WO2014167666A1 - 光拡散素子 - Google Patents

光拡散素子 Download PDF

Info

Publication number
WO2014167666A1
WO2014167666A1 PCT/JP2013/060805 JP2013060805W WO2014167666A1 WO 2014167666 A1 WO2014167666 A1 WO 2014167666A1 JP 2013060805 W JP2013060805 W JP 2013060805W WO 2014167666 A1 WO2014167666 A1 WO 2014167666A1
Authority
WO
WIPO (PCT)
Prior art keywords
light diffusing
fine particles
refractive index
diffusing fine
component
Prior art date
Application number
PCT/JP2013/060805
Other languages
English (en)
French (fr)
Inventor
恒三 中村
岳仁 淵田
武本 博之
梅本 清司
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201380075446.4A priority Critical patent/CN105103010A/zh
Priority to US14/783,723 priority patent/US20160084998A1/en
Priority to KR1020157028001A priority patent/KR20150139523A/ko
Priority to PCT/JP2013/060805 priority patent/WO2014167666A1/ja
Publication of WO2014167666A1 publication Critical patent/WO2014167666A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission

Definitions

  • the present invention relates to a light diffusing element.
  • Light diffusing elements are widely used in lighting covers, projection television screens, surface light emitting devices (for example, liquid crystal display devices), and the like.
  • light diffusing elements have been increasingly used for improving display quality of liquid crystal display devices and the like, and improving viewing angle characteristics.
  • As the light diffusing element an element in which fine particles are dispersed in a matrix such as a resin sheet has been proposed (for example, see Patent Document 1).
  • Patent Document 1 an element in which fine particles are dispersed in a matrix such as a resin sheet has been proposed (for example, see Patent Document 1).
  • Patent Document 1 an element in which fine particles are dispersed in a matrix such as a resin sheet
  • many of the fine particles in the light diffusing element are aggregated, and since the particle diameter of the fine particles is not uniform, the light diffusibility is insufficient and the backscattering also occurs. There is a problem of being big.
  • the present invention has been made to solve the above-described conventional problems, and its object is to provide a light diffusing element having a high haze value, strong diffusibility, and suppressed backscattering. There is to do.
  • the light diffusing element of the present invention has a matrix containing a resin component and an ultrafine particle component, and light diffusing fine particles dispersed in the matrix, and the average primary particle size of the ultrafine particle component is 100 nm or less. , It is substantially free of agglomerated ultrafine particle components.
  • the light diffusing fine particles have an average primary particle diameter of 1 ⁇ m to 5 ⁇ m, the variation coefficient of the weight average particle diameter distribution of the light diffusing fine particles is 20% or less, and the light diffusing fine particles Fine particles are not substantially aggregated.
  • the average primary particle size of the ultrafine particle component is 30 nm or less.
  • the resin component, the ultrafine particle component, and the light diffusing fine particles satisfy the following formula (i), and have a refractive index modulation region in the vicinity of the surface of the light diffusing fine particles:
  • n A represents the refractive index of the resin component of the matrix
  • n B represents the refractive index of the ultrafine particle component of the matrix
  • n P represents the refractive index of the light diffusing fine particles.
  • the ultrafine particle component in the matrix by including the ultrafine particle component in the matrix, the difference in refractive index between the matrix and the light diffusing fine particles can be increased, and a light diffusing element having a high haze value and strong diffusivity is realized. can do. Also, a refractive index modulation region in which the refractive index changes substantially continuously can be formed near the surface of the light diffusing fine particles, and as a result, reflection at the interface between the matrix and the light diffusing fine particles can be suppressed. , Backscattering can be suppressed. Such an effect becomes remarkable when the ultrafine particle component has a small particle diameter and substantially does not contain the aggregated ultrafine particle component. Specifically, the light diffusing element of the present invention prevents an increase in backscattering and a decrease in light utilization efficiency contributing to light diffusion due to an extreme concentration gradient generated around the aggregated ultrafine particle component. be able to.
  • FIG. 1 It is a schematic diagram for demonstrating the dispersion state of the resin component of a matrix and the light diffusible microparticles
  • the light diffusing element of the present invention has a matrix containing a resin component and an ultrafine particle component, and light diffusing fine particles dispersed in the matrix.
  • the light diffusing element of the present invention exhibits a light diffusing function due to a difference in refractive index between the matrix and the light diffusing fine particles.
  • FIG. 1 is a schematic diagram for explaining a dispersion state of a resin component and ultrafine particle component of a matrix and light diffusing fine particles in a light diffusing element according to a preferred embodiment of the present invention.
  • the light diffusing element 100 of the present invention includes a matrix 10 including a resin component 11 and an ultrafine particle component 12 having an average primary particle size of 100 nm or less, and light diffusing fine particles 20 dispersed in the matrix 10.
  • the light diffusing element of the present invention does not substantially contain an agglomerated ultrafine particle component.
  • a refractive index modulation region 30 is formed in the vicinity of the surface of the light diffusing fine particles. Therefore, the matrix preferably has a refractive index modulation region 30 in the vicinity of the surface of the light diffusing fine particles and a constant refractive index region outside the refractive index modulation region (side away from the light diffusing fine particles). In the refractive index modulation region 30, the refractive index changes substantially continuously. Preferably, a part other than the refractive index modulation region 30 in the matrix is a substantially constant refractive index region.
  • the “near the surface of the light diffusing fine particles” includes the surface of the light diffusing fine particles, the outside in the vicinity of the surface, and the inside in the vicinity of the surface. That is, the innermost part of the refractive index modulation region may be inside the light diffusing fine particles.
  • the refractive index modulation region 30 changes substantially continuously as described above.
  • the outermost refractive index of the refractive index modulation region and the refractive index of the constant refractive index region are substantially the same.
  • the refractive index continuously changes from the refractive index modulation region to the constant refractive index region, and preferably the refractive index continuously changes from the light diffusing fine particle to the constant refractive index region ( FIG. 3).
  • the refractive index change is smooth as shown in FIG.
  • the shape changes so that a tangent line can be drawn on the refractive index change curve.
  • the gradient of refractive index change increases as the distance from the light diffusing fine particles increases.
  • the weight concentration of the ultrafine particle component 12 having a refractive index greatly different from that of the light diffusing fine particles 20 is relatively high, so that the matrix 10 (substantially the refractive index constant region) and light The difference in refractive index with the diffusible fine particles 20 can be increased. As a result, high haze (strong diffusivity) can be achieved even with a thin film.
  • the refractive index changes substantially continuously means that the refractive index should change substantially continuously from at least the light diffusing fine particles to the constant refractive index region in the refractive index modulation region. Means.
  • the refractive index difference is 0.05 or less. Even if there is a refractive index gap, the gap can be tolerated.
  • the thickness of the refractive index modulation region 30 may be constant (that is, the refractive index modulation region is concentric around the light diffusing fine particles.
  • the thickness may be different depending on the position of the surface of the light diffusing fine particles (for example, it may be like an outer shape of confetti).
  • the average thickness of the refractive index modulation region 30 is preferably 0.01 ⁇ m to 0.6 ⁇ m, more preferably 0.03 ⁇ m to 0.5 ⁇ m, still more preferably 0.04 ⁇ m to 0.4 ⁇ m.
  • the thickness is preferably 0.05 ⁇ m to 0.4 ⁇ m.
  • the average thickness is an average thickness when the thickness of the refractive index modulation region 30 varies depending on the position of the light diffusing fine particle surface, and is the thickness when the thickness is constant.
  • the matrix 10 includes the resin component 11 and the ultrafine particle component 12.
  • the refractive index modulation region 30 is formed by a substantial gradient of the dispersion concentration of the ultrafine particle component 12 in the matrix 10.
  • the dispersion concentration of the ultrafine particle component 12 (typically defined by the weight concentration) increases as the distance from the light diffusing fine particles 20 increases (inevitably, The weight concentration of the resin component 11 is reduced).
  • the ultrafine particle component 12 is dispersed at a relatively low concentration in the closest region of the light diffusing fine particle 20 in the refractive index modulation region 30, and as the distance from the light diffusing fine particle 20 increases, the ultrafine particle component 12 is dispersed. Concentration increases.
  • the area ratio of the ultrafine particle component 12 in the matrix 10 according to the transmission electron microscope (TEM) image is small on the side close to the light diffusing fine particles 20 and large on the side close to the matrix 10, and the area ratio is light. It changes while forming a substantial gradient from the diffusible fine particle side to the matrix side (constant refractive index region side).
  • a TEM image representing a typical dispersion state is shown in FIG.
  • “area ratio of ultrafine particle component in matrix by transmission electron microscope image” means a matrix in a predetermined range (predetermined area) in a transmission electron microscope image of a cross section including the diameter of light diffusing fine particles. The ratio of the area of the ultrafine particle component to the total.
  • the area ratio corresponds to the three-dimensional dispersion concentration (actual dispersion concentration) of the ultrafine particle component.
  • the area ratio of the ultrafine particle component can be obtained by any appropriate image analysis software.
  • the area ratio typically corresponds to the average shortest distance between the particles of the ultrafine particle component. Specifically, the average shortest distance between each particle of the ultrafine particle component becomes shorter in the refractive index modulation region as it gets away from the light diffusing fine particles, and becomes constant in the constant refractive index region (for example, the average shortest distance is It is about 3 nm to 100 nm in the closest region of the light diffusing fine particles, and 1 nm to 20 nm in the constant refractive index region).
  • the average shortest distance can be calculated by binarizing a TEM image in a dispersed state as shown in FIG. 4 and using, for example, the center-of-gravity distance method of image analysis software “A image-kun” (manufactured by Asahi Kasei Engineering).
  • the refractive index modulation region 30 can be formed in the vicinity of the surface of the light diffusing fine particles using the substantial gradient of the dispersion concentration of the ultrafine particle component 12.
  • the light diffusing element can be manufactured by a much simpler procedure and at a much lower cost.
  • the refractive index can be smoothly changed at the boundary between the refractive index modulation region 30 and the constant refractive index region by forming the refractive index modulation region using a substantial gradient of the dispersion concentration of the ultrafine particle component. it can. Further, by using an ultrafine particle component having a refractive index that is significantly different from that of the resin component and the light diffusing fine particles, the difference in refractive index between the light diffusing fine particles and the matrix (substantially constant refractive index region) is increased, and The refractive index gradient in the refractive index modulation region can be made steep.
  • the refractive index modulation region (substantially a substantial gradient of the dispersion concentration of the ultrafine particle component as described above) is a component of the resin component and ultrafine particle component of the matrix and the light diffusing fine particles, and the chemical and It can be formed by appropriate selection of thermodynamic properties.
  • the resin component and the light diffusing fine particles are composed of the same type of material (for example, organic compounds), and the ultra fine particle component is composed of a different type of material (for example, an inorganic compound) from the resin component and the light diffusing fine particles.
  • the refractive index modulation region can be formed satisfactorily.
  • the resin component and the light diffusing fine particles are composed of highly compatible materials among the similar materials.
  • the thickness and refractive index gradient of the refractive index modulation region can be controlled by adjusting the chemical and thermodynamic properties of the resin component and ultrafine particle component of the matrix and the light diffusing fine particles.
  • “same system” means that chemical structures and properties are equivalent or similar, and “different system” means something other than the same system. Whether or not they are related may differ depending on how the reference is selected. For example, when organic or inorganic is used as a reference, the organic compounds are the same type of compounds, and the organic compound and the inorganic compound are different types of compounds.
  • the polymer repeat unit when used as a reference, for example, an acrylic polymer and an epoxy polymer are different compounds despite being organic compounds, and when a periodic table is used as a reference, alkali metals and transition metals are used. Is an element of a different system despite being inorganic elements.
  • the light diffusing element preferably has a higher haze value.
  • the haze value is preferably 70% or more, more preferably 90% to 99%, and further preferably 92% to 99.5%. More preferably 95% to 99.5%, particularly preferably 97% to 99.5%, and most preferably 98.6% to 99.5%.
  • the collimated backlight front diffusion system is a liquid crystal display device that uses collimated backlight light (backlight light with a narrow luminance half-value width condensed in a certain direction) and the front light on the viewing side of the upper polarizing plate.
  • a system provided with a diffusing element is provided with a diffusing element.
  • the diffusion characteristic of the light diffusing element is preferably 10 ° to 150 ° (5 ° to 75 ° on one side), more preferably 10 ° to 100 ° (5 ° to 50 ° on one side), in terms of a light diffusion half-value angle. And more preferably 30 ° to 80 ° (15 ° to 40 ° on one side).
  • the transmittance of light parallel to the incident light is preferably 2% or less, more preferably 1% or less.
  • the agglomerated ultrafine particle component since it does not substantially contain the agglomerated ultrafine particle component, it is possible to reduce the transmitted light without being affected by the light diffusing fine particles and the refractive index modulation region, and the incident light is not diffused but goes straight. Can be prevented. Furthermore, the above-described effect becomes more remarkable by allowing the light diffusing fine particles to exist in a substantially unaggregated state.
  • the thickness of the light diffusing element can be appropriately set according to the purpose and desired diffusion characteristics. Specifically, the thickness of the light diffusing element is preferably 4 ⁇ m to 50 ⁇ m, more preferably 4 ⁇ m to 20 ⁇ m. According to the present invention, it is possible to obtain a light diffusing element having such a very high haze value and excellent smoothness in spite of such a very thin thickness.
  • the light diffusing element is suitably used for a liquid crystal display device, and particularly suitably for a collimated backlight front diffusing system.
  • the light diffusing element may be provided alone as a film-like or plate-like member, or may be provided as a composite member by being attached to any appropriate base material or polarizing plate.
  • An antireflection layer may be laminated on the light diffusing element.
  • the matrix 10 preferably includes the resin component 11 and the ultrafine particle component 12. As described above and as shown in FIG. 1 and FIG. 2, the ultrafine particle component 12 is preferably formed so that the refractive index modulation region 30 is formed in the vicinity of the surface of the light diffusing fine particles 20. Are distributed.
  • the resin component 11 is made of any appropriate material as long as the effects of the present invention can be obtained.
  • the resin component 11 is composed of a compound similar to the light diffusing fine particles and different from the ultrafine particle component.
  • the refractive index modulation region can be favorably formed in the vicinity of the surface of the light diffusing fine particles.
  • the resin component 11 is composed of a highly compatible compound in the same system as the light diffusing fine particles. Thereby, a refractive index modulation region having a desired refractive index gradient can be formed.
  • the resin component locally surrounds the light diffusing fine particles only with the resin component, rather than being in a state of being uniformly dissolved or dispersed with the ultra fine particle component.
  • the energy of the entire system is more stable.
  • the weight concentration of the resin component is higher than the average weight concentration of the resin component in the entire matrix in the closest region of the light diffusing fine particles, and decreases as the distance from the light diffusing fine particles increases. Therefore, the refractive index modulation region can be favorably formed in the vicinity of the surface of the light diffusing fine particles.
  • the resin component is preferably composed of an organic compound, more preferably an ionizing radiation curable resin.
  • the ionizing radiation curable resin is excellent in the hardness of the coating film.
  • the ionizing rays include ultraviolet rays, visible light, infrared rays, and electron beams.
  • it is ultraviolet rays, and therefore the resin component is particularly preferably composed of an ultraviolet curable resin.
  • the ultraviolet curable resin include resins formed from radical polymerization monomers and / or oligomers such as acrylate resins (epoxy acrylate, polyester acrylate, acrylic acrylate, ether acrylate).
  • the molecular weight of the monomer component (precursor) constituting the acrylate resin is preferably 200 to 700.
  • the monomer component (precursor) constituting the acrylate resin examples include pentaerythritol triacrylate (PETA: molecular weight 298), neopentyl glycol diacrylate (NPGDA: molecular weight 212), dipentaerythritol hexaacrylate (DPHA: molecular weight 632). ), Dipentaerythritol pentaacrylate (DPPA: molecular weight 578), and trimethylolpropane triacrylate (TMPTA: molecular weight 296).
  • An initiator may be added to the precursor as necessary.
  • the initiator examples include a UV radical generator (Irgacure 907, 127, 192, etc., manufactured by BASF Japan) and benzoyl peroxide.
  • the resin component may contain another resin component in addition to the ionizing radiation curable resin.
  • Another resin component may be an ionizing radiation curable resin, a thermosetting resin, or a thermoplastic resin.
  • Representative examples of other resin components include aliphatic (for example, polyolefin) resins and urethane resins. When another resin component is used, the type and blending amount thereof are adjusted so that the refractive index modulation region is formed satisfactorily.
  • the resin component and light diffusing fine particles of the matrix preferably have a refractive index satisfying the following formula (1): 0 ⁇
  • n A represents the refractive index of the resin component of the matrix
  • n P represents the refractive index of the light diffusing fine particles.
  • is preferably 0.01 to 0.10, more preferably 0.01 to 0.06, and particularly preferably 0.02 to 0.06. If
  • the refractive index of the resin component, ultrafine particle component, and light diffusing fine particles of the matrix preferably satisfies the following formula (2): 0 ⁇
  • n A and n P are as described above, and n B represents the refractive index of the ultrafine particle component.
  • is preferably 0.10 to 1.50, more preferably 0.20 to 0.80.
  • is less than 0.10, the haze value is often 90% or less, and as a result, the light from the light source cannot be sufficiently diffused when incorporated in a liquid crystal display device. The viewing angle may be narrowed.
  • the refractive index of the resin component is preferably 1.40 to 1.60.
  • the amount of the resin component is preferably 10 to 80 parts by weight, more preferably 20 to 80 parts by weight, and still more preferably 20 to 65 parts by weight with respect to 100 parts by weight of the matrix. Parts, particularly preferably 45 to 65 parts by weight.
  • the resin component may contain another resin component in addition to the ionizing radiation curable resin.
  • Another resin component may be an ionizing radiation curable resin, a thermosetting resin, or a thermoplastic resin.
  • Representative examples of other resin components include aliphatic (for example, polyolefin) resins and urethane resins. When another resin component is used, the type and blending amount thereof are adjusted so that the refractive index modulation region is formed satisfactorily.
  • the ultrafine particle component 12 is preferably composed of a compound of a system different from the resin component and the light diffusing fine particles described later, and more preferably composed of an inorganic compound.
  • examples of preferable inorganic compounds include metal oxides and metal fluorides.
  • the metal oxide include zirconium oxide (zirconia) (refractive index: 2.19), aluminum oxide (refractive index: 1.56 to 2.62), and titanium oxide (refractive index: 2.49 to 2.19). 74) and silicon oxide (refractive index: 1.25 to 1.46).
  • the metal fluoride include magnesium fluoride (refractive index: 1.37) and calcium fluoride (refractive index: 1.40 to 1.43).
  • metal oxides and metal fluorides have a refractive index that is difficult to be expressed by organic compounds such as ionizing radiation curable resins and thermoplastic resins in addition to low light absorption. Since the weight concentration of the ultrafine particle component becomes relatively higher as the distance from the interface increases, the refractive index can be greatly modulated. By increasing the refractive index difference between the light diffusing fine particles and the matrix, high haze (high light diffusibility) can be realized even in a thin film, and a refractive index modulation region is formed, thereby preventing backscattering. Is also big.
  • a particularly preferred inorganic compound is zirconium oxide.
  • the ultrafine particle component also preferably satisfies the above formulas (1) and (2).
  • the refractive index of the resin component, the ultrafine particle component, and the light diffusing fine particle satisfies the following formula (3). If the refractive indexes of the resin component, the ultrafine particle component, and the light diffusing fine particles are in such a relationship, a light diffusing element in which backscattering is suppressed while maintaining a high haze value can be obtained.
  • the refractive index of the ultrafine particle component is preferably 1.40 or less or 1.60 or more, more preferably 1.40 or less or 1.70 to 2.80, and particularly preferably 1.40 or less or 2 .00 to 2.80. If the refractive index exceeds 1.40 or less than 1.60, the difference in refractive index between the light diffusing fine particles and the matrix may be insufficient, and sufficient light diffusibility may not be obtained. When the element is used in a liquid crystal display device that employs a collimated backlight front diffusion system, the light from the collimated backlight may not be sufficiently diffused and the viewing angle may be narrowed.
  • the upper limit of the average primary particle size of the ultrafine particle component is 100 nm, preferably 80 nm, more preferably 60 nm, and further preferably 30 nm.
  • the lower limit of the average primary particle size of the ultrafine particle component is preferably 10 nm, more preferably 15 nm.
  • the light diffusing element is substantially free of aggregated ultrafine particle components.
  • substantially not containing the agglomerated ultrafine particle component a light diffusing element having a high haze value and strong diffusibility can be obtained.
  • substantially free of agglomerated ultrafine particle component means not only a case where only the ultrafine particles present as primary particles are included, but also an ultrafine particle component whose particle size is sufficiently close to the primary particle size. And a case where a minute amount of agglomerated ultrafine particle component is further included within a range in which the effect of the present invention can be obtained.
  • the term “ultrafine particle component whose particle size is sufficiently close to the primary particle size” means that the particle size is 10 times or less (preferably 8 times or less, more preferably 5 times or less, more preferably 3 times) the average primary particle size. (Hereinafter referred to as “ultrafine particle component”).
  • the particle diameter is sufficiently close to the primary particle diameter” is also referred to as “substantially not aggregated”.
  • the particle size and average particle size of the ultrafine particle component in the light diffusing element can be measured by observing the cross section of the light diffusing element using a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the light diffusing element can contain a minute amount of agglomerated ultrafine particle components within a range in which the effects of the present invention can be obtained.
  • the light diffusing element containing a minute amount of agglomerated ultrafine particle components is, for example, a predetermined measurement field (direct magnification ⁇ 1,200, MAGNIFICATION ⁇ 10,000 (13. 5) in a transmission electron microscope (TEM). 9 ⁇ m ⁇ 15.5 ⁇ m)), the number of white spots observed because there is no ultrafine particle component in the matrix (that is, white spots other than white portions derived from the light diffusing fine particles in the measurement visual field) is 10 It refers to less than one light diffusing element.
  • the white spot is caused by the density (that is, aggregation) of the ultrafine particle component, and the smaller the white spot, the better.
  • the number of the white spots is preferably less than 8, more preferably less than 5, and still more preferably less than 3. Most preferably, the number of white spots is zero.
  • the ultrafine particle component is preferably not substantially aggregated, and more preferably present as primary particles.
  • the ultrafine particle component is surface-modified.
  • the ultrafine particle component can be favorably dispersed in the resin component, and the refractive index modulation region can be favorably formed.
  • Any appropriate means can be adopted as the surface modifying means as long as the effects of the present invention can be obtained.
  • the surface modification is performed by applying a surface modifier to the surface of the ultrafine particle component to form a surface modifier layer.
  • preferable surface modifiers include coupling agents such as silane coupling agents and titanate coupling agents, and surfactants such as fatty acid surfactants.
  • the wettability between the resin component and the ultrafine particle component is improved, the interface between the resin component and the ultrafine particle component is stabilized, and the ultrafine particle component is improved in the resin component.
  • the refractive index modulation region can be favorably formed while being dispersed.
  • the blending amount of the ultrafine particle component in the coating solution is preferably 10 to 70 parts by weight, more preferably 35 to 55 parts by weight with respect to 100 parts by weight of the formed matrix.
  • the light diffusing fine particles 20 are also made of any appropriate material as long as the effects of the present invention can be obtained.
  • the light diffusing fine particles 20 are composed of a compound similar to the resin component of the matrix.
  • the ionizing radiation curable resin constituting the resin component of the matrix is an acrylate resin
  • the light diffusing fine particles are also preferably composed of an acrylate resin.
  • the acrylate constituting the light diffusing fine particles The base resin is preferably polymethyl methacrylate (PMMA), polymethyl acrylate (PMA), and a copolymer thereof, and a cross-linked product thereof.
  • PMMA polymethyl methacrylate
  • PMA polymethyl acrylate
  • the copolymer component with PMMA and PMA include polyurethane, polystyrene (PS), and melamine resin.
  • the light diffusing fine particles are composed of PMMA. This is because the relationship between the refractive index and thermodynamic properties of the matrix resin component and ultrafine particle component is appropriate.
  • the light diffusing fine particles have a cross-linked structure (three-dimensional network structure).
  • cross-linked structure three-dimensional network structure.
  • the resin component penetrates into the light diffusing fine particles, and the light diffusing fine particles contain the resin component in the light diffusing element. If the resin component penetrates into the light diffusing fine particles, a refractive index modulation region can be formed in the vicinity of the surface of the light diffusing fine particles, the haze value is high, the diffusibility is high, and the rear A light diffusing element in which scattering is suppressed can be obtained. In addition, light diffusing fine particles having a large average particle diameter can be obtained.
  • the permeation range of the resin component in the light diffusing fine particles is preferably 80% or more, more preferably 85% or more, further preferably, with respect to the average particle diameter of the light diffusing fine particles in the light diffusing element. 85% to 100%.
  • the permeation range should be controlled by adjusting the resin component and the material of the light diffusing fine particles, the crosslinking density of the light diffusing fine particles, the type of organic solvent used during production, the standing time during production, the standing temperature, etc. Can do.
  • the average primary particle size of the light diffusing fine particles in the light diffusing element is preferably 1 ⁇ m to 5 ⁇ m, more preferably 2 ⁇ m to 5 ⁇ m, and further preferably 2.5 ⁇ m to 4 ⁇ m. Within such a range, it is possible to obtain a light diffusing element having a high haze value, strong diffusibility, and capable of suppressing the transmission of straight light.
