  • quaternary ammonium salt examples include trioctylmethylammonium chloride, trioctylethylammonium chloride, dilauryldimethylammonium chloride, lauryltrimethylammonium chloride, stearyltrimethylammonium chloride, lauryldimethylbenzylammonium chloride, stearyldimethylbenzyl chloride.
  • the amount of the phase transfer catalyst used is, for example, about 0.01 to 2.0 mol, preferably about 0.1 mol, with respect to 1 mol of the oxo acid catalyst (in the case of a precursor compound, the amount corresponding to 1 mol of the oxo acid catalyst).
  • Hydrogen peroxide used as an oxidizing agent may be synthesized by a conventional method, or a commercially available product may be used.
  • concentration of hydrogen peroxide is preferably 5 to 80% by weight, particularly preferably 20 to 70% by weight, and most preferably 25 to 65% by weight from the viewpoint of handleability.
  • the amount of hydrogen peroxide is not particularly limited, but is, for example, 0.1 per mol of the double bond contained in the compound having the following carbon-carbon double bond. About 10 mol, preferably 0.2 to 5 mol, particularly preferably 0.5 to 2 mol.
  • the organic compound used in the oxidation reaction of the present invention may be any compound that can be oxidized by hydrogen peroxide, such as a compound having a carbon-carbon double bond (hereinafter sometimes referred to as “olefin”). , Alcohol, ketone and the like. Oxidation of an olefin with hydrogen peroxide usually epoxidizes the carbon-carbon double bond as the corresponding oxide (or reaction product) to produce the corresponding epoxy compound. Depending on conditions, a diol is generated. When primary alcohol is oxidized with hydrogen peroxide, aldehyde, carboxylic acid and the like are produced. When secondary alcohol is oxidized with hydrogen peroxide, ketone, carboxylic acid and the like are produced.
  • the buyer's billiger oxidation proceeds to produce an ester (in the case of oxidation of a chain ketone) and a lactone (in the case of oxidation of a cyclic ketone).
  • the most typical oxidation reaction is an olefin oxidation reaction (particularly an epoxidation reaction).
  • the olefin epoxidation (olefin carbon-carbon double bond epoxidation) reaction will be described in detail.
  • the oxo acid catalyst recovery method of the present invention is not limited to this reaction, and in any of the above oxidation reactions. Can also be used.
  • the olefin is a compound having at least one carbon-carbon double bond in a molecule (in one molecule).
  • a linear or branched aliphatic carbonization having a carbon-carbon double bond Hydrogen (i) a compound containing a cycloalkene ring (including a cycloalkapolyene ring such as a cycloalkadiene ring), and (iii) one or two or more of these via a linking group or not Bound compounds and the like are included. These compounds may have a substituent.
  • Examples of linear or branched aliphatic hydrocarbons having a carbon-carbon double bond include ethylene, propene, 1-butene, 2-butene, 1-pentene, 2-pentene and 1-hexene. 2-hexene, 2,3-dimethyl-2-butene, 3-hexene, 1-heptene, 2-heptene, 1-octene, 2-octene, 3-octene, 2-methyl-2-butene, 1 C 2-40 alkenes (preferably C 2-30 alkenes, particularly preferably C 2-20 alkenes) such as nonene, 2-nonene, decene, undecene, dodecene, tetradecene, hexadecene, octadecene, etc .; butadiene, isoprene, 1, 5 hexane diene, 1,6-heptane-diene, 1,7-octadiene, decad
  • linear or branched aliphatic hydrocarbons having a carbon-carbon double bond include, for example, aromatic hydrocarbon groups (C 6-10 aryl groups such as phenyl groups), hydroxyl groups, halogen atoms ( Fluorine atom, chlorine atom, bromine atom, etc.), mercapto group, alkoxy group (C 1-10 alkoxy group such as methoxy, ethoxy, propoxy, butoxy, t-butoxy group, etc.), halo C 1-6 alkoxy group, alkylthio group (C 1-10 alkylthio groups such as methylthio and ethylthio groups), carboxyl groups, alkoxycarbonyl groups (C 1-10 alkoxycarbonyl groups such as methoxycarbonyl and ethoxycarbonyl groups), acyl groups (acetyl, propionyl, trifluoroacetyl) such C 2-10 acyl group such group), an acyloxy group (acetoxy, propionyl
  • Examples of the compound containing a cycloalkene ring include, for example, cyclopropene, cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclooctene, cyclononene, cyclodecene, and cycloundecene C 3-20 cycloalkene (preferably C 4-14 cycloalkene, particularly preferably C 5-10 cycloalkene, most preferably C 5-6 cycloalkene) such as cyclododecene; cyclopentadiene, 1,3-cyclohexadiene , 1,4-cyclohexadiene, 1,3-cycloheptadiene, 1,4-cycloheptadiene, 1,5-cyclooctadiene, cyclodecadiene and the like
  • These cycloalkene rings may have a substituent.
  • substituents include an alkyl group (methyl, ethyl, isopropyl, butyl, isobutyl, in addition to a substituent that a linear or branched aliphatic hydrocarbon having a carbon-carbon double bond may have.
  • C 1-10 alkyl group such as t-butyl group
  • halo C 1-10 alkyl group alkenyl group (C 2-10 alkenyl group such as vinyl, allyl, propenyl, isopropenyl, butenyl group, etc.) be able to.
  • the number of substituents and the substitution position are not particularly limited.
  • linking group examples include alkylene groups [C 1-20 alkylene groups such as ethylene, propylene, trimethylene, tetramethylene, 2-methylbutane-1,3-diyl groups, etc .; C such as 1,4-cyclohexylene groups, etc. 4-10 cycloalkylene group (including alkylidene group)], arylene group (C 6-10 arylene group such as phenylene group, naphthalenediyl group, etc.), carbonyl bond, ester bond, amide bond, ether bond, and urethane bond And a group composed of at least one selected from the group consisting of:
  • Carbon contained in the carbon number of the olefin (when a substituent and / or a linking group is included, a substituent and / or a linking group (a substituent and a linking group when both a substituent and a linking group are included))
  • the total number is, for example, about 2 to 40, preferably 6 or more (for example, 6 to 30), more preferably 6 to 25, particularly preferably 6 to 20, and most preferably 7 to There are 20 pieces.
  • Representative olefins include the following formula (a-1) (In formula (a-1), R 5 represents a hydrogen atom or an alkyl group, and R 6 represents a hydrogen atom, an alkyl group, an alkenyl group, a hydroxyl group, an alkoxy group, a carboxyl group, or an alkoxycarbonyl group) Or a compound represented by the following formula (a-2) (In the formula (a-2), R 5 represents a hydrogen atom or an alkyl group, R 7 represents a single bond or a linear or branched alkylene group.
  • P and q are the same or different and represent 0 or 1 (It is an integer greater than or equal to) The compound etc. which are represented by these are included. Note that when p and q are 0 and R 7 is a single bond, the compound represented by the above formula (a-2) has a structure in which two cyclohexene rings are bonded by a single bond.
  • alkyl group represented by R 5 and R 6 examples include linear or branched C 1-4 alkyl groups such as methyl, ethyl, butyl, and isobutyl groups.
  • Examples of the alkenyl group represented by R 6 include C 2-10 alkenyl groups such as vinyl, allyl, propenyl, isopropenyl, and butenyl groups.
  • Examples of the alkoxy group include C 1-10 alkoxy groups such as methoxy, ethoxy, propoxy, butoxy and t-butoxy groups.
  • Examples of the alkoxycarbonyl group include C 1-10 alkoxycarbonyl groups such as methoxycarbonyl and ethoxycarbonyl groups.
  • Examples of the linear or branched alkylene group (including alkylidene group) represented by R 7 include, for example, a linear or branched chain such as methylene, ethylene, propylene, and 2,2-dimethylpropane-1,3-diyl group And a C 2-20 alkylene group (or an alkylidene group).
  • p and q are the same or different and are 0 or an integer of 1 or more. Among them, p and q are preferably 1.
  • Examples of the compounds represented by the above formulas (a-1) and (a-2) include compounds represented by the following formulas (b-1) to (b-9).
  • the diepoxy compound represented by the following formula (c-3-1) and the following formula (c-3-2) are represented.
  • a monoepoxy compound is obtained.
  • an epoxy compound represented by the following formula (c-6) (3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate ) Is obtained.
  • an epoxy compound represented by the following formula (c-8) is obtained.
  • an epoxy compound represented by the following formula (c-9) is obtained.
  • the oxidation reaction of the present invention is carried out in a water / organic solvent two-phase system.
  • the organic solvent is not particularly limited as long as it can be separated from an aqueous solvent, and can be appropriately selected depending on the type of organic compound (olefin, etc.) that is an oxide.
  • cyclo C 3-10 alkanols cyclo Propanol, cyclohexanol, etc.
  • chain ethers dimethyl ether, diethyl ether, etc.
  • ketones methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, etc.
  • esters ethyl acetate, butyl acetate, methyl lactate, ethyl lactate
  • hydrocarbons aliphatic hydrocarbons such as pentane, hexane, heptane; alicyclic hydrocarbons such as cyclohexane, methylcyclohexane, etc .; aromatic hydrocarbons such as toluene, xylene, ethylbenzene, etc.
  • Halogenated hydrocarbons chloroform, methylene chloride, Chlorobenzene, etc.
  • the said organic solvent can be used individually by 1 type or in combination of 2 or more types.
  • aromatic hydrocarbons, halogenated hydrocarbons, and alicyclic hydrocarbons are preferable from the viewpoint of reaction efficiency, and chlorobenzene, toluene, and cyclohexane are particularly preferable.
  • the ratio of the aqueous solvent to the organic solvent is such that the former / the latter (weight ratio) is, for example, about 0.005 to 2.0, preferably 0.01 to 1.0, particularly preferably 0.03 to 0.75. is there.
  • the amount of the aqueous solvent used is, for example, about 0.01 to 10 parts by weight, preferably 0.05 to 5 parts by weight, and particularly preferably 0.1 to 2 parts by weight with respect to 1 part by weight of the organic compound (olefin or the like). Parts by weight.
  • the oxidation reaction of the present invention can be carried out, for example, by dropping hydrogen peroxide into a reaction vessel charged with an organic compound, a phase transfer catalyst, an oxo acid catalyst, and a solvent.
  • the reaction time (or the dropping time of hydrogen peroxide) is, for example, about 0.1 to 12 hours. After completion of the dropping, for example, an aging period of about 0.5 to 20 hours may be provided.
  • the pH in the reaction system it is preferable to adjust the pH in the reaction system to, for example, about 3.0 to 7.5 (preferably 3.5 to 7.0).
  • phosphates such as disodium hydrogen phosphate dodecahydrate, sodium dihydrogen phosphate dihydrate, etc. are used alone or in combination of two or more. can do.
  • the reaction temperature (or the temperature in the reaction system when hydrogen peroxide is dropped) is, for example, about 30 to 70 ° C.
  • the said reaction may be performed under a normal pressure and can also be performed under reduced pressure or pressurization.
  • the reaction atmosphere is not particularly limited as long as the reaction is not inhibited, and may be any of an air atmosphere, a nitrogen atmosphere, an argon atmosphere, and the like.
  • the method for recovering an oxo acid catalyst according to the present invention is a method for recovering an oxo acid catalyst used in a reaction in which an organic compound is oxidized with hydrogen peroxide in a water / organic solvent two-phase system, and includes the following steps: And Step 1: The pH of the reaction system is adjusted to 5.0 or more so that the oxo acid catalyst is transferred to the aqueous phase and the organic phase is removed.
  • a strong base such as sodium hydroxide, potassium hydroxide, calcium hydroxide, tetramethylammonium hydroxide can be used. These can be used alone or in combination of two or more.
  • the optimum reaction conditions differ depending on the substrate, and the optimum pH also differs.
  • the pH in the reaction system is less than 5, the oxoacid catalyst exists in both the aqueous phase and the organic phase, but the pH in the reaction system is 5.0 or more.
  • the oxo acid catalyst can be converted into a water-soluble salt, and all oxo acids present in the reaction system can be converted. 85% by weight or more (preferably 90% by weight or more) of the acid catalyst can be transferred to the aqueous phase.
  • the temperature in the reaction system when the oxo acid catalyst is transferred to the aqueous phase is, for example, about 30 to 70 ° C.
  • the atmosphere in the reaction system when transferring the oxoacid catalyst to the aqueous phase is not particularly limited as long as the reaction is not inhibited, and may be any of an air atmosphere, a nitrogen atmosphere, an argon atmosphere, and the like.
  • the organic phase is removed after adjusting the pH in the reaction system to the above range and transferring the oxo acid catalyst to the aqueous phase.
  • the oxo acid catalyst and the reaction product can be separated, and the oxo acid catalyst can be recovered in the aqueous phase.
  • impurities that are soluble in the organic solvent can be removed from the reaction system, and a purified oxo acid catalyst that does not contain impurities that are soluble in the organic solvent is added to the aqueous phase. Can be recovered.
  • the method for recovering an oxo acid catalyst according to the present invention further includes the following steps to recover a purified oxo acid catalyst that does not contain impurities that are soluble in organic solvents and impurities that are soluble in water: It is preferable in that it can be performed.
  • Step 2 Add organic solvent to form water / organic solvent two-phase system
  • Step 3 Adjust pH in reaction system to less than 5.0 and add phase transfer catalyst to convert oxo acid catalyst to organic phase And remove the aqueous phase
  • step 2 it is preferable to add an organic solvent equal to the organic phase separated and removed to form a water / organic solvent two-phase system.
  • step 3 the pH in the reaction system is adjusted to less than 5.0 (preferably 4.8 or less, more preferably less than 4.8, particularly preferably 2.0 to 4.5), and a phase transfer catalyst is added. By doing so, the oxo acid catalyst is transferred to the organic phase and the aqueous phase is removed. By removing the aqueous phase, impurities that are soluble in water can be removed from the reaction system, and purified oxo that does not contain impurities that are soluble in organic solvents and impurities that are soluble in water. The acid catalyst can be recovered in the organic phase.
  • Examples of the pH adjuster used in Step 3 include acids such as hydrochloric acid, sulfuric acid, phosphoric acid, and acetic acid. These can be used alone or in combination of two or more.
  • step 3 After adjusting the pH in step 3, it is preferable to remove the aqueous phase after stirring, for example, for about 0.5 to 10 hours (preferably 1 to 5 hours). If the time until the aqueous phase is removed after pH adjustment is too short, the recovery rate of the oxo acid catalyst tends to decrease.
  • the temperature in the reaction system in step 3 is, for example, about 50 to 90 ° C. Even if the reaction temperature is set higher than the above range, advantageous effects such as promotion of work efficiency cannot be obtained, which tends to be uneconomical. On the other hand, when the reaction temperature is below the above range, it takes time to move the oxo acid catalyst, and the working efficiency tends to decrease.
  • the atmosphere in the reaction system in step 3 is not particularly limited as long as the reaction is not inhibited, and may be any of an air atmosphere, a nitrogen atmosphere, an argon atmosphere, and the like.
  • the method for recovering an oxo acid catalyst of the present invention 80% by weight or more (preferably 83% by weight or more, particularly preferably 85% by weight or more) of the total oxo acid catalyst used in the reaction by a simple operation of only pH adjustment and liquid separation operation. (% By weight or more) can be recovered and reused. Therefore, it is very advantageous economically and can reduce the environmental load due to the disposal of the oxo acid catalyst.
  • Steps 2 and 3 it is possible to recover an oxoacid catalyst having excellent activity without impurities that are soluble in water and impurities that are soluble in an organic solvent.
  • the target compound In an organic solvent two-phase system, when the organic compound is reused in a reaction for oxidizing with hydrogen peroxide, the target compound can be obtained with high yield and high selectivity.
  • an oxo acid catalyst used in a reaction in which an organic compound is oxidized with hydrogen peroxide in a water / organic solvent two-phase system is recovered by the oxo acid catalyst recovery method.
  • the organic compound is oxidized with hydrogen peroxide in the presence of an oxoacid catalyst to obtain a corresponding oxide.
  • An oxide obtained by oxidizing an organic compound with hydrogen peroxide exists in the organic phase.
  • the organic phase separated after the oxoacid catalyst has been transferred to the aqueous phase by adjusting the pH in the reaction system to 5.0 or higher, for example, concentration, distillation, extraction, chromatography, etc.
  • Oxide can be recovered by applying the separation means or a separation means combining these.
  • the oxo acid catalyst since the oxo acid catalyst is used in a highly dispersed state without being immobilized on a carrier or the like, it is possible to avoid a decrease in catalytic activity due to immobilization on the carrier or the like, and to have excellent catalytic action.
  • the oxide can be obtained with high yield.
  • the oxo acid catalyst and the reaction product can be separated without performing filtration treatment or adsorption treatment, it is possible to avoid a reduction in the oxide recovery rate due to the treatment, and to efficiently collect the oxide. can do.
  • an oxide of an organic compound for example, an epoxy compound
  • the amount of metallic tungsten is a value as pure tungsten.
  • Example 1 (Oxidation reaction: synthesis of 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate) In a 100 mL four-necked flask under a nitrogen atmosphere, 3-cyclohexenylmethyl 3′-cyclohexenylcarboxylate (hereinafter sometimes referred to as “CMCC”) (10.00 g, 45.4 mmol) at room temperature, 69.
  • CMCC 3-cyclohexenylmethyl 3′-cyclohexenylcarboxylate
  • trioctylmethylammonium chloride 0.296 g, 0.510 mmol
  • sodium tungstate dihydrate 0.834 g, 2.527 mmol
  • disodium hydrogenphosphate dodecahydrate 0.184 g, 0 .514 mmol
  • 85% phosphoric acid 0.262 g, 2.27 mmol
  • toluene 30.0 g
  • water 1.8 g
  • trioctylmethylammonium chloride 0.509 g, 0.879 mmol
  • toluene 25.5 g
  • 85% phosphoric acid 2.18 g
  • the pH was adjusted to 2.5, the temperature was raised to 80 ° C. with stirring, and then the mixture was stirred for 4 hours while maintaining 80 ° C. Thereafter, liquid separation was performed to recover an organic phase (25.9 g) and an aqueous phase (25.5 g).
  • the amount of metallic tungsten in the organic phase and the aqueous phase was confirmed by ICP emission analysis, it was found to be 0.388 g in the organic phase and 0.008 g in the aqueous phase. In the organic phase, 83% of the initial amount of metallic tungsten was recovered.
  • trioctylmethylammonium chloride 0.71 g, 0.811 mmol
  • toluene 22.7 g
  • 85% phosphoric acid 2.60 g
  • the pH of the inside was adjusted to 2.7, and the temperature was raised to 80 ° C. while stirring. Thereafter, the mixture was stirred for 4 hours while maintaining 80 ° C. Thereafter, liquid separation was performed to recover an organic phase (23.0 g) and an aqueous phase (28.9 g).
  • Example 2 (Oxidation reaction: synthesis of (3,4,3 ′, 4′-diepoxy) bicyclohexyl) In a 100 mL four-necked flask under nitrogen atmosphere, at room temperature, bicyclohexyl-3,3′-diene (10.00 g, 61.6 mmol), 69.6% trioctylmethylammonium chloride (0.397 g, 0.684 mmol). ), Sodium tungstate dihydrate (1.134 g, 3.438 mmol), disodium hydrogen phosphate dodecahydrate (0.246 g, 0.687 mmol), 85% phosphoric acid (0.358 g, 3.
  • trioctylmethylammonium chloride 0.728 g, 1.254 mmol
  • toluene 27.6 g
  • 85% phosphoric acid 2.70 g
  • the pH was adjusted to 3.1, the temperature was raised to 80 ° C. with stirring, and then the mixture was stirred for 4 hours while maintaining 80 ° C. Thereafter, liquid separation was performed to recover an organic phase (28.4 g) and an aqueous phase (35.8 g).
  • trioctylmethylammonium chloride (0.638 g, 1.099 mmol), toluene (24.1 g), and 85% phosphoric acid (2.70 g) were added to the recovered aqueous phase.
  • the pH was adjusted to 3.4, the temperature was raised to 80 ° C. with stirring, and then the mixture was stirred for 4 hours while maintaining 80 ° C. Thereafter, liquid separation was performed, and an organic phase (24.7 g) and an aqueous phase (40.2 g) were recovered.
  • the amount of metallic tungsten in the organic phase and the aqueous phase was confirmed by ICP emission analysis, 0.500 g was present in the organic phase and 0.011 g in the aqueous phase. 89% of the initial charge of metal tungsten was recovered in the organic phase.
  • trioctylmethylammonium chloride 0.583 g, 1.004 mmol
  • toluene 21.2 g
  • 85% phosphoric acid 2.85 g
  • the pH was adjusted to 2.5, the temperature was raised to 80 ° C. with stirring, and then the mixture was stirred for 4 hours while maintaining 80 ° C. Thereafter, liquid separation was performed to recover an organic phase (21.7 g) and an aqueous phase (32.3 g).
  • Example 3 (Oxidation reaction: synthesis of 1,2-epoxy-4-vinylcyclohexane)
  • 4-vinylcyclohexene (10.00 g, 92.4 mmol)
  • 69.6% trioctylmethylammonium chloride (0.305 g, 0.525 mmol
  • sodium tungstate at room temperature
  • Dihydrate 0.53 g, 2.585 mmol
  • disodium hydrogen phosphate dodecahydrate (0.183 g, 0.511 mmol
  • 85% phosphoric acid (0.270 g, 2.342 mmol
  • cyclohexane 30.0 g
  • water 1.8 g
  • trioctylmethylammonium chloride 0.581 g, 1.00 mmol
  • cyclohexane cyclohexane
  • 85% phosphoric acid 0.86 g
  • the pH was adjusted to 3.0, the temperature was raised to 60 ° C. with stirring, and then stirred for 2 hours while maintaining 60 ° C., oil precipitated. Thereafter, liquid separation was performed, and an organic phase (11.3 g), an aqueous phase (12.5 g), and an oil phase (1.8 g) were recovered. The amount of metallic tungsten in the organic phase, aqueous phase, and oil phase was confirmed by ICP emission analysis.
  • Example 4 (Oxidation reaction: synthesis of 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate) In a 100 mL four-necked flask under a nitrogen atmosphere, CMCC (10.00 g, 45.4 mmol), 1-n-cetylpyridinium chloride monohydrate (0.173 g, 0.508 mmol), sodium tungstate dihydrate at room temperature.
  • the target compound (3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate) was present in the organic phase (4.36 g of the target compound, conversion: 94.7%, selectivity: 40. 1%, yield: 38.0%).
  • the oxo acid catalyst recovery method of the present invention can separate the reaction product and the oxo acid catalyst by a simple method of only pH control and liquid separation operation, and does not require filtration treatment or adsorption treatment. Can be avoided, and the oxoacid catalyst can be efficiently recovered. Furthermore, the oxo acid catalyst can be purified and recovered by a simple method involving only pH control and liquid separation operation. Therefore, it is very advantageous economically, can reduce the burden on the environment, and can greatly contribute to green chemistry.
  • the catalyst immobilized on a carrier or the like usually has a reduced catalytic activity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Epoxy Compounds (AREA)

Abstract

 過酸化水素により有機化合物を酸化する反応に使用したオキソ酸触媒について、反応生成物の収率及び触媒の活性を損なうことなく、簡便且つ効率よく回収する方法、及び前記方法により回収されたオキソ酸触媒を使用して過酸化水素により有機化合物を酸化し、対応する酸化物を得る酸化物の製造方法を提供する。 本発明のオキソ酸触媒の回収方法は、水/有機溶媒二相系において、過酸化水素により有機化合物を酸化する反応に使用したオキソ酸触媒の回収方法であって、下記工程を有することを特徴とする。 工程1:反応系内のpHを5.0以上に調整することによりオキソ酸触媒を水相に移行させ、有機相を除去する

Description

オキソ酸触媒の回収方法、及び再利用方法
 本発明は、過酸化水素により有機化合物を酸化する反応で使用したオキソ酸触媒を簡便且つ効率よく分離・回収し、回収されたオキソ酸触媒を有機化合物の酸化反応に再利用する方法に関する。本願は、2013年4月23日に日本に出願した、特願2013-090355号の優先権を主張し、その内容をここに援用する。
 第1級アルコールの酸化によるアルデヒド及びカルボン酸の製造、第2級アルコールの酸化によるケトンの製造、不飽和化合物の酸化によるエポキシ化合物及びジオールの製造等の酸化反応には、酸化剤が利用される。
 前記酸化剤としては過酸化水素が、安価であり、腐食性を示さず、副生成物が水であり環境負荷を低減することができるため注目を集めている。しかし、酸化剤として過酸化水素を用いた場合、反応基質の転化率及び反応生成物の選択率が低い点が問題であった。そのため、通常、金属触媒が併用されるが、前記金属触媒は高価であることから、反応終了後に回収して再利用する方法が検討されてきた。
 特許文献1には、キレート樹脂を使用して金属触媒を吸着・分離する方法が記載されている。しかし、回収率の点で不十分であった。また、多量のキレート樹脂を要することからコストが嵩むこと、反応生成物もキレート樹脂に吸着するため、反応生成物の収率が低下することも問題であった。
 特許文献2~4には金属触媒を担体等に固定化した状態で使用し、反応終了後は濾過することにより分離・回収する方法が記載されている。しかし、回収率の点で不十分であった。また、担体等に固定化すると金属触媒が反応液に不溶となることから活性が低下することも問題であった。
特開平11-130762号公報 特開2001-17863号公報 特開2001-17864号公報 特開2002-59007号公報
 従って、本発明の目的は、過酸化水素により有機化合物を酸化する反応に使用したオキソ酸触媒について、反応生成物の収率及び触媒の活性を損なうことなく、簡便且つ効率よく回収する方法を提供することにある。
 本発明の他の目的は、前記方法により回収されたオキソ酸触媒を使用して過酸化水素により有機化合物を酸化し、対応する酸化物を得る酸化物の製造方法を提供することにある。
 本発明者等は上記課題を解決するため鋭意検討した結果、水/有機溶媒二相系において、反応系内のpHを調整することによりオキソ酸触媒を有機相から水相へ、又は水相から有機相へ移動させることができ、有機相に含まれる反応生成物と容易に分離してオキソ酸触媒を回収することができること、更に、水相/有機相間においてオキソ酸触媒を任意に移動させることにより反応系内に存在する不純物(有機溶媒に溶解性を示す不純物、及び水に溶解性を示す不純物)を除去することができ、オキソ酸触媒を精製して回収することができること、回収されたオキソ酸触媒は優れた触媒活性を有し、有機化合物の酸化反応に再利用することができること見いだした。本発明はこれらの知見に基づいて完成させたものである。
 すなわち、本発明は、水/有機溶媒二相系において、過酸化水素により有機化合物を酸化する反応に使用したオキソ酸触媒の回収方法であって、下記工程を有することを特徴とするオキソ酸触媒の回収方法を提供する。
 工程1:反応系内のpHを5.0以上に調整することによりオキソ酸触媒を水相に移行させ、有機相を除去する
 本発明は、また、更に下記工程を有する前記のオキソ酸触媒の回収方法を提供する。
 工程2:有機溶媒を添加して、水/有機溶媒二相系とする
 工程3:反応系内のpHを5.0未満に調整し、相間移動触媒を添加することによりオキソ酸触媒を有機相に移行させ、水相を除去する
 本発明は、また、オキソ酸触媒が、タングステン、マンガン、モリブデン、バナジウム、ニオブ、タンタル、クロム、及びレニウムから選択される少なくとも1種の金属原子を含有するオキソ酸、又はその塩である前記のオキソ酸触媒の回収方法を提供する。
 本発明は、また、水/有機溶媒二相系において、過酸化水素により有機化合物を酸化する反応に使用したオキソ酸触媒を前記のオキソ酸触媒の回収方法によって回収し、回収されたオキソ酸触媒の存在下で有機化合物を過酸化水素により酸化して対応する酸化物を得る酸化物の製造方法を提供する。
 すなわち、本発明は以下に関する。
[1] 水/有機溶媒二相系において、過酸化水素により有機化合物を酸化する反応に使用したオキソ酸触媒の回収方法であって、下記工程を有することを特徴とするオキソ酸触媒の回収方法。
 工程1:反応系内のpHを5.0以上に調整することによりオキソ酸触媒を水相に移行させ、有機相を除去する
[2] 更に下記工程を有する[1]に記載のオキソ酸触媒の回収方法。
 工程2:有機溶媒を添加して、水/有機溶媒二相系とする
 工程3:反応系内のpHを5.0未満に調整し、相間移動触媒を添加することによりオキソ酸触媒を有機相に移行させ、水相を除去する
[3] オキソ酸触媒が、タングステン、マンガン、モリブデン、バナジウム、ニオブ、タンタル、クロム、及びレニウムから選択される少なくとも1種の金属原子を含有するオキソ酸、又はその塩である[1]又は[2]に記載のオキソ酸触媒の回収方法。
[4] オキソ酸触媒が、タングステン酸、マンガン酸、モリブデン酸、バナジン酸、タングストモリブデン酸、バナドモリブデン酸、バナドタングステン酸、マンガンタングステン酸、コバルトタングステン酸、マンガンモリブデンタングステン酸、リンタングステン酸、リンマンガン酸、リンモリブデン酸、リンバナジン酸、ケイタングステン酸、ケイモリブデン酸、ヒ素タングステン酸、ヒ素モリブデン酸、リンタングストモリブデン酸、リンバナドモリブデン酸、及びケイタングストモリブデン酸から選択される少なくとも1種の化合物、又はその塩である[1]又は[2]に記載のオキソ酸触媒の回収方法。
[5] オキソ酸触媒が、金属原子を含有するオキソ酸、又はそのオニウム塩、アルカリ金属塩、アルカリ土類金属塩、若しくは遷移金属塩である[1]~[4]の何れか1つに記載のオキソ酸触媒の回収方法。
[6] 相間移動触媒が、下記式(1)
Figure JPOXMLDOC01-appb-C000001
(式中、R1~R4は同一又は異なって置換基を有していてもよい炭化水素基を示す。R1~R4は、選択される2又は3が互いに結合して、窒素カチオン(N+)と共に環を形成していてもよい)
で表される第4級アンモニウム塩である[2]~[5]の何れか1つに記載のオキソ酸触媒の回収方法。
[7] 有機化合物が、炭素-炭素二重結合を有する直鎖又は分岐鎖状の脂肪族炭化水素、シクロアルケン環を含有する化合物、及びこれらが連結基を介して若しくは連結基を介することなく結合した化合物である[1]~[6]の何れか1つに記載のオキソ酸触媒の回収方法。
[8]有機化合物が、下記式(a-1)
Figure JPOXMLDOC01-appb-C000002
(式(a-1)中、R5は水素原子又はアルキル基を示し、R6は水素原子、アルキル基、アルケニル基、ヒドロキシル基、アルコキシ基、カルボキシル基、又はアルコキシカルボニル基を示す)
で表される化合物及び/又は下記式(a-2)
Figure JPOXMLDOC01-appb-C000003
(式(a-2)中、R5は水素原子又はアルキル基を示し、R7は単結合又は直鎖若しくは分岐鎖状アルキレン基を示す。p及びqは、同一又は異なって、0又は1以上の整数である)
で表される化合物である[1]~[6]の何れか1つに記載のオキソ酸触媒の回収方法。
[9] 工程1においてpH調整後、0.5~20時間経過してから有機相を除去する[1]~[8]の何れか1つに記載のオキソ酸触媒の回収方法。
[10] 工程1において反応系内の温度を30~70℃に調整する[1]~[9]の何れか1つに記載のオキソ酸触媒の回収方法。
[11] 工程3においてpH調整後、0.5~10時間経過してから水相を除去する[2]~[10]の何れか1つに記載のオキソ酸触媒の回収方法。
[12] 工程3において反応系内の温度を50~90℃に調整する[2]~[11]の何れか1つに記載のオキソ酸触媒の回収方法。
[13] 反応に使用した全オキソ酸触媒の80重量%以上が回収される[1]~[12]の何れか1つに記載のオキソ酸触媒の回収方法。
[14] 水/有機溶媒二相系において、過酸化水素により有機化合物を酸化する反応に使用したオキソ酸触媒を[1]~[13]の何れか1つに記載のオキソ酸触媒の回収方法によって回収し、回収されたオキソ酸触媒の存在下で有機化合物を過酸化水素により酸化して対応する酸化物を得る酸化物の製造方法。
 本発明のオキソ酸触媒の回収方法は上記構成を有するため、pH制御と分液操作のみの簡便な方法で反応生成物とオキソ酸触媒を分離することができ、濾過処理や吸着処理を施す必要がなく、前記処理に伴う回収率の低下を回避することができ、オキソ酸触媒を効率よく回収することができる。更に、pH制御と分液操作のみの簡便な方法でオキソ酸触媒を精製して回収することもできる。そのため、経済的に非常に有利であると共に、環境への負荷を低減することができ、グリーンケミストリーに大きく貢献がすることが可能である。更に、通常、担体等に固定化された触媒は触媒活性が低下するが、本発明においてはオキソ酸触媒を担体等に固定化する必要がないので担体等への固定化に伴う触媒活性の低下を防止することができ、触媒活性を高く維持することができる。
 (酸化反応)
 本発明の酸化反応は、水/有機溶媒二相系において、オキソ酸触媒の存在下で過酸化水素により有機化合物を酸化する反応である。
 (オキソ酸触媒)
 本発明のオキソ酸触媒は、過酸化水素により有機化合物を酸化する反応を触媒する化合物である。本発明においては、なかでも、過酸化水素を反応系内に添加した際、水相側への分配率が高い点で、金属原子含有オキソ酸、又はその塩を使用することが好ましい。前記オキソ酸は、多核錯体の構造(例えば、ケギン型、ドーソン型等)を有するポリ酸であってもよい。オキソ酸触媒は1種を単独で、又は2種以上を組み合わせて使用することができる。
 前記金属原子含有オキソ酸としては、タングステン(W)、マンガン(Mn)、モリブデン(Mo)、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)、クロム(Cr)、及びレニウム(Re)から選択される少なくとも1種の金属原子を含有するオキソ酸が好ましく、例えば、タングステン酸、マンガン酸、モリブデン酸、バナジン酸、タングストモリブデン酸、バナドモリブデン酸、バナドタングステン酸、マンガンタングステン酸、コバルトタングステン酸、マンガンモリブデンタングステン酸等を好適に使用することができる。
 上記金属原子含有オキソ酸の塩としては、例えば、上記例示の金属原子含有オキソ酸のオニウム塩、アルカリ金属塩、アルカリ土類金属塩、遷移金属塩等を挙げることができる。
 また、前記金属原子含有オキソ酸はそれ以外のオキソ酸(以後、「他のオキソ酸」と称する場合がある)又はその塩(オニウム塩、アルカリ金属塩、アルカリ土類金属塩、遷移金属塩等)と併用してもよい。他のオキソ酸又はその塩としては、例えば、リン原子(P)、ケイ素原子(Si)、又はヒ素原子(As)含有オキソ酸又はその塩等を挙げることができる。
 上記リン原子含有オキソ酸又はその塩としては、例えば、リン酸、ポリリン酸(ピロリン酸、メタリン酸を含む)、(ポリ)リン酸塩[例えば、リン酸カリウム、リン酸ナトリウム等の(ポリ)リン酸アルカリ金属塩;リン酸カルシウム等の(ポリ)リン酸アルカリ土類金属塩;リン酸水素カリウム、リン酸水素ナトリウム等の(ポリ)リン酸水素アルカリ金属塩;リン酸水素カルシウム等の(ポリ)リン酸水素アルカリ土類金属塩;(ポリ)リン酸アルミニウム塩(リン酸ピロリン酸アルミニウム複塩を含む)等]等を挙げることができる。なお、上記リン原子を含む化合物には、五酸化二リン等の上記リン原子を含む化合物を合成する材料(又は原料)も含まれる。上記リン原子を含む化合物は1種を単独で、又は2種以上を組み合わせて使用することができる。
 また、上記ケイ素原子含有オキソ酸又はその塩としては、例えば、ケイ酸(オルトケイ酸、メタケイ酸等)、ヒ素原子含有オキソ酸又はその塩としては、例えば、ヒ酸、亜ヒ酸等を挙げることができる。
 上記金属原子含有オキソ酸は上記他のオキソ酸と縮合体を形成していても良い。前記縮合体としては、例えば、リンタングステン酸、リンマンガン酸、リンモリブデン酸、リンバナジン酸、ケイタングステン酸、ケイモリブデン酸、ヒ素タングステン酸、ヒ素モリブデン酸、リンタングストモリブデン酸、リンバナドモリブデン酸、ケイタングストモリブデン酸等を挙げることができる。前記縮合体は、多核錯体の構造(例えば、ケギン型、ドーソン型等)を有するヘテロポリ酸であってもよい。
 本発明のオキソ酸触媒としては、なかでも、タングステン、マンガン、及びバナジウムからなる群より選択される少なくとも1種の金属原子含有オキソ酸又はその塩と、リン原子含有オキソ酸又はその塩を組み合わせて使用することが好ましい。
 (相間移動触媒)
 本発明においては上記オキソ酸触媒と共に相間移動触媒を使用することが好ましい。相間移動触媒を併用することにより触媒効率を向上させることができる。相間移動触媒としては、周知慣用の第4級アンモニウム塩を使用することができる。
 前記第4級アンモニウム塩としては、例えば、下記式(1)で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000004
 式(1)中、R1~R4は同一又は異なって炭化水素基を示す。前記炭化水素基としては、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、及びこれらが2以上結合した基が挙げられる。前記炭化水素基は置換基を有していてもよい。また、R1~R4は、選択される2又は3が互いに結合して、窒素カチオン(N+)と共に環を形成していてもよい。
 前記脂肪族炭化水素基としては飽和脂肪族炭化水素基が好ましく、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、ヘキシル、オクチル、イソオクチル、デシル、ドデシル、オクタデシル(=ステアリル)基等の直鎖状又は分岐鎖状のC1-20アルキル基等を挙げることができる。
 前記脂環式炭化水素基としては、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロドデシル基等のC3-12シクロアルキル基等を挙げることができる。
 前記芳香族炭化水素基としては、例えば、フェニル、ナフチル基等のC6-14アリール基(特に、C6-10アリール基)等を挙げることができる。
 また、脂肪族炭化水素基と脂環式炭化水素基とが結合した基としては、例えば、シクロへキシルメチル基等のC3-12シクロアルキル置換C1-20アルキル基、メチルシクロヘキシル基等のC1-20アルキル置換C3-12シクロアルキル基等を挙げることができる。脂肪族炭化水素基と芳香族炭化水素基とが結合した基としては、例えば、ベンジル基、フェネチル基等のC7-18アラルキル基(特に、C7-10アラルキル基)、トリル基等のC1-4アルキル置換アリール基等を挙げることができる。
 前記R1~R4における炭化水素基が有していてもよい置換基としては、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子等)、ヒドロキシル基、C1-6アルコキシ基(メトキシ、エトキシ、プロポキシ、イソプロピルオキシ、ブトキシ、イソブチルオキシ基等)、芳香環にC1-4アルキル基、ハロゲン原子、C1-4アルコキシ基等の置換基を有していてもよいC6-14アリールオキシ基(フェノキシ、トリルオキシ、ナフチルオキシ基等)、C7-18アラルキルオキシ基(ベンジルオキシ、フェネチルオキシ基等)、C1-12アシルオキシ基(アセチルオキシ、プロピオニルオキシ、ベンゾイルオキシ基等)、カルボキシル基、C1-6アルコキシ-カルボニル基(メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、ブトキシカルボニル基等)、C6-14アリールオキシ-カルボニル基(フェノキシカルボニル、トリルオキシカルボニル、ナフチルオキシカルボニル基等)、C7-18アラルキルオキシ-カルボニル基(ベンジルオキシカルボニル基等)、アミノ基、置換アミノ基(メチルアミノ、エチルアミノ、ジメチルアミノ、ジエチルアミノ基等のモノ又はジ-C1-6アルキルアミノ基;アセチルアミノ、プロピオニルアミノ、ベンゾイルアミノ基等のC1-11アシルアミノ基等)、エポキシ基含有基(グリシジルオキシ基等)、オキセタニル基含有基(エチルオキセタニルオキシ基等)、アシル基(アセチル、プロピオニル、ベンゾイル基等)、オキソ基、及びこれらの2以上が必要に応じてC1-6アルキレン基を介して結合した基等を挙げることができる。
 前記R1~R4から選択される2以上が互いに結合して、窒素カチオン(N+)と共に形成する環としては、例えば、ピロール環、ピロリジン環、ピリジン環、ピペリジン環等を挙げることができる。また、前記環は置換基を有していてもよく、置換基としては前記R1~R4における炭化水素基が有していてもよい置換基と同様の例を挙げることができる。
 式(1)中、X-は、式(1)で表される第四級アンモニウム塩におけるアンモニウムカチオン(第四級アンモニウムイオン)のカウンターアニオン(対イオン;一価のアニオン)であり、例えば、ハロゲン化物イオン(フッ化物イオン、塩化物イオン、ヨウ化物イオン等)、硫酸水素イオン、硝酸イオン、炭酸水素イオン、過塩素酸イオン、テトラフルオロボレートイオン、ヘキサフルオロホスファイトイオン、メタンスルホン酸イオン、トリフルオロメタンスルホン酸イオン、トルエンスルホン酸イオン、蟻酸イオン、酢酸イオン、トリフルオロ酢酸イオン、プロピオン酸イオン、安息香酸イオン、水酸化物イオン、アルコキシドイオン(メトキサイドイオン、エトキサイドイオン等)等のブレンステッド酸の共役塩基等を挙げることができる。本発明においては、なかでも、ハロゲン化物イオンが好ましい。
 前記第4級アンモニウム塩の具体例としては、塩化トリオクチルメチルアンモニウム、塩化トリオクチルエチルアンモニウム、塩化ジラウリルジメチルアンモニウム、塩化ラウリルトリメチルアンモニウム、塩化ステアリルトリメチルアンモニウム、塩化ラウリルジメチルベンジルアンモニウム、塩化ステアリルジメチルベンジルアンモニウム、塩化ジデシルジメチルアンモニウム、塩化テトラブチルアンモニウム、塩化ベンジルトリメチルアンモニウム、塩化ベンジルトリエチルアンモニウム、臭化トリオクチルメチルアンモニウム、臭化トリオクチルエチルアンモニウム、臭化ジラウリルジメチルアンモニウム、臭化ラウリルトリメチルアンモニウム、臭化ステアリルトリメチルアンモニウム、臭化ラウリルジメチルベンジルアンモニウム、臭化ステアリルジメチルベンジルアンモニウム、臭化ジデシルジメチルアンモニウム、臭化テトラブチルアンモニウム、臭化ベンジルトリメチルアンモニウム、臭化ベンジルトリエチルアンモニウム、ヨウ化トリオクチルメチルアンモニウム、ヨウ化トリオクチルエチルアンモニウム、ヨウ化ジラウリルジメチルアンモニウム、ヨウ化ラウリルトリメチルアンモニウム、ヨウ化ステアリルトリメチルアンモニウム、ヨウ化ラウリルジメチルベンジルアンモニウム、ヨウ化ステアリルジメチルベンジルアンモニウム、ヨウ化ジデシルジメチルアンモニウム、ヨウ化テトラブチルアンモニウム、ヨウ化ベンジルトリメチルアンモニウム、ヨウ化ベンジルトリエチルアンモニウム、リン酸水素化トリオクチルメチルアンモニウム、リン酸水素化トリオクチルエチルアンモニウム、リン酸水素化ジラウリルジメチルアンモニウム、リン酸水素化ラウリルトリメチルアンモニウム、リン酸水素化ステアリルトリメチルアンモニウム、リン酸水素化ラウリルジメチルベンジルアンモニウム、リン酸水素化ステアリルジメチルベンジルアンモニウム、リン酸水素化ジデシルジメチルアンモニウム、リン酸水素化テトラブチルアンモニウム、リン酸水素化ベンジルトリメチルアンモニウム、リン酸水素化ベンジルトリエチルアンモニウム、硫酸水素化トリオクチルメチルアンモニウム、硫酸水素化トリオクチルエチルアンモニウム、硫酸水素化ジラウリルジメチルアンモニウム、硫酸水素化ラウリルトリメチルアンモニウム、硫酸水素化ステアリルトリメチルアンモニウム、硫酸水素化ラウリルジメチルベンジルアンモニウム、硫酸水素化ステアリルジメチルベンジルアンモニウム、硫酸水素化ジデシルジメチルアンモニウム、硫酸水素化テトラブチルアンモニウム、硫酸水素化ベンジルトリメチルアンモニウム、硫酸水素化ベンジルトリエチルアンモニウム、1-メチルピリジニウムクロライド、1-メチルピリジニウムブロマイド、1-エチルピリジニウムクロライド、1-エチルピリジニウムブロマイド、1-n-ブチルピリジニウムクロライド、1-n-ブチルピリジニウムブロマイド、1-n-ヘキシルピリジニウムクロライド、1-n-ヘキシルピリジニウムブロマイド、1-n-オクチルピリジニウムブロマイド、1-n-ドデシルピリジニウムクロライド、1-ドデシル(2-メチルピリジニウム)クロライド、1-ドデシル(3-メチルピリジニウム)クロライド、1-ドデシル(4-メチルピリジニウム)クロライド、1-n-ドデシルピリジニウムブロマイド、1-n-セチルピリジニウムクロライド、1-n-セチルピリジニウムブロマイド、1-フェニルピリジニウムクロライド、1-フェニルピリジニウムブロマイド、1-ベンジルピリジニウムクロライド、1-ベンジルピリジニウムブロマイド等を挙げることができる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。
 相間移動触媒の使用量としては、上記オキソ酸触媒1モル(前駆化合物の場合はオキソ酸触媒1モルに相当する量)に対して、例えば0.01~2.0モル程度、好ましくは0.05~1.0モル、特に好ましくは0.1~0.5モルである。
 (過酸化水素)
 酸化剤として使用する過酸化水素(又は過酸化水素水溶液)は、慣用の方法で合成してもよく、市販品を用いてもよい。過酸化水素水溶液を使用する場合の過酸化水素の濃度は取り扱い性等の観点から、5~80重量%が好ましく、特に好ましくは20~70重量%、最も好ましくは25~65重量%である。
 上記過酸化水素(実質的に添加する過酸化水素)の使用量は、特に限定されないが、下記炭素-炭素二重結合を有する化合物に含まれる二重結合1モルに対して、例えば0.1~10モル程度、好ましくは0.2~5モル、特に好ましくは0.5~2モルである。
 (有機化合物)
 本発明の酸化反応において使用される有機化合物としては、過酸化水素により酸化される化合物であればよく、例えば、炭素-炭素二重結合を有する化合物(以下、「オレフィン」と称する場合がある)、アルコール、ケトン等を挙げることができる。オレフィンを過酸化水素で酸化すると、対応する酸化物(又は反応生成物)として、通常、炭素-炭素二重結合がエポキシ化され、対応するエポキシ化合物が生成する。また、条件によっては、ジオールが生成する。第1級アルコールを過酸化水素で酸化すると、アルデヒド、カルボン酸等が生成する。第2級アルコールを過酸化水素で酸化すると、ケトン、カルボン酸等が生成する。また、ケトンを過酸化水素で酸化すると、バイヤービリガー酸化が進行して、エステル(鎖状ケトンの酸化の場合)、ラクトン(環状ケトンの酸化の場合)が生成する。過酸化水素を用いた酸化反応のうち、最も代表的な酸化反応は、オレフィンの酸化反応(特に、エポキシ化反応)である。以下、オレフィンのエポキシ化(オレフィンの炭素-炭素二重結合のエポキシ化)反応について詳細に説明するが、本発明のオキソ酸触媒の回収方法は当該反応に限らず、上記のいずれの酸化反応においても使用することができる。
 前記オレフィンは、分子内(1分子内)に少なくとも1つの炭素-炭素二重結合を有する化合物であり、例えば、(i)炭素-炭素二重結合を有する直鎖又は分岐鎖状の脂肪族炭化水素、(ii)シクロアルケン環(シクロアルカジエン環等のシクロアルカポリエン環も含む)を含有する化合物、及び(iii)これらの1種又は2種以上が、連結基を介して若しくは介することなく結合した化合物等が含まれる。これらの化合物は、置換基を有していてもよい。
 (i)炭素-炭素二重結合を有する直鎖又は分岐鎖状の脂肪族炭化水素としては、例えば、エチレン、プロペン、1-ブテン、2-ブテン、1-ペンテン、2-ペンテン、1-ヘキセン、2-ヘキセン、2,3-ジメチル-2-ブテン、3-ヘキセン、1-へプテン、2-へプテン、1-オクテン、2-オクテン、3-オクテン、2-メチル-2-ブテン、1-ノネン、2-ノネン、デセン、ウンデセン、ドデセン、テトラデセン、ヘキサデセン、オクタデセン等のC2-40アルケン(好ましくはC2-30アルケン、特に好ましくはC2-20アルケン);ブタジエン、イソプレン、1,5-ヘキサンジエン、1,6-ヘプタンジエン、1,7-オクタジエン、デカジエン、ウンデカジエン、ドデカジエン等のC4-40アルカジエン(好ましくはC4-30アルカジエン、特に好ましくはC4-20アルカジエン);ウンデカトリエン、ドデカトリエン等のC6-30アルカトリエン(好ましくはC6-20アルカトリエン)等を挙げることができる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。
 これらの炭素-炭素二重結合を有する直鎖又は分岐鎖状の脂肪族炭化水素は、例えば、芳香族炭化水素基(フェニル基等のC6-10アリール基等)、ヒドロキシル基、ハロゲン原子(フッ素原子、塩素原子、臭素原子等)、メルカプト基、アルコキシ基(メトキシ、エトキシ、プロポキシ、ブトキシ、t-ブトキシ基等のC1-10アルコキシ基等)、ハロC1-6アルコキシ基、アルキルチオ基(メチルチオ、エチルチオ基等のC1-10アルキルチオ基等)、カルボキシル基、アルコキシカルボニル基(メトキシカルボニル、エトキシカルボニル基等のC1-10アルコキシカルボニル基)、アシル基(アセチル、プロピオニル、トリフルオロアセチル基等のC2-10アシル基等)、アシルオキシ基(アセトキシ、プロピオニルオキシ、トリフルオロアセトキシ基等のC1-10アシルオキシ基等)、アミノ基、置換アミノ基(メチルアミノ、エチルアミノ、ジメチルアミノ、ジエチルアミノ基等のモノ又はジ-C1-6アルキルアミノ基;アセチルアミノ、プロピオニルアミノ、ベンゾイルアミノ基等のC1-11アシルアミノ基)、ニトロ基、シアノ基、複素環基(ピリジル基等の窒素原子含有複素環基等)等の置換基を有してもよい。なお、置換基の数及び置換位置は特に限定されない。
 置換基を有する上記直鎖又は分岐鎖状脂肪族炭化水素としては、例えば、フェニルエチレン(=スチレン)、1-フェニルプロペン、2-フェニル-1-ブテン、1-フェニル-1,3-ブタジエン、1-フェニル-1,3-ペンタジエン等を挙げることができる。
 (ii)シクロアルケン環(シクロアルカジエン環等のシクロアルカポリエン環も含む)を含有する化合物としては、例えば、シクロプロペン、シクロブテン、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテン、シクロノネン、シクロデセン、シクロウンデセン、シクロドデセン等のC3-20シクロアルケン(好ましくはC4-14シクロアルケン、特に好ましくはC5-10シクロアルケン、最も好ましくはC5-6シクロアルケン);シクロペンタジエン、1,3-シクロヘキサジエン、1,4-シクロヘキサジエン、1,3-シクロヘプタジエン、1,4-シクロヘプタジエン、1,5-シクロオクタジエン、シクロデカジエン等のC5-20シクロアルカジエン(好ましくはC5-14シクロアルカジエン、特に好ましくはC5-10シクロアルカジエン);シクロオクタトリエン等のC7-20シクロアルカトリエン等を挙げることができる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。
 これらのシクロアルケン環は置換基を有していてもよい。前記置換基としては、炭素-炭素二重結合を有する直鎖又は分岐鎖状の脂肪族炭化水素が有していてもよい置換基の他、アルキル基(メチル、エチル、イソプロピル、ブチル、イソブチル、t-ブチル基等のC1-10アルキル基等)、ハロC1-10アルキル基、アルケニル基(ビニル、アリル、プロペニル、イソプロペニル、ブテニル基等のC2-10アルケニル基等)等を挙げることができる。なお、置換基の数及び置換位置は特に限定されない。
 前記連結基としては、例えば、アルキレン基[エチレン、プロピレン、トリメチレン、テトラメチレン、2-メチルブタン-1,3-ジイル基等のC1-20アルキレン基等;1,4-シクロヘキシレン基等のC4-10シクロアルキレン基等(アルキリデン基も含む)]、アリーレン基(フェニレン基、ナフタレンジイル基等のC6-10アリーレン基等)、カルボニル結合、エステル結合、アミド結合、エーテル結合、及びウレタン結合から選択される少なくとも1種で構成される基等を挙げることができる。
 上記オレフィンの炭素数(置換基及び/又は連結基を含む場合には、置換基及び/又は連結基(置換基と連結基の両方を含む場合には、置換基及び連結基)に含まれる炭素数を合算した個数)は、例えば2~40個程度、好ましくは6個以上(例えば、6~30個)、更に好ましくは6~25個、特に好ましくは6~20個、最も好ましくは7~20個である。
 代表的な上記オレフィンには、下記式(a-1)
Figure JPOXMLDOC01-appb-C000005
(式(a-1)中、R5は水素原子又はアルキル基を示し、R6は水素原子、アルキル基、アルケニル基、ヒドロキシル基、アルコキシ基、カルボキシル基、又はアルコキシカルボニル基を示す)
で表される化合物や、下記式(a-2)
Figure JPOXMLDOC01-appb-C000006
(式(a-2)中、R5は水素原子又はアルキル基を示し、R7は単結合又は直鎖若しくは分岐鎖状アルキレン基を示す。p及びqは、同一又は異なって、0又は1以上の整数である)
で表される化合物等が含まれる。なお、p及びqが0であり、R7が単結合である場合には、上記式(a-2)で表される化合物は、2つのシクロヘキセン環が単結合で結合した構造を有する。
 R5、R6で示されるアルキル基としては、メチル、エチル、ブチル、イソブチル基等の直鎖状又は分岐鎖状のC1-4アルキル基等を挙げることができる。
 R6で示されるアルケニル基としては、例えば、ビニル、アリル、プロペニル、イソプロペニル、ブテニル基等のC2-10アルケニル基等を挙げることができる。アルコキシ基としては、例えば、メトキシ、エトキシ、プロポキシ、ブトキシ、t-ブトキシ基等のC1-10アルコキシ基等を挙げることができる。アルコキシカルボニル基としては、例えば、メトキシカルボニル、エトキシカルボニル基等のC1-10アルコキシカルボニル基等を挙げることができる。
 R7で示される直鎖又は分岐鎖状アルキレン基(アルキリデン基も含む)としては、例えば、メチレン、エチレン、プロピレン、2,2-ジメチルプロパン-1,3-ジイル基等の直鎖又は分岐鎖状C2-20アルキレン基(又はアルキリデン基)等を挙げることができる。
 また、p及びqは、同一又は異なって、0又は1以上の整数であり、なかでもp、qは1であることが好ましい。
 上記式(a-1)及び(a-2)で表される化合物としては、下記式(b-1)~(b-9)で表される化合物等を挙げることができる。
Figure JPOXMLDOC01-appb-C000007
 例えば、有機化合物として上記式(b-3)で表される化合物を用いると、下記式(c-3-1)で表されるジエポキシ体、及び下記式(c-3-2)で表されるモノエポキシ体が得られる。
 有機化合物として上記式(b-6)で表される化合物を用いると、下記式(c-6)で表されるエポキシ化合物(3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート)が得られる。
 有機化合物として上記式(b-8)で表される化合物を用いると、下記式(c-8)で表されるエポキシ化合物が得られる。
 有機化合物として上記式(b-9)で表される化合物を用いると、下記式(c-9)で表されるエポキシ化合物が得られる。
Figure JPOXMLDOC01-appb-C000008
 本発明の酸化反応は、水/有機溶媒二相系で行われる。前記有機溶媒は、水性溶媒と分液可能である限り特に限定されず、被酸化物である有機化合物(オレフィン等)の種類に応じて適宜選択でき、例えば、シクロC3-10アルカノール類(シクロプロパノール、シクロヘキサノール等)、鎖状エーテル類(ジメチルエーテル、ジエチルエーテル等)、ケトン類(メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等)、エステル類(酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル等の鎖状エステル)、炭化水素類(ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素類;シクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素類;トルエン、キシレン、エチルベンゼン等の芳香族炭化水素類等)、ハロゲン化炭化水素類(クロロホルム、塩化メチレン、クロロベンゼン等)、フェノール類等を挙げることができる。上記有機溶媒は1種を単独で、又は2種以上を組み合わせて使用することができる。これらの有機溶媒のうち、反応効率の観点から、芳香族炭化水素類、ハロゲン化炭化水素類、脂環式炭化水素類が好ましく、特に、クロロベンゼン、トルエン、シクロヘキサンが好ましい。
 水性溶媒と有機溶媒との割合は、前者/後者(重量比)が、例えば0.005~2.0程度、好ましくは0.01~1.0、特に好ましくは0.03~0.75である。また、水性溶媒の使用量は、有機化合物(オレフィン等)1重量部に対して、例えば0.01~10重量部程度、好ましくは0.05~5重量部、特に好ましくは0.1~2重量部である。
 本発明の酸化反応は、例えば、有機化合物、相間移動触媒、オキソ酸触媒、及び溶媒を仕込んだ反応容器に過酸化水素を滴下することにより行うことができる。反応時間(若しくは、過酸化水素の滴下時間)は、例えば、0.1~12時間程度である。滴下終了後は、例えば、0.5~20時間程度熟成期間を設けてもよい。
 酸化反応中は反応系内のpHを、例えば3.0~7.5程度(好ましくは3.5~7.0)に調整することが好ましい。pHの調整には、例えば、リン酸水素二ナトリウム十二水和物、リン酸二水素ナトリウム二水和物等のリン酸塩等を、1種を単独で、又は2種以上を組み合わせて使用することができる。
 反応温度(又は過酸化水素滴下時の反応系内の温度)は、例えば30~70℃程度である。また、上記反応は、常圧下で行ってもよく、減圧下又は加圧下で行うこともできる。反応雰囲気は反応を阻害しない限り特に限定されず、例えば、空気雰囲気、窒素雰囲気、アルゴン雰囲気等の何れであってもよい。
 (オキソ酸触媒の回収方法)
 本発明のオキソ酸触媒の回収方法は、水/有機溶媒二相系において、過酸化水素により有機化合物を酸化する反応に使用したオキソ酸触媒の回収方法であって、下記工程を有することを特徴とする。
 工程1:反応系内のpHを5.0以上に調整することによりオキソ酸触媒を水相に移行させ、有機相を除去する
 pHの調整には、例えば、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化テトラメチルアンモニウム等の強塩基を使用することができる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。
 基質によって最適な反応条件は異なり、最適pHも異なるが、反応系内のpHが5未満ではオキソ酸触媒は水相と有機相の両方に存在するが、反応系内のpHを5.0以上(好ましくは5.0~13.0、特に好ましくは9.0~12.0)に調整することによりオキソ酸触媒を水溶性の塩に変換することができ、反応系内に存在する全オキソ酸触媒の85重量%以上(好ましくは90重量%以上)を水相へ移行させることができる。
 pH調整後、例えば0.5~20時間程度(好ましくは1~10時間)撹拌し、その後有機相を除去することが、反応系内に存在する全オキソ酸触媒の85重量%以上(好ましくは90重量%以上)を水相に回収することができる点で好ましい。pH調整後、有機相を除去するまでの時間が短すぎると、オキソ酸触媒の回収率が低下する傾向がある。
 また、オキソ酸触媒を水相に移行させる際の反応系内の温度は、例えば30~70℃程度である。反応温度が上記範囲を上回ると、反応生成物が分解する傾向がある。一方、反応温度が上記範囲を下回ると、オキソ酸触媒の移行に時間がかかり、作業効率が低下する傾向がある。オキソ酸触媒を水相に移行させる際の反応系内の雰囲気は反応を阻害しない限り特に限定されず、例えば、空気雰囲気、窒素雰囲気、アルゴン雰囲気等の何れであってもよい。
 反応生成物は反応系内のpHの変化に係わらず有機相に存在するため、反応系内のpHを上記範囲に調整してオキソ酸触媒を水相に移行させた後は、有機相を除去することによりオキソ酸触媒と反応生成物を分離することができ、水相にオキソ酸触媒を回収することができる。また、有機相を除去することにより、有機溶媒に溶解性を示す不純物を反応系内から除去することができ、有機溶媒に溶解性を示す不純物を含まない、精製されたオキソ酸触媒を水相に回収することができる。
 また、本発明のオキソ酸触媒の回収方法は、更に下記工程を有することが、有機溶媒に溶解性を示す不純物及び水に溶解性を示す不純物を含まない、精製されたオキソ酸触媒を回収することができる点で好ましい。
 工程2:有機溶媒を添加して、水/有機溶媒二相系とする
 工程3:反応系内のpHを5.0未満に調整し、相間移動触媒を添加することによりオキソ酸触媒を有機相に移行させ、水相を除去する
 工程2では、分液して除去した有機相に相等しい有機溶媒を添加して、水/有機溶媒二相系とすることが好ましい。
 工程3では、反応系内のpHを5.0未満(好ましくは4.8以下、より好ましくは4.8未満、特に好ましくは2.0~4.5)に調整し、相間移動触媒を添加することによりオキソ酸触媒を有機相に移行させ、水相を除去する。水相を除去することにより、水に溶解性を示す不純物を反応系内から除去することができ、有機溶媒に溶解性を示す不純物及び水に溶解性を示す不純物を含まない、精製されたオキソ酸触媒を有機相に回収することができる。
 工程3において使用するpH調整剤としては、例えば、塩酸、硫酸、リン酸、酢酸等の酸を使用することができる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。
 工程3におけるpH調整後、例えば0.5~10時間程度(好ましくは1~5時間)撹拌した後に、水相を除去することが好ましい。pH調整後、水相を除去するまでの時間が短すぎると、オキソ酸触媒の回収率が低下する傾向がある。
 また、工程3における反応系内の温度は、例えば50~90℃程度である。反応温度を上記範囲より高く設定しても作業効率を促進する等の有利な効果は得られず、不経済となる傾向がある。一方、反応温度が上記範囲を下回ると、オキソ酸触媒の移動に時間がかかり、作業効率が低下する傾向がある。工程3における反応系内の雰囲気は反応を阻害しない限り特に限定されず、例えば、空気雰囲気、窒素雰囲気、アルゴン雰囲気等の何れであってもよい。
 本発明のオキソ酸触媒の回収方法によれば、pH調整と分液操作のみの簡便な操作により反応に使用した全オキソ酸触媒の80重量%以上(好ましくは83重量%以上、特に好ましくは85重量%以上)を回収して再利用することができる。そのため、経済的に非常に有利であると共に、オキソ酸触媒の廃棄による環境への負荷を低減することができる。また、特に工程2、3を設けた場合は、水に溶解性を示す不純物及び有機溶媒に溶解性を示す不純物を含まず、優れた活性を有するオキソ酸触媒を回収することができ、水/有機溶媒二相系において、過酸化水素により有機化合物を酸化する反応に再利用した場合は、高収率且つ高選択率で目的化合物を得ることができる。
 (酸化物の製造方法)
 本発明の酸化物の製造方法は、水/有機溶媒二相系において、過酸化水素により有機化合物を酸化する反応に使用したオキソ酸触媒を前記のオキソ酸触媒の回収方法によって回収し、回収されたオキソ酸触媒の存在下で有機化合物を過酸化水素により酸化して対応する酸化物を得ることを特徴とする。
 有機化合物を過酸化水素により酸化して得られる酸化物は有機相に存在する。酸化反応終了後は、反応系内のpHを5.0以上に調整することによりオキソ酸触媒を水相に移行させた後に分取した有機相を、例えば、濃縮、蒸留、抽出、クロマトグラフィー等の分離手段や、これらを組み合わせた分離手段に付すことにより酸化物を回収することができる。本発明においてはオキソ酸触媒を担体等に固定化することなく、高分散した状態で使用するため、担体等に固定化することによる触媒活性の低下を回避することができ、優れた触媒作用を発揮して高収率で酸化物を得ることができる。また、濾過処理や吸着処理を施すことなくオキソ酸触媒と反応生成物とを分離することができるため、前記処理による酸化物の回収率の低下を回避することができ、酸化物を効率よく回収することができる。
 本発明の酸化物の製造方法は、上記のように回収されたオキソ酸触媒を再利用するため、経済的に非常に有利であると共に、オキソ酸触媒の廃棄に伴う環境への負荷を低減することができる。また、本発明の酸化物の製造方法によれば、有機化合物の酸化物(例えば、エポキシ化合物等)を安価且つクリーンに製造することができる。
 以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。尚、金属タングステン量はタングステン純分としての値である。
 実施例1
 (酸化反応:3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレートの合成)
 窒素雰囲気下、100mL四つ口フラスコに、室温下、3-シクロヘキセニルメチル3'-シクロヘキセニルカルボキシレート(以後、「CMCC」と称する場合がある)(10.00g、45.4mmol)、69.6%塩化トリオクチルメチルアンモニウム(0.296g、0.510mmol)、タングステン酸ナトリウム二水和物(0.834g、2.527mmol)、リン酸水素二ナトリウム十二水和物(0.184g、0.514mmol)、85%リン酸(0.262g、2.27mmol)、トルエン(30.0g)、及び水(1.8g)を加えて反応系内のpHを6.2に調整した。その後、撹拌しながら60℃まで昇温し、35%過酸化水素水(13.06g、136.4mmol)を20分間かけて滴下し、6時間撹拌した。
 有機相及び水相に含まれるタングステン量をICP発光分析で確認したところ、有機相には0.068g、水相には0.397g存在した。また、目的化合物(3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート)は有機相に存在した(目的化合物10.20g、転化率:98.3%、選択率:90.4%、収率:88.9%)。
 (触媒回収:1回目)
 窒素雰囲気下、反応終了後の系内に、5%水酸化ナトリウム水溶液(11.33g)を加えて反応系内のpHを11.7に調整し、撹拌しながら40℃まで昇温し、その後、40℃を維持しつつ6時間撹拌した。有機相、水相の金属タングステン量をICP発光分析で確認したところ、有機相には0.069g、水相には0.396g存在した。その後、分液し、有機相(38.2g)と水相(24.8g)を回収した。
 窒素雰囲気下、回収した水相に69.6%塩化トリオクチルメチルアンモニウム(0.509g、0.879mmol)、トルエン(25.5g)、及び85%リン酸(2.18g)を加えて反応系内のpHを2.5に調整し、撹拌しながら80℃まで昇温し、その後、80℃を維持しつつ4時間撹拌した。その後、分液し、有機相(25.9g)と水相(25.5g)を回収した。有機相、水相の金属タングステン量をICP発光分析で確認したところ、有機相には0.388g、水相には0.008g存在した。有機相中に初期仕込み量の83%の金属タングステンを回収できた。
 (リサイクル触媒による酸化反応:1回目)
 窒素雰囲気下、100mL四つ口フラスコに、室温下、触媒回収(1回目)で回収されたタングステン酸塩(タングステン純分として、0.388g)を含有する有機相(25.9g)、CMCC(8.31g、37.7mmol)、リン酸水素二ナトリウム十二水和物(1.49g、4.16mmol)、85%リン酸(0.213g、1.847mmol)、及び水(1.5g)を加えて反応系内のpHを5.9に調整した。その後、撹拌しながら60℃まで昇温し、35%過酸化水素水(10.83g、111.5mmol)を20分間かけて滴下し、その後、6時間撹拌した。有機相、水相の金属タングステン量をICP発光分析で確認したところ、有機相には0.169g、水相には0.219g存在した。また、目的化合物(3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート)は有機相に存在した(目的化合物8.71g、転化率:98.4%、選択率:93.0%、収率:91.5%)。
 (触媒回収:2回目)
 窒素雰囲気下、リサイクル触媒による酸化反応(1回目)の反応終了後の系内に、5%水酸化ナトリウム水溶液(14.57g)を加えて反応系内のpHを11.3に調整し、撹拌しながら40℃まで昇温し、その後、40℃を維持しつつ6時間撹拌した。有機相、水相の金属タングステン量をICP発光分析で確認したところ、有機相には0.048g、水相には0.340g存在した。その後、分液し、有機相(32.5g)と水相(27.4g)を回収した。
 窒素雰囲気下、回収した水相に69.6%塩化トリオクチルメチルアンモニウム(0.471g、0.811mmol)、トルエン(22.7g)、及び85%リン酸(2.60g)を加え、反応系内のpHを2.7に調整し撹拌しながら80℃まで昇温し、その後、80℃を維持しつつ4時間撹拌した。その後、分液し、有機相(23.0g)と水相(28.9g)を回収した。
 有機相、水相の金属タングステン量をICP発光分析で確認したところ、有機相には0.336g、水相には0.004g存在した。有機相中に初期仕込み量の87%の金属タングステンを回収できた。
 (リサイクル触媒による酸化反応:2回目)
 窒素雰囲気下、100mL四つ口フラスコに、室温下、触媒回収(2回目)で回収されたタングステン酸塩(タングステン純分として、0.336g)を含有する有機相(23.0g)、CMCC(7.18g、32.6mmol)、リン酸水素二ナトリウム十二水和物(1.29g、3.60mmol)、85%リン酸(0.185g、1.605mmol)、及び水(1.3g)を加えて反応系内のpHを5.7に調整した。その後、撹拌しながら60℃まで昇温し、35%過酸化水素水(9.38g、96.5mmol)を20分間かけて滴下し、その後、6時間撹拌した。
 有機相、水相の金属タングステン量をICP発光分析で確認したところ、有機相には0.156g、水相には0.180g存在した。また、目的化合物(3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート)は有機相に存在した(目的化合物7.50g、転化率:100.0%、選択率:91.3%、収率:91.3%)。
 実施例2
 (酸化反応:(3,4,3’,4’-ジエポキシ)ビシクロヘキシルの合成)
 窒素雰囲気下、100mL四つ口フラスコに、室温下、ビシクロヘキシル-3,3’-ジエン(10.00g、61.6mmol)、69.6%塩化トリオクチルメチルアンモニウム(0.397g、0.684mmol)、タングステン酸ナトリウム二水和物(1.134g、3.438mmol)、リン酸水素二ナトリウム十二水和物(0.246g、0.687mmol)、85%リン酸(0.358g、3.105mmol)、トルエン(30.0g)、及び水(1.8g)を加えて反応系内のpHを6.2に調整した。その後、撹拌しながら55℃まで昇温し、35%過酸化水素水(17.71g、182.3mmol)を20分間かけて滴下し、その後、6時間撹拌した。有機相及び水相に含まれるタングステン量をICP発光分析で確認したところ、有機相には0.125g、水相には0.476g存在した。また、目的化合物((3,4,3’,4’-ジエポキシ)ビシクロヘキシル)は有機相に存在した(目的化合物11.02g、転化率:100.0%、選択率:91.9%、収率:91.9%)。
 (触媒回収:1回目)
 窒素雰囲気下、反応終了後の系内に、5%水酸化ナトリウム水溶液(15.44g)を加えて反応系内のpHを11.4に調整し、撹拌しながら60℃まで昇温し、その後、60℃を維持しつつ2時間撹拌した。有機相、水相の金属タングステン量をICP発光分析で確認したところ、有機相には0.051g、水相には0.581g存在した。その後、分液し、有機相(39.9g)と水相(34.6g)を回収した。
 窒素雰囲気下、回収した水相に69.6%塩化トリオクチルメチルアンモニウム(0.728g、1.254mmol)、トルエン(27.6g)、及び85%リン酸(2.70g)を加え、反応系内のpHを3.1に調整し、撹拌しながら80℃まで昇温し、その後、80℃を維持しつつ4時間撹拌した。その後、分液し、有機相(28.4g)と水相(35.8g)を回収した。
 有機相、水相の金属タングステン量をICP発光分析で確認したところ、有機相には0.562g、水相には0.019g存在した。有機相中に初期仕込み量の89%の金属タングステンを回収できた。
 (リサイクル触媒による酸化反応:1回目)
 窒素雰囲気下、100mL四つ口フラスコに、室温下、触媒回収1回目で回収されたタングステン酸塩(タングステン純分として、0.562g)を含有する有機相(28.4g)、ビシクロヘキシル-3,3’-ジエン(8.87g、54.7mmol)、リン酸水素二ナトリウム十二水和物(2.16g、6.02mmol)、85%リン酸(0.338g、2.932mmol)、及び水(1.6g)を加えて反応系内のpHを5.6に調整した。その後、撹拌しながら55℃まで昇温し、35%過酸化水素水(15.69g、161.5mmol)を20分間かけて滴下し、その後、6時間撹拌した。有機相、水相の金属タングステン量をICP発光分析で確認したところ、有機相には0.260g、水相には0.302g存在した。また、目的化合物((3,4,3’,4’-ジエポキシ)ビシクロヘキシル)は有機相に存在した(目的化合物10.35g、転化率:100.0%、選択率:97.5%、収率:97.5%)。
 (触媒回収:2回目)
 窒素雰囲気下、リサイクル触媒による酸化反応(1回目)の反応終了後の系内に、5%水酸化ナトリウム水溶液(19.62g)を加えて反応系内のpHを11.3に調整し、撹拌しながら60℃まで昇温し、その後、60℃を維持しつつ2時間撹拌した。有機相、水相の金属タングステン量をICP発光分析で確認したところ、有機相には0.051g、水相には0.511g存在した。その後、分液し、有機相(34.6g)と水相(38.7g)を回収した。
 窒素雰囲気下、回収した水相に69.6%塩化トリオクチルメチルアンモニウム(0.638g、1.099mmol)、トルエン(24.1g)、及び85%リン酸(2.70g)を加えて反応系内のpHを3.4に調整し、撹拌しながら80℃まで昇温し、その後、80℃を維持しつつ4時間撹拌した。その後、分液し、有機相(24.7g)と水相(40.2g)を回収した。
 有機相、水相の金属タングステン量をICP発光分析で確認したところ、有機相には0.500g、水相には0.011g存在した。有機相中に金属タングステンを初期仕込み量の89%回収できた。
 (リサイクル触媒による酸化反応:2回目)
 窒素雰囲気下、100mL四つ口フラスコに、室温下、触媒回収(2回目)で回収されたタングステン酸塩(タングステン純分として、0.500g)を含有する有機相(24.7g)、ビシクロヘキシル-3,3’-ジエン(7.88g、48.6mmol)、リン酸水素二ナトリウム十二水和物(1.92g、5.36mmol)、85%リン酸(0.279g、2.420mmol)、及び水(1.4g)を加えて反応系内のpHを5.6に調整した。その後、撹拌しながら55℃まで昇温し、35%過酸化水素水(13.95g、143.6mmol)を20分間かけて滴下し、その後、6時間撹拌した。有機相、水相の金属タングステン量をICP発光分析で確認したところ、有機相には0.210g、水相には0.290g存在した。また、目的化合物((3,4,3’,4’-ジエポキシ)ビシクロヘキシル)は有機相に存在した(目的化合物9.40g、転化率:100.0%、選択率:99.4%、収率:99.4%)。
 (触媒回収:3回目)
 窒素雰囲気下、リサイクル触媒による酸化反応(2回目)の反応終了後の系内に、5%水酸化ナトリウム水溶液(15.05g)を加えて反応系内のpHを11.4に調整し、撹拌しながら60℃まで昇温し、その後、60℃を維持しつつ2時間撹拌した。有機相、水相の金属タングステン量をICP発光分析で確認したところ、有機相には0.051g、水相には0.449g存在した。その後、分液し、有機相(31.9g)と水相(30.6g)を回収した。
 窒素雰囲気下、回収した水相に69.6%塩化トリオクチルメチルアンモニウム(0.583g、1.004mmol)、トルエン(21.2g)、及び85%リン酸(2.85g)を加え、反応系内のpHを2.5に調整し、撹拌しながら80℃まで昇温し、その後、80℃を維持しつつ4時間撹拌した。その後、分液し、有機相(21.7g)と水相(32.3g)を回収した。
 有機相、水相の金属タングステン量をICP発光分析で確認したところ、有機相には0.449g、水相には0.000g存在した(水相には残存しなかった)。有機相中に初期仕込み量の90%の金属タングステンを回収できた。
 実施例3
 (酸化反応:1,2-エポキシ-4-ビニルシクロヘキサンの合成)
 窒素雰囲気下、100mL四つ口フラスコに、室温下、4-ビニルシクロヘキセン(10.00g、92.4mmol)、69.6%塩化トリオクチルメチルアンモニウム(0.305g、0.525mmol)、タングステン酸ナトリウム二水和物(0.853g、2.585mmol)、リン酸水素二ナトリウム十二水和物(0.183g、0.511mmol)、85%リン酸(0.270g、2.342mmol)、シクロヘキサン(30.0g)、及び水(1.8g)を加えて反応系内のpHを6.6に調整した。その後、撹拌しながら60℃まで昇温し、35%過酸化水素水(8.12g、83.6mmol)を20分間かけて滴下し、その後、1時間撹拌した。有機相、水相の金属タングステン量をICP発光分析で確認したところ、有機相には0.152g、水相には0.323g存在した。また、目的化合物(1,2-エポキシ-4-ビニルシクロヘキサン)は有機相に存在した(目的化合物5.26g、転化率:51.4%、選択率:89.2%、収率:45.8%)。
 (触媒回収)
 窒素雰囲気下、反応終了後の系内に5%水酸化ナトリウム水溶液(4.18g)を加えて反応系内のpHを9.5に調整し、撹拌しながら60℃まで昇温し、その後、60℃を維持しつつ2時間撹拌した。有機相、水相の金属タングステン量をICP発光分析で確認したところ、有機相には0.028g、水相には0.447g存在した。その後、分液し、有機相(38.4g)と水相(13.4g)を回収した。
 窒素雰囲気下、回収した水相に69.6%塩化トリオクチルメチルアンモニウム(0.581g、1.00mmol)、シクロヘキサン(13.4g)、及び85%リン酸(0.86g)を加え、反応系内のpHを3.0に調整し、撹拌しながら60℃まで昇温し、その後、60℃を維持しつつ2時間撹拌するとオイルが沈殿した。その後、分液し、有機相(11.3g)と水相(12.5g)とオイル相(1.8g)を回収した。
 有機相、水相、オイル相の金属タングステン量をICP発光分析で確認したところ、有機相には0.026g、水相には0.000g、オイル相には0.421g存在した。有機相とオイル相を合わせて、初期仕込み量の94%の金属タングステンを回収できた。
 (リサイクル触媒による酸化反応)
 窒素雰囲気下、100mL四つ口フラスコに、室温下、前記触媒回収で回収されたタングステン酸塩(タングステン純分として、0.447g)を含有する有機相とオイル相(13.1g)、3-ビニルシクロヘキセン(9.42g、87.1mmol)、リン酸水素二ナトリウム十二水和物(1.72g、4.80mmol)、85%リン酸(0.270g、2.342mmol)、シクロヘキサン(15.1g)、及び水(1.7g)を加えて反応系内のpHを5.7に調整した。その後、撹拌しながら60℃まで昇温し、35%過酸化水素水(7.64g、78.6mmol)を20分間かけて滴下し、その後、1時間撹拌した。
 有機相、水相の金属タングステン量をICP発光分析で確認したところ、有機相には0.238g、水相には0.208g存在した。また、目的化合物(1,2-エポキシ-4-ビニルシクロヘキサン)は有機相に存在した(目的化合物5.83g、転化率:58.7%、選択率:91.9%、収率:53.9%)。
 実施例4
 (酸化反応:3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレートの合成)
 窒素雰囲気下、100mL四つ口フラスコに、室温下、CMCC(10.00g、45.4mmol)、1-n-セチルピリジニウムクロライド一水和物(0.173g、0.508mmol)、タングステン酸ナトリウム二水和物(0.834g、2.53mmol)、リン酸水素二ナトリウム十二水和物(0.180g、0.501mmol)、85%リン酸(0.264g、2.29mmol)、トルエン(30.0g)、及び水(1.8g)を加えて反応系内のpHを6.2に調整した。その後、撹拌しながら60℃まで昇温し、35%過酸化水素水(13.06g、136.4mmol)を1時間かけて滴下し、21時間撹拌した。
 有機相及び水相に含まれるタングステン量をICP発光分析で確認したところ、有機相には0.030g、水相には0.434g存在した。また、目的化合物(3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート)は有機相中に存在した(目的化合物4.36g、転化率:94.7%、選択率:40.1%、収率:38.0%)。
 (触媒回収)
 窒素雰囲気下、反応終了液の系内に、5%水酸化ナトリウム水溶液(23.97g)を加えて反応系内のpHを12.0に調整し、撹拌しながら40℃まで昇温し、その後、40℃を維持しつつ5時間撹拌した。有機相、水相の金属タングステン量をICP発光分析で確認したところ、有機相には0.020g、水相には0.444g存在した。その後、分液し、有機相(39.9g)と水相(38.7g)を回収した。
 窒素雰囲気下、回収した水相に1-n-セチルピリジニウムクロライド一水和物(0.340g、1.000mmol)、トルエン(25.5g)及び85%リン酸(3.4g)を加えて反応系内のpHを2.5に調整し、撹拌しながら80℃まで昇温し、その後、80℃を維持しつつ4時間撹拌した。その後、分液し、有機相(26.0g)と水相(41.9g)を回収した。有機相、水相の金属タングステン量をICP発光分析で確認したところ、有機相には0.422g、水相には0.022g存在した。有機相中に初期仕込み量の91%の金属タングステンを回収できた。
 本発明のオキソ酸触媒の回収方法は、pH制御と分液操作のみの簡便な方法で反応生成物とオキソ酸触媒を分離することができ、濾過処理や吸着処理を施す必要がなく、前記処理に伴う回収率の低下を回避することができ、オキソ酸触媒を効率よく回収することができる。更に、pH制御と分液操作のみの簡便な方法でオキソ酸触媒を精製して回収することもできる。そのため、経済的に非常に有利であると共に、環境への負荷を低減することができ、グリーンケミストリーに大きく貢献がすることが可能である。更に、通常、担体等に固定化された触媒は触媒活性が低下するが、本発明においてはオキソ酸触媒を担体等に固定化する必要がないので担体等への固定化に伴う触媒活性の低下を防止することができ、触媒活性を高く維持することができる。

Claims (4)

  1.  水/有機溶媒二相系において、過酸化水素により有機化合物を酸化する反応に使用したオキソ酸触媒の回収方法であって、下記工程を有することを特徴とするオキソ酸触媒の回収方法。
     工程1:反応系内のpHを5.0以上に調整することによりオキソ酸触媒を水相に移行させ、有機相を除去する
  2.  更に下記工程を有する請求項1に記載のオキソ酸触媒の回収方法。
     工程2:有機溶媒を添加して、水/有機溶媒二相系とする
     工程3:反応系内のpHを5.0未満に調整し、相間移動触媒を添加することによりオキソ酸触媒を有機相に移行させ、水相を除去する
  3.  オキソ酸触媒が、タングステン、マンガン、モリブデン、バナジウム、ニオブ、タンタル、クロム、及びレニウムから選択される少なくとも1種の金属原子を含有するオキソ酸、又はその塩である請求項1又は2に記載のオキソ酸触媒の回収方法。
  4.  水/有機溶媒二相系において、過酸化水素により有機化合物を酸化する反応に使用したオキソ酸触媒を請求項1~3の何れか1項に記載のオキソ酸触媒の回収方法によって回収し、回収されたオキソ酸触媒の存在下で有機化合物を過酸化水素により酸化して対応する酸化物を得る酸化物の製造方法。
PCT/JP2014/060899 2013-04-23 2014-04-17 オキソ酸触媒の回収方法、及び再利用方法 WO2014175152A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/786,251 US20160074856A1 (en) 2013-04-23 2014-04-17 Recovery method and reuse method of oxo acid catalyst
EP14788730.1A EP2990110A4 (en) 2013-04-23 2014-04-17 METHOD OF RECOVERY AND METHOD FOR RE-USE OF AN OXOIC ACID CATALYST
JP2015513715A JP6460981B2 (ja) 2013-04-23 2014-04-17 オキソ酸触媒の回収方法、及び再利用方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-090355 2013-04-23
JP2013090355 2013-04-23

Publications (1)

Publication Number Publication Date
WO2014175152A1 true WO2014175152A1 (ja) 2014-10-30

Family

ID=51791731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060899 WO2014175152A1 (ja) 2013-04-23 2014-04-17 オキソ酸触媒の回収方法、及び再利用方法

Country Status (4)

Country Link
US (1) US20160074856A1 (ja)
EP (1) EP2990110A4 (ja)
JP (1) JP6460981B2 (ja)
WO (1) WO2014175152A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016034913A (ja) * 2014-08-01 2016-03-17 国立大学法人 東京大学 エポキシ化合物の製造方法
JP2019523121A (ja) * 2016-06-30 2019-08-22 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH 均一系酸化触媒を再活性化する方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6440457A (en) * 1987-08-05 1989-02-10 Seitetsu Kagaku Co Ltd Production of nitrophenylphenylsulfones
JPH11130762A (ja) 1997-10-29 1999-05-18 Mitsubishi Gas Chem Co Inc シス−エポキシコハク酸塩の製造方法
JP2001017864A (ja) 1999-07-06 2001-01-23 Kawamura Inst Of Chem Res エポキシ化触媒及び該触媒を用いたオレフィン類のエポキシ化物の製造方法
JP2001017863A (ja) 1999-07-06 2001-01-23 Kawamura Inst Of Chem Res エポキシ化触媒及び該触媒を用いたオレフィン類のエポキシ化物の製造方法
JP2002059007A (ja) 2000-08-22 2002-02-26 Kawamura Inst Of Chem Res エポキシ化触媒組成物、及びエポキシ化合物の製造方法
JP2010106009A (ja) * 2008-09-30 2010-05-13 Sanyo Chem Ind Ltd エポキシ化合物の製造方法
JP2010229065A (ja) * 2009-03-26 2010-10-14 Daicel Chem Ind Ltd 酸化化合物の製造方法
JP2013032340A (ja) * 2011-07-01 2013-02-14 Jnc Corp 四級アンモニウム塩、それから得られる酸化触媒、及び該触媒を用いるエポキシ誘導体の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4328190A (en) * 1981-01-19 1982-05-04 Amax Inc. Solvent extraction of tungsten from aqueous tungstate solutions
JP5243123B2 (ja) * 2007-12-28 2013-07-24 日本化薬株式会社 エポキシ組成物、エポキシ組成物の製造方法、硬化性樹脂組成物、および硬化物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6440457A (en) * 1987-08-05 1989-02-10 Seitetsu Kagaku Co Ltd Production of nitrophenylphenylsulfones
JPH11130762A (ja) 1997-10-29 1999-05-18 Mitsubishi Gas Chem Co Inc シス−エポキシコハク酸塩の製造方法
JP2001017864A (ja) 1999-07-06 2001-01-23 Kawamura Inst Of Chem Res エポキシ化触媒及び該触媒を用いたオレフィン類のエポキシ化物の製造方法
JP2001017863A (ja) 1999-07-06 2001-01-23 Kawamura Inst Of Chem Res エポキシ化触媒及び該触媒を用いたオレフィン類のエポキシ化物の製造方法
JP2002059007A (ja) 2000-08-22 2002-02-26 Kawamura Inst Of Chem Res エポキシ化触媒組成物、及びエポキシ化合物の製造方法
JP2010106009A (ja) * 2008-09-30 2010-05-13 Sanyo Chem Ind Ltd エポキシ化合物の製造方法
JP2010229065A (ja) * 2009-03-26 2010-10-14 Daicel Chem Ind Ltd 酸化化合物の製造方法
JP2013032340A (ja) * 2011-07-01 2013-02-14 Jnc Corp 四級アンモニウム塩、それから得られる酸化触媒、及び該触媒を用いるエポキシ誘導体の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016034913A (ja) * 2014-08-01 2016-03-17 国立大学法人 東京大学 エポキシ化合物の製造方法
JP2019523121A (ja) * 2016-06-30 2019-08-22 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH 均一系酸化触媒を再活性化する方法

Also Published As

Publication number Publication date
JPWO2014175152A1 (ja) 2017-02-23
EP2990110A4 (en) 2016-09-28
JP6460981B2 (ja) 2019-01-30
US20160074856A1 (en) 2016-03-17
EP2990110A1 (en) 2016-03-02

Similar Documents

Publication Publication Date Title
US7696366B2 (en) Production process of bifunctional epoxy monomer by selective oxidation of diolefin compound
WO2007080067A1 (en) Catalyst and process for producing ketone using the same
EP2130583A1 (en) Method for producing carbonyl compound
TWI396587B (zh) Production method of epoxy compound
JP6460981B2 (ja) オキソ酸触媒の回収方法、及び再利用方法
JP2004131504A (ja) 環式アルケンをエポキシ化する際の沈澱促進剤としての環式アルカンの使用
Yamaguchi et al. An immobilized organocatalyst for cyanosilylation and epoxidation
JP6151957B2 (ja) オキソ酸触媒の回収方法、及び再利用方法
JP2013112639A (ja) 第四級アンモニウム塩及びこれを含む酸化反応用触媒、エポキシ化合物の製造方法、並びに、酸化反応用触媒の分離方法
JP4083424B2 (ja) オレフィンのエポキシ化方法
JP4118642B2 (ja) 環状オレフィンのエポキシ化方法
KR20100126497A (ko) 카르보닐 화합물의 제조 방법
EP3207016B1 (en) Method for producing specific alpha,beta-unsaturated aldehydes by rearrangement process
JP4067823B2 (ja) 環状モノオレフィンのエポキシ化方法
JP2009023897A (ja) ヘテロポリオキソメタレート化合物およびその製造方法
CN108993581B (zh) 负载型金属多氧酸盐杂化催化剂及其制备方法和用途
US7186858B2 (en) Method for producing carboxylic acid
Karakhanov et al. Use of ionic liquids in cyclohexene epoxidation with hydrogen peroxide
JP3522363B2 (ja) ポリイソプレンエポキシドの製造方法
WO2012133108A1 (ja) 2-アルケニルエーテル化合物の製造方法
JP2010229065A (ja) 酸化化合物の製造方法
JP2005002027A (ja) 異種元素置換ヘテロポリオキソメタレート化合物
JP2011088861A (ja) カルボニル化合物の製造方法
JP2005306803A (ja) 不飽和化合物の酸化方法
JP2015189695A (ja) ビニル基又はアリル基を有する環状オレフィン化合物のモノエポキシ化方法。

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788730

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015513715

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14786251

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014788730

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014788730

Country of ref document: EP