WO2014162813A1 - 排ガス後処理装置におけるNOx吸蔵還元型触媒の劣化判定方法 - Google Patents

排ガス後処理装置におけるNOx吸蔵還元型触媒の劣化判定方法 Download PDF

Info

Publication number
WO2014162813A1
WO2014162813A1 PCT/JP2014/055609 JP2014055609W WO2014162813A1 WO 2014162813 A1 WO2014162813 A1 WO 2014162813A1 JP 2014055609 W JP2014055609 W JP 2014055609W WO 2014162813 A1 WO2014162813 A1 WO 2014162813A1
Authority
WO
WIPO (PCT)
Prior art keywords
nox
occlusion
nox occlusion
amount
cycle
Prior art date
Application number
PCT/JP2014/055609
Other languages
English (en)
French (fr)
Inventor
長岡 大治
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to US14/781,711 priority Critical patent/US20160061087A1/en
Priority to EP14779563.7A priority patent/EP2998533B1/en
Priority to CN201480017813.XA priority patent/CN105074151B/zh
Publication of WO2014162813A1 publication Critical patent/WO2014162813A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • F01N3/0885Regeneration of deteriorated absorbents or adsorbents, e.g. desulfurization of NOx traps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2033Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/36Arrangements for supply of additional fuel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/10Testing internal-combustion engines by monitoring exhaust gases or combustion flame
    • G01M15/102Testing internal-combustion engines by monitoring exhaust gases or combustion flame by monitoring exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/03Monitoring or diagnosing the deterioration of exhaust systems of sorbing activity of adsorbents or absorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/04Filtering activity of particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1614NOx amount trapped in catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an exhaust gas aftertreatment device using a NOx occlusion reduction type catalyst, and more particularly to a method for determining deterioration of an NOx occlusion reduction type catalyst in an exhaust gas aftertreatment device.
  • DOC Diesel Oxidation Catalyst
  • DPF Diesel Particulate Filter
  • NOx occlusion reduction catalyst LNT: Lean NOx Trap or NSR: NOx Storage ReductionCriticalRectRectCureC)
  • DOC and DPF system are effective means for PM reduction.
  • the DOC provided in the front stage of the exhaust gas stream cannot oxidize solid soot itself, but it oxidizes most of the soluble organic component (SOF) that accounts for 30 to 70% of the total PM, and simultaneously removes HC and CO.
  • the DPF provided in is formed of a porous ceramic or the like having a pore diameter and captures most of the PM in the exhaust gas.
  • the NOx occlusion reduction type catalyst includes a catalyst carrier such as alumina (Al 2 O 3 ), a noble metal catalyst such as Pt and Pd, an alkali metal such as Na, K and Cs, an alkaline earth metal such as Ca and Ba, Y , La and other rare earths and other storage materials having NOx storage function are supported, and exhibit two functions of NOx storage and NOx release / purification depending on the oxygen concentration in the exhaust gas.
  • a catalyst carrier such as alumina (Al 2 O 3 )
  • a noble metal catalyst such as Pt and Pd
  • an alkali metal such as Na, K and Cs
  • an alkaline earth metal such as Ca and Ba, Y , La and other rare earths and other storage materials having NOx storage function are supported, and exhibit two functions of NOx storage and NOx release / purification depending on the oxygen concentration in the exhaust gas.
  • NO in exhaust gas is converted to NO 2 by a noble metal catalyst such as Pt and Pd under conditions of high oxygen concentration in the exhaust gas (lean air-fuel ratio) as in the normal operation state.
  • a noble metal catalyst such as Pt and Pd
  • Oxidized and the occlusion material occludes it as nitrate (Ba (NO 3 ) 2 ) to purify NOx.
  • EGR Exhaust Gas Recirculation
  • fuel post-injection are performed under conditions of low oxygen concentration by changing the operating conditions.
  • exhaust pipe injection is performed to form a rich state, and the fuel is reduced on the noble metal catalyst, so that CO, HC, H 2 is generated in the exhaust gas, NOx is reduced, and NOx is released and purified.
  • the purification system using the NOx occlusion reduction catalyst is a system that occludes NOx when the air-fuel ratio is lean (conditions where the oxygen concentration is high) and reduces and purifies NOx occluded when rich.
  • Sulfur poisoning occurs because the NOx occlusion reduction catalyst adsorbs and occludes SOx in the exhaust gas simultaneously with NOx. Unlike NOx, SOx is not easily desorbed, and in order to release S accumulated in the storage material, the atmosphere temperature of the catalyst is set to a high temperature of 700 ° C. and the air-fuel ratio is controlled to be rich. Ba 2 SO 4 becomes carbonate + SO 2, and sulfur is desulfurized. Therefore, the NOx occlusion reduction type catalyst needs to be regenerated by performing desulfurization control (S purge) at a constant travel interval.
  • S purge desulfurization control
  • Thermal degradation is a phenomenon in which the precious metal supported on the catalyst aggregates due to heat to reduce the specific surface area and decrease the activity in the same manner as a normal oxidation catalyst. This is called sintering.
  • an object of the present invention is to provide a method for determining the deterioration of a NOx occlusion reduction type catalyst in an exhaust gas aftertreatment device which can solve the above-mentioned problems and can discriminate sulfur poisoning and thermal degradation of the NOx occlusion reduction type catalyst.
  • the present invention is a NOx occlusion reduction type catalyst connected to an exhaust pipe of an engine, which comprises an occlusion cycle that occludes NOx in exhaust gas, and NOx occluded when the occlusion rate decreases in the occlusion cycle.
  • the NOx occlusion reduction catalyst is poisoned with sulfur and the NOx occlusion rate decreases while repeating the occlusion cycle and the rich reduction cycle, the S purge is performed.
  • a NOx occlusion reduction type deterioration determination method for an exhaust gas aftertreatment device to be performed in which a NOx occlusion map indicating NOx occlusion amount during an occlusion cycle in a NOx occlusion reduction type catalyst based on aged deterioration is prepared in advance, and The ideal NOx occlusion amount is calculated based on the NOx occlusion map, and the actual NOx occlusion amount during the occlusion cycle is calculated from the NOx sensor value,
  • a method for judging deterioration of a NOx occlusion reduction type catalyst in an exhaust gas aftertreatment device, wherein the deterioration due to sulfur poisoning and thermal degradation of the NOx occlusion reduction type catalyst are judged from the difference between the NOx occlusion amount and the actual NOx occlusion amount. is there.
  • the NOx occlusion map is created in relation to the NOx occlusion amount with respect to the exhaust gas temperature along with the aging of the NOx occlusion reduction type catalyst.
  • the ideal NOx occlusion amount during the occlusion cycle is the exhaust gas temperature during the occlusion cycle and the integrated fuel. It is preferable to obtain from the NOx occlusion map based on consumption.
  • the calculation of the actual NOx occlusion amount based on the NOx sensor value is preferably obtained by integrating the difference between the NOx concentration in the exhaust gas on the inlet side and the NOx concentration on the outlet side of the NOx occlusion reduction type catalyst during the occlusion cycle with time.
  • the S purge is performed again.
  • the ideal NOx storage amount and the actual NOx storage amount are obtained again, and the difference is compared with a threshold value.
  • sulfur poisoning is recovered by S purge. If it is determined that there is no abnormality and the difference is larger again than the threshold value, it is preferable to determine that the heat has deteriorated.
  • a NOx occlusion map of NOx occlusion amount based on aged deterioration of the NOx occlusion reduction catalyst is prepared in advance, and the actual NOx occlusion amount obtained from the ideal NOx occlusion amount obtained from the NOx occlusion map and the NOx sensor value. By comparing with, it exhibits an excellent effect of being able to determine deterioration due to sulfur poisoning and thermal deterioration.
  • FIG. 1 shows an exhaust gas aftertreatment device 10 using a NOx occlusion reduction type catalyst.
  • a turbocharger 11 and an EGR pipe 12 are connected to the intake / exhaust system of the engine E, and the air sucked from the air cleaner 13 is compressed by the compressor 14 of the turbocharger 11 and is pumped to the intake passage 15.
  • E is supplied into the engine E from the intake manifold 16 of E.
  • An intake valve 17 for adjusting the amount of air to the engine E is provided in the intake passage 15.
  • Exhaust gas discharged from the engine E is discharged from the exhaust manifold 18 to the turbine 19 of the turbocharger 11, drives the turbine 19, and is discharged to the exhaust pipe 20.
  • An EGR pipe 12 is connected to the intake manifold 16 and the exhaust manifold 18, and an EGR cooler 21 for cooling the exhaust gas from the exhaust manifold 18 to the intake manifold 16 is connected to the EGR pipe 12, and the EGR amount is adjusted.
  • An EGR valve 22 is connected.
  • an exhaust pipe injector 23 is provided in an exhaust pipe 20 on the downstream side of the turbine 19, and a DOC 25, NOx is placed in a canning container 24 formed in the exhaust pipe 20 on the downstream side of the exhaust pipe injector 23.
  • the storage reduction catalyst 26 and the DPF 27 are sequentially canned.
  • the upstream side of the DOC 25 is provided with an inlet side NOx sensor 28, an exhaust gas temperature sensor 29 on the inlet side of the NOx storage reduction catalyst 26, and an outlet side NOx sensor 30 on the outlet side.
  • the engine E is generally controlled by the ECU 32.
  • the ECU 32 is formed with storage / reduction / desulfurization control means 33, ideal NOx storage amount calculation means 34, and actual NOx storage amount calculation means 35 of the NOx storage reduction catalyst 26.
  • the occlusion / reduction / desulfurization control means 33 performs NOx occlusion in an air-fuel ratio lean state, and when the NOx occlusion rate is lowered, the exhaust pipe injector 23 injects fuel HC in a pulsed manner and NOx in an air-fuel ratio rich state.
  • the exhaust gas temperature is raised to 700 ° C. when the NOx occlusion reduction catalyst 26 is poisoned with sulfur and the NOx occlusion rate is lowered while the rich reduction cycle for performing reduction purification is performed and the NOx occlusion reduction catalyst 26 is poisoned with sulfur. S purge is performed.
  • This S purge is performed immediately after regeneration of PM of the DPF 27, for example, to control the fuel injection amount of the engine E, to control multi-injection such as post injection by the injector, and to control the fuel HC injected from the exhaust pipe injector 23 Then, the exhaust gas temperature is raised to 700 ° C., and the SOx occluded in the NOx occlusion reduction type catalyst 26 is desulfurized.
  • the regeneration of the DPF 27 is performed when the accumulated amount of PM in the DPF 27 is accumulated and the ECU 32 performs automatic regeneration control of the PM when the differential pressure before and after the DPF 27 reaches a constant value or travels a predetermined travel distance.
  • PM regeneration post injection or fuel injection by the exhaust pipe injector 23 is performed to raise the exhaust gas temperature to 600 ° C., so that the PM deposited on the DPF 27 is combusted, and the exhaust gas temperature is high (about 600 ° C.). Since the rich-prohibition is performed, the exhaust gas temperature is raised to about 700 ° C. by the fuel injection by the exhaust pipe injector 23 and the S purge is performed following the end of the PM regeneration.
  • the ideal NOx occlusion amount calculation means 34 obtains an ideal NOx occlusion amount from the exhaust gas temperature from the exhaust gas temperature sensor 29 and the accumulated fuel consumption amount during the occlusion cycle based on the NOx occlusion map described later.
  • the actual NOx occlusion amount calculation means 35 obtains the difference between the NOx concentration in the exhaust gas on the inlet side and the NOx concentration on the outlet side of the NOx occlusion reduction type catalyst 26 during the occlusion cycle by integration over time.
  • the ideal NOx occlusion amount calculating means 34 and the actual NOx occlusion amount calculating means 35 will be described with reference to FIG.
  • FIG. 3A shows a NOx occlusion map in the NOx occlusion cycle.
  • the NOx occlusion amount depends on the catalyst temperature (exhaust gas temperature), and the occlusion amount decreases due to the aging of the NOx occlusion reduction catalyst.
  • the NOx occlusion amount with respect to the temperature previously obtained by the NOx occlusion curves a 0 also because the NOx storage reduction catalyst aging, the NOx occlusion curve a 1 degraded like based on the sequential travel distance, a 2, a ... a n
  • the NOx occlusion curve An is obtained, and the occlusion rate drops and the catalyst is replaced.
  • NOx occlusion Curve A 1 of the NOx occlusion map, A 2, is ... A n, is a value when performing ideal desulfurization, in which to determine the maximum NOx absorption amount of each aging.
  • the ideal NOx occlusion amount from the NOx occlusion map of FIG. 3A is determined from the initial NOx occlusion curve A 0 , and the NOx occlusion curves A 1 , A 2 ,. And the ideal NOx occlusion amount is determined from the temperature during the NOx occlusion cycle and the accumulated fuel consumption during the occlusion cycle based on the selected NOx occlusion curve.
  • FIG. 3 (b) shows the travel distance and NOx when the S purge is performed when the NOx occlusion reduction catalyst is poisoned with sulfur and the NOx occlusion rate decreases while repeating the NOx occlusion cycle and the rich reduction cycle. It shows the relationship between the amount of occlusion.
  • L represents an ideal NOx storage amount curve during NOx storage cycle with respect to secular change (travel distance), and the value of NO is stored with respect to the ideal NOx storage amount of the ideal NOx storage amount curve.
  • the amount decreases, when the travel distance is about 1000 km, the NOx occlusion reduction type catalyst is poisoned with sulfur and the occlusion performance is reduced by the value d.
  • S purge S / P is performed.
  • the SOx concentration in the exhaust gas is about 7 ppm at the maximum, and the amount of SOx stored by the NOx storage reduction catalyst decreases the NOx storage amount by the value d. And the distance traveled or the cumulative fuel consumption so far.
  • FIG. 3C illustrates the actual NOx occlusion amount during the occlusion cycle by the actual NOx occlusion amount calculation means 35.
  • the NOx concentration in the exhaust gas flowing into the NOx occlusion reduction type catalyst is detected by the inlet side NOx sensor 28, but is approximately 200 ppm and is shown in the figure as being constant at 200 ppm for convenience. Further, since the outlet concentration is detected by the outlet-side NOx sensor 30, the difference in the inlet / outlet concentration is the amount occluded by the NOx occlusion reduction type catalyst. Therefore, the actual NOx occlusion amount is obtained by integrating the inlet / outlet NOx concentration difference by the time in the occlusion cycle until the next rich reduction / purification is performed after the rich reduction / purification is performed, that is, FIG. The area indicated by shading in c) can be calculated as the actual NOx occlusion amount.
  • the ideal NOx occlusion amount in the occlusion cycle before switching to rich reduction / purification is obtained from FIGS. 3 (a) and 3 (b), and the actual NOx in the occlusion cycle is obtained from FIG. 3 (c).
  • the amount of occlusion is obtained, the difference between the two is calculated, and the NOx occlusion reduction type catalyst can be judged from deterioration due to sulfur poisoning and thermal deterioration from the difference.
  • the decrease in the NOx occlusion amount due to sulfur poisoning is performed by performing S purge when the value becomes lower than the ideal NOx occlusion amount in the occlusion cycle by the value d. If the difference between the ideal NOx occlusion amount and the actual NOx occlusion amount is smaller than the threshold value, it is determined that there is no abnormality, and if the difference is equal to or greater than the threshold value, the NOx occlusion amount has decreased due to thermal degradation or the previous time.
  • the S purge is forcibly performed again, and after the S purge is completed, the occlusion cycle is performed, and the ideal NOx occlusion is performed in the occlusion cycle.
  • the amount and the actual NOx occlusion amount are obtained, the difference is compared with a threshold value, and if it is lower than the threshold value, it is determined that the previous determination is normal as deterioration due to sulfur poisoning. If the storage performance does not recover even when the S purge is performed because the difference is equal to or greater than the threshold value, it is determined that the catalyst cannot be recovered and OBD (On-board Diagnostics) is displayed.
  • OBD On-board Diagnostics
  • step S10 Control is started in step S10, and in step S11, an NOx storage map is obtained when ideal desulfurization is performed, and the NOx storage map obtained from the NOx storage map and the accumulated fuel consumption amount is obtained from the NOx sensor value.
  • the difference in the actual NOx storage amount corrected from the NOx sensor value is calculated for each storage cycle.
  • step S12 if the difference is smaller than the start of S purge based on the difference calculated in step S11 based on the S purge execution start determination, the process returns to step S11 as inadequate and returns to the storage cycle and rich reduction / reduction. Repeat the purification cycle and calculate the difference.
  • step S12 the S purge is started when the difference between the ideal NOx occlusion amount and the actual NOx occlusion amount becomes equal to or greater than a certain level, and the S purge is terminated by the end determination of the S purge.
  • step S13 the difference between the ideal NOx occlusion amount and the actual NOx occlusion amount obtained by the NOx sensor is calculated again.
  • step S16 If this value is smaller than the threshold value, it is determined that there is no abnormality in the occlusion amount, and the control is terminated as the condition is met (step S16).
  • step S14 S purge is performed again to calculate the difference between the ideal NOx occlusion amount and the actual NOx occlusion amount obtained by the NOx sensor. .
  • step S14 If it is determined in step S14 that the difference is not smaller than the threshold value (conditions are met), it is determined that the deterioration due to sulfur poisoning has been recovered, and the control is terminated (step S16).
  • step S15 the performance is not recovered even if the S purge is performed, that is, it is determined that the catalyst cannot be recovered. After the display, the control is terminated (step S16).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

 NOx吸蔵還元型触媒の硫黄被毒と熱劣化を判別できる排ガス後処理装置におけるNOx吸蔵還元型触媒の劣化判定方法を提供する。 エンジンEの排気管20に接続したNOx吸蔵還元型触媒26で、吸蔵サイクルとリッチ還元サイクルとを交互に繰り返し、その吸蔵サイクルとリッチ還元サイクルを繰り返している間にNOx吸蔵率が低下したとき、Sパージを行う排ガス後処理装置におけるNOx吸蔵還元型触媒の劣化判定方法であって、経年劣化に基づくNOx吸蔵還元型触媒26での吸蔵サイクル中のNOx吸蔵量を示すNOx吸蔵マップを予め作成しておき、そのNOx吸蔵マップを基に理想NOx吸蔵量を求め、他方NOxセンサ値より吸蔵サイクル中の実NOx吸蔵量を算出し、その理想NOx吸蔵量と実NOx吸蔵量の差からNOx吸蔵還元型触媒の硫黄被毒による劣化と熱劣化とを判定するものである。

Description

排ガス後処理装置におけるNOx吸蔵還元型触媒の劣化判定方法
 本発明は、NOx吸蔵還元型触媒を用いた排ガス後処理装置に係り、特に、排ガス後処理装置におけるNOx吸蔵還元型触媒の劣化判定方法に関するものである。
 ディーゼルエンジンの排ガス後処理装置としてDOC(Diesel Oxidation Catalyst;酸化触媒)、DPF(Diesel Particulate Filter)、NOx吸蔵還元型触媒(LNT:Lean NOx TrapもしくはNSR:NOx Strage Reduction)、尿素SCR(Selective Catalystic Reduction)システム等が実用化されている。
 DOCとDPFシステムは、PM低減のための有力な手段である。排ガス流の前段に設けられるDOCは、固体のSoot自体は酸化できないが、PM全体の30~70%を占める可溶性有機成分(SOF)の大部分を酸化し、HCやCOも同時に除去し、後段に設けられるDPFは、細孔径を有する多孔質セラミック等で形成され、排ガス中のPMの大部分を捕捉する。
 NOx吸蔵還元型触媒は、アルミナ(Al23)等の触媒担体に、PtやPdなどの貴金属触媒と、Na、K、Cs等のアルカリ金属やCa、Ba等のアルカリ土類金属、Y、La等の希土類等のNOx吸蔵機能をもつ吸蔵材を担持したもので、排ガス中の酸素濃度によって、NOx吸蔵とNOx放出・浄化の二つの機能を発揮する。
 このNOx吸蔵還元型触媒による浄化システムは、通常運転状態のように排ガス中の酸素濃度が高い条件(リーン空燃比)では、排ガス中のNOが、PtやPdなどの貴金属触媒等でNO2に酸化され、これを吸蔵材が、硝酸塩(Ba(NO32)として吸蔵しNOxを浄化する。
 しかし、NOxの吸蔵が継続すると、硝酸塩が飽和して吸蔵材の吸蔵機能を失うため、運転条件を変え、低酸素濃度の条件で、EGR(Exhaust Gas Recirculation:排ガス再循環)、燃料のポスト噴射や、排気管噴射を行って、リッチ状態を形成し、燃料を貴金属触媒上で還元することで、排ガス中にCO、HC、H2を生成させてNOxを還元してNOxを放出・浄化する。
 このようにNOx吸蔵還元型触媒による浄化システムは、空燃比リーン時(酸素濃度が高い条件)にNOxを吸蔵し、リッチ時に吸蔵されたNOxを還元・浄化するシステムである。
 ところで、NOx吸蔵還元型触媒の劣化の主要因として、硫黄被毒と熱劣化がある。
 硫黄被毒は、NOx吸蔵還元型触媒が、NOxと同時に、排ガス中のSOxも吸着、吸蔵するために生じる。SOxはNOxと異なり、容易に脱離できず、吸蔵材に蓄積したSを放出させるために、触媒の雰囲気温度を700℃の高温とし、かつ空燃比がリッチ雰囲気になるように制御することで、Ba2SO4が炭酸塩+SO2となって、硫黄の脱硫が行われる。よって、NOx吸蔵還元型触媒は、一定の走行間隔で脱硫制御(Sパージ)を行って再生を行う必要がある。
 熱劣化は、通常の酸化触媒と同様に、触媒に担持した貴金属が熱により凝集し比表面積が小さくなり、活性が低下する現象である。これをシンタリング(焼結)と呼ぶ。
特許第4474775号公報 特開2008-261252号公報 特開2012-87749号公報
 しかしながら、Sパージを行って再生しても、脱硫したSの量は、センサで検出できないので、脱硫された量が判らない。よって、触媒の性能が劣化した場合でも、熱劣化と硫黄被毒の切り分けが困難であった。
 熱劣化による劣化は、回復不可能であり、触媒を交換する必要があるが、硫黄被毒は回復できる可能性があるので、早期に劣化の原因を特定して、然るべき措置をする必要があった。
 脱硫したSの量は、触媒温度とラムダ(λ=供給される空気量/理論的に必要な空気量)に対する脱硫量を実験的に測定し、この脱硫量をマップとして持ち、Sパージ時の触媒温度とラムダ(λ)から脱硫量を推定していた。
 しかし、実際には色々な外乱によりSパージ時の脱硫量にはバラツキが生じるため、完全に脱硫できたつもりでも、実際にはNOx吸蔵還元型触媒に徐々にSが蓄積される可能性がある。その結果、浄化率が低下するが、熱劣化との切り分けができなかった。
 そこで、本発明の目的は、上記課題を解決し、NOx吸蔵還元型触媒の硫黄被毒と熱劣化を判別できる排ガス後処理装置におけるNOx吸蔵還元型触媒の劣化判定方法を提供することにある。
 上記目的を達成するために本発明は、エンジンの排気管に接続したNOx吸蔵還元型触媒で、排ガス中のNOxを吸蔵する吸蔵サイクルと、その吸蔵サイクルで吸蔵率が低下したとき吸蔵したNOxを還元・浄化するリッチ還元サイクルとを、交互に繰り返し、その吸蔵サイクルとリッチ還元サイクルを繰り返している間にNOx吸蔵還元型触媒が硫黄で被毒されてNOx吸蔵率が低下したとき、Sパージを行う排ガス後処理装置におけるNOx吸蔵還元型触媒の劣化判定方法であって、経年劣化に基づくNOx吸蔵還元型触媒での吸蔵サイクル中のNOx吸蔵量を示すNOx吸蔵マップを予め作成しておき、そのNOx吸蔵マップを基に理想NOx吸蔵量を求め、他方NOxセンサ値より吸蔵サイクル中の実NOx吸蔵量を算出し、その理想NOx吸蔵量と実NOx吸蔵量の差からNOx吸蔵還元型触媒の硫黄被毒による劣化と熱劣化とを判定することを特徴とする排ガス後処理装置におけるNOx吸蔵還元型触媒の劣化判定方法である。
 前記NOx吸蔵マップは、そのNOx吸蔵還元型触媒の経年劣化と共に排ガス温度に対してのNOx吸蔵量の関係で作成され、吸蔵サイクル中の理想NOx吸蔵量は、吸蔵サイクル中の排ガス温度と積算燃料消費量を基に前記NOx吸蔵マップから求めるのが好ましい。
 前記NOxセンサ値よる実NOx吸蔵量を算出は、吸蔵サイクル中のNOx吸蔵還元型触媒の入口側の排ガス中のNOx濃度と出口側のNOx濃度の差を時間で積分して求めるのが好ましい。
 理想NOx吸蔵量と実NOx吸蔵量の差が閾値より小さければNOx吸蔵量に異常なしと判定し、また、理想NOx吸蔵量と実NOx吸蔵量の差が閾値より大きいときに、再度Sパージを行い、その後の吸蔵サイクルで、理想NOx吸蔵量と実NOx吸蔵量を再度求めると共にその差を閾値とを比較し、その差が閾値より小さくなったとき、Sパージにより硫黄被毒が回復したとして異常なしと判定し、差が閾値より再度大きければ、熱劣化と判定するのが好ましい。
 本発明は、NOx吸蔵還元型触媒の経年劣化に基づくNOx吸蔵量のNOx吸蔵マップを予め作成しておき、そのNOx吸蔵マップから求めた理想NOx吸蔵量とNOxセンサ値から求めた実NOx吸蔵量とを比較することで、硫黄被毒による劣化と熱劣化を判定できるという優れた効果を発揮する。
本発明の排ガス後処理装置におけるNOx吸蔵還元型触媒の劣化判定方法を実施する装置の概略図である。 排ガス後処理装置におけるNOx吸蔵還元型触媒の劣化判定方法のフローチャートを示す図である。 本発明において、理想NOx吸蔵量と実NOx吸蔵量を説明する図で、(a)はNOx吸蔵マップを示す図、(b)はNOx吸蔵率が低下したときにSパージを行う際の走行距離とNOx吸蔵量の関係を示す図、(c)は吸蔵サイクル中の実NOx吸蔵量を説明する図である。
 以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。
 図1は、NOx吸蔵還元型触媒による排ガス後処理装置10を示したものである。
 エンジンEの吸排気系には、ターボチャージャ11とEGR管12が接続されており、エアクリーナ13から吸入される空気は、ターボチャージャ11のコンプレッサ14で圧縮されると共に吸気通路15に圧送され、エンジンEの吸気マニホールド16からエンジンE内に供給される。吸気通路15には、エンジンEへの空気量を調節するための吸気バルブ17が設けられる。
 エンジンEから排出された排ガスは、排気マニホールド18からターボチャージャ11のタービン19に排出されると共にタービン19を駆動し、排気管20に排気される。
 吸気マニホールド16と排気マニホールド18にはEGR管12が接続され、EGR管12に、排気マニホールド18から吸気マニホールド16に至る排ガスを冷却するためのEGRクーラ21が接続されると共に、EGR量を調節するEGRバルブ22が接続される。
 排ガス後処理装置10は、タービン19の下流側の排気管20に排気管インジェクタ23が設けられ、その排気管インジェクタ23の下流側の排気管20に形成されたキャニング容器24内に、DOC25、NOx吸蔵還元型触媒26、DPF27が順次キャニングされて構成される。
 DOC25の上流側には、入口側NOxセンサ28、NOx吸蔵還元型触媒26の入口側には排ガス温度センサ29、出口側には出口側NOxセンサ30が設けられる。
 エンジンEは、ECU32により運転の全般的な制御がなされる。ECU32には、NOx吸蔵還元型触媒26の吸蔵・還元・脱硫制御手段33、理想NOx吸蔵量算出手段34、実NOx吸蔵量算出手段35が形成される。
 吸蔵・還元・脱硫制御手段33は、空燃比リーン状態でNOx吸蔵を行う吸蔵サイクルとNOx吸蔵率が低下したときに排気管インジェクタ23で燃料HCをパルス的に噴射して空燃比リッチ状態でNOx還元浄化を行うリッチ還元サイクルを行い、さらに、吸蔵サイクルとリッチ還元サイクルを繰り返す間に、NOx吸蔵還元型触媒26が硫黄で被毒されてNOx吸蔵率が低下したときに排ガス温度を700℃に上げてSパージを行う。このSパージは、例えばDPF27のPMを再生した直後に行い、エンジンEの燃料噴射量を制御すると共にインジェクタによるポスト噴射などのマルチ噴射を制御し、さらに排気管インジェクタ23から噴射する燃料HCを制御して排ガス温度を700℃に上げて、NOx吸蔵還元型触媒26に吸蔵したSOxを脱硫する。
 すなわち、DPF27の再生は、DPF27へのPM堆積量が所定量溜まり、DPF27前後の差圧が一定に達したとき、或いは所定の走行距離を走行したとき、ECU32がPMの自動再生制御を行うが、PM再生の際には、ポスト噴射や排気管インジェクタ23による燃料噴射を行って排ガス温度を600℃に上げることで、DPF27へ堆積したPMを燃焼させ、排ガス温度が高く(約600℃)、リッチ禁止で行われるため、PM再生終了に引き続いて、排ガス温度を、排気管インジェクタ23による燃料噴射で、約700℃に昇温してSパージを行う。
 理想NOx吸蔵量算出手段34は、後述するNOx吸蔵マップに基づいて、吸蔵サイクル中の排ガス温度センサ29からの排ガス温度と積算燃料消費量から理想NOx吸蔵量を求める。
 実NOx吸蔵量算出手段35は、吸蔵サイクル中のNOx吸蔵還元型触媒26の入口側の排ガス中のNOx濃度と出口側のNOx濃度の差を時間で積分して求める。
 この理想NOx吸蔵量算出手段34と実NOx吸蔵量算出手段35を図3により説明する。
 図3(a)は、NOx吸蔵サイクルにおけるNOx吸蔵マップを示したものである。
 NOx吸蔵量は、触媒温度(排ガス温度)に依存し、またNOx吸蔵還元型触媒の経年劣化により、吸蔵量が減少するため、予め実験で、NOx吸蔵サイクルにおける初期のNOx吸蔵還元型触媒の触媒温度に対するNOx吸蔵量をNOx吸蔵曲線A0で求めておく、またNOx吸蔵還元型触媒は経年劣化するため、順次走行距離などを基準に劣化したNOx吸蔵曲線A1、A2、…Anを求め、NOx吸蔵曲線Anが、吸蔵率が落ちて触媒を交換するものとする。このNOx吸蔵マップのNOx吸蔵曲線A1、A2、…Anは、理想的な脱硫を行ったときの値であり、経年変化ごとの最大のNOx吸蔵量を求めたものである。
 この図3(a)のNOx吸蔵マップからの理想NOx吸蔵量は、初期のNOx吸蔵曲線A0から、順次車両の走行距離や経年数を基にNOx吸蔵曲線A1、A2、…Anを選択し、その選択したNOx吸蔵曲線を基にNOx吸蔵サイクル時の温度と吸蔵サイクル中の積算燃料消費量から理想NOx吸蔵量を求める。
 図3(b)は、NOxの吸蔵サイクルとリッチ還元サイクルを繰り返す間に、NOx吸蔵還元型触媒が硫黄で被毒されてNOx吸蔵率が低下したときにSパージを行う際の走行距離とNOx吸蔵量の関係を示したものである。
 図3(b)において、Lは、経年変化(走行距離)に対するNOxの吸蔵サイクル時の理想NOx吸蔵量曲線を示し、その理想NOx吸蔵量曲線の理想NOx吸蔵量に対して、値d分吸蔵量が少なくなったとき、走行距離でいえば1000km程度走行したときに、NOx吸蔵還元型触媒が、硫黄で被毒され、値d分吸蔵性能が低下したとして、そのNOx吸蔵性能を回復すべく、Sパージ(S/P)を行うことを示している。このSパージを行う時期は、排ガス中のSOx濃度は最大で7ppm程度であり、このSOxをNOx吸蔵還元型触媒が吸蔵する量が値d分NOx吸蔵量を低下させるため、車両のエンジン運転状況と走行距離或いは、それまでの累計燃料消費量から求めることができる。
 また、図3(b)における理想NOx吸蔵量曲線の点線中の値Anは、Sパージを行っても、NOx吸蔵還元型触媒が熱劣化して、値d分吸蔵性能を回復させても、NOx吸蔵性能が回復しない触媒交換時期を示している。
 図3(c)は、実NOx吸蔵量算出手段35による吸蔵サイクル中の実NOx吸蔵量を説明するものである。
 通常、NOx吸蔵還元型触媒に流入する排ガス中のNOx濃度は、入口側NOxセンサ28で検出されるが、おおよそは200ppm程度であり便宜上200ppm一定として図では示している。また出口濃度は、出口側NOxセンサ30で検出されるため、その出入口濃度差がNOx吸蔵還元型触媒で吸蔵された量となる。よって、実NOx吸蔵量は、この出入口NOx濃度差を、リッチ還元・浄化が行われた後、次のリッチ還元・浄化が行われるまでの吸蔵サイクルにおける時間で積分することで、すなわち図3(c)の網掛けで示している領域を実NOx吸蔵量として算出することができる。
 本発明においては、図3(a)、図3(b)より、リッチ還元・浄化に切り換える前の吸蔵サイクル中の理想NOx吸蔵量を求めると共に図3(c)よりその吸蔵サイクル中の実NOx吸蔵量を求め、この両者の差を計算し、その差からNOx吸蔵還元型触媒の硫黄被毒による劣化と熱劣化とを判定することができるものである。
 すなわち、硫黄被毒によるNOx吸蔵量の低下は、図3(b)に示すように、その吸蔵サイクルにおける理想NOx吸蔵量に対して値d分低くなったときにSパージを行うもので、この値dを閾値とし、理想NOx吸蔵量と実NOx吸蔵量の差が閾値より小さければ異常なしと判断し、また差が閾値以上のときには、熱劣化でNOx吸蔵量が低下したか、或いは前回のSパージでの脱硫が不十分で、NOx吸蔵量が低下したかを判定するために、再び強制的にSパージを行い、そのSパージ終了後に、吸蔵サイクルを行い、その吸蔵サイクルで理想NOx吸蔵量と実NOx吸蔵量を求め、その差と閾値を比較し、閾値より低ければ、前回の判断は硫黄被毒による劣化として異常なしと判定する。またSパージを行っても差が閾値以上で吸蔵性能が回復しないときには、回復不可能な触媒劣化と判断してOBD(On-board Diagnotics)表示を行う。
 次に、この本発明のフローを図2により説明する。
 ステップS10で制御を開始し、ステップS11で、理想的な脱硫を行った場合のNOx吸蔵マップを持ち、そのNOx吸蔵マップと積算燃料消費量より求めた理想NOx吸蔵量と、NOxセンサ値より求めたNOxセンサ値より補正された実NOx吸蔵量の差を吸蔵サイクル毎に算出する。
 次に、ステップS12で、Sパージ実施開始判定により、ステップS11で算出した差を基に、差がSパージ開始よりも小さいときは、条件不適合としてステップS11に戻して再度吸蔵サイクルとリッチ還元・浄化サイクルを繰り返して、差を算出する。
 ステップS12で、理想NOx吸蔵量と実NOx吸蔵量の差が一定以上となったときにSパージを開始し、Sパージの終了判定によりSパージを終了する。
 その後、Sパージが終了したならば、ステップS13で、再び、理想NOx吸蔵量とNOxセンサにより求めた実NOx吸蔵量の差を計算する。
 この値が閾値よりも小さければ吸蔵量に異常無しと判断し、条件適合として制御を終了する(ステップS16)。
 ステップS13で、理想NOx吸蔵量と実NOx吸蔵量の差が閾値以上のときには、ステップS14で、再び、Sパージを行い理想NOx吸蔵量とNOxセンサにより求めた実NOx吸蔵量の差を計算する。
 ステップS14でこの差の値が閾値よりも小さくなければ(条件適合)、硫黄被毒による劣化が回復したと判断し、制御を終了する(ステップS16)。
 また、ステップS14でこの差の値が閾値以上であれば(条件不適合)、ステップS15で、Sパージを行っても性能が回復しない、すなわち回復不能な触媒劣化と判断してOBDの触媒故障の表示を行った後、制御を終了する(ステップS16)。
 このように、本発明によれば、追加のセンサ等無く、NOx吸蔵還元型触媒の熱劣化と硫黄被毒の切り分けが可能である。
 回復可能か否かを判断して、しかるべき処置(Sパージ又はOBD表示)ができるので、排ガスの悪化や、無駄なリッチによる燃費悪化を防止できる。
 20 排気管
 26 NOx吸蔵還元型触媒
 E エンジン

Claims (5)

  1.  エンジンの排気管に接続したNOx吸蔵還元型触媒で、排ガス中のNOxを吸蔵する吸蔵サイクルと、その吸蔵サイクルで吸蔵率が低下したとき吸蔵したNOxを還元・浄化するリッチ還元サイクルとを、交互に繰り返し、その吸蔵サイクルとリッチ還元サイクルを繰り返している間にNOx吸蔵還元型触媒が硫黄で被毒されてNOx吸蔵率が低下したとき、Sパージを行う排ガス後処理装置におけるNOx吸蔵還元型触媒の劣化判定方法であって、経年劣化に基づくNOx吸蔵還元型触媒での吸蔵サイクル中のNOx吸蔵量を示すNOx吸蔵マップを予め作成しておき、そのNOx吸蔵マップを基に理想NOx吸蔵量を求め、他方NOxセンサ値より吸蔵サイクル中の実NOx吸蔵量を算出し、その理想NOx吸蔵量と実NOx吸蔵量の差からNOx吸蔵還元型触媒の硫黄被毒による劣化と熱劣化とを判定することを特徴とする排ガス後処理装置におけるNOx吸蔵還元型触媒の劣化判定方法。
  2.  前記NOx吸蔵マップは、そのNOx吸蔵還元型触媒の経年劣化と共に排ガス温度に対してのNOx吸蔵量の関係で作成され、吸蔵サイクル中の理想NOx吸蔵量は、吸蔵サイクル中の排ガス温度と積算燃料消費量を基に前記NOx吸蔵マップから求める請求項1記載の排ガス後処理装置におけるNOx吸蔵還元型触媒の劣化判定方法。
  3.  前記NOxセンサ値よる実NOx吸蔵量を算出は、吸蔵サイクル中のNOx吸蔵還元型触媒の入口側の排ガス中のNOx濃度と出口側のNOx濃度の差を時間で積分して求める請求項1記載の排ガス後処理装置におけるNOx吸蔵還元型触媒の劣化判定方法。
  4.  理想NOx吸蔵量と実NOx吸蔵量の差が閾値より小さければNOx吸蔵量に異常なしと判定する請求項1~3のいずれかに記載の排ガス後処理装置におけるNOx吸蔵還元型触媒の劣化判定方法。
  5.  理想NOx吸蔵量と実NOx吸蔵量の差が閾値より大きいときに、再度Sパージを行い、その後の吸蔵サイクルで、理想NOx吸蔵量と実NOx吸蔵量を再度求めると共にその差を閾値とを比較し、その差が閾値より小さくなったとき、Sパージにより硫黄被毒が回復したとして異常なしと判定し、差が閾値より再度大きければ、熱劣化と判定する請求項4記載の排ガス後処理装置におけるNOx吸蔵還元型触媒の劣化判定方法。
PCT/JP2014/055609 2013-04-04 2014-03-05 排ガス後処理装置におけるNOx吸蔵還元型触媒の劣化判定方法 WO2014162813A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/781,711 US20160061087A1 (en) 2013-04-04 2014-03-05 METHOD FOR DETERMINING DEGRADATION OF NOx STORAGE REDUCTION CATALYST IN EXHAUST GAS AFTERTREATMENT DEVICE
EP14779563.7A EP2998533B1 (en) 2013-04-04 2014-03-05 METHOD FOR DETERMINING DEGRADATION OF NOx STORAGE REDUCTION CATALYST IN EXHAUST GAS AFTERTREATMENT DEVICE
CN201480017813.XA CN105074151B (zh) 2013-04-04 2014-03-05 废气后处理装置中的NOx吸藏还原型催化剂的劣化判定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-078537 2013-04-04
JP2013078537A JP2014202126A (ja) 2013-04-04 2013-04-04 排ガス後処理装置におけるNOx吸蔵還元型触媒の劣化判定方法

Publications (1)

Publication Number Publication Date
WO2014162813A1 true WO2014162813A1 (ja) 2014-10-09

Family

ID=51658116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055609 WO2014162813A1 (ja) 2013-04-04 2014-03-05 排ガス後処理装置におけるNOx吸蔵還元型触媒の劣化判定方法

Country Status (5)

Country Link
US (1) US20160061087A1 (ja)
EP (1) EP2998533B1 (ja)
JP (1) JP2014202126A (ja)
CN (1) CN105074151B (ja)
WO (1) WO2014162813A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106762059A (zh) * 2015-09-15 2017-05-31 通用汽车环球科技运作有限责任公司 操作内燃机的后处理系统的方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016133064A (ja) * 2015-01-20 2016-07-25 いすゞ自動車株式会社 排気浄化システム
JP2016133063A (ja) * 2015-01-20 2016-07-25 いすゞ自動車株式会社 排気浄化システム
JP2016133096A (ja) * 2015-01-22 2016-07-25 いすゞ自動車株式会社 排気浄化システム
GB2530202A (en) * 2015-12-10 2016-03-16 Gm Global Tech Operations Inc Method of operating an aftertreatment system of an internal combustion engine
DE102017200145B4 (de) * 2016-01-22 2021-12-23 Ford Global Technologies, Llc Verfahren zur Überwachung einer Abgasnachbehandlungsanlage, insbesondere eines NOx-Speicher-Katalysators sowie Steuerungseinrichtung für eine Abgasnachbehandlungsanlage und Fahrzeug
KR102440496B1 (ko) * 2016-08-25 2022-09-06 현대자동차주식회사 고유황유 사용여부 판단 방법 및 판단 시스템
JP6500886B2 (ja) * 2016-12-22 2019-04-17 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2018131991A (ja) 2017-02-16 2018-08-23 トヨタ自動車株式会社 排気浄化装置の異常診断装置
JP6520977B2 (ja) 2017-03-27 2019-05-29 トヨタ自動車株式会社 排気浄化装置の異常診断装置
JP6897605B2 (ja) * 2018-03-05 2021-06-30 トヨタ自動車株式会社 内燃機関の排気浄化装置
CN108868981B (zh) * 2018-06-29 2019-12-10 潍柴动力股份有限公司 一种检测系统及方法
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303937A (ja) * 2000-02-18 2001-10-31 Toyota Motor Corp 内燃機関の排気浄化装置
JP2002195089A (ja) * 2000-12-25 2002-07-10 Denso Corp 内燃機関の排気浄化装置
JP2005337029A (ja) * 2004-05-24 2005-12-08 Toyota Motor Corp 内燃機関の排気浄化装置
JP2007263053A (ja) * 2006-03-29 2007-10-11 Mitsubishi Fuso Truck & Bus Corp NOx吸蔵量の推定方法
JP2008045479A (ja) * 2006-08-15 2008-02-28 Bosch Corp 内燃機関の排気浄化装置及び排気浄化方法
JP2008255965A (ja) * 2007-04-09 2008-10-23 Toyota Motor Corp 内燃機関の排気浄化装置
JP2008261252A (ja) 2007-04-11 2008-10-30 Isuzu Motors Ltd NOx浄化システム及びNOx浄化システムの制御方法
JP4474775B2 (ja) 2001-01-18 2010-06-09 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2012087749A (ja) 2010-10-22 2012-05-10 Denso Corp 内燃機関の排気浄化装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3873904B2 (ja) * 2003-02-26 2007-01-31 日産自動車株式会社 内燃機関の排気浄化装置
JP4349119B2 (ja) * 2003-12-19 2009-10-21 いすゞ自動車株式会社 排気ガス浄化方法及び排気ガス浄化システム
CN1657139A (zh) * 2004-02-16 2005-08-24 中国科学院大连化学物理研究所 一种氮氧化物存储-还原催化剂制备及存储-还原消除氮氧化物的方法
JP4730277B2 (ja) * 2006-10-20 2011-07-20 株式会社デンソー 排気浄化用触媒の診断装置
JP4175427B1 (ja) * 2007-05-16 2008-11-05 いすゞ自動車株式会社 NOx浄化システムの制御方法及びNOx浄化システム
US8904768B2 (en) * 2010-10-17 2014-12-09 Southwest Research Institute Adaptive desulfation and regeneration methods for lean NOx trap

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303937A (ja) * 2000-02-18 2001-10-31 Toyota Motor Corp 内燃機関の排気浄化装置
JP2002195089A (ja) * 2000-12-25 2002-07-10 Denso Corp 内燃機関の排気浄化装置
JP4474775B2 (ja) 2001-01-18 2010-06-09 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2005337029A (ja) * 2004-05-24 2005-12-08 Toyota Motor Corp 内燃機関の排気浄化装置
JP2007263053A (ja) * 2006-03-29 2007-10-11 Mitsubishi Fuso Truck & Bus Corp NOx吸蔵量の推定方法
JP2008045479A (ja) * 2006-08-15 2008-02-28 Bosch Corp 内燃機関の排気浄化装置及び排気浄化方法
JP2008255965A (ja) * 2007-04-09 2008-10-23 Toyota Motor Corp 内燃機関の排気浄化装置
JP2008261252A (ja) 2007-04-11 2008-10-30 Isuzu Motors Ltd NOx浄化システム及びNOx浄化システムの制御方法
JP2012087749A (ja) 2010-10-22 2012-05-10 Denso Corp 内燃機関の排気浄化装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106762059A (zh) * 2015-09-15 2017-05-31 通用汽车环球科技运作有限责任公司 操作内燃机的后处理系统的方法

Also Published As

Publication number Publication date
CN105074151B (zh) 2017-11-07
JP2014202126A (ja) 2014-10-27
EP2998533B1 (en) 2018-05-02
US20160061087A1 (en) 2016-03-03
EP2998533A1 (en) 2016-03-23
EP2998533A4 (en) 2016-12-28
CN105074151A (zh) 2015-11-18

Similar Documents

Publication Publication Date Title
WO2014162813A1 (ja) 排ガス後処理装置におけるNOx吸蔵還元型触媒の劣化判定方法
JP6135198B2 (ja) 排ガス後処理装置の制御方法
US8056323B2 (en) Method of controlling exhaust gas purification system and exhaust gas purification system
JP4415648B2 (ja) サルファパージ制御方法及び排気ガス浄化システム
KR100797503B1 (ko) 내연기관의 배기 정화장치
JP4304447B2 (ja) 排気ガス浄化方法及び排気ガス浄化システム
US20050109022A1 (en) Exhaust gas purifying method and exhaust gas purifying system
JP6136510B2 (ja) 噴射制御方法及び噴射制御装置
JP5035263B2 (ja) 内燃機関の排気浄化装置
JP5206870B2 (ja) 内燃機関の排気浄化装置
JP5838736B2 (ja) 排気浄化装置
JP2010249076A (ja) 内燃機関の排気浄化装置
WO2016132875A1 (ja) 内燃機関の排気ガス浄化システム、内燃機関及び内燃機関の排気ガス浄化方法
JP4291650B2 (ja) 排気浄化装置
JP4780335B2 (ja) 内燃機関の排気浄化装置
JP4737463B2 (ja) 排気浄化装置
JP4697474B2 (ja) 内燃機関の排気浄化装置
JP2006161668A (ja) 排気ガス浄化システムの脱硫制御方法及び排気ガス浄化システム
JP4523317B2 (ja) ディーゼルエンジンの排気浄化装置
JP2017044147A (ja) 被毒判定装置
JP6686516B2 (ja) Lntを用いた排ガス処理方法およびその装置
JP6504339B2 (ja) エンジンの排気浄化装置
JP2017057842A (ja) 触媒劣化度合推定装置
JP2008115712A (ja) 内燃機関の排気浄化装置
JP2017044146A (ja) 被毒判定装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480017813.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14779563

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14781711

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014779563

Country of ref document: EP