WO2018196054A1 - 紫外全固态电解质及其制备工艺和应用 - Google Patents

紫外全固态电解质及其制备工艺和应用 Download PDF

Info

Publication number
WO2018196054A1
WO2018196054A1 PCT/CN2017/084794 CN2017084794W WO2018196054A1 WO 2018196054 A1 WO2018196054 A1 WO 2018196054A1 CN 2017084794 W CN2017084794 W CN 2017084794W WO 2018196054 A1 WO2018196054 A1 WO 2018196054A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
weight
acrylate
solid
parts
Prior art date
Application number
PCT/CN2017/084794
Other languages
English (en)
French (fr)
Inventor
陈支勇
李坤
蔡卫鹏
黄嵚甫
彭晟罡
Original Assignee
吉晟光电(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉晟光电(深圳)有限公司 filed Critical 吉晟光电(深圳)有限公司
Publication of WO2018196054A1 publication Critical patent/WO2018196054A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1525Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material characterised by a particular ion transporting layer, e.g. electrolyte

Definitions

  • the invention belongs to the field of electrolyte preparation, and particularly relates to an ultra-low shrinkage ultraviolet curing all-solid electrolyte based on organosilicon modified acrylate which can be used for electrochromic, and the preparation process and application thereof.
  • electrochromic devices have two states of coloring and fading in the process of working, and have a high transmittance in a fading state, which is no different from ordinary glass. When a certain voltage is applied, the device will produce a color change. In which the reflection of infrared rays can achieve energy saving. When the color is deepened for use on the rearview mirror of the car, it also has an anti-glare function.
  • electrochromic products have been applied in construction, automotive glass, rearview mirrors, home appliance panels, and sunglasses.
  • the electrochromic device can change the transmittance of the device by adjusting the color change voltage, intercepting certain infrared and visible light, thereby playing the role of energy saving and lighting.
  • Electrolytes as a very important component of electrochromism, have an important influence on the performance of the device.
  • the electrolyte used is divided into three categories: liquid, gel, and solid electrolyte.
  • the solid electrolyte has the advantages of high stability, good safety performance, and easy packaging.
  • the electrolyte used in electrochromism is generally based on a liquid electrolyte.
  • the gel or solid electrolyte is based on a liquid electrolyte. By adding a certain solid matrix material, the liquid is locked in the matrix. Produces gelation and even cure.
  • the electrochromic device assembled by the liquid electrolyte has the advantages of fast response speed, etc., but it is difficult to be widely used in practical applications due to the corrosiveness of the liquid and the leakage of the liquid.
  • Gel electrolyte although in one This problem has been solved to a certain extent, but there are still many problems in today's society where product safety performance requirements are increasing.
  • the solid electrolyte has solid properties after curing, and does not cause electrolyte leakage due to breakage of the device.
  • the strong adhesive nature of the electrolyte after curing the effect of the safety glass on the two glass substrates; for the structure of the flexible device such as PET, the gel electrolyte has insufficient bonding force. The requirements for use cannot be met, so solid state is an industry trend.
  • the pure acrylate solid electrolyte has a high shrinkage rate before and after curing, and when the electrolyte is solidified after encapsulation, the internal shrinkage will cause a cavity, resulting in a low yield and cannot be used.
  • Silicone-modified acrylates have ultra-low shrinkage and no such problems exist.
  • the silicone-modified acrylate has a stronger bond energy than the unmodified acrylate CO bond and the CC bond due to the Si-0 bond, the Si-C bond, and thus the silicone-modified acrylate solid electrolyte is resistant to solar radiation. It is more stable in harsh environments such as high and low temperatures, and has become a trend in the industrialization process.
  • UV curing allows precise control of the curing process. It can be fully cured in a matter of seconds by simply irradiating with an ultraviolet light source when curing is required.
  • a heat-cured all-solid-state electrochromic device is prepared in the patents UV8218225B2 and CN101510038B.
  • disadvantages such as slow reaction speed, high energy consumption, and complicated preparation process.
  • the technical problem to be solved by the present invention is to solve the problem of adjustable process of the viscosity of the electrolyte during the processing of the device, as well as the problem of weather resistance and curing shrinkage of the electrolyte, thereby proposing an electrolyte capable of solving all of these problems to assemble the device.
  • an all-solid ultraviolet curing electrolyte comprising: 15-35 parts by weight of a silicone-modified acrylate prepolymer, 10-30 parts by weight of a reactive diluent, 2-5 parts by weight of a photoinitiator, 0.1 to 1 part by weight of a functionalizing agent, and 25 to 75 parts by weight of an electrolytic solution.
  • the silicone modified acrylate prepolymer is a silicone modified acrylic resin.
  • the silicone modified acrylate is condensed by an acrylic derivative and a siloxane.
  • the reaction is prepared.
  • the acrylic derivative comprises at least one of methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, methacrylic acid, and butyl acrylate.
  • the siloxane is a hydroxyl group-containing polydimethylsiloxane or octamethylcyclotetrasiloxane.
  • the electrolytic solution is an ester organic solvent or a nitrile organic solvent containing 0.1-2 M of a lithium salt.
  • the ester organic solvent is at least one of ethylene carbonate, propylene carbonate, ⁇ -butyrolactone, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, and tetrahydrofuran;
  • the nitrile organic solvent includes at least one of acetonitrile and trimethoxypropionitrile; and the lithium salt is at least one of lithium perchlorate, lithium trifluoromethanesulfonate, lithium tetrafluoroborate, and lithium hexafluorophosphate.
  • the reactive diluent is isobornyl acrylate, 3,3,5-trimethylcyclohexyl acrylate, ethoxyethoxyethyl acrylate, tetrahydrofuran acrylate, N-vinyl pyrrolidone, etc. At least one of an ester or a ketone; the photoinitiator is 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, 1-hydroxy-cyclohexyl-phenyl ketone, At least one of 2-hydroxy-methylphenylpropan-1-one and 2,4,6-trimethylbenzoylethyl phosphate.
  • the invention also discloses a method for preparing the electrolyte according to any one of the following steps:
  • the invention also discloses the use of the electrolyte according to any of the fields in the field of electrochromic device processing.
  • the above technical solution of the present invention has the following advantages: the all-solid electrolyte prepared by the invention has the advantages of resistance to solar radiation, ultra-low shrinkage, good permeability, degree of curing and time controllable, and preparation and processing technology. Simple, the electrochromic device thus assembled has good performance and has a good application prospect in the field of electrochromism.
  • Figure 1 is a graph showing the conductivity of the electrolyte of Example 2.
  • Figure 2 is a graph showing the conductivity of the electrolyte of Example 3.
  • Figure 3 is a spectrum diagram of an electrochromic device prepared by the electrolyte of Example 2;
  • Example 4 is a spectrum diagram of an electrochromic device produced by the electrolyte described in Example 3.
  • Example 1 This embodiment discloses an all-solid UV-curable electrolyte comprising: 25 parts by weight of a silicone-modified acrylate prepolymer, 20 parts by weight of a reactive diluent, and 3 parts by weight of a photoinitiator. 0.5 parts by weight of a functionalizing agent, and 50 parts by weight of an electrolyte.
  • the silicone modified acrylate prepolymer is a silicone modified acrylate.
  • the silicone modified acrylate is obtained by a condensation reaction between an acrylic acid derivative and a siloxane.
  • the acrylic derivative includes at least one of methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, methacrylic acid, and butyl acrylate.
  • the siloxane is a hydroxyl group-containing polydimethylsiloxane or octamethylcyclotetrasiloxane.
  • the electrolytic solution is an ester organic solvent or a nitrile organic solvent containing 1 M lithium salt.
  • the ester organic solvent is at least one of ethylene carbonate, propylene carbonate, ⁇ -butyrolactone, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, and tetrahydrofuran;
  • the solvent includes at least one of acetonitrile and trimethoxypropionitrile; and
  • the lithium salt is at least one of lithium perchlorate, lithium trifluoromethanesulfonate, lithium tetrafluoroborate, and lithium hexafluorophosphate.
  • the reactive diluent is an ester of isobornyl acrylate, 3,3,5-trimethylcyclohexyl acrylate, ethoxyethoxyethyl acrylate, tetrahydrofuran acrylate, N-vinyl pyrrolidone or the like.
  • At least one of a ketone; the photoinitiator is 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, 1-hydroxy-cyclohexyl-phenyl ketone, 2-hydroxyl At least one of methyl phenylpropan-1-one and ethyl 2,4,6-trimethylbenzoyl phosphate.
  • Example 2 This embodiment discloses an all-solid UV-curable electrolyte comprising: 15 parts by weight of a silicone-modified acrylate prepolymer, 30 parts by weight of a reactive diluent, and 2 parts by weight of a photoinitiator. 1 part by weight of a functionalizing agent and 25 parts by weight of an electrolyte.
  • the silicone modified acrylate prepolymer is a silicone modified acrylate.
  • the silicone modified acrylate is obtained by a condensation reaction between methyl acrylate and polydimethylsiloxane.
  • the electrolyte is a ⁇ -butyrolactone solution containing 1 M lithium perchlorate.
  • the reactive diluent is 3,3,5-trimethylcyclohexyl acrylate; and the photoinitiator is 2,4,6-trimethylbenzoyl-diphenylphosphine oxide.
  • the solid electrolyte has strong adhesion to the glass. After testing, a 0.1 mm layer of the solid electrolyte layer is sandwiched between the glass and the glass. After being completely cured, the tensile strength can reach 9.3 MPa, which is comparable to the bonding of the glue. Sex.
  • Two sheets of transparent glass having a thickness of 0.55 mm were filled with an electrolyte layer having a thickness of 0.1 mm.
  • the transmittance was 94% when no electrolyte was added, and the transmittance was 91% after the electrolyte was added and cured.
  • the silicone modified electrolyte and the polyurethane modified electrolyte were simultaneously placed in the Q-Sun xenon test chamber for accelerated aging.
  • the results of the aging of the polyurethane electrolyte for 1200 h were similar to those of the silicone electrolyte for 2000 h, indicating the ratio of the silicone electrolyte.
  • the weather resistance of the polyurethane electrolyte is greatly improved.
  • the conductivity of the solid electrolyte at room temperature is 2.31 mS.cm -1 .
  • the conductivity of the electrolyte changes linearly within a certain range with the change of temperature.
  • the curve of the electrolyte is shown in Figure 1.
  • Example 3 This embodiment discloses an all-solid UV-curable electrolyte comprising: 35 parts by weight of a silicone-modified acrylate prepolymer, 15 parts by weight of a reactive diluent, and 5 parts by weight of a photoinitiator. 0.5 parts by weight of a functionalizing agent, and 75 parts by weight of an electrolyte.
  • the silicone modified acrylate prepolymer is a silicone modified acrylate.
  • the silicone modified acrylate is obtained by a condensation reaction between ethyl acrylate and octamethylcyclotetrasiloxane.
  • the electrolyte is organically dissolved in trimethoxypropionitrile containing 2M lithium trifluoromethanesulfonate. Agent.
  • the reactive diluent is ethoxyethoxyethyl acrylate; the photoinitiator is 2,4,6-trimethylbenzoylethyl phosphate.
  • the solid electrolyte has strong adhesion to the glass. After testing, a 0.1 mm layer of the solid electrolyte layer is sandwiched between the glass and the glass, and after complete curing, the tensile strength can reach 12.5 MPa.
  • the room temperature conductivity of the solid electrolyte is 2.15mS.cm -1 .
  • the conductivity of the electrolyte changes linearly within a certain range with the change of temperature.
  • the curve of the electrolyte is shown in Figure 2.
  • Embodiment 4 This embodiment discloses a method for preparing an all-solid UV-curable electrolyte, and the steps are as follows:
  • a transparent conductive layer B is plated on the transparent non-conductive substrate A, and then an electrochromic layer C is plated thereon to form a desired working electrode I;
  • the prepolymer silicone modified acrylate, reactive diluent isobornyl acrylate, 3,3,5-trimethylcyclohexyl acrylate, ethoxyethoxyethyl acrylate and functionality The auxiliary agent is mixed in a ratio of 20:8:1:6:0.1 and stirred uniformly, and the mixture is referred to as F;
  • FIG. 3 and 4 are chromatograms of devices 1 and 2, respectively, wherein: in the graph of Fig. 3, the upper transmittance is a fading curve, and the lower transmittance is a colored one. In the graph of Fig. 4, the curve having a high upper transmittance is fading, and the curve having a low transmittance at the lower side is colored.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polymerisation Methods In General (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

一种可用于电致变色的基于有机硅改性丙烯酸酯的超低收缩率的紫外固化全固态电解质,及其制备工艺和应用。所述电解质包含:15-35重量份的有机硅改性丙烯酸酯类预聚物、10-30重量份的活性稀释剂、2-5重量份的光引发剂、0.1-1重量份的功能化助剂、25-75重量份的电解液。所制备的全固态电解质具有耐太阳辐射、超低收缩率、透过性好及固化程度和时间可控等优点,制备加工工艺简单,由此所组装的电致变色器件性能良好,在电致变色领域具有很好的应用前景。

Description

[根据细则37.2由ISA制定的发明名称] 紫外全固态电解质及其制备工艺和应用 技术领域
本发明属于电解质制备领域,具体涉及一种可用于电致变色的基于有机硅改性丙烯酸酯的超低收缩率的紫外固化全固态电解质,及其这制备工艺和应用。
背景技术
目前,电致变色器件在工作的过程中有着色和褪色两种状态,在褪色状态下有着较高的透过率而与普通玻璃无异,当通过施加一定电压后,器件会产生颜色的变化,其中对红外线的反射,能达到节能的作用。其颜色加深用于汽车后视镜上时,又有防眩目的功能。目前电致变色产品已在建筑、汽车玻璃、后视镜、家电面板、太阳眼镜上有了一定的应用。
电致变色器件能够通过调节变色电压的大小使器件产生透过率的变化,拦截一定的红外、可见光,从而起到节能采光的作用。电解质作为电致变色中十分重要的一个组分,对器件的性能有重要的影响。通常所用的电解质分为液态、凝胶、固态电解质三大类,其中固态电解质有着稳定性高、安全性能好、易封装等优点。但其与液态电解质相比,也存在着导电性较低、固化过程中电解质本身收缩使得电解质与框胶之间存在间隙而影响器件美观等不足,但由于其耐太阳辐射等优良性能,使得其成为了工业化过程中的一种潮流。
在电致变色中所使用到的电解质一般都是以液态电解质为基础,凝胶或者固态电解质均是在液态电解质的基础上,通过加入一定的固化基体材料,使得液体被锁定在基体中,从而产生凝胶化甚至固化的效果。液态电解质组装的电致变色器件,虽然存在着响应速度快等优点,但由于液体的腐蚀性以及易泄露等不足,使得其很难在实际应用中广泛使用。凝胶电解质虽然在一 定程度上解决了这方面的问题,但对产品安全性能要求日益增加的当今社会,还是存在着诸多问题。固态电解质因其固化后拥有固体的性能,不会因为器件的破损而使电解质溢出。固化后电解质强力黏结的性质,对两片玻璃基片的器件结构而言,起到夹胶安全玻璃的效果;对柔性器件如PET为基片的结构而言,凝胶电解质的黏结力不够,无法满足使用要求,因此全固态化是行业趋势。
纯丙烯酸酯固态电解质固化前后收缩率较高,器件封装后固化电解质时,会引起内部收缩而产生空腔,导致良品率低无法使用。而有机硅改性丙烯酸酯的具有超低收缩率,无这类问题存在。此外,有机硅改性丙烯酸酯因Si-0键、Si-C键比无改性的丙烯酸酯C-O键,C-C键更强的键能,因此有机硅改性丙烯酸酯类固态电解质耐太阳辐射、对高低温等严苛环境的稳定性更强,成为了工业化过程中的一种趋势。
紫外固化与热固化相比,对固化过程能够实现精准控制,只需在需要固化的时候,用紫外线光源照射,就可以在几秒的时间内完全固化。专利UV8218225B2和CN101510038B中制备了一种热固化的全固态电致变色器件,但这种方式在实用过程中,存在反应速度慢、能耗高、制备工艺复杂等诸多不足。
发明内容
为此,本发明所要解决的技术问题在于解决器件加工过程中电解质的粘度工艺可调问题以及耐候性和电解质固化收缩的问题,从而提出一种能全部解决这些问题的电解质来组装器件。
为解决上述技术问题,本发明公开了一种全固态紫外固化电解质,所述电解质包含:15-35重量份的有机硅改性丙烯酸酯类预聚物、10-30重量份的活性稀释剂、2-5重量份的光引发剂、0.1-1重量份的功能化助剂、25-75重量份的电解液。
优选的,所述有机硅改性丙烯酸酯类预聚物为有机硅改性丙烯酸树酯。
优选的,所述有机硅改性丙烯酸酯由丙烯酸类衍生物与硅氧烷通过缩合 反应制得。
优选的,所述的丙烯酸类衍生物包括丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、甲基丙烯酸甲酯、甲基丙烯酸、丁基丙烯酸中的至少一种。
优选的,所述的硅氧烷为含羟基的聚二甲基硅氧烷或八甲基环四硅氧烷。
优选的,所述的电解液为含有0.1-2M锂盐的酯类有机溶剂或腈类有机溶剂。
优选的,所述的酯类有机溶剂为碳酸乙烯酯、碳酸丙烯酯、γ-丁内酯、碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、四氢呋喃中的至少一种;所述的腈类有机溶剂包括乙腈、三甲氧基丙腈中的至少一种;所述的锂盐为高氯酸锂、三氟甲磺酸锂、四氟硼酸锂、六氟磷酸锂中的至少一种。
优选的,所述的活性稀释剂为丙烯酸异冰片酯、3,3,5-三甲基环己基丙烯酸酯、乙氧基乙氧基乙基丙烯酸酯、丙烯酸四氢呋喃酯、N-乙烯基吡咯烷酮等酯类或酮类物质中的至少一种;所述的光引发剂为2,4,6-三甲基苯甲酰基-二苯基氧化膦、1-羟基-环己基-苯基甲酮、2-羟基-甲基苯基丙烷-1-酮、2,4,6-三甲基苯甲酰基磷酸乙酯中的至少一种。
本发明还公开了一种制备任一项所述的电解质的方法,所述方法步骤如下:
先配制电解液;然后取相应重量份的有机硅改性丙烯酸酯类预聚物、活性稀释剂、功能化助剂混合并搅拌均匀;接着取相应重量份的光引发剂;最后将上述所有物料混合并搅拌均匀,得到电解质层,最后进行紫外光照射处理。
本发明还公开了任一项所述的电解质在电致变色器件加工领域中的应用。
本发明的上述技术方案相比现有技术具有以下优点:本发明所制备的全固态电解质具有耐太阳辐射、超低收缩率、透过性好及固化程度和时间可控等优点,制备加工工艺简单,由此所组装的电致变色器件性能良好,在电致变色领域具有很好的应用前景。
附图说明
为了使本实用新型的内容更容易被清楚的理解,下面根据本实用新型的具体实施例并结合附图,对本实用新型作进一步详细的说明,其中
图1是实施例2所述的电解质的电导率线形图;
图2是实施例3所述的电解质的电导率线形图;
图3是实施例2所述的电解质制得的电致变色器件的光谱图;
图4是实施例3所述的电解质制得的电致变色器件的光谱图。
具体实施方式
实施例1本实施公开了一种全固态紫外固化电解质,所述电解质包含:25重量份的有机硅改性丙烯酸酯类预聚物、20重量份的活性稀释剂、3重量份的光引发剂、0.5重量份的功能化助剂、50重量份的电解液。
所述有机硅改性丙烯酸酯类预聚物为有机硅改性丙烯酸酯。
所述有机硅改性丙烯酸酯由丙烯酸衍生物与硅氧烷通过缩合反应制得。
所述的丙烯酸类衍生物包括丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、甲基丙烯酸甲酯、甲基丙烯酸、丁基丙烯酸中的至少一种。
所述的硅氧烷为含羟基的聚二甲基硅氧烷或八甲基环四硅氧烷。
所述的电解液为含有1M锂盐的酯类有机溶剂或腈类有机溶剂。
所述的酯类有机溶剂为碳酸乙烯酯、碳酸丙烯酯、γ-丁内酯、碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、四氢呋喃中的至少一种;所述的腈类有机溶剂包括乙腈、三甲氧基丙腈中的至少一种;所述的锂盐为高氯酸锂、三氟甲磺酸锂、四氟硼酸锂、六氟磷酸锂中的至少一种。
所述的活性稀释剂为丙烯酸异冰片酯、3,3,5-三甲基环己基丙烯酸酯、乙氧基乙氧基乙基丙烯酸酯、丙烯酸四氢呋喃酯、N-乙烯基吡咯烷酮等酯类或酮类物质中的至少一种;所述的光引发剂为2,4,6-三甲基苯甲酰基-二苯基氧化膦、1-羟基-环己基-苯基甲酮、2-羟基-甲基苯基丙烷-1-酮、2,4,6-三甲基苯甲酰基磷酸乙酯中的至少一种。
实施例2本实施公开了一种全固态紫外固化电解质,所述电解质包含:15重量份的有机硅改性丙烯酸酯类预聚物、30重量份的活性稀释剂、2重量份的光引发剂、1重量份的功能化助剂、25重量份的电解液。
优选的,所述有机硅改性丙烯酸酯类预聚物为有机硅改性丙烯酸酯。
优选的,所述有机硅改性丙烯酸酯由丙烯酸甲酯与聚二甲基硅氧烷通过缩合反应制得。
优选的,所述的电解液为含有1M高氯酸锂的γ-丁内酯溶液。
优选的,所述的活性稀释剂为3,3,5-三甲基环己基丙烯酸酯;所述的光引发剂为2,4,6-三甲基苯甲酰基-二苯基氧化膦。
该固态电解质对玻璃的粘接性强,经测试,玻璃对玻璃中间夹一层0.1mm的该固态电解质层,经完全固化后,其拉伸强度可达到9.3MPa,已经可以媲美胶水的粘接性了。
两片0.55mm厚度的透明玻璃中间充入0.1mm厚度的电解质层,未加入电解质时透过率为94%,加入电解质并固化后透过率为91%。
将有机硅改性电解质与聚氨酯改性电解质同时放入Q-Sun氙灯试验箱中进行加速老化,测试结果聚氨酯类电解质老化1200h的效果与有机硅类电解质2000h的效果相近,表明有机硅类电解质比聚氨酯类电解质的耐候性大为提高。
固态电解质室温电导率为2.31mS.cm-1,随着温度的变化,电解质的电导率在一定范围内呈线性变化,其变化曲线如图1所示。
实施例3本实施公开了一种全固态紫外固化电解质,所述电解质包含:35重量份的有机硅改性丙烯酸酯类预聚物、15重量份的活性稀释剂、5重量份的光引发剂、0.5重量份的功能化助剂、75重量份的电解液。
优选的,所述有机硅改性丙烯酸酯类预聚物为有机硅改性丙烯酸酯。
优选的,所述有机硅改性丙烯酸酯由丙烯酸乙酯与八甲基环四硅氧烷通过缩合反应制得。
优选的,所述的电解液为含有2M三氟甲磺酸锂的三甲氧基丙腈有机溶 剂。
优选的,所述的活性稀释剂为乙氧基乙氧基乙基丙烯酸酯;所述的光引发剂为2,4,6-三甲基苯甲酰基磷酸乙酯。
该固态电解质对玻璃的粘接性强,经测试,玻璃对玻璃中间夹一层0.1mm的该固态电解质层,经完全固化后,其拉伸强度可达到12.5MPa。
两片0.55mm厚度的透明玻璃中间充入0.1mm厚度的电解质层,未加入电解质时透过率为94%,加入电解质并固化后透过率为90%。
固态电解质室温电导率为2.15mS.cm-1,随着温度的变化,电解质的电导率在一定范围内呈线性变化,其变化曲线如图2所示。
实施例4本实施例公开了一种全固态紫外固化电解质的制备方法,步骤如下:
1、在透明非导电基底A上镀一层透明导电层B,在此基础上再在上面镀一层电致变色层C,制成所需要的工作电极I;
2、在透明非导电基底A上镀一层透明导电层B,在此基础上再在上面镀一层离子存储层D,制成所需要的对电极II;
3、在丁内酯溶剂中溶解浓度为1M的高氯酸锂LiCIO4,搅拌均匀,配制成所需要的电解液E;
4、在将预聚物有机硅改性丙烯酸酸酯、活性稀释剂丙烯酸异冰片酯、3,3,5-三甲基环己基丙烯酸酯、乙氧基乙氧基乙基丙烯酸酯以及功能性助剂按照20∶8∶1∶6∶0.1的比例混合并搅拌均匀,此混合物记为F;
5、将表面干燥和底部干燥的光引发剂按照3∶5的比例混合并搅拌均匀,此混合物记为G;
6、将E、F、G按25∶24∶1的比例混合并搅拌均匀,组成器件中的电解质层,此混合物记为H,经紫外光照射,测得其固化收缩率为0.15%,远低于一般胶黏剂的收缩率(2-15%);
7、调节紫外光的光强,取少许H将之平铺于I的工作面上,使得灯源对H的光照强度为15mW/cm2,在此基础上,通过照射5s、10s至50s,实现电解 质固化10%、20%直至100%的固化(固化过程和时间可控),在此过程中,随着电解质预固化程度的增加,电解质的粘度从1000cPa.s的低粘度直至变成固态。在达到目标粘度后,在H周围点一圈边框胶避免其固化后与空气或水分接触,然后将D的工作面盖在H上,形成一个类似三明治的结构,再在紫外灯照射下使其完全固化,组成相应的电致变色器件。此方法使得其能适应任意需要的加工或封装粘度。
使用实施例2和实施例3结合实施例4的方法制得的电致变色器件,各层的具体参数如表1:
表1
Figure PCTCN2017084794-appb-000001
表2
Figure PCTCN2017084794-appb-000002
图3和图4分别是器件1和2的色谱图,其中:图3中的曲线中,上方透过率高的曲线是褪色的,下方透过率低的曲线是着色的。图4中的曲线中,上方透过率高的曲线是褪色的,下方透过率低的曲线是着色的。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种全固态紫外固化电解质,其特征在于,所述电解质包含:15-35重量份的有机硅改性丙烯酸酯类预聚物、10-30重量份的活性稀释剂、2-5重量份的光引发剂、0.1-1重量份的功能化助剂、25-75重量份的电解液。
  2. 根据权利要求1所述的全固态紫外固化电解质,其特征在于,所述有机硅改性丙烯酸酯类预聚物为有机硅改性丙烯酸酯。
  3. 根据权利要求2所述的全固态紫外固化电解质,其特征在于,所述有机硅改性丙烯酸酯由丙烯酸类衍生物与硅氧烷通过缩合反应制得。
  4. 根据权利要求3所述的全固态紫外固化电解质,其特征在于,所述的丙烯酸类衍生物包括丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、甲基丙烯酸甲酯、甲基丙烯酸、丁基丙烯酸中的至少一种。
  5. 根据权利要求4所述的全固态紫外固化电解质,其特征在于,所述的硅氧烷为含羟基的聚二甲基硅氧烷或八甲基环四硅氧烷。
  6. 根据权利要求5所述的全固态紫外固化电解质,其特征在于,所述的电解液为含有0.1-2M锂盐的酯类有机溶剂或腈类有机溶剂。
  7. 根据权利要求6所述的全固态紫外固化电解质,其特征在于,所述的酯类有机溶剂为碳酸乙烯酯、碳酸丙烯酯、γ-丁内酯、碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、四氢呋喃中的至少一种;所述的腈类有机溶剂包括乙腈、三甲氧基丙腈中的至少一种;所述的锂盐为高氯酸锂、三氟甲磺酸锂、四氟硼酸锂、六氟磷酸锂中的至少一种。
  8. 根据权利要求7所述的全固态紫外固化电解质,其特征在于,所述的活性稀释剂为丙烯酸异冰片酯、3,3,5-三甲基环己基丙烯酸酯、乙氧基乙氧基乙基丙烯酸酯、丙烯酸四氢呋喃酯、N-乙烯基吡咯烷酮等酯类或酮类物质中的至少一种;所述的光引发剂为2,4,6-三甲基苯甲酰基-二苯基氧化膦、1-羟基-环己基-苯基甲酮、2-羟基-甲基苯基丙烷-1-酮、2,4,6-三甲基苯甲酰基磷酸乙酯中的至少一种。
  9. 一种制备如权利要求1-8任一项所述的电解质的方法,其特征在于, 所述方法步骤如下:
    先配制电解液;然后取相应重量份的有机硅改性丙烯酸酯类预聚物、活性稀释剂、功能化助剂混合并搅拌均匀;接着取相应重量份的光引发剂;最后将上述所有物料混合并搅拌均匀,得到电解质层,最后进行紫外光照射处理。
  10. 如权利要求1-8任一项所述的电解质在电致变色器件加工领域中的应用。
PCT/CN2017/084794 2017-04-27 2017-05-18 紫外全固态电解质及其制备工艺和应用 WO2018196054A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710289036.XA CN106959565A (zh) 2017-04-27 2017-04-27 一种紫外全固态电解质及其制备工艺和应用
CN201710289036.X 2017-04-27

Publications (1)

Publication Number Publication Date
WO2018196054A1 true WO2018196054A1 (zh) 2018-11-01

Family

ID=59484558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084794 WO2018196054A1 (zh) 2017-04-27 2017-05-18 紫外全固态电解质及其制备工艺和应用

Country Status (2)

Country Link
CN (1) CN106959565A (zh)
WO (1) WO2018196054A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109509913A (zh) * 2018-10-19 2019-03-22 安徽正熹标王新能源有限公司 一种锂电池凝胶电解质的制备方法
CN111490227B (zh) * 2019-01-29 2021-12-10 中南大学 一种多孔复合极片及其制备和在全固态锂电池中的应用
CN110718714B (zh) * 2019-09-10 2021-04-06 清华大学 一种固态电解质及其制备方法与其制得的微型储能器件
CN110727153A (zh) * 2019-10-08 2020-01-24 东华大学 一种电致变色用低电压紫外固化电解质薄膜及其制备与应用
CN113050338A (zh) * 2021-03-16 2021-06-29 宁波伯宇科技有限公司 一种电致变色器件制造工艺
CN114806390A (zh) * 2022-05-13 2022-07-29 江苏慧智新材料科技有限公司 电解质组合物、光固化电解质的制备方法及电致变色器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035251A (ja) * 1999-07-21 2001-02-09 Nippon Synthetic Chem Ind Co Ltd:The 高分子固体電解質及びそれを用いた電気化学素子
CN102664281A (zh) * 2012-04-27 2012-09-12 江苏科技大学 基于硅橡胶改性的膜支撑凝胶聚合物电解质的制备方法
CN103172830A (zh) * 2013-02-25 2013-06-26 淮南联合大学 一种有机硅改性丙烯酸酯的方法
CN104078707A (zh) * 2014-07-16 2014-10-01 广州天赐高新材料股份有限公司 一种锂电池用聚合物电解质材料制备方法及应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104698715A (zh) * 2013-12-04 2015-06-10 珠海兴业绿色建筑科技有限公司 一种全固态电致变色器件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035251A (ja) * 1999-07-21 2001-02-09 Nippon Synthetic Chem Ind Co Ltd:The 高分子固体電解質及びそれを用いた電気化学素子
CN102664281A (zh) * 2012-04-27 2012-09-12 江苏科技大学 基于硅橡胶改性的膜支撑凝胶聚合物电解质的制备方法
CN103172830A (zh) * 2013-02-25 2013-06-26 淮南联合大学 一种有机硅改性丙烯酸酯的方法
CN104078707A (zh) * 2014-07-16 2014-10-01 广州天赐高新材料股份有限公司 一种锂电池用聚合物电解质材料制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, CHANGLI ET AL.: "Progress in Study of UV-Curable Silicone Prepolymers", SILICONE MATERIAL, vol. 19, no. 5, 31 December 2005 (2005-12-31), pages 26 *

Also Published As

Publication number Publication date
CN106959565A (zh) 2017-07-18

Similar Documents

Publication Publication Date Title
WO2018196054A1 (zh) 紫外全固态电解质及其制备工艺和应用
CN110632803B (zh) 一种柔性电致变色器件及其制备方法
CN106932992A (zh) 一种调控近红外光的柔性电致变色器件及制备方法
CN108363255B (zh) 一种电致变色膜材料及其制备的电致变色膜器件
CN104130769A (zh) 一种电致变色功能材料及电致变色器件
CN111752061B (zh) 用于柔性电致变色薄膜的准固态电解质及其制备方法
CN110376816A (zh) 基于铝离子水凝胶的自供电氧化钨基电致变色器件及其制备方法
CN109634016B (zh) 一种电致变色用低电压准固态电解质薄膜及其制备和应用
CN106896612A (zh) 一种电致变色器件及其在后视镜制备领域中的应用
CN106633546B (zh) 一种电致变色用准固态电解质薄膜及其制备和应用
CN106405969A (zh) 一种基于银纳米线(Ag NW)基底电致变色材料调节近红外光的方法
CN112300309B (zh) 一种可拉伸柔性电致变色薄膜的制备方法
Xing et al. Ultra-strong ionic liquid-based polymer composite electrolyte for high performance electrochromic devices
CN106882931B (zh) 一种新型智能显示建筑玻璃及其制备方法
CN108254990B (zh) 一种复合固态电解质材料及其制备方法、全固态电致变色器件
CN108089364A (zh) 一种自粘式调光膜及其制备方法
CN110727153A (zh) 一种电致变色用低电压紫外固化电解质薄膜及其制备与应用
CN110703528A (zh) 高循环性能准固态电致变色pvb电解质薄膜制备及应用
CN110376817A (zh) 一种基于离子交换膜的柔性全固态电致变色器件及其控制方法
CN106764601B (zh) 一种可调透光率抗炫目的灯具
CN113419390B (zh) 一种双稳态电致变色薄膜及节能显示器件
CN110208996B (zh) 一种凝胶电解质及其制备方法和应用
CN207440489U (zh) 一种电致变色器件
CN108319079A (zh) 一种高稳定性的高对比度液晶显示器
CN209989304U (zh) 一种一体黑屏幕用防爆膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17907160

Country of ref document: EP

Kind code of ref document: A1