WO2014167663A1 - 光拡散素子の製造方法および光拡散素子 - Google Patents
光拡散素子の製造方法および光拡散素子 Download PDFInfo
- Publication number
- WO2014167663A1 WO2014167663A1 PCT/JP2013/060802 JP2013060802W WO2014167663A1 WO 2014167663 A1 WO2014167663 A1 WO 2014167663A1 JP 2013060802 W JP2013060802 W JP 2013060802W WO 2014167663 A1 WO2014167663 A1 WO 2014167663A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light diffusing
- fine particles
- light
- diffusing fine
- diffusing element
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0205—Diffusing elements; Afocal elements characterised by the diffusing properties
- G02B5/0236—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
- G02B5/0242—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0268—Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
Definitions
- the present invention relates to a method for manufacturing a light diffusing element and a light diffusing element.
- Light diffusing elements are widely used in lighting covers, projection television screens, surface light emitting devices (for example, liquid crystal display devices), and the like.
- light diffusing elements have been increasingly used for improving display quality of liquid crystal display devices and the like, and improving viewing angle characteristics.
- As the light diffusing element an element in which fine particles are dispersed in a matrix such as a resin sheet has been proposed (for example, see Patent Document 1).
- a light diffusing element most of the incident light is scattered forward (exit surface side), but a part is scattered backward (incident surface side). The greater the difference in refractive index between the fine particles and the matrix, the greater the diffusivity (for example, haze value).
- gradient refractive index fine particles such as so-called GRIN (gradient index) fine particles whose refractive index continuously changes from the center to the outside of the fine particles are dispersed in a resin.
- GRIN fine particles are not practical because the manufacturing process is more complicated than normal fine particles, and thus the productivity is insufficient.
- the present invention has been made to solve the above-described conventional problems.
- the object of the present invention is to provide light having a high haze value, strong diffusibility, a smooth surface, and suppressed backscattering.
- An object of the present invention is to provide a method of manufacturing a light diffusing element that can manufacture a diffusing element at low cost and high productivity (short time).
- the method for producing a light diffusing element of the present invention comprises a step A in which light diffusing fine particles and an organic solvent are mixed to prepare a mixed solution, and the light diffusing fine particles are swollen, the mixed solution, and a precursor of a resin component.
- the resin component precursor has a molecular weight of 100 to 700.
- the boiling point of the said organic solvent is 70 degreeC or more.
- the organic solvent is a mixed solvent of a first organic solvent and a second organic solvent
- the first organic solvent penetrates the light diffusing fine particles more easily than the second organic solvent, and is more volatile than the second organic solvent.
- the method for producing a light diffusing element of the present invention heats a dispersion obtained by mixing the above mixed solution and a matrix forming material containing a precursor of a resin component and an ultrafine particle component. The process further includes a heating temperature of 80 ° C. or lower.
- the weight concentration of the ultrafine particle component increases in the vicinity of the interface between the matrix and the light diffusing fine particles as the distance from the light diffusing fine particles increases. A density modulation region is formed.
- a light diffusing element is provided.
- This light diffusing element is obtained by the above method and has a haze value of 70% or more.
- the light diffusing element has a ten-point average surface roughness Rz of less than 0.20 ⁇ m.
- the light diffusing element has an average inclination angle ⁇ a of less than 0.5 °.
- the light diffusing element has an arithmetic average surface roughness Ra of less than 0.05 mm.
- the light diffusing fine particle in the manufacture of a light diffusing element comprising a light diffusing fine particle, an ultrafine particle component and a resin component, the light diffusing fine particle previously contains an organic solvent, and the light diffusing fine particle is swollen in advance.
- the precursor can be permeated into the light diffusing fine particles in a short time.
- a light diffusing element is produced without the need for special treatment or operation by polymerizing a precursor that has penetrated into the light diffusing fine particles and a precursor that has not penetrated. can do.
- the precursor can be permeated into the light diffusing fine particles in a short time, the light is excellent in productivity and excellent in smoothness by preventing aggregation of the light diffusing fine particles and the ultrafine particle component.
- a diffusion element can be manufactured. Furthermore, in the manufacturing process, when applying and drying the coating liquid containing the above components, the swollen light diffusing fine particles have fluidity in the coating liquid and follow changes in the coating surface during drying. Therefore, a light diffusing element having excellent smoothness can be manufactured.
- the light diffusing element obtained by the production method of the present invention has a substantially spherical shell-shaped concentration modulation region in which the weight concentration of the ultrafine particle component increases as the distance from the light diffusing fine particle increases near the surface of the light diffusing fine particle. Since the refractive index is modulated in the concentration modulation region, the refractive index can be changed stepwise or substantially continuously in the vicinity of the interface between the light diffusing element and the matrix. Therefore, reflection at the interface between the matrix and the light diffusing fine particles can be satisfactorily suppressed, and backscattering can be suppressed. Furthermore, according to the present invention, the refractive index of the matrix can be easily adjusted by using the ultrafine particle component having a specific refractive index and a specific compatibility with the resin component.
- the concentration of the ultra fine particle component in the matrix can be increased, so that the refractive index difference between the matrix and the light diffusing fine particles can be reduced. Can be easily enlarged.
- the light diffusing element obtained by the production method of the present invention has a high haze value, strong diffusibility, and suppressed backscattering.
- FIG. 1 It is a schematic diagram for demonstrating the dispersion state of the resin component of a matrix and the light diffusible microparticles
- (A) is a transmission micrograph showing a cross section of the light diffusing element obtained in Example 1.
- (B) is a transmission micrograph showing a cross section of the light diffusing element obtained in Comparative Example 1.
- (C) is a transmission micrograph showing a cross section of the light diffusing element obtained in Comparative Example 4.
- a method for producing a light diffusing element comprises a step of mixing a light diffusing fine particle and an organic solvent to prepare a mixed solution, and swelling the light diffusing fine particle (Ste A), a step of mixing the mixed solution with a matrix-forming material containing a resin component precursor and an ultrafine particle component (referred to as Step B), polymerizing the resin component precursor, Forming a matrix containing a resin component and an ultrafine particle component (referred to as step C).
- a light mixture is prepared by mixing light diffusing fine particles and an organic solvent.
- the organic solvent is contained in at least a part of the light diffusing fine particles, and the light diffusing fine particles are swollen.
- the organic solvent can be contained in the light diffusing fine particles by allowing a predetermined time to elapse. For example, by allowing 15 to 90 minutes to pass, the light diffusing fine particles can contain an organic solvent.
- the mixed solution may be prepared, for example, by stirring the light diffusing fine particles in an organic solvent.
- the light-diffusing fine particles are composed of any appropriate material.
- the light diffusing fine particles satisfy the relationship represented by the following formula (1).
- n A represents the refractive index of the resin component of the matrix
- n P represents the refractive index of the light diffusing fine particles.
- is preferably 0.01 to 0.10, more preferably 0.01 to 0.06, and particularly preferably 0.02 to 0.06. If
- the “concentration modulation region” refers to a region where the weight concentration of the ultrafine particle component is modulated in the vicinity of the interface between the matrix in the light diffusing element and the light diffusing fine particles.
- the weight concentration of the ultrafine particle component increases as the distance from the light diffusing fine particles increases (inevitably, the weight concentration of the resin component decreases).
- the refractive index changes substantially continuously. Details will be described later.
- the light diffusing fine particles are composed of a compound similar to the resin component of the matrix introduced in the post-process B. More preferably, the light diffusing fine particles are composed of a highly compatible compound among the compounds similar to the resin component of the matrix. This is because the precursor of the resin component of the matrix easily penetrates into the light diffusing fine particles in the subsequent step (for example, step B) (details will be described later).
- “same system” means that chemical structures and properties are equivalent or similar
- “different system” means something other than the same system. Whether or not they are related may differ depending on how the reference is selected.
- the organic compounds are the same type of compounds, and the organic compound and the inorganic compound are different types of compounds.
- the polymer repeat unit for example, an acrylic polymer and an epoxy polymer are different compounds despite being organic compounds, and when a periodic table is used as a reference, alkali metals and transition metals are used. Is an element of a different system despite being inorganic elements.
- the material constituting the light diffusing fine particles examples include polymethyl methacrylate (PMMA), polymethyl acrylate (PMA), copolymers thereof, and cross-linked products thereof.
- Silica-based particles can also be used as the material constituting the light diffusing fine particles.
- the copolymer component with PMMA and PMA examples include polyurethane, polystyrene (PSt), and melamine resin.
- the light diffusing fine particles are composed of PMMA. This is because the relationship between the refractive index and the thermodynamic characteristics with the resin component of the matrix introduced in the post-process B is appropriate.
- the light diffusing fine particles have a cross-linked structure (three-dimensional network structure).
- the light diffusing fine particles having a crosslinked structure can swell. Therefore, unlike such dense or solid inorganic particles, such light diffusing fine particles can satisfactorily permeate a resin component precursor having appropriate compatibility.
- the crosslink density of the light diffusing fine particles is preferably small (coarse) so that a desired penetration range (described later) is obtained.
- the light diffusing fine particles have an average particle diameter (particle diameter before swelling (diameter)) of preferably 1.0 ⁇ m to 5.0 ⁇ m, more preferably 1.5 ⁇ m to 4.0 ⁇ m, and still more preferably. It is 2.0 ⁇ m to 3.0 ⁇ m.
- the average particle diameter of the light diffusing fine particles is preferably 1 ⁇ 2 or less (for example, 1 ⁇ 2 to 1/20) of the thickness of the light diffusing element. If the average particle diameter has such a ratio with respect to the thickness of the light diffusing element, a plurality of light diffusing fine particles can be arranged in the thickness direction of the light diffusing element, so that incident light passes through the light diffusing element. In the meantime, the light can be diffused multiple times, and as a result, sufficient light diffusibility can be obtained.
- the standard deviation of the weight average particle size distribution of the light diffusing fine particles in the mixed solution is preferably 1.0 ⁇ m or less, more preferably 0.5 ⁇ m or less, and particularly preferably 0.1 ⁇ m or less.
