WO2014174928A1 - 生産エネルギー管理システムおよびコンピュータプログラム - Google Patents

生産エネルギー管理システムおよびコンピュータプログラム Download PDF

Info

Publication number
WO2014174928A1
WO2014174928A1 PCT/JP2014/056501 JP2014056501W WO2014174928A1 WO 2014174928 A1 WO2014174928 A1 WO 2014174928A1 JP 2014056501 W JP2014056501 W JP 2014056501W WO 2014174928 A1 WO2014174928 A1 WO 2014174928A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
production
management system
flow model
input
Prior art date
Application number
PCT/JP2014/056501
Other languages
English (en)
French (fr)
Inventor
智之 池山
渡辺 洋
井上 賢一
光 関
Original Assignee
横河電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横河電機株式会社 filed Critical 横河電機株式会社
Priority to EP14787447.3A priority Critical patent/EP2990898A4/en
Priority to US14/785,668 priority patent/US10090678B2/en
Publication of WO2014174928A1 publication Critical patent/WO2014174928A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/067Enterprise or organisation modelling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/80Management or planning
    • Y02P90/82Energy audits or management systems therefor

Definitions

  • the present invention relates to a production energy management system.
  • the present invention relates to a production energy management system and a computer program suitable for a continuous process.
  • a production energy management system that models energy flow and product flow in a plant and evaluates the energy usage status based on measured energy consumption, production volume, and the like is known.
  • the production energy management system enables the so-called “visualization” to visualize the current state of energy consumption and improvements, etc., and optimizes the use of energy by clarifying operational indicators related to factory energy. It is a system to support.
  • the production energy management system described in Patent Document 1 and Non-Patent Document 1 collects energy information and production information in a production line, and links energy information and production information to each product or lot. Energy consumption, CO 2 emissions, energy cost, production efficiency, energy intensity, etc. are calculated.
  • the energy intensity is an index obtained by dividing the energy consumption used for the production of the product by the production amount of the product, the input amount of raw materials, the production amount of the intermediate product, and the like.
  • the link between energy information and production information is a model of the flow of production between an energy flow model that models the flow of energy in the plant and equipment / devices (collectively referred to as “apparatus”). This is done by associating the production flow model.
  • Processes in the plant can be divided into batch processes and continuous processes depending on the production method.
  • a batch process is a discontinuous process in which a product is manufactured by processing and assembling mainly shaped materials by adding a series of operations one after another, like a machine industry plant.
  • continuous processes like oil production plants and chemical plants, are mainly fluids such as liquids and gases, and materials and products flow continuously into the equipment and continue to flow through the equipment. Is a process in which the product is continuously processed and the product flows out of the apparatus continuously.
  • the conventional production energy management system defines the energy flow model and calculates the energy consumption by calculating the amount of energy such as electric power, steam, cold water, etc., input to the apparatus. .
  • a production flow model is defined and the production volume in each device is calculated.
  • the calculation method using such a model is suitable for evaluating batch processes in which the relationship between the energy supplied to the equipment and consumed and the products in each equipment is clear, but the product paths are diverse. And is not sufficient for evaluation of continuous processes that need to consider the energy of the product itself.
  • One embodiment of the present invention provides a production energy management system and a computer program suitable for a continuous process.
  • the production energy management system expresses a flow related to input / output of production-related materials and a flow related to input / output of energy between devices arranged in a plant by directed lines,
  • a production / energy flow model definition unit that defines a production / energy flow model that associates index values of goods and energy with types of measurement data measured in the plant, and collects the measurement data from within the plant You may provide the data collection part, the energy calculation part which performs the energy calculation for every said apparatus according to the collected said measurement data and the defined said production / energy flow model.
  • the energy calculation unit includes energy consumption, energy cost, CO 2 emission, energy consumption basic unit, energy efficiency, index values related to user settings, and At least one calculation of the combined index value may be performed.
  • the symbol representing the device in the production / energy flow model includes a raw material input connecting an effective line indicating an input to the device of a production-related item, and a production-related item Connecting a product output that connects a directed line that indicates the output from the device, a utility input that connects a directed line that indicates the input of energy to the device, and a directed line that indicates an output of energy from the device Utility output.
  • the production / energy flow model may include retained heat treated as an energy amount as an index value of a production-related item.
  • the production / energy flow model may define a circulation of production-related items in the same apparatus as a flow related to input / output of production-related items.
  • the production / energy flow model defines a part or all of the production-related items as fuel and a part or all of the production-related items as an energy amount. It's okay.
  • the production / energy flow model may be handled as one device by defining a plurality of devices as a subsystem collectively.
  • the subsystem may include a hierarchical structure.
  • the production / energy flow model may define temporary storage of production-related items in a storage device as a flow related to input / output of production-related items.
  • the production / energy flow model includes, as a flow related to input / output of production-related items, movement between devices, processing time, time delay of production-related items in reaction time, transfer function, You may define the delay expressed with the function concerning a user definition.
  • the production energy management system according to the first aspect may further include a data display unit that changes a display mode of the directed line in the production / energy flow model based on a result of the calculation by the energy calculation unit.
  • a base for calculating a baseline function indicating a relational expression between an energy calculation result for each device and a factor extracted based on an evaluation result relating to a correlation between the energy calculation results A line model calculation unit may be further provided.
  • a data display for comparing and displaying an actual factor, an actual energy index value, and an estimated energy index value calculated based on the actual factor and the baseline function A part may be further provided.
  • the factors include the input amount of the production-related material, the temperature and humidity around the device, the operation mode of the plant, and the type and production area of the production-related material. At least one may be included.
  • the production energy management system may further include a field database for storing the measurement data and a production / energy flow model database for storing the production / energy flow model.
  • the energy calculation unit may perform energy calculation using the measurement data stored in the field database in accordance with the definition of the production / energy flow model stored in the production / energy flow model database.
  • the computer program according to the second aspect of the present invention expresses a flow related to input / output of production-related items and a flow related to input / output of energy between devices arranged in a plant by directed lines, Defining a production / energy flow model in which energy index values are associated with types of measurement data measured in the plant, collecting the measurement data from within the plant, and collecting the measurement
  • the computer may execute the energy calculation for each device according to the data and the defined production / energy flow model.
  • a production energy management system and a computer program suitable for a continuous process are provided.
  • the block diagram which shows the structure of the production energy management system which concerns on one Embodiment of this invention.
  • the figure explaining the specific example of the energy related calculation of the apparatus of the circulating system The figure which shows the example which displayed the calculation result on the production and energy flow model.
  • FIG. 1 is a block diagram showing a configuration of a production energy management system 100 according to an embodiment of the present invention.
  • the production energy management system 100 supports energy operation for the plant 300 that is a continuous process.
  • the continuous process plant 300 includes an apparatus group 310 including a plurality of apparatuses and devices, and various sensor groups 320 such as a flow meter, a wattmeter, and a thermometer.
  • the various sensor groups 320 are mainly arranged together with the device group 310.
  • a production energy management system 100 includes a field data collection unit 110, a field database 120, a production / energy flow model definition unit 130, a production / energy flow model database 140, an energy calculation unit 150, and an energy calculation result database. 160, a baseline model calculation unit 170, a baseline model database 180, and a data display unit 190.
  • the production energy management system 100 can be configured using, for example, one or more computers that operate according to a computer program and peripheral devices such as an external storage device, a monitor, and an input / output device.
  • the field data collection unit 110 collects data measured by the various sensor groups 320 arranged in the continuous process plant 300 and stores the data in the field database 120.
  • the measurement data collected by the field data collection unit 110 is data related to energy consumption, but also includes the production amount not directly related to the energy amount, the surrounding temperature and humidity, and the like.
  • the field database 120 is a database that stores measurement data collected by the field data collection unit 110. Each measurement data may be stored in a database in a time series for each collection period. Editing such as unit conversion and index assignment may be performed.
  • the production / energy flow model definition unit 130 defines a production / energy flow model that models the flow of materials and products and the flow of energy in the device group 310 of the continuous process plant 300.
  • a graphical interface using various symbols indicating the type of equipment, energy type, etc. may be provided to support the model definition work of engineers and service personnel. .
  • the correspondence between the index values such as the amount of material, temperature, and energy defined in the model and the types of measurement data used to calculate those index values is also defined. It also defines an energy consumption calculation method, production volume calculation method, etc. according to the attributes of the device defined in the model.
  • Device attributes include, for example, devices that circulate energy and materials, devices that continuously produce a plurality of materials and products, and devices that temporarily store products and materials. .
  • the production / energy flow model database 140 is a database that stores a model defined by a graphical interface together with its graphic information.
  • the energy calculation unit 150 performs energy calculation using the measurement data stored in the field database 120 in accordance with the model definition stored in the production / energy flow model database 140.
  • the calculation result is stored in the energy calculation result database 160.
  • the items of energy calculation are energy consumption, energy cost, CO 2 emission, energy consumption basic unit, energy efficiency, index value related to user setting, index value combining these, calculated index value, calculation result or
  • the index value or the like obtained based on the calculation result can be used, and the calculation can be performed for each subsystem including the entire factory, the apparatus, and an arbitrarily designated apparatus.
  • the index value related to the user setting is an index arbitrarily set by the user for energy management, and includes energy consumption, energy cost, energy consumption basic unit, energy efficiency, and the like. Further, a complicated index can be arbitrarily set according to the purpose of management. For example, an index value in which an arithmetic expression or a conditional expression is incorporated into the energy efficiency can be set.
  • An index value combining these is an index value combining an arbitrary index value and an arbitrary index value, and can be set by adding, subtracting, multiplying, and dividing the index values.
  • parameters for calculation such as energy unit price for each energy source such as electricity, gas, and heavy oil, CO 2 emission coefficient, and specific heat of the material are used.
  • the energy calculation result database 160 is a database that stores energy calculation results calculated by the energy calculation unit 150.
  • the baseline model calculation unit 170 generates a baseline model based on calculation results stored in the energy calculation result database.
  • the generated baseline model is stored in the baseline model database 180.
  • the baseline model is a function that represents the relationship between the energy consumption during the period specified by the operator and the factors that affect the energy consumption during that period. This function is called a baseline function.
  • Factors can be the amount of material input, the surrounding environment of the device such as temperature and humidity, the operation mode of the plant, the type of material, the production area, etc.
  • Use information other than the measurement data stored in the field database 120 Can do.
  • Information other than such measurement data can be captured as information outside the production / energy flow model.
  • Baseline models can be created for each device, each subsystem, and the like.
  • the baseline model database 180 is a database that records the baseline function generated by the baseline model calculation unit 170.
  • the data display unit 190 records information such as energy consumption, energy cost, CO 2 emission, energy consumption basic unit, energy efficiency, and the like recorded in the energy calculation result database 160 and the baseline model database 180. Information based on the baseline function is displayed by various graphs and charts.
  • the operation of the production energy management system 100 can be divided into pre-processing (S101) and operation processing (S102 to S107).
  • the production / energy flow model definition unit 130 is used to define the production / energy flow model corresponding to the plant that is the target of energy operation support (S101). Part of a certain plant may be sufficient as the plant used as the object of energy operation support, and several plants may be sufficient as it.
  • the production / energy flow model clarifies the input / output direction of the flow of materials, raw materials, products, work in process (generally referred to as “production-related items”) and the flow of energy between the devices that make up the plant. It is a model expressed by connecting with directed lines. In a continuous process, production-related materials may be treated as energy, so that production-related materials and energy are handled by one model.
  • the device In the production / energy flow model, the device is represented by a symbol as shown in FIG. 3, and a “raw material input” connecting a directed line indicating an input of a production-related object and a directed value indicating an output of the production-related object.
  • a “product output” for connecting lines, a “utility input” for connecting directed lines indicating energy input, and a “utility output” for connecting directed lines indicating energy output are provided.
  • ⁇ Directed lines for production-related items can be color-coded or line-types can be changed according to the state of the product such as gas-liquid mixing or gas, or the type of material. Similarly, even with a directed line of energy, it is possible to color-code or change the line type according to heat, cold water, electric power, and other types.
  • the directed lines of the material a and the material b are connected to “raw material input”.
  • the other end of the directed line of material a is connected to “product output” or the like of an apparatus that supplies material a
  • the other end of the directed line of material b is “product output” or the like of an apparatus that supplies material b. Connect to.
  • the input material a and material b are accompanied by information such as flow rate and temperature.
  • the flow meter, thermometer, etc. for measuring these and the correspondence between the various sensor groups 320 in the continuous process plant 300 are used. Also make sure to do it. Thereby, the flow rate, temperature, etc. of the material a can be grasped by referring to the measurement data stored in the field database 120.
  • the directed lines of the products A and B are connected to the “product output”.
  • the other end of the directed line can be the “raw material input” of the output destination device.
  • the output product is used as energy in another device, it is connected to the “utility input” of the other device.
  • the flow rates of the products A and B and the various sensor groups 320 are associated with each other.
  • the processing device X when energy such as heat, cold water, or electric power is input, connect a directed line to the “utility input”.
  • the other end of the directed line can be a “utility output” of a device that supplies energy, a motive power facility, or the like.
  • the input energy is also associated with various sensor groups 320 that measure the flow rate, temperature, electric energy, and the like.
  • the processing equipment X When the processing equipment X outputs energy such as waste heat and wastewater, connect a directed line to the “utility output”.
  • the other end of the directed line can be a “utility input” or the like of the output destination device.
  • the output energy is also associated with various sensor groups 320 that measure the flow rate, temperature, electric energy, and the like.
  • the flow rate, temperature, etc. cannot be directly measured by the various sensor groups 320 in the continuous process plant 300, constants, estimated values, etc. may be used.
  • the flow rate can be estimated based on the opening degree of the valve or the like.
  • FIG. 5 shows an example of a production / energy flow model in which a plurality of devices are connected by directed lines.
  • the production / energy flow model several devices are collectively defined as a subsystem and can be handled as one device.
  • each subsystem can be managed in a hierarchical structure.
  • a large-scale plant such as an oil production plant is constituted by several plants, and each plant is constituted by several devices. If this is expressed by a one-level production / energy flow model, the number of devices to be managed becomes enormous in the entire oil production plant. In order to eliminate this complexity, the production / energy flow model can be hierarchized.
  • the entire oil production plant is divided into a utility plant and a production plant, and the production plant is further divided into an atmospheric distillation device, a desulfurization device, a modified plant.
  • Hierarchy is performed by dividing the devices into various devices such as quality devices, and further dividing the devices into devices.
  • model definition can be updated as appropriate even after the operation process is started in accordance with a configuration change of the continuous process plant 300 or the like.
  • the energy-related calculation (S102) is repeatedly performed at a predetermined cycle, for example, 1 minute, 10 minutes, or the like. For this reason, the latest energy related information can be acquired and can be immediately reflected in operation.
  • the production energy management system 100 of this embodiment provides the latest energy-related information. Since it can be acquired, it is suitable for the energy saving measure of such a continuous process plant.
  • energy information based on the energy-related calculation result is displayed (S104).
  • the energy information may be displayed in real time or periodically updated regardless of whether there is an instruction from the operator.
  • the measured values of the field data necessary for calculating the energy amount, the production amount, etc. are read from the field database 120 (S201).
  • Measured data necessary for calculation of energy amount, production amount, etc. includes fuel flow rate, product flow rate, product temperature, steam flow rate, steam temperature, current, voltage, integrated electric energy, etc. These are measured by various sensor groups 320 in the production / energy flow model, and are associated with the measurement data stored in the field database 120 for each device.
  • the energy amount and the production amount are calculated for each device (S202).
  • the energy amount and the production amount are calculated for each device (S202).
  • only energy may flow. In this case, only the amount of energy needs to be calculated.
  • the amount of fuel D can be calculated, and the amount of energy applied to the apparatus can be calculated based on the amount of fuel D. As indicated by the dotted line, it is possible to burn the product C ′, which is a part of the product C, and calculate the amount of energy applied to the apparatus.
  • the stored heat of the product or material affects the amount of energy
  • use the stored heat of the product or material for calculating the amount of energy that is, the quantity and heat of products and materials can be used not only for calculating production quantity but also for calculating energy quantity as retained heat.
  • the retained heat Ha of the material A can be calculated from the specific heat Sa of the material A ⁇ the amount of the material A ⁇ the temperature of the material A.
  • the specific heat Sa of the material A can be obtained by a separately prepared process simulator. When the simulator is not used, a specific heat Sa may be estimated by creating a table from the actual input / output performance of the equipment.
  • a model suitable for a continuous process can be defined by using the stored heat for energy calculation.
  • the energy cost and the CO 2 emission amount are calculated (S203).
  • the energy cost is calculated by multiplying the input energy amount by the energy unit price determined for each source of the energy such as electric power, heavy oil, and gas.
  • the CO 2 emission amount is calculated by multiplying the input energy amount by a CO 2 emission coefficient determined for each source of the energy.
  • the energy efficiency in the device is calculated (S204).
  • the energy efficiency is calculated from the amount of energy input to the apparatus and the amount of energy that is effectively used and output.
  • the energy efficiency in the apparatus shown in FIG. 8 can be obtained by the retained heat of the product C / (the retained heat of the material A + the retained heat of the material B + the combustion heat amount of the fuel D).
  • the energy consumption basic unit in the apparatus is calculated (S205).
  • the energy consumption basic unit can be calculated by dividing the amount of energy input to the apparatus when the product is manufactured by the amount of the product.
  • the storage facility such as the tank 400 has a cumulative amount of energy for calculation, thereby stirring or heating in the storage facility. It is possible to cope with the case where the time of material input and the time of discharge from the storage facility is different.
  • the input flow rate from the previous step at the calculation timing n is Qi (n)
  • the cumulative input energy consumption is Ei (n)
  • the output flow rate to the next step is Qo (n)
  • the output The accumulated energy use amount is Eo (n)
  • the electric power of the stirring device 410 is Em (n)
  • the storage amount in the tank 400 is S (n)
  • the energy accumulation amount in the tank 400 is Es (n).
  • the accumulated output energy usage Eo (n) is expressed as Es (n ⁇ 1) * Qo (n) / S (n ⁇ 1).
  • the output flow rate Qo (n) can be measured with a flow meter or estimated from the opening of the valve.
  • the storage amount S (n) in the tank 400 can be estimated from a liquid level meter.
  • Es (n) It can be calculated by Es (n ⁇ 1) + Ei (n) + Em (n) ⁇ Eo (n).
  • the processing apparatus Q shown in FIG. 10A in the case of a system that has a circulation path and the output production-related products circulate and is re-input with a time delay, by setting a delay time for the piping to be circulated, The input of the circulation collection destination can be output data before the delay time.
  • circulation input from the product output to the raw material input is Cai (n)
  • product output is Pao (n)
  • circulation output from the product output is Cao (n).
  • Mai (n) + Cai (n) Pao (n) + Cao (n)
  • Cai (n) Cao (n-1)
  • the energy conversion value of the material input from the previous process at the calculation timing n is Emai (n)
  • the energy conversion value of the circulation input from the product output to the raw material input is ECai (n).
  • the product output energy conversion value is EPao (n)
  • the circulation output energy conversion value from the product output is ECao (n)
  • the power input is Eai (n)
  • the steam input is Sai (n)
  • the proportion between the circulation and the product in the product output can be a dynamic proportion based on a measured value, a proportion based on a fixed ratio, or the like.
  • the production energy management system is operated at 0:00, and the calculation defined by the production / energy flow model is performed every 10 minutes. It is assumed that on-site instruments such as wattmeters have measured and transmitted measurement data before the operation of this system.
  • the first calculation is performed assuming that there is no circulation input in the calculation model. Therefore, the calculated value at this time becomes provisional data.
  • the second and subsequent computations every 10 minutes, all computations including the circulation input are performed. At this time, the input of circulation refers to the result of the previous calculation.
  • a tightening process is performed for summing up the calculation results during a set time, for example, every 60 minutes.
  • the time when the product is output is calculated based on the data.
  • the following data is added in accordance with the calculation closing time. “0:56 to 10:00” “10:00 to 2:00” “2:00 to 2:10” “2:10 to 2:20” “2:20 to 2:30” “2:30 to 2:40 "" 2: 40-2: 50 "" 2: 50-2: 52 " “10:00 to 2:00” can use tightening data every 60 minutes.
  • “2:00 to 2:10”, “2:10 to 2:20”, and “2:40 to 2:50” can use the calculation results every 10 minutes.
  • the calculation result of the data for 10 minutes including the period is prorated according to the length of time. To do. For example, when the energy usage amount of 0:50 to 1:00 is 250, the energy usage amount of “0:56 to 10:00” is 100 by dividing 250 by 4/10. Similarly, when the energy usage amount of “2:50 to 2:52” is 200, the energy usage amount of 2:50 to 2:52 is 40.
  • Index values can be calculated by user-defined formulas using user-defined values such as raw material input values, intermediate product production volume, factory, plant unit area, etc. according to the user's management status is there.
  • each calculation result is recorded in the energy calculation result database 160 (S206).
  • the operator's instructions are given for energy consumption, energy cost, CO 2 emission, energy efficiency, energy consumption basic unit, etc. for each device obtained by energy-related calculations.
  • various graphs such as a bar graph, a line graph, and a pie graph are displayed, or a table format is displayed.
  • arbitrary devices can be put together or a period to be displayed can be arbitrarily set.
  • the calculation result can be displayed on the production / energy flow model or on the outline diagram of the production / energy flow model.
  • energy consumption, energy cost, CO 2 emission, energy consumption basic unit, energy efficiency, index value related to user setting, index value combining these, or calculated index value can be visually expressed by the thickness, color, line type, and the like of the directed line.
  • a comparison result between each index and a threshold set by a user, an analysis result using a baseline function described later, and the like can be visually expressed by changing a directed line, a symbol of the apparatus, or the like. Changes in the display mode such as directed lines and symbols can also be performed in the subsystem display and the hierarchical display of subsystems.
  • the baseline calculation (S106) and the baseline display (S107) in the flowchart of FIG. 2 will be described.
  • the baseline calculation the process of expressing the relationship between the energy consumption amount and the factor by the baseline function from the energy calculation result in the period designated by the operator.
  • the baseline can be used to verify the effect when energy consumption is improved. Specifically, it will affect the energy consumption, energy cost, CO 2 emissions, energy efficiency, energy consumption basic unit, etc. before improvement and energy consumption obtained in energy-related calculations (S102). Based on the correlation with the factor, the effect after the improvement can be verified. Below, the baseline about energy consumption is demonstrated to an example.
  • the setting of the target device or equipment group and the target performance period is accepted from the operator.
  • field data such as energy input / output values, material input values, product output values, temperature and humidity, etc.
  • information to be considered as factors is input as information outside the production / energy flow model.
  • the information outside the production / energy flow model can be the ambient environment of the device such as temperature and humidity, the operation mode of the plant, the type / production area of the material, the weather, the rainfall, the operation status of the line, alarm information, and the like.
  • factor candidate If the information considered as a factor in field data and information outside the production / energy flow model is referred to as a factor candidate, it is related to the fluctuation of energy consumption using variance analysis etc. for each factor candidate in the target period. Evaluate whether or not there is a factor, and narrow down the factors to be included in the baseline function.
  • the predetermined condition can be, for example, the energy intensity is below a reference value, a specific operation mode, a specific day of the week, or the like.
  • the energy consumption when no improvement is made can be estimated by substituting factors after improvement.
  • the estimated energy consumption and the actual energy consumption after the improvement are displayed as a graph, and the effect of the improvement can be visualized.
  • the energy consumption can be predicted.
  • FIG. 13 is a diagram showing an example of a baseline graph display.
  • the actual value of energy consumption before the energy saving measure and the fluctuations of factor A and factor B extracted as factors are shown.
  • the fluctuation of the estimated energy consumption when not improved, calculated using the baseline function is displayed. Yes.
  • the estimated energy consumption in the case of unimproved is a value obtained by substituting factor A and factor B after the energy saving measure is implemented into the baseline function.
  • the effect of the energy saving measure can be visually evaluated by comparing the energy consumption after the energy saving measure and the unimproved estimated energy consumption.
  • the production energy management system 100 of this embodiment has been described above.
  • the continuous process plant 300 has been described.
  • the present invention can also be applied to processes other than the continuous process. Calculations are mainly made on the balance of heat, but in the manufacturing process in the plant, it is added to the work in progress and recovered in a later process, such as water in a beverage factory or catalyst in a chemical factory. It can also be applied to calculate the balance.
  • high-pressure and high-temperature steam may be input to the device, and from the output, low-pressure and low-temperature steam may be input to another device.
  • the model of the present invention can also be applied to such management when steam is used in two stages.
  • the functions of the production energy management system 100 can be realized by hardware or software. That is, by installing a program for realizing the function of the production energy management system 100 in a computer, the function of the production energy management system 100 can be realized by software.
  • the program for realizing the functions of the production energy management system 100 may be recorded on a recording medium such as a CD-ROM or downloaded via a network such as the Internet.
  • unit is used to describe the components, sections and parts of a device and includes hardware and / or software configured or programmed to perform the desired functions. Typical examples of the hardware include, but are not limited to, devices and circuits.
  • DESCRIPTION OF SYMBOLS 100 ... Production energy management system, 110 ... Field data collection part, 120 ... Field database, 130 ... Production / energy flow model definition part, 140 ... Production / energy flow model database, 150 ... Energy calculation part, 160 ... Energy calculation result database , 170 ... Baseline model calculation unit, 180 ... Baseline model database, 190 ... Data display unit, 300 ... Continuous process plant, 310 ... Device group, 320 ... Various sensor group, tank ... 400, Stirring device ... 410

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Game Theory and Decision Science (AREA)
  • Quality & Reliability (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Operations Research (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • General Factory Administration (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

 プラント内に配置された装置間における生産関連物の入出力に関する流れと、エネルギーの入出力に関する流れとを有向線で表現し、生産関連物およびエネルギーの指標値と前記プラント内で計測される計測データの種類とを対応付けた生産・エネルギーフローモデルを定義する生産・エネルギーフローモデル定義部と、前記プラント内から前記計測データを収集するデータ収集部と、収集された前記計測データと、定義された前記生産・エネルギーフローモデルとに従って、前記装置毎のエネルギー演算を行なうエネルギー演算部と、を備えた、生産エネルギー管理システムを提供する。

Description

生産エネルギー管理システムおよびコンピュータプログラム
 本発明は、生産エネルギー管理システムに関する。特に、連続プロセスに好適な生産エネルギー管理システムおよびコンピュータプログラムに関する。
 本願は、2013年4月23日に、日本に出願された特願2013-090548に基づき優先権を主張し、その内容をここに援用する。
 プラントにおけるエネルギーの流れと生産物の流れをモデル化し、計測されたエネルギー使用量、生産量等に基づいてエネルギー使用状況を評価する生産エネルギー管理システムが知られている。生産エネルギー管理システムは、エネルギー消費の現状や改善点等を視覚化する、いわゆる「見える化」を可能とするものであり、工場のエネルギーに関する操業指標を明らかにすることでエネルギー利用の最適化を支援するシステムである。
 例えば、特許文献1、非特許文献1に記載されている生産エネルギー管理システムは、製造ラインにおけるエネルギー情報と生産情報とを収集し、エネルギー情報と生産情報とをリンクさせることで、製品やロット当たりの消費エネルギー、CO排出量、エネルギーコスト、生産効率、エネルギー原単位等を算出する。エネルギー原単位は、製品の生産に使用したエネルギー消費量を製品の生産量、原料の投入量、中間製品の生産量等で割ることで得られる指標である。
 エネルギー情報と生産情報とのリンクは、図14に示すように、プラントにおけるエネルギーの流れをモデル化したエネルギーフローモデルと、装置・機器等(「装置」と総称する)間の生産の流れをモデル化した生産フローモデルとを紐付することで行なっている。
 プラントにおけるプロセスは、その生産方式によってバッチプロセスと連続プロセスとに分けることができる。バッチプロセスは、機械工業プラントのように、次々と一連の操作を加えることにより、主として形のある材料を加工したり組み立てたりして製品を製造する非連続のプロセスである。
 一方、連続プロセスは、石油生成プラントや化学プラントのように、材料も製品も、主として液体や気体などの流体であり、材料が装置の中に連続的に流れ込み、装置の中を流れる間に連続的に加工され、製品も連続的に装置から流れ出すプロセスである。
 バッチプロセスでは、装置に供給されて消費されるエネルギーと、各装置における生産物との関係が明確であるのに対し、連続プロセスでは、生産物自体が保有熱という形でエネルギーを有していたり、生産物の一部が装置を循環したり、装置に一時的に蓄積されることがある。さらには、生産物の一部がエネルギーとして用いられることもある。
 従来の生産エネルギー管理システムは、図14に示したように、エネルギーフローモデルを定義して、装置に投入された電力、蒸気、冷水等のエネルギー量を演算することで消費エネルギーを算出している。生産フローモデルを定義して、各装置における生産量を算出している。
 このようなモデルを用いた算出法は、装置に供給されて消費されるエネルギーと、各装置における生産物との関係が明確なバッチプロセスの評価には適しているが、製品の経路が多様性を有し、また生産物自体のエネルギーを考慮する必要がある連続プロセスの評価には十分とはいえない。
日本国特開2010-67114号公報
「工場エネルギー操業支援システムEnerizeE3」横河技術報Vol.53 2010 省エネ特集号
 本発明の一態様は、連続プロセスに好適な生産エネルギー管理システムおよびコンピュータプログラムを提供する。
 本発明の第1の態様の生産エネルギー管理システムは、プラント内に配置された装置間における生産関連物の入出力に関する流れと、エネルギーの入出力に関する流れとを有向線で表現し、生産関連物およびエネルギーの指標値と前記プラント内で計測される計測データの種類とを対応付けた生産・エネルギーフローモデルを定義する生産・エネルギーフローモデル定義部と、前記プラント内から前記計測データを収集するデータ収集部と、収集された前記計測データと、定義された前記生産・エネルギーフローモデルとに従って、前記装置毎のエネルギー演算を行なうエネルギー演算部と、を備えてよい。
 上記第1の態様の生産エネルギー管理システムにおいて、前記エネルギー演算部は、エネルギー消費量、エネルギーコスト、CO排出量、エネルギー消費原単位、エネルギー効率、ユーザの設定に係る指標値、及び、これらを組み合わせた指標値の少なくとも1つの演算を行ってよい。
 上記第1の態様の生産エネルギー管理システムにおいて、前記生産・エネルギーフローモデルにおける前記装置を表わすシンボルは、生産関連物の前記装置への入力を示す有効線を接続する原料入力と、生産関連物の前記装置からの出力を示す有向線を接続する製品出力と、エネルギーの前記装置への入力を示す有向線を接続するユーティリティ入力と、エネルギーの前記装置からの出力を示す有向線を接続するユーティリティ出力とを備えてよい。
 上記第1の態様の生産エネルギー管理システムにおいて、前記生産・エネルギーフローモデルは、生産関連物の指標値として、エネルギー量として扱われる保有熱を含んでよい。
 上記第1の態様の生産エネルギー管理システムにおいて、前記生産・エネルギーフローモデルは、生産関連物の入出力に関する流れとして、同一装置における生産関連物の循環を定義してよい。
 上記第1の態様の生産エネルギー管理システムにおいて、前記生産・エネルギーフローモデルは、生産関連物の一部または全部を燃料として扱う流れとして、前記生産関連物の一部または全部をエネルギー量として定義してよい。
 上記第1の態様の生産エネルギー管理システムにおいて、前記生産・エネルギーフローモデルは、複数の装置をまとめてサブシステムとして定義することで1つの装置として取り扱ってよい。前記サブシステムは階層化構造を含んでよい。
 上記第1の態様の生産エネルギー管理システムにおいて、前記生産・エネルギーフローモデルは、生産関連物の入出力に関する流れとして、蓄積装置における生産関連物の一時貯蔵を定義してよい。
 上記第1の態様の生産エネルギー管理システムにおいて、前記生産・エネルギーフローモデルは、生産関連物の入出力に関する流れとして、装置間移動、加工時間、反応時間における生産関連物の時間遅れ、伝達関数、ユーザの定義に係る関数で表現された遅れを定義してよい。
 上記第1の態様の生産エネルギー管理システムにおいて、前記エネルギー演算部による演算の結果に基づいて、前記生産・エネルギーフローモデルにおける有向線の表示態様を変更するデータ表示部をさらに備えてよい。
 上記第1の態様の生産エネルギー管理システムにおいて、前記装置毎のエネルギー演算結果と、前記エネルギー演算結果との相関に関する評価結果に基づいて抽出した要因との関係式を示すベースライン関数を算出するベースラインモデル演算部をさらに備えてよい。
 上記第1の態様の生産エネルギー管理システムにおいて、実際の要因と実際のエネルギー指標値と、前記実際の要因と前記ベースライン関数とに基づいて算出された推定エネルギー指標値とを比較表示するデータ表示部をさらに備えてよい。
 上記第1の態様の生産エネルギー管理システムにおいて、前記要因は、前記生産関連物の投入量、前記装置の周辺の温度及び湿度、前記プラントの運用モード、並びに、前記生産関連物の種類及び産地の少なくとも1つを含んでよい。
 上記第1の態様の生産エネルギー管理システムにおいて、前記計測データを格納するフィールドデータベースと、前記生産・エネルギーフローモデルを格納する生産・エネルギーフローモデルデータベースと、をさらに備えてよい。前記エネルギー演算部は、前記生産・エネルギーフローモデルデータベースに格納された前記生産・エネルギーフローモデルの定義に従って、前記フィールドデータベースに格納された前記計測データを用いてエネルギー演算を行なってよい。
 本発明の第2の態様のコンピュータプログラムは、プラント内に配置された装置間における生産関連物の入出力に関する流れと、エネルギーの入出力に関する流れとを有向線で表現し、生産関連物およびエネルギーの指標値と前記プラント内で計測される計測データの種類とを対応付けた生産・エネルギーフローモデルを定義することと、前記プラント内から前記計測データを収集することと、収集された前記計測データと、定義された前記生産・エネルギーフローモデルとに従って、前記装置毎のエネルギー演算を行なうことと、をコンピュータに実行させてよい。
 本発明の一態様によれば、連続プロセスに好適な生産エネルギー管理システムおよびコンピュータプログラムが提供される。
本発明の一実施形態に係る生産エネルギー管理システムの構成を示すブロック図。 本実施形態の生産エネルギー管理システムの動作の概要について説明するフローチャート。 生産・エネルギーフローモデルにおける装置のシンボルを説明する図。 装置に接続される有向線を説明する図。 生産・エネルギーフローモデルの例を示す図。 生産・エネルギーフローモデルの階層構造の例を示す図。 エネルギー関連計算の詳細について説明するフローチャート。 通常の装置のエネルギー関連計算を説明する図。 備蓄装置のエネルギー関連計算を説明する図。 循環する系の装置のエネルギー関連計算を説明する図。 循環する系の装置のエネルギー関連計算を説明する図。 循環する系の装置のエネルギー関連計算の具体例を説明する図。 生産・エネルギーフローモデルに演算結果を表示した例を示す図。 ベースラインの表示例を示す図。 従来の生産エネルギー管理システムにおけるエネルギーフローモデルと生産フローモデルとを説明する図。
 本発明の一実施の形態の生産エネルギー管理システムおよびコンピュータプログラムについて図面を参照して説明する。図1は、本発明の一実施形態に係る生産エネルギー管理システム100の構成を示すブロック図である。本実施形態では、生産エネルギー管理システム100は、連続プロセスのプラント300を対象にエネルギー操業の支援を行なうものとする。連続プロセスのプラント300は、複数台の装置や機器等を含んだ装置群310と、流量計、電力計、温度計等の各種センサ群320を備えている。各種センサ群320は、主として装置群310と共に配置されている。
 図1に示すように、生産エネルギー管理システム100は、フィールドデータ収集部110、フィールドデータベース120、生産・エネルギーフローモデル定義部130、生産・エネルギーフローモデルデータベース140、エネルギー演算部150、エネルギー演算結果データベース160、ベースラインモデル演算部170、ベースラインモデルデータベース180、データ表示部190を備えている。
 生産エネルギー管理システム100は、例えば、コンピュータプログラムに従って動作を行なう1台あるいは複数台のコンピュータと外部記憶装置・モニタ・入出力装置等の周辺装置とを用いて構成することができる。
 フィールドデータ収集部110は、連続プロセスプラント300に配置されている各種センサ群320で計測されたデータを収集して、フィールドデータベース120に格納する。フィールドデータ収集部110が収集する計測データは、エネルギー消費に関係するデータであるが、直接エネルギー量に結びつかない生産量や周辺の温湿度等も含まれる。
 フィールドデータベース120は、フィールドデータ収集部110によって収集された計測データを格納するデータベースである。各計測データは収集周期毎の時系列にまとめてデータベースに格納されてよい。単位変換やインデックス付与等の編集を行なうようにしてもよい。
 生産・エネルギーフローモデル定義部130は、連続プロセスプラント300の装置群310における材料や製品等の流れとエネルギーの流れとをモデル化した生産・エネルギーフローモデルを定義する。生産・エネルギーフローモデルの定義を行う際には、エンジニアやサービス員のモデル定義作業を支援するため、装置の種類やエネルギーの種類等を示す種々のシンボルを用いたグラフィカルなインタフェースを提供してよい。
 生産・エネルギーフローモデルでは、モデルで定義される材料の量や温度、エネルギー量等の指標値と、それらの指標値の算出に用いる計測データの種類との対応も定義づけておく。モデルで定義される装置の属性に応じたエネルギー消費量算出法、生産量算出法等も定義する。装置の属性としては、例えば、エネルギーや材料が循環する系の装置、複数の材料や複数の製品が連続的に生産される系の装置、製品や材料の一時保管を行なう系の装置等がある。
 生産・エネルギーフローモデルデータベース140は、グラフィカルなインタフェースによって定義されたモデルをその図形情報とともに格納するデータベースである。
 エネルギー演算部150は、生産・エネルギーフローモデルデータベース140に格納されたモデルの定義に従って、フィールドデータベース120に格納された計測データを用いてエネルギー演算を行なう。演算結果は、エネルギー演算結果データベース160に格納する。
 エネルギー演算の項目は、エネルギー消費量、エネルギーコスト、CO排出量、エネルギー消費原単位、エネルギー効率、ユーザの設定に係る指標値、これらを組み合わせた指標値、演算された指標値、演算結果または演算結果に基づいて得られた指標値等とすることができ、工場全体、装置、任意に指定された装置から構成されるサブシステム毎に演算を行なうことができる。ユーザの設定に係る指標値とは、エネルギー管理のためにユーザが任意に設定する指標であり、エネルギー消費量、エネルギーコスト、エネルギー消費原単位、エネルギー効率等が含まれる。さらに複雑な指標を管理の目的に応じて任意に設定することもできる。例えば、エネルギー効率に算術式や条件式を組み入れた指標値を設定することができる。また、これらを組み合わせた指標値とは、任意の指標値と任意の指標値の組み合わせた指標値であり、指標値同士を加減乗除等することにより設定することができる。エネルギー演算の際には、電気・ガス・重油等のエネルギーソース毎のエネルギー単価、CO排出係数や、材料の比熱等の演算用パラメータが用いられる。
 エネルギー演算結果データベース160は、エネルギー演算部150によって算出されたエネルギー演算結果を格納するデータベースである。
 ベースラインモデル演算部170は、エネルギー演算結果データベースに格納されている演算結果等に基づいて、ベースラインモデルを生成する。生成したベースラインモデルはベースラインモデルデータベース180に格納する。
 ベースラインモデルは、操作者によって指定された期間におけるエネルギー演算結果から、その期間のエネルギー消費量とエネルギー消費量に影響を与える要因との関係を関数で表わしたものである。この関数をベースライン関数と呼ぶ。
 要因は、材料の投入量、温度や湿度等の装置の周辺環境、プラントの運用モード、材料の種類・産地等とすることができ、フィールドデータベース120に格納された計測データ以外の情報も用いることができる。このような計測データ以外の情報は、生産・エネルギーフローモデル外情報として取り込むことができる。ベースラインモデルは、装置毎、サブシステム毎等に作成することができる。
 ベースラインモデルデータベース180は、ベースラインモデル演算部170が生成したベースライン関数を記録するデータベースである。
 データ表示部190は、エネルギー演算結果データベース160に記録されているエネルギー消費量、エネルギーコスト、CO排出量、エネルギー消費原単位、エネルギー効率等の情報や、ベースラインモデルデータベース180に記録されているベースライン関数に基づく情報等を各種グラフや図表等により表示する。
 次に、本実施形態の生産エネルギー管理システム100の動作の概要について図2のフローチャートを参照して説明する。生産エネルギー管理システム100の動作は、事前処理(S101)と運用処理(S102~S107)とに分けることができる。
 事前処理では、生産・エネルギーフローモデル定義部130を利用して、エネルギー操業支援の対象となるプラントに対応した生産・エネルギーフローモデルを定義する(S101)。エネルギー操業支援の対象となるプラントは、あるプラントの一部であってもよいし、複数のプラントであってもよい。
 生産・エネルギーフローモデルは、プラントを構成する装置間で、材料・原料・製品・仕掛品等(「生産関連物」と総称する)の流れと、エネルギーの流れを、入出力方向を明らかにした有向線で結んで表現したモデルである。連続プロセスでは、生産関連物がエネルギーとして扱われる場合があるため、生産関連物とエネルギーとを1つのモデルで扱うようにしている。
 生産・エネルギーフローモデルにおいて、装置は、図3に示すようなシンボルで表わされ、生産関連物の入力を示す有向線を接続する「原料入力」と、生産関連物の出力を示す有向線を接続する「製品出力」と、エネルギーの入力を示す有向線を接続する「ユーティリティ入力」と、エネルギーの出力を示す有向線を接続する「ユーティリティ出力」とを備えている。
 生産関連物の有向線では、気液混合や気体等の製品状態や材料の種類等で色分けをしたり線種を異ならせることができる。同様に、エネルギーの有向線でも、熱、冷水、電力、その他の種類に応じて色分けをしたり線種を異ならせることができる。
 例えば、図4に示すように、ある処理装置Xにおいて、材料aと材料bとが入力される場合は、「原料入力」に材料aと材料bの有向線を接続する。材料aの有向線の他端は、材料aを供給する装置の「製品出力」等に接続し、材料bの有向線の他端は、材料bを供給する装置の「製品出力」等に接続する。
 入力される材料a、材料bには、流量、温度等の情報が付随し、モデル化においては、これらを計測する流量計、温度計等と連続プロセスプラント300内における各種センサ群320との対応付けも行なうようにする。これにより、フィールドデータベース120に格納された計測データを参照することで、材料aの流量、温度等を把握することができる。
 処理装置Xにおいて、製品Aと製品Bとが出力される場合は、「製品出力」に製品Aと製品Bの有向線を接続する。有向線の他端は、出力先の装置の「原料入力」とすることができる。出力された製品が、他の装置においてエネルギーとして用いられる場合等は、他の装置の「ユーティリティ入力」に接続する。「製品出力」についても、製品Aと製品Bの流量等と各種センサ群320との対応付けを行なう。
 処理装置Xにおいて、熱、冷水、電力等のエネルギーが入力される場合は、「ユーティリティ入力」に有向線を接続する。有向線の他端は、エネルギーを供給する装置の「ユーティリティ出力」や原動力設備等とすることができる。入力されるエネルギーについても、流量、温度、電力量等を計測する各種センサ群320との対応付けを行なうようにする。
 処理装置Xにおいて、廃熱、排水等のエネルギーが出力される場合は、「ユーティリティ出力」に有向線を接続する。有向線の他端は、出力先の装置の「ユーティリティ入力」等とすることができる。出力されるエネルギーについても、流量、温度、電力量等を計測する各種センサ群320との対応付けも行なうようにする。
 いずれの場合においても、流量、温度等が連続プロセスプラント300内における各種センサ群320で直接計測できない場合は、定数や推定値等を用いるようにしてもよい。例えば、弁の開度等に基づいて、流量を推定することができる。
 図5は、複数の装置間が有向線で結ばれた生産・エネルギーフローモデルの例を示している。生産・エネルギーフローモデルでは、いくつかの装置をまとめてサブシステムとして定義し、1つの装置として扱えるようになっている。
 さらに、生産・エネルギーフローモデルでは、サブシステムごとに階層構造で管理することができるようになっている。一般に、石油生成プラント等の大規模プラントは、いくつかのプラントが集まって構成され、それぞれのプラントはいくつかの装置が集まって構成されている。これを一階層の生産・エネルギーフローモデルで表現しようとすると、石油生成プラント全体では、管理対象とすべき装置の数が膨大になってしまう。この煩雑さを解消するため、生産・エネルギーフローモデルは階層化することができるようになっている。
 図6に示した生産・エネルギーフローモデルの階層化の例では、石油生成プラント全体を、ユーティリティプラントと製造プラントの2つに分け、製造プラントの中をさらに、常圧蒸留装置、脱硫装置、改質装置等の各種装置に分け、さらに各装置の中を機器で分けることにより階層化を行なっている。
 図2のフローチャートの説明に戻って、事前処理のモデル定義(S101)を終えると、実際の運用処理を開始する。モデル定義は、連続プロセスプラント300の構成変更等に応じて、運用処理開始後であっても適宜更新することができる。
 運用処理では、あらかじめ定められた周期、例えば、1分、10分等で、エネルギー関連計算(S102)を繰り返し行なう。このため、最新のエネルギー関連情報を取得することができ、操業に即座に反映させることができる。
 石油精製プラント等では、原油タンクの切替が頻繁に行なわれたり、装置の状態、気象などの外部条件が刻々と変化するが、本実施形態の生産エネルギー管理システム100は、最新のエネルギー関連情報を取得できるため、このような連続プロセスプラントの省エネルギー施策に好適である。
 操作者からエネルギー関連計算結果の表示指示があった場合には(S103:Yes)、エネルギー関連計算結果に基づくエネルギー情報の表示を行なう(S104)。エネルギー情報の表示は操作者からの指示の有無にかかわらず、例えば、リアルタイムに表示したり、定期的に表示を更新したりしてもよい。
 操作者からベースライン処理の実行指示があった場合(S105:Yes)は、操作者の指示に基づいてベースラインの計算を行ない(S106)、計算結果に基づくベースライン情報の表示を行なう(S107)。ベースライン処理の実行指示を操作者から受け付ける際には、対象とする装置の指定と、対象とする期間の指定とを併せて受け付けるようにする。
 次に、運用処理におけるエネルギー関連計算(S102)の詳細について、図7のフローチャートを参照して説明する。
 エネルギー関連計算(S102)では、まず、エネルギー量、生産量等の計算に必要なフィールドデータの計測値をフィールドデータベース120から読み込む(S201)。
 エネルギー量、生産量等の計算に必要な計測データとしては、燃料流量、製品流量、製品温度、蒸気流量、蒸気温度、電流、電圧、積算電力量等がある。これらは、生産・エネルギーフローモデルにおいて、各種センサ群320が計測し、フィールドデータベース120に格納されている計測データと装置毎に対応付けられている。
 フィールドデータを読み込むと、装置毎に、エネルギー量と生産量とを計算する(S202)。原動力設備のように、装置の種類によっては、エネルギーだけが流れているような場合もある。この場合は、エネルギー量のみを算出すればよい。
 例えば、図8に示すような、材料Aと材料Bとを入力し、燃料Dを加えることにより、製品Cが出力される装置の場合、流量計の計測データ等によって材料A、材料B、製品C、燃料Dの量を算出することができ、燃料Dの量に基づいて装置に加えられるエネルギー量を算出することができる。点線で示したように、製品Cの一部である製品C'を燃焼させて、装置に加えられるエネルギー量を算出することも可能である。
 製品や材料の保有熱がエネルギー量に影響を与える場合は、製品や材料の保有熱をエネルギー量の演算に用いるようにする。すなわち、製品や材料の量や熱は、生産量の算出のみならず、保有熱としてエネルギー量の算出にも用いることができる。
 例えば、材料Aの保有熱Haは、材料Aの比熱Sa×材料Aの量×材料Aの温度により算出することができる。材料Aの比熱Saは、別途用意したプロセスのシミュレータにより得ることができる。シミュレータを用いない場合は、実際の設備の入出力実績からテーブルを作成しておき、比熱Saを推測するようにしてもよい。
 一般に、石油化学プロセス等の連続プロセスでは、製品や材料に対する加熱工程が多く、前工程において加熱された製品は、次工程でその熱をさらに利用することが多い。熱交換・化学反応・分解等、工程毎に中間製品の保有熱量が変わったり、各工程で熱の回収も行なわれる。さらには、製品や不良品を燃料として投入する場合もある。このため、各工程において製品が有する熱量は次工程でのエネルギー収支に影響与え、コストにも影響を与える。本実施形態の生産エネルギー管理システム100では、保有熱としてエネルギー演算に用いることで、連続プロセスに適したモデルを定義できるようになっている。
 エネルギー量と生産量とを計算した後、エネルギーコストとCO排出量の計算を行なう(S203)。エネルギーコストは、入力したエネルギー量に、電力、重油、ガス等のそのエネルギーのソース毎に定められたエネルギー単価をかけることで算出される。CO排出量は、入力したエネルギー量に、そのエネルギーのソース毎に定められたCO排出係数をかけることで算出される。
 装置におけるエネルギー効率の計算を行なう(S204)。エネルギー効率の計算は、装置に入力されるエネルギー量と有効に使用されて出力されたエネルギー量とから算出する。例えば、図8に示した装置におけるエネルギー効率は、製品Cの保有熱/(材料Aの保有熱+材料Bの保有熱+燃料Dの燃焼熱量)で求めることができる。
 次に、装置におけるエネルギー消費原単位の計算を行なう(S205)。エネルギー消費原単位は、製品を製造する際に装置に入力されたエネルギー量を製品の量で割ることにより算出することができる。
 製品を製造する際に装置に入力されたエネルギー量の演算に関して、装置の属性に対応した特殊な演算が必要な場合がある。これは、生産・エネルギーフローモデルで定義されている装置には、内部に材料やエネルギーを保持したり、循環したりするものがあり、これらは演算周期毎のエネルギー消費量を単純に積算しただけでは正確な評価ができないためである。
 例えば、装置が図9に示すような製品や材料の一時保管を行なう系の場合は、タンク400等の備蓄設備に、エネルギー累積量を計算上持たせることで、備蓄設備内で撹拌や加熱等をしたり、材料の投入と備蓄設備からの排出の時刻が異なる場合に対応できるようしている。
 図9に示した例では、演算タイミングnにおける前工程からの入力流量をQi(n)、入力エネルギー累積使用量をEi(n)とし、次工程への出力流量をQo(n)とし、出力エネルギー累積使用量をEo(n)とし、撹拌用機器410の電力をEm(n)とし、タンク400内の貯蔵量をS(n)とし、タンク400内のエネルギー累積量をEs(n)とすると、出力エネルギー累積使用量Eo(n)は、Es(n-1)*Qo(n)/S(n-1)と表わされる。
 出力流量Qo(n)は、流量計で計測したり、弁の開度から推測することができる。タンク400内の貯蔵量S(n)は、タンク400の入力総量から出力総量を引くことにより、すなわち、S(n)=ΣQi(n)-ΣQo(n)により算出することができる。タンク400内の貯蔵量S(n)は、液位計から推定することができる。
 タンク400内のエネルギー累積量Es(n)は、前回のタンク400内のエネルギー累積量+入力エネルギー累積使用量+タンク400内使用エネルギー量-出力エネルギー累積使用量となるため、Es(n)=Es(n-1)+Ei(n)+Em(n)-Eo(n)により算出することができる。
 図10Aに示す処理装置Qのように、循環経路を持ち、出力した生産関連物が循環して時間遅れで再入力される系の場合、循環が行なわれる配管について遅れ時間を設定することで、循環の回収先の入力を、その遅れ時間分前の出力データとすることができる。
 例えば、図10Bの装置モデルに示すように、循環量とエネルギー換算値とを定めると、生産関連物の収支
 材料の入力=製品の出力については、演算タイミングnにおける前工程からの材料の入力をMai(n)とし、製品出力から原料入力への循環の入力をCai(n)とし、製品の出力をPao(n)とし、製品出力からの循環の出力をCao(n)とすると、
 Mai(n)+Cai(n)=Pao(n)+Cao(n)
 Cai(n)=Cao(n-1)
となり、エネルギーの収支については、演算タイミングnにおける前工程からの材料の入力のエネルギー換算値をEMai(n)とし、製品出力から原料入力への循環の入力のエネルギー換算値をECai(n)とし、製品の出力のエネルギー換算値をEPao(n)とし、製品出力からの循環の出力のエネルギー換算値をECao(n)とし、電力の入力をEai(n)とし、蒸気の入力をSai(n)とし、廃熱回収をHaoとすると、
 材料の入力+ユーティリティ入力=製品出力+ユーティリティ出力
 {EMai(n)+ECai(n)}+{Eai(n)+Sai(n)}
  ={EPao(n)+ECao(n)}+(Hao)
 ECai(n)=ECao(n-1)
となる。なお、製品出力における循環と製品との案分は測定値による動的案分としたり、固定比による案分等とすることができる。
 図10Bに示した装置モデルのより具体的なエネルギー消費量の演算方法について図11を参照して説明する。図11においては、「ロットA」の製造で消費したエネルギー量を算出対象とする。
 図11の例では、0:00に生産エネルギー管理システムを稼働し、10分毎に生産・エネルギーフローモデルで定義された演算を実施するものとする。電力計等の現場計器は、本システムの稼働前から、測定を行ない、計測データを送信しているものとする。
 生産エネルギー管理システムの稼働後、1回目の演算は、演算モデルのうち、循環の入力がないものとして、演算をすべて行なう。そのため、この時の演算値は暫定のデータとなる。10分毎の2回目以降の演算では、循環の入力分も含めて演算をすべて行なう。この時、循環の入力分は、前回の演算の結果を参照する。10分毎の演算とは別に、設定された時間、例えば60分毎に、その間の演算結果の合算等を行なう締め処理を行なっているものとする。
 今回の演算の例では前回の演算結果を参照する例を示したが、現在の演算結果、前々回以前の演算結果等の複数の結果を参照することも可能である。装置間移動、加工時間、反応時間等の装置の制御性を示す時間遅れ、伝達関数、ユーザが指定した関数で表現された遅れ、その他指標値を参照することも可能である。
 ある製品を作るためのエネルギー使用量を演算する場合は、例えば、その製品が出力された時間を、データを基に演算する。0:56~2:52に生産された製品「ロットA」のエネルギー使用量を演算する場合、演算の締め時間に合わせ、以下のデータを合算する。
「0:56~1:00」「1:00~2:00」「2:00~2:10」「2:10~2:20」「2:20~2:30」「2:30~2:40」「2:40~2:50」「2:50~2:52」
 「1:00~2:00」は、60分毎の締めデータを使用することができる。また、「2:00~2:10」「2:10~2:20」…「2:40~2:50」は、10分毎の演算結果を使用することができる。
 一方、「0:56~1:00」「2:50~2:52」は演算の周期よりも短い周期のため、その期間を含む10分間のデータの演算結果を時間の長さによって案分するようにする。例えば、0:50~1:00のエネルギー使用量が250の場合、「0:56~1:00」のエネルギー使用量は、250を4/10で案分して100となる。同様に、「2:50~2:52」のエネルギー使用量が200の場合、2:50~2:52のエネルギー使用量は40となる。
 これらの演算結果の合計が、製品「ロットA」を製造するために消費されたエネルギー量となる。
 このエネルギー量を製品の量で除算を行なうと、エネルギー原単位となる。ユーザの管理状況に合わせ、原料の入力値や、中間製品の生産量、工場、プラントの単位面積など、ユーザが定める値を用いて、ユーザが定義した数式により指標値を算出することが可能である。
 本実施形態では、ロットについて説明したが、例えば製品の包装単位ごと、1日の出荷量、出荷先、その他ユーザが定める出荷製品の単位や、材料の購入単位ごと、格納したタンクごと、その他ユーザが定める原料管理の単位や、中間製品の管理単位で演算することが可能である。
 図7のフローチャートの説明に戻って、装置におけるエネルギー消費源単位の計算(S205)を終えると、各計算結果をエネルギー演算結果データベース160に記録する(S206)。
 以上、図2のフローチャートにおけるエネルギー関連計算(S102)の詳細な手順について説明した。
 図2のフローチャートにおけるエネルギー情報表示(S104)では、エネルギー関連計算で得られた装置毎のエネルギー消費量、エネルギーコスト、CO排出量、エネルギー効率、エネルギー消費原単位等について、操作者の指示に基づいて棒グラフ、折れ線グラフ、円グラフ等の種々のグラフで表示したり、表形式等で表示する。このとき、任意の装置をまとめたり、表示対象とする期間を任意に設定できる。
 演算結果は、生産・エネルギーフローモデル上あるいは生産・エネルギーフローモデルの概要図上に表示させることもできる。例えば、図12に示すように、エネルギー消費量、エネルギーコスト、CO排出量、エネルギー消費原単位、エネルギー効率、ユーザの設定に係る指標値、これらを組み合わせた指標値、または演算された指標値等の大きさを、有向線の太さや色、線種等で視覚的に表現させることができる。各指標とユーザが設定した閾値との比較結果や後述するベースライン関数を用いた解析結果等を有向線や装置のシンボル等を変化させることで視覚的に表現させることができる。有向線やシンボル等の表示態様の変化は、サブシステム表示やサブシステムの階層化表示においても行なうことができる。
 次に、図2のフローチャートにおけるベースライン計算(S106)とベースライン表示(S107)について説明する。上述のように、ベースライン計算では、操作者によって指定された期間におけるエネルギー演算結果から、エネルギー消費量と要因との関係をベースライン関数で表わす処理を行なう。
 ベースラインは、エネルギー消費の改善を行なった場合に、その効果を検証するため等に用いることができる。具体的には、エネルギー関連計算(S102)で得られたエネルギー消費量、エネルギーコスト、CO2排出量、エネルギー効率、エネルギー消費原単位等の改善前の実績と、エネルギー消費量等に影響を与える要因との相関関係に基づいて、改善後の効果を検証することができる。以下では、エネルギー消費量についてのベースラインを例に説明する。
 ベースライン関数の作成に際しては、操作者から対象とする装置あるいは設備群と対象とする実績期間との設定を受け付ける。エネルギーの入出力値・材料の入力値・製品の出力値・温湿度等のフィールドデータ以外にも要因として考慮する情報を生産・エネルギーフローモデル外情報として入力する。
 生産・エネルギーフローモデル外情報は、温度や湿度等の装置の周辺環境、プラントの運用モード、材料の種類・産地、天候、降雨量、ラインの操業状態、アラーム情報等とすることができる。
 フィールドデータおよび生産・エネルギーフローモデル外情報で、要因として考慮する情報を要因候補と称すると、対象とする期間において、要因候補毎に、分散分析等を用いてエネルギー消費量の変動との関連性の有無を評価して、ベースライン関数に組み込む要因の絞り込みを行なう。
 対象とする期間において、所定の条件に合致するデータを抽出して評価するようにしてもよい。所定の条件は、例えば、エネルギー原単位が基準値以下としたり、特定の運用モードや特定曜日等とすることができる。これにより、操業条件が近いデータを抽出したり、省エネルギーが達成できていた期間のデータを抽出することができる。
 要因を絞り込んだら、絞り込まれた要因群について、多変量解析を行ない、エネルギー消費量と各要因との関係を近似するモデル式を生成する。このモデル式をベースライン関数と称する。この際に、どの程度近似しているかを示す相関値を明らかにしてよい。
 作成されたベースライン関数は、過去の実績に基づくものであるため、改善後の要因を代入することで、改善を行なわなかった場合のエネルギー消費量を推定することができる。この推定エネルギー消費量と、改善後の実際のエネルギー消費量とをグラフ表示して比較することで、改善の効果を視覚化することが可能となる。ベースライン関数に、要因Aと要因Bの任意の値を代入することで、エネルギー消費量を予測することも可能となる。
 図13は、ベースラインのグラフ表示例を示す図である。ベースラインモデル化・検討期間のエリアでは、省エネルギー施策前のエネルギー消費量の実績値と、要因として抽出された要因Aと要因Bの変動が示されている。施策実施期間のエリアでは、省エネ施策実施後のエネルギー消費量と要因Aと要因Bの変動に加え、ベースライン関数を用いて算出された未改善の場合の推定エネルギー消費量の変動が表示されている。未改善の場合の推定エネルギー消費量は、ベースライン関数に省エネ施策実施後の要因Aと要因Bを代入することで得られる値である。
 図13に示すように、省エネ施策実施後のエネルギー消費量と未改善推定エネルギー消費量とを比較することにより、省エネルギー施策の効果を視覚的に評価することができる。
 このようなベースラインを利用することで、省エネルギー施策の効果以外にも、連続プロセスに適した種々の評価等を行なうことができる。例えば、石油化学プラントでは、精製する材料の種類や、精製する製品の交換等により、エネルギー消費量等が異なるが、ベースラインを用いて実際の稼働データと過去の稼働データとを比較することで、その時の運転状況のエネルギー消費量を評価することができる。
 一般に、装置の稼働時間が長くなるにつれて、装置のスケール付着等により、エネルギー消費量が増加する。この場合、装置のメンテナンスを行なってエネルギー消費量を減少させる必要があるが、ベースラインを用いて、現在のエネルギー消費量の評価を行なうことで、メンテナンスの必要性の検討を行なうことができるようになる。これにより、メンテナンス不良による不具合を防ぎ、安定的な生産の状態を維持することで、プラントのライフサイクルを延ばせることが期待される。
 以上、本実施形態の生産エネルギー管理システム100について説明した。本実施形態では、連続プロセスプラント300を対象に説明したが、本発明は、連続プロセス以外のプロセスに適用することも可能である。主として熱量の収支についての演算を行なっているが、プラント内での製造工程において、仕掛け品に付加し、後の工程で回収するようなプラント、例えば、飲料工場における水や、化学工場における触媒の収支を算出するのにも適用することができる。
 蒸気を使用するプラントにおいて、抽気と呼ばれる、高圧・高温の蒸気を装置に入力し、その出力から、入力よりも低圧・低温の蒸気を別装置に入力することがある。このような2段階で蒸気を利用する場合の管理においても、本発明のモデルを適用することができる。
 生産エネルギー管理システム100のエネルギー演算結果を用いることで、任意の設備群に対し、熱精算図(サンキーダイアグラム)を描くことが可能となる。
 生産エネルギー管理システム100の機能は、ハードウェアにより実現することも、ソフトウェア的に実現することも可能である。つまり、生産エネルギー管理システム100の機能を実現するプログラムをコンピュータにインストールすることによって、生産エネルギー管理システム100の機能をソフトウェア的に実現することができる。この生産エネルギー管理システム100の機能を実現するプログラムは、CD-ROM等の記録媒体に記録されたものでも、インターネット等のネットワークを介してダウンロードしたものでも良い。
用語「部(ユニット)」は、装置のコンポーネント、セクション及びパートを記述するために使用し、所望の機能を実行するよう構成された或いはプログラムされたハードウェア及び/又はソフトウェアを含むものである。該ハードウェアの典型例としてデバイス及び回路を含むが、これに限定するものではない。
以上、本発明の好適な実施形態について説明し例証したが、これらはあくまで発明の例示であって限定的に考慮されるべきものではなく、追加、削除、置換及び他の変更は本発明の精神或いは範囲を逸脱しない範囲で可能である。即ち、本発明は前述した実施形態により限定されるものではなく、以下のクレームの範囲により限定されるものである。
100…生産エネルギー管理システム、110…フィールドデータ収集部、120…フィールドデータベース、130…生産・エネルギーフローモデル定義部、140…生産・エネルギーフローモデルデータベース、150…エネルギー演算部、160…エネルギー演算結果データベース、170…ベースラインモデル演算部、180…ベースラインモデルデータベース、190…データ表示部、300…連続プロセスプラント、310…装置群、320…各種センサ群、タンク…400、撹拌用機器…410

Claims (15)

  1.  プラント内に配置された装置間における生産関連物の入出力に関する流れと、エネルギーの入出力に関する流れとを有向線で表現し、生産関連物およびエネルギーの指標値と前記プラント内で計測される計測データの種類とを対応付けた生産・エネルギーフローモデルを定義する生産・エネルギーフローモデル定義部と、
     前記プラント内から前記計測データを収集するデータ収集部と、
     収集された前記計測データと、定義された前記生産・エネルギーフローモデルとに従って、前記装置毎のエネルギー演算を行なうエネルギー演算部と、
    を備えた、生産エネルギー管理システム。
  2.  前記エネルギー演算部は、エネルギー消費量、エネルギーコスト、CO排出量、エネルギー消費原単位、エネルギー効率、ユーザの設定に係る指標値、及び、これらを組み合わせた指標値の少なくとも1つの演算を行う、請求項1に記載の生産エネルギー管理システム。
  3.  前記生産・エネルギーフローモデルにおいて、前記装置を表わすシンボルは、生産関連物の前記装置への入力を示す有効線を接続する原料入力と、生産関連物の前記装置からの出力を示す有向線を接続する製品出力と、エネルギーの前記装置への入力を示す有向線を接続するユーティリティ入力と、エネルギーの前記装置からの出力を示す有向線を接続するユーティリティ出力とを備える、請求項1記載の生産エネルギー管理システム。
  4.  前記生産・エネルギーフローモデルは、生産関連物の指標値として、エネルギー量として扱われる保有熱を含む、請求項1記載の生産エネルギー管理システム。
  5.  前記生産・エネルギーフローモデルは、生産関連物の入出力に関する流れとして、同一装置における生産関連物の循環を定義する、請求項1記載の生産エネルギー管理システム。
  6.  前記生産・エネルギーフローモデルは、生産関連物の一部または全部を燃料として扱う流れとして、前記生産関連物の一部または全部をエネルギー量として定義する、請求項1記載の生産エネルギー管理システム。
  7.  前記生産・エネルギーフローモデルは、複数の装置をまとめてサブシステムとして定義することで1つの装置として取り扱い、前記サブシステムは階層化構造を含んでいる、請求項1記載の生産エネルギー管理システム。
  8.  前記生産・エネルギーフローモデルは、生産関連物の入出力に関する流れとして、蓄積装置における生産関連物の一時貯蔵を定義する、請求項1記載の生産エネルギー管理システム。
  9.  前記生産・エネルギーフローモデルは、生産関連物の入出力に関する流れとして、装置間移動、加工時間、反応時間における生産関連物の時間遅れ、伝達関数、ユーザの定義に係る関数で表現された遅れを定義する、請求項1記載の生産エネルギー管理システム。
  10.  前記エネルギー演算部による演算の結果に基づいて、前記生産・エネルギーフローモデルにおける有向線の表示態様を変更するデータ表示部をさらに備えた、請求項1記載の生産エネルギー管理システム。
  11.  前記装置毎のエネルギー演算結果と、前記エネルギー演算結果との相関に関する評価結果に基づいて抽出した要因との関係式を示すベースライン関数を算出するベースラインモデル演算部をさらに備えた、請求項1記載の生産エネルギー管理システム。
  12.  実際の要因と実際のエネルギー指標値と、前記実際の要因と前記ベースライン関数とに基づいて算出された推定エネルギー指標値とを比較表示するデータ表示部をさらに備えた、請求項11に記載の生産エネルギー管理システム。
  13.  前記要因は、前記生産関連物の投入量、前記装置の周辺の温度及び湿度、前記プラントの運用モード、並びに、前記生産関連物の種類及び産地の少なくとも1つを含む、請求項11に記載の生産エネルギー管理システム。
  14.  前記計測データを格納するフィールドデータベースと、
     前記生産・エネルギーフローモデルを格納する生産・エネルギーフローモデルデータベースと、
    をさらに備え、
     前記エネルギー演算部は、前記生産・エネルギーフローモデルデータベースに格納された前記生産・エネルギーフローモデルの定義に従って、前記フィールドデータベースに格納された前記計測データを用いてエネルギー演算を行なう、請求項1に記載の生産エネルギー管理システム。
  15.  プラント内に配置された装置間における生産関連物の入出力に関する流れと、エネルギーの入出力に関する流れとを有向線で表現し、生産関連物およびエネルギーの指標値と前記プラント内で計測される計測データの種類とを対応付けた生産・エネルギーフローモデルを定義することと、
     前記プラント内から前記計測データを収集することと、
     収集された前記計測データと、定義された前記生産・エネルギーフローモデルとに従って、前記装置毎のエネルギー演算を行なうことと、
    をコンピュータに実行させるコンピュータプログラム。
PCT/JP2014/056501 2013-04-23 2014-03-12 生産エネルギー管理システムおよびコンピュータプログラム WO2014174928A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14787447.3A EP2990898A4 (en) 2013-04-23 2014-03-12 PRODUCTION ENERGY MANAGEMENT SYSTEM AND COMPUTER PROGRAM
US14/785,668 US10090678B2 (en) 2013-04-23 2014-03-12 Production energy management system and computer program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-090548 2013-04-23
JP2013090548A JP5790952B2 (ja) 2013-04-23 2013-04-23 生産エネルギー管理システムおよびコンピュータプログラム

Publications (1)

Publication Number Publication Date
WO2014174928A1 true WO2014174928A1 (ja) 2014-10-30

Family

ID=51791513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056501 WO2014174928A1 (ja) 2013-04-23 2014-03-12 生産エネルギー管理システムおよびコンピュータプログラム

Country Status (5)

Country Link
US (1) US10090678B2 (ja)
EP (1) EP2990898A4 (ja)
JP (1) JP5790952B2 (ja)
TW (1) TW201510888A (ja)
WO (1) WO2014174928A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104595924A (zh) * 2015-01-14 2015-05-06 河北省电力建设调整试验所 建立锅炉燃烧过程模型的方法和装置
JP2018156231A (ja) * 2017-03-16 2018-10-04 富士電機株式会社 エネルギー管理システムおよびエネルギー管理方法
CN112749856A (zh) * 2019-10-30 2021-05-04 吉林炭素有限公司 一种判定石墨电极试验品质量优劣性的定量排序方法
WO2021109573A1 (zh) * 2019-12-04 2021-06-10 合肥工业大学 多机生产线的能量服务化系统及共享驱动系统的设计方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015044860A1 (en) * 2013-09-24 2015-04-02 Koninklijke Philips N.V. System for optimizing workflow for efficient on-site data collection and determination of energy analysis and method of operation thereof
JP5930225B2 (ja) * 2014-01-27 2016-06-08 横河電機株式会社 エネルギー効率評価支援装置、コンピュータプログラムおよびエネルギー効率評価支援方法
US20160179081A1 (en) * 2014-12-22 2016-06-23 Siemens Aktiengesellschaft Optimized Production Scheduling Using Buffer Control and Genetic Algorithm
US10438150B2 (en) * 2015-06-29 2019-10-08 Schneider Electric USA, Inc. Energy intensity variability analysis
JP6504089B2 (ja) * 2016-03-10 2019-04-24 横河電機株式会社 工程監視装置、工程監視システム、工程監視方法、工程監視プログラム及び記録媒体
JP6829610B2 (ja) * 2017-01-20 2021-02-10 株式会社日立製作所 指標値推定装置及び指標値推定方法
KR102658469B1 (ko) 2017-01-26 2024-04-18 엘지전자 주식회사 에너지 관리 장치 및 그의 동작 방법
TWI618018B (zh) * 2017-04-14 2018-03-11 國立清華大學 應用電力用量特徵之製造管理方法及其系統
JP6740270B2 (ja) 2018-02-27 2020-08-12 三菱重工業株式会社 工場評価装置、工場評価方法、およびプログラム
US10811884B2 (en) 2018-03-16 2020-10-20 Uop Llc Consolidation and use of power recovered from a turbine in a process unit
US11507031B2 (en) * 2018-03-16 2022-11-22 Uop Llc Recovered electric power measuring system and method for collecting data from a recovered electric power measuring system
US11194301B2 (en) 2018-03-16 2021-12-07 Uop Llc System for power recovery from quench and dilution vapor streams
US10794225B2 (en) 2018-03-16 2020-10-06 Uop Llc Turbine with supersonic separation
US10508568B2 (en) 2018-03-16 2019-12-17 Uop Llc Process improvement through the addition of power recovery turbine equipment in existing processes
US10829698B2 (en) 2018-03-16 2020-11-10 Uop Llc Power recovery from quench and dilution vapor streams
US10871085B2 (en) 2018-03-16 2020-12-22 Uop Llc Energy-recovery turbines for gas streams
US10690010B2 (en) 2018-03-16 2020-06-23 Uop Llc Steam reboiler with turbine
US10753235B2 (en) 2018-03-16 2020-08-25 Uop Llc Use of recovered power in a process
US10745631B2 (en) 2018-03-16 2020-08-18 Uop Llc Hydroprocessing unit with power recovery turbines
US11131218B2 (en) 2018-03-16 2021-09-28 Uop Llc Processes for adjusting at least one process condition of a chemical processing unit with a turbine
CN112232718A (zh) * 2018-04-18 2021-01-15 费希尔-罗斯蒙特系统公司 质量检查管理系统
JP7135426B2 (ja) * 2018-05-15 2022-09-13 富士電機株式会社 モデル作成装置、モデル作成方法及びモデル作成プログラム
US10920624B2 (en) 2018-06-27 2021-02-16 Uop Llc Energy-recovery turbines for gas streams
JP6788765B1 (ja) * 2019-01-25 2020-11-25 日本テクノ株式会社 生産性指標演算装置
EP4083880A4 (en) * 2020-02-06 2023-01-11 Mitsubishi Electric Corporation DATA PROCESSING DEVICE, DATA PROCESSING METHOD AND DATA PROCESSING PROGRAM

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63117814A (ja) * 1986-11-01 1988-05-21 Fuji Electric Co Ltd 物流制御システムにおけるデ−タ管理方法
JPH05313557A (ja) * 1992-05-14 1993-11-26 Toshiba Corp プラントモデル自動生成装置
US20020133270A1 (en) * 2001-03-19 2002-09-19 Hung Stephen Lan-Sun System and methods for remote management of steam generating systems
JP2009271698A (ja) * 2008-05-07 2009-11-19 Mitsubishi Electric Corp 省エネルギー支援装置
JP2010067114A (ja) 2008-09-12 2010-03-25 Yokogawa Electric Corp 生産エネルギー管理システム
JP2010250383A (ja) * 2009-04-10 2010-11-04 Omron Corp 原単位算出装置、原単位算出装置の制御方法、および制御プログラム
JP2011248614A (ja) * 2010-05-26 2011-12-08 Hitachi Ltd 生産ラインの用役ロス量評価システムおよび方法
JP2012031799A (ja) * 2010-07-30 2012-02-16 Central Res Inst Of Electric Power Ind 地熱発電プラントの熱効率解析方法及び性能評価方法並びに熱効率解析プログラム及び性能評価プログラム
JP2013073584A (ja) * 2011-09-29 2013-04-22 Yokogawa Electric Corp 運転状態監視装置および運転状態監視方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090177505A1 (en) * 2008-01-04 2009-07-09 Dietrich Brenda L Supply and Distribution Method and System Which Considers Environmental or "Green" Practices
US9274518B2 (en) * 2010-01-08 2016-03-01 Rockwell Automation Technologies, Inc. Industrial control energy object
US20120083933A1 (en) * 2010-09-30 2012-04-05 General Electric Company Method and system to predict power plant performance
US8938314B2 (en) * 2010-11-16 2015-01-20 International Business Machines Corporation Smart energy consumption management
US8897900B2 (en) 2011-03-18 2014-11-25 Rockwell Automation Technologies, Inc. Graphical language for optimization and use
JP5798069B2 (ja) * 2012-03-21 2015-10-21 株式会社東芝 電気機器モニタリング装置
US9817375B2 (en) * 2014-02-26 2017-11-14 Board Of Trustees Of The University Of Alabama Systems and methods for modeling energy consumption and creating demand response strategies using learning-based approaches

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63117814A (ja) * 1986-11-01 1988-05-21 Fuji Electric Co Ltd 物流制御システムにおけるデ−タ管理方法
JPH05313557A (ja) * 1992-05-14 1993-11-26 Toshiba Corp プラントモデル自動生成装置
US20020133270A1 (en) * 2001-03-19 2002-09-19 Hung Stephen Lan-Sun System and methods for remote management of steam generating systems
JP2009271698A (ja) * 2008-05-07 2009-11-19 Mitsubishi Electric Corp 省エネルギー支援装置
JP2010067114A (ja) 2008-09-12 2010-03-25 Yokogawa Electric Corp 生産エネルギー管理システム
JP2010250383A (ja) * 2009-04-10 2010-11-04 Omron Corp 原単位算出装置、原単位算出装置の制御方法、および制御プログラム
JP2011248614A (ja) * 2010-05-26 2011-12-08 Hitachi Ltd 生産ラインの用役ロス量評価システムおよび方法
JP2012031799A (ja) * 2010-07-30 2012-02-16 Central Res Inst Of Electric Power Ind 地熱発電プラントの熱効率解析方法及び性能評価方法並びに熱効率解析プログラム及び性能評価プログラム
JP2013073584A (ja) * 2011-09-29 2013-04-22 Yokogawa Electric Corp 運転状態監視装置および運転状態監視方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Enerize E3 Factory Energy Management System", YOKOGAWA TECHNICAL REPORT, vol. 53, 2010
KATSUTOMO TANAKA: "Kojo Energy Sogyo Shien System no Kaihatsu -'Mieruka' kara 'Energy Koritsu Saiteki Sogyo e", KEISO, vol. 53, no. 5, 1 May 2010 (2010-05-01), pages 44 - 48, XP008181689 *
See also references of EP2990898A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104595924A (zh) * 2015-01-14 2015-05-06 河北省电力建设调整试验所 建立锅炉燃烧过程模型的方法和装置
JP2018156231A (ja) * 2017-03-16 2018-10-04 富士電機株式会社 エネルギー管理システムおよびエネルギー管理方法
CN112749856A (zh) * 2019-10-30 2021-05-04 吉林炭素有限公司 一种判定石墨电极试验品质量优劣性的定量排序方法
CN112749856B (zh) * 2019-10-30 2024-04-02 吉林炭素有限公司 一种判定石墨电极试验品质量优劣性的定量排序方法
WO2021109573A1 (zh) * 2019-12-04 2021-06-10 合肥工业大学 多机生产线的能量服务化系统及共享驱动系统的设计方法
US11803167B2 (en) 2019-12-04 2023-10-31 Hefei University Of Technology Energy service system of multi-machine production line and design method of shared drive system

Also Published As

Publication number Publication date
US20160079756A1 (en) 2016-03-17
EP2990898A1 (en) 2016-03-02
US10090678B2 (en) 2018-10-02
JP5790952B2 (ja) 2015-10-07
JP2014215701A (ja) 2014-11-17
TW201510888A (zh) 2015-03-16
EP2990898A4 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
WO2014174928A1 (ja) 生産エネルギー管理システムおよびコンピュータプログラム
Xenos et al. Optimization of a network of compressors in parallel: Real Time Optimization (RTO) of compressors in chemical plants–An industrial case study
Herrmann et al. Process chain simulation to foster energy efficiency in manufacturing
JP5641376B2 (ja) 産業施設のエネルギーを管理するシステム
Giacone et al. Energy efficiency measurement in industrial processes
US20180046155A1 (en) Identifying and implementing refinery or petrochemical plant process performance improvements
JP2023543918A (ja) 製造プラントの製造プロセスにおける製品のカーボンフットプリントを判定するための方法
Drumm et al. STRUCTese®–Energy efficiency management for the process industry
JP2019113883A (ja) 稼働補助装置及び風力発電システム
CN114722104B (zh) 基于区块链的企业碳排能耗数据管理运营系统及方法
US10372118B2 (en) State-based hierarchy energy modeling
Pan et al. Exploiting tube inserts to intensify heat transfer for the retrofit of heat exchanger networks considering fouling mitigation
JP5930225B2 (ja) エネルギー効率評価支援装置、コンピュータプログラムおよびエネルギー効率評価支援方法
JP5501893B2 (ja) プラント運転評価装置
Li et al. Reliability-informed life cycle warranty cost and life cycle analysis of newly manufactured and remanufactured units
JP5283143B1 (ja) 機器や設備に対して稼働状況の診断を行う稼働状況診断装置、稼働状況診断方法、及び、稼働状況診断プログラム
JP5600085B2 (ja) 評価支援システム、方法およびプログラム
Obermeier et al. A discrete-time scheduling model for continuous power-intensive processes considering fatigue of equipment
Noorollahi et al. An economic production quantity model with random yield subject to process compressibility
CN112700091A (zh) 工业企业能源效益模型的分析装置和方法
Lees et al. A utilities consumption model for real-time load identification in a brewery
CN106651056B (zh) 一种基于设备工况组合的能源预测系统
Bungener et al. A methodology for creating sequential multi-period base-case scenarios for large data sets
Van Rensburg A generic software platform for performance monitoring of deep-level mine systems
Prendl et al. Framework for Automated Data-Driven Model Adaption for the Application in Industrial Energy Systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14787447

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14785668

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014787447

Country of ref document: EP