WO2021109573A1 - 多机生产线的能量服务化系统及共享驱动系统的设计方法 - Google Patents

多机生产线的能量服务化系统及共享驱动系统的设计方法 Download PDF

Info

Publication number
WO2021109573A1
WO2021109573A1 PCT/CN2020/101323 CN2020101323W WO2021109573A1 WO 2021109573 A1 WO2021109573 A1 WO 2021109573A1 CN 2020101323 W CN2020101323 W CN 2020101323W WO 2021109573 A1 WO2021109573 A1 WO 2021109573A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
task
drive
energy
drive unit
Prior art date
Application number
PCT/CN2020/101323
Other languages
English (en)
French (fr)
Inventor
黄海鸿
邹翔
李磊
朱利斌
刘志峰
Original Assignee
合肥工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911224857.0A external-priority patent/CN110889639A/zh
Priority claimed from CN201911224825.0A external-priority patent/CN110968059B/zh
Application filed by 合肥工业大学 filed Critical 合肥工业大学
Priority to US17/324,919 priority Critical patent/US11803167B2/en
Publication of WO2021109573A1 publication Critical patent/WO2021109573A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J4/00Circuit arrangements for mains or distribution networks not specified as ac or dc
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32021Energy management, balance and limit power to tools
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention relates to the processing field of multi-machine production lines, in particular to an energy servicing system and method for a multi-machine production line, and a design method for a multi-machine shared drive system of the production line.
  • the production line has the advantages of high production efficiency, multiple procedures or even all procedures for one part, and is widely used in manufacturing.
  • the execution devices on the production line complete the production tasks one by one, realizing the continuous processing of multiple different processes.
  • the energy requirements of different stages are quite different.
  • the energy requirements of the actual machining process are greater than those of other auxiliary stages, resulting in a lower degree of matching between energy supply and load requirements. , Resulting in a large amount of energy loss in the production line.
  • the hydraulic transmission has become the transmission form of equipment in the production line due to its advantages of smooth transmission, large power-to-weight ratio, simple control, and large carrying capacity.
  • the energy requirements of different processes and different processing stages are quite different, resulting in a low degree of matching between the drive system and load requirements, resulting in a large amount of energy loss in the production line.
  • the existing drive system is designed according to the power requirements of the process. Therefore, the installed power of the drive system is relatively large, and the degree of matching with the load is relatively low, resulting in high energy loss of production line equipment, and energy efficiency less than 40%. %.
  • the present invention provides an energy servicing system for a multi-machine production line and a control method thereof, in order to supply energy demanded on the production line with high energy efficiency and non-conflict through the energy supply bus.
  • it also provides a design method for the multi-machine sharing drive system of the production line, in order to improve the matching degree of the drive system and the task load of the production line, thereby improving the production line
  • the energy efficiency of the hydraulic press reduces the energy loss in one work cycle of the hydraulic press production line.
  • the characteristics of the energy service system of a multi-machine production line of the present invention include: a drive system, an execution device, an energy supply bus and a control center;
  • the control center is used to monitor and control the switching status of each drive unit and the energy supply bus;
  • the energy supply bus is composed of m independent units, and is used to convert the output energy form of the i-th drive unit AG i into the energy form required by the j-th execution unit; let each independent unit be composed of the entrance A and The outlet B end is composed, where the inlet A end connected to the i-th drive unit AG i is denoted as IN i ; and the outlet B end corresponding to the i-th inlet A end IN i has n outlets, which are connected with the i-th drive unit AG i in turn.
  • an execution unit CL 1 to n execution units CL n is connected, wherein the outlet of the j-th execution unit CL j connected referred to as OU ij; and provided with a switch SW ij on the outlet OU ij, when the switch SW ij When closed, the i-th inlet A terminal IN i is connected to the outlet OU ij , and the i-th drive unit AG i can provide energy for the j-th execution unit CL j;
  • Sy j is the j-th given power similarity range, and it is between [0, 1];
  • the process is composed of D processes ⁇ PRO 1 ,PRO 2 ,...,PRO d ,...,PRO D ⁇ , where PRO d represents the dth process, so that the dth process PRO d contains k d processes Stage, and satisfies formula (3):
  • the r-th processing stage in the d-th process PRO d is the a-th processing stage in the j-th subtask TA j ;
  • Step 1 Start the m drive units AG 1 , AG 2 ,..., AG i ,..., AG m in the drive system; and turn on all the switches of the energy supply bus ⁇ SW ij
  • Step 5 Judge whether r+d is equal to x, if yes, perform step 6-step 9, otherwise, perform step 10;
  • Step 6 Use formula (6) to calculate the r-th processing stage in the d-th process PRO d Average power
  • Step 7 According to the average power
  • the j-th execution unit CL j sends an energy service request to the control center, and the control center uses the average power Use equation (7) to select the drive unit AG ⁇ with the highest driving efficiency in the current drive system in the idle state to provide energy for the j-th execution unit CL j , where AG ⁇ ⁇ AG:
  • Step 8 The driving system responds to the energy service request and turns off the smallest driving unit AG ⁇ in the energy supply bus to drive the switch SW ⁇ j of the j-th execution device CL j , thereby starting to execute the processing phase And mark the state of the smallest drive unit AG ⁇ as busy in the control center;
  • Step 9 When the processing stage After completion, turn on the corresponding switch SW ⁇ j and mark the state of the smallest drive unit AG ⁇ as idle;
  • Step 10 After assigning r+1 to r, judge whether r>k d holds, if yes, go to step 11, otherwise, go to step 5;
  • Step 11 After assigning d+1 to d, judge whether d>D holds, if yes, go to step 12, otherwise, go to step 4:
  • Step 12 After assigning x+1 to x, judge x>(max ⁇ k d ⁇ +D), if yes, go to step 13; otherwise, go to step 3;
  • Step 13 Turn off the m drive units AG 1 , AG 2 ,..., AG i ,..., AGm in the drive system; turn off all the switches of the energy supply bus.
  • the present invention is a method for designing a multi-machine shared drive system for a production line.
  • the production line is composed of K machines that jointly complete a production task.
  • the characteristic is that the design method is carried out according to the following steps:
  • Step 2.1 According to the load difference of the load curve of each process, each process is divided into multiple processing stages, and the processing stages are sorted in sequence;
  • Step 2.2 Use formula (1) to obtain the power similarity index Ps a of the a-th processing stage:
  • Step 2.3 Calculate the power similarity index of each processing stage, and compose a task for the processing stage corresponding to the power similarity index within the set range to obtain m tasks, and record any i-th task as TA i ;
  • Step 3.1 Use formula (2) to schedule m drive units, so that m drive units can continuously complete the processing stage of a process without conflict:
  • Step 3.2 Use equation (3) to schedule all the processing stages in m drive units and m tasks, so that the m drive units complete the entire production task in sequence without conflict according to the set process sequence:
  • Step 4.2 the pump set from the set, the i-th driving unit DU i selecting a nominal minimum pump displacement as the i-th basic unit flow rate Q i, the i-th basic unit flow rate Q i in the complete
  • the output pressure corresponding to the task is denoted as p i
  • the output flow is denoted as q i
  • the output power is denoted as P Qi
  • the energy efficiency is denoted as ⁇ i ;
  • Step 4.3 the motor is set in the collection, selecting the i-th basic unit flow rate Q i matches the motor, so that the selected drive motor load factor corresponding task within the set interval, whereby the i-th driving unit DU i substantially in the motor unit D i, using the formula (4) to obtain the base when the motor unit D i corresponding to the driving operation load factor ⁇ i:
  • Step 5.1 using formula (5) to give the i-th basic unit flow rate Q i of the maximum value MAX i, and increases one by the i-th driving unit DU i i-th basic unit flow rate Q i to a set number of Maximum value MAX i :
  • Q max is the maximum flow value output by a single machine
  • Step 5.2 each one in turn increases the number of the i-th base motor unit of D i, and the i-th basic unit flow rate Q i matches;
  • Step 5.4 Use formula (6) to obtain the number M of configuration schemes shared by m drive units:
  • Step 5.5 By scheduling the running time and idle time of the drive unit in each configuration scheme, the m drive units can complete all the processing stages in the task in order, and form M scheduling schemes, thereby obtaining the jth by using equation (7)
  • Step 5.6 Use equation (8) to obtain the total energy consumption E j of the j-th scheduling scheme:
  • K is the total number of machines in the production line
  • I the energy consumption of the i-th drive unit DU i in the j-th scheduling scheme to complete the task corresponding to the k- th machine
  • E(idle) j is the total unloading energy consumption of all drive units in the j-th scheduling scheme
  • Step 5.7 Choose a scheduling scheme with a smaller total time and total energy consumption from the total time and total energy consumption of m scheduling schemes, corresponding to m drive units as the drive system shared by K machines, so as to realize efficient production.
  • a single large-displacement pump that is the sum of the theoretical displacements of all the basic flow units in DU i is used to replace all the basic flow units in the i-th drive unit DU i and is used as the pump of the i-th drive unit;
  • the present invention centrally supplies energy services through the drive system, responds to energy requests in each working stage of the task, completes each stage of the processing task with high energy efficiency, and improves the energy efficiency of the production line;
  • the present invention combines multiple stages into one task according to the similarity of power requirements, selects the execution unit that matches the power requirements of the corresponding task, and selects the drive unit that can provide high-efficiency energy services for all stages in the corresponding task, improving The matching degree of the drive system and the task is improved, and the energy consumption of the production line is reduced;
  • the invention realizes the dynamic scheduling of energy supply in the production process by combining the request energy service and the response energy service, achieves the further matching of energy in the manufacturing process, and improves the flexibility of the multi-machine production line.
  • the present invention reduces the energy consumption during the processing of the production line and increases the energy of the production line by sharing a drive system with multiple machines in the production line, and designing a shared drive system containing multiple drive units with a higher degree of matching with the task load of the production line. effectiveness;
  • the present invention combines the stages of the production line task process curve into multiple tasks according to the power demand index range, and designs drive units that efficiently complete the corresponding tasks, which improves the matching degree of each drive unit with the task load, thereby reducing the production line Energy consumption;
  • the present invention forms multiple configuration schemes for each drive unit by increasing the number of basic flow units of the drive unit one by one to the set maximum value, and forms multiple operation scheduling schemes for the production line. Choose one of the total working cycle time and The combination of drive units with smaller total energy consumption is used as a shared drive system to improve the energy efficiency and work efficiency of the production line;
  • the present invention uses a single large-displacement hydraulic pump to replace multiple small-displacement pumps with the same displacement, and uses the characteristics of high energy efficiency of a large-capacity motor and a smaller-capacity motor under the same load to further improve the shared drive system of the production line Energy efficiency.
  • Figure 1 shows the drive system, execution device and energy supply bus of the present invention
  • Figure 2 is a control method of the energy service system of the present invention
  • Fig. 3 is a flow chart of a design method of a multi-machine shared drive system for a production line according to the present invention.
  • Embodiment 1 An energy servicing system for a multi-machine production line includes: a drive system, an execution device, an energy supply bus, and a control center;
  • the execution unit is the mechanical structure part of the machine tool.
  • the control center is used to monitor and control the on-off status of each drive unit and the energy supply bus; it is achieved through real-time monitoring and control of the components of the system.
  • the energy supply bus is composed of m independent units, and is used to convert the output energy form of the i-th drive unit AG i into the energy form required by the j-th execution unit; each independent unit is composed of an inlet A and an outlet B In which, the inlet A connected to the i-th drive unit AG i is denoted as IN i ; and the outlet B corresponding to the i-th inlet A end IN i has n outlets, which are connected to the first
  • the execution unit CL 1 is connected to the nth execution unit CL n , where the exit connected to the jth execution unit CL j is denoted as OU ij ; and the exit OU ij is provided with a switch SW ij , when the switch SW ij is closed ,
  • the i-th entry A terminal IN i is connected to the exit OU ij , and the i-th drive unit AG i can provide energy for the j-th execution unit CL j ; as shown in Figure 1.
  • Sy j is the j-th given power similarity range, and it is between [0, 1];
  • the technological process is composed of D processes ⁇ PRO 1 ,PRO 2 ,...,PRO d ,...,PRO D ⁇ , where PRO d represents the dth process, so that the dth process PRO d contains k d processing stages, And satisfy formula (3):
  • a control method of an energy servicing system is performed according to the following steps:
  • Step 1 Start the m drive units AG 1 , AG 2 ,..., AG i ,..., AG m in the driving system; and turn on all the switches of the energy supply bus ⁇ SW ij
  • Step 5 Judge whether r+d is equal to x, if yes, perform step 6-step 9, otherwise, perform step 10;
  • Step 6 Use formula (6) to calculate the r-th processing stage in the d-th process PRO d Average power
  • Step 7 According to the average power
  • the j-th execution unit CL j sends an energy service request to the control center, and the control center uses the average power Use equation (7) to select the drive unit AG ⁇ with the highest driving efficiency in the current drive system in the idle state to provide energy for the j-th execution unit CL j , where AG ⁇ ⁇ AG:
  • Step 8 The drive system responds to the energy service request and closes the smallest drive unit AG ⁇ in the energy supply bus to drive the switch SW ⁇ j of the j-th execution device CL j to start the processing phase And mark the state of the smallest drive unit AG ⁇ as busy in the control center;
  • Step 9 When the processing stage After completion, turn on the corresponding switch SW ⁇ j and mark the state of the smallest drive unit AG ⁇ as idle;
  • Step 10 After assigning r+1 to r, judge whether r>k d holds, if yes, go to step 11, otherwise, go to step 5;
  • Step 11 After assigning d+1 to d, judge whether d>D holds, if yes, go to step 12, otherwise, go to step 4:
  • Step 12 After assigning x+1 to x, judge x>(max ⁇ k d ⁇ +D), if yes, go to step 13; otherwise, go to step 3;
  • Step 13 Turn off the m drive units AG 1 , AG 2 ,..., AG i ,..., AGm in the drive system; turn off all the switches of the energy supply bus.
  • the state of each switch at the end of the task can be set to on or off according to the needs of the drive unit.
  • Example 2 The production line is composed of K machines, which jointly complete a production task. Multiple machines share a drive system. One drive system provides the energy required for all machines to complete the production task.
  • the shared drive system consists of multiple drive units. The installed power of each drive unit is different; the flow chart of the design method of a multi-machine shared drive system for a production line is shown in Figure 3, which is carried out as follows:
  • Step 2.1 According to the load difference of the load curve of each process, each process is divided into multiple processing stages, and the processing stages are sorted in order; in the production process, each processing stage is determined by its matching degree The higher drive unit is completed with high energy efficiency;
  • Step 2.2 Use formula (1) to obtain the power similarity index Ps a of the a-th processing stage:
  • Step 2.3 Calculate the power similarity index of each processing stage, and compose a task for the processing stage corresponding to the power similarity index within the set range to obtain m tasks, and record any i-th task as TA i ;
  • Step 3.1 Use formula (2) to schedule m drive units, so that m drive units can continuously complete the processing stage of a process without conflict:
  • Step 3.2 For all processes, since some processes can only be performed after a specific process is completed, use formula (3) to schedule all the processing stages in m drive units and m tasks, so that m drive units follow the set process Complete the entire production task in sequence without conflict:
  • Step 4.2 the pump set from the set, the i-th driving unit DU i selecting a nominal minimum pump displacement as the i-th basic unit flow rate Q i, the i-th basic unit flow rate Q corresponding to the completion of the task i
  • the output pressure at time is denoted as p i
  • the output flow is denoted as q i
  • the output power is denoted as P Qi
  • the energy efficiency is denoted as ⁇ i ;
  • Step 4.3 the setting set from the motor, the motor and select the i-th basic unit flow rate Q i match, so that the load of the drive motor corresponding to the selected task within the set range, whereby the i driving units DU i substantially in the motor unit D i, and D i to obtain the basic unit in the motor driving operation of the corresponding load factor ⁇ i using the formula (4):
  • Step 5.1 using formula (5) to obtain a maximum flow rate of the i-th basic unit of Q i MAX i, one by one and increase the maximum i-th driving unit DU i i-th basic unit flow rate Q i to a set number of MAX i :
  • Q max is the maximum flow value output by a single machine
  • Step 5.2 each one in turn increase the number of i-th base motor unit of D i, and the i-th basic unit flow rate Q i matches;
  • Step 5.3 Calculate the time to complete the task corresponding to the k-th machine And the energy consumption is
  • Step 5.4 Use formula (6) to obtain the number M of configuration schemes shared by m drive units:
  • Step 5.5 By scheduling the running time and idle time of the drive unit in each configuration scheme, the m drive units can complete all the processing stages in the task in order, and form M scheduling schemes, thereby obtaining the jth by using equation (7)
  • Step 5.6 Use equation (8) to obtain the total energy consumption E j of the j-th scheduling scheme:
  • K is the total number of machines in the production line
  • I the energy consumption of the i-th drive unit DU i in the j-th scheduling scheme to complete the task corresponding to the k- th machine
  • E(idle) j is the total unloading energy consumption of all drive units in the j-th scheduling scheme
  • Step 5.7 Choose a scheduling scheme with a smaller total time and total energy consumption from the total time and total energy consumption of m scheduling schemes, corresponding to m drive units as the drive system shared by K machines, so as to realize efficient production.
  • the production line has four hydraulic presses, each with the same hydraulic actuator parameters, to jointly complete the production task of a certain clutch housing.
  • the multi-machine sharing drive system of the production line is designed according to the following steps:
  • Step one process design:
  • Step two task design:
  • each process is divided into five processing stages.
  • the time length, demand pressure and demand flow rate of each processing stage of each process are shown in Table 1. Among them, the demand flow rate and demand pressure of each process unloading stage and standby stage are zero.
  • the power similarity index is composed of a task in the interval [0.3, 0.45], that is, the processing stages 1, 6, 11, and 16 form task 1, which is recorded as TA 1 ; the power similarity index is composed in the interval [0.46, 1]
  • the power similarity index is composed of a task in the interval [0, 0.3], that is, the processing stages 4, 9, 14, 19 are constituted Task 3, denoted as TA 3 ; compose a task with a power similarity index of 0, that is, processing stages 3, 5, 8, 10, 13, 15, 18, and 20 compose task 4, denoted as TA 4 .
  • each process is completed in the order of the processing stages in the process, and the entire production task is completed in the order of process 1, 2, 3, and 4.
  • From the set of set pumps (a series of constant power plunger pumps), select the basic flow unit of each drive unit.
  • select the matching basic motor unit select the selected basic motor unit to drive the corresponding task in the load factor [0.4, 1.0] interval, the selection results are shown in Table 3. Since the fourth task load is all zero, the fourth driving unit does not need to provide energy, so the configuration in the fourth driving unit is empty.
  • the minimum flow is 40L/min
  • the minimum flow is 35L/min
  • the PV032 plunger pump when the pressure is 16MPa, the minimum flow is 24L/min.
  • the maximum flow rate of a single machine output is 120L/min.
  • equations (4)-(5) a total of 60 configuration schemes for the four drive units are calculated. Scheduling the running time and idle time of the drive unit in each configuration plan, so that the 4 drive units complete all the processing stages in the task in an orderly manner, forming 60 scheduling plans.
  • Use equations (7)-(8) to calculate the total time and total energy consumption of each scheduling plan Choose a scheduling plan with a smaller total time and total energy consumption corresponding to 4 drive units as the drive system shared by 4 machines.
  • the shared drive system configuration is shown in Table 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Automation & Control Theory (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Strategic Management (AREA)
  • Quality & Reliability (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Educational Administration (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • General Engineering & Computer Science (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Control By Computers (AREA)
  • General Factory Administration (AREA)
  • Feedback Control In General (AREA)

Abstract

一种多机生产线的能量服务化系统及控制方法,是将生产线中各机器重新组织形成驱动系统、能量供应总线以及执行装置三类可控实体,并为其配备控制中心,工作过程中执行装置开始加工对应任务阶段时,提出能量需求,控制系统响应需求,选择处于空闲状态并且能够高能效完成工作阶段的子驱动系统通过能量供应总线,为对应的执行装置提供能量服务,提高多机生产线的能量效率。一种生产线多机共享驱动系统的设计方法,是根据任务设计驱动单元,逐个增加每个驱动单元的基本流量单元个数至最大值形成多种配置方案,并协调动作时间形成多种调度方案,选择总时间和总能耗都较小的驱动单元组合作为共享驱动系统。

Description

多机生产线的能量服务化系统及共享驱动系统的设计方法 技术领域
本发明涉及多机生产线加工领域,具体的说是一种多机生产线的能量服务化系统及其方法,以及生产线多机共享驱动系统的设计方法。
背景技术
生产线具有生产效率高、能完成一个零件多道工序甚至全部工序等优点,广泛应用于制造业中。生产线上的执行装置一个接一个地完成生产任务,实现多道不同工序的连续加工。但每台执行装置在一个工作周期中,不同阶段的能量需求差异性较大,实际加工过程的能量需求较其他辅助阶段的能量需求更大,导致了能量供应和负载需求之间匹配程度较低,造成生产线大量能量损失。
此外,对于每个加工过程,其零件轮廓取决于前一个过程,并且影响下一个过程的轮廓,因此通过改变加工流程实现降低能耗是十分困难的。
而液压传动以其传动平稳、功重比大、控制简单、承载能力大的优点,成为生产线中装备的传动形式。但生产线中的一个工作周期中,不同工序不同加工阶段之间的能量需求差异较大,导致了驱动系统和负载需求之间匹配程度较低,造成生产线大量能量损失。
此外,对于采用液压传动的机器,现有驱动系统根据工艺过程的功率需求设计的,因此驱动系统装机功率较大,与负载匹配程度较低,导致生产线装备的能量损失高,能量效率低于40%。
发明内容
本发明是为避免上述现有技术所存在的不足之处,提供一种多机生产线的能量服务化系统及其控制方法,以期能通过能量供应总线,高能效不冲突地供应给生产线上需求能量的任务,从而提升生产线的能量效率,减少生产线一个工作周期中的能量损失;还提供一种生产线多机共享驱动系统的设计方法,以期能提高驱动系统与生产线任务负载的匹配程度,从而提高生产线的能量效率,减少液压机生产线一个工作周期中的能量损失。
本发明为解决技术问题采用如下技术方案:
本发明一种多机生产线的能量服务化系统的特点包括:驱动系统、执行装置、能量供应总线和控制中心;
所述驱动系统是由m个驱动单元AG={AG 1,AG 2,…,AG i,…,AG m}组成,并用于为所述执行装置提供能量,其中,AG i表示第i个驱动单元,i∈{1,2,...,m};记第i个驱动单元AG i的额定功率为PR i
所述执行装置是由n个执行单元CL={CL 1,CL 2,…,CL j,…,CL n}组成,并用于完成生产线的加工任务,其中,CL j表示第j个执行单元,j∈{1,2,...,n};
所述控制中心用于监测和控制各个驱动单元以及所述能量供应总线的开关状态;
所述能量供应总线是由m个独立单元组成,并用于将第i个驱动单元AG i的输出能量形式转换为第j个执行单元所需的能量形式;令每个独立单元由入口A端和出口B端构成,其中,与第i个驱动单元AG i相连的入口A端,记为IN i;且第i个入口A端IN i所对应的出口B端有n个出口,并依次与第1个执行单元CL 1至第n个执行单元CL n相连,其中,与第j个执行单元CL j相连的出口记为OU ij;并在出口OU ij上设置有开关SW ij,当开关SW ij关闭时,第i个入口A端IN i与出口OU ij接通,第i个驱动单元AG i能为第j个执行单元CL j提供能量;
令加工任务是由n个子任务TA={TA 1,TA 2,…,TA j,…,TA n}组成,其中,TA j表示第j个子任务;第j个子任务TA j在第j个执行单元CL上完成加工;所述第j个子任务TA是由k j个不同工艺过程中功率需求近似的加工阶段组成,其中,利用式(1)得到任意第a个加工阶段的功率相似度
Figure PCTCN2020101323-appb-000001
且满足式(2):
Figure PCTCN2020101323-appb-000002
Figure PCTCN2020101323-appb-000003
式(1)中,
Figure PCTCN2020101323-appb-000004
为所述第a个加工阶段的结束时间和开始时间,
Figure PCTCN2020101323-appb-000005
为所述第a个加工阶段所需求的势,
Figure PCTCN2020101323-appb-000006
为所述第a加工阶段需求的流,a∈{1,2,...,k j};
式(2)中,Sy j为第j个给定的功率相似度范围,且处在[0,1]之间;
所述工艺过程是由D个工序{PRO 1,PRO 2,…,PRO d,…,PRO D}组成,其中,PRO d表示第d个工序,令第d个工序PRO d包含k d个加工阶段,且满足式(3):
Figure PCTCN2020101323-appb-000007
所述第d个工艺PRO d的加工阶段顺次连完成,且满足式(4):
Figure PCTCN2020101323-appb-000008
Figure PCTCN2020101323-appb-000009
表示所述第d个工序PRO d中的第r个加工阶段为第j个子任务TA j中的第a个加工阶段;
所述第j个执行单元CL j的输出功率Pn j与对应加工任务的需求功率满足式(5):
Figure PCTCN2020101323-appb-000010
本发明所述的能量服务化系统的控制方法的特点是按如下步骤进行:
步骤1:启动所述驱动系统中m个驱动单元AG 1,AG 2,…,AG i,…,AG m;并打开能量供应总线的所有开关{SW ij|i=1,2,...,m;j=1,2,...,n},使得各驱动单元处于空闲状态,并将当前的空闲状态发送给所述控制中心;
步骤2:定义并初始化循环变量x=2;
步骤3:初始化d=1;
步骤4:初始化r=1;
步骤5:判断r+d是否等于x,若成立,则执行步骤6-步骤9,否则,执行步骤10;
步骤6:利用式(6)计算第d个工序PRO d中的第r个加工阶段
Figure PCTCN2020101323-appb-000011
的平均功率
Figure PCTCN2020101323-appb-000012
Figure PCTCN2020101323-appb-000013
步骤7:根据所述平均功率
Figure PCTCN2020101323-appb-000014
第j个执行单元CL j向所述控制中心发出能量服务请求,所述控制中心根据平均功率
Figure PCTCN2020101323-appb-000015
利用式(7)选出当前驱动系统中处于空闲状态驱动效率最高的驱动单元AG ζ为第j个执行单元CL j提供能量,其中,AG ζ∈AG:
Figure PCTCN2020101323-appb-000016
步骤8:所述驱动系统响应所述能量服务请求,并关闭能量供应总线中最小的驱动单元AG ζ驱动第j个执行装置CL j的开关SW ζj,从而开始执行加工阶段
Figure PCTCN2020101323-appb-000017
并在所述控制中心将最小的驱动单元AG ζ的状态标记为忙碌;
步骤9:当加工阶段
Figure PCTCN2020101323-appb-000018
完成后,打开相应的开关SW ζj,并将所述最小的驱动单元AG ζ的状态标记为空闲;
步骤10:将r+1赋值给r后,判断r>k d是否成立,若成立,则执行步骤11,否则,执行步骤5;
步骤11:将d+1赋值给d后,判断d>D是否成立,若成立,则执行步骤12,否则,执行步骤4:
步骤12:将x+1赋值给x后,判断x>(max{k d}+D),若成立,则执行步骤13,否则,执行步骤3;
步骤13:关闭所述驱动系统中m个驱动单元AG 1,AG 2,…,AG i,…,AGm;关闭能量供应 总线的所有开关。
本发明一种生产线多机共享驱动系统的设计方法,所述生产线由K台机器组成,并共同完成一个生产任务,其特点是,所述设计方法是按如下步骤进行:
步骤1、工艺设计:
根据生产线的生产任务,设计用于完成所述生产任务的K个工艺,并按照工艺先后顺序依次排序,再根据加工材料,计算每个工艺的负载曲线,记为l 1,l 2,…,l k,…,l K,l k表示第k个工艺的负载曲线,k=1,2,…,K;令第k台机器加工第k个工艺;
步骤2、任务设计:
步骤2.1、根据每个工艺的负载曲线的负载差异,将每个工艺分为多个加工阶段,并将加工阶段按照先后顺序依次排序;
步骤2.2、利用式(1)得到第a个加工阶段的功率相似度指数Ps a
Figure PCTCN2020101323-appb-000019
式(1)中,ct a、st a分别为所述第a个加工阶段的结束时间和开始时间,p a(t)为所述第a个加工阶段的需求压力,q a(t)为所述第a个加工阶段的需求流量,A为总加工阶段数;
步骤2.3、计算每个加工阶段的功率相似度指数,并将在设定范围内的功率相似度指数所对应的加工阶段构成一个任务,从而得到m个任务,记任意第i个任务为TA i
步骤3、调度设计:
步骤3.1、利用式(2)调度m个驱动单元,使得m个驱动单元能连续不冲突地完成一个工艺的加工阶段:
Figure PCTCN2020101323-appb-000020
式(2)中,l k为第k个工艺曲线,k=1,2,…,K;b代表第k个工艺曲线的加工阶段序号,
Figure PCTCN2020101323-appb-000021
为第i个任务TA i中属于第k个工艺曲线l k中第b个加工阶段的结束时间,
Figure PCTCN2020101323-appb-000022
为第z个任务TAz中属于第k个工艺曲线l k中第b+1个加工阶段的开始时间,z=1,2,…,m;
步骤3.2、利用式(3)调度m个驱动单元与m个任务内的所有加工阶段,使得m个驱动单元按照设定的工艺先后顺序依次不冲突地完成整个生产任务:
Figure PCTCN2020101323-appb-000023
式(3)中,
Figure PCTCN2020101323-appb-000024
为第i个任务TA i中属于第k个工艺曲线l k中最后一个加工阶段的结束时间,
Figure PCTCN2020101323-appb-000025
为第z个任务TA z中属于第k+1个工艺曲线中第一个加工阶段的开始时间;
步骤4、驱动单元设计:
步骤4.1、根据第i个任务TA i中每个加工阶段的需求压力以及需求流量,设计完成第i任务TA i中所有加工阶段的第i个驱动单元DU i,并由第i组电机和第i组泵组成,i=1,2,…,m;m表示驱动单元总数;
步骤4.2、从设定的泵集合中,为第i个驱动单元DU i选择一个额定排量最小的液压泵作为第i个基本流量单元Q i,所述第i个基本流量单元Q i在完成对应任务时的输出压力记为p i,输出流量记为q i,输出功率记为P Qi,能量效率记为η i
步骤4.3、从设定的电机集合中,选择与所述第i个基本流量单元Q i相匹配的电机,使得所选择电机在驱动对应任务时的负载率在所设定的区间内,从而得到第i个驱动单元DU i中的基本电机单元D i,并利用式(4)得到所述基本电机单元D i在驱动对应动作时的负载率β i
β i=P Qi/(P Di×η i)       (4)
式(4)中,P Di为第i个基本电机单元D i的额定功率;
步骤5、共享驱动系统设计:
步骤5.1、利用式(5)得到第i个基本流量单元Q i的最大值MAX i,并逐个增加所述第i个驱动单元DU i中第i个基本流量单元Q i的数量至设定的最大值MAX i
MAX i=[Q max/Q i]+1      (5)
式(5)中,Q max为单个机器输出的最大流量值;
步骤5.2、依次逐个增加所述第i个基本电机单元D i的个数,并与第i个基本流量单元Q i相匹配;
步骤5.3、计算完成第k台机器对应任务的时间
Figure PCTCN2020101323-appb-000026
和能耗为
Figure PCTCN2020101323-appb-000027
其中,n i为所述第i个驱动单元DU i增加的第i个基本流量单元Q i的数量,n i=1,2,…,MAX i
步骤5.4、利用式(6)得到m个驱动单元共有的配置方案数量M:
Figure PCTCN2020101323-appb-000028
步骤5.5、通过调度每一个配置方案内驱动单元的运行时间与空闲时间,使m个驱动单元依次有序完成所有任务内加工阶段,并形成M个调度方案,从而利用式(7)得到第j个调度方案的总时间T j
Figure PCTCN2020101323-appb-000029
式(7)中,
Figure PCTCN2020101323-appb-000030
为第j个调度方案中第i个驱动单元DU i完成第k台机器对应任务的时间,t(idle) j为第j个调度方案中所有驱动单元的总卸荷时间,j=1,2,…,M;
步骤5.6、利用式(8)得到第j个调度方案的总能耗E j
Figure PCTCN2020101323-appb-000031
式(8)中,K为生产线中机器的总个数,
Figure PCTCN2020101323-appb-000032
为第j个调度方案中第i个驱动单元DU i完成第k台机器对应任务的能耗,E(idle) j为第j个调度方案中所有驱动单元的总卸荷能耗;
步骤5.7、从m个调度方案的总时间和总能耗中选择总时间和总能耗都较小的调度方案对应m个驱动单元作为K台机器所共享的驱动系统,从而实现高效生产。
本发明所述的一种生产线多机共享驱动系统的设计方法的特点也在于:
计算所述共享驱动系统中的第i个驱动单元DU i内的所有基本流量单元的理论排量之和,从设定的泵集合中,选取理论排量等于所述第i个驱动单元DU i内的所有基本流量单元的理论排量之和的单个大排量的泵,用于取代第i个驱动单元DU i内的所有基本流量单元,并作为第i驱动单元的泵;
从设定的电机集合中选择与所述第i个驱动单元DU i的泵相匹配的电机,作为第i个驱动单元中的电机,所述第i个驱动单元DU i中的电机在驱动对应任务时的负载率在设定的区间,以使得选取的电机在驱动对应任务时的能量效率不低于设定的效率值,以实现高效率运行。
与已有技术相比,本发明有益效果体现在:
1、本发明通过驱动系统集中供应能量服务,响应任务中各工作阶段能量请求,高能效的完成加工任务的各个阶段,提高了生产线的能量效率;
2、本发明通过按功率需求相似度将多个阶段组合成一个任务,选择与对应任务功率需求相匹配的执行单元,并选择能为对应任务中所有阶段提供高能效能量服务的驱动单元,提高了驱动系统与任务的匹配程度,减少了生产线能量消耗;
3、本发明通过请求能量服务与应答能量服务结合的方式,实现了生产过程中能量供应的的动态调度,达到了制造过程中能量的进一步匹配,提高了多机生产线的柔性。
4、本发明通过将生产线多机共享一个驱动系统,并设计与生产线任务负载匹配程度较高的包含多个驱动单元的共享驱动系统,降低了生产线加工过程中的能量消耗,提高了生产线的能量效率;
5、本发明通过将生产线任务工艺曲线的阶段按功率需求指数范围组合成多个任务,设计 高效完成对应任务的驱动单元,提高了每个驱动单元的与任务负载的匹配程度,进而降低了生产线的能耗;
6、本发明通过逐个增加驱动单元的基本流量单元个数至设定最大值,形成了每个驱动单元多种配置方案,并形成了生产线多种运行调度方案,选择其中一个工作周期总时间和总能耗都较小的驱动单元组合作为共享驱动系统,提高了生产线的能量效率与工作效率;
7、本发明通过采用单个大排量液压泵替代相同排量的多个小排量泵,利用大容量电机较小容量电机在相同负载下能量效率高的特性,进一步提高了生产线共享驱动系统的能量效率。
附图说明
图1为本发明驱动系统、执行装置与能量供应总线;
图2为本发明能量服务化系统控制方法;
图3为本发明一种生产线多机共享驱动系统设计方法流程图。
具体实施方式
实施例1:一种多机生产线的能量服务化系统包括:驱动系统、执行装置、能量供应总线和控制中心;
驱动系统是由m个驱动单元AG={AG 1,AG 2,…,AG i,…,AG m}组成,并用于为执行装置提供能量,其中,AG i表示第i个驱动单元,i∈{1,2,...,m};记第i个驱动单元AG i的额定功率为PR i;驱动单元的构成根据执行装置需求的能量形式进行配置,输出的能量形式可以为液压能、机械能,实现形式分别是电动机-泵、电动机。
执行装置是由n个执行单元CL={CL 1,CL 2,…,CL j,…,CL n}组成,并用于完成生产线的加工任务,其中,CL j表示第j个执行单元,j∈{1,2,...,n};执行单元为机床的机械结构部分。
控制中心用于监测和控制各个驱动单元以及能量供应总线的开关状态;通过对系统各部件的实时监测和控制实现。
能量供应总线是由m个独立单元组成,并用于将第i个驱动单元AG i的输出能量形式转换为第j个执行单元所需的能量形式;令每个独立单元由入口A端和出口B端构成,其中,与第i个驱动单元AG i相连的入口A端,记为IN i;且第i个入口A端IN i所对应的出口B端有n个出口,并依次与第1个执行单元CL 1至第n个执行单元CL n相连,其中,与第j个执行单元CL j相连的出口记为OU ij;并在出口OU ij上设置有开关SW ij,当开关SW ij关闭时,第i个入口A端IN i与出口OU ij接通,第i个驱动单元AG i能为第j个执行单元CL j提供能量;如图1所示。
令加工任务是由n个子任务TA={TA 1,TA 2,…,TA j,…,TA n}组成,其中,TA j表示第j个子 任务;第j个子任务TA j在第j个执行单元CL上完成加工;第j个子任务TA是由k j个不同工艺过程中功率需求近似的加工阶段组成,其中,利用式(1)得到任意第a个加工阶段的功率相似度
Figure PCTCN2020101323-appb-000033
且满足式(2):
Figure PCTCN2020101323-appb-000034
Figure PCTCN2020101323-appb-000035
式(1)中,
Figure PCTCN2020101323-appb-000036
为第a个加工阶段的结束时间和开始时间,
Figure PCTCN2020101323-appb-000037
为第a个加工阶段所需求的势,
Figure PCTCN2020101323-appb-000038
为第a加工阶段需求的流,a∈{1,2,...,k j};
式(2)中,Sy j为第j个给定的功率相似度范围,且处在[0,1]之间;
工艺过程是由D个工序{PRO 1,PRO 2,…,PRO d,…,PRO D}组成,其中,PRO d表示第d个工序,令第d个工序PRO d包含k d个加工阶段,且满足式(3):
Figure PCTCN2020101323-appb-000039
第d个工艺PRO d的加工阶段顺次连完成,且满足式(4):
Figure PCTCN2020101323-appb-000040
Figure PCTCN2020101323-appb-000041
表示第d个工序PRO d中的第r个加工阶段为第j个子任务TA j中的第a个加工阶段;
第j个执行单元CL j的输出功率Pn j与对应加工任务的需求功率满足式(5):
Figure PCTCN2020101323-appb-000042
本实施例中,如图2所示,一种能量服务化系统的控制方法是按如下步骤进行:
步骤1:启动驱动系统中m个驱动单元AG 1,AG 2,…,AG i,…,AG m;并打开能量供应总线的所有开关{SW ij|i=1,2,...,m;j=1,2,...,n},使得各驱动单元处于空闲状态,并将当前的空闲状态发送给控制中心;
步骤2:定义并初始化循环变量x=2;
步骤3:初始化d=1;
步骤4:初始化r=1;
步骤5:判断r+d是否等于x,若成立,则执行步骤6-步骤9,否则,执行步骤10;
步骤6:利用式(6)计算第d个工序PRO d中的第r个加工阶段
Figure PCTCN2020101323-appb-000043
的平均功率
Figure PCTCN2020101323-appb-000044
Figure PCTCN2020101323-appb-000045
步骤7:根据平均功率
Figure PCTCN2020101323-appb-000046
第j个执行单元CL j向控制中心发出能量服务请求,控制中心根据平均功率
Figure PCTCN2020101323-appb-000047
利用式(7)选出当前驱动系统中处于空闲状态驱动效率最高的驱动单元AG ζ为第j个执行单元CL j提供能量,其中,AG ζ∈AG:
Figure PCTCN2020101323-appb-000048
步骤8:驱动系统响应能量服务请求,并关闭能量供应总线中最小的驱动单元AG ζ驱动第j个执行装置CL j的开关SW ζj,从而开始执行加工阶段
Figure PCTCN2020101323-appb-000049
并在控制中心将最小的驱动单元AG ζ的状态标记为忙碌;
步骤9:当加工阶段
Figure PCTCN2020101323-appb-000050
完成后,打开相应的开关SW ζj,并将最小的驱动单元AG ζ的状态标记为空闲;
步骤10:将r+1赋值给r后,判断r>k d是否成立,若成立,则执行步骤11,否则,执行步骤5;
步骤11:将d+1赋值给d后,判断d>D是否成立,若成立,则执行步骤12,否则,执行步骤4:
步骤12:将x+1赋值给x后,判断x>(max{k d}+D),若成立,则执行步骤13,否则,执行步骤3;
步骤13:关闭驱动系统中m个驱动单元AG 1,AG 2,…,AG i,…,AGm;关闭能量供应总线的所有开关。任务结束时各开关的状态,可根据驱动单元的需求,设置为开或者关。
实施例2:生产线由K台机器组成,并共同完成一个生产任务,多台机器共享一个驱动系统,由一个驱动系统提供所有机器完成生产任务所需的能量,共享驱动系统是由多个驱动单元组成,每个驱动单元装机功率不同;一种生产线多机共享驱动系统设计方法的流程图如图3所示,是按如下步骤进行:
步骤1、工艺设计:
根据生产线的生产任务,设计用于完成生产任务的K个工艺,并按照工艺先后顺序依次排序,再根据加工材料,计算每个工艺的负载曲线,记为l 1,l 2,…,l k,…,l K,l k表示第k个工艺的负载曲线,k=1,2,…,K;令第k台机器加工第k个工艺;
步骤2、任务设计:
步骤2.1、根据每个工艺的负载曲线的负载差异,将每个工艺分为多个加工阶段,并将加工阶段按照先后顺序依次排序;在生产过程中,每个加工阶段都由与之匹配程度较高的驱动单元高能效完成;
步骤2.2、利用式(1)得到第a个加工阶段的功率相似度指数Ps a
Figure PCTCN2020101323-appb-000051
式(1)中,ct a、st a分别为第a个加工阶段的结束时间和开始时间,p a(t)为第a个加工阶段的需求压力,q a(t)为第a个加工阶段的需求流量,A为总加工阶段数;
步骤2.3、计算每个加工阶段的功率相似度指数,并将在设定范围内的功率相似度指数所对应的加工阶段构成一个任务,从而得到m个任务,记任意第i个任务为TA i
步骤3、调度设计:
步骤3.1、利用式(2)调度m个驱动单元,使得m个驱动单元能连续不冲突地完成一个工艺的加工阶段:
Figure PCTCN2020101323-appb-000052
式(2)中,l k为第k个工艺曲线,k=1,2,…,K;b代表第k个工艺曲线的加工阶段序号,
Figure PCTCN2020101323-appb-000053
为第i个任务TA i中属于第k个工艺曲线l k中第b个加工阶段的结束时间,
Figure PCTCN2020101323-appb-000054
为第z个任务TAz中属于第k个工艺曲线l k中第b+1个加工阶段的开始时间,z=1,2,…,m;
步骤3.2、对于所有工艺,由于某些工艺只能在特定工艺完成后进行,利用式(3)调度m个驱动单元与m个任务内的所有加工阶段,使得m个驱动单元按照设定的工艺先后顺序依次不冲突地完成整个生产任务:
Figure PCTCN2020101323-appb-000055
式(3)中,
Figure PCTCN2020101323-appb-000056
为第i个任务TA i中属于第k个工艺曲线l k中最后一个加工阶段的结束时间,
Figure PCTCN2020101323-appb-000057
为第z个任务TA z中属于第k+1个工艺曲线中第一个加工阶段的开始时间;
步骤4、驱动单元设计:
步骤4.1、根据第i个任务TA i中每个加工阶段的需求压力以及需求流量,设计完成第i任务TA i中所有加工阶段的第i个驱动单元DU i,并由第i组电机和第i组泵组成,i=1,2,…,m; m表示驱动单元总数;
步骤4.2、从设定的泵集合中,为第i个驱动单元DU i选择一个额定排量最小的液压泵作为第i个基本流量单元Q i,第i个基本流量单元Q i在完成对应任务时的输出压力记为p i,输出流量记为q i,输出功率记为P Qi,能量效率记为η i
步骤4.3、从设定的电机集合中,选择与第i个基本流量单元Q i相匹配的电机,使得所选择电机在驱动对应任务时的负载率在所设定的区间内,从而得到第i个驱动单元DU i中的基本电机单元D i,并利用式(4)得到基本电机单元D i在驱动对应动作时的负载率β i
β i=P Qi/(P Di×η i)       (4)
式(4)中,P Di为第i个基本电机单元D i的额定功率;
步骤5、共享驱动系统设计:
步骤5.1、利用式(5)得到第i个基本流量单元Q i的最大值MAX i,并逐个增加第i个驱动单元DU i中第i个基本流量单元Q i的数量至设定的最大值MAX i
MAX i=[Q max/Q i]+1      (5)
式(5)中,Q max为单个机器输出的最大流量值;
步骤5.2、依次逐个增加第i个基本电机单元D i的个数,并与第i个基本流量单元Q i相匹配;
步骤5.3、计算完成第k台机器对应任务的时间
Figure PCTCN2020101323-appb-000058
和能耗为
Figure PCTCN2020101323-appb-000059
其中,n i为第i个驱动单元DU i增加的第i个基本流量单元Q i的数量,n i=1,2,…,MAX i
步骤5.4、利用式(6)得到m个驱动单元共有的配置方案数量M:
Figure PCTCN2020101323-appb-000060
步骤5.5、通过调度每一个配置方案内驱动单元的运行时间与空闲时间,使m个驱动单元依次有序完成所有任务内加工阶段,并形成M个调度方案,从而利用式(7)得到第j个调度方案的总时间T j
Figure PCTCN2020101323-appb-000061
式(7)中,
Figure PCTCN2020101323-appb-000062
为第j个调度方案中第i个驱动单元DU i完成第k台机器对应任务的时间,t(idle) j为第j个调度方案中所有驱动单元的总卸荷时间,j=1,2,…,M;
步骤5.6、利用式(8)得到第j个调度方案的总能耗E j
Figure PCTCN2020101323-appb-000063
式(8)中,K为生产线中机器的总个数,
Figure PCTCN2020101323-appb-000064
为第j个调度方案中第i个驱动单元DU i完成第k台机器对应任务的能耗,E(idle) j为第j个调度方案中所有驱动单元的总卸荷能耗;
步骤5.7、从m个调度方案的总时间和总能耗中选择总时间和总能耗都较小的调度方案对应m个驱动单元作为K台机器所共享的驱动系统,从而实现高效生产。
对于按照本发明设计方法设计的生产线共享驱动系统,计算共享驱动系统中的第i个驱动单元DU i内的所有基本流量单元的理论排量之和,从设定的泵集合中,选取理论排量等于第i个驱动单元DU i内的所有基本流量单元的理论排量之和的单个大排量的泵,用于取代第i个驱动单元DU i内的所有基本流量单元,并作为第i驱动单元的泵;
从设定的电机集合中选择与第i个驱动单元DU i的泵相匹配的电机,作为第i个驱动单元中的电机,第i个驱动单元DU i中的电机在驱动对应任务时的负载率在设定的区间,以使得选取的电机在驱动对应任务时的能量效率不低于设定的效率值,以实现高效率运行。
以某一条液压机生产线为例,该生产线具有四台液压机,每台液压执行器参数相同,共同完成某一款离合器外壳的生产任务。该生产线多机共享驱动系统按以下步骤设计:
步骤一、工艺设计:
根据生产任务,设计四个工艺,按照加工先后顺序依次排序,每台液压机对应完成一个工艺。
步骤二、任务设计:
根据每个工艺的负载曲线的负载差异,将每个工艺分为五个加工阶段,每个工艺的每个加工阶段时间长度、需求压力和需求流量如表1所示。其中每个工艺卸荷阶段和待机阶段的需求流量和需求压力均为零。
表1
Figure PCTCN2020101323-appb-000065
将每个工艺加工阶段按照先后顺序依次排序,并利用式(1)计算每个加工阶段的功率相似 度指数,如表2所示。
表2
Figure PCTCN2020101323-appb-000066
将功率相似度指数在[0.3,0.45]区间内组成一个任务,即加工阶段1、6、11、16组成任务1,记为TA 1;将功率相似度指数在[0.46,1]区间内组成一个任务,即加工阶段2、7、12、17组成任务2,记为TA 2;将功率相似度指数在[0,0.3]区间内组成一个任务,即加工阶段4、9、14、19组成任务3,记为TA 3;将功率相似度指数为0的组成一个任务,即加工阶段3、5、8、10、13、15、18、20组成任务4,记为TA 4。从而得到四个任务,每一个任务由一个驱动单元完成,则该共享驱动系统包含四个驱动单元。
步骤3、调度设计:
通过调度四个驱动单元与四个任务内的所有加工阶段,使得按照工艺内加工阶段的顺序完成每一个工艺,同时按照工艺1,2,3,4的顺序完成整个生产任务。
步骤4、驱动单元设计:
根据第i个任务TA i中每个加工阶段的需求压力以及需求流量,设计完成第i任务TA i中所有加工阶段的第i个驱动单元DU i。从设定的泵集合中(某一系列恒功率柱塞泵),选取每个驱动单元的基本流量单元。再根据选取的基本流量单元,选择与之匹配的基本电机单元,设定所选择的基本电机单元在驱动对应任务时的负载率[0.4,1.0]区间内,选取结果如表3所示。由于第四任务负载全为零,不需要第四驱动单元提供能量,因此第四驱动单元内配置为空。对于PV023柱塞泵,当其压力为2.66MPa时流量最小为40L/min,压力为2.87MPa时流量最小为35L/min,对于PV032柱塞泵,压力为16MPa时流量最小为24L/min。
表3
驱动单元 第1驱动单元 第2驱动单元 第3驱动单元 第4驱动单元
基本流量单元 PV023 PV032 PV023 -
基本电机单元 Y112M Y160M Y112M -
步骤五、共享驱动系统设计:
对于该生产线四台液压机,单个机器输出的最大流量为120L/min,则根据式(4)-(5),计算得出4个驱动单元共有60种配置方案。调度每一个配置方案内驱动单元的运行时间与空闲时间,使4个驱动单元依次有序完成所有任务内加工阶段,形成了60个调度方案,
利用式(7)-(8)计算每一个调度方案的总时间和总能耗,选择总时间和总能耗都较小的调度方案对应4个驱动单元作为4台机器所共享的驱动系统,该共享驱动系统配置如表4所示。
表4
Figure PCTCN2020101323-appb-000067
表5
共享驱动系统 第1驱动单元 第2驱动单元 第3驱动单元 第4驱动单元
PV063 PV046 PV032 -
电机 Y160M Y160L Y132S -
针对设计的多机生产线共享驱动系统,计算每个驱动单元内的所有基本流量单元的理论排量之和,从设定的泵集合中,选取理论排量等于第i个驱动单元内基本流量单元的理论排量之和的单个大排量的泵,用于取代第i个驱动单元内的所有基本流量单元,并作为第i个驱动单元的泵;并从设定的电机集合中选择与第i个驱动单元泵相匹配的电机,使得电机在驱动对应任务时的负载率在区间[0.4,1.0],以使得选取的电机高效率完成对应任务,选取的结果如表5所示。

Claims (4)

  1. 一种多机生产线的能量服务化系统,其特征包括:驱动系统、执行装置、能量供应总线和控制中心;
    所述驱动系统是由m个驱动单元AG={AG 1,AG 2,…,AG i,…,AG m}组成,并用于为所述执行装置提供能量,其中,AG i表示第i个驱动单元,i∈{1,2,...,m};记第i个驱动单元AG i的额定功率为PR i
    所述执行装置是由n个执行单元CL={CL 1,CL 2,…,CL j,…,CL n}组成,并用于完成生产线的加工任务,其中,CL j表示第j个执行单元,j∈{1,2,...,n};
    所述控制中心用于监测和控制各个驱动单元以及所述能量供应总线的开关状态;
    所述能量供应总线是由m个独立单元组成,并用于将第i个驱动单元AG i的输出能量形式转换为第j个执行单元所需的能量形式;令每个独立单元由入口A端和出口B端构成,其中,与第i个驱动单元AG i相连的入口A端,记为IN i;且第i个入口A端IN i所对应的出口B端有n个出口,并依次与第1个执行单元CL 1至第n个执行单元CL n相连,其中,与第j个执行单元CL j相连的出口记为OU ij;并在出口OU ij上设置有开关SW ij,当开关SW ij关闭时,第i个入口A端IN i与出口OU ij接通,第i个驱动单元AG i能为第j个执行单元CL j提供能量;
    令加工任务是由n个子任务TA={TA 1,TA 2,…,TA j,…,TA n}组成,其中,TA j表示第j个子任务;第j个子任务TA j在第j个执行单元CL上完成加工;所述第j个子任务TA是由k j个不同工艺过程中功率需求近似的加工阶段组成,其中,利用式(1)得到任意第a个加工阶段的功率相似度
    Figure PCTCN2020101323-appb-100001
    且满足式(2):
    Figure PCTCN2020101323-appb-100002
    Figure PCTCN2020101323-appb-100003
    式(1)中,
    Figure PCTCN2020101323-appb-100004
    为所述第a个加工阶段的结束时间和开始时间,
    Figure PCTCN2020101323-appb-100005
    为所述第a个加工阶段所需求的势,
    Figure PCTCN2020101323-appb-100006
    为所述第a加工阶段需求的流,a∈{1,2,...,k j};
    式(2)中,Sy j为第j个给定的功率相似度范围,且处在[0,1]之间;
    所述工艺过程是由D个工序{PRO 1,PRO 2,…,PRO d,…,PRO D}组成,其中,PRO d表示第d个工序,令第d个工序PRO d包含k d个加工阶段,且满足式(3):
    Figure PCTCN2020101323-appb-100007
    所述第d个工艺PRO d的加工阶段顺次连完成,且满足式(4):
    Figure PCTCN2020101323-appb-100008
    Figure PCTCN2020101323-appb-100009
    表示所述第d个工序PRO d中的第r个加工阶段为第j个子任务TA j中的第a个加工阶段;
    所述第j个执行单元CL j的输出功率Pn j与对应加工任务的需求功率满足式(5):
    Figure PCTCN2020101323-appb-100010
  2. 根据权利要求1所述的能量服务化系统的控制方法,其特征是按如下步骤进行:
    步骤1:启动所述驱动系统中m个驱动单元AG 1,AG 2,…,AG i,…,AG m;并打开能量供应总线的所有开关{SW ij|i=1,2,…,m;j=1,2,…,n},使得各驱动单元处于空闲状态,并将当前的空闲状态发送给所述控制中心;
    步骤2:定义并初始化循环变量x=2;
    步骤3:初始化d=1;
    步骤4:初始化r=1;
    步骤5:判断r+d是否等于x,若成立,则执行步骤6-步骤9,否则,执行步骤10;
    步骤6:利用式(6)计算第d个工序PRO d中的第r个加工阶段
    Figure PCTCN2020101323-appb-100011
    的平均功率
    Figure PCTCN2020101323-appb-100012
    Figure PCTCN2020101323-appb-100013
    步骤7:根据所述平均功率
    Figure PCTCN2020101323-appb-100014
    第j个执行单元CL j向所述控制中心发出能量服务请求,所述控制中心根据平均功率
    Figure PCTCN2020101323-appb-100015
    利用式(7)选出当前驱动系统中处于空闲状态驱动效率最高的驱动单元AG ζ为第j个执行单元CL j提供能量,其中,AG ζ∈AG:
    Figure PCTCN2020101323-appb-100016
    步骤8:所述驱动系统响应所述能量服务请求,并关闭能量供应总线中最小的驱动单元AG ζ驱动第j个执行装置CL j的开关SW ζj,从而开始执行加工阶段
    Figure PCTCN2020101323-appb-100017
    并在所述控制中心将最小的驱动单元AG ζ的状态标记为忙碌;
    步骤9:当加工阶段
    Figure PCTCN2020101323-appb-100018
    完成后,打开相应的开关SW ζj,并将所述最小的驱动单元AG ζ的状态标记为空闲;
    步骤10:将r+1赋值给r后,判断r>k d是否成立,若成立,则执行步骤11,否则,执行步骤5;
    步骤11:将d+1赋值给d后,判断d>D是否成立,若成立,则执行步骤12,否则,执行步骤4:
    步骤12:将x+1赋值给x后,判断x>(max{k d}+D),若成立,则执行步骤13,否则,执行步骤3;
    步骤13:关闭所述驱动系统中m个驱动单元AG 1,AG 2,…,AG i,…,AGm;关闭能量供应总线的所有开关。
  3. 一种生产线多机共享驱动系统的设计方法,所述生产线由K台机器组成,并共同完成一个生产任务,其特征是,所述设计方法是按如下步骤进行:
    步骤1、工艺设计:
    根据生产线的生产任务,设计用于完成所述生产任务的K个工艺,并按照工艺先后顺序依次排序,再根据加工材料,计算每个工艺的负载曲线,记为l 1,l 2,…,l k,…,l K,l k表示第k个工艺的负载曲线,k=1,2,…,K;令第k台机器加工第k个工艺;
    步骤2、任务设计:
    步骤2.1、根据每个工艺的负载曲线的负载差异,将每个工艺分为多个加工阶段,并将加工阶段按照先后顺序依次排序;
    步骤2.2、利用式(1)得到第a个加工阶段的功率相似度指数Ps a
    Figure PCTCN2020101323-appb-100019
    式(1)中,ct a、st a分别为所述第a个加工阶段的结束时间和开始时间,p a(t)为所述第a个加工阶段的需求压力,q a(t)为所述第a个加工阶段的需求流量,A为总加工阶段数;
    步骤2.3、计算每个加工阶段的功率相似度指数,并将在设定范围内的功率相似度指数所对应的加工阶段构成一个任务,从而得到m个任务,记任意第i个任务为TA i
    步骤3、调度设计:
    步骤3.1、利用式(2)调度m个驱动单元,使得m个驱动单元能连续不冲突地完成一个工艺的加工阶段:
    Figure PCTCN2020101323-appb-100020
    式(2)中,l k为第k个工艺曲线,k=1,2,…,K;b代表第k个工艺曲线的加工阶段序号,
    Figure PCTCN2020101323-appb-100021
    为第i个任务TA i中属于第k个工艺曲线l k中第b个加工阶段的结束时间,
    Figure PCTCN2020101323-appb-100022
    为第z个任务TAz中属于第k个工艺曲线l k中第b+1个加工阶段的开始时间, z=1,2,…,m;
    步骤3.2、利用式(3)调度m个驱动单元与m个任务内的所有加工阶段,使得m个驱动单元按照设定的工艺先后顺序依次不冲突地完成整个生产任务:
    Figure PCTCN2020101323-appb-100023
    式(3)中,
    Figure PCTCN2020101323-appb-100024
    为第i个任务TA i中属于第k个工艺曲线l k中最后一个加工阶段的结束时间,
    Figure PCTCN2020101323-appb-100025
    为第z个任务TA z中属于第k+1个工艺曲线中第一个加工阶段的开始时间;
    步骤4、驱动单元设计:
    步骤4.1、根据第i个任务TA i中每个加工阶段的需求压力以及需求流量,设计完成第i任务TA i中所有加工阶段的第i个驱动单元DU i,并由第i组电机和第i组泵组成,i=1,2,…,m;m表示驱动单元总数;
    步骤4.2、从设定的泵集合中,为第i个驱动单元DU i选择一个额定排量最小的液压泵作为第i个基本流量单元Q i,所述第i个基本流量单元Q i在完成对应任务时的输出压力记为p i,输出流量记为q i,输出功率记为P Qi,能量效率记为η i
    步骤4.3、从设定的电机集合中,选择与所述第i个基本流量单元Q i相匹配的电机,使得所选择电机在驱动对应任务时的负载率在所设定的区间内,从而得到第i个驱动单元DU i中的基本电机单元D i,并利用式(4)得到所述基本电机单元D i在驱动对应动作时的负载率β i
    β i=P Qi/(P Di×η i)    (4)
    式(4)中,P Di为第i个基本电机单元D i的额定功率;
    步骤5、共享驱动系统设计:
    步骤5.1、利用式(5)得到第i个基本流量单元Q i的最大值MAX i,并逐个增加所述第i个驱动单元DU i中第i个基本流量单元Q i的数量至设定的最大值MAX i
    MAX i=[Q max/Q i]+1    (5)
    式(5)中,Q max为单个机器输出的最大流量值;
    步骤5.2、依次逐个增加所述第i个基本电机单元D i的个数,并与第i个基本流量单元Q i相匹配;
    步骤5.3、计算完成第k台机器对应任务的时间
    Figure PCTCN2020101323-appb-100026
    和能耗为
    Figure PCTCN2020101323-appb-100027
    其中,n i为所述第i个驱动单元DU i增加的第i个基本流量单元Q i的数量,n i=1,2,…,MAX i
    步骤5.4、利用式(6)得到m个驱动单元共有的配置方案数量M:
    Figure PCTCN2020101323-appb-100028
    步骤5.5、通过调度每一个配置方案内驱动单元的运行时间与空闲时间,使m个驱动单元依次有序完成所有任务内加工阶段,并形成M个调度方案,从而利用式(7)得到第j个调度方案的总时间T j
    Figure PCTCN2020101323-appb-100029
    式(7)中,
    Figure PCTCN2020101323-appb-100030
    为第j个调度方案中第i个驱动单元DU i完成第k台机器对应任务的时间,t(idle) j为第j个调度方案中所有驱动单元的总卸荷时间,j=1,2,…,M;
    步骤5.6、利用式(8)得到第j个调度方案的总能耗E j
    Figure PCTCN2020101323-appb-100031
    式(8)中,K为生产线中机器的总个数,
    Figure PCTCN2020101323-appb-100032
    为第j个调度方案中第i个驱动单元DU i完成第k台机器对应任务的能耗,E(idle) j为第j个调度方案中所有驱动单元的总卸荷能耗;
    步骤5.7、从m个调度方案的总时间和总能耗中选择总时间和总能耗都较小的调度方案对应m个驱动单元作为K台机器所共享的驱动系统,从而实现高效生产。
  4. [根据细则91更正 01.08.2021]
    根据权利要求3所述的一种生产线多机共享驱动系统的设计方法,其特征是:
    计算所述共享驱动系统中的第i个驱动单元DU i内的所有基本流量单元的理论排量之和,从设定的泵集合中,选取理论排量等于所述第i个驱动单元DU i内的所有基本流量单元的理论排量之和的单个大排量的泵,用于取代第i个驱动单元DU i内的所有基本流量单元,并作为第i驱动单元的泵;
    从设定的电机集合中选择与所述第i个驱动单元DU i的泵相匹配的电机,作为第i个驱动单元中的电机,所述第i个驱动单元DU i中的电机在驱动对应任务时的负载率在设定的区间,以使得选取的电机在驱动对应任务时的能量效率不低于设定的效率值,以实现高效率运行。
PCT/CN2020/101323 2019-12-04 2020-07-10 多机生产线的能量服务化系统及共享驱动系统的设计方法 WO2021109573A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/324,919 US11803167B2 (en) 2019-12-04 2021-05-19 Energy service system of multi-machine production line and design method of shared drive system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911224825.0 2019-12-04
CN201911224857.0A CN110889639A (zh) 2019-12-04 2019-12-04 一种多机生产线的能量服务化系统及其控制方法
CN201911224857.0 2019-12-04
CN201911224825.0A CN110968059B (zh) 2019-12-04 2019-12-04 一种生产线多机共享驱动系统的设计方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/324,919 Continuation US11803167B2 (en) 2019-12-04 2021-05-19 Energy service system of multi-machine production line and design method of shared drive system

Publications (1)

Publication Number Publication Date
WO2021109573A1 true WO2021109573A1 (zh) 2021-06-10

Family

ID=76222445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101323 WO2021109573A1 (zh) 2019-12-04 2020-07-10 多机生产线的能量服务化系统及共享驱动系统的设计方法

Country Status (2)

Country Link
US (1) US11803167B2 (zh)
WO (1) WO2021109573A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104049600A (zh) * 2013-03-15 2014-09-17 洛克威尔自动控制技术股份有限公司 用与自动化系统相关的能量信息更新置信值的系统及方法
WO2014174928A1 (ja) * 2013-04-23 2014-10-30 横河電機株式会社 生産エネルギー管理システムおよびコンピュータプログラム
CN104179735A (zh) * 2014-07-18 2014-12-03 合肥工业大学 液压系统能量匹配控制方法
CN104756022A (zh) * 2012-09-05 2015-07-01 西门子公司 用于生产流水线中的能量需求管理的方法
CN105673603A (zh) * 2016-03-09 2016-06-15 合肥工业大学 一种液压机组节能驱动系统及其协调控制方法
CN108614538A (zh) * 2018-06-21 2018-10-02 烟台东方能源科技有限公司 一种工业设备有序运行的控制策略
CN109787275A (zh) * 2018-12-12 2019-05-21 北京博锐尚格节能技术股份有限公司 一种分布式能源系统、能源智能终端及其控制方法
CN110889639A (zh) * 2019-12-04 2020-03-17 合肥工业大学 一种多机生产线的能量服务化系统及其控制方法
CN110968059A (zh) * 2019-12-04 2020-04-07 合肥工业大学 一种生产线多机共享驱动系统的设计方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5272428A (en) 1992-02-24 1993-12-21 The United States Of America As Represented By The U.S. Environmental Protection Agency Fuzzy logic integrated control method and apparatus to improve motor efficiency
US8914300B2 (en) * 2001-08-10 2014-12-16 Rockwell Automation Technologies, Inc. System and method for dynamic multi-objective optimization of machine selection, integration and utilization
EP2584181B1 (en) 2003-09-02 2015-01-21 Komatsu Ltd. Method and device for controlling power output of engine for working machine
FI116253B (fi) 2003-12-22 2005-10-14 Abb Oy Sähkökäytön energiakulutus
US7176648B2 (en) 2004-05-18 2007-02-13 Husky Injection Molding Systems Ltd. Energy management apparatus and method for injection molding systems
CA2851821C (en) 2011-10-21 2022-07-12 Prime Datum, Inc. Direct drive fan system with variable process control
WO2014099926A1 (en) 2012-12-19 2014-06-26 Eaton Corporation Control system for hydraulic system and method for recovering energy and leveling hydraulic system loads
KR20150048261A (ko) 2013-10-24 2015-05-07 고려대학교 산학협력단 소셜 네트워크를 이용한 가정용 에너지 관리 정보 획득 시스템 및 방법
CN104175597B (zh) 2014-07-18 2016-01-20 合肥工业大学 液压机组驱动系统节能控制方法
CN106499614B (zh) 2016-10-28 2017-11-07 合肥工业大学 变速电机与恒功率变量泵匹配的液压节能系统及控制方法
CN107420378B (zh) 2017-06-28 2018-12-11 合肥工业大学 一种液压机驱动系统匹配节能方式
CN107730152B (zh) 2017-11-22 2020-08-25 武汉大学 一种泵站调度优化方法
KR20190093770A (ko) 2018-01-14 2019-08-12 (주)하이에듀케이 인공지능기반 맞춤형 음악추천에 따른 학습생성데이터의 다자간 모바일 컨텐츠 공유서비스 및 시스템
EP3550482A1 (de) 2018-04-05 2019-10-09 Linde Aktiengesellschaft Verfahren zur auslegungs- und/oder produktionsplanung betreffend eine produktionsanlage
CN110242531B (zh) 2019-06-14 2020-11-10 合肥工业大学 一种恒功率柱塞变量泵组驱动系统节能控制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104756022A (zh) * 2012-09-05 2015-07-01 西门子公司 用于生产流水线中的能量需求管理的方法
CN104049600A (zh) * 2013-03-15 2014-09-17 洛克威尔自动控制技术股份有限公司 用与自动化系统相关的能量信息更新置信值的系统及方法
WO2014174928A1 (ja) * 2013-04-23 2014-10-30 横河電機株式会社 生産エネルギー管理システムおよびコンピュータプログラム
CN104179735A (zh) * 2014-07-18 2014-12-03 合肥工业大学 液压系统能量匹配控制方法
CN105673603A (zh) * 2016-03-09 2016-06-15 合肥工业大学 一种液压机组节能驱动系统及其协调控制方法
CN108614538A (zh) * 2018-06-21 2018-10-02 烟台东方能源科技有限公司 一种工业设备有序运行的控制策略
CN109787275A (zh) * 2018-12-12 2019-05-21 北京博锐尚格节能技术股份有限公司 一种分布式能源系统、能源智能终端及其控制方法
CN110889639A (zh) * 2019-12-04 2020-03-17 合肥工业大学 一种多机生产线的能量服务化系统及其控制方法
CN110968059A (zh) * 2019-12-04 2020-04-07 合肥工业大学 一种生产线多机共享驱动系统的设计方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LI LEI; HUANG HAIHONG; ZHAO FU; SUTHERLAND JOHN W.; LIU ZHIFENG: "An Energy-Saving Method by Balancing the Load of Operations for Hydraulic Press", IEEE/ASME TRANSACTIONS ON MECHATRONICS, vol. 22, no. 6, 31 December 2017 (2017-12-31), pages 2673 - 2683, XP011674462, ISSN: 1083-4435, DOI: 10.1109/TMECH.2017.2759228 *
LIU ZHIFENG , LI LEI , HUANG HAIHONG , GAO MENGDI , LI XINY: "An Energy-saving Partition Control Method Drive System for Hydraulic Presses", CHINA MECHANICAL ENGINEERING, vol. 27, no. 14, 26 July 2016 (2016-07-26), pages 1942 - 1948, XP055817629, ISSN: 1004-132X, DOI: 10.3969/j.issn.1004-132X.2016.14.017 *
SHI FANGLIANG , LIU ZHIFENG , LI LEI , LI XINYU: "Dynamic Performance Analysis for Hydraulic System Based on Drive-unit Energy Matching Method", MACHINE TOOL & HYDRAULICS, vol. 45, no. 13, 15 July 2017 (2017-07-15), pages 5 - 9+22, XP055817632, ISSN: 1001-3881, DOI: 10.3969/j.issn.1001-3881.2017.13.002 *
WANG QINGYANG , GAO MENGDI , LI LEI: "Energy-saving Optimization Method of Stamping", FORGING & STAMPING TECHNOLOGY, vol. 44, no. 6, 25 June 2019 (2019-06-25), pages 134 - 144, XP055817638, ISSN: 1000-3940, DOI: 10.13330/j.issn.1000-3940.2019.06.020 *

Also Published As

Publication number Publication date
US11803167B2 (en) 2023-10-31
US20210271216A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
EP3730853B1 (en) Combined alternating operation method, device and multi-split system for outdoor units
CN102353122B (zh) 一种模块式多联机控制方法及系统
CN104895774B (zh) 一种光伏水泵集群系统的控制方法
CN107420378B (zh) 一种液压机驱动系统匹配节能方式
CN106849214B (zh) 一种双枪智能涓流分配控制系统及其控制方法
US20160006379A1 (en) Hybrid electrification system of pump station and optimal operation method thereof
EP3301779A1 (en) Flexible grouping and current-equalizing method for charger system of shared bus
CN113890116B (zh) 多配电台区互联互济功率控制方法、装置及存储介质
CN104578273A (zh) 电能调度充电系统及电能调度充电方法
CN110968059B (zh) 一种生产线多机共享驱动系统的设计方法
WO2021109573A1 (zh) 多机生产线的能量服务化系统及共享驱动系统的设计方法
CN110707758A (zh) 一种用于提高新能源消纳的分布式储能系统调度方法
CN110889639A (zh) 一种多机生产线的能量服务化系统及其控制方法
CN102386623A (zh) 一种减小风电场网损的方法
CN108248089B (zh) 一种双执行单元液压机的控制方法
WO2023273312A1 (zh) 一种功率分配装置、充电装置、设备、控制方法及系统
CN108462217A (zh) 充电堆供电单元调度算法及充电桩供电系统
CN109031940B (zh) 多套设备或机组共用一个动力源驱动的协调控制方法及系统
CN111322231B (zh) 一种多泵联动控制方法和系统
CN104175597A (zh) 液压机组驱动系统节能控制方法
CN114024008A (zh) 一种多堆燃料电池系统功率管理集成装置及其工作方法
CN108599593B (zh) 一种自均流模块化大容量高升压整流器
CN112949051B (zh) 一种多任务集成成形装备驱动系统的设计方法
US20220324336A1 (en) Charger for charging electric vehicles
CN105257503A (zh) 空调系统用相同扬程相同流量组合式水泵结构及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20895569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20895569

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20895569

Country of ref document: EP

Kind code of ref document: A1