- the diffusible fine particles in the mixed solution are preferably in a monodispersed state.
- the variation coefficient of the weight average particle size distribution ((standard deviation of particle size) ⁇ 100 / (average particle size)) is 20%. Or less, and more preferably 15% or less. If a large number of light diffusing fine particles having a small particle size with respect to the weight average particle size are mixed, the diffusibility may be excessively increased and the backscattering may not be suppressed satisfactorily.
- any appropriate shape can be adopted depending on the purpose. Specific examples include a true sphere shape, a flake shape, a plate shape, an elliptic sphere shape, and an indefinite shape. In many cases, spherical fine particles can be used as the light diffusing fine particles.
- the refractive index of the light diffusing fine particles is preferably 1.30 to 1.70, more preferably 1.40 to 1.60.
- the blending amount of the light diffusing fine particles in the mixed solution is preferably 10 to 100 parts by weight, more preferably 15 to 40 parts by weight with respect to 100 parts by weight of the formed matrix.
- a light diffusing element having a very excellent light diffusibility can be obtained by incorporating light diffusing fine particles having an average particle diameter in the above preferred range with such a blending amount.
- the light diffusing fine particles swell when mixed with an organic solvent.
- the degree of swelling of the light diffusing fine particles immediately before Step B that is, immediately before the light diffusing fine particles come into contact with the precursor of the resin component is preferably 105% to 200%.
- Step A it is preferable that the light diffusing fine particles are in a state where they swell to the maximum and do not swell any more. If the light diffusing fine particles are sufficiently swollen, the precursor of the resin component is likely to permeate the light diffusing fine particles in the next step B.
- the “swelling degree” refers to the ratio of the average particle size of the swollen particles to the average particle size of the particles before swelling.
- the organic solvent content ratio of the light diffusing fine particles immediately before Step B is preferably 10% to 100%, more preferably 70% to 100%.
- the organic solvent content ratio of the light diffusing fine particles means the light diffusion with respect to the content (maximum content) of the organic solvent in the case where the organic solvent content is saturated in the light diffusing fine particles. It means the organic solvent content ratio of the conductive fine particles.
- Organic solvent is not limited as long as the light diffusing fine particles are swollen to a desired degree, and the light diffusing fine particles and the components to be added in the post-process B can be dissolved or uniformly dispersed. Any suitable organic solvent can be employed. Specific examples of the organic solvent include ethyl acetate, butyl acetate, isopropyl acetate, 2-butanone (methyl ethyl ketone), methyl isobutyl ketone, cyclopentanone, toluene, isopropyl alcohol, n-butanol, water and the like.
- the boiling point of the organic solvent is preferably 70 ° C. or higher, more preferably 100 ° C. or higher, particularly preferably 110 ° C. or higher, and most preferably 120 ° C. or higher.
- a mixed solvent is used as the organic solvent.
- a solvent obtained by mixing the light diffusing fine particles (first organic solvent) with a low volatile organic solvent (second organic solvent) is used.
- the first organic solvent is easier to penetrate into the light diffusing fine particles and has higher volatility than the second organic solvent.
- the second organic solvent is less likely to penetrate into the light diffusing fine particles and has lower volatility than the first organic solvent.
- the light diffusing element has excellent smoothness by promoting the swelling of the light diffusing fine particles (that is, shortening the production process) and preventing the organic solvent from suddenly volatilizing. Can be obtained.
- the boiling point of the first organic solvent is preferably 80 ° C.
- the boiling point of the second organic solvent is preferably higher than 80 ° C, more preferably 100 ° C or higher, further preferably 110 ° C or higher, and most preferably 120 ° C or higher.
- the ease of penetration of the organic solvent can be compared by, for example, the degree of swelling of the light diffusing fine particles with respect to the organic solvent, and the organic solvent that swells the light diffusing fine particles with a higher degree of swelling is the light diffusing fine particles. It can be said that it is an organic solvent that easily penetrates into water. Moreover, the organic solvent whose solubility parameter (SP value) is close to the SP value of the light diffusing fine particles tends to penetrate into the light diffusing fine particles.
- SP value solubility parameter
- the difference between the SP value of the first organic solvent and the SP value of the light diffusing fine particles is preferably 0.5 or less, more preferably 0.4 or less, and further preferably 0.1 to 0.00. 4.
- the difference between the SP value of the second organic solvent and the SP value of the light diffusing fine particles is preferably more than 0.5, more preferably 0.6 or more, and further preferably 0.7 to 2.0. It is. Further, an organic solvent having a low molecular weight tends to penetrate into the light diffusing fine particles.
- the molecular weight of the first organic solvent is preferably 80 or less, more preferably 75 or less, and further preferably 50 to 75.
- the molecular weight of the second organic solvent is preferably higher than 80, more preferably 100 or more, and further preferably 110 to 140.
- the above mixed solution may further contain any appropriate additive depending on the purpose.
- the additive include an initiator, a dispersant, an anti-aging agent, a modifier, a surfactant, a discoloration preventing agent, an ultraviolet absorber, a leveling agent, and an antifoaming agent.
- step B the liquid mixture prepared in step A above is mixed with a matrix-forming material containing a resin component precursor (monomer) and an ultrafine particle component, and swelled in the organic solvent.
- a coating liquid (dispersion) in which the fine particles, the precursor of the resin component, and the ultrafine particle component are dissolved or dispersed is prepared.
- the coating liquid is a dispersion in which an ultrafine particle component and light diffusing fine particles are dispersed in a precursor and an organic solvent. Any appropriate means (for example, stirring treatment) can be adopted as means for dispersing the ultrafine particle component and the light diffusing fine particles.
- the precursor of the resin component penetrates into the light diffusing fine particles in the steps after Step B.
- Step B it is considered that at least a part of the precursor of the resin component penetrates into the light diffusing fine particles.
- the resin component precursor can be permeated into the light diffusing fine particles in a short time.
- Step B it is considered that the precursor of the resin component can penetrate into the light diffusing fine particles by stirring the coating solution for 15 to 30 minutes.
- the coating solution thus prepared can be used for the post-process C immediately after stirring, that is, without standing. Therefore, the light diffusing fine particles and the ultra fine particle component can be prevented from aggregating, and a light diffusing element having excellent smoothness, no super fine particle component density and little backscattering can be obtained.
- the penetration range of the precursor into the light diffusing fine particles is preferably 10% or more, more preferably 50% or more, and further preferably 80% to 100%. If it is such a range, a density
- the light diffusing fine particles are sufficiently swollen with an organic solvent, and then the resin component in the matrix is polymerized to sufficiently penetrate the light diffusing fine particles. be able to.
- the permeation range can be controlled by adjusting the material of the resin component and the light diffusing fine particles, the cross-linking density of the light diffusing fine particles, the type of the organic solvent used during the production, and the like.
- the solid concentration of the coating solution can be adjusted to be preferably about 10% to 70% by weight. If it is such solid content concentration, the coating liquid which has a viscosity with easy coating can be obtained.
- the resin component is composed of any appropriate material.
- the refractive index of the resin component satisfies the relationship of the above formula (1).
- the resin component is composed of a compound similar to the light diffusing fine particles. More preferably, the resin component is composed of a highly compatible compound among the same compounds as the light diffusing fine particles. Accordingly, the precursor of the resin component can permeate into the light diffusing fine particles because the resin component is a material similar to the light diffusing fine particles. As a result of the polymerization of the precursor by the polymerization step described later, the concentration modulation region can be favorably formed in the vicinity of the interface between the matrix and the light diffusing fine particles.
- the resin constituting the resin component of the matrix is an acrylate resin
- the light diffusing fine particles are also preferably composed of an acrylate resin.
- the resin component is preferably composed of an organic compound, more preferably an ionizing radiation curable resin.
- the ionizing radiation curable resin is excellent in the hardness of the coating film.
- the ionizing rays include ultraviolet rays, visible light, infrared rays, and electron beams.
- it is ultraviolet rays, and therefore the resin component is particularly preferably composed of an ultraviolet curable resin.
- the ultraviolet curable resin include radical polymerization monomers or oligomers such as acrylate resins (epoxy acrylate, polyester acrylate, acrylic acrylate, ether acrylate).
- the monomer component (precursor) constituting the acrylate resin examples include pentaerythritol triacrylate (PETA), neopentyl glycol diacrylate (NPGDA), dipentaerythritol hexaacrylate (DPHA), dipentaerythritol pentaacrylate (DPPA). ), Trimethylolpropane triacrylate (TMPTA).
- PETA pentaerythritol triacrylate
- NPGDA neopentyl glycol diacrylate
- DPHA dipentaerythritol hexaacrylate
- DPPA dipentaerythritol pentaacrylate
- TMPTA Trimethylolpropane triacrylate
- Such a monomer component (precursor) is preferable because it has a molecular weight and a three-dimensional structure suitable for penetrating into the light diffusing fine particles.
- the molecular weight of the resin component precursor (monomer) is preferably 100 to 700, more preferably 200 to 600, and particularly preferably 200 to 500. Within such a range, the precursor (monomer) of the resin component can easily penetrate into the light diffusing fine particles, and a light diffusing element having excellent diffusibility can be obtained.
- the refractive index of the resin component is preferably 1.40 to 1.60.
- the blending amount of the resin component in the coating solution is preferably 20 to 80 parts by weight, more preferably 45 to 65 parts by weight with respect to 100 parts by weight of the formed matrix.
- the resin component may contain another resin component in addition to the ionizing radiation curable resin.
- Another resin component may be an ionizing radiation curable resin, a thermosetting resin, or a thermoplastic resin.
- Representative examples of other resin components include aliphatic (for example, polyolefin) resins and urethane resins.
- the type and blending amount thereof can be adjusted so that the concentration modulation region is well formed and the refractive index satisfies the relationship of the above formula (1).
- the above ultrafine particle component can typically function as a component that adjusts the refractive index of the matrix.
- the refractive index of the matrix can be easily adjusted, and the refractive index difference between the light diffusing fine particles and the matrix can be increased.
- the concentration of the ultra fine particle component in the matrix can be increased, so that the refractive index difference between the matrix and the light diffusing fine particles can be reduced. Can be easily enlarged. As a result, it is possible to obtain a light diffusing element having a high haze value (strong diffusibility) while being a thin film.
- the ultrafine particle component has a refractive index n B satisfying the following formula (2): 0 ⁇
- n A and n P are as described above.
- is preferably 0.10 to 1.50, more preferably 0.20 to 0.80.
- is less than 0.10, the haze value is often 90% or less, and as a result, the light from the light source cannot be sufficiently diffused when incorporated in a liquid crystal display device. The viewing angle may be narrowed.
- the refractive index of the resin component, the ultrafine particle component, and the light diffusing fine particle satisfies the following formula (3). More preferably, the refractive index of the resin component, the ultrafine particle component, and the light diffusing fine particle satisfies the above formula (2) and the following formula (3). If the refractive indexes of the resin component, the ultrafine particle component, and the light diffusing fine particles are in such a relationship, a light diffusing element in which backscattering is suppressed while maintaining high haze can be obtained.
- the ultrafine particle component is composed of a compound of a system different from the resin component and the light diffusing fine particles, and more preferably composed of an inorganic compound.
- inorganic compounds include metal oxides and metal fluorides.
- the metal oxide include zirconium oxide (zirconia) (refractive index: 2.19), aluminum oxide (refractive index: 1.56 to 2.62), and titanium oxide (refractive index: 2.49 to 2.19). 74) and silicon oxide (refractive index: 1.25 to 1.46).
- the metal fluoride include magnesium fluoride (refractive index: 1.37) and calcium fluoride (refractive index: 1.40 to 1.43).
- metal oxides and metal fluorides have a refractive index that is difficult to be expressed by organic compounds such as ionizing radiation curable resins and thermoplastic resins in addition to low light absorption.
- the difference in refractive index from the matrix can be increased.
- these metal oxides and metal fluorides form a concentration modulation region in the vicinity of the interface between the light diffusing fine particles and the matrix due to appropriate dispersibility with the resin component. And backscattering can be suppressed.
- a particularly preferred inorganic compound is zirconium oxide. This is because the difference in refractive index from the light diffusing fine particles is large and the dispersibility with the resin component is appropriate, so that a concentration modulation region having desired characteristics (or structure) can be formed satisfactorily.
- the refractive index of the ultrafine particle component is preferably 1.40 or less or 1.60 or more, more preferably 1.40 or less or 1.70 to 2.80, and particularly preferably 1.40 or less or 2 .00 to 2.80. If the refractive index exceeds 1.40 or less than 1.60, the difference in refractive index between the light diffusing fine particles and the matrix becomes insufficient, and the resulting light diffusing element is used as a liquid crystal display device of a collimated backlight front diffusion system. When used, the light from the collimated backlight may not be sufficiently diffused and the viewing angle may be narrowed.
- the ultrafine particle component may be made porous to lower the refractive index.
- the average particle size of the ultrafine particle component is preferably 1 nm to 100 nm, more preferably 10 nm to 80 nm, and still more preferably 20 nm to 70 nm.
- the average particle size of the ultrafine particle component is preferably 1 nm to 100 nm, more preferably 10 nm to 80 nm, and still more preferably 20 nm to 70 nm.
- the ultrafine particle component preferably has good dispersibility with the resin component.
- “dispersibility is good” means that a coating liquid obtained by mixing the resin component, the ultrafine particle component, and the organic solvent is applied, and the solvent is removed by drying. It means being transparent.
- the ultrafine particle component is surface-modified.
- the ultrafine particle component can be favorably dispersed in the resin component, and the concentration modulation region can be favorably formed in the vicinity of the interface between the light diffusing fine particles and the matrix.
- Any appropriate means can be adopted as the surface modifying means as long as the effects of the present invention can be obtained.
- the surface modification is performed by applying a surface modifier to the surface of the ultrafine particle component to form a surface modifier layer.
- preferable surface modifiers include coupling agents such as silane coupling agents and titanate coupling agents, and surfactants such as fatty acid surfactants.
- the blending amount of the ultrafine particle component in the coating liquid is preferably 10 parts by weight to 70 parts by weight, and more preferably 30 parts by weight to 60 parts by weight with respect to 100 parts by weight of the formed matrix.
- the coating liquid is applied to the substrate.
- Any appropriate film can be adopted as the substrate as long as the effects of the present invention can be obtained. Specific examples include a triacetyl cellulose (TAC) film, a polyethylene terephthalate (PET) film, a polypropylene (PP) film, a nylon film, an acrylic film, and a lactone-modified acrylic film.
- TAC triacetyl cellulose
- PET polyethylene terephthalate
- PP polypropylene
- the base material may be subjected to surface modification such as easy adhesion treatment, and may contain additives such as a lubricant, an antistatic agent, and an ultraviolet absorber.
- a method for applying the coating liquid to the base material a method using any appropriate coater can be employed.
- the coater include a bar coater, a reverse coater, a kiss coater, a gravure coater, a die coater, and a comma coater.
- the precursor is polymerized.
- the polymerization method any appropriate method can be adopted depending on the type of the resin component (and hence its precursor).
- the resin component is an ionizing radiation curable resin
- the precursor is polymerized by irradiating the ionizing radiation.
- ultraviolet rays are used as the ionizing ray
- the integrated light quantity is preferably 200 mJ to 400 mJ.
- the transmittance of the ionizing rays to the light diffusing fine particles is preferably 70% or more, more preferably 80% or more.
- the resin component is a thermosetting resin
- the precursor is polymerized by heating. The heating temperature and the heating time can be appropriately set according to the type of the resin component.
- the polymerization is performed by irradiating with ionizing radiation.
- the coating film can be cured while maintaining a favorable refractive index distribution structure (concentration modulation region), so that a light diffusing element having good diffusion characteristics can be produced.
- concentration modulation region refractive index distribution structure
- by polymerizing the precursor a matrix is formed, and at the same time, in the vicinity of the surface of the light diffusing fine particles, the weight concentration of the ultrafine particle component increases as the distance from the light diffusing fine particles increases. A shell-shaped concentration modulation region is formed.
- the production method of the present invention by simultaneously polymerizing a precursor that has penetrated into the light diffusing fine particles and a precursor that has not penetrated into the light diffusing fine particles, an interface between the matrix and the light diffusing fine particles is obtained.
- a matrix can be formed at the same time as the concentration modulation region is formed in the vicinity.
- the method for manufacturing a light diffusing element of the present invention can include any appropriate process, process and / or operation at any appropriate time in addition to the above-mentioned processes A to C.
- the type of such a process and the time when such a process is performed can be appropriately set according to the purpose.
- the method for producing a light diffusing element of the present invention further includes a step of heating a coating liquid applied on the substrate, if necessary.
- a coating liquid can be dried by the said heating. Such heating may be performed, for example, before the polymerization step or after the polymerization step.
- the heating of the coating solution is preferably performed before the polymerization step.
- the penetration of the precursor of the resin component into the light diffusing fine particles can be promoted by heating.
- Any appropriate method can be adopted as the heating method of the coating liquid.
- the heating temperature is, for example, preferably 80 ° C. or less, more preferably 50 ° C. to 70 ° C., and the heating time is, for example, 30 seconds to 5 minutes. According to the production method of the present invention, even when heating is performed at a low temperature, the penetration of the precursor of the resin component into the light diffusing fine particles can be promoted, and a light diffusing element having high diffusibility can be obtained. .
- the light diffusing element is formed on the substrate.
- the light diffusing element manufactured by the manufacturing method of the present invention has strong diffusibility and is excellent in smoothness.
- the mechanism by which the light diffusing element excellent in smoothness is obtained is estimated as follows.
- the light diffusing fine particles that are sufficiently swollen and contain an organic solvent have fluidity in the coating liquid, and can follow changes in the coating liquid level (for example, changes in the coating liquid level due to drying). As a result, the light diffusing fine particles in the present invention can be prevented from protruding from the coating film, and a light diffusing element having excellent smoothness can be obtained.
- the light diffusing fine particles have low fluidity in the coating liquid.
- the coating liquid containing such light diffusing fine particles is subjected to a drying step, the light diffusing fine particles cannot follow the change in the coating liquid surface. As a result, the light diffusing fine particles protrude from the coating film, resulting in unevenness on the surface of the light diffusing element.
- the precursor of the resin component easily penetrates into the light diffusing fine particles.
- the light diffusing fine particles are further swollen and the average particle size is further increased. If the average particle size of the light diffusing fine particles is large, strong light diffusibility can be expressed with a small number of light diffusing fine particles. Backscattering is suppressed in a light diffusing element that contains a small number of light diffusing fine particles.
- the coating liquid of the light diffusing fine particles is applied to the surface of the coating liquid applied to the substrate.
- the precursor of the resin component does not penetrate into the substantially contacting portion.
- the light diffusing fine particles can be prevented from projecting and increasing from the coating film, and the light diffusing fine particles having a large average particle diameter can be present without impairing the smoothness.
- the obtained light diffusing element may be peeled off from the substrate and used as a single member, or may be used as a light diffusing element with a substrate, transferred from the substrate to a polarizing plate, etc. It may be used as a polarizing plate with a light diffusing element) or may be used as a composite member (for example, a polarizing plate with a light diffusing element) by being attached to a polarizing plate or the like together with the base material.
- the base material is attached to a polarizing plate or the like and used as a composite member (for example, a polarizing plate with a light diffusing element)
- the base material can function as a protective layer for the polarizing plate.
- the light diffusing element of the present invention can be obtained by the method described in the above items A-1 to A-3.
- the light diffusing element of the present invention has a matrix containing a resin component and an ultrafine particle component, and light diffusing fine particles dispersed in the matrix.
- the light diffusing element of the present invention exhibits a light diffusing function due to a difference in refractive index between the matrix and the light diffusing fine particles.
- FIG. 1 is a schematic diagram for explaining a dispersion state of a resin component of a matrix and light diffusing fine particles in a light diffusing element obtained by a manufacturing method according to a preferred embodiment of the present invention.
- the light diffusing element 100 of the present invention includes a matrix 10 including a resin component 11 and an ultrafine particle component 12 and light diffusing fine particles 20 dispersed in the matrix 10.
- the resin component of the matrix and the light diffusing fine particles have a refractive index satisfying the following formula (1): 0 ⁇
- the ultrafine particle component preferably has a refractive index satisfying the following formulas (2) and (3): 0 ⁇
- Using the matrix resin component and light diffusing fine particles having the relationship of the above formula (1), and using the ultrafine particle component having the relationship of the above formulas (2) and (3), while maintaining high haze A light diffusing element in which backscattering is suppressed can be obtained.
- the weight concentration of the ultrafine particle component increases in the vicinity of the interface between the matrix and the light diffusing fine particles as the distance from the light diffusing fine particles increases.
- a density modulation region 30 is formed. Therefore, the matrix has a concentration modulation region 30 in the vicinity of the interface with the light diffusing fine particles, and a constant concentration region outside the concentration modulation region 30 (on the side away from the light diffusing fine particles).
- the part other than the density modulation area 30 in the matrix is a substantially constant density area.
- the refractive index changes substantially continuously.
- the “near the interface between the matrix and the light diffusing fine particles” includes the surface of the light diffusing fine particles, the outside near the surface and the inside near the surface.
- the concentration modulation region 30 is formed by a substantial gradient of the dispersion concentration of the ultrafine particle component 12 in the matrix 10.
- the dispersion concentration (typically defined by the weight concentration) of the ultrafine particle component 12 increases as the distance from the light diffusing fine particles 20 increases (inevitably, resin The weight concentration of component 11 is reduced).
- the ultrafine particle component 12 is dispersed at a relatively low concentration in the closest region of the light diffusing fine particle 20 in the concentration modulation region 30, and the concentration of the ultrafine particle component 12 increases as the distance from the light diffusing fine particle 20 increases. Will increase.
- the area ratio of the ultrafine particle component 12 in the matrix 10 according to the transmission electron microscope (TEM) image is small on the side close to the light diffusing fine particles 20 and large on the side close to the matrix 10, and the area ratio is light. It changes while forming a substantial gradient from the diffusible fine particle side to the matrix side (constant concentration region side).
- FIG. 3 shows a TEM image representing the typical dispersion state.
- area ratio of ultrafine particle component in matrix by transmission electron microscope image means a matrix in a predetermined range (predetermined area) in a transmission electron microscope image of a cross section including the diameter of light diffusing fine particles. The ratio of the area of the ultrafine particle component to the total.
- the area ratio corresponds to the three-dimensional dispersion concentration (actual dispersion concentration) of the ultrafine particle component.
- the area ratio of the ultrafine particle component can be obtained by any appropriate image analysis software.
- the area ratio typically corresponds to the average shortest distance between the particles of the ultrafine particle component. Specifically, the average shortest distance between each particle of the ultrafine particle component becomes shorter as the distance from the light diffusing fine particles in the concentration modulation region, and becomes constant in the constant concentration region (for example, the average shortest distance is the light diffusion). In the closest region of the fine particles, it is about 3 to 100 nm, and in the constant concentration region, it is 1 to 20 nm).
- the average shortest distance can be calculated by binarizing a TEM image in a dispersed state as shown in FIG.
- the concentration modulation region 30 can be formed in the vicinity of the interface between the matrix and the light diffusing fine particles using the substantial gradient of the dispersion concentration of the ultrafine particle component 12. Therefore, it is possible to manufacture a light diffusing element with a much simpler procedure and at a much lower cost than the case where GRIN fine particles are manufactured by a complicated manufacturing method and the GRIN fine particles are dispersed.
- the refractive index can be smoothly changed at the boundary between the concentration modulation region 30 and the constant concentration region by forming the concentration modulation region using a substantial gradient of the dispersion concentration of the ultrafine particle component. Furthermore, by using an ultrafine particle component having a refractive index that is significantly different from that of the resin component and the light diffusing fine particles, the difference in refractive index between the light diffusing fine particles and the matrix (substantially constant concentration region) is increased, and the concentration The refractive index gradient in the modulation region can be made steep.
- the concentration modulation region can be formed by appropriately selecting the resin component and ultrafine particle component of the matrix, the constituent material of the light diffusing fine particles, and the chemical and thermodynamic characteristics.
- the concentration modulation region can be satisfactorily formed by configuring the resin component and the light diffusing fine particles with materials having high compatibility among the similar materials.
- the concentration modulation region 30 is polymerized after the precursor (monomer) of the resin component 11 has penetrated into the light diffusing fine particles 20 as described in the above items A-1 to A-3, for example. It is formed.
- the thickness and concentration gradient of the concentration modulation region can be controlled by adjusting the chemical and thermodynamic characteristics of the resin component of the matrix and the light diffusing fine particles.
- the refractive index changes substantially continuously as described above.
- the outermost refractive index of the concentration modulation region and the refractive index of the constant concentration region are substantially the same.
- the refractive index continuously changes from the concentration modulation region to the constant concentration region, preferably from the light diffusing fine particles (more preferably, the inside of the vicinity of the surface of the light diffusing fine particles) to the concentration.
- the refractive index continuously changes over a certain region (FIG. 4).
- the refractive index change is smooth as shown in FIG.
- the shape changes so that a tangent line can be drawn on the refractive index change curve.
- the gradient of refractive index change increases as the distance from the light diffusing fine particles increases.
- the weight concentration of the ultrafine particle component 12 having a refractive index that is significantly different from that of the light diffusing fine particles 20 is relatively high.
- the difference in refractive index with the fine particles 20 can be increased.
- high haze strong diffusivity
- the refractive index changes substantially continuously means that the refractive index should change substantially continuously from at least the light diffusing fine particles to the constant concentration region in the concentration modulation region. To do.
- the refractive index within a predetermined range for example, the refractive index difference is 0.05 or less
- the refractive index difference is 0.05 or less
- the thickness of the concentration modulation region 30 may be constant (that is, the concentration modulation region extends concentrically around the light diffusing fine particles.
- the thickness may be different depending on the position of the surface of the light diffusing fine particles (for example, it may be an outer shape of confetti).
- the thickness of the concentration modulation region 30 varies depending on the position of the surface of the light diffusing fine particles. With such a configuration, the refractive index can be changed more smoothly and continuously in the concentration rate modulation region 30.
- the average thickness of the concentration modulation region 30 is preferably 5 nm to 500 nm, more preferably 12 nm to 400 nm, and still more preferably 15 nm to 300 nm. If the average thickness is less than 5 nm, backscattering may increase. When the average thickness exceeds 500 nm, the diffusibility may be insufficient.
- the light diffusing element of the present invention is a thin film having a high haze value, strong diffusibility, and suppressed backscattering even though the average thickness of the concentration modulation region 30 is very thin. A light diffusing element can be realized.
- the average thickness is an average thickness when the thickness of the concentration modulation region 30 varies depending on the position of the surface of the light diffusing fine particles, and is the thickness when the thickness is constant.
- the light diffusing element preferably has a higher haze value.
- the haze value is preferably 70% or more, more preferably 90 to 99.5%, and further preferably 92 to 99.5%. Yes, particularly preferably 95 to 99.5%, most preferably 97 to 99.5%.
- the collimated backlight front diffusion system is a liquid crystal display device that uses collimated backlight light (backlight light with a narrow luminance half-value width condensed in a certain direction) and the front light on the viewing side of the upper polarizing plate.
- the diffusion characteristic of the light diffusing element is preferably 10 ° to 150 ° (5 ° to 75 ° on one side), more preferably 10 ° to 100 ° (5 ° to 50 ° on one side), in terms of a light diffusion half-value angle. And more preferably 30 ° to 80 ° (15 ° to 40 ° on one side).
- the thickness of the light diffusing element can be appropriately set according to the purpose and desired diffusion characteristics. Specifically, the thickness of the light diffusing element is preferably 4 ⁇ m to 50 ⁇ m, more preferably 4 ⁇ m to 20 ⁇ m. According to the present invention, a light diffusing element having such a very high haze as described above can be obtained despite such a very thin thickness.
- a light diffusing element having excellent smoothness can be obtained.
- the light diffusion element excellent in smoothness has little backscattering.
- the arithmetic average surface roughness Ra of the light diffusing element is preferably less than 0.05 mm, more preferably 0.04 mm or less, and further preferably 0.03 mm or less.
- the arithmetic average surface roughness Ra of the light diffusing element is preferably as small as possible, but a practical lower limit is, for example, 0.001 mm.
- “arithmetic average surface roughness Ra” is an arithmetic average surface roughness Ra defined in JIS B 0601 (1994 edition).
- the ten-point average surface roughness Rz of the light diffusing element is preferably less than 0.20 ⁇ m, more preferably less than 0.17 ⁇ m, and still more preferably less than 0.15 ⁇ m.
- the ten-point average roughness Rz of the light diffusing element is preferably as small as possible, but a practical lower limit is, for example, 0.005 ⁇ m.
- “ten-point average surface roughness Rz” is a ten-point average surface roughness Rz defined in JIS B 0601 (1994 edition).
- the average inclination angle ⁇ a of the light diffusing element is preferably less than 0.50 °, more preferably less than 0.45 °, and still more preferably 0.40 ° or less.
- the average inclination angle ⁇ a of the light diffusing element is preferably as small as possible, but a practical lower limit is, for example, 0.01 °.
- the average inclination angle ⁇ a is defined by the following formula (4).
- ⁇ a tan ⁇ 1 ⁇ a (4)
- ⁇ a is the peak and valley of adjacent peaks in the reference length L of the roughness curve defined in JIS B 0601 (1994 version) as shown in the following formula (5).
- the roughness curve is a curve obtained by removing a surface waviness component longer than a predetermined wavelength from a cross-sectional curve with a phase difference compensation type high-pass filter.
- the cross-sectional curve is a contour that appears at the cut end when the target surface is cut along a plane perpendicular to the target surface.
- the light diffusing element has a ten-point average surface roughness Rz of preferably less than 0.20 ⁇ m, more preferably less than 0.17 ⁇ m, still more preferably less than 0.15 ⁇ m, and an average inclination.
- the angle ⁇ a is preferably less than 0.5 °, more preferably less than 0.45 °, and still more preferably 0.40 ° or less.
- the light diffusing element is suitably used for a viewing side member of a liquid crystal display device, a backlight member of a liquid crystal display device, and a diffusing member for a lighting fixture (for example, an organic EL or LED), and is a front of a collimated backlight front diffusion system. It is particularly preferably used as a diffusing element.
- the light diffusing element may be provided alone as a film-like or plate-like member, or may be provided as a composite member by being attached to any appropriate base material or polarizing plate. An antireflection layer may be laminated on the light diffusing element.
- Thickness of the light diffusing element The total thickness of the base material and the light diffusing element is measured with a microgauge thickness meter (manufactured by Mitutoyo Corporation), and the thickness of the light diffusing element is subtracted from the total thickness. was calculated.
- Ten-point average surface roughness Rz, arithmetic average surface roughness Ra, and average inclination angle ⁇ a Ten-point average surface roughness Rz, arithmetic average surface roughness Ra, and average inclination angle ⁇ a were measured using a fine shape measuring instrument (trade name “Surfcoder ET-4000” manufactured by Kosaka Laboratory Ltd.).
- a commercially available polarizing plate (Nitto Denko Corporation) is provided on both sides of the liquid crystal cell taken out from a commercially available liquid crystal television (manufactured by Sony, BRAVIA 20 type, trade name “KDL20J3000”) having a multi-domain VA mode liquid crystal cell.
- Manufactured and trade name “NPF-SEG1423DU”) were bonded so that the absorption axes of the respective polarizers were orthogonal to each other.
- the absorption axis direction of the polarizer of the backlight side polarizing plate is the vertical direction (90 ° with respect to the long side direction of the liquid crystal panel), and the absorption axis direction of the polarizer of the viewing side polarizing plate is the horizontal direction. Bonding was performed so as to be (0 ° with respect to the long side direction of the liquid crystal panel). Furthermore, the light diffusing elements of Examples and Comparative Examples were transferred from the base material and bonded to the outside of the viewing side polarizing plate to prepare a liquid crystal panel. On the other hand, a lenticular lens pattern was melt-heat transferred onto one side of a PMMA sheet using a transfer roll.
- An aluminum pattern is deposited on the surface (smooth surface) opposite to the surface on which the lens pattern is formed so that light is transmitted only through the focal point of the lens, and the area ratio of the opening is 7% (the area ratio of the reflection section is 93). %) Of the reflective layer.
- a cold cathode fluorescent lamp manufactured by Sony Corporation, BRAVIA20J CCFL
- a condensing element was attached to the light source to produce a parallel light source device (backlight unit) that emits collimated light.
- the backlight unit was incorporated into the liquid crystal panel to produce a liquid crystal display device of a collimated backlight front diffusion system.
- a fluorescent lamp (200 lx: measured value by illuminometer IM-5) is arranged and irradiated so that the emitted light is incident at an angle of 15 ° with the vertical direction of the liquid crystal display device, and black display and white display are performed.
- the brightness was measured with a conoscope manufactured by AUTRONIC MELCHERS, and the contrast was evaluated.
- Example 1 15 parts of polymethyl methacrylate (PMMA) fine particles (manufactured by Sekisui Plastics Co., Ltd., trade name “XX131AA”, average particle size 2.5 ⁇ m, refractive index 1.49) as light diffusing fine particles, and acetic acid as an organic solvent 30 parts of a mixed solvent of butyl and MEK (weight ratio 50/50) was mixed and stirred for 60 minutes to prepare a mixed solution.
- PMMA polymethyl methacrylate
- a resin for hard coat containing 62% of zirconia nanoparticles (average particle size 60 nm, refractive index 2.19) as an ultrafine particle component in the obtained mixed solution (trade name “OPSTAR KZ6661” (manufactured by JSR Corporation) ( MEK / MIBK-containing)) 100 parts, pentaerythritol triacrylate as a resin component precursor (manufactured by Osaka Organic Chemical Industry, trade name “Biscoat # 300”, refractive index 1.52, molecular weight 298) 22 parts, photopolymerization Add 0.5 parts of initiator (trade name “Irgacure 907” manufactured by Ciba Specialty Chemical Co., Ltd.) and 0.5 parts leveling agent (trade name “GRANDIC PC 4100” manufactured by DIC Corporation), and use a disper.
- the mixture was stirred for 15 minutes to prepare a coating solution.
- a coating solution is prepared, it is coated on a TAC film (trade name “Fujitac”, manufactured by Fuji Film Co., Ltd.) using a bar coater, heated at 60 ° C. for 1 minute, and then irradiated with ultraviolet light with an integrated light amount of 300 mJ.
- a light diffusing element having a thickness of 10 ⁇ m was obtained.
- the obtained light diffusing element was subjected to the evaluations (2) to (6) above. Further, a TEM photograph of a cross section of the light diffusing element is shown in FIG. Incidentally, when setting the white luminance in the dark with 300 cd / m 2, black luminance 0.3 cd / m 2, and the contrast in the dark was 1000.
- Example 2 Instead of pentaerythritol triacrylate (trade name “Biscoat # 300” manufactured by Osaka Organic Chemical Industry Co., Ltd., refractive index 1.52, molecular weight 298) as a precursor of the fat component, dipentaerythritol hexaacrylate (Shin Nakamura Chemical Co., Ltd.) A light diffusing element was obtained in the same manner as in Example 1 except that a product name “NK ester”, a refractive index of 1.52, a molecular weight of 632) manufactured by the company was used. The obtained light diffusing element was subjected to the evaluations (2) to (6) above. The results are shown in Table 1.
- Example 3 A light diffusing element was obtained in the same manner as in Example 1 except that 30 parts of MEK was used instead of 30 parts of a mixed solvent (weight ratio 50/50) of butyl acetate and MEK as an organic solvent. The obtained light diffusing element was subjected to the evaluations (2) to (6) above. The results are shown in Table 1.
- ⁇ Comparative Example 1> In 100 parts of resin for hard coat containing 62% of zirconia nanoparticles (average particle size 60 nm, refractive index 2.19) as an ultrafine particle component (manufactured by JSR, trade name “OPSTAR KZ6661” (including MEK / MIBK)) , 11 parts of 50% MEK solution of pentaerythritol triacrylate (trade name “Biscoat # 300” manufactured by Osaka Organic Chemical Industry Co., Ltd., refractive index 1.52) as a precursor of the resin component, Specialty Chemicals, trade name “Irgacure 907”) 0.5 parts, leveling agent (DIC, trade name “GRANDIC PC 4100”) 0.5 parts, and polymethacryl as light diffusing fine particles Methyl acid (PMMA) fine particles (manufactured by Sekisui Plastics Co., Ltd., trade name “XX131AA”, average particle size 2.5 ⁇ m, refractive index 1.
- PMMA Meth
- ⁇ Comparative example 2> In 100 parts of resin for hard coat containing 62% of zirconia nanoparticles (average particle size 60 nm, refractive index 2.19) as an ultrafine particle component (manufactured by JSR, trade name “OPSTAR KZ6661” (including MEK / MIBK)) 11 parts of a 50% butyl acetate solution of pentaerythritol triacrylate (trade name “Biscoat # 300” manufactured by Osaka Organic Chemical Industry Co., Ltd., refractive index 1.52) as a precursor of the resin component, ⁇ Specialty Chemical Co., Ltd., trade name “Irgacure 907”) 0.5 parts, leveling agent (DIC, trade name “GRANDIC PC 4100”) 0.5 parts, and poly as light diffusing fine particles Methyl methacrylate (PMMA) fine particles (manufactured by Sekisui Plastics Co., Ltd., trade name “XX131AA”, average particle size 2.5 ⁇ m, refr
- This mixture was sonicated for 5 minutes to prepare a coating solution in which the above components were uniformly dispersed.
- the coating solution was allowed to stand for 72 hours, then coated on a TAC film (trade name “Fujitac”, manufactured by Fuji Film Co., Ltd.) using a bar coater, heated at 60 ° C. for 1 minute, and an accumulated light amount of 300 mJ.
- Ultraviolet light was irradiated to obtain a light diffusing element having a thickness of 10 ⁇ m.
- the obtained light diffusing element was subjected to the evaluations (2) to (6) above. The results are shown in Table 1.
- a light diffusing element having a high haze value and a high diffusibility even after coating immediately after preparing a coating liquid. can be manufactured.
- the light diffusing element obtained by the production method of the present invention has excellent surface smoothness and little backscattering.
- the density of the ultrafine particle component is small, the light diffusing fine particle and the ultrafine particle component are less likely to aggregate according to the method of manufacturing a light diffusing element of the present invention. It is considered that a light diffusing element having the following can be obtained.
- the light diffusing element obtained by the production method of the present invention is suitably used for a viewing side member of a liquid crystal display device, a backlight member of a liquid crystal display device, and a diffusing member for a lighting fixture (for example, organic EL, LED), and a collimator. It can be particularly preferably used as a front diffusion element of a backlight front diffusion system.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
Description
好ましい実施形態においては、上記樹脂成分の前駆体の分子量が、100~700である。
好ましい実施形態においては、上記有機溶剤の沸点が、70℃以上である。
好ましい実施形態においては、上記有機溶剤が、第1の有機溶剤と第2の有機溶剤との混合溶剤であり、
該第1の有機溶剤は、該第2の有機溶剤よりも前記光拡散性微粒子に浸透しやすく、かつ、該第2の有機溶剤よりも揮発性が高い。
好ましい実施形態においては、本発明の光拡散素子の製造方法は、上記混合液と、樹脂成分の前駆体および超微粒子成分を含むマトリクス形成材料とを混合して得られた分散液を、加熱する工程をさらに含み、加熱温度が80℃以下である。
好ましい実施形態においては、上記工程Cにおいて、前記マトリクスと前記光拡散性微粒子との界面近傍に、該光拡散性微粒子から遠ざかるにつれて該超微粒子成分の重量濃度が高くなる実質的に球殻状の濃度変調領域を形成させる。
本発明の別の局面によれば、光拡散素子が提供される。この光拡散素子は、上記の方法によって得られ、ヘイズ値が70%以上である。
好ましい実施形態においては、上記光拡散素子は、十点平均表面粗さRzが、0.20μm未満である。
好ましい実施形態においては、上記光拡散素子は、平均傾斜角度θaが、0.5°未満である。
好ましい実施形態においては、上記光拡散素子は、算術平均表面粗さRaが、0.05mm未満である。
本発明の一つの実施形態による光拡散素子の製造方法は、光拡散性微粒子と有機溶剤とを混合して混合液を調製し、該光拡散性微粒子を膨潤させる工程(工程Aとする)と、該混合液と、樹脂成分の前駆体および超微粒子成分を含むマトリクス形成材料とを混合する工程(工程Bとする)と、該樹脂成分の前駆体を重合して、樹脂成分および超微粒子成分を含むマトリクスを形成する工程(工程Cとする)とを含む。
工程Aにおいては、光拡散性微粒子と有機溶剤とを混合して混合液が調製される。光拡散性微粒子と有機溶剤とを混合することにより、光拡散性微粒子の少なくとも一部に有機溶剤を含有させ、当該光拡散性微粒子を膨潤させる。光拡散性微粒子と有機溶剤とを混合した後、所定時間経過させることにより、光拡散性微粒子に有機溶剤を含有させることができる。例えば、15分~90分経過させることにより、光拡散性微粒子に有機溶剤を含有させることができる。混合液は、例えば、有機溶剤中で光拡散性微粒子を撹拌することにより、調製してもよい。
上記光拡散性微粒子は、任意の適切な材料で構成される。好ましくは、上記光拡散性微粒子は、その屈折率が下記式(1)の関係を満足する。
0<|nP-nA|・・・(1)
式(1)中、nAはマトリクスの樹脂成分の屈折率を表し、nPは光拡散性微粒子の屈折率を表す。|nP-nA|は、好ましくは0.01~0.10であり、さらに好ましくは0.01~0.06であり、特に好ましくは0.02~0.06である。|nP-nA|が0.01未満であると、濃度変調領域が形成されない場合がある。|nP-nA|が0.10を超えると、後方散乱が増大するおそれがある。なお、本明細書において、「濃度変調領域」とは、光拡散素子中のマトリクスと光拡散性微粒子との界面近傍において、超微粒子成分の重量濃度が変調する領域をいう。「濃度変調領域」においては、光拡散性微粒子から遠ざかるにつれて、超微粒子成分の重量濃度が高くなる(必然的に、樹脂成分の重量濃度が低くなる)。また、「濃度変調領域」においては、屈折率が実質的に連続的に変化する。詳細は後述する。
上記有機溶剤としては、上記光拡散性微粒子を所望の程度に膨潤させ、かつ、光拡散性微粒子および後工程Bで投入される各成分を溶解または均一に分散し得るかぎりにおいて、任意の適切な有機溶剤が採用され得る。有機溶剤の具体例としては、酢酸エチル、酢酸ブチル、酢酸イソプロピル、2-ブタノン(メチルエチルケトン)、メチルイソブチルケトン、シクロペンタノン、トルエン、イソプロピルアルコール、n-ブタノール、水等が挙げられる。
工程Bにおいては、上記工程Aにおいて調製された混合液と、樹脂成分の前駆体(モノマー)および超微粒子成分を含むマトリクス形成材料とを混合して、上記有機溶剤中に、膨潤した光拡散性微粒子、樹脂成分の前駆体および超微粒子成分を溶解または分散させた塗工液(分散液)が調製される。代表的には、当該塗工液は、前駆体および有機溶剤中に、超微粒子成分および光拡散性微粒子が分散した分散体である。超微粒子成分および光拡散性微粒子を分散させる手段としては、任意の適切な手段(例えば、撹拌処理)が採用され得る。
上記樹脂成分は、任意の適切な材料で構成される。好ましくは、樹脂成分は、その屈折率が上記式(1)の関係を満足する。
上記超微粒子成分は、代表的には、マトリクスの屈折率を調整する成分として機能し得る。超微粒子成分を用いることにより、マトリクスの屈折率を容易に調整することができ、光拡散性微粒子とマトリクスとの屈折率差を大きくすることができる。特に、本発明によれば、樹脂成分が光拡散性微粒子内部に浸透することにより、マトリクス中の超微粒子成分の濃度を高くすることができるので、マトリクスと光拡散性微粒子との屈折率差を容易に大きくすることができる。その結果、薄膜でありながら高ヘイズ値(強い拡散性)を有する光拡散素子を得ることができる。好ましくは、超微粒子成分は、その屈折率nBが下記式(2)を満たす:
0<|nP-nA|<|nP-nB|・・・(2)
式(2)において、nAおよびnPは上記のとおりである。|nP-nB|は、好ましくは0.10~1.50であり、さらに好ましくは0.20~0.80である。|nP-nB|が0.10未満であると、ヘイズ値が90%以下となる場合が多く、その結果、液晶表示装置に組み込んだ場合に光源からの光を十分に拡散できず、視野角が狭くなるおそれがある。|nP-nB|が1.50を超えると、後方散乱が増大するおそれがある。また、好ましくは、上記樹脂成分、上記超微粒子成分および上記光拡散性微粒子の屈折率は、下記式(3)を満足する。より好ましくは、上記樹脂成分、上記超微粒子成分および上記光拡散性微粒子の屈折率は、上記式(2)および下記式(3)を満足する。上記樹脂成分、上記超微粒子成分および上記光拡散性微粒子の屈折率がこのような関係にあれば、高いヘイズを維持しつつ、後方散乱が抑制された光拡散素子を得ることができる。
|nP-nA|<|nA-nB|・・・(3)
代表的には、工程C(前駆体を重合させる工程)の前に、上記塗工液が基材に塗布される。基材としては、本発明の効果が得られる限りにおいて任意の適切なフィルムが採用され得る。具体例としては、トリアセチルセルロース(TAC)フィルム、ポリエチレンテレフタレート(PET)フィルム、ポリプロピレン(PP)フィルム、ナイロンフィルム、アクリルフィルム、ラクトン変性アクリルフィルムなどが挙げられる。上記基材は、必要に応じて、易接着処理などの表面改質がなされていてもよく、滑剤、帯電防止剤、紫外線吸収剤などの添加剤が含まれていてもよい。
本発明の光拡散素子は、上記A-1項~A-3項に記載の方法によって得られ得る。本発明の光拡散素子は、樹脂成分および超微粒子成分を含むマトリクスと、該マトリクス中に分散された光拡散性微粒子とを有する。本発明の光拡散素子は、マトリクスと光拡散性微粒子の屈折率差により、光拡散機能を発現する。図1は、本発明の好ましい実施形態による製造方法により得られる光拡散素子におけるマトリクスの樹脂成分および光拡散性微粒子の分散状態を説明するための模式図である。本発明の光拡散素子100は、樹脂成分11および超微粒子成分12を含むマトリクス10と、マトリクス10中に分散された光拡散性微粒子20とを有する。好ましくは、マトリクスの樹脂成分および光拡散性微粒子は、それらの屈折率が下記式(1)を満たす:
0<|nP-nA|・・・(1)
上記超微粒子成分は、好ましくは、その屈折率が下記式(2)および(3)を満たす:
0<|nP-nA|<|nP-nB|・・・(2)
|nP-nA|<|nA-nB|・・・(3)
上記式(1)の関係を有するマトリクスの樹脂成分および光拡散性微粒子を用い、ならびに、上記式(2)および(3)の関係を有する超微粒子成分を用いることにより、高いヘイズを維持しつつ、後方散乱が抑制された光拡散素子を得ることができる。
θa=tan-1Δa ・・・(4)
上記式(1)において、Δaは、下記数式(5)に示すように、JIS B 0601(1994年度版)に規定される粗さ曲線の基準長さLにおいて、隣り合う山の頂点と谷の最下点との差(高さh)の合計(h1+h2+h3・・・+hn)を前記基準長さLで割った値である。前記粗さ曲線は、断面曲線から、所定の波長より長い表面うねり成分を位相差補償形高域フィルタで除去した曲線である。また、前記断面曲線とは、対象面に直角な平面で対象面を切断したときに、その切り口に現れる輪郭である。
Δa=(h1+h2+h3・・・+hn)/L ・・・(5)
マイクロゲージ式厚み計(ミツトヨ社製)にて基材と光拡散素子との合計厚みを測定し、当該合計厚みから基材の厚みを差し引き、光拡散素子の厚みを算出した。
JIS 7136で定める方法により、ヘイズメーター(村上色彩科学研究所社製、商品名「HN-150」)を用いて測定した。
実施例および比較例で得られた光拡散素子と基材との積層体を、透明粘着剤を介して黒アクリル板(住友化学社製、商品名「SUMIPEX」(登録商標)、厚み2mm)の上に貼り合わせ、測定試料とした。この測定試料の積分反射率を分光光度計(日立計測器社製、商品名「U4100」)にて測定した。一方、上記光拡散素子用塗工液から微粒子を除去した塗工液を用いて、基材と透明塗工層との積層体を作製して対照試料とし、上記と同様にして積分反射率(すなわち、表面反射率)を測定した。上記測定試料の積分反射率から上記対照試料の積分反射率(表面反射率)を差し引くことにより、光拡散素子の後方散乱率を算出した。
十点平均表面粗さRz、算術平均表面粗さRaおよび平均傾斜角度θaを微細形状測定機(小坂研究所社製、商品名「サーフコーダ ET-4000」)を用いて測定した。
実施例および比較例で得られた光拡散素子と基材との積層体を液体窒素で冷却しながら、ミクロトームにて0.1μmの厚さにスライスして測定試料とした。当該測定試料の断面を透過型電子顕微鏡(TEM)(日立製作所製、商品名「H-7650」、加速電圧100kV)を用いて2次元画像を観察し、当該測定試料の光拡散素子内の粗密の発生を確認した。直接倍率×1,200、MAGNIFICATION×10,000の測定視野(13.9μm×15.5μm)において、マトリクス中で超微粒子成分が存在せず白点として観察される部分(すなわち、測定視野内における、光拡散性微粒子由来の白い部分以外の白点)の数をカウントした。実施例および比較例で得られた光拡散素子と基材との積層体それぞれについて、20箇所、上記のように白点の数をカウントし、その平均値を算出した。表1には当該平均値を示す。白点の数が多いほど、超微粒子成分の疎密が多いと評される。
(液晶表示装置の作製)
マルチドメイン型VAモードの液晶セルを備える市販の液晶テレビ(SONY社製、ブラビア20型、商品名「KDL20J3000」)から液晶セルを取り出した当該液晶セルの両側に、市販の偏光板(日東電工社製、商品名「NPF-SEG1423DU」)を、それぞれの偏光子の吸収軸が直交するようにして貼り合わせた。より具体的には、バックライト側偏光板の偏光子の吸収軸方向が垂直方向(液晶パネルの長辺方向に対して90°)となり、視認側偏光板の偏光子の吸収軸方向が水平方向(液晶パネルの長辺方向に対して0°)となるようにして貼り合わせた。さらに、視認側偏光板の外側に、実施例および比較例の光拡散素子を基材から転写して貼り合わせ、液晶パネルを作製した。
一方、PMMAシートの片面に、レンチキュラーレンズのパターンを、転写ロールを用いて溶融熱転写した。レンズパターンが形成された面とは反対側の面(平滑面)に、レンズの焦点のみ光が透過するよう、アルミニウムのパターン蒸着を行い、開口部の面積比率7%(反射部の面積比率93%)の反射層を形成した。このようにして、集光素子を作製した。バックライトの光源として冷陰極蛍光ランプ(ソニー社製、BRAVIA20JのCCFL)を用い、当該光源に集光素子を取り付けて、コリメート光を出射する平行光光源装置(バックライトユニット)を作製した。
上記液晶パネルに上記バックライトユニットを組み込み、コリメートバックライトフロント拡散システムの液晶表示装置を作製した。
(コントラストの測定)
出射光が、液晶表示装置の鉛直方向となす角度が15°で入射するように、蛍光ランプ(200lx:照度計IM-5での測定値)を配置し、照射し、黒表示および白表示の輝度をAUTRONIC MELCHERS社製コノスコープにて測定して、コントラストを評価した。
光拡散性微粒子としてのポリメタクリル酸メチル(PMMA)微粒子(積水化成品工業社製、商品名「XX131AA」、平均粒径2.5μm、屈折率1.49)15部と、有機溶剤としての酢酸ブチルおよびMEKの混合溶媒(重量比50/50)30部とを混合し、60分間撹拌して、混合液を調製した。
次いで、得られた混合液に、超微粒子成分としてのジルコニアナノ粒子(平均粒径60nm、屈折率2.19)を62%含有するハードコート用樹脂(JSR社製、商品名「オプスターKZ6661」(MEK/MIBK含有))100部、樹脂成分の前駆体としてのペンタエリスリトールトリアクリレート(大阪有機化学工業社製、商品名「ビスコート#300」、屈折率1.52、分子量298)22部、光重合開始剤(チバ・スペシャリティ・ケミカル社製、商品名「イルガキュア907」)0.5部およびレベリング剤(DIC社製、商品名「GRANDIC PC 4100」)0.5部を添加し、ディスパーを用いて15分間撹拌して、塗工液を調製した。
当該塗工液を調製後ただちに、バーコーターを用いてTACフィルム(富士フィルム社製、商品名「フジタック」)上に塗工し、60℃にて1分間加熱後、積算光量300mJの紫外線を照射し、厚み10μmの光拡散素子を得た。得られた光拡散素子を上記(2)~(6)の評価に供した。さらに、光拡散素子断面のTEM写真を図5(a)に示す。
なお、暗所における白輝度を300cd/m2と設定したところ、黒輝度は0.3cd/m2となり、暗所におけるコントラストは1000であった。
脂成分の前駆体としてのペンタエリスリトールトリアクリレート(大阪有機化学工業社製、商品名「ビスコート#300」、屈折率1.52、分子量298)に代えて、ジペンタエリスリトールヘキサアクリレート(新中村化学工業社製、商品名「NKエステル」、屈折率1.52、分子量632)を用いた以外は、実施例1と同様にして、光拡散素子を得た。得られた光拡散素子を上記(2)~(6)の評価に供した。結果を表1に示す。
有機溶剤としての酢酸ブチルおよびMEKの混合溶媒(重量比50/50)30部に代えて、MEK30部を用いた以外は、実施例1と同様にして、光拡散素子を得た。得られた光拡散素子を上記(2)~(6)の評価に供した。結果を表1に示す。
超微粒子成分としてのジルコニアナノ粒子(平均粒径60nm、屈折率2.19)を62%含有するハードコート用樹脂(JSR社製、商品名「オプスターKZ6661」(MEK/MIBK含有))100部に、樹脂成分の前駆体としてのペンタエリスリトールトリアクリレート(大阪有機化学工業社製、商品名「ビスコート#300」、屈折率1.52)の50%MEK溶液を11部、光重合開始剤(チバ・スペシャリティ・ケミカル社製、商品名「イルガキュア907」)を0.5部、レベリング剤(DIC社製、商品名「GRANDIC PC 4100」)を0.5部、および、光拡散性微粒子としてのポリメタクリル酸メチル(PMMA)微粒子(積水化成品工業社製、商品名「XX131AA」、平均粒径2.5μm、屈折率1.49)を15部添加した。この混合物を5分間超音波処理し、上記の各成分が均一に分散した塗工液を調製した。当該塗工液を24時間静置した後、バーコーターを用いてTACフィルム(富士フィルム社製、商品名「フジタック」)上に塗工し、60℃にて1分間加熱後、積算光量300mJの紫外線を照射し、厚み10μmの光拡散素子を得た。得られた光拡散素子を上記(2)~(6)の評価に供した。結果を、表1に示す。さらに、光拡散素子断面のTEM写真を図5(b)に示す。
超微粒子成分としてのジルコニアナノ粒子(平均粒径60nm、屈折率2.19)を62%含有するハードコート用樹脂(JSR社製、商品名「オプスターKZ6661」(MEK/MIBK含有))100部に、樹脂成分の前駆体としてのペンタエリスリトールトリアクリレート(大阪有機化学工業社製、商品名「ビスコート#300」、屈折率1.52)の50%酢酸ブチル溶液を11部、光重合開始剤(チバ・スペシャリティ・ケミカル社製、商品名「イルガキュア907」)を0.5部、レベリング剤(DIC社製、商品名「GRANDIC PC 4100」)を0.5部、および、光拡散性微粒子としてのポリメタクリル酸メチル(PMMA)微粒子(積水化成品工業社製、商品名「XX131AA」、平均粒径2.5μm、屈折率1.49)を15部添加した。この混合物を5分間超音波処理し、上記の各成分が均一に分散した塗工液を調製した。当該塗工液を72時間静置した後、バーコーターを用いてTACフィルム(富士フィルム社製、商品名「フジタック」)上に塗工し、60℃にて1分間加熱後、積算光量300mJの紫外線を照射し、厚み10μmの光拡散素子を得た。得られた光拡散素子を上記(2)~(6)の評価に供した。結果を、表1に示す。
塗工液を調製後、静置せずにただちに塗工した以外は、比較例1と同様にして、光拡散素子を得た。得られた光拡散素子を上記(2)~(6)の評価に供した。結果を表1に示す。
塗工液を調製後、静置せずにただちに塗工し、加熱温度を100℃とした以外は、比較例1と同様にして、光拡散素子を得た。得られた光拡散素子を上記(2)~(6)の評価に供した。結果を表1に示す。さらに、光拡散素子断面のTEM写真を図5(c)に示す。
11 樹脂成分
20 光拡散性微粒子
30 濃度変調領域
100 光拡散素子
Claims (10)
- 光拡散性微粒子と有機溶剤とを混合して混合液を調製し、該光拡散性微粒子を膨潤させる工程Aと、
該混合液と、樹脂成分の前駆体および超微粒子成分を含むマトリクス形成材料とを混合する工程Bと、
該樹脂成分の前駆体を重合して、樹脂成分および超微粒子成分を含むマトリクスを形成する工程Cと、を含む、
光拡散素子の製造方法。 - 前記樹脂成分の前駆体の分子量が、100~700である、請求項1に記載の光拡散素子の製造方法。
- 前記有機溶剤の沸点が、70℃以上である、請求項1または2に記載の光拡散素子の製造方法。
- 前記有機溶剤が、第1の有機溶剤と第2の有機溶剤との混合溶剤であり、
該第1の有機溶剤は、該第2の有機溶剤よりも前記光拡散性微粒子に浸透しやすく、かつ、該第2の有機溶剤よりも揮発性が高い、
請求項1または2に記載の光拡散素子の製造方法。 - 前記混合液と、前記樹脂成分の前駆体および前記超微粒子成分を含むマトリクス形成材料とを混合して得られた分散液を、加熱する工程をさらに含み、加熱温度が80℃以下である、請求項1から4のいずれかに記載の光拡散素子の製造方法。
- 前記工程Cにおいて、前記マトリクスと前記光拡散性微粒子との界面近傍に、該光拡散性微粒子から遠ざかるにつれて該超微粒子成分の重量濃度が高くなる実質的に球殻状の濃度変調領域を形成させる、請求項1から5のいずれかに記載の光拡散素子の製造方法。
- 請求項1から6のいずれかに記載の方法によって得られる光拡散素子であって、ヘイズ値が70%以上である、光拡散素子。
- 十点平均表面粗さRzが、0.20μm未満である、請求項7に記載の光拡散素子。
- 平均傾斜角度θaが、0.50°未満である、請求項7または8に記載の光拡散素子。
- 算術平均表面粗さRaが、0.05mm未満である、請求項7から9のいずれかに記載の光拡散素子。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/060802 WO2014167663A1 (ja) | 2013-04-10 | 2013-04-10 | 光拡散素子の製造方法および光拡散素子 |
KR1020157028003A KR102091901B1 (ko) | 2013-04-10 | 2013-04-10 | 광 확산 소자의 제조 방법 및 광 확산 소자 |
US14/783,757 US9891353B2 (en) | 2013-04-10 | 2013-04-10 | Light-diffusing-element manufacturing method and light-diffusing element |
CN201380075452.XA CN105190368B (zh) | 2013-04-10 | 2013-04-10 | 光扩散元件的制造方法及光扩散元件 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/060802 WO2014167663A1 (ja) | 2013-04-10 | 2013-04-10 | 光拡散素子の製造方法および光拡散素子 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014167663A1 true WO2014167663A1 (ja) | 2014-10-16 |
Family
ID=51689097
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/060802 WO2014167663A1 (ja) | 2013-04-10 | 2013-04-10 | 光拡散素子の製造方法および光拡散素子 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9891353B2 (ja) |
KR (1) | KR102091901B1 (ja) |
CN (1) | CN105190368B (ja) |
WO (1) | WO2014167663A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6287837B2 (ja) * | 2012-07-27 | 2018-03-07 | コニカミノルタ株式会社 | 有機エレクトロルミネッセンス素子 |
JP2015159066A (ja) * | 2014-02-25 | 2015-09-03 | コニカミノルタ株式会社 | 有機エレクトロルミネッセンス用光拡散シート及び有機エレクトロルミネッセンスパネル |
CN115185020A (zh) * | 2022-08-04 | 2022-10-14 | 江西麦帝施科技有限公司 | 一种扩散介质及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006011419A (ja) * | 2004-05-27 | 2006-01-12 | Fuji Photo Film Co Ltd | 光学フィルム、偏光板、及び画像表示装置 |
JP2009069427A (ja) * | 2007-09-12 | 2009-04-02 | Dainippon Printing Co Ltd | 光学積層体、偏光板及び画像表示装置 |
JP2011112964A (ja) * | 2009-11-27 | 2011-06-09 | Dainippon Printing Co Ltd | 光学積層体及び光学積層体の製造方法 |
JP2012069257A (ja) * | 2010-09-21 | 2012-04-05 | Nitto Denko Corp | 有機elデバイス |
JP2012225957A (ja) * | 2011-04-14 | 2012-11-15 | Toagosei Co Ltd | 光拡散フィルム又はシート形成用電子線硬化型組成物及び光拡散フィルム又はシート |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3071538B2 (ja) | 1992-01-17 | 2000-07-31 | 日東電工株式会社 | 光線平行化装置及び液晶表示装置 |
JP4101339B2 (ja) | 1997-09-25 | 2008-06-18 | 大日本印刷株式会社 | 光拡散フィルム、その製造方法、拡散層付偏光板及び液晶表示装置 |
JP3071538U (ja) | 2000-03-07 | 2000-09-14 | トーソー株式会社 | ロールスクリーン用ロールパイプ |
JP4573946B2 (ja) | 2000-05-16 | 2010-11-04 | 株式会社きもと | 光拡散性シート |
JP2002214408A (ja) | 2001-01-12 | 2002-07-31 | Fuji Photo Film Co Ltd | 光拡散体及び表示装置 |
JP2003113325A (ja) | 2001-10-02 | 2003-04-18 | Fuji Xerox Co Ltd | 高分子ゲル組成物、樹脂組成物、及び光学素子 |
TWI235253B (en) * | 2001-10-11 | 2005-07-01 | Fuji Photo Film Co Ltd | Diffusion film comprising transparent substrate and diffusion layer |
JP4792479B2 (ja) | 2002-02-25 | 2011-10-12 | 富士フイルム株式会社 | 防眩性反射防止フィルムの製造方法、及び防眩性反射防止フィルムの製造装置 |
JP2005309399A (ja) | 2004-03-26 | 2005-11-04 | Fuji Photo Film Co Ltd | 光拡散フィルムの製造方法、反射防止フィルムおよびそれを用いた偏光板並びに液晶表示装置 |
JP2005281476A (ja) | 2004-03-30 | 2005-10-13 | Tomoegawa Paper Co Ltd | 樹脂ビーズ含有塗料及びその製造方法 |
US7390099B2 (en) * | 2004-12-22 | 2008-06-24 | Nitto Denko Corporation | Hard-coated antiglare film and method of manufacturing the same |
JP2007233185A (ja) | 2006-03-02 | 2007-09-13 | Fujifilm Corp | 光学フィルム、反射防止フィルム、偏光板および画像表示装置 |
JP5380832B2 (ja) | 2006-12-27 | 2014-01-08 | 大日本印刷株式会社 | 光学積層体の製造方法 |
JP2009265645A (ja) * | 2008-03-31 | 2009-11-12 | Fujifilm Corp | 反射防止フィルム、偏光板および画像表示装置 |
JP2010185968A (ja) | 2009-02-10 | 2010-08-26 | Sumitomo Chemical Co Ltd | 偏光板、ならびにそれを用いた液晶パネルおよび液晶表示装置 |
JP4756099B2 (ja) | 2009-03-18 | 2011-08-24 | 日東電工株式会社 | 光拡散素子、光拡散素子付偏光板、およびこれらを用いた液晶表示装置、ならびに光拡散素子の製造方法 |
JP4756100B2 (ja) * | 2009-03-26 | 2011-08-24 | 日東電工株式会社 | 光拡散素子の製造方法、光拡散素子、ならびに、光拡散素子付偏光板および液晶表示装置の製造方法 |
WO2011065490A1 (ja) | 2009-11-30 | 2011-06-03 | 日東電工株式会社 | 液晶表示装置 |
JP2011197546A (ja) | 2010-03-23 | 2011-10-06 | Sumitomo Chemical Co Ltd | 防眩フィルム製造用金型の製造方法および防眩フィルムの製造方法 |
JP6275936B2 (ja) | 2010-09-17 | 2018-02-07 | 日東電工株式会社 | 光拡散フィルム、光拡散フィルム付偏光板、液晶表示装置および照明器具 |
JP5909454B2 (ja) * | 2012-03-30 | 2016-04-26 | 富士フイルム株式会社 | 防眩フィルム、その製造方法、偏光板、及び画像表示装置 |
WO2014167665A1 (ja) * | 2013-04-10 | 2014-10-16 | 日東電工株式会社 | 光拡散素子および光拡散素子の製造方法 |
-
2013
- 2013-04-10 KR KR1020157028003A patent/KR102091901B1/ko active IP Right Grant
- 2013-04-10 WO PCT/JP2013/060802 patent/WO2014167663A1/ja active Application Filing
- 2013-04-10 CN CN201380075452.XA patent/CN105190368B/zh not_active Expired - Fee Related
- 2013-04-10 US US14/783,757 patent/US9891353B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006011419A (ja) * | 2004-05-27 | 2006-01-12 | Fuji Photo Film Co Ltd | 光学フィルム、偏光板、及び画像表示装置 |
JP2009069427A (ja) * | 2007-09-12 | 2009-04-02 | Dainippon Printing Co Ltd | 光学積層体、偏光板及び画像表示装置 |
JP2011112964A (ja) * | 2009-11-27 | 2011-06-09 | Dainippon Printing Co Ltd | 光学積層体及び光学積層体の製造方法 |
JP2012069257A (ja) * | 2010-09-21 | 2012-04-05 | Nitto Denko Corp | 有機elデバイス |
JP2012225957A (ja) * | 2011-04-14 | 2012-11-15 | Toagosei Co Ltd | 光拡散フィルム又はシート形成用電子線硬化型組成物及び光拡散フィルム又はシート |
Also Published As
Publication number | Publication date |
---|---|
KR20150143469A (ko) | 2015-12-23 |
CN105190368B (zh) | 2019-01-11 |
KR102091901B1 (ko) | 2020-03-20 |
US9891353B2 (en) | 2018-02-13 |
CN105190368A (zh) | 2015-12-23 |
US20160070036A1 (en) | 2016-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101113634B1 (ko) | 광 확산 소자, 광 확산 소자 부착 편광판, 및 이들을 사용한 액정 표시 장치, 그리고 광 확산 소자의 제조 방법 | |
JP6275935B2 (ja) | 光拡散素子、光拡散素子付偏光板、およびこれらを用いた液晶表示装置 | |
KR101260168B1 (ko) | 광확산 소자의 제조 방법, 광확산 소자, 그리고 광확산 소자가 형성된 편광판 및 액정 표시 장치의 제조 방법 | |
JP5883598B2 (ja) | 光拡散素子および光拡散素子付偏光板の製造方法、ならびに、これらの方法で得られた光拡散素子および光拡散素子付偏光板 | |
JP6265316B2 (ja) | 光学フィルムの製造方法 | |
KR20130041337A (ko) | 광확산 필름, 광확산 필름이 부착된 편광판, 액정 표시 장치 및 조명 기구 | |
WO2014167664A1 (ja) | 光拡散素子および光拡散素子の製造方法 | |
JP5129379B2 (ja) | 光拡散素子 | |
WO2014167665A1 (ja) | 光拡散素子および光拡散素子の製造方法 | |
WO2014167666A1 (ja) | 光拡散素子 | |
JP6049278B2 (ja) | 光拡散素子の製造方法および光拡散素子 | |
WO2014167663A1 (ja) | 光拡散素子の製造方法および光拡散素子 | |
JP2022182093A (ja) | 樹脂膜、樹脂膜の作成方法および表示装置 | |
TWI452352B (zh) | A light diffusion element and a method for manufacturing the light diffusion element | |
TWI472808B (zh) | A light diffusion element manufacturing method and a light diffusion element | |
TWI484227B (zh) | Light diffusion element | |
JP2013195813A (ja) | 光拡散素子および光拡散素子の製造方法 | |
JP2013195812A (ja) | 光拡散素子および光拡散素子の製造方法 | |
TWI472807B (zh) | A light diffusion element and a method for manufacturing the light diffusion element | |
JP2013195814A (ja) | 光拡散素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201380075452.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13881781 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20157028003 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14783757 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13881781 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |