WO2023273312A1 - 一种功率分配装置、充电装置、设备、控制方法及系统 - Google Patents

一种功率分配装置、充电装置、设备、控制方法及系统 Download PDF

Info

Publication number
WO2023273312A1
WO2023273312A1 PCT/CN2022/072271 CN2022072271W WO2023273312A1 WO 2023273312 A1 WO2023273312 A1 WO 2023273312A1 CN 2022072271 W CN2022072271 W CN 2022072271W WO 2023273312 A1 WO2023273312 A1 WO 2023273312A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
charging
power module
power
groups
Prior art date
Application number
PCT/CN2022/072271
Other languages
English (en)
French (fr)
Inventor
孙杰
杜云鹏
巩少雄
贾淑文
赵启凡
Original Assignee
西安特来电智能充电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安特来电智能充电科技有限公司 filed Critical 西安特来电智能充电科技有限公司
Priority to EP22831148.6A priority Critical patent/EP4365011A1/en
Publication of WO2023273312A1 publication Critical patent/WO2023273312A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • H02J1/084Three-wire systems; Systems having more than three wires for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • the invention relates to the field of electric vehicle charging, in particular to a power distribution device, a charging device, equipment, a control method and a system.
  • the charging equipment usually includes a charging gun, a DC contactor and a charging power unit;
  • the units are arranged in a matrix, and each branch is provided with a charging gun and multiple sets of DC contactors, and each set of DC contactors is connected to the charging power unit (for example, it is mentioned in the patent CN201520677685).
  • the matrix topology is simple in algorithm but requires a large number of contactors and the cost is high, a ring-shaped charging topology as shown in Figure 1 (mentioned in patent CN202010337478.9) appears, which is a prior art A schematic diagram of a commonly used power distribution device in China.
  • the ring charging topology includes 6 charging power units (P1-P6), 15 pairs of DC contactors (K1-K15) and 6 charging guns (M1- M6, also known as the charging terminal), its working principle is: by controlling the opening of the DC contactor to allocate available charging power units to the charging gun.
  • the ring charging topology shown in Figure 1 has the following problems: the charging gun has fewer charging power units that can be directly called up, resulting in a large number of contactors enabled.
  • the charging gun M1 can Only P1, P2, P4, and P6 are the charging power units that can be called directly, and the charging power units P3 and P5 need to be called by the charging gun M1 across a charging power unit, which will cause the charging gun M1 to call the charging power unit.
  • the number of contactors enabled is large, which leads to the complexity of the software control logic of the contactors, which in turn leads to a large amount of software programming, high programming difficulty, and low programming efficiency.
  • the object of the present invention is to provide a power distribution device, charging device, equipment, control method and system.
  • the power distribution device When the power distribution device is actually applied to charging (the current input terminal is connected to the charging power unit, and the current output terminal is connected to the charging terminal), each The number of charging power units that can be directly invoked by the charging terminal has increased, thereby correspondingly reducing the number of enabled switches, simplifying the switch control logic, thereby reducing the amount of programming, reducing the difficulty of programming, and improving programming efficiency.
  • the present invention provides a power distribution device, including:
  • a first switch group the first switch group includes multiple groups of first switch units, there are two groups of the first switch units, at least one of the current input terminals is connected between them;
  • the first circuit, the number of the first switch group is at least three groups, and multiple groups of the first switch group are sequentially connected to the first circuit forming a closed loop;
  • first terminals between the adjacently connected first switch groups, and each of the first terminals is connected to the second line, and a plurality of the second lines intersect at the first two terminals, the second terminal not connected to the first line;
  • the second switch group includes multiple groups of second switch units, there are two groups of the second switch units, at least one of the current input terminals is connected between them, and there is at least one of the second switch units. a line on which at least one set of the second switch group is arranged;
  • a current output terminal, the current output terminal is connected to the current input terminal.
  • the number of the first switch groups is three groups.
  • the second switch units there are two groups of the second switch units in the second switch group, at least one of the current input terminals is connected between the two, and the two are connected to the first terminal and the second connection. between the ends.
  • each of the second lines is formed by connecting a corresponding first terminal and a second terminal.
  • the first section of lines is formed by connecting corresponding first terminals and second terminals, and the second section The line extends from the first section of line along the first terminal.
  • At least one current input terminal is connected to the second section of the line, and at least one group of the second switch unit is arranged between the current input terminal and the first connection terminal.
  • the first section of lines is formed by connecting corresponding first terminals and second terminals, and the second section The line extends from the first section of line along the first terminal, and the third section of line extends from the first section of line along the second terminal.
  • At least one current input terminal is connected to the second section of the line, and at least one group of the second switch unit is arranged between the current input terminal and the first connection terminal; At least one current input terminal is connected to the third section of the line, and at least one group of the second switch unit is arranged between the current input terminal and the second connection terminal.
  • the present invention also provides a charging device, including any of the above power distribution devices, and also includes:
  • a charging power unit the charging power unit is connected to the current input end.
  • the present invention also provides a charging device, including the above-mentioned charging device, and also includes:
  • a charging terminal the charging terminal is connected to the current output terminal; wherein, all the charging power units correspondingly connected to the current input terminals of the same switch group form the same power module group.
  • the charging device further includes:
  • a third switch unit the current input terminal is connected to the current output terminal through the third switch unit.
  • the present invention also provides a control method, which is applied to any of the above charging devices, including:
  • the target terminal is any charging terminal
  • the power supply priorities of the remaining power module groups are according to a preset order arrangement
  • the target terminal is connected to the target power module group, so as to provide the target terminal with required electric energy.
  • the process of determining the target power module group assigned to the target terminal from the idle power module groups includes:
  • the power demand of the target terminal and the total number of idle power module groups determine the number of power module groups allocated to the target terminal; wherein, the number of charging power units contained in different power module groups is the same;
  • the target power module group allocated to the target terminal determines the target power module group allocated to the target terminal from the idle power module groups.
  • the process of determining the number of power module groups allocated to the target terminal according to the power demand of the target terminal and the total number of idle power module groups includes:
  • the preset constraint conditions include prioritizing the charging The power demand of the charging terminal with higher priority, and assign at least one power module group to the charging terminal with power demand.
  • the process of determining the target power module group assigned to the target terminal from the idle power module groups includes:
  • the present invention also provides a control system, which is applied to any of the above charging devices, including:
  • a power supply priority setting module configured to use the power module group closest to the target terminal at the connection position as the power module group with the highest power supply priority corresponding to the target terminal, and set the power module group with the highest power supply priority
  • the relative power module group in structure is the power module group with the lowest power supply priority corresponding to the target terminal; wherein, the target terminal is any charging terminal; the power supply priorities of the remaining power module groups are arranged according to a preset order ;
  • a power module group allocation module configured to determine a target power module group allocated to the target terminal from the idle power module groups according to the power demand of the target terminal and its corresponding power supply priority
  • the switch unit control module is used to connect the target terminal with the target power module group by controlling each switch unit in the charging device, so as to provide the target terminal with the required electric energy.
  • the present invention provides a power distribution device, comprising: a plurality of current input terminals; a first switch group, the first switch group includes multiple groups of first switch units, there are two groups of first switch units, at least one is connected between the two The current input terminal; the first circuit, the number of the first switch group is at least three groups, and multiple groups of the first switch group are sequentially connected to form the closed-loop first circuit; the second circuit, the first switch group connected adjacently has a First terminal, each first terminal is connected with a second line, multiple second lines intersect with the second terminal, the second terminal is not connected with the first line; second switch group, second switch group It includes multiple groups of second switch units, there are two groups of second switch units, at least one current input terminal is connected between them, and there is at least one second line, on which at least one group of second switch groups is arranged; the current output terminal , the current output terminal is connected to the current input terminal.
  • the second lines of the present application are connected to the first terminal between the adjacently connected first switch groups, and each second line intersects the second terminal. It is precisely because of such a structural setting that the power distribution When the device is actually applied to charging (the current input terminal is connected to the charging power unit, and the current output terminal is connected to the charging terminal), the number of charging power units that can be directly called by each charging terminal has increased, thereby correspondingly reducing the number of enabled switches , which simplifies the switch control logic, thereby reducing the amount of programming, reducing the difficulty of programming, and improving programming efficiency.
  • the present invention also provides a charging device, equipment, control method and system, which have the same beneficial effects as the above power distribution device.
  • FIG. 1 is a schematic structural diagram of a charging topology in the prior art
  • Fig. 2 is a schematic structural diagram of a first power distribution device provided by an embodiment of the present invention.
  • Fig. 3 is a schematic structural diagram of a second power distribution device provided by an embodiment of the present invention.
  • Fig. 4 is a schematic structural diagram of a third power distribution device provided by an embodiment of the present invention.
  • Fig. 5 is a schematic structural diagram of a fourth power distribution device provided by an embodiment of the present invention.
  • Fig. 6 is a schematic structural diagram of a first charging device provided by an embodiment of the present invention.
  • Fig. 7 is a schematic diagram of the electrical connection of the first charging device provided by the embodiment of the present invention.
  • Fig. 8 is a schematic structural diagram of a second charging device provided by an embodiment of the present invention.
  • Fig. 9 is a schematic diagram of the electrical connection of the second charging device provided by the embodiment of the present invention.
  • FIG. 10 is a flowchart of a control method provided by an embodiment of the present invention.
  • Fig. 11 is a schematic structural diagram of a control system provided by an embodiment of the present invention.
  • Fig. 12 is a schematic structural diagram of a charging system provided by an embodiment of the present invention.
  • the core of the present invention is to provide a power distribution device, charging device, equipment, control method and system.
  • the number of charging power units that can be directly invoked by the charging terminal has increased, thereby correspondingly reducing the number of enabled switches, simplifying the switch control logic, thereby reducing the amount of programming, reducing the difficulty of programming, and improving programming efficiency.
  • FIG. 2 is a schematic structural diagram of a first power distribution device provided by an embodiment of the present invention.
  • the application provides a power distribution device, including:
  • the first switch group Z1, the first switch group Z1 includes multiple groups of first switch units U1, there are two groups of first switch units U1, at least one current input terminal A is connected between them;
  • the first circuit, the number of the first switch group Z1 is at least three groups, and multiple groups of the first switch group Z1 are sequentially connected to form the closed-loop first circuit;
  • the second line has a first terminal B between the adjacently connected first switch groups Z1, and each first terminal B is connected to a second line, and a plurality of second lines intersect at the second terminal C, the second terminal C is not connected to the first line;
  • the second switch group Z2, the second switch group Z2 includes multiple groups of second switch units U2, there are two groups of second switch units U2, at least one current input terminal A is connected between them, and there is at least one second circuit, which At least one set of second switch group Z2 is arranged on it;
  • the current output terminal is connected to the current input terminal A.
  • the power distribution device includes a plurality of current input terminals A and current output terminals; wherein, the current output terminals are connected to the current input terminals A, the current input terminals A are used to connect the charging power unit, and the current output terminals are used to connect charging terminal.
  • the power distribution device also includes a first switch group Z1 and a second switch group Z2; wherein, the first switch group Z1 includes multiple groups of first switch units U1, and in the first switch group Z1, there are two groups of first switches Unit U1, at least one current input terminal A is connected between the two; the second switch group Z2 includes multiple groups of second switch units U2, in the second switch group Z2, there are two groups of second switch units U2, between the two Connect at least one current input A.
  • the number of the first switch groups Z1 is at least three groups, and multiple groups of the first switch groups Z1 are sequentially connected to form a closed-loop first line.
  • the second terminal C is not connected to the first circuit, that is, the second terminal C is located outside the first circuit, which excludes the situation that the second terminal C is directly arranged on the first circuit; at the same time, the second terminal C is located outside the first circuit; Terminal C is not "connected" to the first line, which means it is not directly connected to the first line.
  • the second terminal C is indirectly connected to the first line through the second line and the second switch group Z2, which belongs to The situation of "the second terminal C is not connected to the first line" in this application.
  • the second lines of the present application are connected to the first terminal between the adjacently connected first switch groups, and each second line intersects the second terminal. It is precisely because of such a structural setting that the power distribution When the device is actually applied to charging (the current input terminal is connected to the charging power unit, and the current output terminal is connected to the charging terminal), the number of charging power units that can be directly called by each charging terminal has increased, thereby correspondingly reducing the number of enabled switches , which simplifies the switch control logic, thereby reducing the amount of programming, reducing the difficulty of programming, and improving programming efficiency.
  • the number of the first switch groups Z1 is three groups.
  • the number of the first switch groups Z1 in the present application is three groups, of course, the number of the first switch groups Z1 in the present application may also be greater than three groups, and the application does not make a special limitation here.
  • the number of the second lines is three.
  • the number of the second lines in the present application is three, there are two situations in which there are multiple second lines and at least one set of second switch groups Z2 are arranged on them: 1) in the three third lines Among the two lines, there are only two second lines, on which at least one group of second switch groups Z2 is arranged, as shown in Figure 4; 2) Among the three second lines, there are three second lines, on which At least one second switch group Z2 (preferably) is provided, as shown in FIG. 2 .
  • the second switch group Z2 of the present application includes multiple groups of second switch units U2, in the second switch group Z2, there are two groups of second switch units U2, at least one current input terminal A is connected between the two, and Both are connected between the first terminal B and the second terminal C.
  • each second circuit is formed by connecting a corresponding first terminal B and a second terminal C.
  • each second circuit of the present application is formed by connecting the corresponding first terminal B and the second terminal C, that is, one of the terminals of each second circuit is the corresponding The first terminal B, and the other terminal is the second terminal C.
  • the second lines are composed of two sections of lines, and the first section of lines is connected by the corresponding first terminal B and the second terminal C Formed, the second line is extended along the first terminal B from the first line.
  • extending in this embodiment means “extending from the first section of line along the first terminal", and the extending direction is not limited as long as it does not intersect with other lines.
  • At least one second line which is composed of two sections of lines, and at least one current input terminal A is connected to the second section of lines.
  • At least one group of second switch units U2 is disposed between the terminal A and the first terminal B.
  • the three second lines there are only two second lines, which are composed of two sections of lines.
  • at least one current input terminal A for connecting the charging power unit
  • at least one group of second switch units U2 is arranged between the current input terminal A and the first terminal B.
  • the second line which is composed of three sections of lines, and the first section of lines is formed by connecting the corresponding first terminal B and the second terminal C , the second line extends from the first line along the first terminal B, and the third line extends from the first line along the second terminal C.
  • the "extending" in this embodiment does not limit the extending direction, as long as it does not intersect with other lines.
  • At least one current input terminal A is connected to the second section of the line, and at least one group of second switch units U2 is arranged between the current input terminal A and the first connection terminal B;
  • On the third line at least one current input terminal A is connected, and at least one group of the second switching units U2 is arranged between the current input terminal A and the second terminal C.
  • there is only one second line which consists of three sections of lines.
  • On the second line at least one current input terminal A (for connecting the charging power unit) is connected, and at least one group of second switch units U2 is arranged between the current input terminal A and the first terminal B.
  • at least one current input terminal A (for connecting the charging power unit) is connected, and at least one group of second switch units is arranged between the current input terminal A and the second terminal C U2.
  • the present application also provides a charging device, including any one of the above-mentioned power distribution devices, and further including:
  • the charging power unit is connected to the current input terminal A.
  • the charging device of the present application includes a power distribution device and a charging power unit, and the charging power unit is connected to the current input terminal A in the power distribution device. More specifically, in the power distribution device, each current input terminal A can be connected to one charging power unit. Of course, each current input terminal A can also be connected to multiple charging power units or not. This is not particularly limited.
  • the present application also provides a charging device, including the above-mentioned charging device, and also includes:
  • the charging terminal is connected to the current output terminal; wherein, all the charging power units correspondingly connected to the current input terminal A of the same switch group form the same power module group.
  • the charging equipment of the present application includes a charging device and a charging terminal (such as a charging gun), and the charging terminal is connected to the current output terminal in the power distribution device. More specifically, in the power distribution device, each current output terminal can be connected to one charging terminal, or multiple current output terminals can be connected to the same charging terminal, which is not specifically limited in this application.
  • all charging power units correspondingly connected to the current input terminal A of the same switch group form the same power module group.
  • first switch units U1 in the first switch group Z1 there are two groups of first switch units U1 in the first switch group Z1, at least one current input terminal A is connected between them, and all charging power units connected to these current input terminals A form the same power module group; the second switch group
  • second switch units U2 in Z2 There are two groups of second switch units U2 in Z2, at least one current input terminal A is connected between them, and all charging power units connected to these current input terminals A form the same power module group.
  • the charging device also includes:
  • the third switch unit U3, the current input terminal A is connected to the current output terminal through the third switch unit U3.
  • the charging device of the present application further includes a third switch unit U3, and the current input terminal A is connected to the current output terminal through at least one third switch unit U3.
  • FIG. 6 is a schematic diagram of the electrical connection of the charging device as shown in FIG. 6 .
  • the charging equipment includes 6 charging terminals (represented by “G"), 6 power module groups (represented by “R”) and 18 sets of switch units (represented by "K”).
  • each group of switch units includes two switch units, and the two switch units are respectively represented by + and -.
  • one switch unit in the first group of switch units K1 is represented by K1+, and the other switch unit is represented by K1- (The same is true for other groups of switch units, which will not be repeated here in this application).
  • each charging terminal can directly call 5 power module groups.
  • the power module groups that charging terminal G1 can directly call are R1, R2, R3, R4, R5, compared with the same 6-gun charging topology as shown in Figure 1, the number of charging power units that can be directly invoked by each charging terminal in the charging device shown in Figure 6 has increased, thereby correspondingly reducing the number of charging power units that can be used
  • the number of switches simplifies the switch control logic, thereby reducing the amount of programming, reducing the difficulty of programming, and improving programming efficiency.
  • the charging topology shown in Figure 1 still has the problem that the charging power unit cannot be called under certain working conditions.
  • the charging power unit P1 cannot be used by the charging gun M3 and M5; when the charging guns M1 and M5 are idle and the charging guns M2, M3, M4, and M6 are in use, the charging power units P1 and P5 cannot be called by the charging gun M3; when the charging guns M2 and M5 are idle and the charging guns M1,
  • the charging power unit P2 cannot be called by the charging guns M4 and M6, and the charging power unit P5 cannot be called by the charging guns M1 and M3, which is not conducive to improving the vacancy of the charging power unit.
  • the power distribution device of the present application improves the charging topology, which significantly improves the vacancy of the charging power unit.
  • the charging terminal G5 is idle and the charging terminals G1, G2, G3, G4, G6
  • the power module group R5 can only be invoked by the charging terminal G3.
  • FIG. 8 can also be obtained according to the introduction of the above-mentioned embodiments
  • FIG. 9 is a schematic diagram of the electrical connection of the charging device as shown in FIG. 8 .
  • the charging equipment includes 4 charging terminals (represented by “M”), 10 power module groups (represented by “P”) and 20 sets of switch units (represented by "K”).
  • FIG. 10 is a flowchart of a control method provided by an embodiment of the present invention.
  • control method is applied to any of the above-mentioned charging devices (the introductions of the following embodiments all take the charging device shown in Figure 6 as an example), including:
  • Step S1 Use the power module group closest to the target terminal at the connection position as the power module group with the highest power supply priority corresponding to the target terminal, and use the power module group structurally opposite to the power module group with the highest power supply priority as the target The power module group with the lowest power supply priority corresponding to the terminal; wherein, the power supply priorities of the remaining power module groups are arranged according to a preset order.
  • this application sets the power supply priority of each power module group for each charging terminal, that is, sets the power supply sequence of each power module group for each charging terminal, and for the target terminal (any charging terminal), the power supply priority
  • the higher power module group gives priority to supplying power to the target terminal.
  • this application can use the power module group closest to the target terminal at the connection position as the power module group with the highest power supply priority corresponding to the target terminal, and make the power module group with the highest power supply priority the structurally opposite power module group is the power module group with the lowest power supply priority corresponding to the target terminal, and the power supply priorities of the remaining power module groups are arranged according to a preset order.
  • this application can number the first power module group connected to the first switch group counterclockwise according to its connection position in the closed-loop circuit, and the second power module group connected to the second switch group, Number in the counterclockwise direction according to the position of the corresponding first connection point in the closed-loop line; among them, the number of the second power module group > the number of the first power module group; it is structurally opposite to the first power module group with the smallest number The number of the second power module group is the highest. Then for the target terminal, except for the power module group with the highest and lowest power supply priority, the larger the number of the remaining power module groups, the lower the power supply priority (it can also be the power module group that can be provided by the remaining power module group). The larger the power value, the higher the power supply priority).
  • the power module groups connected to the first switch group are R1, R2, and R3, and the three are numbered counterclockwise according to their connection positions in the closed-loop circuit.
  • the number of the power module group R1 is 1, and the power module group The number of the group R2 is 2, and the number of the power module group R3 is 3.
  • the power module groups connected to the second switch group are R4, R5, and R6, and the three are numbered counterclockwise according to the position of the corresponding first connection point in the closed-loop line.
  • the number of the power module group R4 is 4, and the power module group The number of R5 is 5, and the number of power module group R6 is 6.
  • the power module group closest to the charging terminal G1 at the connection position is R1, the power module group closest to the charging terminal G2 at the connection position is R2, and the power module group closest to the charging terminal G3 at the connection position is R3.
  • the nearest power module group at the connection position of terminal G4 is R4, the nearest power module group at the connection position with charging terminal G5 is R5, and the nearest power module group at the connection position with charging terminal G6 is R6.
  • the power module group structurally opposite to the power module group R1 is R6; the power module group structurally opposite to the power module group R2 is R4; the structurally opposite power module group R3 is R5.
  • the power module group R1 is the power module group with the highest power supply priority corresponding to the charging terminal G1
  • the power module group R6 is the power module group with the lowest power supply priority corresponding to the charging terminal G1
  • the power supply priorities of the remaining power module groups start from high to high.
  • the power module group R2 is the power module group with the highest power supply priority corresponding to the charging terminal G2
  • the power module group R4 is the power module group with the lowest power supply priority corresponding to the charging terminal G2
  • the power supply priorities of the remaining power module groups are from high to high.
  • Low is: R1, R3, R5, R6.
  • the power module group R3 is the power module group with the highest power supply priority corresponding to the charging terminal G3
  • the power module group R5 is the power module group with the lowest power supply priority corresponding to the charging terminal G3, and the power supply priorities of the remaining power module groups are from high to high.
  • Low is: R1, R2, R4, R6.
  • the power module group R4 is the power module group with the highest power supply priority corresponding to the charging terminal G4
  • the power module group R2 is the power module group with the lowest power supply priority corresponding to the charging terminal G4, and the power supply priorities of the remaining power module groups are from high to high.
  • Low is: R1, R3, R5, R6.
  • the power module group R5 is the power module group with the highest power supply priority corresponding to the charging terminal G5
  • the power module group R3 is the power module group with the lowest power supply priority corresponding to the charging terminal G5, and the power supply priorities of the remaining power module groups are from high to high.
  • Low is: R1, R2, R4, R6.
  • the power module group R6 is the power module group with the highest power supply priority corresponding to the charging terminal G6,
  • the power module group R1 is the power module group with the lowest power supply priority corresponding to the charging terminal G6, and the power supply priorities of the remaining power module groups are from high to high.
  • Step S2 According to the power demand of the target terminal and the corresponding power supply priority, determine the target power module group allocated to the target terminal from the idle power module groups.
  • the present application may determine the target power module group assigned to the target terminal from idle power module groups according to the power requirement of the target terminal and the power supply priority corresponding to the target terminal.
  • Step S3 Connect the target terminal to the target power module group by controlling each switch unit in the charging device, so as to provide the target terminal with the required electric energy.
  • the target terminal is connected to the target power module group by controlling each switch unit in the charging device, thereby providing the target terminal with the required electric energy.
  • the process of determining the target power module group assigned to the target terminal from idle power module groups includes:
  • the power demand of the target terminal and the total number of idle power module groups determine the number of power module groups allocated to the target terminal; wherein, the number of charging power units contained in different power module groups is the same;
  • the target power module group assigned to the target terminal is determined from idle power module groups.
  • the present application may determine the number of power module groups allocated to the target terminal according to the power requirement of the target terminal and the total number of idle power module groups. Specifically, the number of charging power units included in different power module groups is the same, so each power module group can provide the same power value. It can be understood that, when the power value that each power module group can provide is known, according to the power demand of the target terminal and the total number of idle power module groups, the number of power module groups allocated to the target terminal can be determined ( Quantity allocation basis: under the condition that the number of power module groups allocated to the target terminal does not exceed the total number of idle power module groups, the power demand of the target terminal is met to the greatest extent).
  • the target power module group assigned to the target terminal is sequentially determined from the idle power module groups, so as to for the target terminal.
  • the process of determining the number of power module groups allocated to the target terminal according to the power demand of the target terminal and the total number of idle power module groups includes:
  • the number of power module groups allocated to each charging terminal is determined accordingly; The power requirements of the terminals, and assigning at least one power module group to the charging terminals with power requirements.
  • this application sets a charging priority setting strategy in advance, which can be: the charging priority of the charging terminal connected to the device to be charged (electric vehicle) first is higher, and the charging terminal with higher charging priority is given priority. demand; it can also be: directly set the charging priority of each charging terminal, once set, the charging priority of each charging terminal will be fixed.
  • this application determines the charging priority of each charging terminal according to the preset charging priority setting strategy, and then firstly satisfies the power demand of the charging terminal with a higher charging priority, and allocates at least Under the constraint of one power module group, according to the power demand of each charging terminal and the total number of idle power module groups, the number of power module groups assigned to each charging terminal is correspondingly determined.
  • the process of determining the target power module group assigned to the target terminal from the idle power module groups includes:
  • the power module group with the highest power supply priority corresponding to each charging terminal with power demand is given priority to each charging terminal;
  • the power demand On the basis of the power module group with the highest assigned power supply priority, according to the order of charging priority from high to low, according to the power supply priority and the number of power module groups corresponding to each charging terminal with power demand, the power demand The remaining idle power module groups are assigned to each charging terminal.
  • the application preferentially allocates the power module group with the highest power supply priority corresponding to each charging terminal with power demand to each charging terminal, and then, on the basis of the power module group with the highest power supply priority assigned, according to the charging priority According to the power supply priority and the number of power module groups corresponding to each charging terminal with power demand, the remaining idle power module groups are allocated to each charging terminal with power demand in order from high to low.
  • the charging priority of the charging terminal G1 is higher than that of the charging terminal G2. If the charging terminals G1 and G2 have power requirements, the power module group R1 corresponding to the charging terminal G1 with the highest power supply priority will be allocated first.
  • the present application can also determine the number of power module groups that the target terminal needs to disconnect according to the reduced power demand of the target terminal when the power demand of the target terminal decreases, and then control the number of power module groups that need to be disconnected by the target terminal.
  • Each switch unit preferentially disconnects the target terminal from its corresponding power module group with a lower power supply priority, so as to meet the reduced power demand of the target terminal.
  • the charging terminal G1 For example, taking the charging terminal G1 as an example, if the charging terminal G1 has a power demand, it is determined that the charging terminal G1 is allocated 6 power module groups, as in the case of the row G1 in Table 1 above, the 6 power module groups allocated to the charging terminal G1 For R1, R2, R3, R4, R5, R6.
  • the power demand of charging terminal G1 decreases, determine the number of power module groups that need to be disconnected by charging terminal G1 according to the reduced power demand of charging terminal G1, and then control the priority of each switch unit according to the number of power module groups that need to be disconnected by charging terminal G1 Disconnect the connection between the charging terminal G1 and its corresponding power module group with a lower power supply priority. If the number of power module groups to be disconnected by the charging terminal G1 is 2, control each switch unit to disconnect the charging terminal G1 and the power module first. Group R5, R6 connections.
  • this application can also judge whether there are terminals to be optimized that do not meet the power requirements in each charging terminal when a power module group is released in the charging system.
  • the level setting strategy determines the charging priority of each terminal to be optimized, and according to the order of charging priority from high to low, according to the power supply priority corresponding to each terminal to be optimized, allocate the released power module group for each terminal to be optimized, And control each switch unit to connect the connection lines between the newly allocated power module group and the corresponding terminal to be optimized until each terminal to be optimized meets the power requirement. After the charging of each charging terminal is completed, all the switch units are disconnected, and the power module group is released.
  • FIG. 11 is a schematic structural diagram of a control system provided by an embodiment of the present invention.
  • control system is applied to any of the above charging equipment, including:
  • the power supply priority setting module 1 is used to set the power module group closest to the target terminal at the connection position as the power module group with the highest power supply priority corresponding to the target terminal, and set the power module group with the highest power supply priority in the structure
  • the relative power module group is the power module group with the lowest power supply priority corresponding to the target terminal; among them, the target terminal is any charging terminal; the power supply priorities of the remaining power module groups are arranged according to the preset order;
  • the power module group allocation module 2 is used to determine the target power module group assigned to the target terminal from idle power module groups according to the power demand of the target terminal and its corresponding power supply priority;
  • the switch unit control module 3 is used to connect the target terminal with the target power module group by controlling each switch unit in the charging device, so as to provide the target terminal with the required electric energy.
  • FIG. 12 is a schematic structural diagram of a charging system provided by an embodiment of the present invention.
  • the charging system may include a plurality of power units 100 (referring to the above-mentioned charging power unit), a plurality of charging terminals 200, a power distribution device 300, and a control device 400, and may also include charging control, order management, local billing, and uploading to the cloud.
  • the central control device 500 with functions such as a platform; the control device 400 is used to implement the steps of any one of the above control methods when executing the computer program stored in itself.

Abstract

一种功率分配装置、充电装置、设备、控制方法及系统。本申请的第二线路连接的是相邻连接的第一开关组之间的第一接线端,且各第二线路相交于第二接线端,正是因为如此的结构设置,使得功率分配装置在实际应用于充电(电流输入端连接充电功率单元,电流输出端连接充电终端)时,每个充电终端能够直接调用的充电功率单元的数量有所增加,从而相对应减少了启用的开关数量,简化了开关控制逻辑,进而减少了编程量、降低了编程难度、提高了编程效率。

Description

一种功率分配装置、充电装置、设备、控制方法及系统
本申请要求于2021年07月02日提交至中国专利局、申请号为202110753650.3、发明名称为“一种功率分配装置、充电装置、设备、控制方法及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电动汽车充电领域,特别是涉及一种功率分配装置、充电装置、设备、控制方法及系统。
背景技术
随着以电动汽车(EV)为新能源汽车的快速发展,为电动汽车补充能量的充电设备也越来越多。现有技术中,充电设备通常包括充电枪、直流接触器和充电功率单元;充电功率单元用于将电网输入的交流电转换为直流电作为电动汽车的充电电源使用,充电枪、直流接触器和充电功率单元成矩阵排列,每个支路上设置有一个充电枪和多组直流接触器,每组直流接触器均与充电功率单元连接(例如,专利CN201520677685中有所提及)。由于该矩阵拓扑结构虽然算法简单但是需要大量接触器成本较高,因此出现了如图1所示(专利CN202010337478.9中有所提及)的环形充电拓扑结构,该充电拓扑结构为现有技术中的常用的一种功率分配装置的示意图,图1中,环形充电拓扑结构包括6个充电功率单元(P1-P6)、15对直流接触器(K1-K15)及6个充电枪(M1-M6,也称为充电终端),其工作原理为:通过控制直流接触器的开通来为充电枪分配可以使用的充电功率单元。
但是,如图1所示的环形充电拓扑结构存在如下问题:充电枪可直接调用的充电功率单元较少,导致启用的接触器数量较多,比如,在充电枪M1使用时,充电枪M1能够直接调用的充电功率单元只有P1、P2、P4、P6,而充电功率单元P3和P5均需充电枪M1跨过一个充电功率单元才能调用,这样就会导致充电枪M1在调用充电功率单元时,所启用的接触器数量较多,从而导致接触器的软件控制逻辑较为复杂,进而导致软件的编 程量较大、编程难度较高、编程效率较低。
因此,如何提供一种解决上述技术问题的方案是本领域的技术人员目前需要解决的问题。
发明内容
本发明的目的是提供一种功率分配装置、充电装置、设备、控制方法及系统,功率分配装置在实际应用于充电(电流输入端连接充电功率单元,电流输出端连接充电终端)时,每个充电终端能够直接调用的充电功率单元的数量有所增加,从而相对应减少了启用的开关数量,简化了开关控制逻辑,进而减少了编程量、降低了编程难度、提高了编程效率。
为解决上述技术问题,本发明提供了一种功率分配装置,包括:
多个电流输入端;
第一开关组,所述第一开关组包括多组第一开关单元,存在两组所述第一开关单元,二者之间至少连接一个所述电流输入端;
第一线路,所述第一开关组的数量为至少三组,多组所述第一开关组依次连接形成闭环的所述第一线路;
第二线路,相邻连接的所述第一开关组之间均具有第一接线端,每个所述第一接线端均连接有所述第二线路,多个所述第二线路相交于第二接线端,所述第二接线端不与所述第一线路连接;
第二开关组,所述第二开关组包括多组第二开关单元,存在两组所述第二开关单元,二者之间至少连接一个所述电流输入端,且存在至少一个所述第二线路,其上设置有至少一组所述第二开关组;
电流输出端,所述电流输出端与所述电流输入端连接。
优选地,所述第一开关组的数量为三组。
优选地,存在多个所述第二线路,其上设置有至少一组所述第二开关组。
优选地,存在三个所述第二线路,其上设置有至少一组所述第二开关组。
优选地,所述第二开关组中存在两组所述第二开关单元,二者之间至少连接一个所述电流输入端,且二者连接于所述第一接线端与所述第二接线端之间。
优选地,每个所述第二线路均由对应的第一接线端与第二接线端连接形成。
优选地,在多个所述第二线路中,至少存在一个所述第二线路,由两段线路组成,第一段线路由对应的第一接线端与第二接线端连接形成,第二段线路由所述第一段线路沿第一接线端延伸。
优选地,在所述第二段线路上,连接有至少一个所述电流输入端,在该电流输入端与所述第一接线端之间设置有至少一组所述第二开关单元。
优选地,在多个所述第二线路中,至少存在一个所述第二线路,由三段线路组成,第一段线路由对应的第一接线端与第二接线端连接形成,第二段线路由所述第一段线路沿第一接线端延伸,第三段线路由所述第一段线路沿第二接线端延伸。
优选地,在所述第二段线路上,连接有至少一个所述电流输入端,在该电流输入端与所述第一接线端之间设置有至少一组所述第二开关单元;在所述第三段线路上,连接有至少一个所述电流输入端,在该电流输入端与所述第二接线端之间设置有至少一组所述第二开关单元。
为解决上述技术问题,本发明还提供了一种充电装置,包括上述任一种功率分配装置,还包括:
充电功率单元,所述充电功率单元与所述电流输入端连接。
为解决上述技术问题,本发明还提供了一种充电设备,包括上述充电装置,还包括:
充电终端,所述充电终端与所述电流输出端连接;其中,与同一开关组的电流输入端对应连接的所有充电功率单元组成同一功率模块组。
优选地,所述充电设备还包括:
第三开关单元,所述电流输入端通过所述第三开关单元与所述电流输出端连接。
为解决上述技术问题,本发明还提供了一种控制方法,应用于上述任一种充电设备,包括:
将与目标终端在连接位置上最近的功率模块组作为所述目标终端对应的供电优先级最高的功率模块组;其中,所述目标终端为任一充电终端;
将所述供电优先级最高的功率模块组在结构上相对的功率模块组作为所述目标终端对应的供电优先级最低的功率模块组;其中,剩余的功率模块组的供电优先级根据预设顺序排列;
根据所述目标终端的功率需求及其对应的供电优先级,从空闲的所述功率模块组中确定分配给所述目标终端的目标功率模块组;
通过控制所述充电设备内各开关单元,将所述目标终端与所述目标功率模块组相连接,以为所述目标终端提供其所需的电能。
优选地,根据所述目标终端的功率需求及其对应的供电优先级,从空闲的所述功率模块组中确定分配给所述目标终端的目标功率模块组的过程,包括:
根据所述目标终端的功率需求及空闲的功率模块组总数量,确定分配给所述目标终端的功率模块组数量;其中,不同功率模块组内包含的充电功率单元数量相同;
根据所述目标终端对应的供电优先级及所述确定分配的功率模块组数量,从空闲的所述功率模块组中确定分配给所述目标终端的目标功率模块组。
优选地,根据所述目标终端的功率需求及空闲的功率模块组总数量,确定分配给所述目标终端的功率模块组数量的过程,包括:
根据预设充电优先级设定策略确定各所述充电终端的充电优先级;
在预设约束条件下,根据各所述充电终端的功率需求及空闲的功率模块组总数量,相应确定分配给各所述充电终端的功率模块组数量;所述预设约束条件包括优先满足充电优先级较高的充电终端的功率需求,以及为有功率需求的充电终端至少分配一个功率模块组。
优选地,根据所述目标终端对应的供电优先级及功率模块组数量,从空闲的所述功率模块组中确定分配给所述目标终端的目标功率模块组的过程,包括:
优先将有功率需求的各所述充电终端对应的供电优先级最高的功率模块组相应分配给各所述充电终端;
在已分配供电优先级最高的功率模块组的基础上,按照充电优先级由高到低的顺序,依次根据有功率需求的各所述充电终端对应的供电优先级及功率模块组数量,为有功率需求的各所述充电终端分配剩余空闲的功率模块组。
为解决上述技术问题,本发明还提供了一种控制系统,应用于上述任一种充电设备,包括:
供电优先级设定模块,用于将与目标终端在连接位置上最近的功率模块组作为所述目标终端对应的供电优先级最高的功率模块组,并将所述供电优先级最高的功率模块组在结构上相对的功率模块组作为所述目标终端对应的供电优先级最低的功率模块组;其中,所述目标终端为任一充电终端;剩余的功率模块组的供电优先级根据预设顺序排列;
功率模块组分配模块,用于根据所述目标终端的功率需求及其对应的供电优先级,从空闲的所述功率模块组中确定分配给所述目标终端的目标功率模块组;
开关单元控制模块,用于通过控制所述充电设备内各开关单元,将所述目标终端与所述目标功率模块组相连接,以为所述目标终端提供其所需的电能。
本发明提供了一种功率分配装置,包括:多个电流输入端;第一开关组,第一开关组包括多组第一开关单元,存在两组第一开关单元,二者之间至少连接一个电流输入端;第一线路,第一开关组的数量为至少三组,多组第一开关组依次连接形成闭环的第一线路;第二线路,相邻连接的第一开关组之间均具有第一接线端,每个第一接线端均连接有第二线路,多个第二线路相交于第二接线端,第二接线端不与第一线路连接;第二开关组,第二开关组包括多组第二开关单元,存在两组第二开关单元,二者之 间至少连接一个电流输入端,且存在至少一个第二线路,其上设置有至少一组第二开关组;电流输出端,电流输出端与电流输入端连接。可见,本申请的第二线路连接的是相邻连接的第一开关组之间的第一接线端,且各第二线路相交于第二接线端,正是因为如此的结构设置,使得功率分配装置在实际应用于充电(电流输入端连接充电功率单元,电流输出端连接充电终端)时,每个充电终端能够直接调用的充电功率单元的数量有所增加,从而相对应减少了启用的开关数量,简化了开关控制逻辑,进而减少了编程量、降低了编程难度、提高了编程效率。
本发明还提供了一种充电装置、设备、控制方法及系统,与上述功率分配装置具有相同的有益效果。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对现有技术和实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中的一种充电拓扑结构的结构示意图;
图2为本发明实施例提供的第一种功率分配装置的结构示意图;
图3为本发明实施例提供的第二种功率分配装置的结构示意图;
图4为本发明实施例提供的第三种功率分配装置的结构示意图;
图5为本发明实施例提供的第四种功率分配装置的结构示意图;
图6为本发明实施例提供的第一种充电设备的结构示意图;
图7为本发明实施例提供的第一种充电设备的电气连接原理图;
图8为本发明实施例提供的第二种充电设备的结构示意图;
图9为本发明实施例提供的第二种充电设备的电气连接原理图;
图10为本发明实施例提供的一种控制方法的流程图;
图11为本发明实施例提供的一种控制系统的结构示意图;
图12为本发明实施例提供的一种充电系统的结构示意图。
具体实施方式
本发明的核心是提供一种功率分配装置、充电装置、设备、控制方法及系统,功率分配装置在实际应用于充电(电流输入端连接充电功率单元,电流输出端连接充电终端)时,每个充电终端能够直接调用的充电功率单元的数量有所增加,从而相对应减少了启用的开关数量,简化了开关控制逻辑,进而减少了编程量、降低了编程难度、提高了编程效率。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参照图2,图2为本发明实施例提供的第一种功率分配装置的结构示意图。
本申请提供了一种功率分配装置,包括:
多个电流输入端A;
第一开关组Z1,第一开关组Z1包括多组第一开关单元U1,存在两组第一开关单元U1,二者之间至少连接一个电流输入端A;
第一线路,第一开关组Z1的数量为至少三组,多组第一开关组Z1依次连接形成闭环的第一线路;
第二线路,相邻连接的第一开关组Z1之间均具有第一接线端B,每个第一接线端B均连接有第二线路,多个第二线路相交于第二接线端C,第二接线端C不与第一线路连接;
第二开关组Z2,第二开关组Z2包括多组第二开关单元U2,存在两组第二开关单元U2,二者之间至少连接一个电流输入端A,且存在至少一个第二线路,其上设置有至少一组第二开关组Z2;
电流输出端,电流输出端与电流输入端A连接。
具体地,在功率分配装置中,包括多个电流输入端A及电流输出端;其中,电流输出端与电流输入端A连接,电流输入端A用于连接充电功率单元,电流输出端用于连接充电终端。
在功率分配装置中,还包括第一开关组Z1和第二开关组Z2;其中,第一开关组Z1包括多组第一开关单元U1,在第一开关组Z1中,存在两组第一开关单元U1,二者之间至少连接一个电流输入端A;第二开关组Z2包括多组第二开关单元U2,在第二开关组Z2中,存在两组第二开关单元U2,二者之间至少连接一个电流输入端A。
第一开关组Z1的数量为至少三组,多组第一开关组Z1依次连接形成闭环的第一线路。相邻连接的第一开关组Z1之间均具有第一接线端B,每个第一接线端B均连接有第二线路,多个第二线路相交于第二接线端C,且在多个第二线路中,存在至少一个第二线路,其上设置有至少一组第二开关组Z2。
需要说明的是,第二接线端C不与第一线路连接,即第二接线端C位于第一线路之外,排除了第二接线端C直接设置于第一线路的情形;同时,第二接线端C不与第一线路“连接”是指不与第一线路直接连接,如图2所示,第二接线端C通过第二线路及第二开关组Z2与第一线路间接连接,属于本申请的“第二接线端C不与第一线路连接”的情形。
可见,本申请的第二线路连接的是相邻连接的第一开关组之间的第一接线端,且各第二线路相交于第二接线端,正是因为如此的结构设置,使得功率分配装置在实际应用于充电(电流输入端连接充电功率单元,电流输出端连接充电终端)时,每个充电终端能够直接调用的充电功率单元的数量有所增加,从而相对应减少了启用的开关数量,简化了开关控制逻辑,进而减少了编程量、降低了编程难度、提高了编程效率。
在上述实施例的基础上:
作为一种可选的实施例,第一开关组Z1的数量为三组。
具体地,本申请的第一开关组Z1的数量为三组,当然,本申请的第一开关组Z1的数量也可大于三组,本申请在此不做特别的限定。
作为一种可选的实施例,存在多个第二线路,其上设置有至少一组第二开关组Z2。
具体地,当本申请的第一开关组Z1的数量为三组时,第二线路的数量为三个。在三个第二线路中,可仅存在一个第二线路,其上设置有至少一组第二开关组Z2,如图3所示;也可存在多个第二线路,其上设置有至少一组第二开关组Z2(优选)。
作为一种可选的实施例,存在三个第二线路,其上设置有至少一组第二开关组Z2。
具体地,当本申请的第二线路的数量为三个时,对于存在多个第二线路,其上设置有至少一组第二开关组Z2的情况分为两种:1)在三个第二线路中,仅存在两个第二线路,其上设置有至少一组第二开关组Z2,如图4所示;2)在三个第二线路中,存在三个第二线路,其上设置有至少一组第二开关组Z2(优选),如图2所示。
作为一种可选的实施例,第二开关组Z2中存在两组第二开关单元U2,二者之间至少连接一个电流输入端A,且二者连接于第一接线端B与第二接线端C之间。
具体地,本申请的第二开关组Z2包括多组第二开关单元U2,在第二开关组Z2中,存在两组第二开关单元U2,二者之间至少连接一个电流输入端A,且二者连接于第一接线端B与第二接线端C之间。
作为一种可选的实施例,每个第二线路均由对应的第一接线端B与第二接线端C连接形成。
具体地,如图2-图4所示,本申请的每个第二线路均由对应的第一接线端B与第二接线端C连接形成,即每个第二线路的其中一个端子为对应的第一接线端B,另一个端子为第二接线端C。
作为一种可选的实施例,在多个第二线路中,至少存在一个第二线路,由两段线路组成,第一段线路由对应的第一接线端B与第二接线端C连接形成,第二段线路由第一段线路沿第一接线端B延伸。
具体地,如图5所示,在三个第二线路中,仅存在两个第二线路,由两段线路组成,第一段线路由对应的第一接线端B与第二接线端C连接形成,第二段线路由第一段线路沿第一接线端B延伸。
需要说明的是,本实施例中的“延伸”是指“由第一段线路沿第一接线端延伸”,且延伸方向不限制,只要不与其它线路相交即可。
作为一种可选的实施例,在多个第二线路中,至少存在一个第二线路,由两段线路组成,在第二段线路上,连接有至少一个电流输入端A,在该电流输入端A与第一接线端B之间设置有至少一组第二开关单元U2。
具体地,如图5所示,在三个第二线路中,仅存在两个第二线路,由两段线路组成。在第二段线路上,连接有至少一个电流输入端A(用于连接充电功率单元),在该电流输入端A与第一接线端B之间设置有至少一组第二开关单元U2。
作为一种可选的实施例,在多个第二线路中,至少存在一个第二线路,由三段线路组成,第一段线路由对应的第一接线端B与第二接线端C连接形成,第二段线路由第一段线路沿第一接线端B延伸,第三段线路由第一段线路沿第二接线端C延伸。
具体地,如图5所示,在三个第二线路中,仅存在一个第二线路,由三段线路组成,第一段线路由对应的第一接线端B与第二接线端C连接形成,第二段线路由第一段线路沿第一接线端B延伸,第三段线路由第一段线路沿第二接线端C延伸。
需要说明的是,本实施例中的“延伸”不限制延伸方向,只要不与其它线路相交即可。
作为一种可选的实施例,在第二段线路上,连接有至少一个电流输入端A,在该电流输入端A与第一接线端B之间设置有至少一组第二开关单元U2;在第三段线路上,连接有至少一个电流输入端A,在该电流输入端A与第二接线端C之间设置有至少一组所述第二开关单元U2。具体地,如图5所示,在三个第二线路中,仅存在一个第二线路,由三段线路组成。在第二段线路上,连接有至少一个电流输入端A(用于连接充电功率单元),在该电流输入端A与第一接线端B之间设置有至少一组第二开关单元U2。 同样地,在第三段线路上,连接有至少一个电流输入端A(用于连接充电功率单元),在该电流输入端A与第二接线端C之间设置有至少一组第二开关单元U2。
本申请还提供了一种充电装置,包括上述任一种功率分配装置,还包括:
充电功率单元,充电功率单元与电流输入端A连接。
具体地,本申请的充电装置包括功率分配装置和充电功率单元,充电功率单元与功率分配装置内的电流输入端A连接。更具体地,在功率分配装置中,每个电流输入端A均可连接一个充电功率单元,当然,每个电流输入端A也可连接多个充电功率单元或不连接充电功率单元,本申请在此不做特别的限定。
本申请提供的充电装置内功率分配装置的介绍请参照上述功率分配装置的实施例,本申请在此不再赘述。
本申请还提供了一种充电设备,包括上述充电装置,还包括:
充电终端,充电终端与电流输出端连接;其中,与同一开关组的电流输入端A对应连接的所有充电功率单元组成同一功率模块组。
具体地,本申请的充电设备包括充电装置和充电终端(如充电枪),充电终端与功率分配装置内的电流输出端连接。更具体地,在功率分配装置中,每个电流输出端均可连接一个充电终端,或者多个电流输出端可连接同一充电终端,本申请在此不做特别的限定。
需要说明的是,与同一开关组的电流输入端A对应连接的所有充电功率单元组成同一功率模块组。比如,第一开关组Z1中存在两组第一开关单元U1,二者之间至少连接一个电流输入端A,这些电流输入端A连接的所有充电功率单元组成同一功率模块组;第二开关组Z2中存在两组第二开关单元U2,二者之间至少连接一个电流输入端A,这些电流输入端A连接的所有充电功率单元组成同一功率模块组。
作为一种可选的实施例,充电设备还包括:
第三开关单元U3,电流输入端A通过第三开关单元U3与电流输出端连接。
进一步地,本申请的充电设备还包括第三开关单元U3,电流输入端A通过至少一个第三开关单元U3与电流输出端连接。
具体地,按照上述实施例的介绍可得到如图6所示的充电设备,图7为如图6所示的充电设备的电气连接原理图。充电设备包括6个充电终端(用“G”表示)、6个功率模块组(用“R”表示)及18组开关单元(用“K”表示)。需要说明的是,每组开关单元包含两个开关单元,两个开关单元均用+、﹣分开表示,比如,第一组开关单元K1中一个开关单元用K1+表示,另一个开关单元用K1﹣表示(其它组开关单元也是如此表示,本申请在此不再赘述)。
基于如图6所示的充电设备,每个充电终端能够直接调用5个功率模块组,如在充电终端G1使用时,充电终端G1能够直接调用的功率模块组有R1、R2、R3、R4、R5,相比于如图1所示同样6枪的充电拓扑结构,如图6所示的充电设备内每个充电终端能够直接调用的充电功率单元的数量有所增加,从而相对应减少了启用的开关数量,简化了开关控制逻辑,进而减少了编程量、降低了编程难度、提高了编程效率。
而且,如图1所示的充电拓扑结构还存在部分工况下充电功率单元无法调用的问题,比如,在充电枪M1闲置且充电枪M2-M6使用时,充电功率单元P1无法被充电枪M3和M5调用;在充电枪M1、M5闲置且充电枪M2、M3、M4、M6使用时,充电功率单元P1和P5均无法被充电枪M3调用;在充电枪M2、M5闲置且充电枪M1、M3、M4、M6使用时,充电功率单元P2无法被充电枪M4和M6调用,充电功率单元P5无法被充电枪M1和M3调用,不利于改善充电功率单元的空置情况。而本申请的功率分配装置对充电拓扑结构进行改进,明显改善了充电功率单元的空置情况,如图6所示的充电设备,在充电终端G5闲置且充电终端G1、G2、G3、G4、G6使用时,功率模块组R5只无法被充电终端G3调用。
另外,按照上述实施例的介绍也可得到如图8所示的充电设备,图9为如图8所示的充电设备的电气连接原理图。充电设备包括4个充电终端 (用“M”表示)、10个功率模块组(用“P”表示)及20组开关单元(用“K”表示)。
本申请提供的充电设备内充电装置的介绍请参照上述充电装置的实施例,本申请在此不再赘述。
请参照图10,图10为本发明实施例提供的一种控制方法的流程图。
该控制方法应用于上述任一种充电设备(以下实施例的介绍均以如图6所示的充电设备为例),包括:
步骤S1:将与目标终端在连接位置上最近的功率模块组作为目标终端对应的供电优先级最高的功率模块组,并将供电优先级最高的功率模块组在结构上相对的功率模块组作为目标终端对应的供电优先级最低的功率模块组;其中,剩余的功率模块组的供电优先级根据预设顺序排列。
具体地,本申请分别为各充电终端设置各功率模块组的供电优先级,即分别为各充电终端设置各功率模块组的供电顺序,对于目标终端(任一充电终端)来说,供电优先级高的功率模块组优先为目标终端供电。比如,本申请可将与目标终端在连接位置上最近的功率模块组作为目标终端对应的供电优先级最高的功率模块组,并将此供电优先级最高的功率模块组在结构上相对的功率模块组作为目标终端对应的供电优先级最低的功率模块组,剩余的功率模块组的供电优先级根据预设顺序排列。
更具体地,本申请可将与第一开关组连接的第一功率模块组,按照其在闭环线路的连接位置进行逆时针方向编号,并将与第二开关组连接的第二功率模块组,按照其对应的第一连接点在闭环线路的位置进行逆时针方向编号;其中,第二功率模块组的编号>第一功率模块组的编号;与编号最小的第一功率模块组在结构上相对的第二功率模块组的编号最大。则对于所述目标终端来说,除供电优先级最高及最低的功率模块组之外,剩余的功率模块组的编号越大,供电优先级越低(也可以是剩余的功率模块组能提供的功率值越大,供电优先级越高)。
如图6所示,与第一开关组连接的功率模块组为R1、R2、R3,三者按照其在闭环线路的连接位置进行逆时针方向编号,功率模块组R1的编 号为1,功率模块组R2的编号为2,功率模块组R3的编号为3。与第二开关组连接的功率模块组为R4、R5、R6,三者按照其对应的第一连接点在闭环线路的位置进行逆时针方向编号,功率模块组R4的编号为4,功率模块组R5的编号为5,功率模块组R6的编号为6。与充电终端G1在连接位置上最近的功率模块组为R1,与充电终端G2在连接位置上最近的功率模块组为R2,与充电终端G3在连接位置上最近的功率模块组为R3,与充电终端G4在连接位置上最近的功率模块组为R4,与充电终端G5在连接位置上最近的功率模块组为R5,与充电终端G6在连接位置上最近的功率模块组为R6。与功率模块组为R1在结构上相对的功率模块组为R6;与功率模块组R2在结构上相对的功率模块组为R4;与功率模块组R3在结构上相对的功率模块组为R5。
则功率模块组R1为充电终端G1对应的供电优先级最高的功率模块组,功率模块组R6为充电终端G1对应的供电优先级最低的功率模块组,剩余的功率模块组的供电优先级从高到低为:R2、R3、R4、R5。功率模块组R2为充电终端G2对应的供电优先级最高的功率模块组,功率模块组R4为充电终端G2对应的供电优先级最低的功率模块组,剩余的功率模块组的供电优先级从高到低为:R1、R3、R5、R6。功率模块组R3为充电终端G3对应的供电优先级最高的功率模块组,功率模块组R5为充电终端G3对应的供电优先级最低的功率模块组,剩余的功率模块组的供电优先级从高到低为:R1、R2、R4、R6。功率模块组R4为充电终端G4对应的供电优先级最高的功率模块组,功率模块组R2为充电终端G4对应的供电优先级最低的功率模块组,剩余的功率模块组的供电优先级从高到低为:R1、R3、R5、R6。功率模块组R5为充电终端G5对应的供电优先级最高的功率模块组,功率模块组R3为充电终端G5对应的供电优先级最低的功率模块组,剩余的功率模块组的供电优先级从高到低为:R1、R2、R4、R6。功率模块组R6为充电终端G6对应的供电优先级最高的功率模块组,功率模块组R1为充电终端G6对应的供电优先级最低的功率模块组,剩余的功率模块组的供电优先级从高到低为:R2、R3、R4、R5,具体可参照下表1:
表1
Figure PCTCN2022072271-appb-000001
步骤S2:根据目标终端的功率需求及其对应的供电优先级,从空闲的功率模块组中确定分配给目标终端的目标功率模块组。
具体地,本申请可根据目标终端的功率需求及目标终端对应的供电优先级,从空闲的功率模块组中确定分配给目标终端的目标功率模块组。
步骤S3:通过控制充电设备内各开关单元,将目标终端与目标功率模块组相连接,以为目标终端提供其所需的电能。
具体地,本申请在确定分配给目标终端的目标功率模块组之后,通过控制充电设备内各开关单元,将目标终端与目标功率模块组相连接,从而为目标终端提供其所需的电能。
作为一种可选的实施例,根据目标终端的功率需求及其对应的供电优先级,从空闲的功率模块组中确定分配给目标终端的目标功率模块组的过程,包括:
根据目标终端的功率需求及空闲的功率模块组总数量,确定分配给目标终端的功率模块组数量;其中,不同功率模块组内包含的充电功率单元数量相同;
根据目标终端对应的供电优先级及确定分配的功率模块组数量,从空闲的功率模块组中确定分配给目标终端的目标功率模块组。
具体地,本申请可根据目标终端的功率需求及空闲的功率模块组总数量,确定分配给目标终端的功率模块组数量。具体地,不同功率模块组内包含的充电功率单元数量相同,所以每个功率模块组所能提供的功率值相同。可以理解的是,在已知每个功率模块组所能提供的功率值的情况下,根据目标终端的功率需求及空闲的功率模块组总数量,可确定分配给目标终端的功率模块组数量(数量分配依据:在分配给目标终端的功率模块组数量不超过空闲的功率模块组总数量的情况下,最大程度满足目标终端的功率需求)。
然后,本申请根据目标终端对应的功率模块组数量,按照目标终端对应的供电优先级由高到低的顺序,从空闲的功率模块组中依次确定出分配给目标终端的目标功率模块组,以供目标终端使用。
作为一种可选的实施例,根据目标终端的功率需求及空闲的功率模块组总数量,确定分配给目标终端的功率模块组数量的过程,包括:
根据预设充电优先级设定策略确定各充电终端的充电优先级;
在预设约束条件下,根据各充电终端的功率需求及空闲的功率模块组总数量,相应确定分配给各充电终端的功率模块组数量;预设约束条件包括优先满足充电优先级较高的充电终端的功率需求,以及为有功率需求的充电终端至少分配一个功率模块组。
具体地,本申请提前设置一个充电优先级设定策略,可以为:先接入待充电设备(电动汽车)的充电终端的充电优先级较高,优先满足充电优先级较高的充电终端的功率需求;也可以为:直接设定好各充电终端的充电优先级,一旦设定好,各充电终端的充电优先级便固定不变。
基于此,本申请根据预设充电优先级设定策略确定各充电终端的充电优先级,然后在优先满足的充电优先级较高的充电终端的功率需求,及为 有功率需求的充电终端至少分配一个功率模块组的约束下,根据各充电终端的功率需求及空闲的功率模块组总数量,相应确定分配给各充电终端的功率模块组数量。
作为一种可选的实施例,根据目标终端对应的供电优先级及功率模块组数量,从空闲的功率模块组中确定分配给目标终端的目标功率模块组的过程,包括:
优先将有功率需求的各充电终端对应的供电优先级最高的功率模块组相应分配给各充电终端;
在已分配供电优先级最高的功率模块组的基础上,按照充电优先级由高到低的顺序,依次根据有功率需求的各充电终端对应的供电优先级及功率模块组数量,为有功率需求的各充电终端分配剩余空闲的功率模块组。
具体地,本申请优先将有功率需求的各充电终端对应的供电优先级最高的功率模块组相应分配给各充电终端,然后在已分配供电优先级最高的功率模块组的基础上,按照充电优先级由高到低的顺序,依次根据有功率需求的各充电终端对应的供电优先级及功率模块组数量,为有功率需求的各充电终端分配剩余空闲的功率模块组。
以充电终端G1、G2为例,充电终端G1的充电优先级高于充电终端G2,若充电终端G1、G2有功率需求,则优先将充电终端G1对应的供电优先级最高的功率模块组R1分配给充电终端G1、将充电终端G2对应的供电优先级最高的功率模块组R2分配给充电终端G2,然后在已分配供电优先级最高的功率模块组的基础上,先根据充电终端G1对应的供电优先级及功率模块组数量,按照充电优先级由高到低的顺序,为充电终端G1分配剩余空闲的功率模块组(跳过已经被分配的功率模块组),再根据充电终端G2对应的供电优先级及功率模块组数量,按照充电优先级由高到低的顺序,为充电终端G2分配剩余空闲的功率模块组(跳过已经被分配的功率模块组),具体几种分配情况如下表2所示:
表2
Figure PCTCN2022072271-appb-000002
Figure PCTCN2022072271-appb-000003
进一步地,本申请还可在目标终端的功率需求降低时,根据目标终端降低的功率需求,确定目标终端需断开的功率模块组数量,然后根据目标终端需断开的功率模块组数量,控制各开关单元优先断开目标终端与其对应的供电优先级较低的功率模块组的连接,从而满足目标终端降低后的功率需求。
比如,以充电终端G1为例,若充电终端G1有功率需求,确定充电终端G1分配6个功率模块组,如上述表1的G1一行的情况,则为充电终端G1分配的6个功率模块组为R1、R2、R3、R4、R5、R6。在充电终端G1的功率需求降低时,根据充电终端G1降低的功率需求确定充电终端G1需断开的功率模块组数量,然后根据充电终端G1需断开的功率模块组数量,控制各开关单元优先断开充电终端G1与其对应的供电优先级较低的 功率模块组的连接,如充电终端G1需断开的功率模块组数量为2个,则控制各开关单元优先断开充电终端G1与功率模块组R5、R6的连接。
另外,本申请还可在充电系统中有功率模块组释放时,判断各充电终端中是否存在不满足功率需求的待优化终端,若存在不满足功率需求的待优化终端,则根据预设充电优先级设定策略确定各待优化终端的充电优先级,并按照充电优先级由高到低的顺序,依次根据各待优化终端对应的供电优先级,为各待优化终端分配释放的功率模块组,且控制各开关单元接通新分配的功率模块组与其对应的待优化终端的连接线路,直到各待优化终端满足功率需求。待各充电终端均充电结束后,断开所有开关单元,释放功率模块组。
请参照图11,图11为本发明实施例提供的一种控制系统的结构示意图。
该控制系统应用于上述任一种充电设备,包括:
供电优先级设定模块1,用于将与目标终端在连接位置上最近的功率模块组作为目标终端对应的供电优先级最高的功率模块组,并将供电优先级最高的功率模块组在结构上相对的功率模块组作为目标终端对应的供电优先级最低的功率模块组;其中,目标终端为任一充电终端;剩余的功率模块组的供电优先级根据预设顺序排列;
功率模块组分配模块2,用于根据目标终端的功率需求及其对应的供电优先级,从空闲的功率模块组中确定分配给目标终端的目标功率模块组;
开关单元控制模块3,用于通过控制充电设备内各开关单元,将目标终端与目标功率模块组相连接,以为目标终端提供其所需的电能。
本申请提供的控制系统的介绍请参照上述控制方法的实施例,本申请在此不再赘述。
请参照图12,图12为本发明实施例提供的一种充电系统的结构示意图。
该充电系统可包括多个功率单元100(指上述充电功率单元)、多个充电终端200、功率分配装置300及控制装置400,还可包括集成有充电控制、订单管理、本地计费、上传云平台等功能的集控装置500;控制装置400用于在执行自身存储的计算机程序时实现上述任一种控制方法的步骤。
本申请提供的充电系统内功率分配装置300的介绍请参考在上述功率分配装置的实施例,本申请提供的充电系统内控制装置400的介绍请参照上述控制方法的实施例,本申请在此不再赘述。
还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其他实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (18)

  1. 一种功率分配装置,其特征在于,包括:
    多个电流输入端;
    第一开关组,所述第一开关组包括多组第一开关单元,存在两组所述第一开关单元,二者之间至少连接一个所述电流输入端;
    第一线路,所述第一开关组的数量为至少三组,多组所述第一开关组依次连接形成闭环的所述第一线路;
    第二线路,相邻连接的所述第一开关组之间均具有第一接线端,每个所述第一接线端均连接有所述第二线路,多个所述第二线路相交于第二接线端,所述第二接线端不与所述第一线路连接;
    第二开关组,所述第二开关组包括多组第二开关单元,存在两组所述第二开关单元,二者之间至少连接一个所述电流输入端,且存在至少一个所述第二线路,其上设置有至少一组所述第二开关组;
    电流输出端,所述电流输出端与所述电流输入端连接。
  2. 如权利要求1所述的功率分配装置,其特征在于,所述第一开关组的数量为三组。
  3. 如权利要求2所述的功率分配装置,其特征在于,存在多个所述第二线路,其上设置有至少一组所述第二开关组。
  4. 如权利要求3所述的功率分配装置,其特征在于,存在三个所述第二线路,其上设置有至少一组所述第二开关组。
  5. 如权利要求1-4任一项所述的功率分配装置,其特征在于,所述第二开关组中存在两组所述第二开关单元,二者之间至少连接一个所述电流输入端,且二者连接于所述第一接线端与所述第二接线端之间。
  6. 如权利要求5所述的功率分配装置,其特征在于,每个所述第二线路均由对应的第一接线端与第二接线端连接形成。
  7. 如权利要求5所述的功率分配装置,其特征在于,在多个所述第二线路中,至少存在一个所述第二线路,由两段线路组成,第一段线路由对应的第一接线端与第二接线端连接形成,第二段线路由所述第一段线路沿第一接线端延伸。
  8. 如权利要求7所述的功率分配装置,其特征在于,在所述第二段线路上,连接有至少一个所述电流输入端,在该电流输入端与所述第一接线端之间设置有至少一组所述第二开关单元。
  9. 如权利要求5所述的功率分配装置,其特征在于,在多个所述第二线路中,至少存在一个所述第二线路,由三段线路组成,第一段线路由对应的第一接线端与第二接线端连接形成,第二段线路由所述第一段线路沿第一接线端延伸,第三段线路由所述第一段线路沿第二接线端延伸。
  10. 如权利要求9所述的功率分配装置,其特征在于,在所述第二段线路上,连接有至少一个所述电流输入端,在该电流输入端与所述第一接线端之间设置有至少一组所述第二开关单元;在所述第三段线路上,连接有至少一个所述电流输入端,在该电流输入端与所述第二接线端之间设置有至少一组所述第二开关单元。
  11. 一种充电装置,其特征在于,包括如权利要求1-10任一项所述的功率分配装置,还包括:
    充电功率单元,所述充电功率单元与所述电流输入端连接。
  12. 一种充电设备,其特征在于,包括如权利要求11所述的充电装置,还包括:
    充电终端,所述充电终端与所述电流输出端连接;其中,与同一开关组的电流输入端对应连接的所有充电功率单元组成同一功率模块组。
  13. 如权利要求12所述的充电设备,其特征在于,所述充电设备还包括:
    第三开关单元,所述电流输入端通过所述第三开关单元与所述电流输出端连接。
  14. 一种控制方法,其特征在于,应用于如权利要求12或13所述的充电设备,包括:
    将与目标终端在连接位置上最近的功率模块组作为所述目标终端对应的供电优先级最高的功率模块组;其中,所述目标终端为任一充电终端;
    将所述供电优先级最高的功率模块组在结构上相对的功率模块组作为所述目标终端对应的供电优先级最低的功率模块组;其中,剩余的功率模块组的供电优先级根据预设顺序排列;
    根据所述目标终端的功率需求及其对应的供电优先级,从空闲的所述功率模块组中确定分配给所述目标终端的目标功率模块组;
    通过控制所述充电设备内各开关单元,将所述目标终端与所述目标功率模块组相连接,以为所述目标终端提供其所需的电能。
  15. 如权利要求14所述的控制方法,其特征在于,根据所述目标终端的功率需求及其对应的供电优先级,从空闲的所述功率模块组中确定分配给所述目标终端的目标功率模块组的过程,包括:
    根据所述目标终端的功率需求及空闲的功率模块组总数量,确定分配给所述目标终端的功率模块组数量;其中,不同功率模块组内包含的充电功率单元数量相同;
    根据所述目标终端对应的供电优先级及所述确定分配的功率模块组数量,从空闲的所述功率模块组中确定分配给所述目标终端的目标功率模块组。
  16. 如权利要求15所述的控制方法,其特征在于,根据所述目标终端的功率需求及空闲的功率模块组总数量,确定分配给所述目标终端的功率模块组数量的过程,包括:
    根据预设充电优先级设定策略确定各所述充电终端的充电优先级;
    在预设约束条件下,根据各所述充电终端的功率需求及空闲的功率模块组总数量,相应确定分配给各所述充电终端的功率模块组数量;所述预设约束条件包括优先满足充电优先级较高的充电终端的功率需求,以及为有功率需求的充电终端至少分配一个功率模块组。
  17. 如权利要求16所述的控制方法,其特征在于,根据所述目标终端对应的供电优先级及功率模块组数量,从空闲的所述功率模块组中确定分配给所述目标终端的目标功率模块组的过程,包括:
    优先将有功率需求的各所述充电终端对应的供电优先级最高的功率模块组相应分配给各所述充电终端;
    在已分配供电优先级最高的功率模块组的基础上,按照充电优先级由高到低的顺序,依次根据有功率需求的各所述充电终端对应的供电优先级及功率模块组数量,为有功率需求的各所述充电终端分配剩余空闲的功率模块组。
  18. 一种控制系统,其特征在于,应用于如权利要求12或13所述的充电设备,包括:
    供电优先级设定模块,用于将与目标终端在连接位置上最近的功率模块组作为所述目标终端对应的供电优先级最高的功率模块组,并将所述供电优先级最高的功率模块组在结构上相对的功率模块组作为所述目标终端对应的供电优先级最低的功率模块组;其中,所述目标终端为任一充电终端;剩余的功率模块组的供电优先级根据预设顺序排列;
    功率模块组分配模块,用于根据所述目标终端的功率需求及其对应的供电优先级,从空闲的所述功率模块组中确定分配给所述目标终端的目标功率模块组;
    开关单元控制模块,用于通过控制所述充电设备内各开关单元,将所述目标终端与所述目标功率模块组相连接,以为所述目标终端提供其所需的电能。
PCT/CN2022/072271 2021-07-02 2022-01-17 一种功率分配装置、充电装置、设备、控制方法及系统 WO2023273312A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22831148.6A EP4365011A1 (en) 2021-07-02 2022-01-17 Power distribution apparatus, charging apparatus and device, and control method and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110753650.3 2021-07-02
CN202110753650.3A CN115556615A (zh) 2021-07-02 2021-07-02 一种功率分配装置、充电装置、设备、控制方法及系统

Publications (1)

Publication Number Publication Date
WO2023273312A1 true WO2023273312A1 (zh) 2023-01-05

Family

ID=84689769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072271 WO2023273312A1 (zh) 2021-07-02 2022-01-17 一种功率分配装置、充电装置、设备、控制方法及系统

Country Status (3)

Country Link
EP (1) EP4365011A1 (zh)
CN (1) CN115556615A (zh)
WO (1) WO2023273312A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115972965B (zh) * 2023-02-20 2023-05-16 广东天枢新能源科技有限公司 应用于充电堆的充电控制方法、系统、装置及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206436844U (zh) * 2016-12-12 2017-08-25 蔚来汽车有限公司 多支路多端口储能型移动充电车充电系统及移动充电车
CN108177545A (zh) * 2017-12-30 2018-06-19 深圳市车电网络有限公司 一种一体式一机多枪充电桩系统及其实现方法
CN108270263A (zh) * 2017-12-30 2018-07-10 深圳市车电网络有限公司 一种能任意功率调度的多枪直流充电机及其充电控制方法
US20200070674A1 (en) * 2018-08-31 2020-03-05 AddÉnergie Technologies Inc. Dual voltage range charging station
CN110962662A (zh) * 2019-11-25 2020-04-07 新亚东方电能科技有限公司 一种直流多枪环形智能分配充电电路
CN110979075A (zh) * 2019-12-18 2020-04-10 青岛海汇德电气有限公司 一种功率分配电路和充电桩及其功率分配方法和控制装置
CN111376756A (zh) * 2020-04-24 2020-07-07 西安绿电智控科技有限公司 充电拓扑网络、充电控制系统及方法
CN215097112U (zh) * 2021-07-02 2021-12-10 西安特锐德智能充电科技有限公司 一种功率分配装置、充电装置及设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206436844U (zh) * 2016-12-12 2017-08-25 蔚来汽车有限公司 多支路多端口储能型移动充电车充电系统及移动充电车
CN108177545A (zh) * 2017-12-30 2018-06-19 深圳市车电网络有限公司 一种一体式一机多枪充电桩系统及其实现方法
CN108270263A (zh) * 2017-12-30 2018-07-10 深圳市车电网络有限公司 一种能任意功率调度的多枪直流充电机及其充电控制方法
US20200070674A1 (en) * 2018-08-31 2020-03-05 AddÉnergie Technologies Inc. Dual voltage range charging station
CN110962662A (zh) * 2019-11-25 2020-04-07 新亚东方电能科技有限公司 一种直流多枪环形智能分配充电电路
CN110979075A (zh) * 2019-12-18 2020-04-10 青岛海汇德电气有限公司 一种功率分配电路和充电桩及其功率分配方法和控制装置
CN111376756A (zh) * 2020-04-24 2020-07-07 西安绿电智控科技有限公司 充电拓扑网络、充电控制系统及方法
CN215097112U (zh) * 2021-07-02 2021-12-10 西安特锐德智能充电科技有限公司 一种功率分配装置、充电装置及设备

Also Published As

Publication number Publication date
EP4365011A1 (en) 2024-05-08
CN115556615A (zh) 2023-01-03

Similar Documents

Publication Publication Date Title
CN208411434U (zh) 一种大功率的群充充电系统
CN104578273A (zh) 电能调度充电系统及电能调度充电方法
KR20220115623A (ko) 스와핑 스테이션용 또는 에너지 저장 스테이션용 충전 시스템
CN206358021U (zh) 一种电动汽车充电系统
CN106740216A (zh) 一种电动汽车充电系统
CN106740224A (zh) 一种电动汽车充电系统及方法
CN110962664B (zh) 一种群控充电系统功率分配系统及方法
WO2023273312A1 (zh) 一种功率分配装置、充电装置、设备、控制方法及系统
JP7428759B2 (ja) 充電パイルクラスタの電力共有制御方法、電力共有制御システム及び電力共有制御装置
CN107769315A (zh) 一机双枪功率智能分配直流充电桩系统
CN107070192A (zh) 基于组合换流器的柔性直流输电系统协调均压启动方法
CN215097112U (zh) 一种功率分配装置、充电装置及设备
US20230322098A1 (en) Electrical topology of integrated dc charging station and operation control method thereof
CN108270263A (zh) 一种能任意功率调度的多枪直流充电机及其充电控制方法
CN106253724B (zh) 一种变流器
CN114084017A (zh) 一种直流充电桩系统
CN207426751U (zh) 一机双枪功率智能分配直流充电桩系统
US20210178925A1 (en) Method and charging station for load management with fall-back solution
CN106411150A (zh) 可驱动双电机异步运行的级联多电平变换器及控制方法
CN115489355A (zh) 一种功率分配装置、充电装置、设备、控制方法及系统
CN115742827A (zh) 功率分配系统、方法及充电桩
CN108711875A (zh) 一种分布式储能单元协调控制系统及控制方法
CN113525146B (zh) 一种充电桩
Yang et al. Unbalanced voltage control of bipolar DC microgrid based on distributed cooperative control
WO2021230607A1 (ko) 전력 공급 시스템의 출력 분배 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831148

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022831148

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022831148

Country of ref document: EP

Effective date: 20240202