  • “light diffusing fine particles in a light diffusing element” means that when the light diffusing fine particles swell in the manufacturing process, the light diffusing fine particles after swelling, that is, the particle size is larger than that at the time of preparation. Means light diffusing fine particles.
  • the average particle diameter of the light diffusing fine particles in the light diffusing element can be measured by observing a cross section of the light diffusing element using a transmission electron microscope (TEM).
  • the light diffusing fine particles in the light diffusing element are not substantially aggregated.
  • a light diffusing element having a high haze value, strong diffusibility, and capable of suppressing the transmission of straight light can be obtained.
  • substantially not agglomerated refers to a state in which the particle size is sufficiently close to the primary particle size. Therefore, “substantially non-aggregated” particles include not only individually separated particles (single particles) but also a plurality of particles gathered within a range where the effects of the present invention can be obtained.
  • substantially non-aggregated light diffusing fine particles are light diffusing fine particles present as primary particles, and the particle size is 2.5 or less of the average primary particle size 2 Includes light diffusing fine particles present as secondary particles.
  • the particle size of the light diffusing fine particles in the light diffusing element is preferably not more than twice the average primary particle size, more preferably not more than 1.5 times.
  • the average particle diameter of the light diffusing fine particles in the light diffusing element is preferably 1/2 or less (for example, 1/2 to 1/20) of the thickness of the light diffusing element. If the average particle diameter has such a ratio with respect to the thickness of the light diffusing element, a plurality of light diffusing fine particles can be arranged in the thickness direction of the light diffusing element, so that incident light passes through the light diffusing element. In the meantime, the light can be diffused multiple times, and as a result, sufficient light diffusibility can be obtained.
  • the standard deviation of the weight average particle size distribution of the light diffusing fine particles in the light diffusing element is preferably 1.0 ⁇ m or less, more preferably 0.5 ⁇ m or less, and particularly preferably 0.1 ⁇ m or less.
  • the standard deviation of the weight average particle size distribution of the light diffusing fine particles is preferably as small as possible, but a practical lower limit is, for example, 0.01 ⁇ m.
  • the weight average particle size distribution of the diffusible fine particles is preferably monodisperse.
  • the coefficient of variation of the weight average particle size distribution ((standard deviation of particle size) ⁇ 100 / (average particle size)) is 20%. Or less, and more preferably 15% or less.
  • the variation coefficient of the weight average particle size distribution of the diffusible fine particles is preferably as small as possible, but a practical lower limit is, for example, 5%. If a large number of light diffusing fine particles having a small particle size with respect to the weight average particle size are mixed, the diffusibility may be excessively increased and the backscattering may not be suppressed satisfactorily. If a large number of light diffusing fine particles having a large particle diameter with respect to the weight average particle diameter are mixed, a plurality of light diffusing elements cannot be arranged in the thickness direction of the light diffusing element, and multiple diffusion may not be obtained. , The light diffusibility may be insufficient.
  • any appropriate shape can be adopted depending on the purpose. Specific examples include a true sphere shape, a flake shape, a plate shape, an elliptic sphere shape, and an indefinite shape. In many cases, spherical fine particles can be used as the light diffusing fine particles.
  • the refractive index of the light diffusing fine particles is preferably 1.30 to 1.70, more preferably 1.40 to 1.60.
  • a method for producing a light diffusing element according to one embodiment of the present invention comprises dissolving or dispersing a precursor (monomer) of a resin component of a matrix, an ultrafine particle component, and light diffusing fine particles in an organic solvent.
  • a step of applying the applied coating solution to the substrate referred to as step A
  • a step of drying the coating solution applied to the substrate referred to as step B
  • a step of polymerizing the precursor Step C).
  • the precursor of the resin component, the ultrafine particle component, and the light diffusing fine particles are as described in the above sections A-2-1, A-2-2, and A-3, respectively.
  • the coating liquid is a dispersion in which ultrafine particle components and light diffusing fine particles are dispersed in a precursor and a volatile solvent.
  • a dispersion treatment with a stirrer is preferably used. This is because a sufficient share is applied to the ultrafine particle component and the light diffusing fine particle, and the ultrafine particle component and the light diffusing fine particle which are not substantially aggregated can be obtained.
  • a disper type stirrer is preferably used.
  • the stirring time is preferably 15 minutes or more, more preferably 15 minutes to 60 minutes.
  • the dispersion treatment is preferably performed immediately before the coating liquid is applied to the substrate.
  • the coating liquid is prepared by previously mixing light diffusing fine particles in an organic solvent to swell the light diffusing fine particles, and then adding the precursor of the resin component and the ultra fine particle component in the organic solvent. It can be adjusted by adding. If the light diffusing fine particles are mixed in advance in an organic solvent to swell the light diffusing fine particles, the light diffusing fine particles can be subjected to a subsequent step immediately after the preparation of the coating solution, that is, without being allowed to stand. As a result, aggregation of the light diffusing fine particles and the ultrafine particle component can be prevented.
  • organic solvent examples include butyl acetate, methyl isobutyl ketone, ethyl acetate, isopropyl acetate, 2-butanone (methyl ethyl ketone), cyclopentanone, toluene, isopropyl alcohol, n-butanol, cyclopentane, and water.
  • the boiling point of the organic solvent is preferably 70 ° C. or higher, more preferably 100 ° C. or higher, particularly preferably 110 ° C. or higher, and most preferably 120 ° C. or higher.
  • an organic solvent having relatively low volatility when the organic solvent is dried, rapid volatilization can be prevented, and aggregation of the light diffusing fine particles and the ultrafine particle component can be prevented. .
  • the coating liquid may further contain any appropriate additive depending on the purpose.
  • a dispersant in order to disperse the ultrafine particle component satisfactorily, a dispersant can be suitably used.
  • the additive include an ultraviolet absorber, a leveling agent, and an antifoaming agent.
  • the compounding amount of the resin component precursor in the coating solution is as described in the section A-2-1 and the compounding amount of the ultrafine particle component is as described in the section A-2-2.
  • the upper limit of the amount of the light diffusing fine particles is preferably 40 parts by weight, more preferably 30 parts by weight, and particularly preferably 20 parts by weight with respect to 100 parts by weight of the matrix.
  • the lower limit of the amount of the light diffusing fine particles is preferably 5 parts by weight, more preferably 10 parts by weight, and further preferably 15 parts by weight with respect to 100 parts by weight of the matrix.
  • the solid content concentration of the coating solution can be adjusted to be preferably about 10 wt% to 70 wt%. If it is such solid content concentration, the coating liquid which has a viscosity with easy coating can be obtained.
  • any appropriate film can be adopted as long as the effects of the present invention can be obtained.
  • Specific examples include a triacetyl cellulose (TAC) film, a polyethylene terephthalate (PET) film, a polypropylene (PP) film, a nylon film, an acrylic film, and a lactone-modified acrylic film.
  • the base material may be subjected to surface modification such as easy adhesion treatment, and may contain additives such as a lubricant, an antistatic agent, and an ultraviolet absorber.
  • a method for applying the coating liquid to the base material a method using any appropriate coater can be employed.
  • the coater include a bar coater, a reverse coater, a kiss coater, a gravure coater, a die coater, and a comma coater.
  • the heating temperature is preferably 60 ° C to 150 ° C, more preferably 60 ° C to 100 ° C, and further preferably 60 ° C to 80 ° C. When the heating temperature exceeds 150 ° C., the coating liquid surface changes abruptly, and the light diffusing fine particles cannot follow the change in the coating liquid surface, and there is a possibility that sufficient smoothness cannot be obtained.
  • the heating time is, for example, 30 seconds to 5 minutes.
  • the polymerization method any appropriate method can be adopted depending on the type of the resin component (and hence its precursor).
  • the resin component is an ionizing radiation curable resin
  • the precursor is polymerized by irradiating the ionizing radiation.
  • ultraviolet rays are used as the ionizing ray
  • the integrated light quantity is preferably 50 mJ / cm 2 to 1000 mJ / cm 2 , more preferably 200 mJ / cm 2 to 400 mJ / cm 2 .
  • the transmittance of the ionizing rays to the light diffusing fine particles is preferably 70% or more, more preferably 80% or more.
  • the resin component is a thermosetting resin
  • the precursor is polymerized by heating.
  • the heating temperature and the heating time can be appropriately set according to the type of the resin component.
  • the polymerization is performed by irradiating with ionizing radiation. With ionizing ray irradiation, the coating film can be cured while the refractive index modulation region is well maintained, so that a light diffusing element having good diffusion characteristics can be produced.
  • a matrix is formed, and at the same time, a refractive index modulation region is formed in the vicinity of the surface of the light diffusing fine particles.
  • a precursor that has penetrated into the light diffusing fine particles and a precursor that has not penetrated into the light diffusing fine particles are polymerized at the same time, thereby refracting near the surface of the light diffusing fine particles.
  • a matrix can be formed simultaneously with forming the rate modulation region.
  • the polymerization step (step C) may be performed before the drying step (step B) or after step B. Preferably it is performed before the polymerization step (step C). This is because the penetration of the precursor of the resin component into the light diffusing fine particles can be promoted by heating.
  • the manufacturing method of the light diffusing element of the present embodiment can include any appropriate process, process and / or operation at any appropriate time in addition to the above-mentioned processes A to C.
  • the type of such a process and the time when such a process is performed can be appropriately set according to the purpose.
  • the coating liquid can be allowed to stand for a predetermined time before application.
  • the precursor of the resin component can be sufficiently permeated into the light diffusing fine particles.
  • the standing time is preferably 1 hour to 48 hours, more preferably 2 hours to 40 hours, still more preferably 3 hours to 35 hours, and particularly preferably 4 hours to 30 hours.
  • the light diffusing element as described in the above sections A-1 to A-3 is formed on the substrate.
  • Thickness of the light diffusing element The total thickness of the base material and the light diffusing element is measured with a microgauge thickness meter (manufactured by Mitutoyo Corporation), and the thickness of the light diffusing element is subtracted from the total thickness. was calculated.
  • Haze value The haze value was measured by a method defined in JIS 7136 using a haze meter (trade name “HN-150” manufactured by Murakami Color Science Laboratory Co., Ltd.).
  • Example 1 15 parts of polymethyl methacrylate (PMMA) fine particles (manufactured by Sekisui Plastics Co., Ltd., trade name “XX131AA”, average particle size 2.5 ⁇ m, refractive index 1.49) as light diffusing fine particles, and acetic acid as an organic solvent 30 parts of a mixed solvent of butyl and MEK (weight ratio 50/50) was mixed and stirred for 60 minutes to prepare a mixed solution.
  • PMMA polymethyl methacrylate
  • a resin for hard coat containing 62% of zirconia nanoparticles (average particle size 60 nm, refractive index 2.19) as an ultrafine particle component in the obtained mixed solution (trade name “OPSTAR KZ6661” (manufactured by JSR Corporation) ( MEK / MIBK-containing)) 100 parts, pentaerythritol triacrylate as a resin component precursor (manufactured by Osaka Organic Chemical Industry, trade name “Biscoat # 300”, refractive index 1.52, molecular weight 298) 22 parts, photopolymerization Add 0.5 parts of initiator (trade name “Irgacure 907” manufactured by Ciba Specialty Chemical Co., Ltd.) and 0.5 parts leveling agent (trade name “GRANDIC PC 4100” manufactured by DIC Corporation), and use a disper.
  • the mixture was stirred for 15 minutes to prepare a coating solution.
  • a coating solution Immediately after the coating solution is prepared, it is coated on a TAC film (trade name “Fujitac”, manufactured by Fuji Film Co., Ltd.) using a bar coater, heated at 60 ° C. for 1 minute, and then irradiated with ultraviolet light with an integrated light amount of 300 mJ.
  • a light diffusing element having a thickness of 10 ⁇ m was obtained.
  • the obtained light diffusing element was subjected to the evaluations (2) to (6) above. Furthermore, a TEM photograph of a cross section of the light diffusing element is shown in FIG.
  • Example 2 In Example 1, a resin for hard coat containing 62% of zirconia nanoparticles (average particle diameter 60 nm, refractive index 2.19) as an ultrafine particle component (manufactured by JSR, trade name “OPSTAR KZ6661” (MEK / MIBK) Example 1 except that in place of 100 parts, a product name “OPSTAR KZ6706” (containing PEGME (propylene glycol monomethyl ether)) (average particle size 30 nm, refractive index 2.19) manufactured by JSR Corporation was used instead of 100 parts. In the same manner, a light diffusing element was obtained. The obtained light diffusing element was subjected to the evaluations (2) to (6) above. The results are shown in Table 1.
  • This mixture was sonicated for 5 minutes to prepare a coating solution in which the above components were uniformly dispersed.
  • the coating solution was allowed to stand for 24 hours, then coated on a TAC film (trade name “Fujitac”, manufactured by Fuji Film Co., Ltd.) using a bar coater, heated at 60 ° C. for 1 minute, and an accumulated light amount of 300 mJ.
  • Ultraviolet light was irradiated to obtain a light diffusing element having a thickness of 10 ⁇ m.
  • the obtained light diffusing element was subjected to the evaluations (2) to (6) above. The results are shown in Table 1.
  • the ultrafine particle component has a small particle size and substantially does not contain the agglomerated ultrafine particle component, so that the haze value is high and strong diffusibility is achieved. It is possible to obtain a light diffusing element having backscattering suppressed.
  • the light diffusing element obtained by the production method of the present invention is suitably used for a viewing side member of a liquid crystal display device, a backlight member of a liquid crystal display device, and a diffusing member for a lighting fixture (for example, organic EL, LED), and a collimator. It can be particularly preferably used as a front diffusion element of a backlight front diffusion system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

 ヘイズ値が高く、強い拡散性を有し、かつ、後方散乱が抑制された光拡散素子を提供すること。 本発明の光拡散素子は、樹脂成分および超微粒子成分を含むマトリクスと、該マトリクス中に分散された光拡散性微粒子とを有し、該超微粒子成分の平均1次粒径が100nm以下であり、凝集した超微粒子成分を実質的に含まない。好ましい実施形態においては、前記光拡散性微粒子の平均1次粒径が1μm~5μmであり、該光拡散性微粒子の重量平均粒径分布の変動係数が20%以下であり、かつ、該光拡散性微粒子が実質的に凝集していない。

Description

光拡散素子
 本発明は、光拡散素子に関する。
 光拡散素子は、照明カバー、プロジェクションテレビのスクリーン、面発光装置(例えば、液晶表示装置)などに広く利用されている。近年では、光拡散素子は、液晶表示装置などの表示品位の向上、視野角特性の改善等への利用が進んでいる。光拡散素子としては、微粒子を樹脂シートなどのマトリクス中に分散させたものなどが提案されている(例えば、特許文献1参照)。しかし、このような従来の光拡散素子は、光拡散素子中の微粒子の多くが凝集しており、また、微粒子の粒径が均一ではないため、光拡散性が不十分であり、後方散乱も大きいという問題がある。
特許第3071538号
 本発明は上記従来の課題を解決するためになされたものであり、その目的とするところは、ヘイズ値が高く、強い拡散性を有し、かつ、後方散乱が抑制された光拡散素子を提供することにある。
 本発明の光拡散素子は、樹脂成分および超微粒子成分を含むマトリクスと、該マトリクス中に分散された光拡散性微粒子とを有し、該超微粒子成分の平均1次粒径が100nm以下であり、
 凝集した超微粒子成分を実質的に含まない。
 好ましい実施形態においては、上記光拡散性微粒子の平均1次粒径が1μm~5μmであり、該光拡散性微粒子の重量平均粒径分布の変動係数が20%以下であり、かつ、該光拡散性微粒子が実質的に凝集していない。
 好ましい実施形態においては、上記超微粒子成分の平均1次粒径が30nm以下である。
 好ましい実施形態においては、上記樹脂成分、前記超微粒子成分および前記光拡散性微粒子の屈折率が下記式(i)を満たし、該光拡散性微粒子の表面近傍に屈折率変調領域を有する:
 |n-n|<|n-n|・・・(i)
 式(i)中、nはマトリクスの樹脂成分の屈折率を表し、nはマトリクスの超微粒子成分の屈折率を表し、nは光拡散性微粒子の屈折率を表す。
 本発明によれば、超微粒子成分をマトリクスに含有させることにより、マトリクスと光拡散性微粒子との屈折率差を大きくすることができ、ヘイズ値が高く、強い拡散性を有する光拡散素子を実現することができる。また、光拡散性微粒子の表面近傍に、屈折率が実質的に連続的に変化する屈折率変調領域が形成され得、その結果、マトリクスと光拡散性微粒子との界面の反射を抑えることができ、後方散乱を抑制することができる。このような効果は、超微粒子成分が小粒径であり、かつ、凝集した超微粒子成分を実質的に含まないことにより、顕著になる。具体的には、本発明の光拡散素子は、凝集した超微粒子成分の周辺に生じる極端な濃度勾配を要因とした、後方散乱の増大および光拡散に寄与する光の利用効率の低下を防止することができる。
 さらに、均一な光拡散性微粒子を用い、該光拡散性微粒子が実質的に凝集していない状態で存在することにより、上記の効果がさらに顕著になるとともに、拡散せずに直進する光の透過を抑制することができる。
本発明の好ましい実施形態による製造方法により得られる光拡散素子におけるマトリクスの樹脂成分および光拡散性微粒子の分散状態を説明するための模式図である。 本発明の光拡散素子における光拡散性微粒子近傍を拡大して説明する模式図である。 本発明の光拡散素子における光拡散性微粒子中心部からマトリクスまでの屈折率変化を説明するための概念図である。 マトリクス中の超微粒子成分の面積比率を説明するための透過型電子顕微鏡画像である。 実施例1で得られた光拡散素子の断面を示す透過型顕微鏡写真である。
 以下、本発明の好ましい実施形態について図面を参照しながら説明するが、本発明はこれらの具体的な実施形態には限定されない。
A.光拡散素子
A-1.全体構成
 本発明の光拡散素子は、樹脂成分および超微粒子成分を含むマトリクスと、該マトリクス中に分散された光拡散性微粒子とを有する。本発明の光拡散素子は、マトリクスと光拡散性微粒子の屈折率差により、光拡散機能を発現する。図1は、本発明の好ましい実施形態による光拡散素子におけるマトリクスの樹脂成分および超微粒子成分、ならびに光拡散性微粒子の分散状態を説明するための模式図である。本発明の光拡散素子100は、樹脂成分11および平均1次粒径が100nm以下である超微粒子成分12を含むマトリクス10と、マトリクス10中に分散された光拡散性微粒子20とを有する。本発明の光拡散素子は、凝集した超微粒子成分を実質的に含まない。
 好ましくは、図1および図2に示すように、光拡散性微粒子の表面近傍に屈折率変調領域30が形成されている。したがって、マトリクスは、好ましくは、光拡散性微粒子の表面近傍の屈折率変調領域30と、当該屈折率変調領域の外側(光拡散性微粒子から離れた側)の屈折率一定領域とを有する。屈折率変調領域30においては、屈折率が実質的に連続的に変化する。好ましくは、マトリクスにおける屈折率変調領域30以外の部分は、実質的には屈折率一定領域である。本明細書において「光拡散性微粒子の表面近傍」とは、光拡散性微粒子表面、表面付近の外部および表面付近の内部を包含する。すなわち、屈折率変調領域最内部は光拡散性微粒子の内部にあってもよい。
 屈折率変調領域30においては、上記のように、屈折率が実質的に連続的に変化する。好ましくは、これに加えて、上記屈折率変調領域の最外部の屈折率と上記屈折率一定領域の屈折率とが実質的に同一である。言い換えれば、上記光拡散素子においては、屈折率変調領域から屈折率一定領域にかけて屈折率が連続的に変化し、好ましくは光拡散性微粒子から屈折率一定領域にかけて屈折率が連続的に変化する(図3)。好ましくは、当該屈折率変化は、図3に示すように滑らかである。すなわち、屈折率変調領域と屈折率一定領域との境界において、屈折率変化曲線に接線が引けるような形状で変化する。好ましくは、屈折率変調領域において、屈折率変化の勾配は、上記光拡散性微粒子から遠ざかるにつれて大きくなる。本発明の光拡散素子によれば、光拡散性微粒子とマトリクスの樹脂成分と超微粒子成分とを適切に選択することにより、実質的に連続的な屈折率変化を実現することができる。その結果、マトリクス10(実質的には、屈折率一定領域)と光拡散性微粒子20との屈折率差を大きくしても、マトリクス10と光拡散性微粒子20との界面の反射を抑えることができ、後方散乱を抑制することができる。さらに、屈折率一定領域では、光拡散性微粒子20とは屈折率が大きく異なる超微粒子成分12の重量濃度が相対的に高くなるので、マトリクス10(実質的には、屈折率一定領域)と光拡散性微粒子20との屈折率差を大きくすることができる。その結果、薄膜であっても高いヘイズ(強い拡散性)を実現することができる。本明細書において「屈折率が実質的に連続的に変化する」とは、屈折率変調領域において少なくとも光拡散性微粒子から屈折率一定領域まで屈折率が実質的に連続的に変化すればよいことを意味する。したがって、例えば、光拡散性微粒子と屈折率変調領域との界面、および/または、屈折率変調領域と屈折率一定領域との界面において所定の範囲内(例えば、屈折率差が0.05以下)の屈折率ギャップが存在しても、当該ギャップは許容され得る。
 上記屈折率変調領域30の厚み(屈折率変調領域最内部から屈折率変調領域最外部までの距離)は、一定であってもよく(すなわち、屈折率変調領域が光拡散性微粒子の周囲に同心球状に拡がってもよく)、光拡散性微粒子表面の位置によって厚みが異なっていてもよい(例えば、金平糖の外郭形状のようになっていてもよい)。
 上記屈折率変調領域30の平均厚みは、好ましくは0.01μm~0.6μmであり、より好ましくは0.03μm~0.5μmであり、さらに好ましくは0.04μm~0.4μmであり、特に好ましくは0.05μm~0.4μmである。上記平均厚みは、屈折率変調領域30の厚みが光拡散性微粒子表面の位置によって異なる場合の平均厚みであり、厚みが一定である場合にはその厚みである。
 上記のように、マトリクス10は、樹脂成分11および超微粒子成分12を含む。好ましくは、上記屈折率変調領域30は、マトリクス10中の超微粒子成分12の分散濃度の実質的な勾配により形成されている。具体的には、屈折率変調領域30においては、光拡散性微粒子20から遠ざかるにつれて、超微粒子成分12の分散濃度(代表的には、重量濃度で規定される)が高くなる(必然的に、樹脂成分11の重量濃度が低くなる)。言い換えれば、屈折率変調領域30における光拡散性微粒子20の最近接領域には、超微粒子成分12が相対的に低濃度で分散しており、光拡散性微粒子20から遠ざかるにつれて超微粒子成分12の濃度が増大する。例えば、透過型電子顕微鏡(TEM)画像によるマトリクス10中の超微粒子成分12の面積比率は、光拡散性微粒子20に近接する側では小さく、マトリクス10に近接する側では大きく、当該面積比率は光拡散性微粒子側からマトリクス側(屈折率一定領域側)に実質的な勾配を形成しながら変化する。その代表的な分散状態を表すTEM画像を図4に示す。本明細書において、「透過型電子顕微鏡画像によるマトリクス中の超微粒子成分の面積比率」とは、光拡散性微粒子の直径を含む断面の透過型電子顕微鏡画像において、所定範囲(所定面積)のマトリクスに占める超微粒子成分の面積の比率をいう。当該面積比率は、超微粒子成分の3次元的な分散濃度(実際の分散濃度)に対応する。当該超微粒子成分の面積比率は、任意の適切な画像解析ソフトにより求めることができる。なお、上記面積比率は、代表的には、超微粒子成分の各粒子間の平均最短距離に対応する。具体的には、超微粒子成分の各粒子間の平均最短距離は、屈折率変調領域においては光拡散性微粒子から遠ざかるにつれて短くなり、屈折率一定領域において一定となる(例えば、平均最短距離は、光拡散性微粒子の最近接領域では3nm~100nm程度であり、屈折率一定領域においては1nm~20nmである)。平均最短距離は、図4のような分散状態のTEM画像を二値化し、例えば画像解析ソフト「A像くん」(旭化成エンジニアリング社製)の重心間距離法を用いて算出することができる。以上のように、本発明の製造方法によれば、超微粒子成分12の分散濃度の実質的な勾配を利用して光拡散性微粒子の表面近傍に屈折率変調領域30を形成することができるので、煩雑な製造方法でGRIN微粒子を製造して当該GRIN微粒子を分散させる場合に比べて、格段に簡便な手順で、かつ、格段に低コストで光拡散素子を製造することができる。さらに、超微粒子成分の分散濃度の実質的な勾配を利用して屈折率変調領域を形成することにより、屈折率変調領域30と屈折率一定領域との境界において屈折率を滑らかに変化させることができる。さらに、樹脂成分および光拡散性微粒子と屈折率が大きく異なる超微粒子成分を用いることにより、光拡散性微粒子とマトリクス(実質的には、屈折率一定領域)との屈折率差を大きく、かつ、屈折率変調領域の屈折率勾配を急峻にすることができる。
 上記屈折率変調領域(実質的には、上記のような超微粒子成分の分散濃度の実質的な勾配)は、マトリクスの樹脂成分および超微粒子成分ならびに光拡散性微粒子の構成材料、ならびに化学的および熱力学的特性を適切に選択することにより形成することができる。例えば、樹脂成分および光拡散性微粒子を同系の材料(例えば有機化合物同士)で構成し、超微粒子成分を樹脂成分および光拡散性微粒子とは異なる系の材料(例えば無機化合物)で構成することにより、屈折率変調領域を良好に形成することができる。さらに、例えば、樹脂成分および光拡散性微粒子を同系材料の中でも相溶性の高い材料同士で構成することが好ましい。屈折率変調領域の厚みおよび屈折率勾配は、マトリクスの樹脂成分および超微粒子成分ならびに光拡散性微粒子の化学的および熱力学的特性を調整することにより制御することができる。なお、本明細書において「同系」とは、化学構造や特性が同等または類似であることをいい、「異なる系」とは、同系以外のものをいう。同系か否かは、基準の選択の仕方によって異なり得る。例えば、有機か無機かを基準にした場合、有機化合物同士は同系の化合物であり、有機化合物と無機化合物とは異なる系の化合物である。ポリマーの繰り返し単位を基準にした場合、例えばアクリル系ポリマーとエポキシ系ポリマーとは有機化合物同士であるにもかかわらず異なる系の化合物であり、周期律表を基準にした場合、アルカリ金属と遷移金属とは無機元素同士であるにもかかわらず異なる系の元素である。
 上記光拡散素子は、ヘイズ値が高ければ高いほど好ましく、具体的には、好ましくは70%以上であり、より好ましくは90%~99%であり、さらに好ましくは92%~99.5%であり、さらに好ましくは95%~99.5%であり、特に好ましくは97%~99.5%であり、最も好ましくは98.6%~99.5%である。ヘイズ値が70%以上であることにより、コリメートバックライトフロント拡散システムにおけるフロント光拡散素子として好適に用いることができる。なお、コリメートバックライトフロント拡散システムとは、液晶表示装置において、コリメートバックライト光(一定方向に集光された、輝度半値幅の狭いバックライト光)を用い、上側偏光板の視認側にフロント光拡散素子を設けたシステムをいう。
 上記光拡散素子の拡散特性は、光拡散半値角で示すならば、好ましくは10°~150°(片側5°~75°)であり、より好ましくは10°~100°(片側5°~50°)であり、さらに好ましくは30°~80°(片側15°~40°)である。
 上記光拡散素子に平行光線を垂直に入射させた際、入射光に平行な光の透過率は、好ましくは2%以下であり、より好ましくは1%以下である。本発明においては凝集した超微粒子成分を実質的に含まないため、光拡散性微粒子および屈折率変調領域の影響を受けずに透過する光を少なくすることができ、入射光が拡散されずに直進することを防止することができる。さらに、光拡散性微粒子を実質的に凝集していない状態で存在させることにより、上記効果はより顕著になる。
 上記光拡散素子の厚みは、目的や所望の拡散特性に応じて適切に設定され得る。具体的には、上記光拡散素子の厚みは、好ましくは4μm~50μm、より好ましくは4μm~20μmである。本発明によれば、このように非常に薄い厚みにもかかわらず、上記のような非常に高いヘイズ値を有し、かつ、平滑性に優れる光拡散素子が得られ得る。
 上記光拡散素子は、液晶表示装置に好適に用いられ、コリメートバックライトフロント拡散システムに特に好適に用いられる。上記光拡散素子は、単独でフィルム状または板状部材として提供してもよく、任意の適切な基材や偏光板に貼り付けて複合部材として提供してもよい。また、光拡散素子の上に反射防止層が積層されてもよい。
A-2.マトリクス
 上記のとおり、マトリクス10は、好ましくは樹脂成分11および超微粒子成分12を含む。上記のように、ならびに、図1および図2に示すように、超微粒子成分12は、好ましくは、光拡散性微粒子20の表面近傍に屈折率変調領域30を形成するようにして、樹脂成分11に分散している。
A-2-1.樹脂成分
 樹脂成分11は、本発明の効果が得られる限りにおいて、任意の適切な材料で構成される。好ましくは、上記のように、樹脂成分11は、光拡散性微粒子と同系の化合物であってかつ超微粒子成分とは異なる系の化合物で構成される。これにより、光拡散性微粒子の表面近傍に屈折率変調領域を良好に形成することができる。さらに好ましくは、樹脂成分11は、光拡散性微粒子と同系の中でも相溶性の高い化合物で構成される。これにより、所望の屈折率勾配を有する屈折率変調領域を形成することができる。より詳細には、樹脂成分は、光拡散性微粒子の近傍においては、局所的には、超微粒子成分と均一溶解もしくは分散している状態よりも、むしろ、樹脂成分のみで光拡散性微粒子を取り囲む方が、系全体のエネルギーが安定する場合が多い。その結果、樹脂成分の重量濃度は、光拡散性微粒子の最近接領域において、マトリクス全体における樹脂成分の平均重量濃度よりも高く、光拡散性微粒子から遠ざかるにつれて低くなる。したがって、光拡散性微粒子の表面近傍に屈折率変調領域を良好に形成することができる。
 上記樹脂成分は、好ましくは有機化合物で構成され、より好ましくは電離線硬化型樹脂で構成される。電離線硬化型樹脂は、塗膜の硬度に優れている。電離線としては、例えば、紫外線、可視光、赤外線、電子線が挙げられる。好ましくは紫外線であり、したがって、樹脂成分は、特に好ましくは紫外線硬化型樹脂で構成される。紫外線硬化型樹脂としては、例えば、アクリレート樹脂(エポキシアクリレート、ポリエステルアクリレート、アクリルアクリレート、エーテルアクリレート)などのラジカル重合型モノマーおよび/またはオリゴマーから形成される樹脂が挙げられる。アクリレート樹脂を構成するモノマー成分(前駆体)の分子量は、好ましくは200~700である。アクリレート樹脂を構成するモノマー成分(前駆体)の具体例としては、ペンタエリスリトールトリアクリレート(PETA:分子量298)、ネオペンチルグリコールジアクリレート(NPGDA:分子量212)、ジペンタエリスリトールヘキサアクリレート(DPHA:分子量632)、ジペンタエリスリトールペンタアクリレート(DPPA:分子量578)、トリメチロールプロパントリアクリレート(TMPTA:分子量296)が挙げられる。前駆体には、必要に応じて、開始剤を添加してもよい。開始剤としては、例えば、UVラジカル発生剤(BASFジャパン社製イルガキュア907、同127、同192など)、過酸化ベンゾイルが挙げられる。上記樹脂成分は、上記電離線硬化型樹脂以外に別の樹脂成分を含んでいてもよい。別の樹脂成分は、電離線硬化型樹脂であってもよく、熱硬化性樹脂であってもよく、熱可塑性樹脂であってもよい。別の樹脂成分の代表例としては、脂肪族系(例えば、ポリオレフィン)樹脂、ウレタン系樹脂が挙げられる。別の樹脂成分を用いる場合、その種類や配合量は、上記屈折率変調領域が良好に形成されるよう調整される。
 上記マトリクスの樹脂成分および光拡散性微粒子は、好ましくは、それらの屈折率が下記式(1)を満たす:
 0<|n-n|・・・(1)
 式(1)中、nはマトリクスの樹脂成分の屈折率を表し、nは光拡散性微粒子の屈折率を表す。|n-n|は、好ましくは0.01~0.10であり、さらに好ましくは0.01~0.06であり、特に好ましくは0.02~0.06である。|n-n|が0.01未満であると、上記屈折率変調領域が形成されない場合がある。|n-n|が0.10を超えると、後方散乱が増大するおそれがある。
 上記マトリクスの樹脂成分、超微粒子成分および光拡散性微粒子は、好ましくは、その屈折率が下記式(2)を満たす:
 0<|n-n|<|n-n|・・・(2)
 式(2)において、nおよびnは上記のとおりであり、nは超微粒子成分の屈折率を表す。|n-n|は、好ましくは0.10~1.50であり、さらに好ましくは0.20~0.80である。|n-n|が0.10未満であると、ヘイズ値が90%以下となる場合が多く、その結果、液晶表示装置に組み込んだ場合に光源からの光を十分に拡散できず、視野角が狭くなるおそれがある。|n-n|が1.50を超えると、後方散乱が増大するおそれがある。
 各成分の屈折率が上記(1)および(2)の関係にあれば、高いヘイズ値を維持しつつ、後方散乱が抑制された光拡散素子を得ることができる。
 樹脂成分の屈折率は、好ましくは1.40~1.60である。
 上記樹脂成分の配合量は、マトリクス100重量部に対して、好ましくは10重量部~80重量部であり、より好ましくは20重量部~80重量部であり、さらに好ましくは20重量部~65重量部であり、特に好ましくは45重量部~65重量部である。
 上記樹脂成分は、上記電離線硬化型樹脂以外に別の樹脂成分を含んでいてもよい。別の樹脂成分は、電離線硬化型樹脂であってもよく、熱硬化性樹脂であってもよく、熱可塑性樹脂であってもよい。別の樹脂成分の代表例としては、脂肪族系(例えば、ポリオレフィン)樹脂、ウレタン系樹脂が挙げられる。別の樹脂成分を用いる場合、その種類や配合量は、上記屈折率変調領域が良好に形成されるよう調整される。
A-2-2.超微粒子成分
 超微粒子成分12は、上記のように、好ましくは上記樹脂成分および後述の光拡散性微粒子とは異なる系の化合物で構成され、より好ましくは無機化合物で構成される。好ましい無機化合物としては、例えば、金属酸化物、金属フッ化物が挙げられる。金属酸化物の具体例としては、酸化ジルコニウム(ジルコニア)(屈折率:2.19)、酸化アルミニウム(屈折率:1.56~2.62)、酸化チタン(屈折率:2.49~2.74)、酸化ケイ素(屈折率:1.25~1.46)が挙げられる。金属フッ化物の具体例としては、フッ化マグネシウム(屈折率:1.37)、フッ化カルシウム(屈折率:1.40~1.43)が挙げられる。これらの金属酸化物および金属フッ化物は、光の吸収が少ない上に、電離線硬化型樹脂や熱可塑性樹脂などの有機化合物では発現が難しい屈折率を有しているので、光拡散性微粒子との界面から離れるにつれて超微粒子成分の重量濃度が相対的に高くなることにより、屈折率を大きく変調させることができる。光拡散性微粒子とマトリクスとの屈折率差を大きくすることにより、薄膜であっても高ヘイズ(高い光拡散性)を実現でき、かつ、屈折率変調領域が形成されるので後方散乱防止の効果も大きい。特に好ましい無機化合物は、酸化ジルコニウムである。
 上記超微粒子成分もまた、上記式(1)および(2)を満足することが好ましい。また、好ましくは、上記樹脂成分、上記超微粒子成分および上記光拡散性微粒子の屈折率は、下記式(3)を満足する。上記樹脂成分、上記超微粒子成分および上記光拡散性微粒子の屈折率がこのような関係にあれば、高いヘイズ値を維持しつつ、後方散乱が抑制された光拡散素子を得ることができる。
 |n-n|<|n-n|・・・(3)
 上記超微粒子成分の屈折率は、好ましくは1.40以下または1.60以上であり、さらに好ましくは1.40以下または1.70~2.80であり、特に好ましくは1.40以下または2.00~2.80である。屈折率が1.40を超えまたは1.60未満であると、光拡散性微粒子とマトリクスとの屈折率差が不十分となり、十分な光拡散性が得られないおそれがあり、また、光拡散素子がコリメートバックライトフロント拡散システムを採用する液晶表示装置に用いられた場合に、コリメートバックライトからの光を十分に拡散できず視野角が狭くなるおそれがある。
 上記超微粒子成分の平均1次粒径の上限は、100nmであり、好ましくは80nmであり、より好ましくは60nmであり、さらに好ましくは30nmである。上記超微粒子成分の平均1次粒径の下限は、好ましくは10nmであり、より好ましくは15nmである。このように、光の波長より小さい平均粒径の超微粒子成分を用いることにより、超微粒子成分と樹脂成分との間に幾何光学的な反射、屈折、散乱が生じず、光学的に均一なマトリクスを得ることができる。その結果、光学的に均一な光拡散素子を得ることができる。
 上記光拡散素子は、凝集した超微粒子成分を実質的に含まない。凝集した超微粒子成分を実質的に含まないことにより、ヘイズ値が高く、強い拡散性を有する光拡散素子を得ることができる。本明細書において「凝集した超微粒子成分を実質的に含まない」とは、1次粒子として存在する超微粒子のみを含む場合のみならず、粒径が1次粒径に十分に近い超微粒子成分をさらに含む場合、および本発明の効果が得られる範囲内で微量の凝集した超微粒子成分をさらに含む場合を包含する。「粒径が1次粒径に十分に近い超微粒子成分」とは、粒径が平均1次粒径の10倍以下(好ましくは8倍以下、より好ましくは5倍以下、さらに好ましくは3倍以下)である2次粒子として存在する超微粒子成分をいう。なお、本明細書において、「粒径が1次粒径に十分に近い」ことを「実質的に凝集していない」ともいう。また、光拡散素子中の超微粒子成分の粒径および平均粒径は、透過型電子顕微鏡(TEM)を用いて、光拡散素子の断面を観察することにより、測定することができる。
 上記のように、上記光拡散素子は、本発明の効果が得られる範囲内で、微量の凝集した超微粒子成分を含み得る。微量の凝集した超微粒子成分を含む光拡散素子とは、具体的には、例えば、透過型電子顕微鏡(TEM)における所定の測定視野(直接倍率×1,200、MAGNIFICATION×10,000(13.9μm×15.5μm))において、マトリクス中で超微粒子成分が存在しないために観察される白点(すなわち、当該測定視野における、光拡散性微粒子由来の白い部分以外の白点)の数が10個未満の光拡散素子をいう。当該白点は、超微粒子成分の疎密(すなわち、凝集)を要因として生じるものであり、少なければ少ないほど好ましい。当該白点の数は、好ましくは8個未満であり、より好ましくは5個未満であり、さらに好ましくは3個未満である。最も好ましくは、当該白点の数は0個である。言い換えれば、上記超微粒子成分は、実質的に凝集していないことが好ましく、1次粒子として存在することがさらに好ましい。
 好ましくは、上記超微粒子成分は、表面改質がなされている。表面改質を行うことにより、超微粒子成分を樹脂成分中に良好に分散させることができ、かつ、上記屈折率変調領域を良好に形成することができる。表面改質手段としては、本発明の効果が得られる限りにおいて任意の適切な手段が採用され得る。代表的には、表面改質は、超微粒子成分の表面に表面改質剤を塗布して表面改質剤層を形成することにより行われる。好ましい表面改質剤の具体例としては、シラン系カップリング剤、チタネート系カップリング剤等のカップリング剤、脂肪酸系界面活性剤等の界面活性剤が挙げられる。このような表面改質剤を用いることにより、樹脂成分と超微粒子成分との濡れ性を向上させ、樹脂成分と超微粒子成分との界面を安定化させ、超微粒子成分を樹脂成分中に良好に分散させ、かつ、屈折率変調領域を良好に形成することができる。
 上記塗工液における上記超微粒子成分の配合量は、形成されるマトリクス100重量部に対して、好ましくは10重量部~70重量部であり、より好ましくは35重量部~55重量部である。
A-3.光拡散性微粒子
 光拡散性微粒子20もまた、本発明の効果が得られる限りにおいて、任意の適切な材料で構成される。好ましくは、上記のように、光拡散性微粒子20は、上記マトリクスの樹脂成分と同系の化合物で構成される。例えば、マトリクスの樹脂成分を構成する電離線硬化型樹脂がアクリレート系樹脂である場合には、光拡散性微粒子もまたアクリレート系樹脂で構成されることが好ましい。より具体的には、マトリクスの樹脂成分を構成するアクリレート系樹脂のモノマー成分が例えば上記のようなPETA、NPGDA、DPHA、DPPAおよび/またはTMPTAである場合には、光拡散性微粒子を構成するアクリレート系樹脂は、好ましくは、ポリメチルメタクリレート(PMMA)、ポリメチルアクリレート(PMA)、およびこれらの共重合体、ならびにそれらの架橋物である。PMMAおよびPMAとの共重合成分としては、ポリウレタン、ポリスチレン(PS)、メラミン樹脂が挙げられる。特に好ましくは、光拡散性微粒子は、PMMAで構成される。マトリクスの樹脂成分および超微粒子成分との屈折率や熱力学的特性の関係が適切であるからである。さらに、好ましくは、光拡散性微粒子は、架橋構造(三次元網目構造)を有する。架橋構造の粗密(架橋度)を調整することにより、光拡散性微粒子表面において微粒子を構成するポリマー分子の自由度を制御することができるので、超微粒子成分の分散状態を制御することができ、結果として、所望の屈折率勾配を有する屈折率変調領域を形成することができる。
 好ましくは、上記樹脂成分が光拡散性微粒子に浸透し、光拡散素子中において光拡散性微粒子中に樹脂成分が含まれている。光拡散性微粒子中に樹脂成分が浸透していれば、光拡散性微粒子の表面近傍内部に屈折率変調領域を形成させることができ、ヘイズ値が高く、強い拡散性を有し、かつ、後方散乱が抑制された光拡散素子を得ることができる。また、平均粒径の大きい光拡散性微粒子を得ることができる。光拡散性微粒子中の樹脂成分の浸透範囲は、光拡散素子中の光拡散性微粒子の平均粒径に対して、好ましくは80%以上であり、より好ましくは85%以上であり、さらに好ましくは85%~100%である。このような範囲であれば、濃度変調領域が良好に形成されて、後方散乱を抑制することができる。浸透範囲は、樹脂成分および光拡散性微粒子の材料、光拡散性微粒子の架橋密度、製造時に使用する有機溶剤の種類、製造時における静置時間、静置温度等を調整することにより制御することができる。
 上記光拡散素子中の光拡散性微粒子の平均1次粒径は、好ましくは1μm~5μmであり、より好ましくは2μm~5μmであり、さらに好ましくは2.5μm~4μmである。このような範囲であれば、ヘイズ値が高く、強い拡散性を有し、かつ、直進光の透過を抑制し得る光拡散素子を得ることができる。本明細書において、「光拡散素子中の光拡散性微粒子」とは、光拡散性微粒子が製造工程において膨潤する場合は、膨潤後の光拡散性微粒子、すなわち、仕込み時よりも粒径が増大した光拡散性微粒子を意味する。なお、光拡散素子中の光拡散性微粒子の平均粒径は、透過型電子顕微鏡(TEM)を用いて、光拡散素子の断面を観察することにより、測定することができる。
 好ましくは、上記光拡散素子中の光拡散性微粒子は、実質的に凝集していない。実質的に凝集していない状態で光拡散性微粒子が存在することにより、ヘイズ値が高く、強い拡散性を有し、かつ、直進光の透過を抑制し得る光拡散素子を得ることができる。本明細書において「実質的に凝集していない」とは、粒径が1次粒径に十分に近い状態をいう。したがって、「実質的に凝集していない」粒子とは、個々に分離した粒子(単一粒子)のみならず、本発明の効果が得られる範囲内で複数個寄せ集まった状態の粒子も含む。具体的には、「実質的に凝集していない」光拡散性微粒子とは、1次粒子として存在する光拡散性微粒子、および粒径が平均1次粒径の2.5倍以下である2次粒子として存在する光拡散性微粒子を含む。光拡散素子中の光拡散性微粒子の粒径は、好ましくは平均1次粒径の2倍以下であり、より好ましくは1.5倍以下である。
 上記光拡散素子中の光拡散性微粒子の平均粒径は、好ましくは、光拡散素子の厚みの1/2以下(例えば、1/2~1/20)である。光拡散素子の厚みに対してこのような比率を有する平均粒径であれば、光拡散性微粒子を光拡散素子の厚み方向に複数配列することができるので、入射光が光拡散素子を通過する間に当該光を多重に拡散させることができ、その結果、十分な光拡散性が得られ得る。
 上記光拡散素子中の光拡散性微粒子の重量平均粒径分布の標準偏差は、好ましくは1.0μm以下であり、より好ましくは0.5μm以下であり、特に好ましくは0.1μm以下である。光拡散性微粒子の重量平均粒径分布の標準偏差は、小さければ小さいほど好ましいが、実用的な下限値は、例えば0.01μmである。また、拡散性微粒子の重量平均粒径分布は単分散であることが好ましく、例えば、重量平均粒径分布の変動係数((粒径の標準偏差)×100/(平均粒径))が20%以下であることが好ましく、15%以下であることがより好ましい。拡散性微粒子の重量平均粒径分布の変動係数は、小さければ小さいほど好ましいが、実用的な下限値は、例えば5%である。重量平均粒径に対して粒径の小さい光拡散性微粒子が多数混在していると、拡散性が増大しすぎて後方散乱を良好に抑制できない場合がある。重量平均粒径に対して粒径の大きい光拡散性微粒子が多数混在していると、光拡散素子の厚み方向に複数配列することができず、多重拡散が得られない場合があり、その結果、光拡散性が不十分となる場合がある。
 上記光拡散性微粒子の形状としては、目的に応じて任意の適切な形状が採用され得る。具体例としては、真球状、燐片状、板状、楕円球状、不定形が挙げられる。多くの場合、上記光拡散性微粒子として真球状微粒子が用いられ得る。
 上記光拡散性微粒子もまた、上記式(1)および(2)を満足することが好ましい。上記光拡散性微粒子の屈折率は、好ましくは1.30~1.70であり、より好ましくは1.40~1.60である。
A-4.光拡散素子の製造方法
 本発明の一つの実施形態による光拡散素子の製造方法は、マトリクスの樹脂成分の前駆体(モノマー)と超微粒子成分と光拡散性微粒子とを有機溶剤中に溶解または分散させた塗工液を基材に塗布する工程(工程Aとする)と、該基材に塗布された塗工液を乾燥させる工程(工程Bとする)と、上記前駆体を重合させる工程(工程Cとする)を含む。
(工程A)
 樹脂成分の前駆体、超微粒子成分、および光拡散性微粒子については、それぞれ、上記A-2-1項、A-2-2項およびA-3項で説明したとおりである。代表的には、上記塗工液は前駆体および揮発性溶剤中に超微粒子成分および光拡散性微粒子が分散した分散体である。超微粒子成分および光拡散性微粒子を分散させる手段としては、攪拌機による分散処理が好ましく用いられる。超微粒子成分および光拡散性微粒子に十分なシェアがかかり、実質的に凝集していない超微粒子成分および光拡散性微粒子が得られ得るからである。攪拌機としては、ディスパー型攪拌機が好ましく用いられる。撹拌時間は、好ましくは15分以上、より好ましくは15分~60分である。分散処理は、塗工液を基材に塗布する直前に行うことが好ましい。
 一つの実施形態においては、塗工液は、あらかじめ有機溶剤中で光拡散性微粒子を混合して光拡散性微粒子を膨潤させた後、樹脂成分の前駆体および超微粒子成分を当該有機溶剤中に添加して、調整され得る。あらかじめ有機溶剤中で光拡散性微粒子を混合して光拡散性微粒子を膨潤させれば、塗工液調製後すぐに、すなわち静置することなく、後工程に供することができる。その結果、上記光拡散性微粒子および超微粒子成分が凝集することを防止することができる。
 上記有機溶剤の具体例としては、酢酸ブチル、メチルイソブチルケトン、酢酸エチル、酢酸イソプロピル、2-ブタノン(メチルエチルケトン)、シクロペンタノン、トルエン、イソプロピルアルコール、n-ブタノール、シクロペンタン、水が挙げられる。
 好ましくは、上記有機溶剤の沸点は、好ましくは70℃以上であり、より好ましくは100℃以上であり、特に好ましくは110℃以上であり、最も好ましくは120℃以上である。比較的揮発性の低い有機溶剤を用いることにより、有機溶剤を乾燥させる際に、急な揮発を防止することができ、上記光拡散性微粒子および超微粒子成分が凝集することを防止することができる。
 上記塗工液は、目的に応じて任意の適切な添加剤をさらに含有し得る。例えば、超微粒子成分を良好に分散させるために、分散剤が好適に用いられ得る。添加剤の他の具体例としては、紫外線吸収剤、レベリング剤、消泡剤が挙げられる。
 上記塗工液における樹脂成分の前駆体、の配合量は、A-2-1項で説明したとおりであり、超微粒子成分の配合量は、A-2-2項で説明したとおりである。光拡散性微粒子の配合量の上限は、マトリクス100重量部に対して、好ましくは40重量部であり、さらに好ましくは30重量部であり、特に好ましくは20重量部である。光拡散性微粒子の配合量の下限は、マトリクス100重量部に対して、好ましくは5重量部であり、より好ましくは10重量部であり、さらに好ましくは15重量部である。
 塗工液の固形分濃度は、好ましくは10重量%~70重量%程度となるように調整され得る。このような固形分濃度であれば、塗工容易な粘度を有する塗工液が得られ得る。
 上記基材としては、本発明の効果が得られる限りにおいて任意の適切なフィルムが採用され得る。具体例としては、トリアセチルセルロース(TAC)フィルム、ポリエチレンテレフタレート(PET)フィルム、ポリプロピレン(PP)フィルム、ナイロンフィルム、アクリルフィルム、ラクトン変性アクリルフィルムなどが挙げられる。上記基材は、必要に応じて、易接着処理などの表面改質がなされていてもよく、滑剤、帯電防止剤、紫外線吸収剤などの添加剤が含まれていてもよい。
 上記塗工液の基材への塗布方法としては、任意の適切なコーターを用いた方法が採用され得る。コーターの具体例としては、バーコーター、リバースコーター、キスコーター、グラビアコーター、ダイコーター、コンマコーターが挙げられる。
(工程B)
 上記塗工液の乾燥方法としては、任意の適切な方法が採用され得る。具体例としては、自然乾燥、加熱乾燥、減圧乾燥が挙げられる。好ましくは、加熱乾燥である。加熱温度は、好ましくは60℃~150℃であり、より好ましくは60℃~100℃であり、さらに好ましくは60℃~80℃である。加熱温度が150℃を越えると、塗工液面が急激に変化して、光拡散性微粒子が塗工液面の変化に追従できずに十分な平滑性が得られないおそれがある。加熱時間は、例えば30秒~5分である。
(工程C)
 重合方法は、樹脂成分(したがって、その前駆体)の種類に応じて任意の適切な方法が採用され得る。例えば、樹脂成分が電離線硬化型樹脂である場合には、電離線を照射することにより前駆体を重合する。電離線として紫外線を用いる場合には、その積算光量は、好ましくは50mJ/cm~1000mJ/cmであり、より好ましくは200mJ/cm~400mJ/cmである。電離線の光拡散性微粒子に対する透過率は、好ましくは70%以上であり、より好ましくは80%以上である。また例えば、樹脂成分が熱硬化型樹脂である場合には、加熱することにより前駆体を重合する。加熱温度および加熱時間は、樹脂成分の種類に応じて適切に設定され得る。好ましくは、重合は電離線を照射することにより行われる。電離線照射であれば、屈折率変調領域を良好に保持したまま塗膜を硬化させることができるので、良好な拡散特性の光拡散素子を作製することができる。前駆体を重合することにより、マトリクスが形成されると同時に、光拡散性微粒子の表面近傍に屈折率変調領域が形成される。すなわち、本発明の製造方法によれば、光拡散性微粒子内部に浸透した前駆体と光拡散性微粒子に浸透しなかった前駆体とを同時に重合することにより、光拡散性微粒子の表面近傍に屈折率変調領域を形成すると同時に、マトリクスを形成することができる。
 上記重合工程(工程C)は、上記乾燥工程(工程B)の前に行ってもよく、工程Bの後で行ってもよい。好ましくは重合工程(工程C)の前に行われる。加熱により、樹脂成分の前駆体の光拡散性微粒子への浸透を促進させることができるからである。
 本実施形態の光拡散素子の製造方法が、上記工程A~工程Cに加えて、任意の適切な時点で任意の適切な工程、処理および/または操作を含み得ることは言うまでもない。そのような工程等の種類およびそのような工程等が行われる時点は、目的に応じて適切に設定され得る。例えば、工程Aにおいて、各成分を同時に混合した場合、塗工液は、塗布前に所定時間静置され得る。所定時間静置することにより、光拡散性微粒子中に樹脂成分の前駆体を十分に浸透させることができる。静置時間としては、好ましくは1時間~48時間であり、より好ましくは2時間~40時間であり、さらに好ましくは3時間~35時間であり、特に好ましくは4時間~30時間である。
 以上のようにして、上記A-1項~A-3項で説明したような光拡散素子が基材上に形成される。
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。実施例における評価方法は下記の通りである。また、特に明記しない限り、実施例における「部」および「%」は重量基準である。
(1)光拡散素子の厚み
 マイクロゲージ式厚み計(ミツトヨ社製)にて基材と光拡散素子との合計厚みを測定し、当該合計厚みから基材の厚みを差し引き、光拡散素子の厚みを算出した。
(2)光拡散素子中の光拡散性微粒子および超微粒子成分の平均粒径および標準偏差
 実施例および比較例で得られた光拡散素子と基材との積層体を液体窒素で冷却しながら、ミクロトームにて0.1μmの厚さにスライスし、測定試料とした。透過型電子顕微鏡(TEM)を用いて、当該測定試料を観察し、TEM画像から画像解析ソフトを用いて、光拡散素子中の光拡散性微粒子および超微粒子成分の粒径を測定した。この測定を無作為で選択した20ヶ所で行い、光拡散素子中の光拡散性微粒子および超微粒子成分の平均粒径と標準偏差を算出した。
(3)超微粒子成分の凝集
 実施例および比較例で得られた光拡散素子と基材との積層体を液体窒素で冷却しながら、ミクロトームにて0.1μmの厚さにスライスして測定試料とした。当該測定試料の断面を透過型電子顕微鏡(TEM)(日立製作所製、商品名「H-7650」、加速電圧100kV)を用いて2次元画像を観察し、当該測定試料の光拡散素子内の粗密の発生を確認した。直接倍率×1,200、MAGNIFICATION×10,000の測定視野(13.9μm×15.5μm)において、マトリクス中で超微粒子成分が存在せず白点として観察される部分(すなわち、測定視野内における、光拡散性微粒子由来の白い部分以外の白点)の数をカウントした。実施例および比較例で得られた光拡散素子と基材との積層体それぞれについて、20箇所、上記のように白点の数をカウントし、その平均値を算出した。表1には当該平均値を示す。白点の数が多いほど、超微粒子成分の凝集が多いと評される。
(4)光拡散性微粒子の凝集
 上記(2)と同様にTEM観察を行い、平均1次粒径に対して、2.5倍以上の粒径を有する光拡散性微粒子(実質的な2次粒子)の有無を確認した。実質的な2次粒子が確認されなかった場合、各粒子は実質的に凝集していないと判断される。
(5)ヘイズ値
 JIS 7136で定める方法により、ヘイズメーター(村上色彩科学研究所社製、商品名「HN-150」)を用いて測定した。
(6)後方散乱率
 実施例および比較例で得られた光拡散素子と基材との積層体を、透明粘着剤を介して黒アクリル板(住友化学社製、商品名「SUMIPEX」(登録商標)、厚み2mm)の上に貼り合わせ、測定試料とした。この測定試料の積分反射率を分光光度計(日立計測器社製、商品名「U4100」)にて測定した。一方、上記光拡散素子用塗工液から微粒子を除去した塗工液を用いて、基材と透明塗工層との積層体を作製して対照試料とし、上記と同様にして積分反射率(すなわち、表面反射率)を測定した。上記測定試料の積分反射率から上記対照試料の積分反射率(表面反射率)を差し引くことにより、光拡散素子の後方散乱率を算出した。
(実施例1)
 光拡散性微粒子としてのポリメタクリル酸メチル(PMMA)微粒子(積水化成品工業社製、商品名「XX131AA」、平均粒径2.5μm、屈折率1.49)15部と、有機溶剤としての酢酸ブチルおよびMEKの混合溶媒(重量比50/50)30部とを混合し、60分間撹拌して、混合液を調製した。
 次いで、得られた混合液に、超微粒子成分としてのジルコニアナノ粒子(平均粒径60nm、屈折率2.19)を62%含有するハードコート用樹脂(JSR社製、商品名「オプスターKZ6661」(MEK/MIBK含有))100部、樹脂成分の前駆体としてのペンタエリスリトールトリアクリレート(大阪有機化学工業社製、商品名「ビスコート#300」、屈折率1.52、分子量298)22部、光重合開始剤(チバ・スペシャリティ・ケミカル社製、商品名「イルガキュア907」)0.5部およびレベリング剤(DIC社製、商品名「GRANDIC PC 4100」)0.5部を添加し、ディスパーを用いて15分間撹拌して、塗工液を調製した。
 当該塗工液を調製後ただちに、バーコーターを用いてTACフィルム(富士フィルム社製、商品名「フジタック」)上に塗工し、60℃にて1分間加熱後、積算光量300mJの紫外線を照射し、厚み10μmの光拡散素子を得た。得られた光拡散素子を上記(2)~(6)の評価に供した。さらに、光拡散素子断面のTEM写真を図5に示す。
(実施例2)
実施例1おいて、超微粒子成分としてのジルコニアナノ粒子(平均粒径60nm、屈折率2.19)を62%含有するハードコート用樹脂(JSR社製、商品名「オプスターKZ6661」(MEK/MIBK含有))100部に代えて、JSR社製、商品名「オプスターKZ6706」(PEGME(プロピレングリコールモノメチルエーテル)含有)(平均粒径30nm、屈折率2.19)を用いた以外は、実施例1と同様にして、光拡散素子を得た。得られた光拡散素子を上記(2)~(6)の評価に供した。結果を、表1に示す。
(比較例1)
 超微粒子成分としてのジルコニアナノ粒子(平均粒径60nm、屈折率2.19)を62%含有するハードコート用樹脂(JSR社製、商品名「オプスターKZ6661」(MEK/MIBK含有))100部に、樹脂成分の前駆体としてのペンタエリスリトールトリアクリレート(大阪有機化学工業社製、商品名「ビスコート#300」、屈折率1.52)の酢酸ブチルおよびMEKの混合溶媒50%溶液を11部、光重合開始剤(チバ・スペシャリティ・ケミカル社製、商品名「イルガキュア907」)を0.5部、レベリング剤(DIC社製、商品名「GRANDIC PC 4100」)を0.5部、および、光拡散性微粒子としてのポリメタクリル酸メチル(PMMA)微粒子(積水化成品工業社製、商品名「XX131AA」、平均粒径2.5μm、屈折率1.49)を15部添加した。この混合物を5分間超音波処理し、上記の各成分が均一に分散した塗工液を調製した。当該塗工液を24時間静置した後、バーコーターを用いてTACフィルム(富士フィルム社製、商品名「フジタック」)上に塗工し、60℃にて1分間加熱後、積算光量300mJの紫外線を照射し、厚み10μmの光拡散素子を得た。得られた光拡散素子を上記(2)~(6)の評価に供した。結果を、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 上記表1から明らかなように、本発明によれば、超微粒子成分が小粒径であり、かつ、凝集した超微粒子成分を実質的に含まないことにより、ヘイズ値が高く、強い拡散性を有し、かつ、後方散乱が抑制された光拡散素子を得ることができる。
 本発明の製造方法により得られる光拡散素子は、液晶表示装置の視認側部材、液晶表示装置のバックライト用部材、照明器具(例えば、有機EL、LED)用拡散部材に好適に用いられ、コリメートバックライトフロント拡散システムのフロント拡散素子として特に好適に用いられ得る。
 10 マトリクス
 11 樹脂成分
 12 超微粒子成分
 20 光拡散性微粒子
 30 濃度変調領域
100 光拡散素子
 
 

Claims (4)

  1.  樹脂成分および超微粒子成分を含むマトリクスと、該マトリクス中に分散された光拡散性微粒子とを有し、
     該超微粒子成分の平均1次粒径が100nm以下であり、
     凝集した超微粒子成分を実質的に含まない、
     光拡散素子。
  2.  前記光拡散性微粒子の平均1次粒径が1μm~5μmであり、該光拡散性微粒子の重量平均粒径分布の変動係数が20%以下であり、かつ、該光拡散性微粒子が実質的に凝集していない、請求項1に記載の光拡散素子。
  3.  前記超微粒子成分の平均1次粒径が30nm以下である、請求項1または2に記載の光拡散素子。
  4.  前記樹脂成分、前記超微粒子成分および前記光拡散性微粒子の屈折率が下記式(i)を満たし、
     該光拡散性微粒子の表面近傍に屈折率変調領域を有する、請求項1から3のいずれかに記載の光拡散素子:
     |n-n|<|n-n|・・・(i)
     式(i)中、nはマトリクスの樹脂成分の屈折率を表し、nはマトリクスの超微粒子成分の屈折率を表し、nは光拡散性微粒子の屈折率を表す。
PCT/JP2013/060805 2013-04-10 2013-04-10 光拡散素子 WO2014167666A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380075446.4A CN105103010A (zh) 2013-04-10 2013-04-10 光扩散元件
US14/783,723 US20160084998A1 (en) 2013-04-10 2013-04-10 Light-diffusing element
KR1020157028001A KR20150139523A (ko) 2013-04-10 2013-04-10 광 확산 소자
PCT/JP2013/060805 WO2014167666A1 (ja) 2013-04-10 2013-04-10 光拡散素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/060805 WO2014167666A1 (ja) 2013-04-10 2013-04-10 光拡散素子

Publications (1)

Publication Number Publication Date
WO2014167666A1 true WO2014167666A1 (ja) 2014-10-16

Family

ID=51689100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060805 WO2014167666A1 (ja) 2013-04-10 2013-04-10 光拡散素子

Country Status (4)

Country Link
US (1) US20160084998A1 (ja)
KR (1) KR20150139523A (ja)
CN (1) CN105103010A (ja)
WO (1) WO2014167666A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016137919A1 (en) * 2015-02-24 2016-09-01 Arkema France High efficiency diffusion lighting coverings

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11719411B2 (en) * 2015-02-24 2023-08-08 Trinseo Europe Gmbh High efficiency diffusion lighting coverings
CN105605527B (zh) * 2015-12-31 2018-05-01 钟莉 一种磨砂性能优越的磨砂灯罩
US20230197749A1 (en) * 2021-12-22 2023-06-22 Visera Technologies Company Ltd. Light diffuser, image sensor package having the same, and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083744A (ja) * 2010-09-17 2012-04-26 Nitto Denko Corp 光拡散素子および光拡散素子付偏光板
JP2012083745A (ja) * 2010-09-17 2012-04-26 Nitto Denko Corp 光拡散素子
JP2012088692A (ja) * 2010-09-17 2012-05-10 Nitto Denko Corp 光拡散素子、光拡散素子付偏光板、偏光素子、およびこれらを用いた液晶表示装置
JP2012088693A (ja) * 2010-09-22 2012-05-10 Nitto Denko Corp 光学フィルムの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083744A (ja) * 2010-09-17 2012-04-26 Nitto Denko Corp 光拡散素子および光拡散素子付偏光板
JP2012083745A (ja) * 2010-09-17 2012-04-26 Nitto Denko Corp 光拡散素子
JP2012088692A (ja) * 2010-09-17 2012-05-10 Nitto Denko Corp 光拡散素子、光拡散素子付偏光板、偏光素子、およびこれらを用いた液晶表示装置
JP2012088693A (ja) * 2010-09-22 2012-05-10 Nitto Denko Corp 光学フィルムの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016137919A1 (en) * 2015-02-24 2016-09-01 Arkema France High efficiency diffusion lighting coverings

Also Published As

Publication number Publication date
CN105103010A (zh) 2015-11-25
KR20150139523A (ko) 2015-12-11
US20160084998A1 (en) 2016-03-24

Similar Documents

Publication Publication Date Title
JP4756099B2 (ja) 光拡散素子、光拡散素子付偏光板、およびこれらを用いた液晶表示装置、ならびに光拡散素子の製造方法
JP6275935B2 (ja) 光拡散素子、光拡散素子付偏光板、およびこれらを用いた液晶表示装置
JP4756100B2 (ja) 光拡散素子の製造方法、光拡散素子、ならびに、光拡散素子付偏光板および液晶表示装置の製造方法
JP6265316B2 (ja) 光学フィルムの製造方法
JP5883598B2 (ja) 光拡散素子および光拡散素子付偏光板の製造方法、ならびに、これらの方法で得られた光拡散素子および光拡散素子付偏光板
WO2014167664A1 (ja) 光拡散素子および光拡散素子の製造方法
WO2014167666A1 (ja) 光拡散素子
JP5129379B2 (ja) 光拡散素子
WO2014167665A1 (ja) 光拡散素子および光拡散素子の製造方法
JP6049278B2 (ja) 光拡散素子の製造方法および光拡散素子
WO2014167663A1 (ja) 光拡散素子の製造方法および光拡散素子
JP2022182093A (ja) 樹脂膜、樹脂膜の作成方法および表示装置
TWI484227B (zh) Light diffusion element
JP2013195814A (ja) 光拡散素子
TWI452352B (zh) A light diffusion element and a method for manufacturing the light diffusion element
JP2013195812A (ja) 光拡散素子および光拡散素子の製造方法
JP2013195813A (ja) 光拡散素子および光拡散素子の製造方法
TWI472808B (zh) A light diffusion element manufacturing method and a light diffusion element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380075446.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881483

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157028001

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14783723

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13881483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP