WO2014175124A1 - 反射防止層付き基材 - Google Patents

反射防止層付き基材 Download PDF

Info

Publication number
WO2014175124A1
WO2014175124A1 PCT/JP2014/060751 JP2014060751W WO2014175124A1 WO 2014175124 A1 WO2014175124 A1 WO 2014175124A1 JP 2014060751 W JP2014060751 W JP 2014060751W WO 2014175124 A1 WO2014175124 A1 WO 2014175124A1
Authority
WO
WIPO (PCT)
Prior art keywords
antireflection layer
substrate
group
silica
compound
Prior art date
Application number
PCT/JP2014/060751
Other languages
English (en)
French (fr)
Inventor
健二 石関
輝 磯部
百紀 畑中
洋平 河合
米田 貴重
阿部 啓介
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to EP14789011.5A priority Critical patent/EP2990838B1/en
Priority to KR1020157024712A priority patent/KR102120626B1/ko
Priority to JP2015513698A priority patent/JP6653171B2/ja
Priority to CN201480023346.1A priority patent/CN105143924B/zh
Publication of WO2014175124A1 publication Critical patent/WO2014175124A1/ja
Priority to US14/878,054 priority patent/US10324234B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/22Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers modified by chemical after-treatment
    • C09D127/24Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers modified by chemical after-treatment halogenated
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/18In situ polymerisation with all reactants being present in the same phase
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/213SiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/425Coatings comprising at least one inhomogeneous layer consisting of a porous layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • C03C2217/732Anti-reflective coatings with specific characteristics made of a single layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/006Anti-reflective coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/107Porous materials, e.g. for reducing the refractive index
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0006Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means to keep optical surfaces clean, e.g. by preventing or removing dirt, stains, contamination, condensation

Definitions

  • the present invention relates to a base material with an antireflection layer, a method for producing a base material with an antireflection layer, and a display device including the base material with an antireflection layer.
  • a cover glass (protective glass) is provided on the front surface of the display member for the purpose of protecting the display and enhancing the beauty. It is increasingly used. Furthermore, in order to improve the visibility of the image displayed on the display device, a glass with an antireflection film in which an antireflection film for visible light is formed on the surface of the cover glass is used. Glass with anti-reflective coating in display devices has high water and oil repellency, as well as being frequently touched by human hands, and oil and dirt such as fingerprints are likely to adhere to it. . On the other hand, for example, a method of applying an antifouling antireflection film containing hollow particles to a transparent substrate such as glass has been proposed (Patent Document 1).
  • Patent Document 1 it is preferable to increase the proportion of hollow particles to lower the refractive index of the antireflection film from the viewpoint of excellent antireflection characteristics.
  • voids are easily formed between the hollow particles, and irregularities and open holes are formed on the surface. If oily and dirt stains adhere, the dirt penetrates and cannot be wiped cleanly. From the viewpoint of improving the smoothness of the antireflection film, when the ratio of the matrix component in the antireflection film is increased, the antireflection characteristics are rapidly deteriorated.
  • the present invention provides a substrate with an antireflection layer having excellent antireflective properties and having excellent water and oil repellency and excellent oil and fat stain removal, a method for producing a substrate with an antireflection layer, and a base with an antireflection layer
  • An object is to provide a display device including a material.
  • the present invention provides a base material with an antireflection layer, a method for producing a base material with an antireflection layer, and a display device including the base material with an antireflection layer, having the following configurations [1] to [15].
  • a substrate with an antireflection layer comprising an antireflection layer on at least one surface of the substrate,
  • the antireflection layer includes a silica-based porous film having a fluorine-containing organic group
  • the surface of the antireflection layer opposite to the substrate has an element number ratio F / Si determined from the peak height of F 1s and the peak height of Si 2p in surface analysis by scanning X-ray photoelectron spectroscopy (ESCA).
  • ESA scanning X-ray photoelectron spectroscopy
  • the antireflection layer contains pores having a diameter of 20 nm or more, and the numerical aperture on the surface opposite to the base material of the antireflection layer is 13 pieces / 10 6 nm 2 or less, [1] or [ 2] A substrate with an antireflection layer.
  • R f poly (oxyperfluoroalkylene) chain
  • A a perfluoroalkyl group having 1 to 6 carbon atoms or B
  • B Group represented by the following formula (2): -Q-Si-L m R 3-m
  • Q a divalent linking group
  • L hydrolyzable group
  • R a hydrogen atom or a monovalent hydrocarbon group
  • m An integer from 1 to 3.
  • a display device comprising the substrate with an antireflection layer according to any one of [1] to [11].
  • a silica-based porous film is formed on at least one surface of the substrate, and then the surface of the silica-based porous film is treated with a compound having a poly (oxyperfluoroalkylene) chain and a hydrolyzable silyl group.
  • a compound having a poly (oxyperfluoroalkylene) chain and a hydrolyzable silyl group In surface analysis by scanning X-ray photoelectron spectroscopy (ESCA), the element number ratio F / Si obtained from the peak height of F 1s and the peak height of Si 2p is 1 or more and 3.0 nm or less.
  • the manufacturing method of the base material with an antireflection layer characterized by forming the antireflection layer which has the said processing surface which has arithmetic mean roughness (Sa).
  • SiX 1 4 (a1) Y n SiX 2 4-n (a2) [Wherein, X 1 and X 2 represent a hydrolyzable group, Y represents a non-hydrolyzable group, and n represents an integer of 1 to 3. ]
  • a substrate with an antireflection layer having excellent antireflection characteristics and excellent water and oil repellency and excellent oil and dirt removal properties a method for producing a substrate with an antireflection layer, and an antireflection layer
  • a display device including an attached substrate.
  • a compound represented by the formula (1) is referred to as a compound (1).
  • the “hydrolyzable silyl group” means a group capable of forming a silanol group (Si—OH) by a hydrolysis reaction.
  • —Si—L m R 3-m in formula (1) for example, —Si—L m R 3-m in formula (1).
  • the “non-hydrolyzable group” means a functional group whose structure does not change under the condition that a silanol group can be formed by a hydrolysis reaction.
  • the “fluorinated organic group” means an organic group containing a fluorine atom bonded to a carbon atom.
  • the organic group is preferably a chain organic group having a carbon chain which may contain a heteroatom such as an etheric oxygen atom between carbon-carbon atoms.
  • a heteroatom such as an etheric oxygen atom between carbon-carbon atoms.
  • examples thereof include a perfluoroalkyl group, a perfluoroalkylene group, a perfluoroalkyl group containing an etheric oxygen atom between carbon-carbon atoms, and a poly (oxyperfluoroalkylene) chain.
  • methyl (meth) acrylate is a general term for methyl acrylate and methyl methacrylate, and the same applies to others.
  • the base material 10 with an antireflection layer of the present invention includes an antireflection layer 12 having a fluorine-containing organic group (not shown) on at least one surface of a base material 11 as shown in FIG.
  • the substrate in the present invention is preferably a transparent substrate when used for a cover glass of a display device or the like.
  • examples of the transparent substrate include substrates having a haze value of 5% or less in the standard of JIS K-7150, preferably 3% or less, more preferably 1% or less, and particularly preferably 0.4% or less. preferable.
  • the material of the base material includes metal, resin, glass, ceramic, and composite materials thereof.
  • glass or transparent resin is preferable.
  • Glass includes normal soda lime glass, alkali aluminosilicate glass, borosilicate glass, alkali-free glass, quartz glass, etc., chemically tempered soda lime glass, chemically tempered alkali aluminosilicate glass, and chemical tempered glass Borosilicate glass is preferred.
  • the transparent resin include acrylic resins such as polymethyl methacrylate, aromatic polycarbonate resins such as carbonate of bisphenol A, and aromatic polyester resins such as polyethylene terephthalate (PET).
  • the shape of the substrate may be a flat plate, or the entire surface or a part thereof may have a curvature.
  • size and thickness of a base material are not specifically limited, It can select suitably by a use.
  • the substrate has an acid treatment (treatment with diluted hydrofluoric acid, sulfuric acid, hydrochloric acid, etc.), alkali treatment (treatment with aqueous sodium hydroxide, etc.) or discharge treatment (plasma irradiation, corona irradiation, electron beam) Irradiation etc.) etc. may be given.
  • the base material may be provided with various functional films formed on its surface by a vapor deposition film, a sputtered film, a wet method, or the like.
  • the antireflection layer may be provided on the surface of the surface-treated substrate or the surface of the functional film, and on the surface of the substrate opposite to the surface on which the surface-treated surface or the functional film is formed. It may be provided.
  • the base material includes an antireflection layer on at least one surface thereof.
  • the base material may be provided with an antireflection layer on one surface thereof, or may be provided on both surfaces. Moreover, the base material may be provided with the antireflection layer in the whole surface, and may be provided in a part of the surface.
  • the antireflection layer is made of a silica-based porous film having a fluorine-containing organic group.
  • the silica-based porous film having a fluorine-containing organic group is preferably a porous film having a plurality of pores in a silica-containing matrix and having a fluorine-containing organic group on the film surface. .
  • the antireflection property is excellent.
  • the antireflection layer is formed with the peak height of F 1s and the Si 2p
  • the element ratio F / Si obtained from the peak height is 1 or more, preferably 1 to 50, more preferably 2 to 50, still more preferably 3 to 30, and particularly preferably 3 to 20. If the element number ratio F / Si is not less than the lower limit of the above range, the surface exhibits sufficient water and oil repellency, and if the ratio is not more than the upper limit of the above range, the surface is sufficiently transparent.
  • the scanning X-ray photoelectron spectroscopy (ESCA) measurement conditions are X-ray source: AlK ⁇ ray, X-ray output: 25 W, 15 kV.
  • the arithmetic average roughness (Sa) of the outermost surface of the antireflection layer is 3.0 nm or less, preferably 2.8 nm or less, particularly preferably 2.6 nm or less. If it is below the above upper limit, it can be easily removed even if oily and dirt stains adhere.
  • the arithmetic average roughness (Sa) is a value measured in a measurement range of 10 ⁇ m ⁇ 10 ⁇ m using a scanning probe microscope apparatus.
  • the antireflection layer preferably has a refractive index of 1.10 to 1.38, particularly preferably 1.15 to 1.35.
  • a refractive index is equal to or higher than the lower limit of the above range, a decrease in durability due to the presence of pores is suppressed.
  • the refractive index is not more than the upper limit of the above range, the antireflection property is excellent.
  • the refractive index is a value at a wavelength of 589.3 nm measured using an ellipsometer.
  • the antireflection layer of the present invention has pores in that the refractive index can be lowered (FIG. 1).
  • the pores are preferably independent holes.
  • the pores include pores having a diameter of 20 nm or more, and it is particularly preferable that pores having a diameter of 20 to 150 nm are included.
  • the diameter of the holes is a value measured from an image obtained by observing a cross section of the antireflection layer using a scanning electron microscope (hereinafter also referred to as “SEM”).
  • SEM scanning electron microscope
  • One or more holes having a diameter of 20 nm or more are preferably present in a region of 100 nm ⁇ 100 nm in an image obtained by observing the cross section of the antireflection layer using SEM, and 2 to 16 are particularly preferable.
  • the refractive index can be sufficiently lowered if the number of antireflection layers is one or more in the thickness direction.
  • the average value of pore diameter (hereinafter also referred to as “average pore diameter”) is preferably 15 to 100 nm, and particularly preferably 20 to 80 nm. If the average pore diameter is not less than the lower limit of the above range, sufficient antireflection properties as an antireflection layer can be obtained, and if it is not more than the upper limit of the above range, the antireflection layer is excellent in transparency.
  • the average hole diameter is obtained by measuring the diameters of 100 holes from an image obtained by observing the cross section of the antireflection layer using SEM, and taking the average value thereof. Since holes having a diameter of 5 nm or more can be measured by the above measurement method, the average hole diameter is an average value of diameters of holes having a diameter of 5 nm or more.
  • the numerical aperture on the outermost surface is preferably 13 pieces / 10 6 nm 2 or less, more preferably 10 pieces / 10 6 nm 2 or less, and particularly preferably 0 pieces. If the numerical aperture on the outermost surface is less than or equal to the upper limit of the above range, even if oily and dirt stains adhere, it does not easily penetrate and is easy to remove. In this specification, the numerical aperture is the number of apertures existing in a region of 1,000 nm ⁇ 1,000 nm based on an image obtained by observing the outermost surface of the antireflection layer using SEM.
  • the average thickness of the antireflection layer (hereinafter referred to as “antireflection layer average thickness”, indicated by a in FIG. 1) is preferably 40 to 300 nm, and particularly preferably 90 to 260 nm.
  • the average thickness of the antireflection layer is not less than the lower limit of the above range, light interference occurs in the visible light region, and excellent antireflection characteristics are easily exhibited. If the average thickness of the antireflection layer is not more than the upper limit of the above range, cracks and the like are unlikely to occur.
  • the average thickness of the antireflection layer is determined by measuring the thickness at 100 locations from an image obtained by observing the cross section of the antireflection layer using an SEM, and taking the average value thereof.
  • the antireflection layer has an average value of the shortest distance from an air hole having a diameter of 20 nm or more, which is an independent hole, to the outermost surface (hereinafter referred to as “outermost surface average thickness”, indicated by d in FIG. 1). It is preferably from ⁇ 80 nm, particularly preferably from 13 to 60 nm.
  • the shortest distance means the shortest distance among the distances between the surface surrounding the void in the independent hole and the outermost surface of the antireflection layer. If the outermost surface average thickness is not less than the lower limit of the above range, moisture in the outside air can be prevented from reaching the substrate, and if the outermost surface average thickness is not more than the upper limit of the above range, antireflection is possible.
  • the refractive index of the layer can be kept low.
  • the average thickness of the outermost surface is obtained by measuring the thickness at 100 locations from an image obtained by observing the cross section of the antireflection layer using an SEM, and taking the average value thereof.
  • the ratio of the average thickness of the outermost surface to the average thickness of the antireflection layer is not particularly limited, but is preferably 8 to 40%, particularly preferably 10 to 30%.
  • the antireflection layer includes a silica-based porous film having a fluorine-containing organic group.
  • a silica-based porous film having a fluorine-containing organic group can introduce a fluorine-containing organic group by applying a fluorine-containing organic compound to the silica-based porous film.
  • a silica-based porous film can be treated with a fluorine-containing organic compound to introduce a fluorine-containing organic group derived from the fluorine-containing organic compound.
  • the silica-based porous film means a porous film having a plurality of pores in a matrix containing silica, and in particular, a porous membrane having a plurality of pores in a matrix mainly composed of silica.
  • a membrane is preferred. Since the matrix is mainly composed of silica, the refractive index (reflectance) can be lowered relatively, it is excellent in chemical stability and wear resistance, and it adheres when a glass plate is used as the substrate. Excellent in properties.
  • the refractive index of the antireflection layer is smaller than the refractive index of 1.52 of the glass plate, but the refractive index of silica is 1.46,
  • the presence of vacancies (air refractive index 1.00) in the matrix can reduce the refractive index.
  • that the matrix is mainly composed of silica means that the proportion of silica is 90% by mass or more of the matrix (100% by mass).
  • the ratio of silica is more preferably 95% by mass or more, and particularly preferably 99% by mass or more.
  • Components other than silica that may be contained in the matrix include Li, B, C, N, F, Na, Mg, Al, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Co
  • the matrix may also contain nanoparticles.
  • nanoparticles examples include inorganic nanoparticles, and examples of the composition of the inorganic nanoparticles include Al 2 O 3 , SiO 2 , SnO 2 , TiO 2 , ZnO, and ZrO 2 .
  • the average particle diameter of the nanoparticles is less than the average thickness of the antireflection layer and is preferably 1 to 100 nm.
  • the shape of the nanoparticles is not particularly limited, and examples thereof include a spherical shape, a needle shape, a hollow shape, a sheet shape, and a square shape.
  • Silica-based porous membranes are generally produced by laminating inorganic nanoparticles, but silica-based porous membranes obtained by this method tend to form voids between the particles. .
  • organic polymer nanoparticles as the matrix precursor (A) and particles (B) and heat-treating them, a matrix containing silica is formed from the matrix precursor (A), and at the same time
  • a silica-based porous film having pores that are independent pores inside can be obtained, and this can be used for the antireflection layer.
  • a method of forming a silica-based porous film using the particles (B) is referred to as a calcined porous method.
  • the means for forming the silica-based porous film the above-mentioned calcined porous method is preferable.
  • the calcined porous method the arithmetic average roughness (Sa) can be easily adjusted to 3.0 nm or less, and the numerical aperture and the outermost surface average thickness can be easily controlled.
  • the adjustment of the diameter of the particles (B) and the number of the particles (B) in the matrix is easy, the control of the pore diameter and the refractive index is also facilitated.
  • the antireflection layer has an element number ratio F / Si obtained from the peak height of F 1s and the peak height of Si 2p of 1 or more, and 2 to 50 3 to 30 are particularly preferable.
  • the element number ratio F / Si is 1 or more, excellent water repellency and oil repellency are obtained, and excellent oil and fat stain removability is exhibited.
  • the element number ratio F / Si can be controlled by applying a fluorine-containing organic compound to the silica-based porous film and introducing a fluorine-containing organic group.
  • the application of the fluorine-containing organic compound will be described later.
  • a compound having a fluorine-containing organic group and a hydrolyzable silyl group can be used, and examples thereof include a compound having a poly (oxyperfluoroalkylene) chain and a hydrolyzable silyl group.
  • Examples of the fluorine-containing organic compound include the compound (1) represented by the following formula (1).
  • A-O-R f -B (1)
  • the symbol in Formula (1) shows the following.
  • R f poly (oxyperfluoroalkylene) chain
  • A a perfluoroalkyl group having 1 to 6 carbon atoms
  • B B Group represented by the following formula (2): -Q-Si-L m R 3-m (2)
  • Symbols in the formula (2) are as follows.
  • Q a divalent linking group
  • L hydrolyzable group
  • R a hydrogen atom or a monovalent hydrocarbon group
  • m An integer from 1 to 3.
  • the compound (1) has a hydrolyzable silyl group (—Si—L m R 3-m ) on both sides or one end of the poly (oxyperfluoroalkylene) chain.
  • R f in the formula (1) examples include a poly (oxyperfluoroalkylene) chain represented by the following formula (3). - (C y F 2y O) e - ⁇ (3) Symbols in the formula (3) are as follows. y: an integer from 1 to 6 (may vary from unit to unit), e: An integer of 5 to 100. That is, a group in which —O—R f — group in formula (1) is —O— (C y F 2y O) e — can be mentioned.
  • the coupling order of different (C y F 2y O) may be either alternating, block, or random.
  • different (C y F 2y O) Poly are alternately combined (oxyperfluoroalkylene) chain.
  • a di (oxyperfluoroalkylene) group in which two types of oxyperfluoroalkylene groups are bonded can be regarded as a repeating unit of a poly (oxyperfluoroalkylene) chain.
  • Examples of the di (oxyperfluoroalkylene) group include (CF 2 CF 2 O—CF 2 CF 2 CF 2 CF 2 O), (CF 2 CF 2 O—CF 2 CF (CF 3 ) O), and (CF 2 CF 2 O—CF 2 CF 2 CF 2 O) and the like.
  • L represents a hydrolyzable group.
  • L is preferably a group selected from the group consisting of an alkoxy group, an acyloxy group, an alkenyloxy group, an isocyanate group and a halogen atom.
  • L is preferably an alkoxy group having 1 to 10 carbon atoms, an acyloxy group having 2 to 10 carbon atoms, and an alkenyloxy group having 2 to 10 carbon atoms.
  • an alkoxy group having 1 to 4 carbon atoms is preferable from the viewpoint of easy industrial production, and less outgassing during vapor deposition and wet coating, and excellent storage stability of the compound (1).
  • An ethoxy group is particularly preferred when long-term storage stability of the compound (1) is required, and a methoxy group is particularly preferred when the reaction time after vapor deposition and wet coating is short.
  • m is an integer of 1 to 3, 2 or 3 is preferable, and 3 is particularly preferable.
  • a plurality of L in the molecule the bond with the surface of the substrate becomes stronger.
  • m is 2 or more, a plurality of L present in one molecule may be the same as or different from each other. It is preferable that the raw materials are the same from the viewpoint of easy availability and production.
  • R is a hydrogen atom or a monovalent hydrocarbon group.
  • the monovalent hydrocarbon group include an alkyl group, a cycloalkyl group, an alkenyl group, and an aryl group.
  • R is preferably a monovalent hydrocarbon group, particularly preferably a monovalent saturated hydrocarbon group.
  • the number of carbon atoms of the monovalent saturated hydrocarbon group is preferably 1 to 6, more preferably 1 to 3, and particularly preferably 1 to 2.
  • R is preferably an alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, and an alkyl group having 1 to 2 carbon atoms because synthesis is simple. Particularly preferred.
  • the number of R bonded to the silicon atom is 3-m. As described above, m is preferably 2 or 3, and particularly preferably 3. Therefore, the number of R bonded to the silicon atom is preferably 0 or 1, and 0 is particularly preferable. In the formula (2), when R is 0 or 1, a bond between the silanol group and the surface of the substrate is likely to be formed.
  • Q is a divalent linking group and may contain one or more selected from the group consisting of an amide bond, a urethane bond, an ether bond and an ester bond, and / or a part of a hydrogen atom or Examples thereof include divalent hydrocarbon groups having 2 to 12 carbon atoms, all of which may be substituted with fluorine atoms.
  • Q is preferably a divalent group represented by the following formula (4).
  • Symbols in the formula (4) are as follows.
  • C f F 2f , C g H 2g and C h H 2h in the formula (4) may have a linear structure or a branched structure, and are excellent in oil and fat stain removal A linear structure is preferred.
  • Compound (1) is prepared by preparing a compound containing a polyoxyalkylene unit as a repeating unit as a raw material, fluorinated and then reacting with a lower alcohol, and in some cases, reducing and an ethylenically unsaturated bond at one end After the formation, it can be obtained by reacting a hydrolyzable group-containing silane compound having a reactive group.
  • a compound (1) is also compoundable by the following method.
  • the compound (1) having a poly (oxyperfluoroalkylene) chain in which different (C y F 2y O) are alternately bonded can be synthesized by the following method.
  • a fluoro compound having CF 2 ⁇ CF—O— at the terminal and a carboxy group or a group that can be converted to a carboxy group is prepared, and this is reduced to form CF 2 ⁇ CF—O—, and a hydroxyl group.
  • a compound containing a di (fluorooxyalkylene) group as a repeating unit which is polymerized in the presence of an alcohol or a fluorine-containing alcohol, and having a fluorooxyethylene unit and another fluorooxyalkylene unit bonded to each other.
  • the resulting compound is fluorinated to form a perfluoro compound, which is further reacted with a lower alcohol.
  • the hydrolyzable having a reactive group Compound (1) can be obtained by reacting the group-containing silane compound.
  • Examples of the compound (1) include the following. CF 3 —O— (CF 2 CF 2 O) e1 —CF 2 C (O) NH (CH 2 ) 2 —Si (OCH 3 ) 3 CF 3 —O— (CF 2 CF 2 O) e1 —CF 2 C (O) NH (CH 2 ) 3 —Si (OCH 3 ) 3 CF 3 CF 2 —O— (CF 2 CF 2 O) e1 —CF 2 C (O) NH (CH 2 ) 3 —Si (OCH 3 ) 3 CF 3 CF 2 CF 2 —O— (CF 2 CF 2 O) e 1 —CF 2 C (O) NH (CH 2 ) 3 —Si (OCH 3 ) 3 CF 3 —O— (CF 2 CF 2 O) e 1 —CF 2 C (O) NH (CH 2 ) 3 —Si (OCH 3 ) 3 CF 3 —O— (CF 2
  • the compound (1) commercially available products can be used, and examples include OPTOOL DSX, OPTOOL AES (manufactured by Daikin Industries), and Dow Corning 2634 coating (manufactured by Dow Corning Toray).
  • OPTOOL DSX OPTOOL DSX
  • OPTOOL AES manufactured by Daikin Industries
  • Dow Corning 2634 coating manufactured by Dow Corning Toray
  • a fluorooxyalkylene group-containing polymer composition described in JP2011-116947A can also be used.
  • a well-known method may be used for the manufacturing method of the base material with an antireflection layer.
  • Using the fired porosification method it is possible to produce a base material with an antireflection layer that has excellent antireflection characteristics and has high water repellency / oil repellency and good oil and fat stain removability as follows. It is preferable to manufacture.
  • the substrate By applying a coating liquid containing a matrix precursor (A), particles (B) that can be removed from the matrix by heating, and a liquid medium (C) to the surface of the substrate and heating, the substrate It can be produced by forming a silica-based porous film on the top, then applying a fluorine-containing organic compound and introducing a fluorine-containing organic group.
  • a coating liquid containing a matrix precursor (A) particles (B) that can be removed from the matrix by heating, and a liquid medium (C)
  • the substrate It can be produced by forming a silica-based porous film on the top, then applying a fluorine-containing organic compound and introducing a fluorine-containing organic group.
  • the silica of the matrix is formed by a sol-gel method.
  • tetrafunctional hydrolyzable silane such as tetraalkoxysilane is usually used.
  • the matrix precursor (A) is composed of a compound represented by the following formula (a1) which is a tetrafunctional hydrolyzable silane, a hydrolyzate and a partial condensate thereof.
  • a compound (A2) SiX 1 4 (a1) Y n SiX 2 4-n (a2) [Wherein, X 1 and X 2 represent a hydrolyzable group, Y represents a non-hydrolyzable group, and n represents an integer of 1 to 3. ]
  • examples of X 1 include the same groups as L described above.
  • An alkoxy group is particularly preferred because it can be easily handled in the air and the hydrolysis polycondensation reaction can be easily controlled.
  • an alkoxy group an alkoxy group having 1 to 4 carbon atoms is preferable, and a methoxy group or an ethoxy group is particularly preferable.
  • a plurality of X 1 present in one molecule may be the same as or different from each other. It is preferable that they are the same as each other in terms of easy availability and ease of control of the hydrolysis polycondensation reaction.
  • the compound (a1) include, for example, tetraalkoxysilane (tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, etc.), and tetramethoxysilane and tetraethoxysilane are preferable. These may be used alone or in combination of two or more.
  • the hydrolyzate and partial condensate of compound (a1) can be obtained by a conventional method.
  • a hydrolyzate or a partial condensate can be obtained by mixing the compound (a1) and water.
  • n is preferably 1 or 2, and 1 is particularly preferable.
  • Examples and preferred examples of the hydrolyzable group for X 2 include those similar to X 1 described above.
  • a plurality of X 2 present in one molecule may be the same as or different from each other. It is preferable that they are the same as each other in terms of availability, ease of controlling the hydrolysis reaction, and the like.
  • examples of Y include a perfluoropolyether group, a perfluoroalkyl group, an alkyl group, an aryl group (such as a phenyl group), and the like, which are eliminated after heating to form a silanol group on the surface of the silica-based porous film.
  • the organic group Y bonded to the silicon atom is an organic group that is relatively difficult to disappear, the formation of vacancies by the disappearance of the particles (B) proceeds before the disappearance of Y, and the silica formation after the formation of the vacancies It is considered that smoothing of the film by the reaction proceeds sufficiently.
  • the compound (a2) include, for example, monoalkyltrialkoxysilane (such as methyltrimethoxysilane), monoaryltrialkoxysilane (such as phenyltrimethoxysilane and phenyltriethoxysilane), and diaryl dialkoxysilane (diphenyldimethoxy). Silane, diphenyldiethoxysilane, etc.), triarylmonoalkoxysilane (triphenylmethoxysilane, triphenylethoxysilane, etc.) and the like.
  • monoalkyltrialkoxysilane such as methyltrimethoxysilane
  • monoaryltrialkoxysilane such as phenyltrimethoxysilane and phenyltriethoxysilane
  • diaryl dialkoxysilane diphenyldimethoxy
  • monoalkyltrialkoxysilanes and monoaryltrialkoxysilanes are preferred, and monoaryltrialkoxysilanes are particularly preferred because they are readily available and do not generate an inert gas during thermal decomposition. These may be used alone or in combination of two or more.
  • the hydrolyzate and partial condensate of compound (a2) can be obtained in the same manner as the hydrolyzate and partial condensate of compound (a1).
  • the compounds (a1) and (a2) may be mixed in advance to perform a cohydrolysis polycondensation reaction.
  • the ratio of the content of the compound (A1) and the compound (A2) is converted into the molar ratio ((a1) / (a2)) of the compound (a1) and the compound (a2). 0.1 to 3.0 is preferable, and 0.2 to 2.0 is particularly preferable. If this ratio is greater than or equal to the lower limit, hydrolysis polycondensation proceeds sufficiently, and if it is less than the lower limit, the amount of Y that is an organic group bonded to a silicon atom is so large that the disappearance may be insufficient.
  • this ratio exceeds the upper limit, the amount of Y is small, the reaction at the latter stage of the two-stage silica formation reaction is shortened, and the disappearance of the particles (B) may be insufficient. Furthermore, since it is below the upper limit, the film surface is sufficiently smoothed, the refractive index is sufficiently lowered, and the film strength is improved.
  • the content of the matrix precursor (A) in the coating solution is not particularly limited as long as the coating solution can be applied, but as a solid content concentration in terms of SiO 2 with respect to the total amount (100% by mass) of the coating solution. 0.2 to 20% by mass is preferable, and 0.5 to 15% by mass is particularly preferable. When it is at least the lower limit of the above range, the hydrolysis polycondensation reaction proceeds sufficiently, and when it is at most the upper limit of the above range, the hydrolysis polycondensation reaction can be easily controlled and the long-term storage stability is excellent.
  • SiO 2 in terms of solids are solids when all the Si matrix precursor contained in the coating liquid (A) was converted to SiO 2.
  • Examples of the particles (B) in the present invention include particles made of a thermally decomposable material or a thermally sublimable material.
  • the thermal decomposition temperature of the thermally decomposable material is preferably 100 to 800 ° C, particularly preferably 200 to 700 ° C.
  • Examples of the thermally decomposable material include carbon, organic polymer, and surfactant micelle. Among these, from the viewpoint of stability over time, carbon or an organic polymer is preferable, and an organic polymer is particularly preferable.
  • the thermal decomposition temperature of the organic polymer in air varies depending on the type and molecular weight of the organic polymer, but is generally about 200 to 600 ° C.
  • the thermal decomposition temperature of the organic polymer can be measured by differential thermal-thermogravimetric simultaneous measurement (TG-DTA).
  • the organic polymer is not particularly limited as long as synthesis of nanoparticles having a desired particle size can be obtained, but (meth) acrylic monomers, styrene monomers, diene monomers, imide monomers, amide monomers.
  • a homopolymer or copolymer of a monomer selected from the group consisting of (hereinafter also referred to as “specific monomer group”) is preferable, and an acrylic monomer is particularly preferable as a monomer that is a raw material for the polymer.
  • Acrylic monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, (meth ) Pentyl acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, ( (Meth) acrylic acid phenyl, (meth) acrylic acid methoxyethyl, (meth) acrylic acid ethoxyethyl, (meth) acrylic acid propoxyethyl, (meth) acrylic acid butoxyethyl, (meth) acrylic acid ethoxypropyl, diethylamin
  • poly (methyl methacrylate) (PMMA) and polystyrene (PS) are preferable, and PMMA is particularly preferable.
  • the thermal decomposition temperature of the homopolymer or copolymer is preferably 200 to 600 ° C, particularly preferably 300 to 500 ° C.
  • organic polymer particles commercially available products may be used, or those produced by a known method for producing organic polymer nanoparticles may be used.
  • a dispersion in which organic polymer nanoparticles are dispersed can be obtained by a known emulsion polymerization method.
  • an aqueous dispersion of organic polymer nanoparticles can be obtained by adding a monomer to water containing a surfactant, mixing to form micelles, and adding a polymerization initiator for polymerization.
  • the average primary particle diameter of the particles (B) is preferably 20 to 130 nm, and more preferably 30 to 100 nm.
  • a silica-based porous film having pores having a diameter of 20 nm or more can be formed.
  • the numerical aperture can be 13/10 6 nm or less.
  • the average pore diameter tends to be 15 to 100 nm.
  • the average primary particle size in this specification is 100 particles randomly selected from an image obtained by observation with a transmission electron microscope, the particle size of each particle is measured, and the particle size of 100 particles is determined. It is average.
  • the particles (B) one type may be used alone, or two or more types having different materials and average primary particle diameters may be used in combination.
  • the content of the particles (B) in the coating solution is such that the mass ratio ((A) / (B)) between the content of the matrix precursor (A) in terms of SiO 2 and the content of the particles (B) is 0.
  • the amount is preferably from 3 to 4.0, and particularly preferably from 0.5 to 3.0.
  • (A) / (B) is at least the lower limit of the above range, the silica-based porous membrane is excellent in durability. If it is below the upper limit of the said range, the refractive index of a silica type porous membrane will become low enough (for example, 1.38 or less).
  • the liquid medium (C) in the present invention is a liquid in which the matrix precursor (A) is dissolved and the particles (B) are dispersed, and a mixed liquid in which two or more liquids are mixed even if they are composed of a single liquid. It may be. Since water is required for hydrolysis of the compounds (a1) and (a2), the liquid medium (C) preferably contains at least water. Water and other liquids may be used in combination.
  • Examples of the other liquid include alcohols (methanol, ethanol, isopropanol, butanol, diacetone alcohol, etc.), ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.), ethers (tetrahydrofuran, 1,4-dioxane, etc.).
  • alcohols methanol, ethanol, isopropanol, butanol, diacetone alcohol, etc.
  • ketones acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.
  • ethers tetrahydrofuran, 1,4-dioxane, etc.
  • Cellosolves methyl cellosolve, ethyl cellosolve, etc.
  • esters methyl acetate, ethyl acetate, etc.
  • glycol ethers ethylene glycol monoalkyl ether, etc.
  • nitrogen-containing compounds N, N-dimethylacetamide, N, N -Dimethylformamide, N-methylpyrrolidone, etc.
  • sulfur-containing compounds dimethylsulfoxide, etc.
  • the content of the liquid medium (C) is preferably 90.0 to 99.5% by mass, particularly preferably 95.0 to 99.0% by mass of the coating solution.
  • the coating solution may contain other components other than the matrix precursor (A), the particles (B), and the liquid medium (C) as long as the effects of the present invention are not impaired.
  • the other component include a curing catalyst (metal chelate, metal alcoholate, organotin, etc.) for improving the reactivity of the matrix precursor (A).
  • Examples of the preparation method of the coating liquid include a method of mixing the matrix precursor (A), particles (B), other components and the liquid medium (C), and a method of previously mixing a part thereof.
  • Dispersion of matrix precursor (A) solution hereinafter also referred to as “matrix precursor solution”
  • particles (B) in that it has excellent water and oil repellency and excellent grease and oil removability.
  • a liquid hereinafter also referred to as “particle dispersion”.
  • the liquid medium (C) is a mixture of the liquid medium in the matrix precursor solution and the liquid medium in the particle dispersion.
  • the matrix precursor (A) solution is a solution of the matrix precursor (A) and a liquid medium.
  • the liquid medium a mixture of water and alcohols is preferable, and as the alcohols, methanol and ethanol are particularly preferable.
  • the particle dispersion is a dispersion of particles (B) and a liquid medium, which includes alcohols, ketones, ethers, cellosolves, esters, glycol ethers, nitrogen-containing compounds, sulfur-containing compounds. Etc. are preferred.
  • a coating method of the coating liquid in the present invention a known method can be used, and a wet coating method (spin coating method, spray coating method, dip coating method, die coating method, curtain coating method, screen coating method, ink jet method, And flow coating method, gravure coating method, bar coating method, flexo coating method, slit coating method, roll coating method, sponge coating method and the like.
  • the coating temperature is preferably 10 to 100 ° C, particularly preferably 20 to 80 ° C.
  • a layer of the coating liquid is formed on the substrate, and the liquid medium (C) is removed to obtain a solid layer containing the matrix precursor (A) and particles (B) (hereinafter also referred to as “precursor layer”). Is formed.
  • the liquid medium (C) is removed by heating the layer of the coating liquid and evaporating and removing the liquid medium (C) (hereinafter also referred to as “drying”). Further, it is considered that the hydrolysis reaction or condensation reaction of the matrix precursor (A) proceeds during this heating. Therefore, it is considered that the matrix precursor (A) in the precursor layer is different from the matrix precursor (A) in the coating solution in the degree of hydrolysis polycondensation reaction.
  • the matrix precursor (A) is converted to silica by heating to a higher temperature and the particles (B) are pyrolyzed to form pores, and a silica-based porous film is formed on the substrate.
  • the heating for evaporating and removing the liquid medium (C) and the subsequent heating for forming the silica-based porous film may be performed continuously while changing the heating temperature, or may be performed stepwise. Further, the heating mainly for forming silica and the heating mainly for pyrolyzing the particles (B) may be performed continuously or step by step while changing the heating temperature, or at a constant temperature. Also good.
  • the heating temperature for changing the matrix precursor (A) to silica and the particles (B) to pores may be appropriately determined according to the substrate, the matrix precursor (A) and the particles (B).
  • the particles (B) are composed of a thermally decomposable material such as carbon or an organic polymer, and the particles (B) are removed by heating, heat treatment is performed at a temperature equal to or higher than the thermal decomposition temperature of the thermally decomposable material.
  • the particles (B) can be removed.
  • the heat treatment temperature is preferably (thermal decomposition temperature + 100 ° C.) or higher, particularly preferably (thermal decomposition temperature + 50 ° C.) or higher.
  • the heating time is not particularly limited as long as it can change the particles (B) into pores, but is preferably 1 to 60 minutes.
  • the silica-based porous membrane thus obtained has an arithmetic average roughness (Sa) of the outermost surface of 3.0 nm or less, preferably 2.8 nm or less, particularly preferably 2.6 nm or less. Further, the water contact angle on the outermost surface is preferably 100 ° or more, and particularly preferably 110 ° or more, from the viewpoint that the fluorine-containing organic compound can be easily applied.
  • Sa arithmetic average roughness
  • Introduction of a fluorine-containing organic group into a silica-based porous membrane can be performed by applying a fluorine-containing organic compound, and the application method is to treat the surface of the silica-based porous membrane with a fluorine-containing organic compound by dry coating. And a method of applying a coating liquid containing a fluorine-containing organic compound on the surface of the silica-based porous membrane and drying it (wet coating method).
  • dry coating method a known method can be used, and examples thereof include vacuum deposition, CVD, and sputtering.
  • the coating liquid in the wet coating method contains a fluorine-containing organic compound and a liquid medium.
  • the coating liquid may be liquid, and may be a solution or a dispersion.
  • the content of the fluorine-containing organic compound in the coating liquid is preferably 0.001 to 10% by mass, particularly preferably 0.1 to 1% by mass.
  • the liquid medium in the coating liquid is preferably an organic solvent, and may be a fluorinated organic solvent or a non-fluorinated organic solvent, or both may be used in combination.
  • fluorinated organic solvent examples include fluorinated alkanes, fluorinated aromatic compounds, fluoroalkyl ethers, fluorinated alkylamines, and fluoroalcohols.
  • fluorinated alkane a compound having 4 to 8 carbon atoms is preferable.
  • commercially available products include C 6 F 13 H (AC-2000: product name, manufactured by Asahi Glass Co., Ltd.), C 6 F 13 C 2 H 5 (AC-6000: product name, manufactured by Asahi Glass Co., Ltd.), C 2 F 5 CHFCHFCF 3 (Bertrel: product name, manufactured by DuPont).
  • fluorinated aromatic compound examples include hexafluorobenzene, trifluoromethylbenzene, perfluorotoluene, and bis (trifluoromethyl) benzene.
  • fluoroalkyl ether a compound having 4 to 12 carbon atoms is preferable.
  • Examples of commercially available products include CF 3 CH 2 OCF 2 CF 2 H (AE-3000: product name, manufactured by Asahi Glass Co., Ltd.), C 4 F 9 OCH 3 (Novec-7100: product name, manufactured by 3M Company), C 4 F 9 OC 2 H 5 (Novec-7200: product name, manufactured by 3M), C 6 F 13 OCH 3 (Novec-7300: product name, manufactured by 3M), and the like.
  • Examples of the fluorinated alkylamine include perfluorotripropylamine and perfluorotributylamine.
  • the fluoroalcohol examples include 2,2,3,3-tetrafluoropropanol, 2,2,2-trifluoroethanol, hexafluoroisopropanol and the like.
  • the fluorine-based organic solvent is preferably a fluorinated alkane, a fluorinated aromatic compound, or a fluoroalkyl ether, and particularly preferably a fluoroalkyl ether, from the viewpoint of solubility of the fluorine-containing organic compound.
  • non-fluorine organic solvents include hydrocarbon compounds, compounds composed of hydrogen atoms, carbon atoms, and oxygen atoms, such as hydrocarbon organic solvents, alcohol organic solvents, ketone organic solvents, ether organic solvents, It is an ester organic solvent.
  • hydrocarbon-based organic solvent include hexane, heptane, cyclohexane and the like.
  • alcohol-based organic solvent include methanol, ethanol, propanol, isopropanol and the like.
  • the ketone organic solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, and the like.
  • ether organic solvent examples include diethyl ether, tetrahydrofuran, tetraethylene glycol dimethyl ether and the like.
  • ester organic solvent examples include ethyl acetate and butyl acetate.
  • non-fluorine organic solvent a ketone organic solvent is preferable from the viewpoint of solubility of the fluorine-containing organic compound.
  • the liquid medium is preferably at least one selected from the group consisting of fluorinated alkanes, fluorinated aromatic compounds, fluoroalkyl ethers, hydrocarbon compounds, and compounds consisting of hydrogen atoms, carbon atoms, and oxygen atoms.
  • a fluorinated organic solvent selected from the group consisting of fluorinated alkanes, fluorinated aromatic compounds and fluoroalkyl ethers is preferred.
  • the liquid medium is selected from the group consisting of fluorinated alkanes that are fluorinated organic solvents, fluorinated aromatic compounds, fluoroalkyl ethers, and non-fluorinated organic solvents that are composed only of hydrogen atoms, carbon atoms, and oxygen atoms.
  • the content of the liquid medium in the coating liquid is preferably 90 to 99.999% by mass, particularly preferably 99 to 99.99% by mass.
  • the coating liquid may contain other components other than the fluorine-containing organic compound and the liquid medium as long as the effects of the present invention are not impaired.
  • the other component include known additives such as an acid catalyst and a basic catalyst that promote hydrolysis and condensation reaction of the hydrolyzable silyl group.
  • the acid catalyst include hydrochloric acid, nitric acid, acetic acid, sulfuric acid, phosphoric acid, sulfonic acid, methanesulfonic acid, p-toluenesulfonic acid and the like.
  • the basic catalyst include sodium hydroxide, potassium hydroxide, ammonia and the like.
  • the content of the other components in the coating liquid is preferably 10% by mass or less, and particularly preferably 1% by mass or less.
  • the solid content concentration of the coating liquid is preferably 0.001 to 10% by mass, particularly preferably 0.01 to 1% by mass.
  • the solid content concentration of the coating liquid is a value calculated from the mass of the coating liquid before heating and the mass after heating for 4 hours in a convection dryer at 120 ° C.
  • a known method can be used, such as a spin coating method, a wipe coating method, a spray coating method, a squeegee coating method, a dip coating method, a die coating method, an inkjet method, a flow coating method, Examples thereof include a roll coating method, a casting method, a Langmuir / Blodgett method, and a gravure coating method.
  • the drying method may be any method that can dry and remove the liquid medium, and a known method can be used.
  • the drying temperature is preferably from 10 to 300 ° C, particularly preferably from 20 to 200 ° C.
  • the water contact angle can be 90 degrees or more, preferably 100 degrees, 110 degrees or more is particularly preferable.
  • the base material with an antireflection layer of the present invention can be attached to the entire surface of a display member of a display device such as various displays and touch panels. Moreover, it is suitable also for the use for which the low reflection glass for vehicles, construction, and various industries is used.
  • Examples 1 to 5 are the production of particle dispersions, matrix precursor solutions, coating solutions, glass plates with a silica-based porous film, and fluorine-containing organic compounds.
  • Examples 6 to 7 are examples, and examples 8 to 10 are comparative examples. It is. The measurement method and evaluation method used in each example are shown below.
  • ⁇ Measuring method ⁇ Average primary particle size of particle dispersion
  • the particle dispersion was diluted to 0.1% by mass with water, it was sampled on the collodion membrane and observed with a transmission electron microscope (manufactured by Hitachi, Ltd., model: H-9000), and 100 particles (B ) Were randomly selected, and the average value obtained by measuring the diameter of each particle was defined as the average primary particle diameter of the particles in the particle dispersion.
  • the matrix precursor (A) was diluted to 0.5% with tetrahydrofuran, and then measured using a high-speed GPC apparatus (manufactured by Tosoh Corporation, model: HLC-8320GPC).
  • the average thickness of the antireflective layer and the average thickness of the outermost surface of the glass plate with the antireflective layer are the total film forming portion of the manufactured glass plate with a silica-based porous film and the outermost thin film portion not including voids / holes, respectively. From the image obtained by observing the cross section with a scanning electron microscope SEM (manufactured by Hitachi, Ltd., model: S-4300), each film thickness was measured at 100 locations, and the average value thereof was calculated.
  • the pores having a diameter of 20 nm or more in the antireflection layer of the glass plate with the antireflection layer are obtained by scanning a cross section of the produced glass plate with the silica-based porous film by a scanning electron microscope SEM (manufactured by Hitachi, Ltd., model: S-4300)
  • SEM scanning electron microscope
  • the numerical aperture of the outermost surface of the antireflection layer of the glass plate with the antireflection layer was observed with a scanning electron microscope SEM (manufactured by Hitachi, Ltd., model: S-4300), and from the obtained image, 1,000 nm ⁇ 1 It was determined by measuring the number of openings having a diameter of 20 nm or more existing in a region of 1,000 nm.
  • the refractive index of the antireflection layer of the glass plate with the antireflection layer was measured with an ellipsometer (manufactured by JA Woollam, model: M-2000DI), and the refractive index at a wavelength of 589.3 nm was obtained.
  • the back surface was painted black and measured.
  • the arithmetic average roughness (Sa) of the outermost surface of the glass plate with an antireflection layer was measured in a measurement range of 10 ⁇ m ⁇ 10 ⁇ m using a scanning probe microscope apparatus (SII Nanotechnology, SPA400DFM).
  • the portion where the fingerprint was attached was wiped off with a load of 500 g using a reciprocating traverse tester (manufactured by KT Corporation) equipped with tissue paper.
  • the haze value was measured for each reciprocation, and when the haze value reached 0.5% or less until 10 reciprocations, ⁇ (good) and x (bad) when 0.5% were exceeded. .
  • Example 1-1 Production of liquid (1)> 5 g of polyethylene oxide (molecular weight 1,000,000) was dissolved in 95 g of water to obtain a polyethylene oxide solution (1).
  • the solid content concentration (% by mass) of the obtained solution is shown in Table 1.
  • Example 1-2 and Example 1-3 Production of particle dispersions (2) and (3)> Sodium dodecyl lactate (SDS) and water were added to a 200 mL glass container and stirred. Next, methyl methacrylate (MMA) was added, stirred and emulsified. Next, ammonium persulfate (APS) as a polymerization initiator was added, heated to 70 ° C., and held for 1 hour to obtain particle dispersions (2) and (3). Table 1 shows the amount used, the solid content concentration (mass%) of the obtained particle dispersion, the material of the particles, and the average primary particle diameter (nm). PMMA indicates poly (methyl methacrylate).
  • SDS Sodium dodecyl lactate
  • MMA methyl methacrylate
  • APS ammonium persulfate
  • Table 1 shows the amount used, the solid content concentration (mass%) of the obtained particle dispersion, the material of the particles, and the average primary particle diameter (nm).
  • PMMA indicates poly (methyl methacryl
  • Example 2-1 and Example 2-2 Production of matrix precursor liquids (1) and (2)> A raw material solution was prepared by mixing and dissolving the raw materials shown in Table 2. The raw material liquid was heated to 25 ° C. and hydrolyzed by stirring for 1 hour to obtain matrix precursor solutions (1) and (2).
  • Table 2 shows the solid content concentration (SiO 2 conversion solid content concentration), acid concentration, and molar ratio ((a1) / (a2)) of the precursor solution.
  • AP-1 is Solmix AP-1 (ethanol: 85.5% by mass, isopropanol (IPA): 13.4% by mass, methanol 0.1% by mass, water: manufactured by Nippon Alcohol Sales Co., Ltd. 0.2% by mass), and HNO 3 aq.
  • TEOS represents tetraethoxysilane
  • PTMS represents phenyltrimethoxysilane
  • TMOS represents tetramethoxysilane
  • MTMS represents methyltrimethoxysilane.
  • Example 3-1 to Example 3-3 Production of coating solutions (1) to (3)> Coating liquids (1) to (3) were produced by mixing the particle dispersion and the matrix precursor solution in the types and blending amounts shown in Table 3.
  • Examples 4 to 1 to 4-3 Production of glass plates with silica-based porous membrane (1) to (3)>
  • the coating liquids (1) to (3) obtained in Examples 3-1 to 3-3 were applied to the surface of a glass plate (soda lime glass, manufactured by Asahi Glass Co., Ltd., size: 100 mm ⁇ 100 mm, thickness: 3.2 mm).
  • the glass plates with silica-based porous film (1) to (3) were obtained by heating at 650 ° C. for 5 minutes.
  • Example 4-4 Production of glass plate with silica-based porous membrane (4)>
  • a 200 mL glass reaction vessel 60 g of ethanol, ZnO fine particle aqueous dispersion sol (manufactured by Sakai Chemical Industry Co., Ltd., product name: NANOFINE-50, average primary particle size: 20 nm, average aggregated particle size: 100 nm, solid content conversion
  • an aqueous ammonia solution was added to adjust the pH to 10, followed by stirring at 20 ° C. for 6 hours.
  • a core-shell type fine particle dispersion (solid concentration: 6% by mass) was obtained.
  • 100 g of a strongly acidic cation exchange resin (manufactured by Mitsubishi Chemical Corporation, trade name: Diaion, total exchange capacity 2.0 (meq / mL) or more) is added to the obtained core-shell type fine particle dispersion.
  • the strongly acidic cation exchange resin was removed by filtration to obtain 100 g of a hollow SiO 2 fine particle dispersion.
  • the thickness of the outer shell of the SiO 2 hollow particles was 10 nm, and the pore diameter was 20 nm.
  • the SiO 2 fine particles were aggregate particles, and the average aggregate particle diameter was 100 nm.
  • the coating liquid 1 was manufactured by mixing 7.3 g of isopropanol at room temperature. The ratio between the hollow silica particles and the matrix component contained in the coating liquid 1 was 7: 3 (mass ratio) in terms of SiO 2 .
  • the surface of a 3.5 mm thick green glass plate (trade name: UVFL, manufactured by Asahi Glass Co., Ltd.) was polished with fine particles of cerium oxide, and then the surface was washed with water.
  • coating liquid 1 is applied to the surface by spin coating, dried in a 200 ° C. hot air circulating oven for 5 minutes, and further baked in a 600 ° C. muffle furnace for 5 minutes to form a glass with a silica-based porous film A plate (4) was produced.
  • An autoclave (made of nickel, internal volume 1 L) was prepared, and a cooler maintained at 0 ° C., a sodium fluoride pellet packed bed, and a cooler maintained at ⁇ 10 ° C. were installed in series at the gas outlet of the autoclave.
  • a liquid return line for returning the liquid aggregated from the cooler maintained at ⁇ 10 ° C. to the autoclave was installed.
  • 750 g of R-113 was charged into the autoclave and stirred while maintaining at 25 ° C. After nitrogen gas was blown into the autoclave at 25 ° C. for 1 hour, fluorine gas diluted to 20% by volume with nitrogen gas (hereinafter referred to as “20% fluorine gas”) was supplied at 25 ° C.
  • Examples 6 to 10 The fluorine-containing organic compound (10i) produced in Example 5 was dissolved in Novec-7200 (manufactured by 3M) as a medium to prepare a coating solution having a solid content concentration of 0.05%.
  • the glass plate with a silica-based porous film was dipped in the coating solution (dip coating method) and left for 30 minutes, and then the glass plate with the silica-based porous film was pulled up. It was dried at 200 ° C. for 30 minutes and washed with AK-225 to obtain a glass plate with an antireflection layer.
  • Table 4 shows the measured values of each characteristic.
  • DSX is Optool DSX (manufactured by Daikin Industries).
  • the fingerprint stain removability of Example 9 and Example 10 is not carried out because the water contact angle is low, the element number ratio F / Si is less than 1, and the antifouling property is insufficient.
  • the glass plate with an antireflection layer produced in Examples 6 and 7 has a low refractive index. Since the water contact angle is high and the element number ratio F / Si is 1 or more, the antifouling property is excellent. In addition, it has excellent fingerprint stain removal. On the other hand, the glass plate with an antireflection layer produced in Example 8 has insufficient fingerprint stain removability. This is presumably because the arithmetic mean roughness was more than 3 nm, and fingerprint stains were buried in the surface of the antireflection layer and could not be removed. Since the glass plate with an antireflection layer produced in Example 9 has a low water contact angle and an element number ratio F / Si of less than 1, the antifouling property is insufficient. Since the glass plate with an antireflection layer produced in Example 10 has a low water contact angle and an element number ratio F / Si of less than 1, the antifouling property is insufficient.
  • the display apparatus provided with the base material with an antireflection layer which is excellent in the antireflection characteristic, has the outstanding water repellency and oil repellency, and the removal property of the fats and oils, and the base material with an antireflection layer Provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Theoretical Computer Science (AREA)
  • Dispersion Chemistry (AREA)

Abstract

 本発明は、反射防止特性に優れるとともに、高い撥水性・撥油性と良好な油脂汚れの除去性を有する反射防止層付き基材、および反射防止層付き基材を備えた表示装置を提供することを目的とする。 基材の少なくとも一方の表面の上に反射防止層を備えた反射防止層付き基材であって、 前記反射防止層が含フッ素有機基を有するシリカ系多孔質膜を含み、 反射防止層の基材とは反対側の表面が、走査型X線光電子分光法(ESCA)による表面分析において、F1sのピーク高さおよびSi2pのピーク高さから求める元素数比F/Siが1以上であり、かつ3.0nm以下の算術平均粗さ(Sa)を有する、反射防止層付き基材、および反射防止層付き基材を備えた表示装置である。

Description

反射防止層付き基材
 本発明は、反射防止層付き基材、反射防止層付き基材の製造方法および反射防止層付き基材を備えた表示装置に関する。
 携帯電話、携帯情報端末等の小型ディスプレイ、各種テレビ等の大型ディスプレイ、タッチパネルといった各種表示装置において、ディスプレイの保護や、美観を高めることを目的として、表示部材の前面にカバーガラス(保護ガラス)が用いられることが多くなっている。さらに、表示装置に表示される画像の視認性を向上させるため、カバーガラスの表面に、可視光に対する反射防止膜を形成した反射防止膜付きガラスが使用されている。
 表示装置における反射防止膜付きガラスには、高い撥水性・撥油性はもちろん、人の手が触れることが多く、指紋等の油脂汚れが付着しやすいため、油脂汚れの除去性が求められている。これに対して、例えば、中空粒子を含む防汚性の反射防止膜を、ガラス等の透明基材に適用する方法が提案されている(特許文献1)。
特開2008-139581号公報
 本発明者によれば、特許文献1の方法においては、反射防止特性に優れる点から、中空粒子の割合を多くして反射防止膜の屈折率を下げることが好ましい。しかしながら、中空粒子間に空隙が形成されやすく、また、表面に凹凸や開放孔が生じ、油脂汚れが付着すると汚れが浸透してしまい、きれいに拭き取ることができない。反射防止膜の平滑性を向上させる点から、反射防止膜におけるマトリックス成分の割合を増加させると、急激に反射防止特性が低下してしまう。
 本発明は、反射防止特性に優れるとともに、優れた撥水性・撥油性と優れた油脂汚れの除去性を有する反射防止層付き基材、反射防止層付き基材の製造方法および反射防止層付き基材を備えた表示装置を提供することを目的とする。
 本発明は、下記[1]~[15]の構成を有する反射防止層付き基材、反射防止層付き基材の製造方法および反射防止層付き基材を備えた表示装置を提供する。
[1]基材の少なくとも一方の表面の上に反射防止層を備えた反射防止層付き基材であって、
 前記反射防止層が含フッ素有機基を有するシリカ系多孔質膜を含み、
 反射防止層の基材とは反対側の表面が、走査型X線光電子分光法(ESCA)による表面分析において、F1sのピーク高さおよびSi2pのピーク高さから求める元素数比F/Siが1以上であり、かつ3.0nm以下の算術平均粗さ(Sa)を有することを特徴とする反射防止層付き基材。
[2]前記反射防止層の屈折率が1.10~1.38である、[1]の反射防止層付き基材。
[3]前記反射防止層が直径20nm以上の空孔を含み、かつ反射防止層の基材とは反対側の表面の開口数が13個/10nm以下である、[1]または[2]の反射防止層付き基材。
[4]前記反射防止層において、直径20nm以上の独立孔から、反射防止層の基材とは反対側の表面までの最短距離の平均値が10~80nmである、[3]の反射防止層付き基材。
[5]前記反射防止層において、空孔の平均直径が15~100nmである、[3]または[4]の反射防止層付き基材。
[6]前記反射防止層の厚さの平均値が90~260nmである、[1]~[5]のいずれかの反射防止層付き基材。
[7]前記シリカ系多孔質膜が、シリカを主成分とするマトリックス中に複数の空孔を有する、[1]~[6]のいずれかの反射防止層付き基材。
[8]前記反射防止層が、反射防止層の基材とは反対側の表面において、含フッ素有機基を有する、[1]~[7]のいずれかの反射防止層付き基材。
[9]前記含フッ素有機基が、ポリ(オキシペルフルオロアルキレン)鎖および加水分解性シリル基を有する化合物由来の基である、[8]の反射防止層付き基材。
[10]前記化合物が、下式(1)で表される化合物である、[9]の反射防止層付き基材。
    A-O-R-B ・・・ (1)
  式(1)中の記号は、以下を示す。
   R:ポリ(オキシペルフルオロアルキレン)鎖、
   A:炭素原子数1~6のペルフルオロアルキル基またはB、
   B:下式(2)で表される基:
    -Q-Si-L3-m ・・・ (2)
  式(2)中の記号は、以下を示す。
   Q:2価の連結基、
   L:加水分解性基、
   R:水素原子または1価の炭化水素基、
   m:1~3の整数。
[11]前記基材が透明基材である、[1]~[10]のいずれかの反射防止層付き基材。
[12]前記[1]~[11]のいずれかの反射防止層付き基材を備えた表示装置。
[13]基材の少なくとも一方の表面上にシリカ系多孔質膜を形成し、次いで前記シリカ系多孔質膜の表面をポリ(オキシペルフルオロアルキレン)鎖および加水分解性シリル基を有する化合物で処理して、走査型X線光電子分光法(ESCA)による表面分析において、F1sのピーク高さおよびSi2pのピーク高さから求める元素数比F/Siが1以上であり、かつ3.0nm以下の算術平均粗さ(Sa)を有する前記処理面を有する反射防止層を形成することを特徴とする反射防止層付き基材の製造方法。
[14]前記シリカ系多孔質膜が、シリカを主成分とするマトリックス中に複数の空孔を有する膜である、[13]の反射防止層付き基材の製造方法。
[15]下式(a1)で表される化合物またはその加水分解物および部分縮合物から選ばれる少なくとも1種の化合物(A1)と、下式(a2)で表される化合物またはその加水分解物および部分縮合物から選ばれる少なくとも1種の化合物(A2)とを含有するマトリックス前駆体(A)、および加熱によりマトリックス中から除去可能な粒子(B)を含有する前駆体層を形成した後加熱することにより、基材上にシリカ系多孔質膜を形成する、[14]の反射防止層付き基材の製造方法。
  SiX      ・・・(a1)
  YSiX 4-n  ・・・(a2)
[式中、XおよびXは加水分解性基を示し、Yは非加水分解性基を示し、nは1~3の整数を示す。]
 本発明によれば、反射防止特性に優れるとともに、優れた撥水性・撥油性と優れた油脂汚れの除去性を有する反射防止層付き基材、反射防止層付き基材の製造方法および反射防止層付き基材を備えた表示装置が提供される。
本発明の反射防止層付き基材の一実施態様を示す断面図である。
 本明細書において、式(1)で表される化合物を化合物(1)と記す。他の式で表される化合物も同様に記す。
 本明細書において「加水分解性シリル基」とは、加水分解反応することによってシラノール基(Si-OH)を形成し得る基を意味する。例えば式(1)中の-Si-L3-mである。
 本明細書において「非加水分解性基」とは、加水分解反応することによってシラノール基を形成し得る条件下で、構造が変化しない官能基を意味する。
 本明細書において「含フッ素有機基」とは、炭素原子に結合したフッ素原子を含む有機基を意味する。有機基は、炭素-炭素原子間にエーテル性酸素原子等のヘテロ原子を含んでいてもよい炭素連鎖を有する鎖状有機基が好ましい。例えば、ペルフルオロアルキル基、ペルフルオロアルキレン基、炭素-炭素原子間にエーテル性酸素原子を含むペルフルオロアルキル基、ポリ(オキシペルフルオロアルキレン)鎖等が挙げられる。
 本明細書において「(メタ)アクリル酸メチル」とは、アクリル酸メチルとメタクリル酸メチルとの総称であり、他も同様である。
〔反射防止層付き基材〕
 本発明の反射防止層付き基材10は、図1に示すような基材11の少なくとも一方の表面の上に、含フッ素有機基(図示せず)を有する反射防止層12を備える。
(基材)
 本発明における基材は、表示装置のカバーガラス等に使用する場合、透明基材であることが好ましい。
 本明細書において、透明基材としてはJIS K-7150の規格におけるヘーズ値が5%以下の基材が挙げられ、3%以下が好ましく、1%以下がより好ましく、0.4%以下が特に好ましい。
 基材の材質としては、金属、樹脂、ガラス、セラミック、これらの複合材料が挙げられる。透明基材の材質としては、ガラスまたは透明樹脂が好ましい。ガラスとしては、通常のソーダライムガラス、アルカリアルミノケイ酸塩ガラス、ホウケイ酸ガラス、無アルカリガラス、石英ガラス等が挙げられ、化学強化したソーダライムガラス、化学強化したアルカリアルミノケイ酸塩ガラス、および化学強化したホウケイ酸ガラスが好ましい。透明樹脂としては、ポリメチルメタクリレート等のアクリル系樹脂、ビスフェノールAのカーボネート等の芳香族ポリカーボネート系樹脂、ポリエチレンテレフタレート(PET)等の芳香族ポリエステル系樹脂等が挙げられる。
 基材の形状は平板でもよく、全面または一部が曲率を有していてもよい。基材の大きさおよび厚さは、特に限定されず、用途により適宜選択できる。
 基材は、その表面に酸処理(希釈したフッ酸、硫酸、塩酸等を用いた処理)、アルカリ処理(水酸化ナトリウム水溶液等を用いた処理)または放電処理(プラズマ照射、コロナ照射、電子線照射等)等が施されたものであってもよい。また、基材は、その表面に蒸着膜、スパッタ膜、湿式法等により形成された各種の機能膜が設けられたものであってもよい。反射防止層は、上記表面処理された基材表面上や上記機能膜の表面上に設けられていてもよく、上記表面処理面や機能膜が形成された表面とは反対側の基材表面に設けられていてもよい。
 基材は、その少なくとも一方の表面の上に、反射防止層を備える。基材は、反射防止層を、その一方の表面に備えていてもよく、両方の表面に備えていてもよい。また、基材は、反射防止層をその表面の全面に備えていてもよく、その表面の一部に備えていてもよい。
(反射防止層)
 反射防止層は、含フッ素有機基を有するシリカ系多孔質膜からなる。本明細書において、含フッ素有機基を有するシリカ系多孔質膜は、シリカを含むマトリックス中に複数の空孔を有し、かつ膜表面に含フッ素有機基を有する多孔質膜であることが好ましい。含フッ素有機基を有するシリカ系多孔質膜を使用することにより、反射防止特性に優れる。
 反射防止層は、基材とは反対側の表面(以下、「最表面」ともいう。)の走査型X線光電子分光法(ESCA)による表面分析において、F1sのピーク高さおよびSi2pのピーク高さから求める元素数比F/Siが、1以上であり、1~50が好ましく、2~50がより好ましく、3~30がさらに好ましく、3~20が特に好ましい。元素数比F/Siが上記範囲の下限値以上であれば、表面が充分な撥水性・撥油性を示し、上記範囲の上限値以下であれば、充分に透明である。本明細書において、走査型X線光電子分光法(ESCA)の測定条件は、X線源:AlKα線、X線出力:25W、15kVとする。
 反射防止層は、最表面の算術平均粗さ(Sa)が、3.0nm以下であり、2.8nm以下が好ましく、2.6nm以下が特に好ましい。上記上限値以下であれば、油脂汚れが付着しても容易に除去することができる。本明細書において、算術平均粗さ(Sa)は、走査型プローブ顕微鏡装置を用いて、測定範囲10μm×10μmにて測定した値とする。
 反射防止層は、屈折率が1.10~1.38であることが好ましく、1.15~1.35が特に好ましい。屈折率が上記範囲の下限値以上であれば、空孔の存在による耐久性の低下が抑制される。屈折率が上記範囲の上限値以下であれば、反射防止特性に優れる。本明細書において、屈折率は、エリプソメーターを用いて測定した、波長589.3nmにおける値とする。
<反射防止層における空孔>
 本発明の反射防止層は、屈折率を低くすることができる点で、空孔を有する(図1)。優れた耐久性を有する点から、空孔は独立孔であることが好ましい。反射防止特性に優れる点から、空孔として、直径20nm以上の空孔を含むことが好ましく、直径20~150nmの空孔を含むことが特に好ましい。本明細書において、空孔の直径は、走査型電子顕微鏡(以下、「SEM」ともいう。)を用いて反射防止層の断面を観察して得られる像から測定される値とする。該像における空孔の形状が真円状でない場合は、短径と長径の平均値を直径とする。
 直径20nm以上の空孔は、SEMを用いて反射防止層の断面を観察して得られる像における100nm×100nmの領域内に、1個以上存在することが好ましく、2~16個が特に好ましい。空孔の直径にもよるが、反射防止層の厚さ方向で1個以上であれば、屈折率を充分低くすることができる。
 空孔の直径の平均値(以下、「平均空孔直径」ともいう。)は15~100nmであることが好ましく、20~80nmが特に好ましい。平均空孔直径が上記範囲の下限値以上であれば、反射防止層として充分な反射防止特性が得られ、上記範囲の上限値以下であれば、反射防止層が透明性に優れる。本明細書において、平均空孔直径は、SEMを用いて反射防止層の断面を観察して得られる像により、100個の空孔の直径を計測し、それらの平均値とする。上記測定法により直径5nm以上の空孔を測定できることより、平均空孔直径は直径5nm以上の空孔の直径の平均値である。
 反射防止層は、最表面の開口数が、13個/10nm以下であることが好ましく、10個/10nm以下がより好ましく、0個が特に好ましい。最表面の開口数が、上記範囲の上限値以下であれば、油脂汚れが付着しても浸透しにくく、除去も容易である。本明細書において、開口数は、SEMを用いて反射防止層の最表面を観察して得られる像により、1,000nm×1,000nmの領域内に存在する開口の数とする。
 反射防止層の厚さの平均値(以下、「反射防止層平均厚」という。図1中、aで表示する。)は40~300nmであることが好ましく、90~260nmが特に好ましい。反射防止層平均厚が上記範囲の下限値以上であれば、可視光領域において光の干渉が起こり、優れた反射防止特性が発現しやすい。反射防止層平均厚が上記範囲の上限値以下であれば、クラック等が発生しにくい。本明細書において、反射防止層平均厚は、SEMを用いて反射防止層の断面を観察して得られる像により、100箇所の厚さを計測し、それらの平均値とする。
 反射防止層は、独立孔である直径20nm以上の空孔から、最表面までの最短距離の平均値(以下、「最表面平均厚」という。図1中、dで表示する。)は、10~80nmであることが好ましく、13~60nmが特に好ましい。最短距離は、独立孔における空隙を取り囲む面と、反射防止層の最表面との間の距離のうち、もっとも短い距離を意味する。最表面平均厚が上記範囲の下限値以上であれば、外気中の水分が基材に到達することを抑制することができ、最表面平均厚が上記範囲の上限値以下であれば、反射防止層の屈折率を低く抑えることができる。本明細書において、最表面平均厚は、SEMを用いて反射防止層の断面を観察して得られる像により、100箇所の厚さを計測し、それらの平均値とする。
 反射防止層平均厚に対する、最表面平均厚の割合は、特に限定されないが、8~40%が好ましく、10~30%が特に好ましい。
<シリカ系多孔質膜>
 反射防止層は、含フッ素有機基を有するシリカ系多孔質膜を含む。含フッ素有機基を有するシリカ系多孔質膜は、シリカ系多孔質膜に、含フッ素有機化合物を適用し含フッ素有機基を導入できる。例えば、後述するように、シリカ系多孔質膜を含フッ素有機化合物で処理して、含フッ素有機化合物由来の含フッ素有機基を導入することができる。ここで、シリカ系多孔質膜は、シリカを含むマトリックス中に複数の空孔を有する多孔質膜を意味するが、なかでも、シリカを主成分とするマトリックス中に、複数の空孔を有する多孔質膜が好ましい。マトリックスがシリカを主成分とすることによって、比較的屈折率(反射率)を低くすることができ、化学的安定性、耐摩耗性に優れ、かつ基材としてガラス板を使用した場合に、密着性に優れる。具体的には、反射防止特性に優れる点からは、ガラス板の屈折率1.52よりも、反射防止層の屈折率を小さくすることが好ましいが、シリカの屈折率は1.46であり、マトリックス中に空孔(空気の屈折率1.00)を存在させることによって、屈折率を低下させることができる。
 本明細書において、マトリックスがシリカを主成分とするとは、シリカの割合がマトリックス(100質量%)のうち90質量%以上であることを意味する。シリカの割合は95質量%以上がより好ましく、99質量%以上が特に好ましい。マトリックスに含まれていてもよいシリカ以外の成分としては、Li、B、C、N、F、Na、Mg、Al、P、S、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Sr、Y、Zr、Nb、Ru、Pd、Ag、In、Sn、Hf、Ta、W、Pt、Au、Biおよびランタノイド元素より選ばれる1つもしくは複数のイオンおよび/または酸化物等の化合物が挙げられる。
 また、マトリックスはナノ粒子を含んでも良い。ナノ粒子としては無機ナノ粒子が挙げられ、無機ナノ粒子の組成としては、Al、SiO、SnO、TiO、ZnO、ZrO等が挙げられる。ナノ粒子の平均粒子径は、反射防止層平均厚未満であって、かつ1~100nmが好ましい。ナノ粒子の形状は特に限定されるものではなく、球状、針状、中空状、シート状、角状等が挙げられる。
 シリカ系多孔質膜は、無機ナノ粒子を積層することにより製造する方法が一般的であるが、これにより得られるシリカ系多孔質膜は、粒子同士の間にある空隙が連結孔を形成しやすい。一方、後述するように、マトリックス前駆体(A)と粒子(B)として有機ポリマーナノ粒子を用い、これらを熱処理することによって、マトリックス前駆体(A)から、シリカを含むマトリックスを形成させ、同時に粒子(B)を熱分解することにより、内部に独立孔である空孔を有するシリカ系多孔質膜を得て、これを反射防止層に使用することができる。以下、この粒子(B)を使用してシリカ系多孔質膜を形成する方法を焼成多孔化法という。
 本発明において、シリカ系多孔質膜を形成する手段としては上記焼成多孔化法が好ましい。焼成多孔化法を使用することにより、前記算術平均粗さ(Sa)を3.0nm以下に調整することが容易となり、前記開口数や最表面平均厚の制御もまた容易となる。さらに、粒子(B)の径やマトリックス中の粒子(B)の数の調整が容易であることより、前記空孔径や屈折率の制御もまた容易となる。
<反射防止層における含フッ素有機基>
 反射防止層は、走査型X線光電子分光法(ESCA)による表面分析において、F1sのピーク高さおよびSi2pのピーク高さから求める元素数比F/Siが1以上であり、2~50が好ましく、3~30が特に好ましい。元素数比F/Siが1以上であれば、優れた撥水性・撥油性が得られ、優れた油脂汚れ除去性が発揮される。
 元素数比F/Siは、上記のシリカ系多孔質膜に含フッ素有機化合物を適用し含フッ素有機基を導入することによって制御できる。含フッ素有機化合物の適用については後述する。
 含フッ素有機化合物としては、含フッ素有機基と加水分解性シリル基を有する化合物を使用することができ、例えば、ポリ(オキシペルフルオロアルキレン)鎖および加水分解性シリル基を有する化合物が挙げられる。
 含フッ素有機化合物としては、下式(1)で表される化合物(1)が挙げられる。
    A-O-R-B ・・・ (1)
  式(1)中の記号は、以下を示す。
   R:ポリ(オキシペルフルオロアルキレン)鎖、
   A:炭素原子数1~6のペルフルオロアルキル基またはB
   B:下式(2)で表される基:
    -Q-Si-L3-m ・・・ (2)
  式(2)中の記号は以下の通りである。
   Q:2価の連結基、
   L:加水分解性基、
   R:水素原子または1価の炭化水素基、
   m:1~3の整数。
 化合物(1)は、ポリ(オキシペルフルオロアルキレン)鎖を挟んで、両側または片側の末端に、加水分解性シリル基(-Si-L3-m)を有する。
 式(1)におけるRとしては、下式(3)で表されるポリ(オキシペルフルオロアルキレン)鎖が挙げられる。
    -(C2yO)- ・・・(3)
  式(3)中の記号は以下の通りである。
   y:1~6の整数(単位ごとに異なっていてよい)、
   e:5~100の整数。
 すなわち、式(1)中の-O-R-基が-O-(C2yO)-である基が挙げられる。
 (C2yO)としては、(CFO)、(CFCFO)、(CFCFCFO)、(CF(CF)CFO)、(CFCFCFCFO)等が挙げられる。
 また、eが3以上の場合であって(C2yO)が異なる2種類以上である場合、異なる(C2yO)の結合順序は交互、ブロック、ランダムいずれでも構わない。特に、異なる(C2yO)が交互に結合したポリ(オキシペルフルオロアルキレン)鎖が好ましい。この場合、2種類のオキシペルフルオロアルキレン基が結合したジ(オキシペルフルオロアルキレン)基をポリ(オキシペルフルオロアルキレン)鎖の繰り返し単位とみなすことができる。このジ(オキシペルフルオロアルキレン)基としては、(CFCFO-CFCFCFCFO)、(CFCFO-CFCF(CF)O)、(CFCFO-CFCFCFO)等が挙げられる。
 式(2)において、Lは加水分解性基を示す。Lとしては、アルコキシ基、アシルオキシ基、アルケニルオキシ基、イソシアナート基およびハロゲン原子からなる群より選ばれる基が好ましい。Lとしては、炭素原子数が1~10のアルコキシ基、炭素原子数が2~10のアシルオキシ基および炭素原子数が2~10のアルケニルオキシ基が好ましい。なかでも、工業的な製造が容易な点から、また、蒸着、湿式塗布時のアウトガスが少なく、化合物(1)の保存安定性に優れる点で、炭素原子数1~4のアルコキシ基が好ましい。化合物(1)の長期の保存安定性が必要な場合にはエトキシ基が特に好ましく、蒸着、湿式塗布後の反応時間を短時間とする場合にはメトキシ基が特に好ましい。
 式(2)において、mは1~3の整数であり、2または3が好ましく、特に3が好ましい。分子中にLが複数個存在することにより、基材の表面との結合がより強固になる。mが2以上である場合、1分子中に存在する複数個のLは互いに同じであっても異なっていてもよい。原料の入手容易性や製造が簡便な点で、互いに同じであることが好ましい。
 式(2)において、Rは水素原子または1価の炭化水素基である。1価の炭化水素基としては、アルキル基、シクロアルキル基、アルケニル基またはアリール基等が挙げられる。Rは1価の炭化水素基が好ましく、1価の飽和炭化水素基が特に好ましい。1価の飽和炭化水素基の炭素原子数は1~6が好ましく、1~3がより好ましく、1~2が特に好ましい。Rとしては、合成が簡便であることから、炭素原子数が1~6のアルキル基が好ましく、炭素原子数が1~3のアルキル基がより好ましく、炭素原子数が1~2のアルキル基が特に好ましい。
 式(2)において、ケイ素原子に結合するRの個数は3-mである。上記の通りmは2または3が好ましく、特に3が好ましいことから、ケイ素原子に結合するRの個数は0または1が好ましく、0が特に好ましい。式(2)においてRが0または1であると、シラノール基と基材の表面との結合が形成されやすい。
 式(2)において、Qは2価の連結基であり、アミド結合、ウレタン結合、エーテル結合およびエステル結合からなる群より選ばれる1種以上を含んでもよく、かつ/あるいは水素原子の一部または全部がフッ素原子で置換されていてもよい、炭素原子数2~12の2価の炭化水素基が挙げられる。
 Qとしては、具体的には、下式(4)で表される2価の基が好ましい。
    -C2f-C2g-D-C2h- ・・・(4)
   式(4)中の記号は以下の通りである。
   f、g、h:0~6の整数(ただしf+g+h=2~12)、
   D:単結合、アミド結合、ウレタン結合、エーテル結合またはエステル結合。
 f、gおよびhがそれぞれ3以上の場合、式(4)中のC2f、C2gおよびC2hは、直鎖構造でも分岐構造でもよく、油脂汚れ除去性に優れる点で直鎖構造が好ましい。
 化合物(1)は、原料として、ポリオキシアルキレン単位を繰り返し単位として含む化合物を用意し、フッ素化した後で、低級アルコールと反応させ、場合により、還元およびエチレン性不飽和結合を片方の末端に形成させた後、次いで、反応性基を有する加水分解性基含有シラン化合物を反応させることにより得ることができる。
 また、後述実施例に示すように、下記の方法で化合物(1)を合成することもできる。下記の方法で、異なる(C2yO)が交互に結合したポリ(オキシペルフルオロアルキレン)鎖を有する化合物(1)を合成することができる。
 原料として、末端にCF=CF-O-、およびカルボキシ基またはカルボキシ基に転換可能な基を有するフルオロ化合物を用意し、これを還元して、CF=CF-O-、およびヒドロキシル基を有する化合物を合成した後、アルコールまたはフッ素含有アルコールの存在下で重合させて、フルオロオキシエチレン単位とそれ以外のフルオロオキシアルキレン単位とが結合したジ(フルオロオキシアルキレン)基を繰り返し単位として含む化合物を形成する。次に、得られた化合物をフッ素化してペルフルオロ化合物とし、さらに低級アルコールと反応させ、場合により、還元およびエチレン性不飽和結合を片方の末端に形成させた後、反応性基を有する加水分解性基含有シラン化合物を反応させることにより化合物(1)を得ることができる。
 化合物(1)としては、例えば以下が挙げられる。
CF-O-(CFCFO)e1-CFC(O)NH(CH-Si(OCH
CF-O-(CFCFO)e1-CFC(O)NH(CH-Si(OCH
CFCF-O-(CFCFO)e1-CFC(O)NH(CH-Si(OCH
CFCFCF-O-(CFCFO)e1-CFC(O)NH(CH-Si(OCH
CF-O-(CFCFO)e1-CFCHOC(O)NH(CH-Si(OCH
CF-O-(CFCFO)e1-CFCHO(CH-Si(OCH
CF-O-(CFCFO)e1-(CFO(CH-Si(OCH
CF-O-(CFCFO)e1-CF(CH-Si(OCH
CF-O-(CFCFO)e1-CF(CH-Si(OCH
CFCFCF-O-(CFCFCFO)e2-(CFCHO(CH-Si(OCH
CF-O-(CFCFO)e1-(CFO)e3-CFCHO(CH-Si(OCH
CFCF-O-(CFCFO-CFCFCFCFO)e4CFCFO-CFCFCFC(O)NH(CH-Si(OCH
(CHO)Si(CHNHC(O)CFO-(CFCFO)e1-CFC(O)NH(CH-Si(OCH
(CHO)SiCNHC(O)CFO-(CFCFO)e1-CFC(O)NH(CH-Si(OCH
(CHO)Si(CHNHC(O)OCHCFO-(CFCFO)e1-CFCHOC(O)NH(CH-Si(OCH
(CHO)Si(CHOCHCFO-(CFCFO)e1-CFCHO(CH-Si(OCH
(CHO)Si(CHO(CFO-(CFCFO)e1-(CFO(CH-Si(OCH
(CHO)Si(CHOCHCFO-(CFCFO)e1-(CFO)e3-CFCHO(CH-Si(OCH
 上記化学式において、e1~e4は上述のeの範囲を満たす整数である。
 化合物(1)としては市販品を使用することもでき、オプツールDSX、オプツールAES(ダイキン工業社製)、ダウコーニング2634コーティング(東レ・ダウコーニング社製)等が挙げられる。また、特開2011-116947号公報に記載のフルオロオキシアルキレン基含有ポリマー組成物も使用することができる。
(反射防止層付き基材の製造)
 反射防止層付き基材の製造方法は、公知の方法を使用してもよい。反射防止特性に優れるとともに、高い撥水性・撥油性と良好な油脂汚れの除去性を有する反射防止層付き基材を製造できる点で、前記焼成多孔化法を使用して、以下のようにして製造することが好ましい。
 マトリックス前駆体(A)と、加熱によりマトリックス中から除去可能な粒子(B)と、液状媒体(C)とを含有する塗布液を、基材の表面に塗布し、加熱することにより、基材上にシリカ系多孔質膜を形成し、次いで含フッ素有機化合物を適用して、含フッ素有機基を導入することにより製造することができる。
 <基材上のシリカ系多孔質膜の形成>
 焼成多孔化法において、マトリックスのシリカはゾルゲル法で形成する。ゾルゲル法において、使用するシリカ原料としては通常テトラアルコキシシラン等の4官能性の加水分解性シランが用いられる。しかし、本発明においては、4官能性の加水分解性シランとともに1~3官能性の加水分解性シランを併用することが好ましい。1~3官能性の加水分解性シランを併用することにより、加水分解性シランの加水分解重縮合の反応とケイ素原子に結合した有機基の分解消失の反応の2段の反応で最終的にシリカが生成する。このシリカの生成と粒子(B)の分解消失による空孔の形成が連動し、空孔形成後もシリカ生成反応が進行して、生成するシリカ系多孔質膜の表面の平滑化が進み、表面の算術平均粗さ(Sa)や開口数が低下すると考えられる。また、空孔が独立孔になりやすく、最表面平均厚が厚くなり、膜の強度も高くなると考えられる。
 本発明のシリカ系多孔質膜の形成における、マトリックス前駆体(A)は、4官能性の加水分解性シランである下式(a1)で表される化合物、その加水分解物および部分縮合物から選ばれる少なくとも1種の化合物(A1)と、1~3官能性の加水分解性シランである下式(a2)で表される化合物、その加水分解物および部分縮合物から選ばれる少なくとも1種の化合物(A2)と、を含有する。
  SiX      ・・・(a1)
  YSiX 4-n  ・・・(a2)
[式中、XおよびXは加水分解性基を示し、Yは非加水分解性基を示し、nは1~3の整数を示す。]
 式(a1)中、Xとしては上述したLと同様の基が挙げられる。大気中での取り扱いが容易で加水分解重縮合反応が制御しやすい点から、アルコキシ基が特に好ましい。アルコキシ基としては、炭素数1~4のアルコキシ基が好ましく、メトキシ基またはエトキシ基が特に好ましい。1分子中に存在する複数個のXは互いに同じであっても異なっていてもよい。入手しやすさ、加水分解重縮合反応の制御のしやすさ等の点では、互いに同じであることが好ましい。
 化合物(a1)の具体例としては、例えば、テトラアルコキシシラン(テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等)等が挙げられ、テトラメトキシシラン、テトラエトキシシランが好ましい。これらは1種を単独で用いても2種以上を併用してもよい。
 化合物(a1)の加水分解物、部分縮合物は、常法により得ることができる。化合物(a1)と水とを混合することで、加水分解物や部分縮合物を得ることができる。
 式(a2)中、nは1または2が好ましく、1が特に好ましい。
 Xの加水分解性基の例および好ましい例としては、前記Xと同様のものが挙げられる。1分子中に存在する複数個のXは互いに同じであっても異なっていてもよい。入手しやすさ、加水分解反応の制御のしやすさ等の点では、互いに同じであることが好ましい。
 式(a2)中、Yとしては、ペルフルオロポリエーテル基、ペルフルオロアルキル基、アルキル基、アリール基(フェニル基等)等が挙げられ、加熱後に脱離して、シリカ系多孔質膜の表面にシラノール基を生成しやすく、含フッ素有機化合物に由来する基の導入が効率的な点から、および、焼成時の分解消失において比較的高温を要しかつ消失に比較的に時間を要する点から、アリール基(特に、フェニル基)が好ましい。ケイ素原子に結合した有機基であるYが比較的消失しにくい有機基であることにより、Yの消失前に粒子(B)の消失による空孔の形成が進み、空孔の形成後のシリカ形成反応による膜の平滑化等が充分に進行すると考えられる。
 化合物(a2)の具体例としては、例えば、モノアルキルトリアルコキシシラン(メチルトリメトキシシラン等)、モノアリールトリアルコキシシラン(フェニルトリメトキシシラン、フェニルトリエトキシシラン等)、ジアリールジアルコキシシラン(ジフェニルジメトキシシラン、ジフェニルジエトキシシラン等)、トリアリールモノアルコキシシラン(トリフェニルメトキシシラン、トリフェニルエトキシシラン等)等が挙げられる。なかでも、入手が容易で熱分解時に不活性ガスを発生しないことから、モノアルキルトリアルコキシシラン、モノアリールトリアルコキシシランが好ましく、モノアリールトリアルコキシシランが特に好ましい。これらは1種を単独で用いても2種以上を併用してもよい。
 化合物(a2)の加水分解物および部分縮合物は、化合物(a1)の加水分解物および部分縮合物と同様の方法で得ることができる。また、化合物(a1)と(a2)を予め混合して共加水分解重縮合反応を行ってもよい。
 マトリックス前駆体(A)中、化合物(A1)と化合物(A2)との含有量の比率は、化合物(a1)と化合物(a2)とのモル比((a1)/(a2))に換算して、0.1~3.0が好ましく、0.2~2.0が特に好ましい。この比率が下限以上であると加水分解重縮合が充分進行し、また、下限未満であるとケイ素原子に結合した有機基であるYの量が多くその消失が不充分となるおそれがある。一方、この比率が上限を超えるとYの量が少なく、2段のシリカ形成反応の後段の反応が短くなり、粒子(B)の消失が不充分となるおそれがある。さらに、上限以下であることより、膜表面の平滑化が充分進行し、また屈折率が充分に低くなり、膜の強度も向上する。
 塗布液中のマトリックス前駆体(A)の含有量は、塗布液が塗布可能な範囲内であれば特に限定されないが、塗布液の全量(100質量%)に対し、SiO換算固形分濃度として、0.2~20質量%が好ましく、0.5~15質量%が特に好ましい。上記範囲の下限値以上であると、加水分解重縮合反応が充分に進み、上記範囲の上限値以下であると、加水分解重縮合反応制御が容易であり長期保存性に優れる。なお、SiO換算固形分は、塗布液中に含まれるマトリックス前駆体(A)のすべてのSiがSiOに転化したときの固形分である。
 本発明における粒子(B)としては、熱分解性材料または熱昇華性材料からなる粒子が挙げられる。熱分解性材料の熱分解温度は、100~800℃が好ましく、200~700℃が特に好ましい。熱分解性材料としては、例えば、カーボン、有機ポリマー、界面活性剤ミセル等が挙げられる。なかでも、経時安定性の点から、カーボンまたは有機ポリマーが好ましく、有機ポリマーが特に好ましい。空気中での有機ポリマーの熱分解温度は、有機ポリマーの種類や分子量によっても異なるが、一般的には200~600℃程度である。有機ポリマーの熱分解温度は、示差熱-熱重量同時測定(TG-DTA)により測定できる。
 前記有機ポリマーとしては、所望の粒子径のナノ粒子を合成が得られれば特に限定されるものではないが、(メタ)アクリル系モノマー、スチレン系モノマー、ジエン系モノマー、イミド系モノマー、アミド系モノマーからなる群(以下「特定モノマー群」ともいう。)から選ばれるモノマーの単独重合体または共重合体が好ましく、ポリマーの原料となるモノマーとしては、アクリル系モノマーが特に好ましい。
 アクリル系モノマーとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチル、(メタ)アクリル酸プロポキシエチル、(メタ)アクリル酸ブトキシエチル、(メタ)アクリル酸エトキシプロピル、ジエチルアミノエチル(メタ)アクリレート、ジアルキルアミノアルキル(メタ)アクリレート、(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、ジアセトンアクリルアミド、グリシジル(メタ)アクリレート、エチレングリコールのジアクリル酸エステル、ジエチレングリコールのジアクリル酸エステル、トリエチレングリコールのジアクリル酸エステル、ポリエチレングリコールのジアクリル酸エステル、ジプロピレングリコールのジアクリル酸エステル、トリプロピレングリコールのジアクリル酸エステル、エチレングリコールのジメタクリル酸エステル、ジエチレングリコールのジメタクリル酸エステル、トリエチレングリコールのジメタクリル酸エステル、ポリエチレングリコールのジメタクリル酸エステル、プロピレングリコールのジメタクリル酸エステル、ジプロピレングリコールのジメタクリル酸エステル、トリプロピレングリコールのジメタクリル酸エステル等が挙げられる。
 有機ポリマーとしては、ポリ(メタクリル酸メチル)(PMMA)、ポリスチレン(PS)が好ましく、PMMAが特に好ましい。
 前記単独重合体または共重合体の熱分解温度は、200~600℃が好ましく、300~500℃が特に好ましい。
 有機ポリマーの粒子としては、市販品を用いてもよく、公知の有機ポリマーナノ粒子の製造方法により製造したものを用いてもよい。例えば、公知の乳化重合法により、有機ポリマーナノ粒子が分散した分散液を得ることができる。具体的には、界面活性剤を含む水中にモノマーを添加し、混合してミセルを形成させ、重合開始剤を加えて重合させることにより、有機ポリマーナノ粒子の水分散液が得られる。また、界面活性剤を用いないソープフリー重合法によって得られた有機ポリマーナノ粒子を用いても良い。
 粒子(B)の平均一次粒子径は、20~130nmが好ましく、30~100nmが好ましい。粒子(B)の平均一次粒子径が上記範囲の下限値以上であると、直径20nm以上の空孔を有するシリカ系多孔質膜を形成でき、上記範囲の上限値以下であると、最表面の開口数を13個/10nm以下にすることができる。また、平均空孔直径が15~100nmとなりやすい。
 本明細書における平均一次粒子径は、透過型電子顕微鏡にて観察して得られる像から100個の粒子を無作為に選び出し、各粒子の粒子径を測定し、100個の粒子の粒子径を平均したものである。
 粒子(B)としては、1種を単独で用いてもよく、材料、平均一次粒子径等が異なる2種以上を併用してもよい。
 塗布液中の粒子(B)の含有量は、マトリックス前駆体(A)のSiO換算の含有量と、粒子(B)の含有量との質量比((A)/(B))が0.3~4.0となる量であることが好ましく、0.5~3.0となる量であることが特に好ましい。(A)/(B)が上記範囲の下限値以上であれば、シリカ系多孔質膜の耐久性に優れる。上記範囲の上限値以下であれば、シリカ系多孔質膜の屈折率が充分に低く(例えば、1.38以下)になる。
 本発明における液状媒体(C)は、マトリックス前駆体(A)を溶解し、かつ粒子(B)を分散する液体であり、単一の液体からなるものでも2種以上の液体を混合した混合液であってもよい。化合物(a1)、(a2)の加水分解に水が必要となるため、液状媒体(C)は少なくとも水を含むことが好ましい。
 水と他の液体とを併用してもよい。該他の液体としては、例えば、アルコール類(メタノール、エタノール、イソプロパノール、ブタノール、ジアセトンアルコール等)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン等)、エーテル類(テトラヒドロフラン、1,4-ジオキサン等)、セロソルブ類(メチルセロソルブ、エチルセロソルブ等)、エステル類(酢酸メチル、酢酸エチル等)、グリコールエーテル類(エチレングリコールモノアルキルエーテル等)、含窒素化合物(N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチルピロリドン等)、含硫黄化合物(ジメチルスルホキシド等)等が挙げられる。
 本発明における液状媒体(C)の含有量は、塗布液の90.0~99.5質量%が好ましく、95.0~99.0質量%が特に好ましい。
 塗布液は、本発明の効果を損なわない範囲で、マトリックス前駆体(A)、粒子(B)および液状媒体(C)以外の他の成分を含有してもよい。
 該他の成分としては、例えば、マトリックス前駆体(A)の反応性を向上させるための硬化触媒(金属キレート、金属アルコレート、有機スズ等)等が挙げられる。
 塗布液の調製方法としては、マトリックス前駆体(A)、粒子(B)、他の成分および液状媒体(C)を混合する方法、その一部を予め混合しておく方法が挙げられる。優れた撥水性・撥油性と優れた油脂汚れの除去性を備えられる点で、マトリックス前駆体(A)の溶液と(以下、「マトリックス前駆体溶液」ともいう。)、粒子(B)の分散液(以下、「粒子分散液」ともいう。)とを混合する方法が挙げられる。この場合、液状媒体(C)はマトリックス前駆体溶液における液状媒体と粒子分散液における液状媒体の混合物となる。なお、塗布液が他の成分を含有する場合は、他の成分をマトリックス前駆体溶液側に加え、粒子分散液と混合することが、粒子(B)が分散しやすくかつ該分散を安定的に維持できる点で好ましい。
 マトリックス前駆体(A)溶液は、マトリックス前駆体(A)と液状媒体との溶液であり、この液状媒体としては水とアルコール類との混合物が好ましく、アルコール類としてはメタノール、エタノールが特に好ましい。
 粒子分散液は、粒子(B)と液状媒体との分散液であり、この液状媒体としてはアルコール類、ケトン類、エーテル類、セロソルブ類、エステル類、グリコールエーテル類、含窒素化合物、含硫黄化合物等が好ましい。
 本発明における塗布液の塗布方法としては、公知の方法を用いることができ、ウェットコート法(スピンコート法、スプレーコート法、ディップコート法、ダイコート法、カーテンコート法、スクリーンコート法、インクジェット法、フローコート法、グラビアコート法、バーコート法、フレキソコート法、スリットコート法、ロールコート法、スポンジコート法等)等が挙げられる。塗布温度は、10~100℃が好ましく、20~80℃が特に好ましい。
 基体上に塗布液の層を形成し、液状媒体(C)を除去することによりマトリックス前駆体(A)と粒子(B)とを含む固体の層(以下、「前駆体層」ともいう。)が形成される。通常、液状媒体(C)の除去は塗布液の層を加熱し、液状媒体(C)を蒸発除去させる(以下、「乾燥」ともいう。)ことにより行う。またこの加熱の際にマトリックス前駆体(A)の加水分解反応や縮合反応が進行すると考えられる。したがって、前駆体層におけるマトリックス前駆体(A)は塗布液におけるマトリックス前駆体(A)と加水分解重縮合反応の程度が異なっていると考えられる。
 前駆体層形成後引き続きさらに高温に加熱してマトリックス前駆体(A)をシリカに変換するとともに粒子(B)を熱分解して空孔を形成し、基材上にシリカ系多孔質膜を形成する。
 液状媒体(C)の蒸発除去のための加熱とその後のシリカ系多孔質膜形成のための加熱は、加熱温度を変化させながら連続的に行ってもよく、段階的に行ってもよい。また、主にシリカを形成するための加熱と主に粒子(B)を熱分解するための加熱は加熱温度を変化させながら連続的にまたは段階的に行ってもよく、また一定温度で行ってもよい。
 マトリックス前駆体(A)をシリカにおよび粒子(B)を空孔に変化させるための加熱温度は、基材、マトリックス前駆体(A)および粒子(B)に応じて適宜決定すればよい。粒子(B)が、カーボン、有機ポリマー等の熱分解性材料で構成され、該粒子(B)を加熱により除去する場合、該熱分解性材料の熱分解温度以上の温度で熱処理を行うことにより、粒子(B)を除去できる。この場合の熱処理温度は、(熱分解温度+100℃)以上が好ましく、(熱分解温度+50℃)以上が特に好ましい。加熱時間は粒子(B)を空孔に変化させることができる時間であれば特に限定されないが、1~60分間が好ましい。
 このようにして得られるシリカ系多孔質膜は、最表面の算術平均粗さ(Sa)が3.0nm以下であり、2.8nm以下が好ましく、2.6nm以下が特に好ましい。また、最表面の水接触角は、含フッ素有機化合物を適用しやすい点からは、100度以上が好ましく、110度以上が特に好ましい。
 シリカ系多孔質膜への含フッ素有機基の導入は、含フッ素有機化合物を適用することより行うことができ、適用方法は、ドライコーティングによってシリカ系多孔質膜の表面を含フッ素有機化合物で処理する方法(ドライコーティング法)、または含フッ素有機化合物を含むコーティング液をシリカ系多孔質膜の表面に塗布し、乾燥させる方法(ウェットコーティング法)が挙げられる。
 ドライコーティング法としては、公知の方法を用いることができ、真空蒸着、CVD、スパッタリング等の手法が挙げられる。
 ウェットコーティング法におけるコーティング液(以下、「コーティング液」という。)は、含フッ素有機化合物と液状媒体とを含有する。コーティング液は、液状であればよく、溶液であっても分散液であってもよい。コーティング液における含フッ素有機化合物の含有量は、0.001~10質量%が好ましく、0.1~1質量%が特に好ましい。
 コーティング液における液状媒体としては、有機溶媒が好ましく、フッ素系有機溶媒であっても非フッ素系有機溶媒であってもよく、両者を併用してもよい。
 フッ素系有機溶媒としては、フッ素化アルカン、フッ素化芳香族化合物、フルオロアルキルエーテル、フッ素化アルキルアミン、フルオロアルコール等が挙げられる。
 フッ素化アルカンとしては、炭素数4~8の化合物が好ましい。市販品としては、例えばC13H(AC-2000:製品名、旭硝子社製)、C13(AC-6000:製品名、旭硝子社製)、CCHFCHFCF(バートレル:製品名、デュポン社製)等が挙げられる。
 フッ素化芳香族化合物としては、例えばヘキサフルオロベンゼン、トリフルオロメチルベンゼン、ペルフルオロトルエン、ビス(トリフルオロメチル)ベンゼン等が挙げられる。
 フルオロアルキルエーテルとしては、炭素数4~12の化合物が好ましい。市販品としては、例えばCFCHOCFCFH(AE-3000:製品名、旭硝子社製)、COCH(ノベック-7100:製品名、3M社製)、COC(ノベック-7200:製品名、3M社製)、C13OCH(ノベック-7300:製品名、3M社製)等が挙げられる。
 フッ素化アルキルアミンとしては、例えばペルフルオロトリプロピルアミン、ペルフルオロトリブチルアミン等が挙げられる。
 フルオロアルコールとしては、例えば2,2,3,3-テトラフルオロプロパノール、2,2,2-トリフルオロエタノール、ヘキサフルオロイソプロパノール等が挙げられる。
 フッ素系有機溶媒としては、含フッ素有機化合物の溶解性の点で、フッ素化アルカン、フッ素化芳香族化合物、フルオロアルキルエーテルが好ましく、フルオロアルキルエーテルが特に好ましい。
 非フッ素系有機溶媒としては、炭化水素化合物、水素原子と炭素原子と酸素原子とからなる化合物が挙げられ、例えば炭化水素系有機溶媒、アルコール系有機溶媒、ケトン系有機溶媒、エーテル系有機溶媒、エステル系有機溶媒である。
 炭化水素系有機溶媒としては、例えばヘキサン、へプタン、シクロヘキサン等が挙げられる。
 アルコール系有機溶媒としては、例えばメタノール、エタノール、プロパノール、イソプロパノール等が挙げられる。
 ケトン系有機溶媒としては、例えばアセトン、メチルエチルケトン、メチルイソブチルケトン等が挙げられる。
 エーテル系有機溶媒としては、例えばジエチルエーテル、テトラヒドロフラン、テトラエチレングリコールジメチルエーテル等が挙げられる。
 エステル系有機溶媒としては、例えば酢酸エチル、酢酸ブチル等が挙げられる。
 非フッ素系有機溶媒としては、含フッ素有機化合物の溶解性の点で、ケトン系有機溶媒が好ましい。
 液状媒体としては、フッ素化アルカン、フッ素化芳香族化合物、フルオロアルキルエーテル、炭化水素化合物、および水素原子と炭素原子と酸素原子とからなる化合物よりなる群から選択される少なくとも1種が好ましい。特に、フッ素化アルカン、フッ素化芳香族化合物およびフルオロアルキルエーテルよりなる群から選択されるフッ素系有機溶媒が好ましい。
 液状媒体としては、フッ素系有機溶媒であるフッ素化アルカン、フッ素化芳香族化合物、フルオロアルキルエーテル、非フッ素系有機溶媒である水素原子、炭素原子および酸素原子のみからなる化合物よりなる群から選択される少なくとも1種の有機溶媒を、合計で媒体全体の90質量%以上含むことが、含フッ素有機化合物の溶解性を高める点で好ましい。
 コーティング液における液状媒体の含有量は、90~99.999質量%が好ましく、99~99.99質量%が特に好ましい。
 コーティング液は、本発明の効果を損なわない範囲で、含フッ素有機化合物および液状媒体以外の他の成分を含有していてもよい。
 該他の成分としては、例えば、加水分解性シリル基の加水分解と縮合反応を促進する酸触媒や塩基性触媒等の公知の添加剤が挙げられる。酸触媒としては、塩酸、硝酸、酢酸、硫酸、燐酸、スルホン酸、メタンスルホン酸、p-トルエンスルホン酸等が挙げられる。塩基性触媒としては、水酸化ナトリウム、水酸化カリウム、アンモニア等が挙げられる。
 コーティング液における該他の成分の含有量は、10質量%以下が好ましく、1質量%以下が特に好ましい。
 コーティング液の固形分濃度は、0.001~10質量%が好ましく、0.01~1質量%が特に好ましい。コーティング液の固形分濃度は、加熱前のコーティング液の質量と、120℃の対流式乾燥機にて4時間加熱した後の質量とから算出する値である。
 本発明におけるコーティング液の塗布方法としては、公知の方法を用いることができ、スピンコート法、ワイプコート法、スプレーコート法、スキージーコート法、ディップコート法、ダイコート法、インクジェット法、フローコート法、ロールコート法、キャスト法、ラングミュア・ブロジェット法、グラビアコート法等が挙げられる。
 乾燥方法は、液状媒体を乾燥除去できる方法であればよく、公知の方法を用いることができる。乾燥温度は10~300℃が好ましく、20~200℃が特に好ましい。
 含フッ素有機基の導入により、空孔や、最表面の開口数、算術平均粗さは実質的な影響を受けないが、水接触角を90度以上とすることができ、100度が好ましく、110度以上が特に好ましい。
〔反射防止層付き基材の用途〕
 本発明の反射防止層付き基材は、各種ディスプレイ、タッチパネルといった表示装置の表示部材の全面に取り付けることができる。また、車両用、建築用、各種産業用の低反射ガラスが用いられる用途にも好適である。
 以下、実施例により本発明をさらに詳しく説明する。ただし本発明は、以下の実施例に限定されるものではない。
 例1~5は粒子分散液、マトリックス前駆体溶液、塗布液、シリカ系多孔質膜付きガラス板、含フッ素有機化合物の製造であり、例6~7が実施例、例8~10が比較例である。
 各例で用いた測定方法、評価方法を以下に示す。
〔測定方法〕
(粒子分散液の平均一次粒子径)
 粒子分散液を水で0.1質量%に希釈した後、コロジオン膜上にサンプリングして透過型電子顕微鏡(日立製作所社製、型式:H-9000)にて観察し、100個の粒子(B)を無作為に選び出し、各粒子の直径を計測した平均値を粒子分散液の粒子の平均一次粒子径とした。
(マトリックス前駆体(A)の質量平均分子量)
 マトリックス前駆体(A)をテトラヒドロフランで0.5%に希釈した後、高速GPC装置(東ソー社製、型式:HLC-8320GPC)を用いて測定した。
(反射防止層平均厚、最表面平均厚)
 反射防止層付きガラス板の反射防止層平均厚、最表面平均厚はそれぞれ、製造したシリカ系多孔質膜付きガラス板の全膜形成部分および空隙・空孔が包含されていない最表面薄膜部分の断面を走査型電子顕微鏡SEM(日立製作所社製、型式:S-4300)にて観察して得られる像から、それぞれの膜厚を100箇所計測し、それらの平均値を算出して求めた。
(直径20nm以上の空孔)
 反射防止層付きガラス板の反射防止層中の直径20nm以上の空孔は、製造したシリカ系多孔質膜付きガラス板の断面を走査型電子顕微鏡SEM(日立製作所社製、型式:S-4300)にて観察し、得られる像から、100nm×100nmの領域内に存在する、直径20nm以上の大きさの空孔の数を計測することで求めた。
(最表面の開口数)
 反射防止層付きガラス板の反射防止層の最表面の開口数は、走査型電子顕微鏡SEM(日立製作所社製、型式:S-4300)にて観察し、得られる像から、1,000nm×1,000nmの領域内に存在する、直径20nm以上の大きさの開口の数を計測することで求めた。
(屈折率)
 反射防止層付きガラス板の反射防止層の屈折率は、エリプソメーター(J.A.Woollam社製、型式:M-2000DI)で測定し、波長589.3nmの屈折率を求めた。なお、ガラス板の裏面光反射を防ぐために裏面を黒色で塗りつぶして測定を行った。
(水接触角)
 基材を水平に保持し、表面に約2μLの水を5滴置き、その接触角を測定し、5つの値の平均値を求めた。水接触角が大きいほど撥水性に優れる。
(算術平均粗さ(Sa))
 反射防止層付きガラス板の最表面の算術平均粗さ(Sa)は、走査型プローブ顕微鏡装置(SIIナノテクノロジー社製、SPA400DFM)を用いて、測定範囲10μm×10μmにて測定した。
(指紋汚れ除去性)
 人工指紋液(オレイン酸とスクアレンとからなる液)を、シリコンゴム栓の平坦面に付着させた後、余分な油分を不織布(ベンコットM-3:旭化成社製)にて拭き取ることによって、指紋のスタンプを準備した。該指紋スタンプを反射防止層付きガラス板の最表面上に乗せ、1Kgの荷重にて10秒間押しつけた。この時に、指紋が付着した箇所のヘーズをヘーズメータ(東洋精機社製)にて測定した。この時の値を初期値とした。次に、指紋が付着した箇所について、ティッシュペーパを取り付けた、往復式トラバース試験機(ケイエヌテー社製)を用い、荷重500gにて拭き取りを行った。拭き取り一往復毎にヘーズの値を測定し、10往復拭き取るまでの間に、ヘーズの値が0.5%以下に達したら○(良好)、0.5%を超えたら×(不良)とした。
(フッ素原子とケイ素原子の元素数比F/Si))
 反射防止層付きガラス板について、走査型X線光電子分光装置(ESCA、QuanteraSXM、アルバックファイ社製)を用いて、X線(AlKα線)により測定し、F1sピーク高さとSi2pピーク高さの比を元素数比F/Siとして算出した。
〔製造方法〕
(粒子分散液等の製造)
<例1-1:液(1)の製造>
 ポリエチレンオキシド(分子量1,000,000)の5gを水の95gに溶解し、ポリエチレンオキシド溶液(1)を得た。得られた溶液の固形分濃度(質量%)を表1に示す。
<例1-2および例1-3:粒子分散液(2)および(3)の製造>
 容量200mLのガラス製容器にドデシル乳酸ナトリウム(SDS)と水を加え、撹拌した。次いで、メタクリル酸メチル(MMA)を加えて撹拌し、乳化させた。次いで、重合開始剤としての過硫酸アンモニウム(APS)を加え、70℃まで加熱し、1時間保持することにより、粒子分散液(2)および(3)を得た。使用量および得られた粒子分散液の固形分濃度(質量%)、粒子の材質と平均一次粒子径(nm)は表1に示す。PMMAは、ポリ(メタクリル酸メチル)を示す。
 なお、表1の溶液(1)、粒子分散液(2)および粒子分散液(3)を以下粒子分散液等と記す。
Figure JPOXMLDOC01-appb-T000001
(マトリックス前駆体溶液の製造)
<例2-1および例2-2:マトリックス前駆体液体(1)および(2)の製造>
 表2に示す各原料を混合、溶解することにより、原料液を調製した。該原料液を25℃まで加熱し、1時間撹拌することにより加水分解して、マトリックス前駆体溶液(1)および(2)を得た。前駆体溶液の固形分濃度(SiO換算固形分濃度)、酸濃度、モル比((a1)/(a2))を表2に示す。
 なお、表2中、AP-1は日本アルコール販売株式会社製 ソルミックスAP-1(エタノール:85.5質量%、イソプロパノール(IPA):13.4質量%、メタノール0.1質量%、水:0.2質量%含有)を示し、HNOaq.は濃度10質量%の硝酸水溶液、TEOSはテトラエトキシシラン、PTMSはフェニルトリメトキシシラン、TMOSはテトラメトキシシラン、MTMSはメチルトリメトキシシランを示す。
Figure JPOXMLDOC01-appb-T000002
(塗布液の製造)
<例3-1~例3-3:塗布液(1)~(3)の製造>
 表3に示す種類と配合量で、粒子分散液等とマトリックス前駆体溶液とを混合して、塗布液(1)~(3)を製造した。
Figure JPOXMLDOC01-appb-T000003
(シリカ系多孔質膜付きガラス板の製造)
<例4~1~例4-3:シリカ系多孔質膜付きガラス板(1)~(3)の製造>
 ガラス板(ソーダライムガラス、旭硝子社製、サイズ:100mm×100mm、厚さ:3.2mm)の表面に、例3-1~例3-3で得た塗布液(1)~(3)をスピンコート(毎分500回転で20秒間)にて塗布した後、650℃で5分間加熱してシリカ系多孔質膜付きガラス板(1)~(3)を得た。
<例4-4:シリカ系多孔質膜付きガラス板(4)の製造>
 容量200mLのガラス製反応容器に、エタノールの60g、ZnO微粒子水分散ゾル(堺化学工業社製、製品名:NANOFINE-50、平均1次粒子径:20nm、平均凝集粒子径:100nm、固形分換算濃度:10質量%)の30g、テトラエトキシシラン(SiO2固形分濃度:29質量%)の10gを加えた後、アンモニア水溶液を添加してpH=10として、20℃で6時間撹拌して、コア-シェル型微粒子分散液(固形分濃度6質量%)の100gを得た。
 次に、得られたコア-シェル型微粒子分散液に強酸性カチオン交換樹脂(三菱化学社製、商品名:ダイヤイオン、総交換容量2.0(meq/mL)以上)の100gを加え、1時間撹拌してpHが4となった後、ろ過により強酸性カチオン交換樹脂を除去し、中空状SiO2微粒子分散液の100gを得た。該SiO2中空粒子の外殻の厚さは10nm、空孔径は20nmであった。該SiO2微粒子は凝集体粒子であり、平均凝集粒子径は100nmであった。
 次に、得られた中空状SiO2微粒子分散液の0.7g(固形分濃度:15質量%)、テトラエトキシシランの硝酸部分加水分解物の2g(固形分濃度:2.25質量%)、イソプロパノールの7.3gを室温で混合し、コート液1を製造した。コート液1に含まれる中空シリカ粒子とマトリックス成分との比は、SiO換算で7:3(質量比)であった。
 次に、厚さ3.5mmのグリーンガラス板(旭硝子社製、商品名:UVFL)の表面を酸化セリウムの微粒子を用いて研磨した後、表面を水洗した。次いで乾燥し、その表面にコート液1をスピンコートで塗布した後、200℃の熱風循環式オーブンで5分間乾燥し、さらに600℃のマッフル炉で5分間焼成してシリカ系多孔質膜付きガラス板(4)を製造した。
(含フッ素有機化合物の製造)
<例5:化合物(10i)の合成>
 CFCF-O-(CFCFO-CFCFCFCFO)CFCFO-CFCFCFC(O)NH(CH-Si(OCH ・・・(10i)
 ただし、aは4~10の整数であり、aの平均値は7である。
 300mLの3つ口丸底フラスコに、水素化ホウ素ナトリウムの14.1gを入れ、AK-225(製品名、旭硝子社製)の350gを加えた。氷浴で冷却しながら撹拌し、窒素雰囲気下、内温が10℃を超えないように化合物(11)の100g、メタノールの15.8g、AK-225の22gを混合した溶液を滴下漏斗からゆっくり滴下した。
 CF=CFO-CFCFCFCOOCH ・・・(11)
 全量滴下した後、さらにメタノールの10gとAK-225の10gを混合した溶液を滴下した。その後、氷浴を取り外し、室温までゆっくり昇温しながら撹拌を続けた。室温で12時間撹拌後、再び氷浴で冷却し、液性が酸性になるまで塩酸水溶液を滴下した。反応終了後、水で1回、飽和食塩水で1回洗浄し、有機相を回収した。回収した有機相を硫酸マグネシウムで乾燥した後、固形分をフィルタによりろ過し、エバポレータで濃縮した。回収した濃縮液を減圧蒸留し、化合物(12)の80.6g(収率88%)を得た。
 CF=CFO-CFCFCFCHOH ・・・(12)
 化合物(12)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:重クロロホルム、基準:TMS) δ(ppm):2.2(1H)、4.1(2H)。
 19F-NMR(282.7MHz、溶媒:重クロロホルム、基準:CFCl) δ(ppm):-85.6(2F)、-114.0(1F)、-122.2(1F)、-123.3(2F)、-127.4(2F)、-135.2(1F)。
 還流冷却器を接続した100mLのナスフラスコに、トリフルオロエタノールの6.64gを入れ、炭酸カリウムの7.32gを加えた。窒素雰囲気下、75℃で撹拌しながら、化合物(12)の19.87gを加え、1時間撹拌した。続いて120℃まで昇温し、化合物(12)の113.34gを内温が130℃以下になるように制御しながら、ゆっくりと滴下した。全量滴下した後、120℃に保ちながらさらに1時間撹拌し、加熱を止めて室温に下がるまで撹拌を続けた。塩酸水溶液を加えて、過剰の炭酸カリウムを処理し、水とAK-225を加えて分液処理を行った。3回の水洗後、有機相を回収し、エバポレータで濃縮することによって、高粘度のオリゴマーを得た。再び、AK-225の150gで希釈し、シリカゲルカラムクロマトグラフィ(展開溶媒:AK-225)に展開して分取した。各フラクションについて、単位数(a+1)の平均値を19F-NMRの積分値から求めた。上式(13)中、(a+1)の平均値が7~10のフラクションを合わせた化合物(13i)の48.5g、(a+1)の平均値が13~16のフラクションを合わせた化合物(13ii)の13.2gを得た。
 CFCH-O-(CFCFHO-CFCFCFCHO)a+1-H ・・・(13)
 化合物(13i)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:重アセトン、基準:TMS) δ(ppm):4.1(2H)、4.8(16H)、6.7~6.9(8H)。
 19F-NMR(282.7MHz、溶媒:重アセトン、基準:CFCl) δ(ppm):-74.2(3F)、-84.3~-85.1(16F)、-89.4~-90.5(16F)、-120.2(14F)、-122.0(2F)、-126.6(14F)、-127.0(2F)、-145.1(8F)。
 単位数(a+1)の平均値:8。
 化合物(13ii)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:重アセトン、基準:TMS) δ(ppm):4.1(2H)、4.8(28H)、6.7~6.9(14H)。
 19F-NMR(282.7MHz、溶媒:重アセトン、基準:CFCl) δ(ppm):-74.2(3F)、-84.3~-85.1(28F)、-89.4~-90.5(28F)、-120.2(26F)、-122.0(2F)、-126.6(26F)、-127.0(2F)、-145.1(14F)。
 単位数(a+1)の平均値:14。
 還流冷却器を接続した300mLのナスフラスコに、化合物(13i)の113.33g、フッ化ナトリウムの5.0g、AK-225の150gを入れ、化合物(14)の84.75gを加えた。
 CFCFCFOCF(CF)COF ・・・(14)
 窒素雰囲気下、50℃で13時間撹拌した後、70℃で3時間撹拌した。加圧ろ過器でフッ化ナトリウムを除去した後、過剰の化合物(14)とAK-225を減圧留去した。シリカゲルクロマトグラフィ(展開溶媒:AK-225)で高極性の不純物を除去し、下式(15)中、単位数(a+1)の平均値が8である、化合物(15i)の100.67g(収率80%)を得た。
 CFCH-O-(CFCFHO-CFCFCFCHO)a+1-C(O)CF(CF)OCFCFCF ・・・(15)
 化合物(15i)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:重クロロホルム、基準:TMS) δ(ppm):4.4(16H)、4.9(2H)、6.0-6.2(8H)。
 19F-NMR(282.7MHz、溶媒:重クロロホルム、基準:CFCl) δ(ppm):-75.2(3F)、-80.0(1F)、-81.9(3F)、-82.7(3F)、-84.7~-85.0(16F)、-86.0(1F)、-90.5~-93.0(16F)、-121.1(2F)、-121.5(14F)、-128.0(16F)、-130.3(2F)、-132.5(1F)、-145.3(8F)。
 単位数(a+1)の平均値:8。
 オートクレーブ(ニッケル製、内容積1L)を用意し、オートクレーブのガス出口に、0℃に保持した冷却器、フッ化ナトリウムペレット充填層および-10℃に保持した冷却器を直列に設置した。また-10℃に保持した冷却器から凝集した液をオートクレーブに戻す液体返送ラインを設置した。オートクレーブにR-113の750gを投入し、25℃に保持しながら撹拌した。オートクレーブに窒素ガスを25℃で1時間吹き込んだ後、窒素ガスで20体積%に希釈したフッ素ガス(以下、「20%フッ素ガス」と記す。)を、25℃、流速3.2L/時間で1時間吹き込んだ。20%フッ素ガスを同じ流速で吹き込みながら、オートクレーブに、化合物(15i)の130gをR-113の448gに溶解した溶液を、22時間かけて注入した。20%フッ素ガスを同じ流速で吹き込みながら、オートクレーブの内圧を0.15MPa(ゲージ圧)まで加圧した。オートクレーブ内に、R-113中に0.015g/mLのベンゼンを含むベンゼン溶液の8mLを、25℃から40℃にまで加熱しながら注入し、オートクレーブのベンゼン溶液注入口を閉めた。20分撹拌した後、再びベンゼン溶液の4mLを、40℃を保持しながら注入し、注入口を閉めた。同様の操作をさらに7回繰り返した。ベンゼンの注入総量は0.6gであった。20%フッ素ガスを同じ流速で吹き込みながら、1時間撹拌を続けた。オートクレーブ内の圧力を大気圧にして、窒素ガスを1時間吹き込んだ。オートクレーブの内容物をエバポレータで濃縮し、下式(16)中、単位数(a)の平均値が7である、化合物(16i)の152.1g(収率99%)を得た。
 CFCF-O-(CFCFO-CFCFCFCFO)CFCFO-CFCFCFCFO-C(O)CF(CF)OCFCFCF ・・・(16)
 化合物(16i)のNMRスペクトル;
 19F-NMR(282.7MHz、溶媒:重クロロホルム、基準:CFCl) δ(ppm):-80.0(1F)、-82.0~-82.5(6F)、-84.0(30F)、-86.7~87.8(6F)、-89.2(34F)、-126.5(32F)、-130.4(2F)、-132.4(1F)。
 単位数(a)の平均値:7。
 500mLのPFA製丸底ナスフラスコに、化合物(16i)の120gおよびAK-225の240gを入れた。氷浴で冷却しながら撹拌し、窒素雰囲気下、メタノールの6.1gを滴下漏斗からゆっくり滴下した。窒素でバブリングしながら12時間撹拌した。反応混合物をエバポレータで濃縮し、下式(17)中、単位数(a)の平均値が7である、化合物(17i)の108.5g(収率100%)を得た。
 CFCF-O-(CFCFO-CFCFCFCFO)CFCFO-CFCFCFC(O)OCH ・・・(17)
 化合物(17i)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:重クロロホルム、基準:TMS) δ(ppm):3.9(3H)。
 19F-NMR(282.7MHz、溶媒:重クロロホルム、基準:CFCl) δ(ppm):-84.0(30F)、-88.2(3F)、-89.2(34F)、-119.8(2F)、-126.5(30F)。
 単位数(a)の平均値:7。
 300mLのナスフラスコに、化合物(17i)の92.5gおよび化合物(18)の6.51gを入れ、12時間撹拌した。NMRから、化合物(17i)の98%が化合物(10i)に変換していることを確認した。また、化合物(18)すべてが反応しており、副生物であるメタノールが生成していた。このようにして、下式(10)中、単位数(a)の平均値が7である、化合物(10i)を97%含む組成物を得た。化合物(10i)の数平均分子量(Mn)は2,900であった。
 HN(CHSi(OCH・・・(18)
 CFCF-O-(CFCFO-CFCFCFCFO)CFCFO-CFCFCFC(O)NH(CH-Si(OCH ・・・(10i)
 ただし、aは4~10の整数であり、aの平均値は7である。
 化合物(10i)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:重クロロホルム、基準:TMS) δ(ppm):0.6(2H)、1.6(2H)、2.8(1H)、3.3(2H)、3.5(9H)。
 19F-NMR(282.7MHz、溶媒:重クロロホルム、基準:CFCl) δ(ppm):-84.1(30F)、-87.9(3F)、-89.3(34F)、-120.8(2F)、-126.6(28F)、-127.2(2F)。
(反射防止層付きガラス板の製造)
<例6~10>
 媒体としてのノベック-7200(3M社製)に、例5で製造した含フッ素有機化合物(10i)を溶解し、固形分濃度0.05%のコーティング液を調製した。シリカ系多孔質膜付きガラス板を該コーティング液にディッピングし(ディップコート法)、30分間放置後、シリカ系多孔質膜付きガラス板を引き上げた。200℃で30分間乾燥させ、AK-225にて洗浄し、反射防止層付きガラス板を得た。各特性の測定値を表4に示す。なお、表4中のDSXはオプツールDSX(ダイキン工業社製)である。
 なお、例9および例10の指紋汚れ除去性は、水接触角が低く、元素数比F/Siが1未満であり、防汚性が不充分であるため、実施していない。
Figure JPOXMLDOC01-appb-T000004
 例6および7で製造した反射防止層付きガラス板は、屈折率が低い。水接触角が高く、元素数比F/Siが1以上であることから、防汚性に優れる。さらに指紋汚れ除去性にも優れる。
 一方、例8で製造した反射防止層付きガラス板は、指紋汚れ除去性が不充分である。これは、算術平均粗さが3nm超であることで、指紋汚れが反射防止層の表面に埋没してしまい、除去できなかったためと考えられる。
 例9で製造した反射防止層付きガラス板は、水接触角が低く、元素数比F/Siが1未満であることから、防汚性が不充分である。
 例10で製造した反射防止層付きガラス板は、水接触角が低く、元素数比F/Siが1未満であることから、防汚性が不充分である。
 本発明によれば、反射防止特性に優れるとともに、優れた撥水性・撥油性と優れた油脂汚れの除去性を有する反射防止層付き基材、および反射防止層付き基材を備えた表示装置が提供される。
 なお、2013年4月24日に出願された日本特許出願2013-091568号の明細書、特許請求の範囲、要約書および図面の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 10 反射防止層付き基材
 11 基材
 12 反射防止層
 14 シリカ系多孔質膜
 22 空孔
 a  反射防止層平均厚
 d  最表面平均厚

Claims (15)

  1.  基材の少なくとも一方の表面の上に反射防止層を備えた反射防止層付き基材であって、
     前記反射防止層が含フッ素有機基を有するシリカ系多孔質膜を含み、
     反射防止層の基材とは反対側の表面が、走査型X線光電子分光法(ESCA)による表面分析において、F1sのピーク高さおよびSi2pのピーク高さから求める元素数比F/Siが1以上であり、かつ3.0nm以下の算術平均粗さ(Sa)を有することを特徴とする反射防止層付き基材。
  2.  前記反射防止層の屈折率が1.10~1.38である、請求項1に記載の反射防止層付き基材。
  3.  前記反射防止層が直径20nm以上の空孔を含み、かつ反射防止層の基材とは反対側の表面の開口数が13個/10nm以下である、請求項1または2に記載の反射防止層付き基材。
  4.  前記反射防止層において、直径20nm以上の独立孔から、反射防止層の基材とは反対側の表面までの最短距離の平均値が10~80nmである、請求項3に記載の反射防止層付き基材。
  5.  前記反射防止層において、空孔の平均直径が15~100nmである、請求項3または4に記載の反射防止層付き基材。
  6.  前記反射防止層の厚さが90~260nmである、請求項1~5のいずれか1項に記載の反射防止層付き基材。
  7.  前記シリカ系多孔質膜が、シリカを主成分とするマトリックス中に複数の空孔を有する、請求項1~6のいずれか1項に記載の反射防止層付き基材。
  8.  前記反射防止層が、反射防止層の基材とは反対側の表面において、含フッ素有機基を有する、請求項1~7のいずれか1項に記載の反射防止層付き基材。
  9.  前記含フッ素有機基が、ポリ(オキシペルフルオロアルキレン)鎖および加水分解性シリル基を有する化合物由来の基である、請求項8に記載の反射防止層付き基材。
  10.  前記化合物が、下式(1)で表される化合物である、請求項9に記載の反射防止層付き基材。
        A-O-R-B ・・・ (1)
      式(1)中の記号は、以下を示す。
       R:ポリ(オキシペルフルオロアルキレン)鎖、
       A:炭素原子数1~6のペルフルオロアルキル基またはB、
       B:下式(2)で表される基:
        -Q-Si-L3-m ・・・ (2)
      式(2)中の記号は、以下を示す。
       Q:2価の連結基、
       L:加水分解性基、
       R:水素原子または1価の炭化水素基、
       m:1~3の整数。
  11.  前記基材が透明基材である、請求項1~10のいずれか1項に記載の反射防止層付き基材。
  12.  請求項1~11のいずれか1項に記載の反射防止層付き基材を備えた表示装置。
  13.  基材の少なくとも一方の表面上にシリカ系多孔質膜を形成し、次いで前記シリカ系多孔質膜の表面をポリ(オキシペルフルオロアルキレン)鎖および加水分解性シリル基を有する化合物で処理して、走査型X線光電子分光法(ESCA)による表面分析において、F1sのピーク高さおよびSi2pのピーク高さから求める元素数比F/Siが1以上であり、かつ3.0nm以下の算術平均粗さ(Sa)を有する前記処理面を有する反射防止層を形成することを特徴とする反射防止層付き基材の製造方法。
  14.  前記シリカ系多孔質膜が、シリカを主成分とするマトリックス中に複数の空孔を有する膜である、請求項13に記載の反射防止層付き基材の製造方法。
  15.  下式(a1)で表される化合物またはその加水分解物および部分縮合物から選ばれる少なくとも1種の化合物(A1)と、下式(a2)で表される化合物またはその加水分解物および部分縮合物から選ばれる少なくとも1種の化合物(A2)とを含有するマトリックス前駆体(A)、および加熱によりマトリックス中から除去可能な粒子(B)を含有する前駆体層を形成した後加熱することにより、基材上にシリカ系多孔質膜を形成する、請求項14に記載の反射防止層付き基材の製造方法。
      SiX      ・・・(a1)
      YSiX 4-n  ・・・(a2)
    [式中、XおよびXは加水分解性基を示し、Yは非加水分解性基を示し、nは1~3の整数を示す。]
PCT/JP2014/060751 2013-04-24 2014-04-15 反射防止層付き基材 WO2014175124A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14789011.5A EP2990838B1 (en) 2013-04-24 2014-04-15 Substrate having antireflective layer
KR1020157024712A KR102120626B1 (ko) 2013-04-24 2014-04-15 반사 방지층이 형성된 기재
JP2015513698A JP6653171B2 (ja) 2013-04-24 2014-04-15 反射防止層付き基材
CN201480023346.1A CN105143924B (zh) 2013-04-24 2014-04-15 带防反射层的基材
US14/878,054 US10324234B2 (en) 2013-04-24 2015-10-08 Substrate with antireflection layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013091568 2013-04-24
JP2013-091568 2013-04-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/878,054 Continuation US10324234B2 (en) 2013-04-24 2015-10-08 Substrate with antireflection layer

Publications (1)

Publication Number Publication Date
WO2014175124A1 true WO2014175124A1 (ja) 2014-10-30

Family

ID=51791703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060751 WO2014175124A1 (ja) 2013-04-24 2014-04-15 反射防止層付き基材

Country Status (7)

Country Link
US (1) US10324234B2 (ja)
EP (1) EP2990838B1 (ja)
JP (1) JP6653171B2 (ja)
KR (1) KR102120626B1 (ja)
CN (1) CN105143924B (ja)
TW (1) TW201504068A (ja)
WO (1) WO2014175124A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107207907A (zh) * 2015-01-20 2017-09-26 三菱综合材料株式会社 低折射率膜形成用液体组合物
KR101816093B1 (ko) * 2016-05-09 2018-01-08 (주)디엔에프 반사방지용 코팅 조성물
US20180050956A1 (en) * 2015-03-06 2018-02-22 Nippon Sheet Glass Company, Limited Coated glass sheet and method for producing same
WO2020196851A1 (ja) * 2019-03-28 2020-10-01 株式会社ニコン 多孔質膜、光学素子、光学系、交換レンズ、光学装置および多孔質膜の製造方法
EP3470222B1 (en) * 2016-06-13 2021-12-29 Nissan Motor Co., Ltd. Antifouling structure and automotive component using antifouling structure
US11460610B2 (en) 2015-07-31 2022-10-04 Nitto Denko Corporation Optical laminate, method of producing optical laminate, optical element, and image display
US11505667B2 (en) 2014-12-26 2022-11-22 Nitto Denko Corporation Laminated film roll and method of producing the same
US11524481B2 (en) 2015-09-07 2022-12-13 Nitto Denko Corporation Low refractive index layer, laminated film, method for producing low refractive index layer, method for producing laminated film, optical element, and image display device
US11536877B2 (en) 2015-08-24 2022-12-27 Nitto Denko Corporation Laminated optical film, method of producing laminated optical film, optical element, and image display
US11618807B2 (en) 2014-12-26 2023-04-04 Nitto Denko Corporation Film with void spaces bonded through catalysis and method of producing the same
US11674004B2 (en) 2015-07-31 2023-06-13 Nitto Denko Corporation Laminated film, optical element, and image display

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105524551B (zh) * 2014-09-29 2018-05-15 旭化成株式会社 光学涂膜、光学涂膜的制造方法以及防反射膜
JP6499001B2 (ja) 2015-04-20 2019-04-10 東京エレクトロン株式会社 多孔質膜をエッチングする方法
US20190136070A1 (en) * 2016-04-27 2019-05-09 President And Fellows Of Harvard College Anti-fouling endoscopes and uses thereof
CN107801366B (zh) * 2016-09-06 2020-07-17 拓自达电线株式会社 电磁波屏蔽膜
WO2018084234A1 (ja) * 2016-11-04 2018-05-11 マクセルホールディングス株式会社 電磁波吸収シート
US11297658B2 (en) 2016-12-09 2022-04-05 Telefonaktiebolaget Lm Ericsson (Publ) PRACH scheduling method, scheduled PRACH transmission method, network node and user equipment
JP6932524B2 (ja) * 2017-03-10 2021-09-08 キヤノン株式会社 光学部材及び光学部材の製造方法
US11422294B2 (en) 2017-10-10 2022-08-23 Central Glass Company, Limited Durable functional coatings
JP6999370B2 (ja) * 2017-11-06 2022-01-18 日東電工株式会社 反射防止層付偏光板およびその製造方法
KR102125932B1 (ko) * 2018-09-04 2020-06-23 한국세라믹기술원 Slips 구조체 및 그 제조 방법
CN111913337A (zh) 2019-05-09 2020-11-10 中强光电股份有限公司 波长转换元件及其制作方法
US20230110637A1 (en) * 2020-02-28 2023-04-13 Nippon Sheet Glass Company, Limited Low-refractive-index film, laminate, optical element, windbreak material, and display device
KR102532523B1 (ko) * 2020-11-12 2023-05-15 주식회사 이음기술 반사 방지 및 단열 공기층을 구비한 복층 유리의 제조방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09314715A (ja) * 1996-03-27 1997-12-09 Asahi Glass Co Ltd 積層体およびその製造方法
JP3668126B2 (ja) * 1999-12-07 2005-07-06 エア プロダクツ アンド ケミカルズ インコーポレイテッド セラミックフィルムの形成方法
JP2006145709A (ja) * 2004-11-18 2006-06-08 Hitachi Ltd 反射防止膜及び反射防止膜を用いた光学部品及び反射防止膜を用いた画像表示装置
JP2008139581A (ja) 2006-12-01 2008-06-19 Asahi Glass Co Ltd 反射防止膜付き基体
JP2009211078A (ja) * 2009-04-10 2009-09-17 Hitachi Ltd 反射防止膜及びそれを有する画像表示装置,光記録媒体,太陽発電モジュール並びに反射防止膜形成方法
JP2011116947A (ja) 2009-10-27 2011-06-16 Shin-Etsu Chemical Co Ltd フルオロオキシアルキレン基含有ポリマー組成物および該組成物を含む表面処理剤並びに該表面処理剤で表面処理された物品
JP2013091568A (ja) 2011-10-07 2013-05-16 Komori Corp フィルム蓄積システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0798272B1 (en) 1996-03-27 2004-08-18 Asahi Glass Company Ltd. Laminate and process for its production
US6365266B1 (en) 1999-12-07 2002-04-02 Air Products And Chemicals, Inc. Mesoporous films having reduced dielectric constants
US8088475B2 (en) * 2004-03-03 2012-01-03 Hitachi, Ltd. Anti-reflecting membrane, and display apparatus, optical storage medium and solar energy converting device having the same, and production method of the membrane
JP2006342341A (ja) 2005-05-09 2006-12-21 Hitachi Chem Co Ltd シリカ系被膜、シリカ系被膜形成用組成物、シリカ系被膜の形成方法及び積層体
WO2011016458A1 (ja) * 2009-08-03 2011-02-10 旭硝子株式会社 撥水膜形成用組成物、撥水膜付き基体およびその製造方法並びに輸送機器用物品

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09314715A (ja) * 1996-03-27 1997-12-09 Asahi Glass Co Ltd 積層体およびその製造方法
JP3668126B2 (ja) * 1999-12-07 2005-07-06 エア プロダクツ アンド ケミカルズ インコーポレイテッド セラミックフィルムの形成方法
JP2006145709A (ja) * 2004-11-18 2006-06-08 Hitachi Ltd 反射防止膜及び反射防止膜を用いた光学部品及び反射防止膜を用いた画像表示装置
JP2008139581A (ja) 2006-12-01 2008-06-19 Asahi Glass Co Ltd 反射防止膜付き基体
JP2009211078A (ja) * 2009-04-10 2009-09-17 Hitachi Ltd 反射防止膜及びそれを有する画像表示装置,光記録媒体,太陽発電モジュール並びに反射防止膜形成方法
JP2011116947A (ja) 2009-10-27 2011-06-16 Shin-Etsu Chemical Co Ltd フルオロオキシアルキレン基含有ポリマー組成物および該組成物を含む表面処理剤並びに該表面処理剤で表面処理された物品
JP2013091568A (ja) 2011-10-07 2013-05-16 Komori Corp フィルム蓄積システム

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11618807B2 (en) 2014-12-26 2023-04-04 Nitto Denko Corporation Film with void spaces bonded through catalysis and method of producing the same
US11505667B2 (en) 2014-12-26 2022-11-22 Nitto Denko Corporation Laminated film roll and method of producing the same
CN107207907A (zh) * 2015-01-20 2017-09-26 三菱综合材料株式会社 低折射率膜形成用液体组合物
US20180050956A1 (en) * 2015-03-06 2018-02-22 Nippon Sheet Glass Company, Limited Coated glass sheet and method for producing same
US10800700B2 (en) * 2015-03-06 2020-10-13 Nippon Sheet Glass Company, Limited Coated glass sheet and method for producing same
US11674004B2 (en) 2015-07-31 2023-06-13 Nitto Denko Corporation Laminated film, optical element, and image display
US11460610B2 (en) 2015-07-31 2022-10-04 Nitto Denko Corporation Optical laminate, method of producing optical laminate, optical element, and image display
US11536877B2 (en) 2015-08-24 2022-12-27 Nitto Denko Corporation Laminated optical film, method of producing laminated optical film, optical element, and image display
US11524481B2 (en) 2015-09-07 2022-12-13 Nitto Denko Corporation Low refractive index layer, laminated film, method for producing low refractive index layer, method for producing laminated film, optical element, and image display device
KR101816093B1 (ko) * 2016-05-09 2018-01-08 (주)디엔에프 반사방지용 코팅 조성물
EP3470222B1 (en) * 2016-06-13 2021-12-29 Nissan Motor Co., Ltd. Antifouling structure and automotive component using antifouling structure
US11400686B2 (en) 2016-06-13 2022-08-02 Nissan Motor Co., Ltd. Antifouling structure and automotive component using antifouling structure
JP7196996B2 (ja) 2019-03-28 2022-12-27 株式会社ニコン 多孔質膜、光学素子、光学系、交換レンズ、光学装置および多孔質膜の製造方法
JPWO2020196851A1 (ja) * 2019-03-28 2020-10-01
WO2020196851A1 (ja) * 2019-03-28 2020-10-01 株式会社ニコン 多孔質膜、光学素子、光学系、交換レンズ、光学装置および多孔質膜の製造方法

Also Published As

Publication number Publication date
US10324234B2 (en) 2019-06-18
EP2990838A4 (en) 2016-11-30
CN105143924B (zh) 2017-05-31
TW201504068A (zh) 2015-02-01
JP6653171B2 (ja) 2020-02-26
EP2990838A1 (en) 2016-03-02
CN105143924A (zh) 2015-12-09
JPWO2014175124A1 (ja) 2017-02-23
KR20160000456A (ko) 2016-01-04
EP2990838B1 (en) 2018-12-12
US20160025899A1 (en) 2016-01-28
KR102120626B1 (ko) 2020-06-09

Similar Documents

Publication Publication Date Title
JP6653171B2 (ja) 反射防止層付き基材
US10696848B2 (en) Fluorinated ether compound, coating liquid, article and novel compounds
JP6264371B2 (ja) 含フッ素エーテル化合物、含フッ素エーテル組成物およびコーティング液、ならびに表面層を有する基材およびその製造方法
JP6127438B2 (ja) 含フッ素エーテル組成物、該組成物から形成された表面層を有する基材およびその製造方法
WO2019044479A1 (ja) 含フッ素エーテル化合物、含フッ素エーテル組成物、コーティング液、物品およびその製造方法
WO2019039226A1 (ja) 含フッ素エーテル化合物、含フッ素エーテル組成物、コーティング液、物品およびその製造方法
JP7031689B2 (ja) 含フッ素エーテル組成物、コーティング液および物品
WO2018168497A1 (ja) 含フッ素エーテル組成物、コーティング液および物品
JP2022089886A (ja) 含フッ素エーテル化合物、含フッ素エーテル組成物、コーティング液、物品およびその製造方法
WO2013042733A1 (ja) 含フッ素エーテル組成物、その製造方法、コーティング液、および表面処理層を有する基材の製造方法
JP2014021316A (ja) ハードコート層形成用組成物およびハードコート層を有する物品
WO2020100760A1 (ja) 撥水撥油層付き基材、蒸着材料および撥水撥油層付き基材の製造方法
JP7480780B2 (ja) 防汚層付き透明基板
JP7428142B2 (ja) 蒸着材料、およびそれを用いた下地層付き基材、撥水撥油層付き基材の製造方法
JP6587040B2 (ja) 蒸着用含フッ素エーテル組成物、ならびに蒸着膜付き物品およびその製造方法
WO2020137992A1 (ja) 撥水撥油層付き基材、蒸着材料および撥水撥油層付き基材の製造方法
WO2020137990A1 (ja) 蒸着材料、下地層付き基材の製造方法、撥水撥油層付き基材の製造方法
KR20220080074A (ko) 발수 발유층 형성 물품
WO2020100759A1 (ja) 撥水撥油層付き基材、蒸着材料および撥水撥油層付き基材の製造方法
JP2021172842A (ja) 撥水撥油層付き基材、蒸着材料および撥水撥油層付き基材の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480023346.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14789011

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015513698

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157024712

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014789011

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE