WO2014167663A1 - 光拡散素子の製造方法および光拡散素子 - Google Patents

光拡散素子の製造方法および光拡散素子 Download PDF

Info

Publication number
WO2014167663A1
WO2014167663A1 PCT/JP2013/060802 JP2013060802W WO2014167663A1 WO 2014167663 A1 WO2014167663 A1 WO 2014167663A1 JP 2013060802 W JP2013060802 W JP 2013060802W WO 2014167663 A1 WO2014167663 A1 WO 2014167663A1
Authority
WO
WIPO (PCT)
Prior art keywords
light diffusing
fine particles
light
diffusing fine
diffusing element
Prior art date
Application number
PCT/JP2013/060802
Other languages
English (en)
French (fr)
Inventor
恒三 中村
岳仁 淵田
武本 博之
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to PCT/JP2013/060802 priority Critical patent/WO2014167663A1/ja
Priority to KR1020157028003A priority patent/KR102091901B1/ko
Priority to US14/783,757 priority patent/US9891353B2/en
Priority to CN201380075452.XA priority patent/CN105190368B/zh
Publication of WO2014167663A1 publication Critical patent/WO2014167663A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0268Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method

Definitions

  • the present invention relates to a method for manufacturing a light diffusing element and a light diffusing element.
  • Light diffusing elements are widely used in lighting covers, projection television screens, surface light emitting devices (for example, liquid crystal display devices), and the like.
  • light diffusing elements have been increasingly used for improving display quality of liquid crystal display devices and the like, and improving viewing angle characteristics.
  • As the light diffusing element an element in which fine particles are dispersed in a matrix such as a resin sheet has been proposed (for example, see Patent Document 1).
  • a light diffusing element most of the incident light is scattered forward (exit surface side), but a part is scattered backward (incident surface side). The greater the difference in refractive index between the fine particles and the matrix, the greater the diffusivity (for example, haze value).
  • gradient refractive index fine particles such as so-called GRIN (gradient index) fine particles whose refractive index continuously changes from the center to the outside of the fine particles are dispersed in a resin.
  • GRIN fine particles are not practical because the manufacturing process is more complicated than normal fine particles, and thus the productivity is insufficient.
  • the present invention has been made to solve the above-described conventional problems.
  • the object of the present invention is to provide light having a high haze value, strong diffusibility, a smooth surface, and suppressed backscattering.
  • An object of the present invention is to provide a method of manufacturing a light diffusing element that can manufacture a diffusing element at low cost and high productivity (short time).
  • the method for producing a light diffusing element of the present invention comprises a step A in which light diffusing fine particles and an organic solvent are mixed to prepare a mixed solution, and the light diffusing fine particles are swollen, the mixed solution, and a precursor of a resin component.
  • the resin component precursor has a molecular weight of 100 to 700.
  • the boiling point of the said organic solvent is 70 degreeC or more.
  • the organic solvent is a mixed solvent of a first organic solvent and a second organic solvent
  • the first organic solvent penetrates the light diffusing fine particles more easily than the second organic solvent, and is more volatile than the second organic solvent.
  • the method for producing a light diffusing element of the present invention heats a dispersion obtained by mixing the above mixed solution and a matrix forming material containing a precursor of a resin component and an ultrafine particle component. The process further includes a heating temperature of 80 ° C. or lower.
  • the weight concentration of the ultrafine particle component increases in the vicinity of the interface between the matrix and the light diffusing fine particles as the distance from the light diffusing fine particles increases. A density modulation region is formed.
  • a light diffusing element is provided.
  • This light diffusing element is obtained by the above method and has a haze value of 70% or more.
  • the light diffusing element has a ten-point average surface roughness Rz of less than 0.20 ⁇ m.
  • the light diffusing element has an average inclination angle ⁇ a of less than 0.5 °.
  • the light diffusing element has an arithmetic average surface roughness Ra of less than 0.05 mm.
  • the light diffusing fine particle in the manufacture of a light diffusing element comprising a light diffusing fine particle, an ultrafine particle component and a resin component, the light diffusing fine particle previously contains an organic solvent, and the light diffusing fine particle is swollen in advance.
  • the precursor can be permeated into the light diffusing fine particles in a short time.
  • a light diffusing element is produced without the need for special treatment or operation by polymerizing a precursor that has penetrated into the light diffusing fine particles and a precursor that has not penetrated. can do.
  • the precursor can be permeated into the light diffusing fine particles in a short time, the light is excellent in productivity and excellent in smoothness by preventing aggregation of the light diffusing fine particles and the ultrafine particle component.
  • a diffusion element can be manufactured. Furthermore, in the manufacturing process, when applying and drying the coating liquid containing the above components, the swollen light diffusing fine particles have fluidity in the coating liquid and follow changes in the coating surface during drying. Therefore, a light diffusing element having excellent smoothness can be manufactured.
  • the light diffusing element obtained by the production method of the present invention has a substantially spherical shell-shaped concentration modulation region in which the weight concentration of the ultrafine particle component increases as the distance from the light diffusing fine particle increases near the surface of the light diffusing fine particle. Since the refractive index is modulated in the concentration modulation region, the refractive index can be changed stepwise or substantially continuously in the vicinity of the interface between the light diffusing element and the matrix. Therefore, reflection at the interface between the matrix and the light diffusing fine particles can be satisfactorily suppressed, and backscattering can be suppressed. Furthermore, according to the present invention, the refractive index of the matrix can be easily adjusted by using the ultrafine particle component having a specific refractive index and a specific compatibility with the resin component.
  • the concentration of the ultra fine particle component in the matrix can be increased, so that the refractive index difference between the matrix and the light diffusing fine particles can be reduced. Can be easily enlarged.
  • the light diffusing element obtained by the production method of the present invention has a high haze value, strong diffusibility, and suppressed backscattering.
  • FIG. 1 It is a schematic diagram for demonstrating the dispersion state of the resin component of a matrix and the light diffusible microparticles
  • (A) is a transmission micrograph showing a cross section of the light diffusing element obtained in Example 1.
  • (B) is a transmission micrograph showing a cross section of the light diffusing element obtained in Comparative Example 1.
  • (C) is a transmission micrograph showing a cross section of the light diffusing element obtained in Comparative Example 4.
  • a method for producing a light diffusing element comprises a step of mixing a light diffusing fine particle and an organic solvent to prepare a mixed solution, and swelling the light diffusing fine particle (Ste A), a step of mixing the mixed solution with a matrix-forming material containing a resin component precursor and an ultrafine particle component (referred to as Step B), polymerizing the resin component precursor, Forming a matrix containing a resin component and an ultrafine particle component (referred to as step C).
  • a light mixture is prepared by mixing light diffusing fine particles and an organic solvent.
  • the organic solvent is contained in at least a part of the light diffusing fine particles, and the light diffusing fine particles are swollen.
  • the organic solvent can be contained in the light diffusing fine particles by allowing a predetermined time to elapse. For example, by allowing 15 to 90 minutes to pass, the light diffusing fine particles can contain an organic solvent.
  • the mixed solution may be prepared, for example, by stirring the light diffusing fine particles in an organic solvent.
  • the light-diffusing fine particles are composed of any appropriate material.
  • the light diffusing fine particles satisfy the relationship represented by the following formula (1).
  • n A represents the refractive index of the resin component of the matrix
  • n P represents the refractive index of the light diffusing fine particles.
  • is preferably 0.01 to 0.10, more preferably 0.01 to 0.06, and particularly preferably 0.02 to 0.06. If
  • the “concentration modulation region” refers to a region where the weight concentration of the ultrafine particle component is modulated in the vicinity of the interface between the matrix in the light diffusing element and the light diffusing fine particles.
  • the weight concentration of the ultrafine particle component increases as the distance from the light diffusing fine particles increases (inevitably, the weight concentration of the resin component decreases).
  • the refractive index changes substantially continuously. Details will be described later.
  • the light diffusing fine particles are composed of a compound similar to the resin component of the matrix introduced in the post-process B. More preferably, the light diffusing fine particles are composed of a highly compatible compound among the compounds similar to the resin component of the matrix. This is because the precursor of the resin component of the matrix easily penetrates into the light diffusing fine particles in the subsequent step (for example, step B) (details will be described later).
  • “same system” means that chemical structures and properties are equivalent or similar
  • “different system” means something other than the same system. Whether or not they are related may differ depending on how the reference is selected.
  • the organic compounds are the same type of compounds, and the organic compound and the inorganic compound are different types of compounds.
  • the polymer repeat unit for example, an acrylic polymer and an epoxy polymer are different compounds despite being organic compounds, and when a periodic table is used as a reference, alkali metals and transition metals are used. Is an element of a different system despite being inorganic elements.
  • the material constituting the light diffusing fine particles examples include polymethyl methacrylate (PMMA), polymethyl acrylate (PMA), copolymers thereof, and cross-linked products thereof.
  • Silica-based particles can also be used as the material constituting the light diffusing fine particles.
  • the copolymer component with PMMA and PMA examples include polyurethane, polystyrene (PSt), and melamine resin.
  • the light diffusing fine particles are composed of PMMA. This is because the relationship between the refractive index and the thermodynamic characteristics with the resin component of the matrix introduced in the post-process B is appropriate.
  • the light diffusing fine particles have a cross-linked structure (three-dimensional network structure).
  • the light diffusing fine particles having a crosslinked structure can swell. Therefore, unlike such dense or solid inorganic particles, such light diffusing fine particles can satisfactorily permeate a resin component precursor having appropriate compatibility.
  • the crosslink density of the light diffusing fine particles is preferably small (coarse) so that a desired penetration range (described later) is obtained.
  • the light diffusing fine particles have an average particle diameter (particle diameter before swelling (diameter)) of preferably 1.0 ⁇ m to 5.0 ⁇ m, more preferably 1.5 ⁇ m to 4.0 ⁇ m, and still more preferably. It is 2.0 ⁇ m to 3.0 ⁇ m.
  • the average particle diameter of the light diffusing fine particles is preferably 1 ⁇ 2 or less (for example, 1 ⁇ 2 to 1/20) of the thickness of the light diffusing element. If the average particle diameter has such a ratio with respect to the thickness of the light diffusing element, a plurality of light diffusing fine particles can be arranged in the thickness direction of the light diffusing element, so that incident light passes through the light diffusing element. In the meantime, the light can be diffused multiple times, and as a result, sufficient light diffusibility can be obtained.
  • the standard deviation of the weight average particle size distribution of the light diffusing fine particles in the mixed solution is preferably 1.0 ⁇ m or less, more preferably 0.5 ⁇ m or less, and particularly preferably 0.1 ⁇ m or less.
  • the diffusible fine particles in the mixed solution are preferably in a monodispersed state.
  • the variation coefficient of the weight average particle size distribution ((standard deviation of particle size) ⁇ 100 / (average particle size)) is 20%. Or less, and more preferably 15% or less. If a large number of light diffusing fine particles having a small particle size with respect to the weight average particle size are mixed, the diffusibility may be excessively increased and the backscattering may not be suppressed satisfactorily.
  • any appropriate shape can be adopted depending on the purpose. Specific examples include a true sphere shape, a flake shape, a plate shape, an elliptic sphere shape, and an indefinite shape. In many cases, spherical fine particles can be used as the light diffusing fine particles.
  • the refractive index of the light diffusing fine particles is preferably 1.30 to 1.70, more preferably 1.40 to 1.60.
  • the blending amount of the light diffusing fine particles in the mixed solution is preferably 10 to 100 parts by weight, more preferably 15 to 40 parts by weight with respect to 100 parts by weight of the formed matrix.
  • a light diffusing element having a very excellent light diffusibility can be obtained by incorporating light diffusing fine particles having an average particle diameter in the above preferred range with such a blending amount.
  • the light diffusing fine particles swell when mixed with an organic solvent.
  • the degree of swelling of the light diffusing fine particles immediately before Step B that is, immediately before the light diffusing fine particles come into contact with the precursor of the resin component is preferably 105% to 200%.
  • Step A it is preferable that the light diffusing fine particles are in a state where they swell to the maximum and do not swell any more. If the light diffusing fine particles are sufficiently swollen, the precursor of the resin component is likely to permeate the light diffusing fine particles in the next step B.
  • the “swelling degree” refers to the ratio of the average particle size of the swollen particles to the average particle size of the particles before swelling.
  • the organic solvent content ratio of the light diffusing fine particles immediately before Step B is preferably 10% to 100%, more preferably 70% to 100%.
  • the organic solvent content ratio of the light diffusing fine particles means the light diffusion with respect to the content (maximum content) of the organic solvent in the case where the organic solvent content is saturated in the light diffusing fine particles. It means the organic solvent content ratio of the conductive fine particles.
  • Organic solvent is not limited as long as the light diffusing fine particles are swollen to a desired degree, and the light diffusing fine particles and the components to be added in the post-process B can be dissolved or uniformly dispersed. Any suitable organic solvent can be employed. Specific examples of the organic solvent include ethyl acetate, butyl acetate, isopropyl acetate, 2-butanone (methyl ethyl ketone), methyl isobutyl ketone, cyclopentanone, toluene, isopropyl alcohol, n-butanol, water and the like.
  • the boiling point of the organic solvent is preferably 70 ° C. or higher, more preferably 100 ° C. or higher, particularly preferably 110 ° C. or higher, and most preferably 120 ° C. or higher.
  • a mixed solvent is used as the organic solvent.
  • a solvent obtained by mixing the light diffusing fine particles (first organic solvent) with a low volatile organic solvent (second organic solvent) is used.
  • the first organic solvent is easier to penetrate into the light diffusing fine particles and has higher volatility than the second organic solvent.
  • the second organic solvent is less likely to penetrate into the light diffusing fine particles and has lower volatility than the first organic solvent.
  • the light diffusing element has excellent smoothness by promoting the swelling of the light diffusing fine particles (that is, shortening the production process) and preventing the organic solvent from suddenly volatilizing. Can be obtained.
  • the boiling point of the first organic solvent is preferably 80 ° C.
  • the boiling point of the second organic solvent is preferably higher than 80 ° C, more preferably 100 ° C or higher, further preferably 110 ° C or higher, and most preferably 120 ° C or higher.
  • the ease of penetration of the organic solvent can be compared by, for example, the degree of swelling of the light diffusing fine particles with respect to the organic solvent, and the organic solvent that swells the light diffusing fine particles with a higher degree of swelling is the light diffusing fine particles. It can be said that it is an organic solvent that easily penetrates into water. Moreover, the organic solvent whose solubility parameter (SP value) is close to the SP value of the light diffusing fine particles tends to penetrate into the light diffusing fine particles.
  • SP value solubility parameter
  • the difference between the SP value of the first organic solvent and the SP value of the light diffusing fine particles is preferably 0.5 or less, more preferably 0.4 or less, and further preferably 0.1 to 0.00. 4.
  • the difference between the SP value of the second organic solvent and the SP value of the light diffusing fine particles is preferably more than 0.5, more preferably 0.6 or more, and further preferably 0.7 to 2.0. It is. Further, an organic solvent having a low molecular weight tends to penetrate into the light diffusing fine particles.
  • the molecular weight of the first organic solvent is preferably 80 or less, more preferably 75 or less, and further preferably 50 to 75.
  • the molecular weight of the second organic solvent is preferably higher than 80, more preferably 100 or more, and further preferably 110 to 140.
  • the above mixed solution may further contain any appropriate additive depending on the purpose.
  • the additive include an initiator, a dispersant, an anti-aging agent, a modifier, a surfactant, a discoloration preventing agent, an ultraviolet absorber, a leveling agent, and an antifoaming agent.
  • step B the liquid mixture prepared in step A above is mixed with a matrix-forming material containing a resin component precursor (monomer) and an ultrafine particle component, and swelled in the organic solvent.
  • a coating liquid (dispersion) in which the fine particles, the precursor of the resin component, and the ultrafine particle component are dissolved or dispersed is prepared.
  • the coating liquid is a dispersion in which an ultrafine particle component and light diffusing fine particles are dispersed in a precursor and an organic solvent. Any appropriate means (for example, stirring treatment) can be adopted as means for dispersing the ultrafine particle component and the light diffusing fine particles.
  • the precursor of the resin component penetrates into the light diffusing fine particles in the steps after Step B.
  • Step B it is considered that at least a part of the precursor of the resin component penetrates into the light diffusing fine particles.
  • the resin component precursor can be permeated into the light diffusing fine particles in a short time.
