WO2014167664A1 - 光拡散素子および光拡散素子の製造方法 - Google Patents
光拡散素子および光拡散素子の製造方法 Download PDFInfo
- Publication number
- WO2014167664A1 WO2014167664A1 PCT/JP2013/060803 JP2013060803W WO2014167664A1 WO 2014167664 A1 WO2014167664 A1 WO 2014167664A1 JP 2013060803 W JP2013060803 W JP 2013060803W WO 2014167664 A1 WO2014167664 A1 WO 2014167664A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light diffusing
- fine particles
- light
- diffusing fine
- organic solvent
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0205—Diffusing elements; Afocal elements characterised by the diffusing properties
- G02B5/0236—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
- G02B5/0242—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D5/00—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
- B05D5/06—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0205—Diffusing elements; Afocal elements characterised by the diffusing properties
- G02B5/0263—Diffusing elements; Afocal elements characterised by the diffusing properties with positional variation of the diffusing properties, e.g. gradient or patterned diffuser
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0273—Diffusing elements; Afocal elements characterized by the use
- G02B5/0278—Diffusing elements; Afocal elements characterized by the use used in transmission
Definitions
- the present invention relates to a light diffusing element and a method for manufacturing the light diffusing element.
- Light diffusing elements are widely used in lighting covers, projection television screens, surface light emitting devices (for example, liquid crystal display devices), and the like. In recent years, light diffusing elements have been increasingly used for improving display quality of liquid crystal display devices and the like, and improving viewing angle characteristics.
- a light diffusing element having a matrix containing a resin component and an ultrafine particle component and light diffusing fine particles dispersed in the matrix has been proposed (see, for example, Patent Document 1).
- the matrix and the light diffusing fine particles have a refractive index difference, and an area (concentration modulation area) in which the weight concentration of the ultrafine particle component is modulated is formed near the surface of the light diffusing fine particles.
- the present invention has been made in order to solve the above-described conventional problems.
- the object of the present invention is to have a high haze value, strong diffusibility, suppression of backscattering, and transmission of straight light.
- the object is to provide a reduced light diffusing element.
- the light diffusing element of the present invention is a light diffusing element having a matrix containing a resin component and an ultrafine particle component, and light diffusing fine particles dispersed in the matrix, and the super diffusing element as the distance from the light diffusing fine particle increases.
- a substantially spherical shell-shaped concentration modulation region in which the weight concentration of the fine particle component is increased is formed outside the vicinity of the surface of the light diffusing fine particle, and the average center distance A of the light diffusing fine particles in the light diffusing element
- the average particle diameter B of the light diffusing fine particles in the light diffusing element has a relationship of 0.90 ⁇ B / A.
- the average center distance A, the average particle diameter B, and the average distance C between the outermost part of the concentration modulation region and the surface of the light diffusing fine particles are 0.91 ⁇ (B + 2 ⁇ C). Satisfies the relationship of / A.
- the average center distance A, the average particle diameter B, and the average distance C satisfy a relationship of A ⁇ (B + 2 ⁇ C) ⁇ 0.2 ⁇ m.
- a part of the resin component is contained in the light diffusing fine particles. According to another situation of this invention, the manufacturing method of the said light-diffusion element is provided.
- the light diffusing element manufacturing method includes a step A of applying a coating liquid in which a precursor of a resin component of a matrix, an ultrafine particle component, and a light diffusing fine particle are dissolved or dispersed in an organic solvent to a substrate; A step B of drying the coating liquid applied to the substrate and a step C of polymerizing the precursor are included, and before the step C, the light diffusing fine particles are swollen.
- the blending amount of the light diffusing fine particles is 30 parts by weight or less with respect to 100 parts by weight of the matrix.
- the difference between the SP value of the organic solvent and the SP value of the light diffusing fine particles is 0.2 to 0.8.
- the organic solvent is a mixed solvent of a first organic solvent and a second organic solvent, and the first organic solvent is more light diffusing fine particles than the second organic solvent. And is more volatile than the second organic solvent.
- a region in which the refractive index is modulated (a concentration modulation region in which the concentration of the ultrafine particle component is modulated) is formed in the vicinity of the surface of the light diffusing fine particles. Interface reflection can be suppressed, and backscattering can be suppressed. Furthermore, by including the ultrafine particle component in the matrix, the difference in refractive index between the matrix and the light diffusing fine particles can be increased. By these synergistic effects, it is possible to realize a light diffusing element having a high haze value, strong diffusibility, and suppressed backscattering.
- the ratio (B / A) of the average particle diameter B of the light diffusing fine particles in the light diffusing element to the average center distance A of the light diffusing fine particles is set to a specific value or more, so that the light can be obtained in a plan view.
- a region where the diffusible fine particles are not present can be reduced, and a volume ratio occupied by the concentration modulation region formed near the surface of the light diffusible fine particles can be cumulatively increased. Therefore, it is possible to greatly reduce the region where the incident light travels straight without being diffused (the region where the light diffusing fine particles are not present and the concentration modulation region is not formed in a plan view). .
- the transmission of straight light can be significantly suppressed.
- (A) is a schematic diagram which shows the state of the light diffusible fine particle at the time of planarly viewing the light diffusing element of the present invention
- (b) is the light diffusible fine particle at the time of planarly viewing the conventional light diffusing element. It is a schematic diagram which shows this state. It is a schematic diagram for demonstrating the method of calculating straight light transmittance.
- the light diffusing element of the present invention has a matrix containing a resin component and an ultrafine particle component, and light diffusing fine particles dispersed in the matrix.
- the light diffusing element of the present invention exhibits a light diffusing function due to a difference in refractive index between the matrix and the light diffusing fine particles.
- FIG. 1 is a schematic diagram for explaining a dispersion state of a resin component and ultrafine particle component of a matrix and light diffusing fine particles in a light diffusing element according to a preferred embodiment of the present invention.
- the light diffusing element 100 of the present invention includes a matrix 10 including a resin component 11 and an ultrafine particle component 12 and light diffusing fine particles 20 dispersed in the matrix 10. As shown in FIG.
- the matrix has a concentration modulation region 30 in the vicinity of the interface with the light diffusing fine particles, and a constant concentration region outside the concentration modulation region 30 (on the side away from the light diffusing fine particles).
- the part other than the density modulation area 30 in the matrix is a substantially constant density area.
- the refractive index changes substantially continuously.
- the density modulation region 30 may be a spherical shell having fine irregularities at the boundary. Further, the innermost part of the concentration modulation region may be inside the light diffusing fine particles.
- the “near the surface of the light diffusing fine particles” includes the surface of the light diffusing fine particles, the outside in the vicinity of the surface, and the inside in the vicinity of the surface. Further, the “outside surface vicinity of light diffusing fine particles” includes the surface of light diffusing fine particles and the outside near the surface.
- the concentration modulation region 30 is formed by a substantial gradient of the dispersion concentration of the ultrafine particle component 12 in the matrix 10. Specifically, in the concentration modulation region 30, the dispersion concentration (typically defined by the weight concentration) of the ultrafine particle component 12 increases as the distance from the light diffusing fine particles 20 increases (inevitably, resin The weight concentration of component 11 is reduced). In other words, the ultrafine particle component 12 is dispersed at a relatively low concentration in the closest region of the light diffusing fine particle 20 in the concentration modulation region 30, and the concentration of the ultrafine particle component 12 increases as the distance from the light diffusing fine particle 20 increases. Increase.
- the area ratio of the ultrafine particle component 12 in the matrix 10 according to the transmission electron microscope (TEM) image is small on the side close to the light diffusing fine particles 20 and large on the side close to the matrix 10, and the area ratio is light. It changes while forming a substantial gradient from the diffusible fine particle side to the matrix side (constant concentration region side).
- FIG. 3 shows a TEM image representing the typical dispersion state.
- area ratio of ultrafine particle component in matrix by transmission electron microscope image means a matrix in a predetermined range (predetermined area) in a transmission electron microscope image of a cross section including the diameter of light diffusing fine particles. The ratio of the area of the ultrafine particle component to the total.
- the area ratio corresponds to the three-dimensional dispersion concentration (actual dispersion concentration) of the ultrafine particle component.
- the area ratio of the ultrafine particle component can be obtained by any appropriate image analysis software.
- the area ratio typically corresponds to the average shortest distance between the particles of the ultrafine particle component. Specifically, the average shortest distance between each particle of the ultrafine particle component becomes shorter as the distance from the light diffusing fine particles in the concentration modulation region, and becomes constant in the constant concentration region (for example, the average shortest distance is the light diffusion). In the closest region of the fine particles, it is about 3 to 100 nm, and in the constant concentration region, it is 1 to 20 nm).
- the average shortest distance can be calculated by binarizing a TEM image in a dispersed state as shown in FIG.
- the concentration modulation region 30 can be formed in the vicinity of the surface of the light diffusing fine particles using the substantial gradient of the dispersion concentration of the ultrafine particle component 12.
- the light diffusing element can be manufactured by a much simpler procedure and at a much lower cost.
- the refractive index can be smoothly changed at the boundary between the concentration modulation region 30 and the constant concentration region by forming the concentration modulation region using a substantial gradient of the dispersion concentration of the ultrafine particle component. Furthermore, by using an ultrafine particle component having a refractive index that is significantly different from that of the resin component and the light diffusing fine particles, the difference in refractive index between the light diffusing fine particles and the matrix (substantially constant concentration region) is increased, and the concentration The refractive index gradient in the modulation region can be made steep.
- the concentration modulation region can be formed by appropriately selecting the resin component and ultrafine particle component of the matrix, the constituent material of the light diffusing fine particles, and the chemical and thermodynamic characteristics.
- the resin component and the light diffusing fine particles are composed of the same type of material (for example, organic compounds), and the ultra fine particle component is composed of a different type of material (for example, an inorganic compound) from the resin component and the light diffusing fine particles.
- the density modulation region can be formed satisfactorily.
- the resin component and the light diffusing fine particles are composed of highly compatible materials among the similar materials.
- the thickness and refractive index gradient of the concentration modulation region can be controlled by adjusting the chemical and thermodynamic properties of the resin component and ultrafine particle component of the matrix and the light diffusing fine particles.
- “same system” means that chemical structures and properties are equivalent or similar, and “different system” means something other than the same system. Whether or not they are related may differ depending on how the reference is selected. For example, when organic or inorganic is used as a reference, the organic compounds are the same type of compounds, and the organic compound and the inorganic compound are different types of compounds.
- the polymer repeat unit when used as a reference, for example, an acrylic polymer and an epoxy polymer are different compounds despite being organic compounds, and when a periodic table is used as a reference, alkali metals and transition metals are used. Is an element of a different system despite being inorganic elements.
- the refractive index changes substantially continuously as described above.
- the outermost refractive index of the concentration modulation region and the refractive index of the constant concentration region are substantially the same.
- the refractive index continuously changes from the concentration modulation region to the constant concentration region, preferably from the light diffusing fine particles (more preferably, the inside of the vicinity of the surface of the light diffusing fine particles) to the concentration.
- the refractive index continuously changes over a certain region (FIG. 4).
- the refractive index change is smooth as shown in FIG.
- the shape changes so that a tangent line can be drawn on the refractive index change curve.
- the gradient of refractive index change increases as the distance from the light diffusing fine particles increases.
- the weight concentration of the ultrafine particle component 12 having a refractive index that is significantly different from that of the light diffusing fine particles 20 is relatively high, so that the matrix 10 (substantially the constant concentration region) and the light diffusibility.
- the difference in refractive index with the fine particles 20 can be increased.
- high haze strong diffusivity
- the refractive index changes substantially continuously means that the refractive index should change substantially continuously from at least the light diffusing fine particles to the constant concentration region in the concentration modulation region. To do.
- the refractive index within a predetermined range for example, the refractive index difference is 0.05 or less
- the refractive index difference is 0.05 or less
- the thickness of the concentration modulation region 30 may be constant (that is, the concentration modulation region extends concentrically around the light diffusing fine particles.
- the thickness may be different depending on the position of the surface of the light diffusing fine particles (for example, it may be an outer shape of confetti).
- the average thickness L of the concentration modulation region 30 is preferably 0.01 ⁇ m to 0.6 ⁇ m, more preferably 0.03 ⁇ m to 0.5 ⁇ m, still more preferably 0.04 ⁇ m to 0.4 ⁇ m.
- the thickness is preferably 0.05 ⁇ m to 0.4 ⁇ m.
- the average thickness L is an average thickness when the thickness of the concentration modulation region 30 varies depending on the position of the light diffusing fine particle surface, and is the thickness when the thickness is constant.
- the average center distance A of the light diffusing fine particles in the light diffusing element and the average particle diameter B of the light diffusing fine particles in the light diffusing element have a relationship of 0.90 ⁇ B / A, preferably It has a relationship of 0.93 ⁇ B / A, more preferably a relationship of 0.95 ⁇ B / A, and still more preferably a relationship of 0.97 ⁇ B / A.
- the upper limit of (B / A) is preferably 1. With such a relationship, the area where the light diffusing fine particles do not exist when viewed in plan can be reduced, and the volume ratio occupied by the concentration modulation area can be cumulatively increased.
- the average distance C preferably has a relationship of 0.91 ⁇ (B + 2 ⁇ C) / A, more preferably has a relationship of 0.94 ⁇ (B + 2 ⁇ C) / A, and more preferably 0.96. ⁇ (B + 2 ⁇ C) / A, particularly preferably 0.98 ⁇ (B + 2 ⁇ C) / A. With such a relationship, it is possible to reduce the amount of light that is transmitted without being affected by the light diffusing fine particles and the concentration modulation region, and it is possible to prevent the transmission of straight light.
- the average distance C preferably has a relationship of A ⁇ (B + 2 ⁇ C) ⁇ 0.2 ⁇ m, more preferably has a relationship of A ⁇ (B + 2 ⁇ C) ⁇ 0.15 ⁇ m, and more preferably A ⁇ ( B + 2 ⁇ C) ⁇ 0.02 ⁇ m, particularly preferably A ⁇ (B + 2 ⁇ C) ⁇ 0 ⁇ m.
- a ⁇ (B + 2 ⁇ C) 0 means that the concentration modulation region is substantially in contact between the light diffusing fine particles. Further, between the light diffusing fine particles, the concentration modulation regions existing outside the light diffusing fine particles can overlap each other. Therefore, A ⁇ (B + 2 ⁇ C) can take a negative value.
- the lower limit of A ⁇ (B + 2 ⁇ C) is preferably ⁇ 2 ⁇ C.
- the light diffusing fine particles having the above relationship are obtained by sufficiently swelling the light diffusing fine particles with the organic solvent and the precursor of the resin component at the time of manufacturing the light diffusing element, and then polymerizing the resin component in the matrix. Can be obtained. Therefore, the above-mentioned “average center-to-center distance A of the light diffusing fine particles in the light diffusing element” and “average particle diameter B of the light diffusing fine particles in the light diffusing element” are the light diffusing fine particles after swelling, that is, It means the average center-to-center distance and the average particle diameter of the light diffusing fine particles having a particle diameter increased from that of charging. Details of the method of manufacturing the light diffusing element will be described later.
- the average center distance A of the light diffusing fine particles in the light diffusing element the average particle diameter B of the light diffusing fine particles in the light diffusing element, the outermost part of the concentration modulation region, the surface of the light diffusing fine particles,
- the specific method for measuring the average distance C is as described in the examples.
- the average center distance A of the light diffusing fine particles in the light diffusing element is preferably 1.5 ⁇ m to 10 ⁇ m, more preferably 2.5 ⁇ m to 8.0 ⁇ m, and still more preferably 3.0 ⁇ m to 5. 0 ⁇ m.
- the average particle diameter B of the light diffusing fine particles in the light diffusing element is preferably 1.5 ⁇ m to 10 ⁇ m, more preferably 2.5 ⁇ m to 8 ⁇ m, and further preferably 3 ⁇ m to 8 ⁇ m. If the average particle diameter B of the light diffusing fine particles in the light diffusing element is in such a range, without increasing the number of light diffusing fine particles, the area where the light diffusing fine particles do not exist when viewed in plan can be reduced, In addition, since the volume ratio occupied by the concentration modulation region can be increased cumulatively, it is possible to suppress the transmission of straight light while suppressing backscattering.
- the average particle diameter B of the light diffusing fine particles in the light diffusing element is preferably 1 ⁇ 2 or less (for example, 1 ⁇ 2 to 1/20) of the thickness of the light diffusing element. If the average particle diameter has such a ratio with respect to the thickness of the light diffusing element, a plurality of light diffusing fine particles can be arranged in the thickness direction of the light diffusing element, so that incident light passes through the light diffusing element. In the meantime, the light can be diffused multiple times, and as a result, sufficient light diffusibility can be obtained.
- the average distance C between the outermost part of the concentration modulation region and the surface of the light diffusing fine particles is preferably 0.01 ⁇ m to 0.5 ⁇ m, more preferably 0.03 ⁇ m to 0.5 ⁇ m, and still more preferably 0 0.04 ⁇ m to 0.4 ⁇ m, particularly preferably 0.05 ⁇ m to 0.4 ⁇ m.
- transmission of straight light can be suppressed.
- FIG. 5A is a schematic diagram showing a state of the light diffusing fine particles when the light diffusing element of the present invention is viewed in plan
- FIG. 5B is a diagram when the conventional light diffusing element is viewed in plan.
- It is a schematic diagram which shows the state of light diffusable microparticles
- the light diffusing element of the present invention includes an average center distance A of the light diffusing fine particles in the light diffusing element, an average particle diameter B of the light diffusing fine particles in the light diffusing element, the outermost part of the concentration modulation region, and the above
- the average distance C from the surface of the light diffusing fine particles satisfies the above relationship, the light diffusing fine particles can exist with a small gap as shown in FIG.
- the volume ratio occupied by the concentration modulation region formed outside the surface of the light diffusing fine particles can be cumulatively increased.
- a light diffusing element in which the transmission of straight light is suppressed can be obtained.
- the average particle diameter B of the light diffusing fine particles in the light diffusing element is in the above range, the transmission of the straight light can be suppressed with a small number of light diffusing fine particles. As a result, a light diffusing element excellent in light diffusibility by suppressing backscattering can be obtained.
- the light diffusing element preferably has a higher haze value, specifically, preferably 70% or more, more preferably 90% to 99.6%, and still more preferably 92% to 99.6. %, More preferably 95% to 99.6%, more preferably 97% to 99.6%, particularly preferably 98% to 99.6%, and most preferably 98.6%. ⁇ 99.6%.
- the haze value is 70% or more, it can be suitably used as a front light diffusing element in a collimated backlight front diffusing system.
- the collimated backlight front diffusion system is a liquid crystal display device that uses collimated backlight light (backlight light with a narrow luminance half-value width condensed in a certain direction) and the front light on the viewing side of the upper polarizing plate.
- the diffusion characteristic of the light diffusing element is preferably 10 ° to 150 ° (5 ° to 75 ° on one side), more preferably 10 ° to 100 ° (5 ° to 50 ° on one side), in terms of a light diffusion half-value angle. And more preferably 30 ° to 80 ° (15 ° to 40 ° on one side).
- the transmittance of light parallel to the incident direction is preferably 2% or less, more preferably 1% or less. More preferably, it is 0.5% or less, particularly preferably 0.2% or less.
- straight light transmittance refers to the ratio of the light intensity of straight light to the light intensity of all outgoing light (straight light + diffused light).
- the thickness of the light diffusing element can be appropriately set according to the purpose and desired diffusion characteristics. Specifically, the thickness of the light diffusing element is preferably 4 ⁇ m to 50 ⁇ m, more preferably 4 ⁇ m to 20 ⁇ m. According to the present invention, a light diffusing element having such a very high haze as described above can be obtained despite such a very thin thickness.
- the light diffusing element is suitably used for a liquid crystal display device, and particularly suitably for a collimated backlight front diffusing system.
- the light diffusing element may be provided alone as a film-like or plate-like member, or may be provided as a composite member by being attached to any appropriate base material or polarizing plate.
- An antireflection layer may be laminated on the light diffusing element.
- the matrix 10 preferably includes the resin component 11 and the ultrafine particle component 12. As described above and as shown in FIGS. 1 and 2, the ultrafine particle component 12 is dispersed in the resin component 11 so as to form a concentration modulation region 30 in the vicinity of the surface of the light diffusing fine particles 20. Yes.
- the resin component 11 is made of any appropriate material as long as the effects of the present invention can be obtained.
- the resin component 11 is composed of a compound similar to the light diffusing fine particles and different from the ultrafine particle component. Thereby, it is possible to satisfactorily form the concentration modulation region near the surface of the light diffusing fine particles.
- the resin component 11 is composed of a highly compatible compound in the same system as the light diffusing fine particles. Thereby, a density modulation region having a desired refractive index gradient can be formed.
- the resin component locally surrounds the light diffusing fine particles only with the resin component, rather than being in a state of being uniformly dissolved or dispersed with the ultra fine particle component.
- the energy of the entire system is more stable.
- the weight concentration of the resin component is higher than the average weight concentration of the resin component in the entire matrix in the closest region of the light diffusing fine particles, and decreases as the distance from the light diffusing fine particles increases. Therefore, it is possible to satisfactorily form the concentration modulation region near the surface of the light diffusing fine particles.
- the affinity between the light diffusing fine particles and the resin component is increased, and the light diffusing fine particles are closest to each other.
- the weight concentration of the resin component in the region can be increased.
- the resin component is preferably composed of an organic compound, more preferably an ionizing radiation curable resin.
- the ionizing radiation curable resin is excellent in the hardness of the coating film.
- the ionizing rays include ultraviolet rays, visible light, infrared rays, and electron beams.
- it is ultraviolet rays, and therefore the resin component is particularly preferably composed of an ultraviolet curable resin.
- the ultraviolet curable resin include resins formed from radical polymerization monomers and / or oligomers such as acrylate resins (epoxy acrylate, polyester acrylate, acrylic acrylate, ether acrylate).
- the molecular weight of the monomer component (precursor) constituting the acrylate resin is preferably 200 to 700.
- the monomer component (precursor) constituting the acrylate resin examples include pentaerythritol triacrylate (PETA: molecular weight 298), neopentyl glycol diacrylate (NPGDA: molecular weight 212), dipentaerythritol hexaacrylate (DPHA: molecular weight 632). ), Dipentaerythritol pentaacrylate (DPPA: molecular weight 578), and trimethylolpropane triacrylate (TMPTA: molecular weight 296).
- An initiator may be added to the precursor as necessary.
- the initiator examples include a UV radical generator (Irgacure 907, 127, 192, etc., manufactured by BASF Japan) and benzoyl peroxide.
- the resin component may contain another resin component in addition to the ionizing radiation curable resin.
- Another resin component may be an ionizing radiation curable resin, a thermosetting resin, or a thermoplastic resin.
- Representative examples of other resin components include aliphatic (for example, polyolefin) resins and urethane resins. In the case of using another resin component, the type and blending amount thereof are adjusted so that the density modulation region is formed satisfactorily.
- the resin component and light diffusing fine particles of the matrix preferably have a refractive index satisfying the following formula (1): 0 ⁇
- n A represents the refractive index of the resin component of the matrix
- n P represents the refractive index of the light diffusing fine particles.
- is preferably 0.01 to 0.10, more preferably 0.01 to 0.06, and particularly preferably 0.02 to 0.06. If
- the refractive index of the resin component, ultrafine particle component, and light diffusing fine particles of the matrix preferably satisfies the following formula (2): 0 ⁇
- n A and n P are as described above, and n B represents the refractive index of the ultrafine particle component.
- is preferably 0.10 to 1.50, more preferably 0.20 to 0.80.
- is less than 0.10, the haze value is often 90% or less, and as a result, the light from the light source cannot be sufficiently diffused when incorporated in a liquid crystal display device. The viewing angle may be narrowed.
- the refractive index of the resin component is preferably 1.40 to 1.60.
- the amount of the resin component is preferably 10 to 80 parts by weight, more preferably 20 to 80 parts by weight, and still more preferably 20 to 65 parts by weight with respect to 100 parts by weight of the matrix. Parts, particularly preferably 45 to 65 parts by weight.
- the resin component may contain another resin component in addition to the ionizing radiation curable resin.
- Another resin component may be an ionizing radiation curable resin, a thermosetting resin, or a thermoplastic resin.
- Representative examples of other resin components include aliphatic (for example, polyolefin) resins and urethane resins. In the case of using another resin component, the type and blending amount thereof are adjusted so that the density modulation region is formed satisfactorily.
- the ultrafine particle component 12 is preferably composed of a compound of a system different from the resin component and the light diffusing fine particles described later, and more preferably composed of an inorganic compound.
- examples of preferable inorganic compounds include metal oxides and metal fluorides.
- the metal oxide include zirconium oxide (zirconia) (refractive index: 2.19), aluminum oxide (refractive index: 1.56 to 2.62), and titanium oxide (refractive index: 2.49 to 2.19). 74) and silicon oxide (refractive index: 1.25 to 1.46).
- the metal fluoride include magnesium fluoride (refractive index: 1.37) and calcium fluoride (refractive index: 1.40 to 1.43).
- metal oxides and metal fluorides have a refractive index that is difficult to be expressed by organic compounds such as ionizing radiation curable resins and thermoplastic resins in addition to low light absorption. Since the weight concentration of the ultrafine particle component becomes relatively higher as the distance from the interface increases, the refractive index can be greatly modulated. By increasing the difference in refractive index between the light diffusing fine particles and the matrix, a high haze (high light diffusibility) can be realized even in a thin film, and a concentration modulation region is formed, which also prevents backscattering. large.
- a particularly preferred inorganic compound is zirconium oxide.
- the ultrafine particle component also satisfies the above formulas (1) and (2).
- the refractive index of the ultrafine particle component is preferably 1.40 or less or 1.60 or more, more preferably 1.40 or less or 1.70 to 2.80, and particularly preferably 1.40 or less or 2 .00 to 2.80. If the refractive index exceeds 1.40 or less than 1.60, the difference in refractive index between the light diffusing fine particles and the matrix may be insufficient, and sufficient light diffusibility may not be obtained.
- the element is used in a liquid crystal display device that employs a collimated backlight front diffusion system, the light from the collimated backlight may not be sufficiently diffused and the viewing angle may be narrowed.
- the average particle size of the ultrafine particle component is preferably 1 nm to 100 nm, more preferably 10 nm to 80 nm, and still more preferably 20 nm to 70 nm. In this way, by using an ultrafine particle component having an average particle size smaller than the wavelength of light, no geometrical optical reflection, refraction, or scattering occurs between the ultrafine particle component and the resin component, and an optically uniform matrix. Can be obtained. As a result, an optically uniform light diffusing element can be obtained.
- the ultrafine particle component preferably has good dispersibility with the resin component.
- “good dispersibility” means that a coating liquid obtained by mixing the resin component, the ultrafine particle component, and an organic solvent (and a small amount of UV initiator as required) is applied, It means that the coating film obtained by drying and removing the solvent is transparent.
- the ultrafine particle component is surface-modified.
- the ultrafine particle component can be favorably dispersed in the resin component, and the concentration modulation region can be favorably formed.
- Any appropriate means can be adopted as the surface modifying means as long as the effects of the present invention can be obtained.
- the surface modification is performed by applying a surface modifier to the surface of the ultrafine particle component to form a surface modifier layer.
- preferable surface modifiers include coupling agents such as silane coupling agents and titanate coupling agents, and surfactants such as fatty acid surfactants.
- the wettability between the resin component and the ultrafine particle component is improved, the interface between the resin component and the ultrafine particle component is stabilized, and the ultrafine particle component is improved in the resin component. It is possible to disperse and form the density modulation region satisfactorily.
- the amount of the ultrafine particle component is preferably 10 to 70 parts by weight, more preferably 30 to 60 parts by weight, and still more preferably 35 parts by weight with respect to 100 parts by weight of the formed matrix. Parts to 55 parts by weight.
- the light diffusing fine particles 20 are also made of any appropriate material as long as the effects of the present invention can be obtained.
- the light diffusing fine particles 20 are composed of a compound similar to the resin component of the matrix.
- the ionizing radiation curable resin constituting the resin component of the matrix is an acrylate resin
- the light diffusing fine particles are also preferably composed of an acrylate resin.
- the acrylate constituting the light diffusing fine particles The base resin is preferably polymethyl methacrylate (PMMA), polymethyl acrylate (PMA), and a copolymer thereof, and a cross-linked product thereof.
- PMMA polymethyl methacrylate
- PMA polymethyl acrylate
- the copolymer component with PMMA and PMA include polyurethane, polystyrene (PS), and melamine resin.
- the light diffusing fine particles are composed of PMMA. This is because the relationship between the refractive index and thermodynamic properties of the matrix resin component and ultrafine particle component is appropriate.
- the light diffusing fine particles have a cross-linked structure (three-dimensional network structure).
- cross-linked structure three-dimensional network structure.
- the resin component penetrates into the light diffusing fine particles, and the light diffusing fine particles contain the resin component in the light diffusing element. If the resin component penetrates into the light diffusing fine particles, a concentration modulation region can be formed in the vicinity of the surface of the light diffusing fine particles, which has a high haze value, strong diffusibility, and back scattering. Can be obtained.
- the penetration range of the precursor in the light diffusing fine particles is preferably 10% or more, more preferably 50% or more, still more preferably 80% to 100%, and particularly preferably 90% to 100%. It is. If it is such a range, a density
- the permeation range should be controlled by adjusting the resin component and the material of the light diffusing fine particles, the crosslinking density of the light diffusing fine particles, the type of organic solvent used during production, the standing time during production, the standing temperature, etc. Can do.
- the standard deviation of the weight average particle size distribution of the light diffusing fine particles in the light diffusing element is preferably 1.0 ⁇ m or less, more preferably 0.5 ⁇ m or less, and particularly preferably 0.1 ⁇ m or less.
- the diffusible fine particles in the light diffusing element are preferably in a monodispersed state.
- the variation coefficient of the weight average particle size distribution ((standard deviation of particle size) ⁇ 100 / (average particle size)) is 20. % Or less is preferable, and 15% or less is more preferable.
- any appropriate shape can be adopted depending on the purpose. Specific examples include a true sphere shape, a flake shape, a plate shape, an elliptic sphere shape, and an indefinite shape. In many cases, spherical fine particles can be used as the light diffusing fine particles.
- the refractive index of the light diffusing fine particles is preferably 1.30 to 1.70, more preferably 1.40 to 1.60.
- a method for producing a light diffusing element according to one embodiment of the present invention comprises dissolving or dispersing a precursor (monomer) of a resin component of a matrix, an ultrafine particle component, and light diffusing fine particles in an organic solvent.
- a step of applying the applied coating solution to the substrate referred to as step A
- a step of drying the coating solution applied to the substrate referred to as step B
- a step of polymerizing the precursor Step C).
- the light diffusing fine particles are swollen with an organic solvent.
- the particle size of the light diffusing fine particles can be increased. If the particle size of the light diffusing fine particles in the light diffusing element is large, the distance between the light diffusing fine particles can be shortened without increasing the number of light diffusing fine particles. Can be suppressed.
- the light diffusing fine particles are covered with an organic solvent, and the affinity between the light diffusing fine particles and the precursor of the resin component can be increased.
- the concentration of the resin component precursor is high and the dispersion concentration of the ultrafine particle component is low around the light diffusing fine particles, so that a thick concentration modulation region can be formed.
- the average center distance A of the light diffusing fine particles in the light diffusing element, the light diffusing fine particles in the light diffusing element, A light diffusing element in which the average particle diameter B and the average distance C between the outermost part of the concentration modulation region and the surface of the light diffusing fine particles are appropriately adjusted as described above can be obtained.
- the precursor of the resin component can easily penetrate into the light diffusing fine particles.
- the light diffusing fine particles are further swollen and the average particle size is further increased.
- a concentration modulation region can be formed in the vicinity of the surface of the light diffusing fine particles, the haze value is high, and the diffusibility is high. And the light-diffusion element in which backscattering was suppressed can be obtained.
- the solubility parameter (SP value) is different from the SP value of the light diffusing fine particles by a predetermined difference (for example, 0.2 to 0.8) using an organic solvent (Method 1), in Step A, after mixing light diffusing fine particles in an organic solvent in advance to swell the light diffusing fine particles, the resin component precursor and super Examples include a method (Method 2) of adding a fine particle component to the organic solvent to prepare a coating solution. These methods can be used in combination.
- the swelling degree of the light diffusing fine particles is preferably 105% to 200%, more preferably 110% to 200%, and further preferably 115% to 200%.
- the “swelling degree” refers to the ratio of the average particle diameter of the swollen particles to the average particle diameter of the particles before swelling (the average particle diameter of the light diffusing fine particles in the light diffusing element).
- the organic solvent content ratio of the light diffusing fine particles before Step C is preferably 10% to 100%, more preferably 70% to 100%.
- “the organic solvent content ratio of the light diffusing fine particles” means the light diffusion with respect to the content (maximum content) of the organic solvent in the case where the organic solvent content is saturated in the light diffusing fine particles. It means the organic solvent content ratio of the conductive fine particles.
- the precursor of the resin component, the ultrafine particle component, and the light diffusing fine particles are as described in the above sections A-2-1, A-2-2, and A-3, respectively.
- the coating liquid is a dispersion in which ultrafine particle components and light diffusing fine particles are dispersed in a precursor and a volatile solvent.
- any appropriate means for example, ultrasonic treatment, dispersion treatment with a stirrer can be employed.
- the coating liquid is prepared by previously mixing the light diffusing fine particles in an organic solvent to swell the light diffusing fine particles, and then the precursor of the resin component. And an ultrafine particle component can be added to the organic solvent to adjust. After mixing the light diffusing fine particles and the organic solvent, the light diffusing fine particles can be swollen by allowing a predetermined time to elapse. For example, the light diffusing fine particles can be swollen after 15 minutes to 90 minutes.
- the mixed solution may be prepared, for example, by stirring the light diffusing fine particles in an organic solvent.
- the light diffusing fine particles are mixed in advance in an organic solvent to swell the light diffusing fine particles, they can be used for the subsequent step immediately after the preparation of the coating liquid, that is, without leaving still. Therefore, the light diffusing fine particles and the ultra fine particle component can be prevented from aggregating, and a light diffusing element having excellent smoothness, no super fine particle component density and little backscattering can be obtained.
- organic solvent examples include butyl acetate, methyl isobutyl ketone, ethyl acetate, isopropyl acetate, 2-butanone (methyl ethyl ketone), cyclopentanone, toluene, isopropyl alcohol, n-butanol, cyclopentane, and water.
- the boiling point of the organic solvent is preferably 70 ° C. or higher, more preferably 100 ° C. or higher, particularly preferably 110 ° C. or higher, and most preferably 120 ° C. or higher.
- a mixed solvent is used as the organic solvent.
- a solvent obtained by mixing the light diffusing fine particles (first organic solvent) with a low volatile organic solvent (second organic solvent) is used.
- the first organic solvent is easier to penetrate into the light diffusing fine particles and has higher volatility than the second organic solvent.
- the second organic solvent is less likely to penetrate into the light diffusing fine particles and has lower volatility than the first organic solvent.
- swelling of the light diffusing fine particles is promoted (that is, the manufacturing process is shortened), and the organic solvent is prevented from sudden volatilization to obtain a light diffusing element excellent in smoothness. be able to.
- the boiling point of the first organic solvent is preferably 80 ° C.
- the boiling point of the second organic solvent is preferably higher than 80 ° C, more preferably 100 ° C or higher, further preferably 110 ° C or higher, and most preferably 120 ° C or higher.
- the ease of penetration of the organic solvent can be compared by, for example, the degree of swelling of the light diffusing fine particles with respect to the organic solvent, and the organic solvent that swells the light diffusing fine particles with a higher degree of swelling is the light diffusing fine particles. It can be said that it is an organic solvent that easily penetrates into water. Moreover, the organic solvent whose solubility parameter (SP value) is close to the SP value of the light diffusing fine particles tends to easily penetrate into the light diffusing fine particles.
- SP value solubility parameter
- the difference between the SP value of the first organic solvent and the SP value of the light diffusing fine particles is preferably 0.5 or less, more preferably 0.4 or less, and further preferably 0.1 to 0.00. 4.
- the difference between the SP value of the second organic solvent and the SP value of the light diffusing fine particles is preferably more than 0.5, more preferably 0.6 or more, and further preferably 0.7 to 2.0. It is. Further, an organic solvent having a low molecular weight tends to penetrate into the light diffusing fine particles.
- the molecular weight of the first organic solvent is preferably 80 or less, more preferably 75 or less, and further preferably 50 to 75.
- the molecular weight of the second organic solvent is preferably higher than 80, more preferably 100 or more, and further preferably 110 to 140.
- an organic solvent having a solubility parameter (SP value) having a predetermined difference from the SP value of the light diffusing fine particles can be used.
- the absolute value of the difference between the SP value of the organic solvent and the SP value of the light diffusing fine particles is preferably 0.2 to 0.8, more preferably 0.2 to 0.7.
- the precursor of the resin component may not sufficiently penetrate into the light diffusing fine particles.
- the absolute value of the difference between the SP value of the organic solvent and the SP value of the light diffusing fine particles is within the above range, the dissolution of the light diffusing fine particles is suppressed and the light diffusing fine particles are gradually swollen. Can do.
- the SP value of the organic solvent is preferably 8.4 to 9.0, more preferably 8.5 to 8.7.
- organic solvent having such an SP value examples include butyl acetate (SP value: 8.7), methyl isobutyl ketone (SP value: 8.6), and other appropriate solvents (for example, And a mixed solvent with methyl ethyl ketone). If an organic solvent having such an SP value is used, when the resin constituting the light diffusing fine particles is PMMA (SP value: 9.2), the light diffusing fine particles having a high degree of swelling and a large particle diameter are obtained. And a thick density modulation region can be formed.
- the coating liquid may further contain any appropriate additive depending on the purpose.
- a dispersant in order to disperse the ultrafine particle component satisfactorily, a dispersant can be suitably used.
- the additive include an ultraviolet absorber, a leveling agent, and an antifoaming agent.
- the compounding amount of the precursor of the resin component in the coating liquid is as described in the section A-2-1 and the mixing amount of the ultrafine particle component is as described in the section A-2-2.
- the upper limit of the amount of the light diffusing fine particles is preferably 30 parts by weight, more preferably 25 parts by weight, and further preferably 20 parts by weight with respect to 100 parts by weight of the matrix.
- the light diffusing fine particles are swollen to increase the particle diameter. Therefore, even if the blending amount of the light diffusing fine particles is reduced, the haze value is reduced. It is possible to obtain a light diffusing element that is high, has a strong diffusibility, and has reduced transmission of straight light.
- the lower limit of the amount of the light diffusing fine particles is preferably 5 parts by weight, more preferably 10 parts by weight, and further preferably 15 parts by weight with respect to 100 parts by weight of the matrix.
- the solid content concentration of the coating solution can be adjusted to be preferably about 10 wt% to 70 wt%. If it is such solid content concentration, the coating liquid which has a viscosity with easy coating can be obtained.
- any appropriate film can be adopted as long as the effects of the present invention can be obtained.
- Specific examples include a triacetyl cellulose (TAC) film, a polyethylene terephthalate (PET) film, a polypropylene (PP) film, a nylon film, an acrylic film, and a lactone-modified acrylic film.
- the base material may be subjected to surface modification such as easy adhesion treatment, and may contain additives such as a lubricant, an antistatic agent, and an ultraviolet absorber.
- a method for applying the coating liquid to the base material a method using any appropriate coater can be employed.
- the coater include a bar coater, a reverse coater, a kiss coater, a gravure coater, a die coater, and a comma coater.
- Process B Any appropriate method can be adopted as a method for drying the coating solution. Specific examples include natural drying, heat drying, and vacuum drying. Heat drying is preferable.
- the heating temperature is, for example, 60 ° C. to 150 ° C., and the heating time is, for example, 30 seconds to 5 minutes.
- the polymerization method any appropriate method can be adopted depending on the type of the resin component (and hence its precursor).
- the resin component is an ionizing radiation curable resin
- the precursor is polymerized by irradiating the ionizing radiation.
- ultraviolet rays are used as the ionizing ray
- the integrated light quantity is preferably 50 mJ / cm 2 to 1000 mJ / cm 2 , more preferably 200 mJ / cm 2 to 400 mJ / cm 2 .
- the transmittance of the ionizing rays to the light diffusing fine particles is preferably 70% or more, more preferably 80% or more.
- the resin component is a thermosetting resin
- the precursor is polymerized by heating.
- the heating temperature and the heating time can be appropriately set according to the type of the resin component.
- the polymerization is performed by irradiating with ionizing radiation. With ionizing ray irradiation, the coating film can be cured while the concentration modulation region is well maintained, so that a light diffusing element having good diffusion characteristics can be produced.
- a concentration modulation region is formed in the vicinity of the surface of the light diffusing fine particles.
- the precursor that has penetrated into the light diffusing fine particles and the precursor that has not penetrated into the light diffusing fine particles are polymerized at the same time, so that the concentration in the vicinity of the surface of the light diffusing fine particles A matrix can be formed simultaneously with the formation of the modulation region.
- the polymerization step (step C) may be performed before the drying step (step B) or after step B.
- the drying step (step B) is performed before the polymerization step (step C). This is because the penetration of the precursor of the resin component into the light diffusing fine particles can be promoted by heating.
- the manufacturing method of the light diffusing element of the present embodiment can include any appropriate process, process and / or operation at any appropriate time in addition to the above-mentioned processes A to C.
- the type of such a process and the time when such a process is performed can be appropriately set according to the purpose.
- the coating liquid can be allowed to stand for a predetermined time before application.
- the precursor of the resin component can be sufficiently permeated into the light diffusing fine particles.
- the standing time is preferably 1 hour to 48 hours, more preferably 2 hours to 40 hours, still more preferably 3 hours to 35 hours, and particularly preferably 4 hours to 30 hours.
- the light diffusing element as described in the above sections A-1 to A-3 is formed on the substrate.
- Thickness of the light diffusing element The total thickness of the base material and the light diffusing element is measured with a microgauge thickness meter (manufactured by Mitutoyo Corporation), and the thickness of the light diffusing element is subtracted from the total thickness. was calculated.
- fitting is performed on the actual interface with an approximate curved surface, and the average height of the convex portion protruding 20 nm or more from the approximate curved surface at the actual interface is measured, and this is measured as the outermost part of the concentration modulation region and the surface of the light diffusing fine particles.
- distance c This measurement was performed at five randomly selected locations, and the average for each of a, b and c was calculated as the average center distance A and average particle diameter B of the light diffusing fine particles in the light diffusing element, and the concentration modulation region maximum. The average distance C between the outside and the surface of the light diffusing fine particles was used.
- the following formula was used for the fitting approximate curve.
- the haze value was measured by a method defined in JIS 7136 using a haze meter (trade name “HN-150” manufactured by Murakami Color Research Laboratory).
- Example 1 15 parts of polymethyl methacrylate (PMMA) fine particles (manufactured by Sekisui Plastics Co., Ltd., trade name “XX131AA”, average particle size 2.5 ⁇ m, refractive index 1.49) as light diffusing fine particles, and acetic acid as an organic solvent 15 parts of a mixed solvent of butyl and MEK (weight ratio 50/50) was mixed and stirred for 60 minutes to prepare a mixed solution.
- PMMA polymethyl methacrylate
- a resin for hard coat containing 62% of zirconia nanoparticles (average particle diameter 60 nm, refractive index 2.19) as an ultrafine particle component in the obtained mixed liquid manufactured by JSR, trade name “OPSTAR KZ6661” ( MEK / MIBK-containing) 100 parts, 50% butyl acetate pentaerythritol triacrylate (trade name “Biscoat # 300” manufactured by Osaka Organic Chemical Industry Co., Ltd., refractive index 1.52, molecular weight 298) as a precursor of the resin component 11 parts of the solution, 0.5 part of the photopolymerization initiator (Ciba Specialty Chemicals, trade name “Irgacure 907”) and 0.5 parts of the leveling agent (DIC, trade name “GRANDIC PC 4100”) Part was added and stirred for 15 minutes using a disper to prepare a coating solution.
- JSR trade name “OPSTAR KZ6661” ( MEK / MIBK-containing) 100 parts
- the coating solution is applied onto a TAC film (trade name “Fujitac”, manufactured by Fuji Film Co., Ltd.) using a bar coater, heated at 60 ° C. for 1 minute, and then irradiated with ultraviolet light having an integrated light amount of 300 mJ to obtain a thickness.
- a 10 ⁇ m light diffusing element was obtained.
- the obtained light diffusing element was subjected to the evaluations (2) to (6) above. The results are shown in Table 1.
- Example 2 15 parts of polymethyl methacrylate (PMMA) fine particles (manufactured by Sekisui Plastics Co., Ltd., trade name “XX131AA”, average particle size 2.5 ⁇ m, refractive index 1.49) as light diffusing fine particles, and acetic acid as an organic solvent
- PMMA polymethyl methacrylate
- XX131AA average particle size 2.5 ⁇ m
- refractive index 1.49 average particle size 2.5 ⁇ m
- acetic acid as an organic solvent
- a light diffusing element was produced in the same manner as in Example 1 except that 15 parts of a mixed solvent of butyl and MEK (weight ratio 50/50) was mixed and stirred for 45 minutes to prepare a mixed solution.
- the obtained light diffusing element was subjected to the evaluations (2) to (6) above. The results are shown in Table 1.
- Example 3 In 100 parts of resin for hard coat containing 62% of zirconia nanoparticles (average particle diameter 60 nm, refractive index 2.19) as an ultrafine particle component (manufactured by JSR, trade name “OPSTAR KZ6661” (including MEK / MIBK)) , 11 parts of 50% methyl isobutyl ketone (MIBK) solution of pentaerythritol triacrylate (trade name “Biscoat # 300” manufactured by Osaka Organic Chemical Industry Co., Ltd., refractive index 1.52) as a precursor of the resin component, photopolymerization 0.5 parts of initiator (Ciba Specialty Chemicals, trade name “Irgacure 907”), 0.5 parts of leveling agent (trade name “GRANDIC PC 4100”), and light diffusibility Polymethyl methacrylate (PMMA) fine particles as fine particles (trade name “XX131AA” manufactured by Sekisui Plastics Co., Ltd.) The average particle
- This mixture was sonicated for 5 minutes to prepare a coating solution in which the above components were uniformly dispersed.
- the coating solution was allowed to stand for 72 hours, then coated on a TAC film (trade name “Fujitac”, manufactured by Fuji Film Co., Ltd.) using a bar coater, dried at 60 ° C. for 1 minute, and an accumulated light amount of 300 mJ.
- Ultraviolet light was irradiated to obtain a light diffusing element having a thickness of 10 ⁇ m.
- the obtained light diffusing element was subjected to the evaluations (2) to (6) above. The results are shown in Table 1.
- This mixture was sonicated for 5 minutes to prepare a coating solution in which the above components were uniformly dispersed.
- the coating liquid was allowed to stand for 24 hours, then coated on a TAC film (trade name “Fujitac”, manufactured by Fuji Film Co., Ltd.) using a bar coater, dried at 60 ° C. for 1 minute, and an integrated light amount of 300 mJ.
- Ultraviolet light was irradiated to obtain a light diffusing element having a thickness of 10 ⁇ m.
- the obtained light diffusing element was subjected to the evaluations (2) to (6) above. The results are shown in Table 1.
- Comparative Example 2 Light diffusion in the same manner as in Comparative Example 1, except that PMMA fine particles as light diffusing fine particles were changed to the product name “Art Pearl J4P” (average particle diameter 2.1 ⁇ m, refractive index 1.49) manufactured by Negami Kogyo Co., Ltd. An element was obtained. The obtained light diffusing element was subjected to the evaluations (2) to (6) above. The results are shown in Table 1.
- the average center-to-center distance A of the light diffusing fine particles in the light diffusing element As is clear from Table 1, the average center-to-center distance A of the light diffusing fine particles in the light diffusing element, the average particle diameter B of the light diffusing fine particles in the light diffusing element, the outermost part of the concentration modulation region and the light
- the average distance C By appropriately adjusting the relationship of the average distance C with the surface of the diffusible fine particles, it is possible to obtain a high-haze light diffusing element in which backscattering and transmission of straight light are suppressed.
- the light diffusibility in which the distance between the light diffusing fine particles and the thickness in the vicinity of the light diffusing fine particles are adjusted in this way is, for example, using an organic solvent having an appropriate SP value (Examples 1 to 3), After mixing the light diffusing fine particles in an organic solvent and swelling the light diffusing fine particles, the precursor of the resin component and the ultra fine particle component are added to the organic solvent to adjust the coating liquid. (Examples 1 and 2).
- the light diffusing element obtained by the production method of the present invention is suitably used for a viewing side member of a liquid crystal display device, a backlight member of a liquid crystal display device, and a diffusing member for a lighting fixture (for example, organic EL, LED), and a collimator. It can be particularly preferably used as a front diffusion element of a backlight front diffusion system.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Optical Elements Other Than Lenses (AREA)
- Overhead Projectors And Projection Screens (AREA)
Abstract
Description
好ましい実施形態においては、前記平均中心間距離A、前記平均粒子径B、および前記濃度変調領域最外部と前記光拡散性微粒子の表面との平均距離Cが、0.91<(B+2×C)/Aの関係を満たす。
好ましい実施形態においては、前記平均中心間距離A、前記平均粒子径B、および前記平均距離Cが、A-(B+2×C)≦0.2μmの関係を満たす。
好ましい実施形態においては、前記樹脂成分の一部が、前記光拡散性微粒子に含有されている。
本発明の別の局面によれば、上記光拡散素子の製造方法が提供される。この光拡散素子の製造方法は、マトリクスの樹脂成分の前駆体と超微粒子成分と光拡散性微粒子とを有機溶剤中に溶解または分散させた塗工液を基材に塗布する工程Aと、該基材に塗布された塗工液を乾燥させる工程Bと、上記前駆体を重合させる工程Cを含み、該工程Cの前に、該光拡散性微粒子を膨潤させる。
好ましい実施形態においては、前記光拡散性微粒子の配合量が、前記マトリクス100重量部に対して、30重量部以下である。
好ましい実施形態においては、前記有機溶剤のSP値と前記光拡散性微粒子のSP値との差が、0.2~0.8である。
好ましい実施形態においては、前記有機溶剤が、第1の有機溶剤と第2の有機溶剤との混合溶剤であり、該第1の有機溶剤は、該第2の有機溶剤よりも前記光拡散性微粒子に浸透しやすく、かつ、該第2の有機溶剤よりも揮発性が高い。
A-1.全体構成
本発明の光拡散素子は、樹脂成分および超微粒子成分を含むマトリクスと、該マトリクス中に分散された光拡散性微粒子とを有する。本発明の光拡散素子は、マトリクスと光拡散性微粒子の屈折率差により、光拡散機能を発現する。図1は、本発明の好ましい実施形態による光拡散素子におけるマトリクスの樹脂成分および超微粒子成分、ならびに光拡散性微粒子の分散状態を説明するための模式図である。本発明の光拡散素子100は、樹脂成分11および超微粒子成分12を含むマトリクス10と、マトリクス10中に分散された光拡散性微粒子20とを有する。図1および図2に示すように、光拡散性微粒子20から遠ざかるにつれて該超微粒子成分の重量濃度が高くなる実質的に球殻状の濃度変調領域30が、該光拡散性微粒子の表面近傍外部に形成されている。したがって、マトリクスは、光拡散性微粒子との界面近傍の濃度変調領域30と、当該濃度変調領域30の外側(光拡散性微粒子から離れた側)の濃度一定領域とを有する。好ましくは、マトリクスにおける濃度変調領域30以外の部分は、実質的には濃度一定領域である。濃度変調領域30においては、屈折率が実質的に連続的に変化する。濃度変調領域30は、境界に微細凹凸を有する球殻状であってもよい。また、濃度変調領域最内部は光拡散性微粒子の内部にあってもよい。本明細書において「光拡散性微粒子の表面近傍」とは、光拡散性微粒子表面、表面付近の外部および表面付近の内部を包含する。また、「光拡散性微粒子の表面近傍外部」とは、光拡散性微粒子表面、表面付近の外部を包含する。
上記のとおり、マトリクス10は、好ましくは樹脂成分11および超微粒子成分12を含む。上記のように、ならびに、図1および図2に示すように、超微粒子成分12は、光拡散性微粒子20の表面近傍に濃度変調領域30を形成するようにして、樹脂成分11に分散している。
樹脂成分11は、本発明の効果が得られる限りにおいて、任意の適切な材料で構成される。好ましくは、上記のように、樹脂成分11は、光拡散性微粒子と同系の化合物であってかつ超微粒子成分とは異なる系の化合物で構成される。これにより、光拡散性微粒子の表面近傍に濃度変調領域を良好に形成することができる。さらに好ましくは、樹脂成分11は、光拡散性微粒子と同系の中でも相溶性の高い化合物で構成される。これにより、所望の屈折率勾配を有する濃度変調領域を形成することができる。より詳細には、樹脂成分は、光拡散性微粒子の近傍においては、局所的には、超微粒子成分と均一溶解もしくは分散している状態よりも、むしろ、樹脂成分のみで光拡散性微粒子を取り囲む方が、系全体のエネルギーが安定する場合が多い。その結果、樹脂成分の重量濃度は、光拡散性微粒子の最近接領域において、マトリクス全体における樹脂成分の平均重量濃度よりも高く、光拡散性微粒子から遠ざかるにつれて低くなる。したがって、光拡散性微粒子の表面近傍に濃度変調領域を良好に形成することができる。本発明においては、光拡散性微粒子中に有機溶剤を含ませ、光拡散性微粒子を膨潤させておくことにより、光拡散性微粒子と樹脂成分との親和性を高め、光拡散性微粒子の最近接領域における樹脂成分の重量濃度を高くすることができる。
0<|nP-nA|・・・(1)
式(1)中、nAはマトリクスの樹脂成分の屈折率を表し、nPは光拡散性微粒子の屈折率を表す。|nP-nA|は、好ましくは0.01~0.10であり、さらに好ましくは0.01~0.06であり、特に好ましくは0.02~0.06である。|nP-nA|が0.01未満であると、上記濃度変調領域が形成されない場合がある。|nP-nA|が0.10を超えると、後方散乱が増大するおそれがある。
上記マトリクスの樹脂成分、超微粒子成分および光拡散性微粒子は、好ましくは、その屈折率が下記式(2)を満たす:
0<|nP-nA|<|nP-nB|・・・(2)
式(2)において、nAおよびnPは上記のとおりであり、nBは超微粒子成分の屈折率を表す。|nP-nB|は、好ましくは0.10~1.50であり、さらに好ましくは0.20~0.80である。|nP-nB|が0.10未満であると、ヘイズ値が90%以下となる場合が多く、その結果、液晶表示装置に組み込んだ場合に光源からの光を十分に拡散できず、視野角が狭くなるおそれがある。|nP-nB|が1.50を超えると、後方散乱が増大するおそれがある。
各成分の屈折率が上記(1)および(2)の関係にあれば、高いヘイズを維持しつつ、後方散乱が抑制された光拡散素子を得ることができる。
超微粒子成分12は、上記のように、好ましくは上記樹脂成分および後述の光拡散性微粒子とは異なる系の化合物で構成され、より好ましくは無機化合物で構成される。好ましい無機化合物としては、例えば、金属酸化物、金属フッ化物が挙げられる。金属酸化物の具体例としては、酸化ジルコニウム(ジルコニア)(屈折率:2.19)、酸化アルミニウム(屈折率:1.56~2.62)、酸化チタン(屈折率:2.49~2.74)、酸化ケイ素(屈折率:1.25~1.46)が挙げられる。金属フッ化物の具体例としては、フッ化マグネシウム(屈折率:1.37)、フッ化カルシウム(屈折率:1.40~1.43)が挙げられる。これらの金属酸化物および金属フッ化物は、光の吸収が少ない上に、電離線硬化型樹脂や熱可塑性樹脂などの有機化合物では発現が難しい屈折率を有しているので、光拡散性微粒子との界面から離れるにつれて超微粒子成分の重量濃度が相対的に高くなることにより、屈折率を大きく変調させることができる。光拡散性微粒子とマトリクスとの屈折率差を大きくすることにより、薄膜であっても高ヘイズ(高い光拡散性)を実現でき、かつ、濃度変調領域が形成されるので後方散乱防止の効果も大きい。特に好ましい無機化合物は、酸化ジルコニウムである。
光拡散性微粒子20もまた、本発明の効果が得られる限りにおいて、任意の適切な材料で構成される。好ましくは、上記のように、光拡散性微粒子20は、上記マトリクスの樹脂成分と同系の化合物で構成される。例えば、マトリクスの樹脂成分を構成する電離線硬化型樹脂がアクリレート系樹脂である場合には、光拡散性微粒子もまたアクリレート系樹脂で構成されることが好ましい。より具体的には、マトリクスの樹脂成分を構成するアクリレート系樹脂のモノマー成分が例えば上記のようなPETA、NPGDA、DPHA、DPPAおよび/またはTMPTAである場合には、光拡散性微粒子を構成するアクリレート系樹脂は、好ましくは、ポリメチルメタクリレート(PMMA)、ポリメチルアクリレート(PMA)、およびこれらの共重合体、ならびにそれらの架橋物である。PMMAおよびPMAとの共重合成分としては、ポリウレタン、ポリスチレン(PS)、メラミン樹脂が挙げられる。特に好ましくは、光拡散性微粒子は、PMMAで構成される。マトリクスの樹脂成分および超微粒子成分との屈折率や熱力学的特性の関係が適切であるからである。さらに、好ましくは、光拡散性微粒子は、架橋構造(三次元網目構造)を有する。架橋構造の粗密(架橋度)を調整することにより、光拡散性微粒子表面において微粒子を構成するポリマー分子の自由度を制御することができるので、超微粒子成分の分散状態を制御することができ、結果として、所望の屈折率勾配を有する濃度変調領域を形成することができる。
本発明の一つの実施形態による光拡散素子の製造方法は、マトリクスの樹脂成分の前駆体(モノマー)と超微粒子成分と光拡散性微粒子とを有機溶剤中に溶解または分散させた塗工液を基材に塗布する工程(工程Aとする)と、該基材に塗布された塗工液を乾燥させる工程(工程Bとする)と、上記前駆体を重合させる工程(工程Cとする)を含む。
樹脂成分の前駆体、超微粒子成分、および光拡散性微粒子については、それぞれ、上記A-2-1項、A-2-2項およびA-3項で説明したとおりである。代表的には、上記塗工液は前駆体および揮発性溶剤中に超微粒子成分および光拡散性微粒子が分散した分散体である。超微粒子成分および光拡散性微粒子を分散させる手段としては、任意の適切な手段(例えば、超音波処理、攪拌機による分散処理)が採用され得る。
上記塗工液の乾燥方法としては、任意の適切な方法が採用され得る。具体例としては、自然乾燥、加熱乾燥、減圧乾燥が挙げられる。好ましくは、加熱乾燥である。加熱温度は、例えば60℃~150℃であり、加熱時間は、例えば30秒~5分である。
重合方法は、樹脂成分(したがって、その前駆体)の種類に応じて任意の適切な方法が採用され得る。例えば、樹脂成分が電離線硬化型樹脂である場合には、電離線を照射することにより前駆体を重合する。電離線として紫外線を用いる場合には、その積算光量は、好ましくは50mJ/cm2~1000mJ/cm2であり、より好ましくは200mJ/cm2~400mJ/cm2である。電離線の光拡散性微粒子に対する透過率は、好ましくは70%以上であり、より好ましくは80%以上である。また例えば、樹脂成分が熱硬化型樹脂である場合には、加熱することにより前駆体を重合する。加熱温度および加熱時間は、樹脂成分の種類に応じて適切に設定され得る。好ましくは、重合は電離線を照射することにより行われる。電離線照射であれば、濃度変調領域を良好に保持したまま塗膜を硬化させることができるので、良好な拡散特性の光拡散素子を作製することができる。前駆体を重合することにより、マトリクスが形成されると同時に、光拡散性微粒子の表面近傍に濃度変調領域が形成される。すなわち、本発明の製造方法によれば、光拡散性微粒子内部に浸透した前駆体と光拡散性微粒子に浸透しなかった前駆体とを同時に重合することにより、光拡散性微粒子の表面近傍に濃度変調領域を形成すると同時に、マトリクスを形成することができる。
マイクロゲージ式厚み計(ミツトヨ社製)にて基材と光拡散素子との合計厚みを測定し、当該合計厚みから基材の厚みを差し引き、光拡散素子の厚みを算出した。
透過型電子顕微鏡(TEM)(日立製作所社製、商品名「H-7650」、加速電圧100kV)を用いて、2次元および3次元の画像を観察した。2次元画像については、実施例および比較例で得られた光拡散素子と基材との積層体を液体窒素で冷却しながら、ミクロトームにて0.1μmの厚さにスライスして測定試料とし、当該測定試料の光拡散素子部分の微粒子の状態および当該微粒子とマトリクスとの界面の状態を観察した。3次元画像については、上記で得られた測定試料に撮影位置補正用のマーカーとして直径5nmの金粒子を付着させ、-60°から60°にわたって1°ごとに連続傾斜TEM画像(121枚)を撮影した。この121枚のTEM画像について、Fiducial Marker法により位置補正を行い、3次元画像を再構成した。再構成ソフトとしてIMOD 3.9.3 1を、表示ソフトとしてMercuury Computer Systems,Amiraを用いた。上記のようにして得られた3次元再構成像から、光拡散性微粒子とマトリクスとの界面(実界面)を抽出し、光拡散素子中の光拡散性微粒子の中心間距離aおよび粒子径bを測定した。また、当該実界面に対して近似曲面によるフィッティングを行い、実界面において近似曲面から20nm以上突出している凸部の平均高さを測定し、これを濃度変調領域最外部と光拡散性微粒子の表面との距離cとした。この測定を無作為で選択した5ヶ所で行い、a、bおよびcそれぞれについての平均を、光拡散素子中の光拡散性微粒子の平均中心間距離Aおよび平均粒子径B、ならびに濃度変調領域最外部と光拡散性微粒子の表面との平均距離Cとした。なお、フィッティングの近似曲線には下記の式を用いた。
z=ax2+by2+cxy+dx+ey+f
上記(2)に記載の手順で撮影されたTEM写真から無作為に10個の光拡散性微粒子を選択した。選択された光拡散性微粒子のそれぞれについて、光拡散性微粒子の粒子径と光拡散性微粒子の前駆体が浸透していない部分(非浸透部)の粒子径とを測定し、下記の式で浸透範囲を算出した。10個の光拡散性微粒子についての平均を浸透範囲とした。
(浸透範囲)={1-(非浸透部の粒子径/光拡散性微粒子の粒子径)}×100(%)
JIS 7136で定める方法により、ヘイズメーター(村上色彩科学研究所社製、商品名「HN-150」)を用いて測定した。
実施例および比較例で得られた光拡散素子と基材との積層体を、透明粘着剤を介して黒アクリル板(住友化学社製、商品名「SUMIPEX」(登録商標)、厚み2mm)の上に貼り合わせ、測定試料とした。この測定試料の積分反射率を分光光度計(日立計測器社製、商品名「U4100」)にて測定した。一方、上記光拡散素子用塗工液から微粒子を除去した塗工液を用いて、基材と透明塗工層との積層体を作製して対照試料とし、上記と同様にして積分反射率(すなわち、表面反射率)を測定した。上記測定試料の積分反射率から上記対照試料の積分反射率(表面反射率)を差し引くことにより、光拡散素子の後方散乱率を算出した。
光拡散素子の正面からレーザー光を照射し、拡散した光の拡散角度に対する拡散輝度を、ゴニオフォトメーターで1°おきに測定した。測定結果から得られる図6に示すような直進透過光の光強度の、全出射光の光強度(入射光-反射光=入射光×0.9)に対する割合を、直進光透過率とした。
光拡散性微粒子としてのポリメタクリル酸メチル(PMMA)微粒子(積水化成品工業社製、商品名「XX131AA」、平均粒子径2.5μm、屈折率1.49)15部と、有機溶剤としての酢酸ブチルおよびMEKの混合溶剤(重量比50/50)15部とを混合し、60分間撹拌して、混合液を調製した。
次いで、得られた混合液に、超微粒子成分としてのジルコニアナノ粒子(平均粒子径60nm、屈折率2.19)を62%含有するハードコート用樹脂(JSR社製、商品名「オプスターKZ6661」(MEK/MIBK含有))100部、樹脂成分の前駆体としてのペンタエリスリトールトリアクリレート(大阪有機化学工業社製、商品名「ビスコート#300」、屈折率1.52、分子量298)の50%酢酸ブチル溶液を11部、光重合開始剤(チバ・スペシャリティ・ケミカル社製、商品名「イルガキュア907」)を0.5部およびレベリング剤(DIC社製、商品名「GRANDIC PC 4100」)を0.5部を添加し、ディスパーを用いて15分間撹拌して、塗工液を調製した。
当該塗工液を、バーコーターを用いてTACフィルム(富士フィルム社製、商品名「フジタック」)上に塗工し、60℃にて1分間加熱後、積算光量300mJの紫外線を照射し、厚み10μmの光拡散素子を得た。得られた光拡散素子を上記(2)~(6)の評価に供した。結果を表1に示す。
光拡散性微粒子としてのポリメタクリル酸メチル(PMMA)微粒子(積水化成品工業社製、商品名「XX131AA」、平均粒子径2.5μm、屈折率1.49)15部と、有機溶剤としての酢酸ブチルおよびMEKの混合溶剤(重量比50/50)15部とを混合し、45分間撹拌して、混合液を調製した以外は、実施例1と同様にして光拡散素子を作製した。得られた光拡散素子を上記(2)~(6)の評価に供した。結果を表1に示す。
超微粒子成分としてのジルコニアナノ粒子(平均粒子径60nm、屈折率2.19)を62%含有するハードコート用樹脂(JSR社製、商品名「オプスターKZ6661」(MEK/MIBK含有))100部に、樹脂成分の前駆体としてのペンタエリスリトールトリアクリレート(大阪有機化学工業社製、商品名「ビスコート#300」、屈折率1.52)の50%メチルイソブチルケトン(MIBK)溶液を11部、光重合開始剤(チバ・スペシャリティ・ケミカル社製、商品名「イルガキュア907」)を0.5部、レベリング剤(DIC社製、商品名「GRANDIC PC 4100」)を0.5部、および、光拡散性微粒子としてのポリメタクリル酸メチル(PMMA)微粒子(積水化成品工業社製、商品名「XX131AA」、平均粒子径2.5μm、屈折率1.49)を15部添加した。この混合物を5分間超音波処理し、上記の各成分が均一に分散した塗工液を調製した。当該塗工液を72時間静置した後、バーコーターを用いてTACフィルム(富士フィルム社製、商品名「フジタック」)上に塗工し、60℃にて1分間乾燥後、積算光量300mJの紫外線を照射し、厚み10μmの光拡散素子を得た。得られた光拡散素子を上記(2)~(6)の評価に供した。結果を表1に示す。
超微粒子成分としてのジルコニアナノ粒子(平均粒子径60nm、屈折率2.19)を62%含有するハードコート用樹脂(JSR社製、商品名「オプスターKZ6661」(MEK/MIBK含有))18.2部に、樹脂成分の前駆体としてのペンタエリスリトールトリアクリレート(大阪有機化学工業社製、商品名「ビスコート#300」、屈折率1.52)の50%メチルエチルケトン(MEK)溶液を6.8部、光重合開始剤(チバ・スペシャリティ・ケミカル社製、商品名「イルガキュア907」)を0.068部、レベリング剤(DIC社製、商品名「GRANDIC PC 4100」)を0.625部、および、光拡散性微粒子としてのポリメタクリル酸メチル(PMMA)微粒子(積水化成品工業社製、商品名「XX131AA」、平均粒子径2.5μm、屈折率1.49)を2.5部添加した。この混合物を5分間超音波処理し、上記の各成分が均一に分散した塗工液を調製した。当該塗工液を24時間静置した後、バーコーターを用いてTACフィルム(富士フィルム社製、商品名「フジタック」)上に塗工し、60℃にて1分間乾燥後、積算光量300mJの紫外線を照射し、厚み10μmの光拡散素子を得た。得られた光拡散素子を上記(2)~(6)の評価に供した。結果を表1に示す。
光拡散性微粒子としてのPMMA微粒子を、根上工業社製、商品名「アートパールJ4P」(平均粒子径2.1μm、屈折率1.49)に変更した以外は比較例1と同様にして光拡散素子を得た。得られた光拡散素子を上記(2)~(6)の評価に供した。結果を表1に示す。
11 樹脂成分
12 超微粒子成分
20 光拡散性微粒子
30 濃度変調領域
100 光拡散素子
Claims (8)
- 樹脂成分および超微粒子成分を含むマトリクスと、該マトリクス中に分散された光拡散性微粒子とを有する光拡散素子であって、
該光拡散性微粒子から遠ざかるにつれて該超微粒子成分の重量濃度が高くなる実質的に球殻状の濃度変調領域が、該光拡散性微粒子の表面近傍外部に形成され、
該光拡散素子中の該光拡散性微粒子の平均中心間距離A、および該光拡散素子中の該光拡散性微粒子の平均粒子径Bが、0.90<B/Aの関係を有する、光拡散素子。 - 前記平均中心間距離A、前記平均粒子径B、および前記濃度変調領域最外部と前記光拡散性微粒子の表面との平均距離Cが、0.91<(B+2×C)/Aの関係を満たす、請求項1に記載の光拡散素子。
- 前記平均中心間距離A、前記平均粒子径B、および前記平均距離Cが、A-(B+2×C)≦0.2μmの関係を満たす、請求項1または2に記載の光拡散素子。
- 前記樹脂成分の一部が、前記光拡散性微粒子に含有されている、請求項1から3のいずれかに記載の光拡散素子。
- マトリクスの樹脂成分の前駆体と超微粒子成分と光拡散性微粒子とを有機溶剤中に溶解または分散させた塗工液を基材に塗布する工程Aと、該基材に塗布された塗工液を乾燥させる工程Bと、上記前駆体を重合させる工程Cを含み、
該工程Cの前に、該光拡散性微粒子を膨潤させる、
請求項1から4のいずれかに記載の光拡散素子の製造方法。 - 前記光拡散性微粒子の配合量が、前記マトリクス100重量部に対して、30重量部以下である、請求項5に記載の光拡散素子の製造方法。
- 前記有機溶剤のSP値と前記光拡散性微粒子のSP値との差が、0.2~0.8である、請求項5または6に記載の光拡散素子の製造方法。
- 前記有機溶剤が、第1の有機溶剤と第2の有機溶剤との混合溶剤であり、
該第1の有機溶剤は、該第2の有機溶剤よりも前記光拡散性微粒子に浸透しやすく、かつ、該第2の有機溶剤よりも揮発性が高い、
請求項5から7のいずれかに記載の光拡散素子の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020157028009A KR20150139524A (ko) | 2013-04-10 | 2013-04-10 | 광 확산 소자 및 광 확산 소자의 제조 방법 |
PCT/JP2013/060803 WO2014167664A1 (ja) | 2013-04-10 | 2013-04-10 | 光拡散素子および光拡散素子の製造方法 |
CN201380075444.5A CN105103009A (zh) | 2013-04-10 | 2013-04-10 | 光扩散元件及光扩散元件的制造方法 |
US14/783,704 US20160077247A1 (en) | 2013-04-10 | 2013-04-10 | Light-diffusing element and method for manufacturing light-diffusing element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/060803 WO2014167664A1 (ja) | 2013-04-10 | 2013-04-10 | 光拡散素子および光拡散素子の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014167664A1 true WO2014167664A1 (ja) | 2014-10-16 |
Family
ID=51689098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/060803 WO2014167664A1 (ja) | 2013-04-10 | 2013-04-10 | 光拡散素子および光拡散素子の製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20160077247A1 (ja) |
KR (1) | KR20150139524A (ja) |
CN (1) | CN105103009A (ja) |
WO (1) | WO2014167664A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021084977A1 (ja) * | 2019-10-31 | 2021-05-06 | 株式会社きもと | 光拡散フィルム |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017092826A1 (en) | 2015-12-04 | 2017-06-08 | Essilor International (Compagnie Générale d'Optique) | Antistatic film and lamination thereof |
JP6548030B2 (ja) * | 2015-12-08 | 2019-07-24 | 協立化学産業株式会社 | 光硬化性樹脂組成物を用いた凹凸膜付き基材の製造方法 |
CN106908873A (zh) * | 2017-04-24 | 2017-06-30 | 宁波东旭成新材料科技有限公司 | 一种高雾度高透过率扩散膜的制备方法 |
CN213904010U (zh) * | 2020-11-27 | 2021-08-06 | 北京京东方光电科技有限公司 | 背光模组及显示装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012068273A (ja) * | 2010-09-21 | 2012-04-05 | Nitto Denko Corp | 光拡散素子、光拡散素子付偏光板、およびこれらを用いた液晶表示装置、ならびに光拡散素子の製造方法 |
WO2012046662A1 (ja) * | 2010-10-04 | 2012-04-12 | 大日本印刷株式会社 | 防眩性フィルム、防眩性フィルムの製造方法、偏光板及び画像表示装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11109113A (ja) * | 1997-10-06 | 1999-04-23 | Reiko Co Ltd | 光拡散フイルム及びそれに使用する光拡散フイルム用ビーズ |
JP2001108806A (ja) * | 1999-10-05 | 2001-04-20 | Tomoegawa Paper Co Ltd | フィラーレンズおよびその製造方法 |
JP4792479B2 (ja) * | 2002-02-25 | 2011-10-12 | 富士フイルム株式会社 | 防眩性反射防止フィルムの製造方法、及び防眩性反射防止フィルムの製造装置 |
JP4232480B2 (ja) * | 2002-03-25 | 2009-03-04 | 住友金属鉱山株式会社 | 貴金属コート銀微粒子分散液の製造方法と透明導電層形成用塗布液および透明導電性基材と表示装置 |
JP2005290054A (ja) * | 2004-03-31 | 2005-10-20 | Maruo Calcium Co Ltd | 重質炭酸カルシウムからなる合成樹脂添加剤及びこれを含有してなる合成樹脂組成物 |
KR20070024487A (ko) * | 2004-05-26 | 2007-03-02 | 닛산 가가쿠 고교 가부시키 가이샤 | 면발광체 |
JP2008122832A (ja) * | 2006-11-15 | 2008-05-29 | Toppan Printing Co Ltd | 防眩性光拡散部材 |
JP2009053378A (ja) * | 2007-08-27 | 2009-03-12 | Ricoh Co Ltd | 光走査装置及び画像形成装置 |
JP5364413B2 (ja) * | 2008-03-27 | 2013-12-11 | 富士フイルム株式会社 | 反射防止フィルム、偏光板、画像表示装置 |
JP4756099B2 (ja) * | 2009-03-18 | 2011-08-24 | 日東電工株式会社 | 光拡散素子、光拡散素子付偏光板、およびこれらを用いた液晶表示装置、ならびに光拡散素子の製造方法 |
JP4756100B2 (ja) * | 2009-03-26 | 2011-08-24 | 日東電工株式会社 | 光拡散素子の製造方法、光拡散素子、ならびに、光拡散素子付偏光板および液晶表示装置の製造方法 |
TWI435120B (zh) * | 2010-07-09 | 2014-04-21 | Eternal Chemical Co Ltd | 複合光學膜 |
-
2013
- 2013-04-10 WO PCT/JP2013/060803 patent/WO2014167664A1/ja active Application Filing
- 2013-04-10 CN CN201380075444.5A patent/CN105103009A/zh active Pending
- 2013-04-10 KR KR1020157028009A patent/KR20150139524A/ko not_active Application Discontinuation
- 2013-04-10 US US14/783,704 patent/US20160077247A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012068273A (ja) * | 2010-09-21 | 2012-04-05 | Nitto Denko Corp | 光拡散素子、光拡散素子付偏光板、およびこれらを用いた液晶表示装置、ならびに光拡散素子の製造方法 |
WO2012046662A1 (ja) * | 2010-10-04 | 2012-04-12 | 大日本印刷株式会社 | 防眩性フィルム、防眩性フィルムの製造方法、偏光板及び画像表示装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021084977A1 (ja) * | 2019-10-31 | 2021-05-06 | 株式会社きもと | 光拡散フィルム |
JP2021071646A (ja) * | 2019-10-31 | 2021-05-06 | 株式会社きもと | 光拡散フィルム |
JP7553235B2 (ja) | 2019-10-31 | 2024-09-18 | 株式会社きもと | 光拡散フィルム |
Also Published As
Publication number | Publication date |
---|---|
CN105103009A (zh) | 2015-11-25 |
KR20150139524A (ko) | 2015-12-11 |
US20160077247A1 (en) | 2016-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6275935B2 (ja) | 光拡散素子、光拡散素子付偏光板、およびこれらを用いた液晶表示装置 | |
JP6275936B2 (ja) | 光拡散フィルム、光拡散フィルム付偏光板、液晶表示装置および照明器具 | |
KR20130041344A (ko) | 광확산 소자 및 광확산 소자를 가진 편광판 | |
JP5883598B2 (ja) | 光拡散素子および光拡散素子付偏光板の製造方法、ならびに、これらの方法で得られた光拡散素子および光拡散素子付偏光板 | |
JP6265316B2 (ja) | 光学フィルムの製造方法 | |
WO2014167664A1 (ja) | 光拡散素子および光拡散素子の製造方法 | |
JP5129379B2 (ja) | 光拡散素子 | |
WO2014167665A1 (ja) | 光拡散素子および光拡散素子の製造方法 | |
WO2014167666A1 (ja) | 光拡散素子 | |
JP6049278B2 (ja) | 光拡散素子の製造方法および光拡散素子 | |
WO2014167663A1 (ja) | 光拡散素子の製造方法および光拡散素子 | |
TWI452352B (zh) | A light diffusion element and a method for manufacturing the light diffusion element | |
JP2013195812A (ja) | 光拡散素子および光拡散素子の製造方法 | |
TWI484227B (zh) | Light diffusion element | |
JP2013195814A (ja) | 光拡散素子 | |
JP2013195813A (ja) | 光拡散素子および光拡散素子の製造方法 | |
TWI472808B (zh) | A light diffusion element manufacturing method and a light diffusion element | |
TWI472807B (zh) | A light diffusion element and a method for manufacturing the light diffusion element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201380075444.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13881509 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20157028009 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14783704 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13881509 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |