WO2014173112A1 - 封框胶及其封合方法、用该封框胶封合的显示面板及显示装置 - Google Patents

封框胶及其封合方法、用该封框胶封合的显示面板及显示装置 Download PDF

Info

Publication number
WO2014173112A1
WO2014173112A1 PCT/CN2013/087130 CN2013087130W WO2014173112A1 WO 2014173112 A1 WO2014173112 A1 WO 2014173112A1 CN 2013087130 W CN2013087130 W CN 2013087130W WO 2014173112 A1 WO2014173112 A1 WO 2014173112A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
substance
solvent
substrate
based epoxy
Prior art date
Application number
PCT/CN2013/087130
Other languages
English (en)
French (fr)
Inventor
王新星
柳在健
姚继开
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/375,510 priority Critical patent/US9454042B2/en
Publication of WO2014173112A1 publication Critical patent/WO2014173112A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1284Application of adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/18Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/04Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving separate application of adhesive ingredients to the different surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2401/00Presence of cellulose
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2463/00Presence of epoxy resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2463/00Presence of epoxy resin
    • C09J2463/003Presence of epoxy resin in the primer coating

Definitions

  • Embodiments of the present invention relate to a frame sealant and a sealing method thereof, a display panel sealed therewith, and a display device. Background technique
  • TFT-LCD Thin Film Transistor Liquid Crystal Display
  • a Thin Film Transistor Liquid Crystal Display is one of an Active Matrix-LCD (AM-LCD).
  • TFT-LCD has excellent performance in terms of brightness, contrast, power consumption, life, volume and weight, large-scale production characteristics, high degree of automation, low raw material cost, and wide development space, so it is the mainstream product in the new century.
  • the TFT-LCD is formed by depositing a crystal between a TFT substrate and a color film (CF) substrate. In order to prevent the liquid crystal from being contaminated by the external environment, it is generally sealed with a sealant.
  • CF color film
  • UV-curable frame sealant has a short curing time and fast speed, but its controllability is slightly poor, and it is not suitable for some special display modes, such as polymer dispersed liquid crystal (PDLC) or polymer stable cholesteric liquid crystal (PSCT). ), etc., because the liquid crystal cell contains a polymer monomer sensitive to ultraviolet light, such liquid crystal can only be sealed with a heat curing type sealant.
  • PDLC polymer dispersed liquid crystal
  • PSCT polymer stable cholesteric liquid crystal
  • the current heat-curing frame sealant uses an external heat source, so the curing speed is slow, the curing time is long, the energy loss is large, and the heat transfer gradient is caused by the outward flow during the curing process.
  • the current heat-curable frame sealant also has problems such as uneven rubber width, retraction and breakage.
  • the curing yield directly affects the quality of the panel.
  • a panel that is not cured has defects such as uneven brightness (mura), so it is necessary to improve the heat-curable frame sealant.
  • An embodiment of the invention provides a sealing method for a sealant, comprising:
  • Aqueous epoxy resin and solvent-based epoxy resin are sequentially coated on the first substrate,
  • the first substrate and the second substrate are aligned and pressed;
  • the solvent-type epoxy resin is dispersed with a second substance of a size of nanometer-sized by the first substance, wherein the first substance is a hydrophilic polymer substance, and the second substance is placed in contact with water. Thermally reactive substance.
  • the aqueous epoxy resin and the solvent-based epoxy resin have a solid content of 60 to 70% by weight.
  • the first substance is an ester or amide material.
  • the first substance is starch or cellulose.
  • the second substance is a nano alkaline earth metal oxide.
  • the nano alkaline earth metal oxide is nano calcium oxide.
  • the first substance and the second substance encapsulated by the first substance are added in an amount of 10 to 20% by weight based on the solvent-type epoxy resin.
  • a frame sealant comprising: a waterborne epoxy resin and a solvent epoxy resin
  • the solvent-type epoxy resin is dispersed with a second substance of a size of nanometer-sized by the first substance, wherein the first substance is a hydrophilic polymer substance, and the second substance is placed in contact with water. Thermally reactive substance.
  • the aqueous epoxy resin and the solvent-based epoxy resin have a solid content of 60 to 70% by weight.
  • the first substance is an ester or amide material.
  • the first substance is starch or cellulose.
  • the second substance is a nano alkaline earth metal oxide.
  • the nano alkaline earth metal oxide is nano calcium oxide.
  • the first substance and the second substance encapsulated by the first substance are added in an amount of 10 to 20% by weight based on the solvent-type epoxy resin.
  • a display panel is sealed by the above-mentioned sealant sealing method.
  • a display device includes the above display panel.
  • DRAWINGS 1 is a schematic view of a substrate coated with a solvent-type epoxy resin according to an embodiment of the present invention
  • FIG. 2 is a substrate to which a solvent-type epoxy resin and an aqueous epoxy resin are applied and to be laminated according to an embodiment of the present invention.
  • FIG. 3 is a schematic view of a sealant in accordance with an embodiment of the present invention after being pressed and cured; and
  • FIG. 4 is a flow chart showing the preparation of starch-coated nano-calcium oxide according to an embodiment of the present invention. detailed description
  • the embodiment of the invention provides a sealing method for the sealant, which comprises:
  • Aqueous epoxy resin and solvent-based epoxy resin are sequentially coated on the first substrate,
  • the solvent-type epoxy resin is dispersed with a second substance of a size of nanometer-sized by the first substance, wherein the first substance is a hydrophilic polymer substance, and the second substance is placed in contact with water. Thermally reactive substance.
  • the embodiment of the invention further provides a frame sealant, comprising: an aqueous epoxy resin and a solvent epoxy resin,
  • the solvent-type epoxy resin is dispersed with a second substance of a size of nanometer-sized by the first substance, wherein the first substance is a hydrophilic high-molecular substance, and the second substance is exothermic when exposed to water.
  • the substance of the reaction is a hydrophilic high-molecular substance, and the second substance is exothermic when exposed to water.
  • the second substance is originally wrapped
  • the first substance is dissolved in the water of the aqueous epoxy resin due to its water solubility, and the second substance is exposed to water, and the second substance reacts with water to generate heat, thereby causing the curing process of the sealant.
  • the curing process of the sealant in the embodiment of the present invention is caused by the internal heat source, so that the energy loss in the prior art curing process can be avoided, and the curing speed can be improved.
  • the second substance wrapped by the first substance can be uniformly dispersed in the solvent-type epoxy resin, so that the curing uniformity can be improved.
  • the aqueous epoxy resin and the solvent-based epoxy resin may each have a solid content of 60 to 70 wt%.
  • the solid content of the water-based epoxy resin and the solvent-based epoxy resin are similar to prevent the viscosity difference between the two from being too large, resulting in poor sealing effect.
  • the first substance may be an ester or amide material.
  • the first substance can be starch or cellulose.
  • the second substance is a nano alkaline earth metal oxide.
  • the second substance may be nano-calcium oxide or nano-magnesia, preferably nano-calcium oxide.
  • the total amount of the first substance plus the second substance encapsulated therewith is 10 to 20% by weight of the solvent-type epoxy resin.
  • the addition amount is less than 10% by weight, the heat generated when the second substance reacts with water may not be sufficient to cure the epoxy resin; when the added amount is more than 20% by weight, the heat generated when the second substance reacts with water It may be too large and may cause excessive curing to age the cured sealant.
  • the solvent in the solvent-based epoxy resin is some common organic small molecular substances which are easy to be volatilized during the curing of the sealant, such as acetone, propyl acetate and decyl amyl ketone.
  • the sealant comprises, in addition to the above-mentioned aqueous epoxy resin and solvent-type epoxy resin, some other common components, such as a catalyst, etc., which will not be described herein.
  • the first substance is starch and the second substance is nano-calcium oxide.
  • the nano-calcium oxide and the starch encapsulating the nano-calcium oxide are added in an amount of 10 to 20% by weight based on the solvent-type epoxy resin. Also, the starch-encapsulated nano-calcium oxide is uniformly dispersed in the solvent-type epoxy resin.
  • the starch When the sealant of the embodiment of the present invention is pressed, the starch is dissolved in water in the aqueous epoxy resin, so that the nano-calcium oxide is exposed to react with water to generate heat, thereby causing the curing process of the sealant.
  • the curing process can avoid energy loss in the prior art curing process and increase curing speed and curing Uniformity.
  • the generated nano-sized carbonic acid 4 bow can act as a fulcrum to prevent retraction and breakage of the sealant, thereby improving the formability and strength of the sealant.
  • starch is an excellent hydrophilic polymer substance, it can act as a regulator between water and nano-calcium oxide, preventing water and nano-calcium oxide directly. The contact reacted violently and caused a sharp rise in temperature.
  • Solvent-based epoxy resins and aqueous epoxy resins used are those known to those skilled in the art for forming heat-curable frame sealants. These solvent-based epoxy resins and water-soluble epoxy resins for the purpose of the present invention can be easily selected by those skilled in the art after reading the specification of the present application.
  • the second substance of nanometer size wrapped by the first substance is further dispersed in the solvent type epoxy resin.
  • the nano-sized first material-encapsulated second material can be dispersed in the solvent-based epoxy resin using various dispersion techniques well known to those skilled in the art.
  • the solvent type epoxy resin may be HC-1850 from Mitsui, but is not limited thereto.
  • the waterborne epoxy resin may be of the BONRON type obtained from Mitsui, but is not limited thereto.
  • the preparation method includes:
  • Step a preparing nano-calcium oxide, adding an appropriate amount of anhydrous solvent and a dispersing agent until the system is in an emulsion state;
  • Step b adding appropriate amount of starch to the above emulsion system, stirring at a low speed in a water bath at 80 ° C until the system is colloidal;
  • Step c heating to 120 ° C water bath, stirring at high speed until the system is suspended granular;
  • Step d the system is carried out in the following steps: suction filtration, drying and grinding, to obtain starch-coated nano-calcium oxide particles, the macro state is powder .
  • the anhydrous solvent comprises anhydrous alcohols, anhydrous ketones or anhydrous esters.
  • the anhydrous alcohol may be anhydrous ethanol.
  • the dispersing agent may be a silane coupling agent KH550.
  • the solvent-type epoxy resin in which the second substance of the nanometer size wrapped by the first substance is dispersed as described in the embodiment of the present invention is prepared as follows.
  • Anhydrous ethanol, an emulsifier, and the starch-coated nano-calcium oxide are sequentially added to a solvent-containing epoxy resin container at room temperature, and subjected to ultrasonic treatment for 60 minutes under strong agitation to uniformly disperse; During the stirring process, the temperature was gradually raised to 100 ° C at a rate of 5 ° C per minute, and the stirring was stopped and sampled at the desired viscosity.
  • the emulsifier used can be Any emulsifier commonly used in the field for this purpose.
  • the coating process consisted of using a double funnel, filling a funnel with an aqueous epoxy resin (BONRON type; manufactured by Mitsui Co., Ltd.), and charging another funnel with a solvent-based epoxy resin prepared according to an embodiment of the present invention.
  • a solvent-based epoxy resin 2 shown in Fig. 1 is applied on the first substrate 1, and then an aqueous epoxy resin 3 (shown in Fig. 2) is applied.
  • the solvent-type epoxy resin 2 contains nano-calcium oxide 202 encapsulated by starch 201.
  • the aqueous epoxy resin 3 may be applied to the first substrate 1 at the time of coating, and then the solvent-type epoxy resin 2 may be applied.
  • the aqueous epoxy resin 3 (or solvent-based epoxy resin 2) may be coated on the first substrate 1, and the solvent-based epoxy resin 2 (or aqueous epoxy resin) may be coated on the second substrate 4. 3).
  • the first substrate 1 and the second substrate 2 may each be an array substrate or a color filter substrate, but the first substrate 1 is not limited to the array substrate or the color filter substrate.
  • the curing process includes: after the second substrate 4 and the first substrate 1 are aligned, the flat plate press is used for pressing, wherein the flat plate presser has a flat rubber gasket on both the upper and lower sides.
  • the aqueous epoxy resin 3 and the solvent-based epoxy resin 2 are mixed with each other, and the water in the aqueous epoxy resin 3 is absorbed by the starch. Since the starch layer is relatively thin and has a large moisture content, the remaining water after the starch is saturated is introduced into the nano-calcium oxide layer, and the nano-calcium oxide reacts with water to generate heat.
  • the epoxy resin matrix has a uniform reaction point inside, so that the interior can be uniformly cured. Fig.
  • FIG 3 shows the framed rubber 5 after curing and the nano-sized carbonic acid 4 bow 501 formed by the reaction.
  • the resulting nano-sized carbonic acid 4 bow can act as a fulcrum to prevent retraction and breakage of the sealant, thereby improving the formability and strength of the sealant.
  • a temperature detector can be used to detect the temperature inside the epoxy resin.
  • the external heat source can be turned on to replenish the heat so that the temperature reaches a set temperature such as 150 ° C and remains 1 -5 minutes.
  • the heat generated by the reaction of calcium oxide and water is used for curing and encapsulation, and the internal heat is evenly heated, which not only avoids the heat loss caused by the external heat source in the prior art during the curing process, eliminates the curing gradient problem, and also improves the curing speed and curing. Uniformity.
  • the liquid crystal display packaged by the frame sealant of the invention has uniform curing of the frame sealant, uniformity of glue width and glue thickness, obvious defects such as light leakage, crystal leakage, unevenness (mura), etc.; and good formation of frame sealant Sex and strength; also suitable for display modes that cannot be in UV-cured form; Heat source, green, energy saving; Fast curing speed, which is conducive to increasing production scale.
  • a frame sealant comprising:
  • the sealing method of the sealant comprises:
  • the aqueous epoxy resin is coated on the first substrate, the solvent-type epoxy resin is coated on the second substrate, and the two are aligned and pressed.
  • the aqueous epoxy resin and the solvent-based epoxy resin each had a solid content of 65 wt%.
  • the solid content of the water-based epoxy resin and the solvent-based epoxy resin are similar in order to prevent the viscosity difference between the two from being too large, resulting in poor sealing effect.
  • the total amount of the starch added to the nano-calcium oxide encapsulated therein is 15% by weight of the solvent-based epoxy resin.
  • the starch When the sealant is pressed, the starch is dissolved in water, causing the nano-calcium oxide to be exposed to react with water to generate heat, thereby causing the curing process of the sealant.
  • This curing process avoids energy loss in the prior art curing process and increases curing speed and curing uniformity.
  • the resulting nano-sized calcium carbonate can act as a fulcrum to prevent retraction and fracture of the sealant, thereby improving the formability and strength of the sealant.
  • the reason why the nano-calcium oxide is encapsulated with starch is: Since starch is an excellent hydrophilic polymer substance, it can act as a regulator between water and nano-calcium oxide, preventing water and nano-calcium oxide directly. The contact reacted violently and caused a sharp rise in temperature.
  • the preparation method includes:
  • Step a preparing nano-calcium oxide, adding an appropriate amount of anhydrous ethanol and a silane coupling agent KH550 until the system is in an emulsion state;
  • Step b adding appropriate amount of starch to the above emulsion system, stirring at a low speed in a water bath at 80 ° C until The system is colloidal;
  • Step c heating to 120 ° C water bath, stirring at high speed until the system is suspended granular;
  • Step d the system is carried out in the following steps: suction filtration, drying and grinding, to obtain starch-coated nano-calcium oxide particles, the macro state is powder .
  • the solvent-type epoxy resin in which the second substance of the size of nanometer-sized material encapsulated by the first substance is dispersed as described in the present embodiment is prepared as follows. Anhydrous ethanol, an emulsifier (monoglyceride HP-C, available from DuPont), starch-coated nano-calcium prepared as above, was sequentially added to a solvent-containing epoxy resin (HC-1850, available from Mitsui) at room temperature. In the container, under strong agitation, disperse with ultrasonic waves for 60 minutes to make it evenly dispersed; gradually increase the temperature to 100 °C at 5 °C per minute during the stirring process, stop stirring and sample at the required viscosity. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • a method of using the sealant according to the preferred embodiment of the present invention will be described in detail, which mainly includes two processes of coating and curing.
  • the coating process consisted of using a double funnel, filling a funnel with an aqueous epoxy resin (BONRON type; manufactured by Mitsui Co., Ltd.), and charging another funnel with a solvent-based epoxy resin prepared according to an embodiment of the present invention.
  • a solvent-based epoxy resin 2 shown in Fig. 1 is applied on the first substrate 1, and then an aqueous epoxy resin 3 (shown in Fig. 2) is applied.
  • the solvent-type epoxy resin 2 contains nano-calcium oxide 202 encapsulated by starch 201.
  • the aqueous epoxy resin 3 may be applied to the first substrate 1 at the time of coating, and then the solvent-type epoxy resin 2 may be applied.
  • the aqueous epoxy resin 3 (or solvent-based epoxy resin 2) may be coated on the first substrate 1, and the solvent-based epoxy resin 2 (or aqueous epoxy resin) may be coated on the second substrate 4. 3).
  • the curing process includes: after the second substrate 4 and the first substrate 1 are aligned, the flat plate press is used for pressing, wherein the flat plate presser has a flat rubber gasket on both the upper and lower sides.
  • the aqueous epoxy resin 3 and the solvent-based epoxy resin 2 are mixed with each other, and the water in the aqueous epoxy resin 3 is absorbed by the starch. Since the starch layer is relatively thin and has a large moisture content, the remaining water after the starch is saturated is introduced into the nano-calcium oxide layer, and the nano-calcium oxide reacts with water to generate heat.
  • the epoxy resin matrix has a uniform reaction point inside, so that the interior can be uniformly cured. Fig.
  • FIG 3 shows the framed rubber 5 after curing and the nano-sized carbonic acid 4 bow 501 formed by the reaction.
  • the resulting nano-sized carbonic acid 4 bow can act as a fulcrum to prevent retraction and breakage of the sealant, thereby improving the formability and strength of the sealant.
  • a temperature detector can be used to detect the temperature inside the epoxy resin. When the temperature is lower than 150 °C, the external heat source can be turned on to replenish the heat so that the temperature reaches 150 ° C for 1-5 minutes.
  • the heat generated by the reaction of calcium oxide and water is used for curing and encapsulation, and the interior is uniformly heated, not only avoiding The heat loss during the curing process is eliminated, the curing gradient problem is eliminated, and the curing speed and curing uniformity are also improved.
  • the liquid crystal display packaged by the frame sealant of the invention has uniform curing of the sealant, uniformity of glue width and glue thickness, obvious defects such as light leakage, crystal leakage and unevenness; and good forming stability and strength of the sealant At the same time, it is suitable for display mode that can not adopt UV curing form; It adopts internal heat source, green and environmental protection, saves energy; Fast curing speed is beneficial to increase production scale.
  • the basic process of the second embodiment is the same as that of the first embodiment, except that the aqueous epoxy resin and the solvent-based epoxy resin have a solid content of 60% by weight, and the starch and nano-calcium oxide are added in an amount of 10% by weight.
  • the basic procedure of the third embodiment is the same as that of the first embodiment, except that the aqueous epoxy resin and the solvent-based epoxy resin each have a solid content of 70% by weight, and the starch and nano-calcium oxide are added in an amount of 20% by weight.
  • the first substance is encapsulated by another second substance (such as an embodiment of starch-coated nano-magnesia, or cellulose-encapsulated nano-calcium oxide, or cellulose-encapsulated nano-magnesia)
  • another second substance such as an embodiment of starch-coated nano-magnesia, or cellulose-encapsulated nano-calcium oxide, or cellulose-encapsulated nano-magnesia
  • starch-coated nano-calcium oxide Similar to the above-described examples of starch-coated nano-calcium oxide, the effect of curing the sealant with an internal heat source can be achieved, and thus will not be described in detail herein.
  • the embodiment of the invention further provides a display panel, which is sealed by the above-mentioned frame sealing glue sealing method.
  • the embodiment of the invention further provides a display device, wherein the display device comprises the above display panel.
  • the display device may be: a liquid crystal display panel, an OLED (Organic Light Emitting Diode) panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, an electronic paper, etc., or any display product having a box substrate or component.
  • OLED Organic Light Emitting Diode

Abstract

一种封框胶及其封合方法、含该封框胶的显示面板及显示装置。该封框胶的封合方法包括:在第一基板上依次涂覆水性环氧树脂和溶剂型环氧树脂或依次涂覆溶剂型环氧树脂和水性环氧树脂,将第一基板与第二基板进行对位,压合;或者在第一基板上涂覆水性环氧树脂,在第二基板上涂覆溶剂型环氧树脂,并将两者进行对位,压合;溶剂型环氧树脂中分散有被第一物质包裹的大小为纳米级的第二物质,其中,第一物质为亲水性高分子物质,第二物质为遇水发生放热反应的物质。当对封框胶进行压合时,亲水性高分子物质吸收水分,饱和以后剩余的水分与遇水发生放热反应的物质反应产生热量,从而以内部热源引发封框胶的固化过程。

Description

封框胶及其封合方法、 用该封框胶封合的显示面板及显示装置 技术领域
本发明实施例涉及一种封框胶及其封合方法、 用其封合的显示面板及显 示装置。 背景技术
薄膜场效应晶体管液晶显示器(TFT-LCD, Thin Film Transistor Liquid Crystal Display ),是有源矩阵类型液晶显示器( AM-LCD, Active Matrix-LCD ) 中的一种。 TFT-LCD在亮度、 对比度、 功耗、 寿命、 体积和重量等综合性能 上性能优良、 大规模生产特性好, 自动化程度高, 原材料成本低廉, 发展空 间广阔, 因此是新世纪的主流产品。 TFT-LCD采用 TFT基板与彩膜(CF ) 基板对盒后灌晶形成。 为了防止液晶受到外界环境的污染, 所以一般采用封 框胶对其进行封合。
现有封框胶主要分为热固化型和紫外固化型两种。 紫外固化型封框胶固 化时间短、 速度快, 但可控性稍差, 并且, 不适用于一些特殊的显示模式, 例如聚合物分散液晶 (PDLC )或聚合物稳定性胆甾相液晶 (PSCT )等, 因 为液晶盒内含有对紫外光敏感的聚合物单体, 这类液晶只能使用热固化型封 框胶封合。 目前的热固化型封框胶使用的是外部热源, 所以固化速度慢、 固 化时间长、 能量损失大、 且固化过程中由外向内存在热传导梯度。 此外, 目 前的热固化型封框胶还存在胶宽不均匀, 回缩断胶等问题。 固化良率直接影 响面板(panel )的品质, 例如, 固化不好的面板会有周边亮度不均匀( mura ) 等缺陷, 因此需要对热固化型封框胶进行改善。 发明内容
本发明的实施例提供一种封框胶的封合方法, 包括:
在第一基板上依次涂覆水性环氧树脂和溶剂型环氧树脂,
将第一基板与第二基板进行对位, 压合;
或者 在第一基板上依次涂覆所述溶剂型环氧树脂和所述水性环氧树脂, 并将第一基板与第二基板进行对位, 压合;
或者
在第一基板上涂覆所述水性环氧树脂, 在第二基板上涂覆所述溶剂型环 氧树脂, 并将两者进行对位, 压合;
所述溶剂型环氧树脂中分散有被第一物质包裹的大小为纳米级的第二物 质, 其中, 所述第一物质为亲水性高分子物质, 所述第二物质为遇水发生放 热反应的物质。
例如, 所述水性环氧树脂及溶剂型环氧树脂的固含量均为 60~70wt%。 例如, 所述第一物质为酯类或酰胺类材料。
例如, 所述第一物质为淀粉或纤维素。
例如, 所述第二物质为纳米碱土金属氧化物。
例如, 所述纳米碱土金属氧化物为纳米氧化钙。
例如, 第一物质和被所述第一物质包裹的所述第二物质的添加量为所述 溶剂型环氧树脂的 10~20wt%。
一种封框胶, 包括: 水性环氧树脂和溶剂型环氧树脂,
所述溶剂型环氧树脂中分散有被第一物质包裹的大小为纳米级的第二物 质, 其中, 所述第一物质为亲水性高分子物质, 所述第二物质为遇水发生放 热反应的物质。
例如, 所述水性环氧树脂及溶剂型环氧树脂的固含量均为 60~70wt%。 例如, 所述第一物质为酯类或酰胺类材料。
例如, 所述第一物质为淀粉或纤维素。
例如, 所述第二物质为纳米碱土金属氧化物。
例如, 所述纳米碱土金属氧化物为纳米氧化钙。
例如, 第一物质和被所述第一物质包裹的所述第二物质的添加量为所述 溶剂型环氧树脂的 10~20wt%。
一种显示面板, 由上述的封框胶封合方法封合。
一种显示装置, 包括上述的显示面板。 附图说明 图 1为根据本发明实施例的涂覆了溶剂型环氧树脂的基板的示意图; 图 2为根据本发明实施例的涂覆了溶剂型环氧树脂和水性环氧树脂且待 压合的基板的示意图;
图 3为根据本发明实施例的封框胶被压合并固化后的示意图; 图 4为根据本发明实施例的淀粉包裹纳米氧化钙的制备流程图。 具体实施方式
下面结合附图和具体实施例对本发明作进一步说明。 显然, 所描述的实 施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实 施例, 本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他 实施例, 都属于本发明保护的范围。
本发明实施例提供了一种封框胶的封合方法, 包括:
在第一基板上依次涂覆水性环氧树脂和溶剂型环氧树脂,
将第一基板与第二基板进行对应, 压合;
或者
在第一基板上依次涂覆所述溶剂型环氧树脂和所述水性环氧树脂, 并将第一基板与第二基板进行对位, 压合;
或者
在第一基板上涂覆所述水性环氧树脂, 在第二基板上涂覆所述溶剂型环 氧树脂, 并将两者进行对位, 压合;
所述溶剂型环氧树脂中分散有被第一物质包裹的大小为纳米级的第二物 质, 其中, 所述第一物质为亲水性高分子物质, 所述第二物质为遇水发生放 热反应的物质。
本发明实施例还提供了一种封框胶, 包括: 水性环氧树脂和溶剂型环氧 树脂,
所述溶剂型环氧树脂中分散有被第一物质包裹的大小为纳米级的第二物 其中, 所述第一物质为亲水性高分子物质, 所述第二物质为遇水发生放 热反应的物质。
所述溶剂型环氧树脂和所述水性环氧树脂被压合时, 原本包裹第二物质 的第一物质由于其水溶性而溶解于水性环氧树脂的水中, 使第二物质暴露在 水中, 第二物质与水发生放热反应产生热量, 从而引发封框胶的固化过程。
与现有技术中的封框胶不同的是, 本发明实施例封框胶的固化过程是由 内部热源引起的, 所以能够避免现有技术固化过程中的能量损失, 提高固化 速度。 另外, 被第一物质包裹的第二物质可均匀分散在溶剂型环氧树脂中, 所以能够提高固化均匀性。
例如, 所述水性环氧树脂及溶剂型环氧树脂的固含量均可以为 60~70wt (重量分数)%。 使水性环氧树脂及溶剂型环氧树脂的固含量相近是为了避 免两者的粘度相差过大而导致封合效果不佳。
例如, 所述第一物质可以为酯类或酰胺类材料。
例如, 所述第一物质可以为淀粉或纤维素。
例如, 所述第二物质为纳米碱土金属氧化物。
例如,所述第二物质可以为纳米氧化钙或纳米氧化镁,优选纳米氧化钙。 例如, 第一物质加上被其包裹的所述第二物质的总添加量为所述溶剂型 环氧树脂的 10~20wt%。 当该添加量小于 10wt%时, 第二物质与水反应时所 产生的热量可能不足以使环氧树脂实现固化; 当该添加量大于 20wt%时, 第 二物质与水反应时所产生的热量可能过大, 可能导致过度固化而使固化的封 框胶老化。
其中, 溶剂型环氧树脂中的溶剂是一些常见的在封框胶固化过程中易挥 发的有机小分子物质, 如: 丙酮、 乙酸丙酯、 曱基戊基酮。
本领域技术人员应当理解, 所述封框胶除了包含上述水性环氧树脂和溶 剂型环氧树脂之外, 还包含有一些其他的常见成分, 如催化剂等, 在此不再 赘述。
在本发明的一个实施例中, 所述第一物质为淀粉, 所述第二物质为纳米 氧化钙。 其中, 所述纳米氧化钙及包裹所述纳米氧化钙的淀粉的添加量为所 述溶剂型环氧树脂的 10~20wt%。 并且, 淀粉包裹的纳米氧化钙均匀地分散 在溶剂型环氧树脂中。
在本发明实施例的封框胶被压合时, 淀粉溶于水性环氧树脂中的水, 使 得纳米氧化钙暴露出来与水反应产生热量, 从而引发封框胶的固化过程。 该 固化过程能够避免现有技术固化过程中的能量损失, 且提高固化速度和固化 均匀性。 此外, 生成的纳米级碳酸 4弓能够起到支点的作用, 以防止封框胶的 回缩以及断裂, 从而提高封框胶的成形性与强度。 另外, 将纳米氧化钙用淀 粉包裹起来的原因是: 由于淀粉是优良的亲水性高分子物质, 所以可以在水 与纳米氧化钙之间起到调节剂的作用, 防止水与纳米氧化钙直接接触发生剧 烈反应而导致急剧升温。
所用溶剂型环氧树脂和水性环氧树脂为本领域技术人员已知的用于形成 热固化型封框胶的那些。 在阅读本申请说明书之后, 本领域技术人员可容易 地选择用于本发明目的的这些溶剂型环氧树脂和水溶性环氧树脂。 在本发明 实施例中, 进一步将被第一物质包裹的大小为纳米级的第二物质分散于所述 溶剂型环氧树脂中。 可采用本领域技术人员熟知的各种分散技术将纳米级尺 寸的第一物质包裹的第二物质分散于所述溶剂型环氧树脂中。 例如, 溶剂型 环氧树脂可以为得自三井的 HC-1850, 但不限于此。 水性环氧树脂可以为得 自三井的 BONRON型, 但不限于此。
下面详细说明淀粉包裹纳米氧化钙颗粒的制备方法。 如图 4所示, 该制 备方法包括:
步骤 a、 准备纳米氧化钙, 往其中加入适量无水溶剂与分散剂, 直至体 系为乳液状态;
步骤 b、 往上述乳液体系中加入适量淀粉, 80°C水浴下低速搅拌, 直至 体系为胶体状;
步骤 c、 升温至 120°C水浴, 高速搅拌, 直至体系为悬浮颗粒状; 步骤 d、 将体系依次进行以下工序: 抽滤一干燥一研磨, 得到淀粉包裹 纳米氧化钙颗粒, 宏观状态为粉末状。
其中, 所述无水溶剂包括无水醇类、 无水酮类或无水酯类。
其中, 所述无水醇类可为无水乙醇。
其中, 所述分散剂可为硅烷偶联剂 KH550。
本发明实施例所述的分散有被第一物质包裹的大小为纳米级的第二物质 的溶剂型环氧树脂如下制备。 室温下将无水乙醇、 乳化剂、 所述淀粉包裹的 纳米氧化钙依次加入到含溶剂型环氧树脂的容器中, 在强搅拌作用下, 用超 声波^:处理 60分钟, 使之均匀分散; 在搅拌过程中逐渐以 5°C每分钟的速 度升温至 100 °C , 达到需要的粘度下停止搅拌并取样。 所用的乳化剂可为本 领域常用的用于该目的的任意乳化剂。
下面详细说明根据本发明实施例的封框胶的使用方法, 其主要包括涂覆 和固化两个过程。
涂覆过程包括:采用双漏斗,在一个漏斗中装入水性环氧树脂(BONRON 型; 由三井制造),在另一漏斗中装入根据本发明实施例制备的溶剂型环氧树 月旨。 先在第一基板 1上涂覆溶剂型环氧树脂 2 (如图 1所示 ), 再涂覆水性环 氧树脂 3 (如图 2所示)。 其中, 溶剂型环氧树脂 2中含有被淀粉 201包裹的 纳米氧化钙 202。 作为一替代方式, 在涂覆时, 也可以在第一基板 1上先涂 覆水性环氧树脂 3 , 然后再涂覆溶剂型环氧树脂 2。作为另一替代方式, 可以 在第一基板 1上涂覆水性环氧树脂 3 (或溶剂型环氧树脂 2 ), 在第二基板 4 上涂覆溶剂型环氧树脂 2 (或水性环氧树脂 3 )。 其中, 第一基板 1和第二基 板 2均可以是阵列基板或彩膜基板, 但不限于第一基板 1就是指其中的阵列 基板或者彩膜基板。
固化过程包括: 将第二基板 4和第一基板 1对位后, 采用平板压合机进 行压合, 其中平板压合机上下均具有平整的橡胶垫片。 压合之后, 水性环氧 树脂 3和溶剂型环氧树脂 2互相混合,水性环氧树脂 3中的水分被淀粉吸收。 由于淀粉层比较薄, 而水分含量较多, 所以淀粉吸收饱和以后剩余的水分进 入纳米氧化钙层, 纳米氧化钙与水反应产生热量。 环氧树脂基体内部具有均 匀的反应点, 所以可以使内部均匀固化。 图 3示出了固化后的封框胶 5以及 反应生成的纳米级碳酸 4弓 501。 生成的纳米级碳酸 4弓能够起到支点的作用, 以防止封框胶的回缩以及断裂, 从而提高封框胶的成形性与强度。
另外, 可以使用温度检测仪来探测环氧树脂内部的温度, 当温度低于设 定温度如 150°C时, 可以开启外部热源补充热量, 以使温度达到设定温度如 150°C并保持 1-5分钟。
利用氧化钙与水反应产生的热量进行固化封装, 内部均匀发热, 不仅避 免了现有技术在固化过程中由于采用外部热源而导致的热量损失, 消除了固 化梯度问题, 还提高了固化速度以及固化均匀性。
采用本发明的封框胶封装的液晶显示器, 封框胶固化均匀, 胶宽与胶厚 均匀, 漏光、 漏晶、 不均匀 (mura)等缺陷明显减少; 具有较好的封框胶的成 形稳定性和强度; 同时适用于不能采用紫外固化形式的显示模式; 采用内部 热源, 绿色环保, 节约能源; 固化速度快, 有利于提高生产规模。
下面结合附图说明第一实施例。
一种封框胶, 包括:
水性环氧树脂; 以及
溶剂型环氧树脂,所述溶剂型环氧树脂中分散有淀粉包裹的纳米氧化钙, 纳米氧化钙均匀地^:在所述溶剂型环氧树脂中。
该封框胶的封合方法, 包括:
在第一基板上依次涂覆所述水性环氧树脂和所述溶剂型环氧树脂, 将第 一基板与第二基板进行对位, 压合; 或者
在第一基板上依次涂覆所述溶剂型环氧树脂和所述水性环氧树脂, 将第 一基板与第二基板进行对位, 压合; 或者
在第一基板上涂覆所述水性环氧树脂, 在第二基板上涂覆所述溶剂型环 氧树脂, 并将两者进行对位, 压合。
所述水性环氧树脂及溶剂型环氧树脂的固含量均为 65wt%。 使水性环氧 树脂及溶剂型环氧树脂的固含量相近是为了避免两者的粘度相差过大而导致 封合效果不佳。
所述淀粉加上被其包裹的纳米氧化钙的总添加量为所述溶剂型环氧树脂 的 15wt%。
该封框胶被压合时, 淀粉溶于水, 使得纳米氧化钙暴露出来与水反应产 生热量, 从而引发封框胶的固化过程。 该固化过程能够避免现有技术固化过 程中的能量损失, 且提高固化速度和固化均匀性。 此外, 生成的纳米级碳酸 钙能够起到支点的作用, 以防止封框胶的回缩以及断裂, 从而提高封框胶的 成形性与强度。 另外, 将纳米氧化钙用淀粉包裹起来的原因是: 由于淀粉是 优良的亲水性高分子物质, 所以可以在水与纳米氧化钙之间起到调节剂的作 用, 防止水与纳米氧化钙直接接触发生剧烈反应而导致急剧升温。
下面详细说明一下淀粉包裹纳米氧化钙颗粒的制备方法。 如图 4所示, 该制备方法包括:
步骤 a、 准备纳米氧化钙, 往其中加入适量无水乙醇与硅烷偶联剂 KH550, 直至体系为乳液状态;
步骤 b、 往上述乳液体系中加入适量淀粉, 80°C水浴下低速搅拌, 直至 体系为胶体状;
步骤 c、 升温至 120°C水浴, 高速搅拌, 直至体系为悬浮颗粒状; 步骤 d、 将体系依次进行以下工序: 抽滤一干燥一研磨, 得到淀粉包裹 纳米氧化钙颗粒, 宏观状态为粉末状。
本实施例所述的分散有被第一物质包裹的大小为纳米级的第二物质的溶 剂型环氧树脂如下制备。 室温下将无水乙醇、 乳化剂 (单甘脂 HP-C, 得自 杜邦)、 如上制备的淀粉包裹的纳米氧化钙依次加入到含有溶剂型环氧树脂 ( HC-1850, 得自三井) 的容器中, 在强搅拌作用下, 用超声波分散处理 60 分钟, 使之均匀分散; 在搅拌过程中逐渐以 5 °C每分钟的速度升温至 100 °C , 达到需要的粘度下停止搅拌并取样。 下面详细说明一下根据本发明该优选实 施例的封框胶的使用方法, 其主要包括涂覆和固化两个过程。
涂覆过程包括:采用双漏斗,在一个漏斗中装入水性环氧树脂(BONRON 型; 由三井制造),在另一漏斗中装入根据本发明实施例制备的溶剂型环氧树 月旨。 先在第一基板 1上涂覆溶剂型环氧树脂 2 (如图 1所示 ), 再涂覆水性环 氧树脂 3 (如图 2所示)。 其中, 溶剂型环氧树脂 2中含有被淀粉 201包裹的 纳米氧化钙 202。 作为一替代方式, 在涂覆时, 也可以在第一基板 1上先涂 覆水性环氧树脂 3 , 然后在涂覆溶剂型环氧树脂 2。作为另一替代方式, 可以 在第一基板 1上涂覆水性环氧树脂 3 (或溶剂型环氧树脂 2 ), 在第二基板 4 上涂覆溶剂型环氧树脂 2 (或水性环氧树脂 3 )。
固化过程包括: 将第二基板 4和第一基板 1对位后, 采用平板压合机进 行压合, 其中平板压合机上下均具有平整的橡胶垫片。 压合之后, 水性环氧 树脂 3和溶剂型环氧树脂 2互相混合,水性环氧树脂 3中的水分被淀粉吸收。 由于淀粉层比较薄, 而水分含量较多, 所以淀粉吸收饱和以后剩余的水分进 入纳米氧化钙层, 纳米氧化钙与水反应产生热量。 环氧树脂基体内部具有均 匀的反应点, 所以可以使内部均匀固化。 图 3示出了固化后的封框胶 5以及 反应生成的纳米级碳酸 4弓 501。 生成的纳米级碳酸 4弓能够起到支点的作用, 以防止封框胶的回缩以及断裂, 从而提高封框胶的成形性与强度。
另外, 可以使用温度检测仪来探测环氧树脂内部的温度, 当温度低于 150°C时,可以开启外部热源补充热量,以使温度达到 150°C并保持 1-5分钟。
利用氧化钙与水反应产生的热量进行固化封装, 内部均匀发热, 不仅避 免了固化过程中的热量损失, 消除了固化梯度问题, 还提高了固化速度以及 固化均匀性。
采用本发明的封框胶封装的液晶显示器, 封框胶固化均匀, 胶宽与胶厚 均匀, 漏光、 漏晶、 不均匀等缺陷明显减少; 具有较好的封框胶的成形稳定 性和强度; 同时适用于不能采用紫外固化形式的显示模式; 采用内部热源, 绿色环保, 节约能源; 固化速度快, 有利于提高生产规模。
第二实施例基本过程与第一实施例相同, 其不同之处在于, 所述水性环 氧树脂及溶剂型环氧树脂的固含量均为 60wt%, 淀粉和纳米氧化钙添加量为 10wt%„
第三实施例基本过程与第一实施例相同, 其不同之处在于, 所述水性环 氧树脂及溶剂型环氧树脂的固含量均为 70wt%, 淀粉和纳米氧化钙添加量为 20wt%。
此外, 应当理解, 在本发明由另外的第二物质包裹第一物质的其他实施 例中 (如淀粉包裹纳米氧化镁、 或纤维素包裹纳米氧化钙、 或纤维素包裹纳 米氧化镁的实施例 ),与上述的淀粉包裹纳米氧化钙的实施例类似,均能实现 以内部热源固化封框胶的效果, 故在此不进行详述。
本发明实施例还提供了一种显示面板, 所述显示面板由上述的封框胶封 合方法封合。
本发明实施例还提供了一种显示装置, 所述显示装置包括上述的显示面 板。
所述显示装置可以为: 液晶显示面板、 OLED (有机发光二极管)面板、 手机、 平板电脑、 电视机、 显示器、 笔记本电脑、 数码相框、 导航仪、 电子 纸等任何具有对盒基板的显示产品或部件。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保护 范围。

Claims

权利要求书
1、 一种封框胶的封合方法, 包括:
在第一基板上依次涂覆水性环氧树脂和溶剂型环氧树脂,
将第一基板与第二基板进行对位, 压合;
或者
在第一基板上依次涂覆所述溶剂型环氧树脂和所述水性环氧树脂, 并将第一基板与第二基板进行对位, 压合;
或者
在第一基板上涂覆所述水性环氧树脂, 在第二基板上涂覆所述溶剂型环 氧树脂, 并将两者进行对位, 压合;
所述溶剂型环氧树脂中分散有被第一物质包裹的大小为纳米级的第二物 质, 其中, 所述第一物质为亲水性高分子物质, 所述第二物质为遇水发生放 热反应的物质。
2、如权利要求 1所述的封框胶的封合方法, 其中, 所述水性环氧树脂及 溶剂型环氧树脂的固含量均为 60~70wt%。
3、如权利要求 1所述的封框胶的封合方法, 其中, 所述第一物质为酯类 或酰胺类材料。
4、如权利要求 1所述的封框胶的封合方法, 其中, 所述第一物质为淀粉 或纤维素。
5、 如权利要求 1、 2、 3或 4所述的封框胶的封合方法, 其中, 所述第二 物质为纳米碱土金属氧化物。
6、如权利要求 5所述的封框胶的封合方法, 其中, 所述纳米碱土金属氧 化物为纳米氧化钙。
7、如权利要求 1所述的封框胶的封合方法, 其中, 第一物质和被所述第 一物质包裹的所述第二物质的添加量为所述溶剂型环氧树脂的 10~20wt%。
8、 一种封框胶, 包括: 水性环氧树脂和溶剂型环氧树脂,
所述溶剂型环氧树脂中分散有被第一物质包裹的大小为纳米级的第二物 质, 其中, 所述第一物质为亲水性高分子物质, 所述第二物质为遇水发生放 热反应的物质。
9、如权利要求 8所述的封框胶, 其中, 所述水性环氧树脂及溶剂型环氧 树脂的固含量均为 60~70wt%。
10、 如权利要求 8所述的封框胶, 其中, 所述第一物质为酯类或酰胺类 材料。
11、如权利要求 8所述的封框胶, 其中, 所述第一物质为淀粉或纤维素。
12、 如权利要求 8、 9、 10或 11所述的封框胶, 其中, 所述第二物质为 纳米碱土金属氧化物。
13、如权利要求 12所述的封框胶, 其中, 所述纳米碱土金属氧化物为纳 米氧化钙。
14、 如权利要求 8所述的封框胶, 其中, 第一物质和被所述第一物质包 裹的所述第二物质的添加量为所述溶剂型环氧树脂的 10~20wt%。
15、 一种显示面板, 其中, 所述显示面板由权利要求 1至 7中任一项所 述的封框胶封合方法封合。
16、 一种显示装置, 其包括权利要求 15所述的显示面板。
PCT/CN2013/087130 2013-04-25 2013-11-14 封框胶及其封合方法、用该封框胶封合的显示面板及显示装置 WO2014173112A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/375,510 US9454042B2 (en) 2013-04-25 2013-11-14 Frame sealant and sealing method, display panel and display device sealed therewith

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310148661.4A CN104119810B (zh) 2013-04-25 2013-04-25 封框胶及其封合方法、显示面板及显示装置
CN201310148661.4 2013-04-25

Publications (1)

Publication Number Publication Date
WO2014173112A1 true WO2014173112A1 (zh) 2014-10-30

Family

ID=51765455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087130 WO2014173112A1 (zh) 2013-04-25 2013-11-14 封框胶及其封合方法、用该封框胶封合的显示面板及显示装置

Country Status (3)

Country Link
US (1) US9454042B2 (zh)
CN (1) CN104119810B (zh)
WO (1) WO2014173112A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9454042B2 (en) 2013-04-25 2016-09-27 Boe Technology Group Co., Ltd. Frame sealant and sealing method, display panel and display device sealed therewith

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6187351B2 (ja) * 2014-03-27 2017-08-30 豊田合成株式会社 電池モジュールおよびその製造方法
CN104409655B (zh) * 2014-11-24 2020-01-03 北京大学包头创新研究院 有机发光二极管器件封装干燥剂及其封装应用方法
CN105785666B (zh) * 2016-05-19 2019-03-15 京东方科技集团股份有限公司 封框胶组合物、对盒方法和显示面板
WO2018042884A1 (ja) * 2016-08-30 2018-03-08 パナソニックIpマネジメント株式会社 光学デバイス及び光学デバイスの製造方法
CN106848094A (zh) 2017-01-19 2017-06-13 深圳市华星光电技术有限公司 Oled封装方法
CN108546497B (zh) * 2018-05-09 2020-12-01 常州市华菱新材料有限公司 一种自干型环氧涂料及其制备方法与使用方法
CN111892847A (zh) * 2020-07-24 2020-11-06 安徽江锐新材料有限公司 一种提高干燥速率的水性丙烯酸氨基清漆及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279910A (ja) * 1997-03-31 1998-10-20 Sumitomo Bakelite Co Ltd 木質系複合材の製造方法
CN101885955A (zh) * 2009-05-13 2010-11-17 上海贵池衣车实业有限公司 全陶瓷轴承与金属轴粘合用的胶粘剂及使用方法
CN102181106A (zh) * 2011-03-23 2011-09-14 张家港西一新型汽车配件有限公司 热硬化耐湿型焊缝密封胶
CN102585745A (zh) * 2012-02-21 2012-07-18 绵阳艾萨斯电子材料有限公司 封框胶及其制备方法与应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7438958B2 (en) * 2002-11-01 2008-10-21 Mitsui Chemicals, Inc. Sealant composition for liquid crystal and process for producing liquid-crystal display panel with the same
TW200508314A (en) * 2003-06-04 2005-03-01 Sekisui Chemical Co Ltd A liquid crystal display device and curing resin composition, sealing material for the same
US20070173602A1 (en) * 2006-01-25 2007-07-26 Brinkman Larry F Encapsulated Michael addition catalyst
KR101013882B1 (ko) * 2008-04-10 2011-02-14 (주)서일 열 경화형 저비중 내습실러 조성물
CN102827352B (zh) * 2012-09-14 2015-08-19 北京京东方光电科技有限公司 热固化剂及其制备方法、封框胶、显示面板、显示装置
CN104119810B (zh) 2013-04-25 2016-06-08 京东方科技集团股份有限公司 封框胶及其封合方法、显示面板及显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279910A (ja) * 1997-03-31 1998-10-20 Sumitomo Bakelite Co Ltd 木質系複合材の製造方法
CN101885955A (zh) * 2009-05-13 2010-11-17 上海贵池衣车实业有限公司 全陶瓷轴承与金属轴粘合用的胶粘剂及使用方法
CN102181106A (zh) * 2011-03-23 2011-09-14 张家港西一新型汽车配件有限公司 热硬化耐湿型焊缝密封胶
CN102585745A (zh) * 2012-02-21 2012-07-18 绵阳艾萨斯电子材料有限公司 封框胶及其制备方法与应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9454042B2 (en) 2013-04-25 2016-09-27 Boe Technology Group Co., Ltd. Frame sealant and sealing method, display panel and display device sealed therewith

Also Published As

Publication number Publication date
CN104119810B (zh) 2016-06-08
US20150301369A1 (en) 2015-10-22
US9454042B2 (en) 2016-09-27
CN104119810A (zh) 2014-10-29

Similar Documents

Publication Publication Date Title
WO2014173112A1 (zh) 封框胶及其封合方法、用该封框胶封合的显示面板及显示装置
CN102516916B (zh) 一种液晶密封剂组合物
CN102775921B (zh) 一种封框胶及其制备方法、以及一种液晶面板的制备方法
CN101523280B (zh) 硅类液晶取向剂及液晶取向膜
WO2015010433A1 (zh) 封框胶组合物及其制备方法、含有其的液晶面板
WO2017133120A1 (zh) 封框胶、液晶面板、液晶显示器及制备方法
WO2016041212A1 (zh) Oled的封装方法及oled结构
CN102304263B (zh) 光子晶体纸及其制备方法
CN108717239B (zh) 易热擦除型液晶膜写字板及制备方法
WO2014176831A1 (zh) 导电封框胶、显示面板及其制作方法、显示装置
WO2018196054A1 (zh) 紫外全固态电解质及其制备工艺和应用
CN106908872B (zh) 一种抗刮扩散膜及其制备方法
WO2018176704A1 (zh) 基板的制备方法、显示面板及其制备方法
WO2016169069A1 (zh) 偏光片、基于量子效应的显示面板及显示装置
US10578926B2 (en) Alignment film material and preparation method thereof, alignment film, display substrate and preparation method thereof, and liquid crystal display device
WO2015106539A1 (zh) 封框胶的涂布方法、设备以及显示装置
CN107817627B (zh) SiO2气凝胶薄膜/胆甾相液晶复合型宽波反射膜及制备方法
WO2018153066A1 (zh) 封框胶、液晶面板、液晶显示器及其制备方法
CN105929603A (zh) 一种碳纳米管光调制器及其制备和工作方法
CN102934013A (zh) 液晶取向剂、液晶取向膜及液晶显示元件
CN105238112B (zh) 一种纳米掺杂智能调光膜制备方法
CN110646996A (zh) 一种紫外固化紫精基电致变色器件及其制备方法
CN114656855B (zh) 一种宽波反射的柔性薄膜材料的制备方法及应用
US20220089917A1 (en) Conductive particle and manufacturing method thereof, adhesive and application thereof
US20210333589A1 (en) Liquid crystal display panel and manufacturing method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14375510

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 13883222

Country of ref document: EP

Kind code of ref document: A1