  • Step B it is considered that the precursor of the resin component can penetrate into the light diffusing fine particles by stirring the coating solution for 15 to 30 minutes.
  • the coating solution thus prepared can be used for the post-process C immediately after stirring, that is, without standing. Therefore, the light diffusing fine particles and the ultra fine particle component can be prevented from aggregating, and a light diffusing element having excellent smoothness, no super fine particle component density and little backscattering can be obtained.
  • the penetration range of the precursor into the light diffusing fine particles is preferably 10% or more, more preferably 50% or more, and further preferably 80% to 100%. If it is such a range, a density
  • the light diffusing fine particles are sufficiently swollen with an organic solvent, and then the resin component in the matrix is polymerized to sufficiently penetrate the light diffusing fine particles. be able to.
  • the permeation range can be controlled by adjusting the material of the resin component and the light diffusing fine particles, the cross-linking density of the light diffusing fine particles, the type of the organic solvent used during the production, and the like.
  • the solid concentration of the coating solution can be adjusted to be preferably about 10% to 70% by weight. If it is such solid content concentration, the coating liquid which has a viscosity with easy coating can be obtained.
  • the resin component is composed of any appropriate material.
  • the refractive index of the resin component satisfies the relationship of the above formula (1).
  • the resin component is composed of a compound similar to the light diffusing fine particles. More preferably, the resin component is composed of a highly compatible compound among the same compounds as the light diffusing fine particles. Accordingly, the precursor of the resin component can permeate into the light diffusing fine particles because the resin component is a material similar to the light diffusing fine particles. As a result of the polymerization of the precursor by the polymerization step described later, the concentration modulation region can be favorably formed in the vicinity of the interface between the matrix and the light diffusing fine particles.
  • the resin constituting the resin component of the matrix is an acrylate resin
  • the light diffusing fine particles are also preferably composed of an acrylate resin.
  • the resin component is preferably composed of an organic compound, more preferably an ionizing radiation curable resin.
  • the ionizing radiation curable resin is excellent in the hardness of the coating film.
  • the ionizing rays include ultraviolet rays, visible light, infrared rays, and electron beams.
  • it is ultraviolet rays, and therefore the resin component is particularly preferably composed of an ultraviolet curable resin.
  • the ultraviolet curable resin include radical polymerization monomers or oligomers such as acrylate resins (epoxy acrylate, polyester acrylate, acrylic acrylate, ether acrylate).
  • the monomer component (precursor) constituting the acrylate resin examples include pentaerythritol triacrylate (PETA), neopentyl glycol diacrylate (NPGDA), dipentaerythritol hexaacrylate (DPHA), dipentaerythritol pentaacrylate (DPPA). ), Trimethylolpropane triacrylate (TMPTA).
  • PETA pentaerythritol triacrylate
  • NPGDA neopentyl glycol diacrylate
  • DPHA dipentaerythritol hexaacrylate
  • DPPA dipentaerythritol pentaacrylate
  • TMPTA Trimethylolpropane triacrylate
  • Such a monomer component (precursor) is preferable because it has a molecular weight and a three-dimensional structure suitable for penetrating into the light diffusing fine particles.
  • the molecular weight of the resin component precursor (monomer) is preferably 100 to 700, more preferably 200 to 600, and particularly preferably 200 to 500. Within such a range, the precursor (monomer) of the resin component can easily penetrate into the light diffusing fine particles, and a light diffusing element having excellent diffusibility can be obtained.
  • the refractive index of the resin component is preferably 1.40 to 1.60.
  • the blending amount of the resin component in the coating solution is preferably 20 to 80 parts by weight, more preferably 45 to 65 parts by weight with respect to 100 parts by weight of the formed matrix.
  • the resin component may contain another resin component in addition to the ionizing radiation curable resin.
  • Another resin component may be an ionizing radiation curable resin, a thermosetting resin, or a thermoplastic resin.
  • Representative examples of other resin components include aliphatic (for example, polyolefin) resins and urethane resins.
  • the type and blending amount thereof can be adjusted so that the concentration modulation region is well formed and the refractive index satisfies the relationship of the above formula (1).
  • the above ultrafine particle component can typically function as a component that adjusts the refractive index of the matrix.
  • the refractive index of the matrix can be easily adjusted, and the refractive index difference between the light diffusing fine particles and the matrix can be increased.
  • the concentration of the ultra fine particle component in the matrix can be increased, so that the refractive index difference between the matrix and the light diffusing fine particles can be reduced. Can be easily enlarged. As a result, it is possible to obtain a light diffusing element having a high haze value (strong diffusibility) while being a thin film.
  • the ultrafine particle component has a refractive index n B satisfying the following formula (2): 0 ⁇
  • n A and n P are as described above.
  • is preferably 0.10 to 1.50, more preferably 0.20 to 0.80.
  • is less than 0.10, the haze value is often 90% or less, and as a result, the light from the light source cannot be sufficiently diffused when incorporated in a liquid crystal display device. The viewing angle may be narrowed.
  • the refractive index of the resin component, the ultrafine particle component, and the light diffusing fine particle satisfies the following formula (3). More preferably, the refractive index of the resin component, the ultrafine particle component, and the light diffusing fine particle satisfies the above formula (2) and the following formula (3). If the refractive indexes of the resin component, the ultrafine particle component, and the light diffusing fine particles are in such a relationship, a light diffusing element in which backscattering is suppressed while maintaining high haze can be obtained.
  • the ultrafine particle component is composed of a compound of a system different from the resin component and the light diffusing fine particles, and more preferably composed of an inorganic compound.
  • inorganic compounds include metal oxides and metal fluorides.
  • the metal oxide include zirconium oxide (zirconia) (refractive index: 2.19), aluminum oxide (refractive index: 1.56 to 2.62), and titanium oxide (refractive index: 2.49 to 2.19). 74) and silicon oxide (refractive index: 1.25 to 1.46).
  • the metal fluoride include magnesium fluoride (refractive index: 1.37) and calcium fluoride (refractive index: 1.40 to 1.43).
  • metal oxides and metal fluorides have a refractive index that is difficult to be expressed by organic compounds such as ionizing radiation curable resins and thermoplastic resins in addition to low light absorption.
  • the difference in refractive index from the matrix can be increased.
  • these metal oxides and metal fluorides form a concentration modulation region in the vicinity of the interface between the light diffusing fine particles and the matrix due to appropriate dispersibility with the resin component. And backscattering can be suppressed.
  • a particularly preferred inorganic compound is zirconium oxide. This is because the difference in refractive index from the light diffusing fine particles is large and the dispersibility with the resin component is appropriate, so that a concentration modulation region having desired characteristics (or structure) can be formed satisfactorily.
  • the refractive index of the ultrafine particle component is preferably 1.40 or less or 1.60 or more, more preferably 1.40 or less or 1.70 to 2.80, and particularly preferably 1.40 or less or 2 .00 to 2.80. If the refractive index exceeds 1.40 or less than 1.60, the difference in refractive index between the light diffusing fine particles and the matrix becomes insufficient, and the resulting light diffusing element is used as a liquid crystal display device of a collimated backlight front diffusion system. When used, the light from the collimated backlight may not be sufficiently diffused and the viewing angle may be narrowed.
  • the ultrafine particle component may be made porous to lower the refractive index.
  • the average particle size of the ultrafine particle component is preferably 1 nm to 100 nm, more preferably 10 nm to 80 nm, and still more preferably 20 nm to 70 nm.
  • the average particle size of the ultrafine particle component is preferably 1 nm to 100 nm, more preferably 10 nm to 80 nm, and still more preferably 20 nm to 70 nm.
  • the ultrafine particle component preferably has good dispersibility with the resin component.
  • “dispersibility is good” means that a coating liquid obtained by mixing the resin component, the ultrafine particle component, and the organic solvent is applied, and the solvent is removed by drying. It means being transparent.
  • the ultrafine particle component is surface-modified.
  • the ultrafine particle component can be favorably dispersed in the resin component, and the concentration modulation region can be favorably formed in the vicinity of the interface between the light diffusing fine particles and the matrix.
  • Any appropriate means can be adopted as the surface modifying means as long as the effects of the present invention can be obtained.
  • the surface modification is performed by applying a surface modifier to the surface of the ultrafine particle component to form a surface modifier layer.
  • preferable surface modifiers include coupling agents such as silane coupling agents and titanate coupling agents, and surfactants such as fatty acid surfactants.
  • the blending amount of the ultrafine particle component in the coating liquid is preferably 10 parts by weight to 70 parts by weight, and more preferably 30 parts by weight to 60 parts by weight with respect to 100 parts by weight of the formed matrix.
  • the coating liquid is applied to the substrate.
  • Any appropriate film can be adopted as the substrate as long as the effects of the present invention can be obtained. Specific examples include a triacetyl cellulose (TAC) film, a polyethylene terephthalate (PET) film, a polypropylene (PP) film, a nylon film, an acrylic film, and a lactone-modified acrylic film.
  • TAC triacetyl cellulose
  • PET polyethylene terephthalate
  • PP polypropylene
  • the base material may be subjected to surface modification such as easy adhesion treatment, and may contain additives such as a lubricant, an antistatic agent, and an ultraviolet absorber.
  • a method for applying the coating liquid to the base material a method using any appropriate coater can be employed.
  • the coater include a bar coater, a reverse coater, a kiss coater, a gravure coater, a die coater, and a comma coater.
  • the precursor is polymerized.
  • the polymerization method any appropriate method can be adopted depending on the type of the resin component (and hence its precursor).
  • the resin component is an ionizing radiation curable resin
  • the precursor is polymerized by irradiating the ionizing radiation.
  • ultraviolet rays are used as the ionizing ray
  • the integrated light quantity is preferably 200 mJ to 400 mJ.
  • the transmittance of the ionizing rays to the light diffusing fine particles is preferably 70% or more, more preferably 80% or more.
  • the resin component is a thermosetting resin
  • the precursor is polymerized by heating. The heating temperature and the heating time can be appropriately set according to the type of the resin component.
  • the polymerization is performed by irradiating with ionizing radiation.
  • the coating film can be cured while maintaining a favorable refractive index distribution structure (concentration modulation region), so that a light diffusing element having good diffusion characteristics can be produced.
  • concentration modulation region refractive index distribution structure
  • by polymerizing the precursor a matrix is formed, and at the same time, in the vicinity of the surface of the light diffusing fine particles, the weight concentration of the ultrafine particle component increases as the distance from the light diffusing fine particles increases. A shell-shaped concentration modulation region is formed.
  • the production method of the present invention by simultaneously polymerizing a precursor that has penetrated into the light diffusing fine particles and a precursor that has not penetrated into the light diffusing fine particles, an interface between the matrix and the light diffusing fine particles is obtained.
  • a matrix can be formed at the same time as the concentration modulation region is formed in the vicinity.
  • the method for manufacturing a light diffusing element of the present invention can include any appropriate process, process and / or operation at any appropriate time in addition to the above-mentioned processes A to C.
  • the type of such a process and the time when such a process is performed can be appropriately set according to the purpose.
  • the method for producing a light diffusing element of the present invention further includes a step of heating a coating liquid applied on the substrate, if necessary.
  • a coating liquid can be dried by the said heating. Such heating may be performed, for example, before the polymerization step or after the polymerization step.
  • the heating of the coating solution is preferably performed before the polymerization step.
  • the penetration of the precursor of the resin component into the light diffusing fine particles can be promoted by heating.
  • Any appropriate method can be adopted as the heating method of the coating liquid.
  • the heating temperature is, for example, preferably 80 ° C. or less, more preferably 50 ° C. to 70 ° C., and the heating time is, for example, 30 seconds to 5 minutes. According to the production method of the present invention, even when heating is performed at a low temperature, the penetration of the precursor of the resin component into the light diffusing fine particles can be promoted, and a light diffusing element having high diffusibility can be obtained. .
  • the light diffusing element is formed on the substrate.
  • the light diffusing element manufactured by the manufacturing method of the present invention has strong diffusibility and is excellent in smoothness.
  • the mechanism by which the light diffusing element excellent in smoothness is obtained is estimated as follows.
  • the light diffusing fine particles that are sufficiently swollen and contain an organic solvent have fluidity in the coating liquid, and can follow changes in the coating liquid level (for example, changes in the coating liquid level due to drying). As a result, the light diffusing fine particles in the present invention can be prevented from protruding from the coating film, and a light diffusing element having excellent smoothness can be obtained.
  • the light diffusing fine particles have low fluidity in the coating liquid.
  • the coating liquid containing such light diffusing fine particles is subjected to a drying step, the light diffusing fine particles cannot follow the change in the coating liquid surface. As a result, the light diffusing fine particles protrude from the coating film, resulting in unevenness on the surface of the light diffusing element.
  • the precursor of the resin component easily penetrates into the light diffusing fine particles.
  • the light diffusing fine particles are further swollen and the average particle size is further increased. If the average particle size of the light diffusing fine particles is large, strong light diffusibility can be expressed with a small number of light diffusing fine particles. Backscattering is suppressed in a light diffusing element that contains a small number of light diffusing fine particles.
  • the coating liquid of the light diffusing fine particles is applied to the surface of the coating liquid applied to the substrate.
  • the precursor of the resin component does not penetrate into the substantially contacting portion.
  • the light diffusing fine particles can be prevented from projecting and increasing from the coating film, and the light diffusing fine particles having a large average particle diameter can be present without impairing the smoothness.
  • the obtained light diffusing element may be peeled off from the substrate and used as a single member, or may be used as a light diffusing element with a substrate, transferred from the substrate to a polarizing plate, etc. It may be used as a polarizing plate with a light diffusing element) or may be used as a composite member (for example, a polarizing plate with a light diffusing element) by being attached to a polarizing plate or the like together with the base material.
  • the base material is attached to a polarizing plate or the like and used as a composite member (for example, a polarizing plate with a light diffusing element)
  • the base material can function as a protective layer for the polarizing plate.
  • the light diffusing element of the present invention can be obtained by the method described in the above items A-1 to A-3.
  • the light diffusing element of the present invention has a matrix containing a resin component and an ultrafine particle component, and light diffusing fine particles dispersed in the matrix.
  • the light diffusing element of the present invention exhibits a light diffusing function due to a difference in refractive index between the matrix and the light diffusing fine particles.
  • FIG. 1 is a schematic diagram for explaining a dispersion state of a resin component of a matrix and light diffusing fine particles in a light diffusing element obtained by a manufacturing method according to a preferred embodiment of the present invention.
  • the light diffusing element 100 of the present invention includes a matrix 10 including a resin component 11 and an ultrafine particle component 12 and light diffusing fine particles 20 dispersed in the matrix 10.
  • the resin component of the matrix and the light diffusing fine particles have a refractive index satisfying the following formula (1): 0 ⁇
  • the ultrafine particle component preferably has a refractive index satisfying the following formulas (2) and (3): 0 ⁇
  • Using the matrix resin component and light diffusing fine particles having the relationship of the above formula (1), and using the ultrafine particle component having the relationship of the above formulas (2) and (3), while maintaining high haze A light diffusing element in which backscattering is suppressed can be obtained.
  • the weight concentration of the ultrafine particle component increases in the vicinity of the interface between the matrix and the light diffusing fine particles as the distance from the light diffusing fine particles increases.
  • a density modulation region 30 is formed. Therefore, the matrix has a concentration modulation region 30 in the vicinity of the interface with the light diffusing fine particles, and a constant concentration region outside the concentration modulation region 30 (on the side away from the light diffusing fine particles).
  • the part other than the density modulation area 30 in the matrix is a substantially constant density area.
  • the refractive index changes substantially continuously.
  • the “near the interface between the matrix and the light diffusing fine particles” includes the surface of the light diffusing fine particles, the outside near the surface and the inside near the surface.
  • the concentration modulation region 30 is formed by a substantial gradient of the dispersion concentration of the ultrafine particle component 12 in the matrix 10.
  • the dispersion concentration (typically defined by the weight concentration) of the ultrafine particle component 12 increases as the distance from the light diffusing fine particles 20 increases (inevitably, resin The weight concentration of component 11 is reduced).
  • the ultrafine particle component 12 is dispersed at a relatively low concentration in the closest region of the light diffusing fine particle 20 in the concentration modulation region 30, and the concentration of the ultrafine particle component 12 increases as the distance from the light diffusing fine particle 20 increases. Will increase.
  • the area ratio of the ultrafine particle component 12 in the matrix 10 according to the transmission electron microscope (TEM) image is small on the side close to the light diffusing fine particles 20 and large on the side close to the matrix 10, and the area ratio is light. It changes while forming a substantial gradient from the diffusible fine particle side to the matrix side (constant concentration region side).
  • FIG. 3 shows a TEM image representing the typical dispersion state.
  • area ratio of ultrafine particle component in matrix by transmission electron microscope image means a matrix in a predetermined range (predetermined area) in a transmission electron microscope image of a cross section including the diameter of light diffusing fine particles. The ratio of the area of the ultrafine particle component to the total.
  • the area ratio corresponds to the three-dimensional dispersion concentration (actual dispersion concentration) of the ultrafine particle component.
  • the area ratio of the ultrafine particle component can be obtained by any appropriate image analysis software.
  • the area ratio typically corresponds to the average shortest distance between the particles of the ultrafine particle component. Specifically, the average shortest distance between each particle of the ultrafine particle component becomes shorter as the distance from the light diffusing fine particles in the concentration modulation region, and becomes constant in the constant concentration region (for example, the average shortest distance is the light diffusion). In the closest region of the fine particles, it is about 3 to 100 nm, and in the constant concentration region, it is 1 to 20 nm).
  • the average shortest distance can be calculated by binarizing a TEM image in a dispersed state as shown in FIG.
  • the concentration modulation region 30 can be formed in the vicinity of the interface between the matrix and the light diffusing fine particles using the substantial gradient of the dispersion concentration of the ultrafine particle component 12. Therefore, it is possible to manufacture a light diffusing element with a much simpler procedure and at a much lower cost than the case where GRIN fine particles are manufactured by a complicated manufacturing method and the GRIN fine particles are dispersed.
  • the refractive index can be smoothly changed at the boundary between the concentration modulation region 30 and the constant concentration region by forming the concentration modulation region using a substantial gradient of the dispersion concentration of the ultrafine particle component. Furthermore, by using an ultrafine particle component having a refractive index that is significantly different from that of the resin component and the light diffusing fine particles, the difference in refractive index between the light diffusing fine particles and the matrix (substantially constant concentration region) is increased, and the concentration The refractive index gradient in the modulation region can be made steep.
  • the concentration modulation region can be formed by appropriately selecting the resin component and ultrafine particle component of the matrix, the constituent material of the light diffusing fine particles, and the chemical and thermodynamic characteristics.
  • the concentration modulation region can be satisfactorily formed by configuring the resin component and the light diffusing fine particles with materials having high compatibility among the similar materials.
  • the concentration modulation region 30 is polymerized after the precursor (monomer) of the resin component 11 has penetrated into the light diffusing fine particles 20 as described in the above items A-1 to A-3, for example. It is formed.
  • the thickness and concentration gradient of the concentration modulation region can be controlled by adjusting the chemical and thermodynamic characteristics of the resin component of the matrix and the light diffusing fine particles.
  • the refractive index changes substantially continuously as described above.
  • the outermost refractive index of the concentration modulation region and the refractive index of the constant concentration region are substantially the same.
  • the refractive index continuously changes from the concentration modulation region to the constant concentration region, preferably from the light diffusing fine particles (more preferably, the inside of the vicinity of the surface of the light diffusing fine particles) to the concentration.
  • the refractive index continuously changes over a certain region (FIG. 4).
  • the refractive index change is smooth as shown in FIG.
  • the shape changes so that a tangent line can be drawn on the refractive index change curve.
  • the gradient of refractive index change increases as the distance from the light diffusing fine particles increases.
  • the weight concentration of the ultrafine particle component 12 having a refractive index that is significantly different from that of the light diffusing fine particles 20 is relatively high.
  • the difference in refractive index with the fine particles 20 can be increased.
  • high haze strong diffusivity
  • the refractive index changes substantially continuously means that the refractive index should change substantially continuously from at least the light diffusing fine particles to the constant concentration region in the concentration modulation region. To do.
  • the refractive index within a predetermined range for example, the refractive index difference is 0.05 or less
  • the refractive index difference is 0.05 or less
  • the thickness of the concentration modulation region 30 may be constant (that is, the concentration modulation region extends concentrically around the light diffusing fine particles.
  • the thickness may be different depending on the position of the surface of the light diffusing fine particles (for example, it may be an outer shape of confetti).
  • the thickness of the concentration modulation region 30 varies depending on the position of the surface of the light diffusing fine particles. With such a configuration, the refractive index can be changed more smoothly and continuously in the concentration rate modulation region 30.
  • the average thickness of the concentration modulation region 30 is preferably 5 nm to 500 nm, more preferably 12 nm to 400 nm, and still more preferably 15 nm to 300 nm. If the average thickness is less than 5 nm, backscattering may increase. When the average thickness exceeds 500 nm, the diffusibility may be insufficient.
  • the light diffusing element of the present invention is a thin film having a high haze value, strong diffusibility, and suppressed backscattering even though the average thickness of the concentration modulation region 30 is very thin. A light diffusing element can be realized.
  • the average thickness is an average thickness when the thickness of the concentration modulation region 30 varies depending on the position of the surface of the light diffusing fine particles, and is the thickness when the thickness is constant.
  • the light diffusing element preferably has a higher haze value.
  • the haze value is preferably 70% or more, more preferably 90 to 99.5%, and further preferably 92 to 99.5%. Yes, particularly preferably 95 to 99.5%, most preferably 97 to 99.5%.
  • the collimated backlight front diffusion system is a liquid crystal display device that uses collimated backlight light (backlight light with a narrow luminance half-value width condensed in a certain direction) and the front light on the viewing side of the upper polarizing plate.
  • the diffusion characteristic of the light diffusing element is preferably 10 ° to 150 ° (5 ° to 75 ° on one side), more preferably 10 ° to 100 ° (5 ° to 50 ° on one side), in terms of a light diffusion half-value angle. And more preferably 30 ° to 80 ° (15 ° to 40 ° on one side).
  • the thickness of the light diffusing element can be appropriately set according to the purpose and desired diffusion characteristics. Specifically, the thickness of the light diffusing element is preferably 4 ⁇ m to 50 ⁇ m, more preferably 4 ⁇ m to 20 ⁇ m. According to the present invention, a light diffusing element having such a very high haze as described above can be obtained despite such a very thin thickness.
  • a light diffusing element having excellent smoothness can be obtained.
  • the light diffusion element excellent in smoothness has little backscattering.
  • the arithmetic average surface roughness Ra of the light diffusing element is preferably less than 0.05 mm, more preferably 0.04 mm or less, and further preferably 0.03 mm or less.
  • the arithmetic average surface roughness Ra of the light diffusing element is preferably as small as possible, but a practical lower limit is, for example, 0.001 mm.
  • “arithmetic average surface roughness Ra” is an arithmetic average surface roughness Ra defined in JIS B 0601 (1994 edition).
  • the ten-point average surface roughness Rz of the light diffusing element is preferably less than 0.20 ⁇ m, more preferably less than 0.17 ⁇ m, and still more preferably less than 0.15 ⁇ m.
  • the ten-point average roughness Rz of the light diffusing element is preferably as small as possible, but a practical lower limit is, for example, 0.005 ⁇ m.
  • “ten-point average surface roughness Rz” is a ten-point average surface roughness Rz defined in JIS B 0601 (1994 edition).
  • the average inclination angle ⁇ a of the light diffusing element is preferably less than 0.50 °, more preferably less than 0.45 °, and still more preferably 0.40 ° or less.
  • the average inclination angle ⁇ a of the light diffusing element is preferably as small as possible, but a practical lower limit is, for example, 0.01 °.
  • the average inclination angle ⁇ a is defined by the following formula (4).
  • ⁇ a tan ⁇ 1 ⁇ a (4)
  • ⁇ a is the peak and valley of adjacent peaks in the reference length L of the roughness curve defined in JIS B 0601 (1994 version) as shown in the following formula (5).
  • the roughness curve is a curve obtained by removing a surface waviness component longer than a predetermined wavelength from a cross-sectional curve with a phase difference compensation type high-pass filter.
  • the cross-sectional curve is a contour that appears at the cut end when the target surface is cut along a plane perpendicular to the target surface.
  • the light diffusing element has a ten-point average surface roughness Rz of preferably less than 0.20 ⁇ m, more preferably less than 0.17 ⁇ m, still more preferably less than 0.15 ⁇ m, and an average inclination.
  • the angle ⁇ a is preferably less than 0.5 °, more preferably less than 0.45 °, and still more preferably 0.40 ° or less.
  • the light diffusing element is suitably used for a viewing side member of a liquid crystal display device, a backlight member of a liquid crystal display device, and a diffusing member for a lighting fixture (for example, an organic EL or LED), and is a front of a collimated backlight front diffusion system. It is particularly preferably used as a diffusing element.
  • the light diffusing element may be provided alone as a film-like or plate-like member, or may be provided as a composite member by being attached to any appropriate base material or polarizing plate. An antireflection layer may be laminated on the light diffusing element.
  • Thickness of the light diffusing element The total thickness of the base material and the light diffusing element is measured with a microgauge thickness meter (manufactured by Mitutoyo Corporation), and the thickness of the light diffusing element is subtracted from the total thickness. was calculated.
  • Ten-point average surface roughness Rz, arithmetic average surface roughness Ra, and average inclination angle ⁇ a Ten-point average surface roughness Rz, arithmetic average surface roughness Ra, and average inclination angle ⁇ a were measured using a fine shape measuring instrument (trade name “Surfcoder ET-4000” manufactured by Kosaka Laboratory Ltd.).
  • a commercially available polarizing plate (Nitto Denko Corporation) is provided on both sides of the liquid crystal cell taken out from a commercially available liquid crystal television (manufactured by Sony, BRAVIA 20 type, trade name “KDL20J3000”) having a multi-domain VA mode liquid crystal cell.
  • Manufactured and trade name “NPF-SEG1423DU”) were bonded so that the absorption axes of the respective polarizers were orthogonal to each other.
  • the absorption axis direction of the polarizer of the backlight side polarizing plate is the vertical direction (90 ° with respect to the long side direction of the liquid crystal panel), and the absorption axis direction of the polarizer of the viewing side polarizing plate is the horizontal direction. Bonding was performed so as to be (0 ° with respect to the long side direction of the liquid crystal panel). Furthermore, the light diffusing elements of Examples and Comparative Examples were transferred from the base material and bonded to the outside of the viewing side polarizing plate to prepare a liquid crystal panel. On the other hand, a lenticular lens pattern was melt-heat transferred onto one side of a PMMA sheet using a transfer roll.
  • An aluminum pattern is deposited on the surface (smooth surface) opposite to the surface on which the lens pattern is formed so that light is transmitted only through the focal point of the lens, and the area ratio of the opening is 7% (the area ratio of the reflection section is 93). %) Of the reflective layer.
  • a cold cathode fluorescent lamp manufactured by Sony Corporation, BRAVIA20J CCFL
  • a condensing element was attached to the light source to produce a parallel light source device (backlight unit) that emits collimated light.
  • the backlight unit was incorporated into the liquid crystal panel to produce a liquid crystal display device of a collimated backlight front diffusion system.
  • a fluorescent lamp (200 lx: measured value by illuminometer IM-5) is arranged and irradiated so that the emitted light is incident at an angle of 15 ° with the vertical direction of the liquid crystal display device, and black display and white display are performed.
  • the brightness was measured with a conoscope manufactured by AUTRONIC MELCHERS, and the contrast was evaluated.
  • Example 1 15 parts of polymethyl methacrylate (PMMA) fine particles (manufactured by Sekisui Plastics Co., Ltd., trade name “XX131AA”, average particle size 2.5 ⁇ m, refractive index 1.49) as light diffusing fine particles, and acetic acid as an organic solvent 30 parts of a mixed solvent of butyl and MEK (weight ratio 50/50) was mixed and stirred for 60 minutes to prepare a mixed solution.
  • PMMA polymethyl methacrylate
  • a resin for hard coat containing 62% of zirconia nanoparticles (average particle size 60 nm, refractive index 2.19) as an ultrafine particle component in the obtained mixed solution (trade name “OPSTAR KZ6661” (manufactured by JSR Corporation) ( MEK / MIBK-containing)) 100 parts, pentaerythritol triacrylate as a resin component precursor (manufactured by Osaka Organic Chemical Industry, trade name “Biscoat # 300”, refractive index 1.52, molecular weight 298) 22 parts, photopolymerization Add 0.5 parts of initiator (trade name “Irgacure 907” manufactured by Ciba Specialty Chemical Co., Ltd.) and 0.5 parts leveling agent (trade name “GRANDIC PC 4100” manufactured by DIC Corporation), and use a disper.
  • the mixture was stirred for 15 minutes to prepare a coating solution.
  • a coating solution is prepared, it is coated on a TAC film (trade name “Fujitac”, manufactured by Fuji Film Co., Ltd.) using a bar coater, heated at 60 ° C. for 1 minute, and then irradiated with ultraviolet light with an integrated light amount of 300 mJ.
  • a light diffusing element having a thickness of 10 ⁇ m was obtained.
  • the obtained light diffusing element was subjected to the evaluations (2) to (6) above. Further, a TEM photograph of a cross section of the light diffusing element is shown in FIG. Incidentally, when setting the white luminance in the dark with 300 cd / m 2, black luminance 0.3 cd / m 2, and the contrast in the dark was 1000.
  • Example 2 Instead of pentaerythritol triacrylate (trade name “Biscoat # 300” manufactured by Osaka Organic Chemical Industry Co., Ltd., refractive index 1.52, molecular weight 298) as a precursor of the fat component, dipentaerythritol hexaacrylate (Shin Nakamura Chemical Co., Ltd.) A light diffusing element was obtained in the same manner as in Example 1 except that a product name “NK ester”, a refractive index of 1.52, a molecular weight of 632) manufactured by the company was used. The obtained light diffusing element was subjected to the evaluations (2) to (6) above. The results are shown in Table 1.
  • Example 3 A light diffusing element was obtained in the same manner as in Example 1 except that 30 parts of MEK was used instead of 30 parts of a mixed solvent (weight ratio 50/50) of butyl acetate and MEK as an organic solvent. The obtained light diffusing element was subjected to the evaluations (2) to (6) above. The results are shown in Table 1.
  • ⁇ Comparative Example 1> In 100 parts of resin for hard coat containing 62% of zirconia nanoparticles (average particle size 60 nm, refractive index 2.19) as an ultrafine particle component (manufactured by JSR, trade name “OPSTAR KZ6661” (including MEK / MIBK)) , 11 parts of 50% MEK solution of pentaerythritol triacrylate (trade name “Biscoat # 300” manufactured by Osaka Organic Chemical Industry Co., Ltd., refractive index 1.52) as a precursor of the resin component, Specialty Chemicals, trade name “Irgacure 907”) 0.5 parts, leveling agent (DIC, trade name “GRANDIC PC 4100”) 0.5 parts, and polymethacryl as light diffusing fine particles Methyl acid (PMMA) fine particles (manufactured by Sekisui Plastics Co., Ltd., trade name “XX131AA”, average particle size 2.5 ⁇ m, refractive index 1.
  • PMMA Meth
  • ⁇ Comparative example 2> In 100 parts of resin for hard coat containing 62% of zirconia nanoparticles (average particle size 60 nm, refractive index 2.19) as an ultrafine particle component (manufactured by JSR, trade name “OPSTAR KZ6661” (including MEK / MIBK)) 11 parts of a 50% butyl acetate solution of pentaerythritol triacrylate (trade name “Biscoat # 300” manufactured by Osaka Organic Chemical Industry Co., Ltd., refractive index 1.52) as a precursor of the resin component, ⁇ Specialty Chemical Co., Ltd., trade name “Irgacure 907”) 0.5 parts, leveling agent (DIC, trade name “GRANDIC PC 4100”) 0.5 parts, and poly as light diffusing fine particles Methyl methacrylate (PMMA) fine particles (manufactured by Sekisui Plastics Co., Ltd., trade name “XX131AA”, average particle size 2.5 ⁇ m, refr
  • This mixture was sonicated for 5 minutes to prepare a coating solution in which the above components were uniformly dispersed.
  • the coating solution was allowed to stand for 72 hours, then coated on a TAC film (trade name “Fujitac”, manufactured by Fuji Film Co., Ltd.) using a bar coater, heated at 60 ° C. for 1 minute, and an accumulated light amount of 300 mJ.
  • Ultraviolet light was irradiated to obtain a light diffusing element having a thickness of 10 ⁇ m.
  • the obtained light diffusing element was subjected to the evaluations (2) to (6) above. The results are shown in Table 1.
  • a light diffusing element having a high haze value and a high diffusibility even after coating immediately after preparing a coating liquid. can be manufactured.
  • the light diffusing element obtained by the production method of the present invention has excellent surface smoothness and little backscattering.
  • the density of the ultrafine particle component is small, the light diffusing fine particle and the ultrafine particle component are less likely to aggregate according to the method of manufacturing a light diffusing element of the present invention. It is considered that a light diffusing element having the following can be obtained.
  • the light diffusing element obtained by the production method of the present invention is suitably used for a viewing side member of a liquid crystal display device, a backlight member of a liquid crystal display device, and a diffusing member for a lighting fixture (for example, organic EL, LED), and a collimator. It can be particularly preferably used as a front diffusion element of a backlight front diffusion system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

 ヘイズ値が高く、強い拡散性を有し、かつ、表面が平滑で後方散乱が抑制された光拡散素子を低コストかつ高生産性(短時間)で製造し得る光拡散素子の製造方法を提供すること。 本発明の光拡散素子の製造方法は、光拡散性微粒子と有機溶剤とを混合して混合液を調製し、該光拡散性微粒子を膨潤させる工程Aと、該混合液と、樹脂成分の前駆体および超微粒子成分を含むマトリクス形成材料とを混合する工程Bと、該樹脂成分の前駆体を重合して、樹脂成分および超微粒子成分を含むマトリクスを形成する工程Cと、を含む。

Description

光拡散素子の製造方法および光拡散素子
 本発明は、光拡散素子の製造方法および光拡散素子に関する。
 光拡散素子は、照明カバー、プロジェクションテレビのスクリーン、面発光装置(例えば、液晶表示装置)などに広く利用されている。近年では、光拡散素子は、液晶表示装置などの表示品位の向上、視野角特性の改善等への利用が進んでいる。光拡散素子としては、微粒子を樹脂シートなどのマトリクス中に分散させたものなどが提案されている(例えば、特許文献1参照)。このような光拡散素子においては、入射した光の大部分は前方(出射面側)に散乱するが、一部は後方(入射面側)に散乱する。微粒子とマトリクスとの屈折率差が大きいほど拡散性(例えば、ヘイズ値)は大きくなるが、一方で、屈折率差が大きいと後方散乱が増大してしまう。後方散乱が大きいと、光拡散素子を液晶表示装置に用いた場合に、液晶表示装置に外光が入射したときに画面が白っぽくなるので、コントラストのある映像や画像の表示が困難である。
 上記のような後方散乱を解決する手段として、微粒子の中心部から外側に向かって連続的に屈折率が変化するいわゆるGRIN(gradient index)微粒子などの屈折率傾斜微粒子を樹脂中に分散させた光拡散素子が提案されている(例えば、特許文献2参照)。しかし、GRIN微粒子は、通常の微粒子よりも製造プロセスが複雑なため生産性が不十分であり、実用的ではない。
 また、上記GRIN微粒子を含む光拡散素子においては、連続的に屈折率を変化させる手段として、マトリクス樹脂成分を重合する前に、微粒子にマトリクス樹脂成分の前駆体(例えば、モノマー)を浸透させる技術が提案されている(特許文献3参照)。しかし、このような技術でも、高ヘイズな光拡散性を得ようとすると、マトリクス樹脂成分の前駆体を浸透させるのに長時間を要したり、高温で加熱することを要し、生産性の点ではいまだ改善の余地がある。
特許第3071538号 特開2002-214408号公報 特許第4756100号
 本発明は上記従来の課題を解決するためになされたものであり、その目的とするところは、ヘイズ値が高く、強い拡散性を有し、かつ、表面が平滑で後方散乱が抑制された光拡散素子を低コストかつ高生産性(短時間)で製造し得る光拡散素子の製造方法を提供することにある。
 本発明の光拡散素子の製造方法は、光拡散性微粒子と有機溶剤とを混合して混合液を調製し、該光拡散性微粒子を膨潤させる工程Aと、該混合液と、樹脂成分の前駆体および超微粒子成分を含むマトリクス形成材料とを混合する工程Bと、該樹脂成分の前駆体を重合して、樹脂成分および超微粒子成分を含むマトリクスを形成する工程Cと、を含む。
 好ましい実施形態においては、上記樹脂成分の前駆体の分子量が、100~700である。
 好ましい実施形態においては、上記有機溶剤の沸点が、70℃以上である。
 好ましい実施形態においては、上記有機溶剤が、第1の有機溶剤と第2の有機溶剤との混合溶剤であり、
 該第1の有機溶剤は、該第2の有機溶剤よりも前記光拡散性微粒子に浸透しやすく、かつ、該第2の有機溶剤よりも揮発性が高い。
 好ましい実施形態においては、本発明の光拡散素子の製造方法は、上記混合液と、樹脂成分の前駆体および超微粒子成分を含むマトリクス形成材料とを混合して得られた分散液を、加熱する工程をさらに含み、加熱温度が80℃以下である。
 好ましい実施形態においては、上記工程Cにおいて、前記マトリクスと前記光拡散性微粒子との界面近傍に、該光拡散性微粒子から遠ざかるにつれて該超微粒子成分の重量濃度が高くなる実質的に球殻状の濃度変調領域を形成させる。
 本発明の別の局面によれば、光拡散素子が提供される。この光拡散素子は、上記の方法によって得られ、ヘイズ値が70%以上である。
 好ましい実施形態においては、上記光拡散素子は、十点平均表面粗さRzが、0.20μm未満である。
 好ましい実施形態においては、上記光拡散素子は、平均傾斜角度θaが、0.5°未満である。
 好ましい実施形態においては、上記光拡散素子は、算術平均表面粗さRaが、0.05mm未満である。
 本発明によれば、光拡散性微粒子、超微粒子成分および樹脂成分を含む光拡散素子の製造において、先に光拡散性微粒子に有機溶剤を含有させ、あらかじめ光拡散性微粒子を膨潤させた後、当該光拡散性微粒子と、樹脂成分の前駆体および超微粒子成分を含むマトリクス形成材料とを混合することにより、上記光拡散性微粒子に上記前駆体を短時間で浸透させることができる。また、本発明の製造方法によれば、この光拡散性微粒子に浸透した前駆体と浸透していない前駆体とを重合することにより、特別な処理や操作を必要とせずに光拡散素子を製造することができる。本発明においては、上記光拡散性微粒子に上記前駆体を短時間で浸透させることができるので、生産性に優れ、かつ、光拡散性微粒子および超微粒子成分の凝集を防いで平滑性に優れる光拡散素子を製造することができる。さらに、製造工程において、上記各成分を含む塗工液を塗布・乾燥させる際、膨潤させた光拡散性微粒子は、塗工液中で流動性を有し、乾燥時の塗工面の変化に追従することができるので、平滑性に優れる光拡散素子を製造することができる。
 本発明の製造方法で得られる光拡散素子は、光拡散性微粒子の表面近傍に、該光拡散性微粒子から遠ざかるにつれて超微粒子成分の重量濃度が高くなる実質的に球殻状の濃度変調領域が形成され得、当該濃度変調領域では屈折率が変調するので、光拡散素子とマトリクスとの界面近傍において屈折率を段階的または実質的に連続的に変化させることができる。したがって、マトリクスと光拡散性微粒子との界面の反射を良好に抑えることができ、後方散乱を抑制することができる。さらに、本発明によれば、特定の屈折率および樹脂成分に対する特定の相溶性を有する超微粒子成分を用いることにより、マトリクスの屈折率を容易に調整することができる。特に、本発明によれば、樹脂成分が光拡散性微粒子内部に浸透することにより、マトリクス中の超微粒子成分の濃度を高くすることができるので、マトリクスと光拡散性微粒子との屈折率差を容易に大きくすることができる。その結果、本発明の製造方法で得られる光拡散素子は、ヘイズ値が高く、強い拡散性を有し、かつ、後方散乱が抑制されている。
本発明の好ましい実施形態による製造方法により得られる光拡散素子におけるマトリクスの樹脂成分および光拡散性微粒子の分散状態を説明するための模式図である。 本発明の光拡散素子における光拡散性微粒子近傍を拡大して説明する模式図である。 マトリクス中の超微粒子成分の面積比率を説明するための透過型電子顕微鏡画像である。 本発明の光拡散素子における光拡散性微粒子中心部からマトリクスまでの屈折率変化を説明するための概念図である。 (a)は、実施例1で得られた光拡散素子の断面を示す透過型顕微鏡写真である。(b)は、比較例1で得られた光拡散素子の断面を示す透過型顕微鏡写真である。(c)は、比較例4で得られた光拡散素子の断面を示す透過型顕微鏡写真である。
A.光拡散素子の製造方法
 本発明の一つの実施形態による光拡散素子の製造方法は、光拡散性微粒子と有機溶剤とを混合して混合液を調製し、該光拡散性微粒子を膨潤させる工程(工程Aとする)と、該混合液と、樹脂成分の前駆体および超微粒子成分を含むマトリクス形成材料とを混合する工程(工程Bとする)と、該樹脂成分の前駆体を重合して、樹脂成分および超微粒子成分を含むマトリクスを形成する工程(工程Cとする)とを含む。
A-1.工程A
 工程Aにおいては、光拡散性微粒子と有機溶剤とを混合して混合液が調製される。光拡散性微粒子と有機溶剤とを混合することにより、光拡散性微粒子の少なくとも一部に有機溶剤を含有させ、当該光拡散性微粒子を膨潤させる。光拡散性微粒子と有機溶剤とを混合した後、所定時間経過させることにより、光拡散性微粒子に有機溶剤を含有させることができる。例えば、15分~90分経過させることにより、光拡散性微粒子に有機溶剤を含有させることができる。混合液は、例えば、有機溶剤中で光拡散性微粒子を撹拌することにより、調製してもよい。
A-1-1.光拡散性微粒子
 上記光拡散性微粒子は、任意の適切な材料で構成される。好ましくは、上記光拡散性微粒子は、その屈折率が下記式(1)の関係を満足する。
 0<|n-n|・・・(1)
式(1)中、nはマトリクスの樹脂成分の屈折率を表し、nは光拡散性微粒子の屈折率を表す。|n-n|は、好ましくは0.01~0.10であり、さらに好ましくは0.01~0.06であり、特に好ましくは0.02~0.06である。|n-n|が0.01未満であると、濃度変調領域が形成されない場合がある。|n-n|が0.10を超えると、後方散乱が増大するおそれがある。なお、本明細書において、「濃度変調領域」とは、光拡散素子中のマトリクスと光拡散性微粒子との界面近傍において、超微粒子成分の重量濃度が変調する領域をいう。「濃度変調領域」においては、光拡散性微粒子から遠ざかるにつれて、超微粒子成分の重量濃度が高くなる(必然的に、樹脂成分の重量濃度が低くなる)。また、「濃度変調領域」においては、屈折率が実質的に連続的に変化する。詳細は後述する。
 好ましくは、光拡散性微粒子は、後工程Bで投入されるマトリクスの樹脂成分と同系の化合物で構成される。さらに好ましくは、光拡散性微粒子は、マトリクスの樹脂成分と同系の化合物の中でも相溶性の高い化合物で構成される。後工程(例えば、工程B)において、マトリクスの樹脂成分の前駆体が、光拡散性微粒子に浸透しやすくなるからである(詳細は、後述する)。なお、本明細書において「同系」とは、化学構造や特性が同等または類似であることをいい、「異なる系」とは、同系以外のものをいう。同系か否かは、基準の選択の仕方によって異なり得る。例えば、有機か無機かを基準にした場合、有機化合物同士は同系の化合物であり、有機化合物と無機化合物とは異なる系の化合物である。ポリマーの繰り返し単位を基準にした場合、例えばアクリル系ポリマーとエポキシ系ポリマーとは有機化合物同士であるにもかかわらず異なる系の化合物であり、周期律表を基準にした場合、アルカリ金属と遷移金属とは無機元素同士であるにもかかわらず異なる系の元素である。
 上記光拡散性微粒子を構成する材料としては、例えば、ポリメチルメタクリレート(PMMA)、ポリメチルアクリレート(PMA)、およびこれらの共重合体、ならびにそれらの架橋物が挙げられる。また、光拡散性微粒子を構成する材料として、シリカ系の粒子を用いることもできる。PMMAおよびPMAとの共重合成分としては、ポリウレタン、ポリスチレン(PSt)、メラミン樹脂が挙げられる。特に好ましくは、光拡散性微粒子は、PMMAで構成される。後工程Bで投入されるマトリクスの樹脂成分との屈折率や熱力学的特性の関係が適切であるからである。さらに、好ましくは、光拡散性微粒子は、架橋構造(三次元網目構造)を有する。架橋構造を有する光拡散性微粒子は膨潤可能である。したがって、このような光拡散性微粒子は、緻密または中実な無機粒子と異なり、適切な相溶性を有する樹脂成分の前駆体をその内部に良好に浸透させることができる。光拡散性微粒子の架橋密度は、好ましくは、所望の浸透範囲(後述)が得られる程度に小さい(粗である)。
 上記光拡散性微粒子は、平均粒径(膨潤前の粒径(直径))が、好ましくは1.0μm~5.0μmであり、より好ましくは1.5μm~4.0μmであり、さらに好ましくは2.0μm~3.0μmである。光拡散性微粒子の平均粒径は、好ましくは、光拡散素子の厚みの1/2以下(例えば、1/2~1/20)である。光拡散素子の厚みに対してこのような比率を有する平均粒径であれば、光拡散性微粒子を光拡散素子の厚み方向に複数配列することができるので、入射光が光拡散素子を通過する間に当該光を多重に拡散させることができ、その結果、十分な光拡散性が得られ得る。
 上記混合液中の光拡散性微粒子の重量平均粒径分布の標準偏差は、好ましくは1.0μm以下であり、より好ましくは0.5μm以下であり、特に好ましくは0.1μm以下である。また、上記混合液中の拡散性微粒子は単分散状態であることが好ましく、例えば、重量平均粒径分布の変動係数((粒径の標準偏差)×100/(平均粒径))が20%以下であることが好ましく、15%以下であることがより好ましい。重量平均粒径に対して粒径の小さい光拡散性微粒子が多数混在していると、拡散性が増大しすぎて後方散乱を良好に抑制できない場合がある。重量平均粒径に対して粒径の大きい光拡散性微粒子が多数混在していると、光拡散素子の厚み方向に複数配列することができず、多重拡散が得られない場合があり、その結果、光拡散性が不十分となる場合がある。
 上記光拡散性微粒子の形状としては、目的に応じて任意の適切な形状が採用され得る。具体例としては、真球状、燐片状、板状、楕円球状、不定形が挙げられる。多くの場合、上記光拡散性微粒子として真球状微粒子が用いられ得る。
 上記光拡散性微粒子の屈折率は、好ましくは1.30~1.70であり、さらに好ましくは1.40~1.60である。
 上記混合液における上記光拡散性微粒子の配合量は、形成されるマトリクス100重量部に対して、好ましくは10重量部~100重量部であり、より好ましくは15重量部~40重量部である。例えばこのような配合量で上記好適範囲の平均粒径を有する光拡散性微粒子を含有させることにより、非常に優れた光拡散性を有する光拡散素子が得られ得る。
 上記のように、光拡散性微粒子は、有機溶剤と混合されることにより、膨潤する。工程Bの直前、すなわち、光拡散性微粒子が樹脂成分の前駆体と接触する直前における、光拡散性微粒子の膨潤度は、好ましくは、105%~200%である。また、工程Aにおいて、光拡散性微粒子は、最大限に膨潤し、それ以上膨潤しなくなる状態にあることが好ましい。光拡散性微粒子が、十分に膨潤していれば、次工程Bにおいて、光拡散性微粒子に樹脂成分の前駆体を浸透させやすい。なお、本明細書において、「膨潤度」とは、膨潤前の粒子の平均粒径に対する膨潤状態の粒子の平均粒径の比率をいう。
 工程Bの直前における、上記光拡散性微粒子の有機溶剤含有比率は、好ましくは10%~100%であり、より好ましくは70%~100%である。本明細書において、「光拡散性微粒子の有機溶剤含有比率」とは、光拡散性微粒子中で有機溶剤の含有が飽和状態となる場合の有機溶剤の含有量(最大含有量)に対する、光拡散性微粒子の有機溶剤含有比率を意味する。
A-1-2.有機溶剤
 上記有機溶剤としては、上記光拡散性微粒子を所望の程度に膨潤させ、かつ、光拡散性微粒子および後工程Bで投入される各成分を溶解または均一に分散し得るかぎりにおいて、任意の適切な有機溶剤が採用され得る。有機溶剤の具体例としては、酢酸エチル、酢酸ブチル、酢酸イソプロピル、2-ブタノン(メチルエチルケトン)、メチルイソブチルケトン、シクロペンタノン、トルエン、イソプロピルアルコール、n-ブタノール、水等が挙げられる。
 一つの実施形態においては、上記有機溶剤の沸点は、好ましくは70℃以上であり、より好ましくは100℃以上であり、特に好ましくは110℃以上であり、最も好ましくは120℃以上である。比較的揮発性の低い有機溶剤を用いることにより、有機溶剤を乾燥させる際に、急な揮発を防止することができ、平滑性に優れる光拡散素子を得ることができる。
 別の実施形態においては、上記有機溶剤として、混合溶剤が用いられる。混合溶剤としては、例えば、上記光拡散性微粒子に浸透しやすい(第1の有機溶剤)と、揮発性の低い有機溶剤(第2の有機溶剤)とを混合した溶剤が用いられる。好ましくは、上記第1の有機溶剤は、第2の有機溶剤よりも、光拡散性微粒子に浸透しやすく、かつ、揮発性が高い。好ましくは、上記第2の有機溶剤は、第1の有機溶剤よりも、光拡散性微粒子に浸透し難く、かつ、揮発性が低い。このような混合溶剤を用いれば、光拡散性微粒子の膨潤を促進し(すなわち、製造工程を短時間化し)、かつ、有機溶剤の急な揮発を防止して、より平滑性に優れる光拡散素子を得ることができる。上記第1の有機溶剤の沸点は、好ましくは80℃以下であり、より好ましくは70℃~80℃である。上記第2の有機溶剤の沸点は、好ましくは80℃より高く、より好ましくは100℃以上であり、さらに好ましくは110℃以上であり、最も好ましくは120℃以上である。なお、有機溶剤の浸透しやすさは、例えば、光拡散性微粒子の当該有機溶剤に対する膨潤度により比較することができ、光拡散性微粒子をより高膨潤度で膨潤させる有機溶剤は光拡散性微粒子に浸透しやすい有機溶剤といえる。また、溶解性パラメータ(SP値)が、光拡散性微粒子のSP値に近い有機溶媒は、光拡散性微粒子に浸透しやすい傾向がある。上記第1の有機溶剤のSP値と光拡散性微粒子のSP値との差は、好ましくは0.5以下であり、より好ましくは0.4以下であり、さらに好ましくは0.1~0.4である。上記第2の有機溶剤のSP値と光拡散性微粒子のSP値との差は、好ましくは0.5より大きく、より好ましくは0.6以上であり、さらに好ましくは0.7~2.0である。また、分子量の低い有機溶剤は、光拡散性微粒子に浸透しやすい傾向がある。上記第1の有機溶剤の分子量は、好ましくは80以下であり、より好ましくは75以下であり、さらに好ましくは50~75である。上記第2の有機溶剤の分子量は、好ましくは80より高く、より好ましくは100以上であり、さらに好ましくは110~140である。
 上記混合液は、目的に応じて任意の適切な添加剤をさらに含有し得る。添加剤の具体例としては、開始剤、分散剤、老化防止剤、変性剤、界面活性剤、変色防止剤、紫外線吸収剤、レベリング剤、消泡剤が挙げられる。
A-2.工程B
 工程Bにおいては、上記工程Aにおいて調製された混合液と、樹脂成分の前駆体(モノマー)および超微粒子成分を含むマトリクス形成材料とを混合して、上記有機溶剤中に、膨潤した光拡散性微粒子、樹脂成分の前駆体および超微粒子成分を溶解または分散させた塗工液(分散液)が調製される。代表的には、当該塗工液は、前駆体および有機溶剤中に、超微粒子成分および光拡散性微粒子が分散した分散体である。超微粒子成分および光拡散性微粒子を分散させる手段としては、任意の適切な手段(例えば、撹拌処理)が採用され得る。
 好ましくは、工程B以降の工程により、樹脂成分の前駆体の少なくとも一部が光拡散性微粒子の内部に浸透する。一つの実施形態においては、工程Bにおいて、樹脂成分の前駆体の少なくとも一部が光拡散性微粒子の内部に浸透していると考えられる。本発明においては、上記工程Aにおいて光拡散性微粒子をあらかじめ膨潤させておくことにより、短時間で、樹脂成分の前駆体を光拡散性微粒子の内部に浸透させることができる。例えば、工程Bにおいて、上記塗工液を15分~30分間、撹拌することにより、樹脂成分の前駆体を光拡散性微粒子の内部に浸透させることができると考えられる。このように調製した塗工液は、撹拌後すぐに、すなわち静置することなく、後工程Cに供することができる。そのため、上記光拡散性微粒子および超微粒子成分が凝集することを防止することができ、平滑性に優れ、超微粒子成分の疎密がなく、かつ、後方散乱の少ない光拡散素子を得ることができる。
 光拡散性微粒子中の上記前駆体の浸透範囲は、好ましくは10%以上であり、より好ましくは50%以上であり、さらに好ましくは80%~100%である。このような範囲であれば、濃度変調領域が良好に形成されて、後方散乱を抑制することができる。本発明においては、光拡散素子の製造時に、光拡散性微粒子を有機溶剤により十分に膨潤させた後に、マトリクス中の樹脂成分を重合することにより、樹脂成分を光拡散性微粒子に十分に浸透させることができる。浸透範囲は、樹脂成分および光拡散性微粒子の材料、光拡散性微粒子の架橋密度、製造時に使用する有機溶剤の種類等を調整することにより制御することができる。
 上記塗工液の固形分濃度は、好ましくは10重量%~70重量%程度となるように調整され得る。このような固形分濃度であれば、塗工容易な粘度を有する塗工液が得られ得る。
A-2-1.樹脂成分
 上記樹脂成分は、任意の適切な材料で構成される。好ましくは、樹脂成分は、その屈折率が上記式(1)の関係を満足する。
 好ましくは、樹脂成分は、光拡散性微粒子と同系の化合物で構成される。さらに好ましくは、樹脂成分は、光拡散性微粒子と同系の化合物の中でも相溶性の高い化合物で構成される。これにより、樹脂成分は、光拡散性微粒子と同系材料であることに起因して、その前駆体が光拡散性微粒子内部に浸透し得る。当該前駆体が後述の重合工程により重合した結果、濃度変調領域をマトリクスと光拡散性微粒子との界面近傍に良好に形成することができる。例えば、マトリクスの樹脂成分を構成する樹脂がアクリレート系樹脂である場合には、光拡散性微粒子もまたアクリレート系樹脂で構成されることが好ましい。
 上記樹脂成分は、好ましくは有機化合物で構成され、より好ましくは電離線硬化型樹脂で構成される。電離線硬化型樹脂は、塗膜の硬度に優れている。電離線としては、例えば、紫外線、可視光、赤外線、電子線が挙げられる。好ましくは紫外線であり、したがって、樹脂成分は、特に好ましくは紫外線硬化型樹脂で構成される。紫外線硬化型樹脂としては、例えば、アクリレート樹脂(エポキシアクリレート、ポリエステルアクリレート、アクリルアクリレート、エーテルアクリレート)などのラジカル重合型モノマーもしくはオリゴマーなどが挙げられる。アクリレート樹脂を構成するモノマー成分(前駆体)の具体例としては、ペンタエリスリトールトリアクリレート(PETA)、ネオペンチルグリコールジアクリレート(NPGDA)、ジペンタエリスリトールヘキサアクリレート(DPHA)、ジペンタエリスリトールペンタアクリレート(DPPA)、トリメチロールプロパントリアクリレート(TMPTA)が挙げられる。このようなモノマー成分(前駆体)は、光拡散性微粒子の内部に浸透するに適切な分子量および立体構造を有するので好ましい。
 上記樹脂成分の前駆体(モノマー)の分子量は、好ましくは100~700であり、さらに好ましくは200~600であり、特に好ましくは200~500である。このような範囲であれば、樹脂成分の前駆体(モノマー)が、光拡散性微粒子の内部に浸透しやすく、拡散性に優れる光拡散素子を得ることができる。
 上記樹脂成分の屈折率は、好ましくは1.40~1.60である。
 上記塗工液における上記樹脂成分の配合量は、形成されるマトリクス100重量部に対して、好ましくは20重量部~80重量部であり、より好ましくは45重量部~65重量部である。
 上記樹脂成分は、上記電離線硬化型樹脂以外に別の樹脂成分を含んでいてもよい。別の樹脂成分は、電離線硬化型樹脂であってもよく、熱硬化性樹脂であってもよく、熱可塑性樹脂であってもよい。別の樹脂成分の代表例としては、脂肪族系(例えば、ポリオレフィン)樹脂、ウレタン系樹脂が挙げられる。別の樹脂成分を用いる場合、その種類や配合量は、上記濃度変調領域が良好に形成され、かつ、屈折率が上記式(1)の関係を満足するよう調整され得る。
A-2-2.超微粒子成分
 上記超微粒子成分は、代表的には、マトリクスの屈折率を調整する成分として機能し得る。超微粒子成分を用いることにより、マトリクスの屈折率を容易に調整することができ、光拡散性微粒子とマトリクスとの屈折率差を大きくすることができる。特に、本発明によれば、樹脂成分が光拡散性微粒子内部に浸透することにより、マトリクス中の超微粒子成分の濃度を高くすることができるので、マトリクスと光拡散性微粒子との屈折率差を容易に大きくすることができる。その結果、薄膜でありながら高ヘイズ値(強い拡散性)を有する光拡散素子を得ることができる。好ましくは、超微粒子成分は、その屈折率nが下記式(2)を満たす:
 0<|n-n|<|n-n|・・・(2)
式(2)において、nおよびnは上記のとおりである。|n-n|は、好ましくは0.10~1.50であり、さらに好ましくは0.20~0.80である。|n-n|が0.10未満であると、ヘイズ値が90%以下となる場合が多く、その結果、液晶表示装置に組み込んだ場合に光源からの光を十分に拡散できず、視野角が狭くなるおそれがある。|n-n|が1.50を超えると、後方散乱が増大するおそれがある。また、好ましくは、上記樹脂成分、上記超微粒子成分および上記光拡散性微粒子の屈折率は、下記式(3)を満足する。より好ましくは、上記樹脂成分、上記超微粒子成分および上記光拡散性微粒子の屈折率は、上記式(2)および下記式(3)を満足する。上記樹脂成分、上記超微粒子成分および上記光拡散性微粒子の屈折率がこのような関係にあれば、高いヘイズを維持しつつ、後方散乱が抑制された光拡散素子を得ることができる。
 |n-n|<|n-n|・・・(3)
 好ましくは、超微粒子成分は、上記樹脂成分および光拡散性微粒子とは異なる系の化合物で構成され、より好ましくは無機化合物で構成される。好ましい無機化合物としては、例えば、金属酸化物、金属フッ化物が挙げられる。金属酸化物の具体例としては、酸化ジルコニウム(ジルコニア)(屈折率:2.19)、酸化アルミニウム(屈折率:1.56~2.62)、酸化チタン(屈折率:2.49~2.74)、酸化ケイ素(屈折率:1.25~1.46)が挙げられる。金属フッ化物の具体例としては、フッ化マグネシウム(屈折率:1.37)、フッ化カルシウム(屈折率:1.40~1.43)が挙げられる。これらの金属酸化物および金属フッ化物は、光の吸収が少ない上に、電離線硬化型樹脂や熱可塑性樹脂などの有機化合物では発現が難しい屈折率を有しているので、光拡散性微粒子とマトリクスとの屈折率差を大きくすることができる。しかも、これらの金属酸化物および金属フッ化物は、樹脂成分との分散性が適切であることに起因して、光拡散性微粒子とマトリクスとの界面近傍に、良好に濃度変調領域を形成することができ、後方散乱を抑制することができる。特に好ましい無機化合物は、酸化ジルコニウムである。光拡散性微粒子との屈折率差が大きく、かつ、樹脂成分との分散性が適切であるので、所望の特性(または構造)を有する濃度変調領域を良好に形成することができるからである。
 上記超微粒子成分の屈折率は、好ましくは1.40以下または1.60以上であり、さらに好ましくは1.40以下または1.70~2.80であり、特に好ましくは1.40以下または2.00~2.80である。屈折率が1.40を超えまたは1.60未満であると、光拡散性微粒子とマトリクスとの屈折率差が不十分となり、得られる光拡散素子をコリメートバックライトフロント拡散システムの液晶表示装置に用いた場合に、コリメートバックライトからの光を十分に拡散できず視野角が狭くなるおそれがある。
 上記超微粒子成分は、多孔質化することにより、屈折率を下げてもよい。
 上記超微粒子成分の平均粒径は、好ましくは1nm~100nmであり、より好ましくは10nm~80nmであり、さらに好ましくは20nm~70nmである。このように、光の波長より小さい平均粒径の超微粒子成分を用いることにより、超微粒子成分と樹脂成分との間に幾何光学的な反射、屈折、散乱が生じず、光学的に均一なマトリクスを得ることができる。その結果、光学的に均一な光拡散素子を得ることができる。
 上記超微粒子成分は、上記樹脂成分との分散性が良好であることが好ましい。本明細書において「分散性が良好」とは、上記樹脂成分と超微粒子成分と有機溶剤とを混合して得られた塗工液を塗布し、溶剤を乾燥除去して得られた塗膜が透明であることをいう。
 好ましくは、上記超微粒子成分は、表面改質がなされている。表面改質を行うことにより、超微粒子成分を樹脂成分中に良好に分散させることができ、かつ、光拡散性微粒子とマトリクスとの界面近傍に、良好に濃度変調領域を形成することができる。表面改質手段としては、本発明の効果が得られる限りにおいて任意の適切な手段が採用され得る。代表的には、表面改質は、超微粒子成分の表面に表面改質剤を塗布して表面改質剤層を形成することにより行われる。好ましい表面改質剤の具体例としては、シラン系カップリング剤、チタネート系カップリング剤等のカップリング剤、脂肪酸系界面活性剤等の界面活性剤が挙げられる。このような表面改質剤を用いることにより、樹脂成分と超微粒子成分との濡れ性を向上させ、樹脂成分と超微粒子成分との界面を安定化させ、超微粒子成分を樹脂成分中に良好に分散させることができる。
 上記塗工液における上記超微粒子成分の配合量は、形成されるマトリクス100重量部に対して、好ましくは10重量部~70重量部であり、より好ましくは30重量部~60重量部である。
A-3.工程C
 代表的には、工程C(前駆体を重合させる工程)の前に、上記塗工液が基材に塗布される。基材としては、本発明の効果が得られる限りにおいて任意の適切なフィルムが採用され得る。具体例としては、トリアセチルセルロース(TAC)フィルム、ポリエチレンテレフタレート(PET)フィルム、ポリプロピレン(PP)フィルム、ナイロンフィルム、アクリルフィルム、ラクトン変性アクリルフィルムなどが挙げられる。上記基材は、必要に応じて、易接着処理などの表面改質がなされていてもよく、滑剤、帯電防止剤、紫外線吸収剤などの添加剤が含まれていてもよい。
 上記塗工液の基材への塗布方法としては、任意の適切なコーターを用いた方法が採用され得る。コーターの具体例としては、バーコーター、リバースコーター、キスコーター、グラビアコーター、ダイコーター、コンマコーターが挙げられる。
 次いで、上記前駆体を重合する。重合方法は、樹脂成分(したがって、その前駆体)の種類に応じて任意の適切な方法が採用され得る。例えば、樹脂成分が電離線硬化型樹脂である場合には、電離線を照射することにより前駆体を重合する。電離線として紫外線を用いる場合には、その積算光量は、好ましくは200mJ~400mJである。電離線の光拡散性微粒子に対する透過率は、好ましくは70%以上であり、より好ましくは80%以上である。また例えば、樹脂成分が熱硬化型樹脂である場合には、加熱することにより前駆体を重合する。加熱温度および加熱時間は、樹脂成分の種類に応じて適切に設定され得る。好ましくは、重合は電離線を照射することにより行われる。電離線照射であれば、屈折率分布構造(濃度変調領域)を良好に保持したまま塗膜を硬化させることができるので、良好な拡散特性の光拡散素子を作製することができる。好ましくは、前駆体を重合することにより、マトリクスが形成されると同時に、光拡散性微粒子の表面近傍に、該光拡散性微粒子から遠ざかるにつれて該超微粒子成分の重量濃度が高くなる実質的に球殻状の濃度変調領域が形成される。すなわち、本発明の製造方法によれば、光拡散性微粒子内部に浸透した前駆体と光拡散性微粒子に浸透しなかった前駆体とを同時に重合することにより、マトリクスと光拡散性微粒子との界面近傍に、上記濃度変調領域を形成すると同時に、マトリクスを形成することができる。
 本発明の光拡散素子の製造方法が、上記工程A~工程Cに加えて、任意の適切な時点で任意の適切な工程、処理および/または操作を含み得ることは言うまでもない。そのような工程等の種類およびそのような工程等が行われる時点は、目的に応じて適切に設定され得る。例えば、本発明の光拡散素子の製造方法は、必要に応じて、基材上に塗布された塗工液を加熱する工程をさらに含む。一つの実施形態においては、当該加熱により塗工液を乾燥させることができる。このような加熱は、例えば、重合工程の前に行ってもよく重合工程の後に行ってもよい。塗工液の加熱は、好ましくは重合工程の前に行われる。加熱により、樹脂成分の前駆体の光拡散性微粒子への浸透を促進させることができるからである。上記塗工液の加熱方法としては、任意の適切な方法が採用され得る。加熱温度は、例えば、好ましくは80℃以下であり、より好ましくは50℃~70℃であり、加熱時間は、例えば30秒~5分である。本発明の製造方法によれば、低温での加熱であっても、樹脂成分の前駆体の光拡散性微粒子への浸透を促進させることができ、拡散性の強い光拡散素子を得ることができる。
 以上のようにして、光拡散素子が基材上に形成される。本発明の製造方法により製造された光拡散素子は、強い拡散性を有し、かつ、平滑性に優れる。平滑性に優れる光拡散素子が得られるメカニズムは、以下のように推定される。有機溶剤を十分に含み膨潤した光拡散性微粒子は、塗工液中で流動性を有し、塗工液面の変化(例えば、乾燥による塗工液面の変化)に追従することができる。その結果、本発明における光拡散性微粒子が塗膜から突出することを防止して、平滑性に優れる光拡散素子を得ることができる。一方、光拡散性微粒子に有機溶剤を十分に含有させることなく製造された従来の光拡散素子においては、光拡散性微粒子は塗工液中での流動性が低い。このような光拡散性微粒子を含む塗工液を乾燥工程に供した場合、光拡散性微粒子は塗工液面の変化に追従することができない。その結果、光拡散性微粒子が塗膜から突出してしまい、光拡散素子の表面に凹凸が生じてしまう。
 また、上記のように光拡散性微粒子をあらかじめ膨潤させることにより、樹脂成分の前駆体が光拡散性微粒子内部に浸透しやすくなる。樹脂成分の前駆体の浸透により、光拡散性微粒子は、さらに膨潤し、平均粒子径がさらに増大する。光拡散性微粒子の平均粒子径が大きければ、少ない光拡散性微粒子数で、強い光拡散性を発現させることができる。含まれる光拡散性微粒子の数が少ない光拡散素子は、後方散乱が抑制される。本発明においては、光拡散性微粒子の周囲に存在する樹脂成分の前駆体が光拡散性微粒子に浸透するため、基材に塗布された塗工液中、光拡散性微粒子の塗工液面に略接する部分には、樹脂成分の前駆体が浸透しない。その結果、光拡散性微粒子が塗膜から突出して増大することを防ぐことができ、平滑性を損なうことなく、平均粒子径の大きい光拡散性微粒子を存在させることができる。
 得られた光拡散素子は、基材から剥離して単一部材として用いてもよく、基材付光拡散素子として用いてもよく、基材から偏光板等に転写して複合部材(例えば、光拡散素子付偏光板)として用いてもよく、基材ごと偏光板等に貼り付けて複合部材(例えば、光拡散素子付偏光板)として用いてもよい。基材ごと偏光板等に貼り付けて複合部材(例えば、光拡散素子付偏光板)として用いる場合には、当該基材は偏光板の保護層として機能し得る。
B.光拡散素子
 本発明の光拡散素子は、上記A-1項~A-3項に記載の方法によって得られ得る。本発明の光拡散素子は、樹脂成分および超微粒子成分を含むマトリクスと、該マトリクス中に分散された光拡散性微粒子とを有する。本発明の光拡散素子は、マトリクスと光拡散性微粒子の屈折率差により、光拡散機能を発現する。図1は、本発明の好ましい実施形態による製造方法により得られる光拡散素子におけるマトリクスの樹脂成分および光拡散性微粒子の分散状態を説明するための模式図である。本発明の光拡散素子100は、樹脂成分11および超微粒子成分12を含むマトリクス10と、マトリクス10中に分散された光拡散性微粒子20とを有する。好ましくは、マトリクスの樹脂成分および光拡散性微粒子は、それらの屈折率が下記式(1)を満たす:
 0<|n-n|・・・(1)
上記超微粒子成分は、好ましくは、その屈折率が下記式(2)および(3)を満たす:
 0<|n-n|<|n-n|・・・(2)
 |n-n|<|n-n|・・・(3)
上記式(1)の関係を有するマトリクスの樹脂成分および光拡散性微粒子を用い、ならびに、上記式(2)および(3)の関係を有する超微粒子成分を用いることにより、高いヘイズを維持しつつ、後方散乱が抑制された光拡散素子を得ることができる。
 好ましくは、図1および図2に示すように、マトリクスと光拡散性微粒子との界面近傍に、該光拡散性微粒子から遠ざかるにつれて該超微粒子成分の重量濃度が高くなる実質的に球殻状の濃度変調領域30が形成されている。したがって、マトリクスは、光拡散性微粒子との界面近傍の濃度変調領域30と、当該濃度変調領域30の外側(光拡散性微粒子から離れた側)の濃度一定領域とを有する。好ましくは、マトリクスにおける濃度変調領域30以外の部分は、実質的には濃度一定領域である。濃度変調領域30においては、屈折率が実質的に連続的に変化する。本明細書において「マトリクスと光拡散性微粒子との界面近傍」とは、光拡散性微粒子表面、表面付近の外部および表面付近の内部を包含する。
 好ましくは、上記濃度変調領域30は、マトリクス10中の超微粒子成分12の分散濃度の実質的な勾配により形成されている。具体的には、濃度変調領域30においては、光拡散性微粒子20から遠ざかるにつれて、超微粒子成分12の分散濃度(代表的には、重量濃度で規定される)が高くなる(必然的に、樹脂成分11の重量濃度が低くなる)。言い換えれば、濃度変調領域30における光拡散性微粒子20の最近接領域には、超微粒子成分12が相対的に低濃度で分散しており、光拡散性微粒子20から遠ざかるにつれて超微粒子成分12の濃度が増大する。例えば、透過型電子顕微鏡(TEM)画像によるマトリクス10中の超微粒子成分12の面積比率は、光拡散性微粒子20に近接する側では小さく、マトリクス10に近接する側では大きく、当該面積比率は光拡散性微粒子側からマトリクス側(濃度一定領域側)に実質的な勾配を形成しながら変化する。その代表的な分散状態を表すTEM画像を図3に示す。本明細書において、「透過型電子顕微鏡画像によるマトリクス中の超微粒子成分の面積比率」とは、光拡散性微粒子の直径を含む断面の透過型電子顕微鏡画像において、所定範囲(所定面積)のマトリクスに占める超微粒子成分の面積の比率をいう。当該面積比率は、超微粒子成分の3次元的な分散濃度(実際の分散濃度)に対応する。当該超微粒子成分の面積比率は、任意の適切な画像解析ソフトにより求めることができる。なお、上記面積比率は、代表的には、超微粒子成分の各粒子間の平均最短距離に対応する。具体的には、超微粒子成分の各粒子間の平均最短距離は、濃度変調領域においては光拡散性微粒子から遠ざかるにつれて短くなり、濃度一定領域において一定となる(例えば、平均最短距離は、光拡散性微粒子の最近接領域では3nm~100nm程度であり、濃度一定領域においては1nm~20nmである)。平均最短距離は、図3のような分散状態のTEM画像を二値化し、例えば画像解析ソフト「A像くん」(旭化成エンジニアリング社製)の重心間距離法を用いて算出することができる。以上のように、本発明の製造方法によれば、超微粒子成分12の分散濃度の実質的な勾配を利用してマトリクスと光拡散性微粒子との界面近傍に濃度変調領域30を形成することができるので、煩雑な製造方法でGRIN微粒子を製造して当該GRIN微粒子を分散させる場合に比べて、格段に簡便な手順で、かつ、格段に低コストで光拡散素子を製造することができる。さらに、超微粒子成分の分散濃度の実質的な勾配を利用して濃度変調領域を形成することにより、濃度変調領域30と濃度一定領域との境界において屈折率を滑らかに変化させることができる。さらに、樹脂成分および光拡散性微粒子と屈折率が大きく異なる超微粒子成分を用いることにより、光拡散性微粒子とマトリクス(実質的には、濃度一定領域)との屈折率差を大きく、かつ、濃度変調領域の屈折率勾配を急峻にすることができる。
 上記濃度変調領域は、マトリクスの樹脂成分および超微粒子成分ならびに光拡散性微粒子の構成材料、ならびに化学的および熱力学的特性を適切に選択することにより形成することができる。例えば、樹脂成分および光拡散性微粒子を同系材料の中でも相溶性の高い材料同士で構成することにより、濃度変調領域を良好に形成することができる。また、濃度変調領域30は、例えば、上記A-1項~A-3項で説明したように、樹脂成分11の前駆体(モノマー)が光拡散性微粒子20内部に浸透した後重合することにより形成される。濃度変調領域の厚みおよび濃度勾配は、マトリクスの樹脂成分および光拡散性微粒子の化学的および熱力学的特性を調整することにより制御することができる。
 濃度変調領域30においては、上記のように、屈折率が実質的に連続的に変化する。好ましくは、これに加えて、上記濃度変調領域の最外部の屈折率と上記濃度一定領域の屈折率とが実質的に同一である。言い換えれば、上記光拡散素子においては、濃度変調領域から濃度一定領域にかけて屈折率が連続的に変化し、好ましくは光拡散性微粒子(より好ましくは、光拡散性微粒子の表面付近の内部)から濃度一定領域にかけて屈折率が連続的に変化する(図4)。好ましくは、当該屈折率変化は、図4に示すように滑らかである。すなわち、濃度変調領域と濃度一定領域との境界において、屈折率変化曲線に接線が引けるような形状で変化する。好ましくは、濃度変調領域において、屈折率変化の勾配は、上記光拡散性微粒子から遠ざかるにつれて大きくなる。本発明の光拡散素子によれば、光拡散性微粒子とマトリクスの樹脂成分と超微粒子成分とを適切に選択することにより、実質的に連続的な屈折率変化を実現することができる。その結果、マトリクス10(実質的には、濃度一定領域)と光拡散性微粒子20との屈折率差を大きくしても、マトリクス10と光拡散性微粒子20との界面の反射を抑えることができ、後方散乱を抑制することができる。さらに、濃度一定領域では、光拡散性微粒子20とは屈折率が大きく異なる超微粒子成分12の重量濃度が相対的に高くなるので、マトリクス10(実質的には、濃度一定領域)と光拡散性微粒子20との屈折率差を大きくすることができる。その結果、薄膜であっても高いヘイズ(強い拡散性)を実現することができる。本明細書において「屈折率が実質的に連続的に変化する」とは、濃度変調領域において少なくとも光拡散性微粒子から濃度一定領域まで屈折率が実質的に連続的に変化すればよいことを意味する。したがって、例えば、光拡散性微粒子と濃度変調領域との界面、および/または、濃度変調領域と濃度一定領域との界面において所定の範囲内(例えば、屈折率差が0.05以下)の屈折率ギャップが存在しても、当該ギャップは許容され得る。
 上記濃度変調領域30の厚み(濃度変調領域最内部から濃度変調領域最外部までの距離)は、一定であってもよく(すなわち、濃度変調領域が光拡散性微粒子の周囲に同心球状に拡がってもよく)、光拡散性微粒子表面の位置によって厚みが異なっていてもよい(例えば、金平糖の外郭形状のようになっていてもよい)。好ましくは、濃度変調領域30の厚みは、光拡散性微粒子表面の位置によって異なっている。このような構成であれば、濃度率変調領域30において、屈折率をより滑らかに連続的に変化させることができる。
 上記濃度変調領域30の平均厚みは、好ましくは5nm~500nm、より好ましくは12nm~400nm、さらに好ましくは15nm~300nmである。平均厚みが5nm未満であると、後方散乱が大きくなる場合がある。平均厚みが500nmを超えると、拡散性が不十分となる場合がある。このように、本発明の光拡散素子は、濃度変調領域30の平均厚みが非常に薄いにもかかわらず、ヘイズ値が高く、強い拡散性を有し、かつ、後方散乱が抑制された薄膜の光拡散素子を実現することができる。上記平均厚みは、濃度変調領域30の厚みが光拡散性微粒子表面の位置によって異なる場合の平均厚みであり、厚みが一定である場合にはその厚みである。
 上記光拡散素子は、ヘイズ値が高ければ高いほど好ましく、具体的には、好ましくは70%以上であり、より好ましくは90~99.5%であり、さらに好ましくは92~99.5%であり、特に好ましくは95~99.5%であり、最も好ましくは97~99.5%である。ヘイズ値が70%以上であることにより、コリメートバックライトフロント拡散システムにおけるフロント光拡散素子として好適に用いることができる。なお、コリメートバックライトフロント拡散システムとは、液晶表示装置において、コリメートバックライト光(一定方向に集光された、輝度半値幅の狭いバックライト光)を用い、上側偏光板の視認側にフロント光拡散素子を設けたシステムをいう。
 上記光拡散素子の拡散特性は、光拡散半値角で示すならば、好ましくは10°~150°(片側5°~75°)であり、より好ましくは10°~100°(片側5°~50°)であり、さらに好ましくは30°~80°(片側15°~40°)である。
 上記光拡散素子の厚みは、目的や所望の拡散特性に応じて適切に設定され得る。具体的には、上記光拡散素子の厚みは、好ましくは4μm~50μm、より好ましくは4μm~20μmである。本発明によれば、このように非常に薄い厚みにもかかわらず、上記のような非常に高いヘイズを有する光拡散素子が得られ得る。
 本発明の製造方法によれば、平滑性に優れる光拡散素子が得られる。このように平滑性に優れる光拡散素子は、後方散乱が少ない。
 上記光拡散素子の算術平均表面粗さRaは、好ましくは0.05mm未満であり、より好ましくは0.04mm以下であり、さらに好ましくは0.03mm以下である。光拡散素子の算術平均表面粗さRaは、小さければ小さいほど好ましいが、実用的な下限値は、例えば0.001mmである。なお、本明細書において、「算術平均表面粗さRa」は、JIS B 0601(1994年版)に規定される算術平均表面粗さRaである。
 上記光拡散素子の十点平均表面粗さRzは、好ましくは0.20μm未満であり、より好ましくは0.17μm未満であり、さらに好ましくは0.15μm未満である。光拡散素子の十点平均粗さRzは、小さければ小さいほど好ましいが、実用的な下限値は、例えば0.005μmである。なお、本明細書において、「十点平均表面粗さRz」は、JIS B 0601(1994年版)に規定される十点平均表面粗さRzである。
 上記光拡散素子の平均傾斜角度θaは、好ましくは0.50°未満であり、より好ましくは0.45°未満であり、さらに好ましくは0.40°以下である。光拡散素子の平均傾斜角度θaは、小さければ小さいほど好ましいが、実用的な下限値は、例えば0.01°である。なお、本明細書において、平均傾斜角度θaは、下記式(4)により定義される。
 θa=tan-1Δa ・・・(4)
 上記式(1)において、Δaは、下記数式(5)に示すように、JIS B 0601(1994年度版)に規定される粗さ曲線の基準長さLにおいて、隣り合う山の頂点と谷の最下点との差(高さh)の合計(h1+h2+h3・・・+hn)を前記基準長さLで割った値である。前記粗さ曲線は、断面曲線から、所定の波長より長い表面うねり成分を位相差補償形高域フィルタで除去した曲線である。また、前記断面曲線とは、対象面に直角な平面で対象面を切断したときに、その切り口に現れる輪郭である。
 Δa=(h1+h2+h3・・・+hn)/L ・・・(5)
 一つの実施形態においては、上記光拡散素子は、十点平均表面粗さRzが好ましくは0.20μm未満、より好ましくは0.17μm未満、さらに好ましくは0.15μm未満であり、かつ、平均傾斜角度θaが好ましくは0.5°未満、より好ましくは0.45°未満、さらに好ましくは0.40°以下である。
 上記光拡散素子は、液晶表示装置の視認側部材、液晶表示装置のバックライト用部材、照明器具(例えば、有機EL、LED)用拡散部材に好適に用いられ、コリメートバックライトフロント拡散システムのフロント拡散素子として特に好適に用いられる。上記光拡散素子は、単独でフィルム状または板状部材として提供してもよく、任意の適切な基材や偏光板に貼り付けて複合部材として提供してもよい。また、光拡散素子の上に反射防止層が積層されてもよい。
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。実施例における評価方法は下記の通りである。また、特に明記しない限り、実施例における「部」および「%」は重量基準である。
(1)光拡散素子の厚み
 マイクロゲージ式厚み計(ミツトヨ社製)にて基材と光拡散素子との合計厚みを測定し、当該合計厚みから基材の厚みを差し引き、光拡散素子の厚みを算出した。
(2)ヘイズ値
 JIS 7136で定める方法により、ヘイズメーター(村上色彩科学研究所社製、商品名「HN-150」)を用いて測定した。
(3)後方散乱率
 実施例および比較例で得られた光拡散素子と基材との積層体を、透明粘着剤を介して黒アクリル板(住友化学社製、商品名「SUMIPEX」(登録商標)、厚み2mm)の上に貼り合わせ、測定試料とした。この測定試料の積分反射率を分光光度計(日立計測器社製、商品名「U4100」)にて測定した。一方、上記光拡散素子用塗工液から微粒子を除去した塗工液を用いて、基材と透明塗工層との積層体を作製して対照試料とし、上記と同様にして積分反射率(すなわち、表面反射率)を測定した。上記測定試料の積分反射率から上記対照試料の積分反射率(表面反射率)を差し引くことにより、光拡散素子の後方散乱率を算出した。
(4)十点平均表面粗さRz、算術平均表面粗さRaおよび平均傾斜角度θa
 十点平均表面粗さRz、算術平均表面粗さRaおよび平均傾斜角度θaを微細形状測定機(小坂研究所社製、商品名「サーフコーダ ET-4000」)を用いて測定した。
(5)超微粒子成分の疎密
 実施例および比較例で得られた光拡散素子と基材との積層体を液体窒素で冷却しながら、ミクロトームにて0.1μmの厚さにスライスして測定試料とした。当該測定試料の断面を透過型電子顕微鏡(TEM)(日立製作所製、商品名「H-7650」、加速電圧100kV)を用いて2次元画像を観察し、当該測定試料の光拡散素子内の粗密の発生を確認した。直接倍率×1,200、MAGNIFICATION×10,000の測定視野(13.9μm×15.5μm)において、マトリクス中で超微粒子成分が存在せず白点として観察される部分(すなわち、測定視野内における、光拡散性微粒子由来の白い部分以外の白点)の数をカウントした。実施例および比較例で得られた光拡散素子と基材との積層体それぞれについて、20箇所、上記のように白点の数をカウントし、その平均値を算出した。表1には当該平均値を示す。白点の数が多いほど、超微粒子成分の疎密が多いと評される。
(6)明所でのコントラスト
(液晶表示装置の作製)
 マルチドメイン型VAモードの液晶セルを備える市販の液晶テレビ(SONY社製、ブラビア20型、商品名「KDL20J3000」)から液晶セルを取り出した当該液晶セルの両側に、市販の偏光板(日東電工社製、商品名「NPF-SEG1423DU」)を、それぞれの偏光子の吸収軸が直交するようにして貼り合わせた。より具体的には、バックライト側偏光板の偏光子の吸収軸方向が垂直方向(液晶パネルの長辺方向に対して90°)となり、視認側偏光板の偏光子の吸収軸方向が水平方向(液晶パネルの長辺方向に対して0°)となるようにして貼り合わせた。さらに、視認側偏光板の外側に、実施例および比較例の光拡散素子を基材から転写して貼り合わせ、液晶パネルを作製した。
 一方、PMMAシートの片面に、レンチキュラーレンズのパターンを、転写ロールを用いて溶融熱転写した。レンズパターンが形成された面とは反対側の面(平滑面)に、レンズの焦点のみ光が透過するよう、アルミニウムのパターン蒸着を行い、開口部の面積比率7%(反射部の面積比率93%)の反射層を形成した。このようにして、集光素子を作製した。バックライトの光源として冷陰極蛍光ランプ(ソニー社製、BRAVIA20JのCCFL)を用い、当該光源に集光素子を取り付けて、コリメート光を出射する平行光光源装置(バックライトユニット)を作製した。
 上記液晶パネルに上記バックライトユニットを組み込み、コリメートバックライトフロント拡散システムの液晶表示装置を作製した。
(コントラストの測定)
 出射光が、液晶表示装置の鉛直方向となす角度が15°で入射するように、蛍光ランプ(200lx:照度計IM-5での測定値)を配置し、照射し、黒表示および白表示の輝度をAUTRONIC MELCHERS社製コノスコープにて測定して、コントラストを評価した。
<実施例1>
 光拡散性微粒子としてのポリメタクリル酸メチル(PMMA)微粒子(積水化成品工業社製、商品名「XX131AA」、平均粒径2.5μm、屈折率1.49)15部と、有機溶剤としての酢酸ブチルおよびMEKの混合溶媒(重量比50/50)30部とを混合し、60分間撹拌して、混合液を調製した。
 次いで、得られた混合液に、超微粒子成分としてのジルコニアナノ粒子(平均粒径60nm、屈折率2.19)を62%含有するハードコート用樹脂(JSR社製、商品名「オプスターKZ6661」(MEK/MIBK含有))100部、樹脂成分の前駆体としてのペンタエリスリトールトリアクリレート(大阪有機化学工業社製、商品名「ビスコート#300」、屈折率1.52、分子量298)22部、光重合開始剤(チバ・スペシャリティ・ケミカル社製、商品名「イルガキュア907」)0.5部およびレベリング剤(DIC社製、商品名「GRANDIC PC 4100」)0.5部を添加し、ディスパーを用いて15分間撹拌して、塗工液を調製した。
 当該塗工液を調製後ただちに、バーコーターを用いてTACフィルム(富士フィルム社製、商品名「フジタック」)上に塗工し、60℃にて1分間加熱後、積算光量300mJの紫外線を照射し、厚み10μmの光拡散素子を得た。得られた光拡散素子を上記(2)~(6)の評価に供した。さらに、光拡散素子断面のTEM写真を図5(a)に示す。
 なお、暗所における白輝度を300cd/mと設定したところ、黒輝度は0.3cd/mとなり、暗所におけるコントラストは1000であった。
<実施例2>
 脂成分の前駆体としてのペンタエリスリトールトリアクリレート(大阪有機化学工業社製、商品名「ビスコート#300」、屈折率1.52、分子量298)に代えて、ジペンタエリスリトールヘキサアクリレート(新中村化学工業社製、商品名「NKエステル」、屈折率1.52、分子量632)を用いた以外は、実施例1と同様にして、光拡散素子を得た。得られた光拡散素子を上記(2)~(6)の評価に供した。結果を表1に示す。
<実施例3>
 有機溶剤としての酢酸ブチルおよびMEKの混合溶媒(重量比50/50)30部に代えて、MEK30部を用いた以外は、実施例1と同様にして、光拡散素子を得た。得られた光拡散素子を上記(2)~(6)の評価に供した。結果を表1に示す。
<比較例1>
 超微粒子成分としてのジルコニアナノ粒子(平均粒径60nm、屈折率2.19)を62%含有するハードコート用樹脂(JSR社製、商品名「オプスターKZ6661」(MEK/MIBK含有))100部に、樹脂成分の前駆体としてのペンタエリスリトールトリアクリレート(大阪有機化学工業社製、商品名「ビスコート#300」、屈折率1.52)の50%MEK溶液を11部、光重合開始剤(チバ・スペシャリティ・ケミカル社製、商品名「イルガキュア907」)を0.5部、レベリング剤(DIC社製、商品名「GRANDIC PC 4100」)を0.5部、および、光拡散性微粒子としてのポリメタクリル酸メチル(PMMA)微粒子(積水化成品工業社製、商品名「XX131AA」、平均粒径2.5μm、屈折率1.49)を15部添加した。この混合物を5分間超音波処理し、上記の各成分が均一に分散した塗工液を調製した。当該塗工液を24時間静置した後、バーコーターを用いてTACフィルム(富士フィルム社製、商品名「フジタック」)上に塗工し、60℃にて1分間加熱後、積算光量300mJの紫外線を照射し、厚み10μmの光拡散素子を得た。得られた光拡散素子を上記(2)~(6)の評価に供した。結果を、表1に示す。さらに、光拡散素子断面のTEM写真を図5(b)に示す。
<比較例2>
 超微粒子成分としてのジルコニアナノ粒子(平均粒径60nm、屈折率2.19)を62%含有するハードコート用樹脂(JSR社製、商品名「オプスターKZ6661」(MEK/MIBK含有))100部に、樹脂成分の前駆体としてのペンタエリスリトールトリアクリレート(大阪有機化学工業社製、商品名「ビスコート#300」、屈折率1.52)の50%酢酸ブチル溶液を11部、光重合開始剤(チバ・スペシャリティ・ケミカル社製、商品名「イルガキュア907」)を0.5部、レベリング剤(DIC社製、商品名「GRANDIC PC 4100」)を0.5部、および、光拡散性微粒子としてのポリメタクリル酸メチル(PMMA)微粒子(積水化成品工業社製、商品名「XX131AA」、平均粒径2.5μm、屈折率1.49)を15部添加した。この混合物を5分間超音波処理し、上記の各成分が均一に分散した塗工液を調製した。当該塗工液を72時間静置した後、バーコーターを用いてTACフィルム(富士フィルム社製、商品名「フジタック」)上に塗工し、60℃にて1分間加熱後、積算光量300mJの紫外線を照射し、厚み10μmの光拡散素子を得た。得られた光拡散素子を上記(2)~(6)の評価に供した。結果を、表1に示す。
<比較例3>
 塗工液を調製後、静置せずにただちに塗工した以外は、比較例1と同様にして、光拡散素子を得た。得られた光拡散素子を上記(2)~(6)の評価に供した。結果を表1に示す。
<比較例4>
 塗工液を調製後、静置せずにただちに塗工し、加熱温度を100℃とした以外は、比較例1と同様にして、光拡散素子を得た。得られた光拡散素子を上記(2)~(6)の評価に供した。結果を表1に示す。さらに、光拡散素子断面のTEM写真を図5(c)に示す。
Figure JPOXMLDOC01-appb-T000001
 
 実施例から明らかなように、本発明の光拡散素子の製造方法によれば、塗工液を調製した直後に、塗工しても、ヘイズ値が高く、強い拡散性を有する光拡散素子を製造することができる。また、本発明の製造方法で得られた光拡散素子は、表面平滑性に優れ、後方散乱が少ない。超微粒子成分の疎密が少ないことからも明らかなように、本発明の光拡散素子の製造方法によれば、光拡散性微粒子および超微粒子成分の凝集が起こりにくいため、上記のような優れた特性を有する光拡散素子が得られると考えられる。さらに、樹脂成分の前駆体として低分子量モノマーを用いた場合は、光拡散性により優れる光拡散素子を得ることができる(実施例1と2との比較)。混合液の有機溶媒として、沸点の高い溶媒を用いた場合は、表面平滑性により優れる光拡散素子を得ることができる(実施例1と3との比較)。一方、比較例に示すように、光拡散性微粒子、樹脂成分の前駆体および超微粒子成分を同時に混合した場合は、塗工液を所定時間静置するか、塗工後の加熱温度を高くしなければ、十分なヘイズ値が得られない(比較例3)。また、塗工液を所定時間静置した場合および塗工後の加熱温度を高くした場合、光拡散性微粒子および/または超微粒子成分の凝集により、後方散乱の多い光拡散素子しか得られない(比較例1、2および4)。
 本発明の製造方法により得られる光拡散素子は、液晶表示装置の視認側部材、液晶表示装置のバックライト用部材、照明器具(例えば、有機EL、LED)用拡散部材に好適に用いられ、コリメートバックライトフロント拡散システムのフロント拡散素子として特に好適に用いられ得る。
 10 マトリクス
 11 樹脂成分
 20 光拡散性微粒子
 30 濃度変調領域
100 光拡散素子
 
 

Claims (10)

  1.  光拡散性微粒子と有機溶剤とを混合して混合液を調製し、該光拡散性微粒子を膨潤させる工程Aと、
     該混合液と、樹脂成分の前駆体および超微粒子成分を含むマトリクス形成材料とを混合する工程Bと、
     該樹脂成分の前駆体を重合して、樹脂成分および超微粒子成分を含むマトリクスを形成する工程Cと、を含む、
     光拡散素子の製造方法。
  2.  前記樹脂成分の前駆体の分子量が、100~700である、請求項1に記載の光拡散素子の製造方法。
  3.  前記有機溶剤の沸点が、70℃以上である、請求項1または2に記載の光拡散素子の製造方法。
  4.  前記有機溶剤が、第1の有機溶剤と第2の有機溶剤との混合溶剤であり、
     該第1の有機溶剤は、該第2の有機溶剤よりも前記光拡散性微粒子に浸透しやすく、かつ、該第2の有機溶剤よりも揮発性が高い、
     請求項1または2に記載の光拡散素子の製造方法。
  5.  前記混合液と、前記樹脂成分の前駆体および前記超微粒子成分を含むマトリクス形成材料とを混合して得られた分散液を、加熱する工程をさらに含み、加熱温度が80℃以下である、請求項1から4のいずれかに記載の光拡散素子の製造方法。
  6.  前記工程Cにおいて、前記マトリクスと前記光拡散性微粒子との界面近傍に、該光拡散性微粒子から遠ざかるにつれて該超微粒子成分の重量濃度が高くなる実質的に球殻状の濃度変調領域を形成させる、請求項1から5のいずれかに記載の光拡散素子の製造方法。
  7.  請求項1から6のいずれかに記載の方法によって得られる光拡散素子であって、ヘイズ値が70%以上である、光拡散素子。
  8.  十点平均表面粗さRzが、0.20μm未満である、請求項7に記載の光拡散素子。
  9.  平均傾斜角度θaが、0.50°未満である、請求項7または8に記載の光拡散素子。
  10.  算術平均表面粗さRaが、0.05mm未満である、請求項7から9のいずれかに記載の光拡散素子。
     
PCT/JP2013/060802 2013-04-10 2013-04-10 光拡散素子の製造方法および光拡散素子 WO2014167663A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2013/060802 WO2014167663A1 (ja) 2013-04-10 2013-04-10 光拡散素子の製造方法および光拡散素子
KR1020157028003A KR102091901B1 (ko) 2013-04-10 2013-04-10 광 확산 소자의 제조 방법 및 광 확산 소자
US14/783,757 US9891353B2 (en) 2013-04-10 2013-04-10 Light-diffusing-element manufacturing method and light-diffusing element
CN201380075452.XA CN105190368B (zh) 2013-04-10 2013-04-10 光扩散元件的制造方法及光扩散元件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/060802 WO2014167663A1 (ja) 2013-04-10 2013-04-10 光拡散素子の製造方法および光拡散素子

Publications (1)

Publication Number Publication Date
WO2014167663A1 true WO2014167663A1 (ja) 2014-10-16

Family

ID=51689097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060802 WO2014167663A1 (ja) 2013-04-10 2013-04-10 光拡散素子の製造方法および光拡散素子

Country Status (4)

Country Link
US (1) US9891353B2 (ja)
KR (1) KR102091901B1 (ja)
CN (1) CN105190368B (ja)
WO (1) WO2014167663A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6287837B2 (ja) * 2012-07-27 2018-03-07 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
JP2015159066A (ja) * 2014-02-25 2015-09-03 コニカミノルタ株式会社 有機エレクトロルミネッセンス用光拡散シート及び有機エレクトロルミネッセンスパネル
CN115185020A (zh) * 2022-08-04 2022-10-14 江西麦帝施科技有限公司 一种扩散介质及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006011419A (ja) * 2004-05-27 2006-01-12 Fuji Photo Film Co Ltd 光学フィルム、偏光板、及び画像表示装置
JP2009069427A (ja) * 2007-09-12 2009-04-02 Dainippon Printing Co Ltd 光学積層体、偏光板及び画像表示装置
JP2011112964A (ja) * 2009-11-27 2011-06-09 Dainippon Printing Co Ltd 光学積層体及び光学積層体の製造方法
JP2012069257A (ja) * 2010-09-21 2012-04-05 Nitto Denko Corp 有機elデバイス
JP2012225957A (ja) * 2011-04-14 2012-11-15 Toagosei Co Ltd 光拡散フィルム又はシート形成用電子線硬化型組成物及び光拡散フィルム又はシート

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3071538B2 (ja) 1992-01-17 2000-07-31 日東電工株式会社 光線平行化装置及び液晶表示装置
JP4101339B2 (ja) 1997-09-25 2008-06-18 大日本印刷株式会社 光拡散フィルム、その製造方法、拡散層付偏光板及び液晶表示装置
JP3071538U (ja) 2000-03-07 2000-09-14 トーソー株式会社 ロールスクリーン用ロールパイプ
JP4573946B2 (ja) 2000-05-16 2010-11-04 株式会社きもと 光拡散性シート
JP2002214408A (ja) 2001-01-12 2002-07-31 Fuji Photo Film Co Ltd 光拡散体及び表示装置
JP2003113325A (ja) 2001-10-02 2003-04-18 Fuji Xerox Co Ltd 高分子ゲル組成物、樹脂組成物、及び光学素子
TWI235253B (en) * 2001-10-11 2005-07-01 Fuji Photo Film Co Ltd Diffusion film comprising transparent substrate and diffusion layer
JP4792479B2 (ja) 2002-02-25 2011-10-12 富士フイルム株式会社 防眩性反射防止フィルムの製造方法、及び防眩性反射防止フィルムの製造装置
JP2005309399A (ja) 2004-03-26 2005-11-04 Fuji Photo Film Co Ltd 光拡散フィルムの製造方法、反射防止フィルムおよびそれを用いた偏光板並びに液晶表示装置
JP2005281476A (ja) 2004-03-30 2005-10-13 Tomoegawa Paper Co Ltd 樹脂ビーズ含有塗料及びその製造方法
US7390099B2 (en) * 2004-12-22 2008-06-24 Nitto Denko Corporation Hard-coated antiglare film and method of manufacturing the same
JP2007233185A (ja) 2006-03-02 2007-09-13 Fujifilm Corp 光学フィルム、反射防止フィルム、偏光板および画像表示装置
JP5380832B2 (ja) 2006-12-27 2014-01-08 大日本印刷株式会社 光学積層体の製造方法
JP2009265645A (ja) * 2008-03-31 2009-11-12 Fujifilm Corp 反射防止フィルム、偏光板および画像表示装置
JP2010185968A (ja) 2009-02-10 2010-08-26 Sumitomo Chemical Co Ltd 偏光板、ならびにそれを用いた液晶パネルおよび液晶表示装置
JP4756099B2 (ja) 2009-03-18 2011-08-24 日東電工株式会社 光拡散素子、光拡散素子付偏光板、およびこれらを用いた液晶表示装置、ならびに光拡散素子の製造方法
JP4756100B2 (ja) * 2009-03-26 2011-08-24 日東電工株式会社 光拡散素子の製造方法、光拡散素子、ならびに、光拡散素子付偏光板および液晶表示装置の製造方法
WO2011065490A1 (ja) 2009-11-30 2011-06-03 日東電工株式会社 液晶表示装置
JP2011197546A (ja) 2010-03-23 2011-10-06 Sumitomo Chemical Co Ltd 防眩フィルム製造用金型の製造方法および防眩フィルムの製造方法
JP6275936B2 (ja) 2010-09-17 2018-02-07 日東電工株式会社 光拡散フィルム、光拡散フィルム付偏光板、液晶表示装置および照明器具
JP5909454B2 (ja) * 2012-03-30 2016-04-26 富士フイルム株式会社 防眩フィルム、その製造方法、偏光板、及び画像表示装置
WO2014167665A1 (ja) * 2013-04-10 2014-10-16 日東電工株式会社 光拡散素子および光拡散素子の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006011419A (ja) * 2004-05-27 2006-01-12 Fuji Photo Film Co Ltd 光学フィルム、偏光板、及び画像表示装置
JP2009069427A (ja) * 2007-09-12 2009-04-02 Dainippon Printing Co Ltd 光学積層体、偏光板及び画像表示装置
JP2011112964A (ja) * 2009-11-27 2011-06-09 Dainippon Printing Co Ltd 光学積層体及び光学積層体の製造方法
JP2012069257A (ja) * 2010-09-21 2012-04-05 Nitto Denko Corp 有機elデバイス
JP2012225957A (ja) * 2011-04-14 2012-11-15 Toagosei Co Ltd 光拡散フィルム又はシート形成用電子線硬化型組成物及び光拡散フィルム又はシート

Also Published As

Publication number Publication date
KR20150143469A (ko) 2015-12-23
CN105190368B (zh) 2019-01-11
KR102091901B1 (ko) 2020-03-20
US9891353B2 (en) 2018-02-13
CN105190368A (zh) 2015-12-23
US20160070036A1 (en) 2016-03-10

Similar Documents

Publication Publication Date Title
KR101113634B1 (ko) 광 확산 소자, 광 확산 소자 부착 편광판, 및 이들을 사용한 액정 표시 장치, 그리고 광 확산 소자의 제조 방법
JP6275935B2 (ja) 光拡散素子、光拡散素子付偏光板、およびこれらを用いた液晶表示装置
KR101260168B1 (ko) 광확산 소자의 제조 방법, 광확산 소자, 그리고 광확산 소자가 형성된 편광판 및 액정 표시 장치의 제조 방법
JP5883598B2 (ja) 光拡散素子および光拡散素子付偏光板の製造方法、ならびに、これらの方法で得られた光拡散素子および光拡散素子付偏光板
JP6265316B2 (ja) 光学フィルムの製造方法
KR20130041337A (ko) 광확산 필름, 광확산 필름이 부착된 편광판, 액정 표시 장치 및 조명 기구
WO2014167664A1 (ja) 光拡散素子および光拡散素子の製造方法
JP5129379B2 (ja) 光拡散素子
WO2014167665A1 (ja) 光拡散素子および光拡散素子の製造方法
WO2014167666A1 (ja) 光拡散素子
JP6049278B2 (ja) 光拡散素子の製造方法および光拡散素子
WO2014167663A1 (ja) 光拡散素子の製造方法および光拡散素子
JP2022182093A (ja) 樹脂膜、樹脂膜の作成方法および表示装置
TWI452352B (zh) A light diffusion element and a method for manufacturing the light diffusion element
TWI472808B (zh) A light diffusion element manufacturing method and a light diffusion element
TWI484227B (zh) Light diffusion element
JP2013195813A (ja) 光拡散素子および光拡散素子の製造方法
JP2013195812A (ja) 光拡散素子および光拡散素子の製造方法
TWI472807B (zh) A light diffusion element and a method for manufacturing the light diffusion element
JP2013195814A (ja) 光拡散素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380075452.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881781

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157028003

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14783757

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13881781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP