WO2014161368A1 - 分路循环第一类吸收式热泵 - Google Patents

分路循环第一类吸收式热泵 Download PDF

Info

Publication number
WO2014161368A1
WO2014161368A1 PCT/CN2014/000368 CN2014000368W WO2014161368A1 WO 2014161368 A1 WO2014161368 A1 WO 2014161368A1 CN 2014000368 W CN2014000368 W CN 2014000368W WO 2014161368 A1 WO2014161368 A1 WO 2014161368A1
Authority
WO
WIPO (PCT)
Prior art keywords
generator
solution
new
absorber
heat exchanger
Prior art date
Application number
PCT/CN2014/000368
Other languages
English (en)
French (fr)
Inventor
李华玉
Original Assignee
Li Huayu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Li Huayu filed Critical Li Huayu
Publication of WO2014161368A1 publication Critical patent/WO2014161368A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/04Heat pumps of the sorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/008Sorption machines, plants or systems, operating continuously, e.g. absorption type with multi-stage operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/02System or Device comprising a heat pump as a subsystem, e.g. combined with humidification/dehumidification, heating, natural energy or with hybrid system
    • F24F2203/026Absorption - desorption cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • the invention belongs to the technical field of low temperature waste heat utilization and heat pump/refrigeration.
  • the first type of absorption heat pump drives the temperature difference between the heat medium and the heated medium.
  • two or more temperature difference utilization processes should be used to increase the degree of temperature difference utilization, thereby achieving heat
  • the efficiency of utilization can be utilized; from the perspective of working medium, the working medium of the absorption heat pump is a solution, which is limited by the nature of the substance. System, each solution has its proper working range; thus, when the temperature and temperature drop of the driving heat medium exceeds a single solution In the working range, different solutions should be used for the shunt cycle to complete the full use of the driving temperature difference, that is, the driving temperature
  • the difference is utilized in different solution circulation loops to rationalize the use of the drive temperature difference.
  • the cycle of the first type of absorption heat pump has to fulfill more requirements.
  • Requirements include: smooth changes in thermodynamic parameters, adjustable heating parameters, and better adaptation to changing conditions, with optimal Performance index; can achieve deep utilization of high-temperature heat sources, or use different grades of heat sources to achieve their comprehensive utilization.
  • the main purpose of the invention is to provide a series of split-cycle first-type absorption heat pumps, which adopt two-way or three-way solution circulation. Gradually realize the full use of temperature difference, the specific content of the invention is as follows:
  • Shunt cycle first type absorption heat pump mainly by generator, second generator, absorber, second absorber, Condenser, evaporator, second evaporator, solution pump, second solution pump, throttle valve, second throttle valve, solution heat exchanger And a second solution heat exchanger;
  • the absorber has a dilute solution line connected to the generator via the solution pump and the solution heat exchanger,
  • the generator also has a concentrated solution line connected to the absorber via the solution heat exchanger, and the generator also has a refrigerant vapor passage and a second occurrence.
  • the second generator has a refrigerant liquid pipeline connected to the evaporator through the throttle valve, and the evaporator has a refrigerant vapor passage and suction.
  • the receiver is connected; the second absorber has a dilute solution line connected to the second generator via the second solution pump and the second solution heat exchanger,
  • the second generator further has a concentrated solution line connected to the second absorber via the second solution heat exchanger, and the second generator further has a refrigerant steaming
  • the steam passage is connected to the condenser, and the condenser and the refrigerant liquid pipeline are connected to the second evaporator via the second throttle valve, and the second evaporator
  • the generator also has a driving heat medium conduit connected to the outside, the absorber, the first The second absorber and the condenser are respectively connected to the outside by the heated medium pipeline, and the evaporator and the second evaporator respectively have residual heat
  • the medium pipe communicates with the outside to form a first-stage absorption heat pump of the bypass cycle.
  • the first type of absorption heat pump is added to the first type of absorption heat pump of the shunt cycle described in Item 1.
  • Adding a third generator, a third solution pump, a third throttle valve and a third solution heat exchanger, and the absorber is provided with a dilute solution pipeline
  • the three solution pump and the third solution heat exchanger are in communication with the third generator, and the third generator has a concentrated solution line through the third solution heat
  • the exchanger is in communication with the absorber, and the generator has a refrigerant vapor passage connected to the second generator, and the second generator has a refrigerant liquid
  • the pipeline is connected to the evaporator through the throttle valve to adjust the generator to have a refrigerant vapor passage and the third generator is connected to the third generator.
  • the refrigerant liquid pipeline is connected to the evaporator through the third throttle valve, and the third generator has a refrigerant vapor passage connected to the second generator.
  • the refrigerant liquid pipeline is connected to the evaporator through the throttle valve to form a first-stage absorption heat pump of the bypass cycle.
  • the first type of absorption heat pump is the first type of absorption heat pump of the shunt cycle described in Item 1.
  • the exchanger is connected to the generator to adjust the absorber to have a dilute solution line through the solution pump, the third solution heat exchanger and the solution heat exchange
  • the generator is connected to the generator, and the concentrated solution line of the generator is connected to the absorber through the solution heat exchanger to adjust the generator to be concentrated.
  • the liquid pipeline is connected to the third generator via the solution heat exchanger, and the third generator has a concentrated solution pipeline through the third solution heat exchanger Connected with the absorber, the generator has a refrigerant vapor channel connected to the second generator, and the second generator has a coolant liquid line
  • the throttle valve is connected to the evaporator to adjust the generator to have a refrigerant vapor passage connected to the third generator, and then the third generator is cooled again.
  • the agent liquid pipeline is connected to the evaporator via a third throttle valve, and the third generator has a refrigerant vapor passage connected to the second generator.
  • the second generator further has a refrigerant liquid pipeline connected to the evaporator via a throttle valve to form a first-stage absorption heat pump of the bypass cycle.
  • the first type of absorption heat pump is added to the first type of absorption heat pump of the shunt cycle described in Item 1. Adding a third generator, a third solution pump, a third throttle valve and a third solution heat exchanger to dissolve the absorber with a dilute solution line The liquid pump and the solution heat exchanger are connected to the generator to adjust the absorber to have a dilute solution line through the solution pump and the solution heat exchanger.
  • the third generator is connected, and the third generator has a concentrated solution line connected to the generator via the third solution pump and the third solution heat exchanger Passing, the generator has a concentrated solution pipeline through the solution heat exchanger and the absorber is connected to adjust the generator to have a concentrated solution pipeline through the third
  • the solution heat exchanger and the solution heat exchanger are in communication with the absorber, and the generator has a refrigerant vapor passage connected to the second generator
  • the second generator further has a refrigerant liquid pipeline connected to the evaporator through the throttle valve to adjust the generator to have a refrigerant vapor passage and a third hair
  • the third generator has a refrigerant liquid pipeline connected to the evaporator through the third throttle valve, and the third generator also has a refrigerant steaming.
  • the second generator further has a refrigerant liquid pipeline connected to the evaporator through the throttle valve to form a bypass circuit.
  • the first type of absorption heat pump is used to the generator via the third solution pump and the third solution heat
  • the first type of absorption heat pump is added to the first type of absorption heat pump of the shunt cycle described in Item 1.
  • Adding a third generator, a third throttle valve, a third solution heat exchanger and a second condenser to dissolve the absorber with a dilute solution line The liquid pump and the solution heat exchanger are connected to the generator to adjust the absorber to have a dilute solution line through the solution pump and the third solution heat exchanger
  • the solution heat exchanger is connected to the generator, and the concentrated solution line of the generator is connected to the absorber through the solution heat exchanger and is adjusted to
  • the generator has a concentrated solution line connected to the third generator via the solution heat exchanger, and the third generator has a concentrated solution line through the third
  • the solution heat exchanger is in communication with the absorber, and the third generator further has a refrigerant vapor passage communicating with the second condenser, the second condenser
  • the refrigerant liquid pipeline is connected to the evaporator via a third throttle valve, and the third
  • the first type of absorption heat pump is taken in the first type of absorption heat pump of the shunt cycle described in item 5.
  • a second medium condenser is connected to the externally heated medium line, and the second absorber has a dilute solution line through the second solution pump and
  • the two solution heat exchanger is connected to the second generator to adjust the second absorber to have a dilute solution line through the second solution pump and the second solution
  • the heat exchanger and the second condenser are in communication with the second generator to form a split-cycle first type of absorption heat pump.
  • the first type of absorption heat pump is added to the first type of absorption heat pump of the shunt cycle described in Item 1. Adding a third generator, a third absorber, a third solution pump and a third solution heat exchanger to dissolve the absorber with a dilute solution line
  • the liquid pump and the solution heat exchanger are connected to the generator to adjust to the absorber having a dilute solution line through the solution pump and the third solution heat exchange
  • the third absorber is connected to the third absorber, and the third absorber is connected to the generator through the third solution pump and the solution heat exchanger.
  • the generator has a concentrated solution pipeline connected to the absorber through the solution heat exchanger to adjust the generator to have a concentrated solution pipeline through the solution
  • the heat exchanger is in communication with the third generator, and the third generator has a concentrated solution line connected to the absorber via the third solution heat exchanger
  • the third generator has a refrigerant vapor passage communicating with the third absorber, and the third generator also drives the heat medium conduit and the outer
  • the third absorber is also connected to the outside by the heated medium pipeline to form a bypass type first type absorption heat pump.
  • the first type of absorption heat pump is taken in the first type of absorption heat pump of the shunt cycle described in item 7.
  • the third medium absorber is connected to the externally heated medium pipeline, the steam distribution chamber is increased, and the second generator has a concentrated solution pipeline.
  • the two solution heat exchanger is connected to the second absorber to adjust the second generator to have a concentrated solution line through the third absorber and the steam dividing chamber Connected, the steam distribution chamber has a concentrated solution pipeline connected to the second absorber through the second solution heat exchanger, and the steam compartment has refrigerant vapor
  • the passage communicates with the condenser to form a split type first absorption heat pump.
  • the first type of absorption heat pump is added to the first type of absorption heat pump of the shunt cycle described in Item 1. Adding a third generator, a third absorber, a third solution pump, a steam dividing chamber, a solution throttle valve and a second solution throttle valve, which will absorb
  • the dilute solution pipeline is connected to the generator through the solution pump and the solution heat exchanger to adjust the absorber to a dilute solution pipeline through the solution.
  • the pump and solution heat exchanger is in communication with the third absorber, and the third absorber has a dilute solution line through the second solution throttle valve Connected to the generator, the concentrated solution line of the generator is connected to the absorber through the solution heat exchanger, and the generator has a concentrated solution line.
  • the third solution pump is in communication with the third generator, and the third generator further has a concentrated solution line through the solution throttle valve and the third absorber and the minute
  • the steam chamber is connected, and the concentrated solution line is connected to the absorber through the solution heat exchanger, and the third generator has refrigerant vapor.
  • the passage is in communication with the third absorber, and the generator has a refrigerant vapor passage connected to the second generator, and the second generator has a refrigerant
  • the liquid pipeline is connected to the evaporator through the throttle valve to adjust the generator and the steam distribution chamber to have a refrigerant vapor passage connected to the second generator.
  • the second generator further has a refrigerant liquid line connected to the evaporator via a throttle valve, and the third generator also drives the heat medium line and the outside Connected to form a split-cycle first type of absorption heat pump.
  • the first type of absorption heat pump is the first type of absorption heat pump of the shunt cycle described in Item 1.
  • the liquid heat exchanger is connected to the generator to adjust the absorber to have a dilute solution line through the solution pump and the solution heat exchanger and the third absorption
  • the third absorber has a dilute solution line connected to the third generator, and the third generator has a concentrated solution line through the solution.
  • the throttle valve is connected with the generator, and the concentrated solution pipeline of the generator is connected to the absorber through the solution heat exchanger to adjust the generator to have
  • the concentrated solution pipeline is connected to the steam distribution chamber through the third absorber, and the concentrated solution pipeline is connected to the absorber through the solution heat exchanger.
  • the third generator has a refrigerant vapor passage communicating with the third absorber, and the generator has a refrigerant vapor passage and a second occurrence After the device is connected, the second generator is further connected with the refrigerant liquid pipeline through the throttle valve and the evaporator to adjust the refrigerant to the generator and the steam distribution chamber.
  • the second generator After the steam passage is in communication with the second generator, the second generator has a refrigerant liquid line connected to the evaporator via the throttle valve, and the third occurs
  • the device also drives the heat medium pipeline to communicate with the outside to form a bypass type first absorption heat pump; Or, adding a third solution pump, connecting the third absorber with a dilute solution line and the third generator to adjust to a third absorber
  • the dilute solution line is in communication with the third generator via a third solution pump.
  • the first type of absorption heat pump is the first type of absorption heat pump of the shunt cycle described in item 1.
  • Adding a third generator, a third absorber, a third solution heat exchanger and a steam dividing chamber, and the absorber has a dilute solution pipeline through the solution
  • the pump and solution heat exchanger is connected to the generator to adjust the absorber to a dilute solution line through the solution pump, the solution heat exchanger and the third
  • the solution heat exchanger is in communication with the third absorber, and the third absorber has a dilute solution line connected to the third generator, and the third occurs
  • the concentrated solution line is connected to the generator through the third solution heat exchanger, and the generator has a concentrated solution line through solution heat exchange.
  • the device is connected to the absorber to adjust the generator to have a concentrated solution pipeline connected to the steam separation chamber through the third absorber, and the concentrated steam chamber has a concentrated solution.
  • the pipeline is connected to the absorber via the solution heat exchanger, and the third generator has a refrigerant vapor passage communicating with the third absorber, which will be sent.
  • the refrigerant has a refrigerant vapor passage connected to the second generator, and the second generator has a refrigerant liquid pipeline connected to the evaporator through the throttle valve Adjusted to the generator and the steam distribution chamber, the refrigerant vapor passage is connected to the second generator, and the second generator has a refrigerant liquid pipeline.
  • the throttle valve is connected to the evaporator, and the third generator also drives the heat medium pipeline to communicate with the outside to form a branching cycle.
  • An absorption heat pump wherein, for convenient component arrangement, or adding a third solution pump, the third absorber has a dilute solution line and a The three generators are connected to adjust to a third absorber having a dilute solution line connected to the third generator via a third solution pump.
  • the first type of absorption heat pump is the first type of absorption heat pump of the shunt cycle described in item 1.
  • the absorber has a dilute solution pipeline connected to the generator through the solution pump and the solution heat exchanger a dilute solution line for the absorber is connected to the third absorber via the solution pump and the third solution heat exchanger, and the third absorber is further diluted
  • the solution line is connected to the generator via the third solution pump and the solution heat exchanger, and the generator has a concentrated solution line through solution heat exchange Connected to the absorber to adjust the generator to have a concentrated solution line connected to the third generator via the solution heat exchanger, the third generator There is also a concentrated solution pipeline connected to the steam separation chamber through the solution throttle valve and the third absorber, and the concentrated solution pipeline is further dissolved in the third.
  • the liquid heat exchanger is in communication with the absorber, the third generator has a refrigerant vapor passage communicating with the third absorber, and the steam dividing chamber is also cold
  • the vapor channel of the agent is in communication with the second condenser, and the second condenser and the coolant liquid line are connected to the evaporator via the third throttle valve,
  • the three generators also have a driving heat medium pipe connected to the outside, and the second condenser has a heated medium pipe connected to the outside,
  • the triple absorber or the heated medium line communicates with the outside to form a bypass type first type absorption heat pump.
  • the first type of absorption heat pump of the bypass cycle is the first type of absorption heat pump of the shunt cycle described in Item 1. Adding a third generator, a third absorber, a fourth absorber, a third solution pump, a fourth solution pump, a third solution heat exchanger, The fourth solution heat exchanger, the steam dividing chamber and the solution throttle valve, the absorber has a dilute solution line through the solution pump and the solution heat exchanger Connected to the generator to adjust the absorber to have a dilute solution line connected to the fourth absorber via the solution pump and the third solution heat exchanger, The fourth absorber and the dilute solution pipeline are connected to the third absorber through the third solution pump and the fourth solution heat exchanger, and the third absorption The dilute solution pipeline is connected to the generator through the fourth solution pump and the solution heat exchanger, and the generator has a concentrated solution pipeline dissolved.
  • the liquid heat exchanger is connected to the absorber to adjust the generator to have a concentrated solution pipeline connected to the third generator via the solution heat exchanger,
  • the three generators also have a concentrated solution line connected to the steam separation chamber through the solution throttle valve and the third absorber, and the concentrated steam line in the steam separation chamber
  • the fourth solution heat exchanger and the third solution heat exchanger are in communication with the absorber, and the third generator further has a refrigerant vapor passage and a first
  • the three absorbers are connected, the steam dividing chamber has a refrigerant vapor passage communicating with the fourth absorber, and the third generator also drives the heat medium tube
  • the road is connected to the outside, and the fourth absorber is also connected to the outside by the heated medium pipeline to form a first type of absorption heat of the shunt cycle. Pump.
  • the first type of absorption heat pump is the first type of absorption heat pump of the shunt cycle described in Item 1. Adding a third generator, a third absorber, a fourth absorber, a third solution pump, a fourth solution pump, a third solution heat exchanger, a fourth solution heat exchanger, a solution throttle valve, a steam separation chamber and a second steam separation chamber, the absorber having a dilute solution line through the solution pump and The solution heat exchanger is connected to the generator to adjust the absorber to have a dilute solution line through the solution pump and the third solution heat exchanger and the first The fourth absorber is connected, and the fourth absorber has a dilute solution pipeline through the third solution pump and the fourth solution heat exchanger and the third absorber Connected, the third absorber has a dilute solution line connected to the generator via the fourth solution pump and the solution heat exchanger, and the generator has The concentrated solution pipeline is connected to the absorber through the solution heat exchanger to adjust the generator to have a concentrated solution pipeline through the solution heat exchanger and
  • the second steam distribution chamber has a concentrated solution pipeline connected to the absorber through the fourth solution heat exchanger and the third solution heat exchanger, and the third The living device also has a refrigerant vapor passage communicating with the third absorber, and the second steam dividing chamber has a refrigerant vapor passage connected to the fourth absorber Passing, the second generator has a concentrated solution pipeline connected to the second absorber through the second solution heat exchanger to adjust to a second generator
  • the concentrated solution pipeline is connected to the steam distribution chamber via the fourth absorber, and the concentrated steam pipeline is further connected to the second solution heat exchanger and the second
  • the absorber is connected, the steam compartment and the refrigerant vapor passage are connected to the condenser, and the third generator also drives the heat medium pipeline and the outside.
  • the parts are connected to form a first-stage absorption heat pump with a split cycle.
  • the first type of absorption heat pump is the first type of absorption heat pump of the shunt cycle described in item 1.
  • Adding a third generator, a third absorber, a third solution pump, and a third solution heat exchanger, and the generator has a refrigerant vapor passage
  • the second generator is further connected with the refrigerant liquid line through the throttle valve and the evaporator to adjust the generator to be cold.
  • the vapor channel of the agent is in communication with the third absorber, and the third absorber has a dilute solution line and is exchanged by the third solution pump and the third solution.
  • the third generator is connected to the third generator, and the third generator has a concentrated solution line connected to the third absorber via the third solution heat exchanger.
  • the third generator further has a refrigerant vapor passage connected to the second generator, and the second generator has a refrigerant liquid pipeline through the throttle valve and The evaporator is connected, the third generator also has a driving heat medium pipeline connected to the outside, and the third absorber has a heated medium pipeline Connected to the outside to form a split-cycle first type of absorption heat pump.
  • the first type of absorption heat pump of the bypass cycle is the first type of absorption heat pump of the shunt cycle described in Item 15.
  • the heated medium line connecting the third absorber to the outside is cancelled, the steam dividing chamber is added, and the second generator has a concentrated solution line
  • the second solution heat exchanger is connected to the second absorber to be adjusted to have a second solution having a concentrated solution line through the third absorber and the steam separation
  • the chamber is connected, and the concentrated solution line is connected to the second absorber through the second solution heat exchanger, and the steam separation chamber is further cooled by a refrigerant.
  • the steam passage communicates with the condenser to form a split type first absorption heat pump.
  • the first type of absorption heat pump is the first in any of the bypass cycles described in items 1-7, 9-13, and 15.
  • a new generator, a new throttle valve and a new solution heat exchanger are added, and the second solution pump is added with a rare solution.
  • the liquid pipeline is connected to the newly added generator through the new solution heat exchanger, and the new generator and the concentrated solution pipeline are heated by the newly added solution.
  • the converter is in communication with the second absorber, and the second generator has a refrigerant vapor passage communicating with the condenser to adjust the second generator to be cold
  • the agent steam passage is connected with the newly added generator
  • a new generator is added, and then the refrigerant liquid pipeline is connected to the condenser through the newly added throttle valve.
  • the generator and the refrigerant vapor passage are connected to the condenser to form a first-stage absorption heat pump of the bypass cycle.
  • the first type of absorption heat pump is the first in any of the bypass cycles described in items 1-7, 9-13, and 15.
  • new generators, new throttle valves and new solution heat exchangers are added to dilute the second absorber.
  • the liquid pipeline is connected to the second solution heat exchanger through the second solution pump to adjust the second absorber to have a dilute solution pipeline through the second solution.
  • the pump and the new solution heat exchanger are in communication with the second solution heat exchanger, and the second solution heat exchanger has a concentrated solution line and a second
  • the absorber is connected to the second solution heat exchanger, and the concentrated solution pipeline is connected with the newly added generator, and the new generator is further dissolved.
  • the liquid pipeline communicates with the second absorber through the new solution heat exchanger, and the second generator has a refrigerant vapor passage connected to the condenser Adjusted to the second generator with a refrigerant vapor channel connected to the new generator, the new generator and the refrigerant liquid pipeline are added
  • the throttle valve is connected to the condenser, and the new generator and the refrigerant vapor passage are connected with the condenser to form a first type of bypass cycle. Retractable heat pump.
  • the first type of absorption heat pump is the one of the branching cycles described in items 1-5, 7, 9-13, and 15
  • new generators, new throttle valves, new solution heat exchangers and new solution pumps will be added.
  • the second absorber has a dilute solution line connected to the second generator via the second solution pump and the second solution heat exchanger to adjust to a second suction
  • the receiver has a dilute solution line connected to the new generator via the second solution pump and the second solution heat exchanger, and the new generator is thicker.
  • the solution line is connected to the second generator via a new solution pump and a new solution heat exchanger, and the second generator has a concentrated solution line
  • the second solution heat exchanger is connected to the second absorber to be adjusted to be a second generator having a concentrated solution line through the new solution heat exchange
  • the second solution heat exchanger is in communication with the second absorber, and the second generator has a refrigerant vapor passage connected to the condenser for adjustment
  • For the second generator there is a refrigerant vapor channel connected with the newly added generator, and then the new generator is added and the refrigerant liquid pipeline is newly throttled.
  • the valve is connected to the condenser, and the newly added generator and the refrigerant vapor passage are connected with the condenser to form a bypass type first absorption type. Heat pump.
  • the first type of absorption heat pump is the first in any of the branching cycles described in items 1, 5-8, 12-14.
  • new generators, new absorbers, new solution heat exchangers and new solution pumps will be added.
  • the evaporator has a refrigerant vapor passage communicating with the second absorber to adjust the second evaporator to have a refrigerant vapor passage and a new absorber Connected, new absorbers and dilute solution lines are connected to the new generator via a new solution pump and a new solution heat exchanger.
  • the generator and the concentrated solution pipeline are connected to the newly added absorber through the new solution heat exchanger, and the new generator and the refrigerant vapor are added.
  • the passage is in communication with the second absorber, and the generator has a refrigerant vapor passage connected to the second generator, and the second generator has a refrigerant
  • the liquid pipeline is connected to the evaporator through the throttle valve to adjust the generator to have a refrigerant vapor passage to sequentially connect the second generator and the newly added hair
  • the generator is further connected with the refrigerant liquid pipeline through the throttle valve and the evaporator, and the new absorber and the heated medium tube are added.
  • the road is connected to the outside to form a first-stage absorption heat pump of the bypass cycle.
  • the first type of absorption heat pump is the first type of suction in any of the shunt cycles described in items 2-4, 15-16.
  • the new generator, the new absorber, the new solution heat exchanger and the new solution pump are added to the second evaporation.
  • the refrigerant vapor passage is connected to the second absorber, and the second evaporator has a refrigerant vapor passage communicating with the newly added absorber.
  • the new absorber and the dilute solution pipeline are connected to the newly added generator through the new solution pump and the new solution heat exchanger.
  • the concentrated solution pipeline is connected to the newly added absorber through the new solution heat exchanger, and the new generator has a refrigerant vapor passage and The second absorber is in communication, the third generator has a refrigerant vapor channel connected to the second generator, and the second generator has a refrigerant liquid
  • the pipeline is connected to the evaporator through the throttle valve to adjust to a third generator having a refrigerant vapor passage sequentially connected to the second generator and newly added After the generator is added, the generator liquid line is connected to the evaporator through the throttle valve, and the new absorber and the heated medium are added.
  • the pipeline is connected to the outside to form a first-stage absorption heat pump of the bypass cycle.
  • the first type of absorption heat pump is the first type of absorption heat in any of the shunt cycles described in items 9-11.
  • the vapor passage of the agent is connected to the second absorber to be adjusted so that the second evaporator has a refrigerant vapor passage communicating with the newly added absorber, and the suction is newly added.
  • the receiver and the dilute solution pipeline are connected to the newly added generator through the new solution pump and the new solution heat exchanger, and the new generator has The concentrated solution pipeline is connected to the newly added absorber through the new solution heat exchanger, and the new generator has a refrigerant vapor passage and a second suction.
  • the receiver is connected, and the generator and the steam distribution chamber have a refrigerant vapor passage connected with the second generator, and the second generator has a refrigerant liquid pipe
  • the passage throttle valve is connected to the evaporator to adjust the generator and the steam distribution chamber to have a refrigerant vapor passage in turn to connect the second generator and the new
  • the generator is added, and then the refrigerant liquid pipeline is connected to the evaporator through the throttle valve, and the newly added absorber is heated.
  • the quality pipeline is connected to the outside to form a first-stage absorption heat pump of the bypass cycle.
  • Shunt cycle type I absorption heat pump is the first in any of the branching cycles described in items 1, 5-8, 12-14
  • new generators, new absorbers, new solution pumps and new solution heat exchangers will be added.
  • the absorber has a dilute solution line connected to the second solution heat exchanger via the second solution pump to adjust the second absorber to a dilute solution tube
  • the second solution pump and the new solution heat exchanger are connected to the newly added absorber, and the new absorber and the dilute solution pipeline are newly added.
  • the solution pump is in communication with the second solution heat exchanger, and the second solution heat exchanger has a concentrated solution line connected to the second absorber for adjustment
  • the second solution heat exchanger there is a concentrated solution pipeline connected with the newly added generator, and the newly added generator and the concentrated solution pipeline are newly dissolved.
  • the liquid heat exchanger is in communication with the second absorber, and the new generator and the refrigerant vapor passage are connected to the newly added absorber, and the generator is After the refrigerant vapor passage is connected with the second generator, the second generator and the refrigerant liquid pipeline are connected to the evaporator through the throttle valve.
  • the whole generator has a refrigerant vapor channel, which in turn connects the second generator and the new generator, and then adds a new generator and then a refrigerant liquid.
  • the pipeline is connected to the evaporator through the throttle valve, and the newly added absorber and the heated medium pipeline communicate with the outside to form a branching cycle.
  • a type of absorption heat pump wherein, or adding a new throttle valve, the generator has a refrigerant vapor passage connected to the second generator in turn After adding the generator, the generator is added, and then the refrigerant liquid pipeline is connected to the evaporator through the throttle valve to change: the generator has a steaming agent.
  • the second generator After the steam passage is connected to the second generator, the second generator has a refrigerant liquid pipeline connected to the evaporator through the throttle valve, and the generator has a dose After the steam passage is connected to the new generator, the new generator is added, and the refrigerant liquid pipeline is connected to the evaporator through the newly added throttle valve.
  • the first type of absorption heat pump is the first type of suction in any of the shunt cycles described in items 2-4, 15-16.
  • new generators, new absorbers, new solution pumps and new solution heat exchangers will be added to the second absorption.
  • the dilute solution pipeline is connected to the second solution heat exchanger through the second solution pump to adjust the second absorber to have a dilute solution pipeline
  • the second solution pump and the new solution heat exchanger are connected to the newly added absorber, and the new absorber is added to the dilute solution line through the newly added solution.
  • the pump is in communication with the second solution heat exchanger, and the second solution heat exchanger has a concentrated solution line connected to the second absorber to be adjusted to
  • the two-solution heat exchanger has a concentrated solution line connected to the newly added generator, and the new generator has a concentrated solution line and a new solution heat.
  • the exchanger is in communication with the second absorber, and the new generator and the refrigerant vapor passage are connected to the newly added absorber, and the third generator is After the refrigerant vapor passage is connected with the second generator, the second generator and the refrigerant liquid pipeline are connected to the evaporator through the throttle valve.
  • the third generator has a refrigerant vapor channel, which in turn connects the second generator and adds a new generator, and then adds a new generator.
  • the agent liquid pipeline communicates with the evaporator through the throttle valve, and the newly added absorber and the heated medium pipeline communicate with the outside to form a branching path.
  • the first type of absorption heat pump of the ring wherein, or adding a new throttle valve, the third generator has a refrigerant vapor passage in sequence After the second generator and the new generator are added, the generator is further connected with the refrigerant liquid pipeline through the throttle valve and the evaporator to change to: third After the generator has a vapor channel connected to the second generator, the second generator and the refrigerant liquid pipeline are connected to the evaporator through the throttle valve.
  • the third generator also has a new steam generator connected to the new steam generator, and then a new refrigerant generator is connected to the refrigerant liquid pipeline via a new throttle valve. The evaporator is connected.
  • the first type of absorption heat pump is the first type of absorption heat in any of the shunt cycles described in items 9-11.
  • add new generator, new absorber, new solution pump and new solution heat exchanger, and the second absorber is thin.
  • the solution line is connected to the second generator via the second solution pump and the second solution heat exchanger to adjust the second absorber to have a dilute solution
  • the pipeline is connected to the newly added absorber through the second solution pump and the new solution heat exchanger, and the new absorber is added to the dilute solution pipeline.
  • the so-called solution pump and the second solution heat exchanger are in communication with the second generator, and the second generator has a concentrated solution line through the second solution heat
  • the exchanger is connected to the second absorber to adjust to a second generator having a concentrated solution line through the second solution heat exchanger and newly occurring
  • the device is connected, the new generator is further connected with the concentrated solution heat exchanger and the second absorber through the new solution heat exchanger, and the new generator is also added.
  • a refrigerant vapor passage is connected to the newly added absorber, and the refrigerant vapor passage of the generator and the steam distribution chamber is connected to the second generator.
  • the second generator further has a refrigerant liquid pipeline connected to the evaporator through the throttle valve to adjust the generator and the steam distribution chamber to have a refrigerant vapor passage
  • a new generator is added, and then a refrigerant liquid pipeline is connected to the evaporator through the throttle valve.
  • the newly added absorber and the medium to be heated are connected to the outside to form a first-stage absorption heat pump of the bypass cycle; Add a new throttle valve, connect the generator and the steam compartment with a refrigerant vapor passage in turn to connect the second generator and add a new generator.
  • the generator and the refrigerant liquid pipeline are connected to the evaporator through the throttle valve to be changed to: the generator and the steam distribution chamber have a solvent vapor passage
  • the second generator is further connected with the refrigerant liquid pipeline through the throttle valve, and the generator and the steam distribution chamber are also steamed.
  • the steam passage is connected to the new generator, the new generator is added, and the refrigerant liquid pipeline is connected to the evaporator through the newly added throttle valve.
  • Shunt cycle type I absorption heat pump is the first in any of the branching cycles described in items 1, 5-8 and 12-14.
  • absorption-type heat pump add new generator, add absorber, add second absorber, add solution pump, add second Solution pump, new solution heat exchanger, new second solution heat exchanger, new solution throttle valve and new steam separation chamber
  • the second absorber has a dilute solution pipeline connected to the second solution heat exchanger via the second solution pump to adjust the second absorber to have a dilute solution
  • the pipeline is connected to the newly added second absorber via the second solution pump and the new solution heat exchanger, and the second absorber and the dilute solution are added.
  • the pipeline is connected to the newly added absorber through the new solution pump and the newly added second solution heat exchanger, and the new absorber and the dilute solution pipeline are added.
  • the second solution pump is connected to the second solution heat exchanger, and the second solution heat exchanger has a concentrated solution pipeline and a second absorption
  • the device is connected to the second solution heat exchanger, and the concentrated solution pipeline is connected with the newly added generator, and the new generator has a concentrated solution tube.
  • the new solution throttle valve and the newly added absorber are connected with the newly added steam separation chamber, and the new steam separation chamber has a concentrated solution pipeline.
  • the two solution heat exchanger and the new solution heat exchanger are connected to the second absorber, and the new generator has a refrigerant vapor channel and a new one.
  • the absorber is connected, the new steam compartment and the refrigerant vapor passage are connected with the newly added second absorber, and the generator has refrigerant vapor.
  • the second generator is further connected with the refrigerant liquid line through the throttle valve and the evaporator to adjust the generator
  • the refrigerant vapor channel is connected to the second generator in turn and the new generator is added, and then the new generator is added and the refrigerant liquid pipeline is throttled.
  • the valve is connected to the evaporator, and the new absorber or the medium to be heated is connected to the outside, and the second absorber is added.
  • the heat medium pipeline communicates with the outside to form a first-stage absorption heat pump with a bypass circuit; wherein, or a new throttle valve is added, the heat will be sent
  • the refrigerant has a refrigerant vapor channel, which in turn connects the second generator and the new generator, and then adds a new generator and then a refrigerant liquid line.
  • the communication between the throttle valve and the evaporator is changed to: the generator has a vapor channel connected to the second generator, and the second generator has a refrigerant liquid
  • the pipeline is connected to the evaporator via a throttle valve, and the generator and the refrigerant passage are connected to the new generator, and the generator is added with a refrigerant.
  • the liquid line is connected to the evaporator via a new throttle valve.
  • the first type of absorption heat pump is the first type of suction in any of the shunt cycles described in items 2-4, 15-16.
  • add new generator, add absorber, add second absorber, add solution pump, add second solution Pump, new solution heat exchanger, new second solution heat exchanger, new solution throttle and new steam compartment will be the second suction
  • the receiver has a dilute solution pipeline connected to the second solution heat exchanger through the second solution pump to adjust the second absorber to have a dilute solution pipeline
  • the second solution pump and the new solution heat exchanger are connected to the newly added second absorber, and the second absorber and the dilute solution pipeline are added.
  • the new solution pump and the new second solution heat exchanger are connected to the newly added absorber, and the new absorber and the dilute solution pipeline are newly added.
  • the second solution pump is connected to the second solution heat exchanger, and the second solution heat exchanger has a concentrated solution line connected to the second absorber
  • the second solution heat exchanger has a concentrated solution pipeline connected to the newly added generator, and the new generator has a concentrated solution pipeline.
  • the new solution throttle valve and the newly added absorber are connected with the new steam separation chamber, and the new steam separation chamber is added with the concentrated solution pipeline.
  • the liquid heat exchanger and the new solution heat exchanger are in communication with the second absorber, and the new generator has a refrigerant vapor passage and a new suction
  • the receiver is connected, the new steam compartment and the refrigerant vapor passage are connected with the newly added second absorber, and the third generator has refrigerant vapor.
  • the second generator is further connected with the refrigerant liquid pipeline through the throttle valve and the evaporator to adjust to the third
  • the refrigerant has a refrigerant vapor channel, which in turn connects the second generator and the new generator, and then adds a new generator and then a refrigerant liquid line.
  • the throttle valve is connected to the evaporator, and the new absorber or the medium to be heated is connected to the outside, and the second absorber is added.
  • the heated medium pipeline communicates with the outside to form a first-stage absorption heat pump with a bypass circuit; wherein, or a new throttle valve is added,
  • the third generator has a refrigerant vapor channel which is sequentially connected to the second generator and the new generator, and then the new generator is further provided with a refrigerant.
  • the liquid pipeline is connected to the evaporator through the throttle valve and is changed to: the third generator has a solvent vapor passage connected to the second generator and the second occurs
  • the refrigerant liquid line is connected to the evaporator through the throttle valve, and the third generator and the agent steam passage are connected to the new generator.
  • the generator is further connected to the evaporator via a new throttle valve.
  • the first type of absorption heat pump is the first type of absorption heat in any of the shunt cycles described in items 9-11.
  • the second absorber has The dilute solution pipeline is connected to the second generator via the second solution pump and the second solution heat exchanger to adjust to a second absorber
  • the liquid pipeline is connected to the newly added second absorber through the second solution pump and the newly added solution heat exchanger, and the second absorber is added and the second absorber is dissolved.
  • the liquid pipeline is connected to the newly added absorber through the new solution pump and the newly added second solution heat exchanger, and the new absorber has a dilute solution tube.
  • the second solution pump and the second solution heat exchanger are connected to the second generator, and the second generator has a concentrated solution pipeline.
  • the second solution heat exchanger is connected to the second absorber to be adjusted to have a second solution having a concentrated solution line through the second solution heat exchanger Connected with the new generator, the new generator and the concentrated solution pipeline are added with the new solution throttle valve and the new absorber and the new steam separator.
  • the chamber is connected, the new steam compartment is added, and the concentrated solution pipeline is added with the second solution heat exchanger and the new solution heat exchanger and the second suction.
  • the receiver is connected, the new generator and the refrigerant vapor channel are connected with the newly added absorber, and the new steam compartment and the refrigerant vapor channel are added.
  • the second generator Connecting with the newly added second absorber, connecting the generator and the steam distribution chamber with the refrigerant vapor passage and the second generator, the second generator Then, the refrigerant liquid pipeline is connected to the evaporator through the throttle valve to adjust the generator and the steam distribution chamber to have a refrigerant vapor passage in sequence.
  • the generator is further connected with the refrigerant liquid pipeline through the throttle valve and the evaporator, and the absorber is added.
  • the generator and the steam distribution chamber have a vapor channel connected to the second generator, and the second generator is further throttled by the refrigerant liquid pipeline
  • the valve is connected to the evaporator, and the generator and the steam dividing chamber are also connected with the agent steam passage, and the new generator is added to add the generator and then the refrigerant liquid.
  • the pipeline is connected to the evaporator via a new throttle valve.
  • the first type of absorption heat pump is the first type of absorption heat in any of the shunt cycles described in items 1-16.
  • the solution line is connected to the second solution heat exchanger through the second solution pump to adjust the second absorber to have a dilute solution line through the second solution.
  • the liquid pump and the new solution heat exchanger are connected to the newly added absorber, and the new absorber and the dilute solution pipeline are added with the new solution pump and the first
  • the two solution heat exchangers are connected, and the second solution heat exchanger has a concentrated solution line connected to the second absorber to adjust to the second solution.
  • the heat exchanger has a concentrated solution pipeline connected to the newly added generator, and the new generator has a concentrated solution pipeline through the newly added solution heat exchanger.
  • the new generator and the refrigerant vapor channel are connected to the new absorber, and the new generator has a drive.
  • the heat medium pipeline communicates with the outside, and the newly added absorber and the heated medium pipeline communicate with the outside to form a branching cycle. Absorption heat pump.
  • Shunt cycle type I absorption heat pump is the first type of absorption heat in any of the shunt cycles described in items 1-16.
  • the second absorber has The dilute solution pipeline is connected to the second solution heat exchanger through the second solution pump to adjust the second absorber to have a dilute solution pipeline through the second The solution pump and the new solution heat exchanger are connected to the newly added second absorber, and the second absorber and the dilute solution pipeline are newly added.
  • the solution pump and the newly added second solution heat exchanger are connected with the newly added absorber, and the new absorber and the dilute solution pipeline are added by the second.
  • the solution pump is in communication with the second solution heat exchanger, and the second solution heat exchanger has a concentrated solution line connected to the second absorber for adjustment
  • For the second solution heat exchanger there is a concentrated solution pipeline connected with the newly added generator, and the newly added generator and the concentrated solution pipeline are newly dissolved.
  • the liquid throttle valve and the newly added absorber are connected with the newly added steam separation chamber, and the new steam separation chamber is further added with the second solution.
  • the converter and the new solution heat exchanger are connected to the second absorber, and the new generator has a refrigerant vapor channel and a new absorber.
  • the new steam compartment and the refrigerant vapor passage are connected with the newly added second absorber, and the new generator also has a driving heat medium pipeline.
  • a new absorber or a heated medium line Connected to the outside, add a new absorber or a heated medium line to communicate with the outside, add a second absorber and be heated
  • the quality pipeline is connected to the outside to form a first-stage absorption heat pump of the bypass cycle.
  • the first type of absorption heat pump is the first type of suction in any of the branching cycles described in items 8, 14, and 16.
  • a new generator, a new throttle valve and a new solution heat exchanger are added, and the second solution pump is provided with a thin solution tube.
  • the new solution heat exchanger is connected to the newly added generator, and the new generator and the concentrated solution pipeline are added to the new solution heat exchanger.
  • the steam distribution chamber has a refrigerant vapor passage connected with the newly added generator, and then a new generator is added to the refrigerant liquid pipeline through the addition of a throttle valve and The condenser is connected, and the new generator and the refrigerant vapor passage are connected with the condenser to form a first-stage absorption heat pump of the bypass cycle.
  • the first type of absorption heat pump is the first type of suction in any of the branching cycles described in items 8, 14, and 16.
  • the second absorber has a thin solution tube. Passing through the second solution pump and the second solution heat exchanger to communicate with the second generator to adjust to the second absorber having a dilute solution line
  • the second solution pump, the new solution heat exchanger and the second solution heat exchanger are in communication with the second generator, and the separation chamber has a concentrated solution
  • the pipeline is connected to the second absorber through the second solution heat exchanger to adjust the heat exchange between the concentrated solution pipeline and the second solution through the second solution.
  • the device is connected to the newly added generator, and the new generator is connected to the second absorber through the new solution heat exchanger through the new solution heat exchanger.
  • the second generator and the steam distribution chamber have a refrigerant vapor passage connected to the condenser, and the second generator and the steam distribution chamber are cooled by a refrigerant.
  • a new generator is added, and then the refrigerant liquid pipeline is connected to the condenser through the newly added throttle valve, and newly added
  • the burner also has a refrigerant vapor passage communicating with the condenser to form a first-stage absorption heat pump of the bypass cycle.
  • Shunt cycle type I absorption heat pump is the first type of suction in any of the branching cycles described in items 8, 14, and 16.
  • new generators, new throttle valves, new solution heat exchangers and new solution pumps will be added to the second absorption.
  • the dilute solution line is connected to the second generator via the second solution pump and the second solution heat exchanger to adjust the second absorber to have
  • the dilute solution pipeline is connected to the newly added generator through the second solution pump and the second solution heat exchanger, and the new generator has a concentrated solution tube.
  • the new solution pump and the new solution heat exchanger are connected to the second generator, and the concentrated solution line of the steam distribution chamber passes through the second solution.
  • the heat exchanger is connected to the second absorber to be adjusted to have a concentrated solution pipeline in the steam distribution chamber, and the heat of the new solution heat exchanger and the second solution heat
  • the exchanger is in communication with the second absorber, and the second generator and the steam distribution chamber have a refrigerant vapor passage connected to the condenser to be adjusted to a second
  • the generator and the steam distribution chamber have a refrigerant vapor channel connected to the newly added generator, and then a new generator is added to the refrigerant liquid pipeline through the new section.
  • the flow valve is connected to the condenser, and the new generator and the refrigerant vapor passage are connected with the condenser to form a first-stage absorption of the bypass cycle. Heat pump.
  • the first type of absorption heat pump is the first type of absorption heat in any of the shunt cycles described in items 1-33.
  • the evaporator and the second evaporator are combined into one to form a first-stage absorption heat pump of the bypass cycle.
  • Shunt cycle type I absorption heat pump is the first in any of the bypass cycles described in items 1-7, 9-13, and 15 In the absorption-type heat pump, new generators, new absorbers, new throttle valves, new solution heat exchangers, and new solutions are added.
  • the second evaporator has a refrigerant vapor passage connected to the second absorber to adjust to a second evaporator having a cold
  • the vapor channel of the agent is connected with the newly added absorber
  • the second generator has a refrigerant vapor channel connected to the condenser to adjust to the second occurrence
  • the refrigerant has a refrigerant vapor channel connected to the newly added generator, and then a new generator is added, and then the refrigerant liquid pipeline is added with a new throttle valve and a new steaming valve.
  • the generator is connected, the new evaporator and the refrigerant vapor channel are connected with the second absorber, and the new generator and the concentrated solution pipeline are
  • the new solution heat exchanger is connected to the newly added absorber, and the new absorber and the dilute solution pipeline are added with the new solution pump and the new solution.
  • the heat exchanger is connected to the new generator, and the new generator and refrigerant vapor channel are connected to the condenser.
  • the heated medium pipeline communicates with the outside, and the newly added evaporator and the residual heat medium pipeline communicate with the outside to form a bypass cycle first. Absorption heat pump.
  • Shunt cycle type I absorption heat pump is the first type of suction in any of the branching cycles described in items 8, 14, and 16.
  • new generators, new absorbers, new throttle valves, new solution heat exchangers, and new solution pumps are added.
  • a vaporizer connecting the second evaporator with a refrigerant vapor passage and the second absorber to adjust the second evaporator to have a refrigerant steaming
  • the steam passage is connected with the newly added absorber, and the second generator and the steam distribution chamber are connected with the refrigerant vapor passage and the condenser to be adjusted to the second
  • the generator and the steam distribution chamber have a refrigerant vapor channel connected to the newly added generator, and then a new generator is added to the refrigerant liquid pipeline through the new section.
  • the flow valve is connected to the new evaporator, and the new evaporator and the refrigerant vapor channel are connected to the second absorber.
  • the concentrated solution pipeline is connected to the newly added absorber through the new solution heat exchanger, and the new absorber and the dilute solution pipeline are added with the new solution.
  • the pump and the new solution heat exchanger are connected to the new generator.
  • the new generator and the refrigerant vapor channel are connected to the condenser.
  • the absorber is also connected to the outside by the heated medium pipeline, and the new evaporator and the waste heat medium pipeline communicate with the outside to form Shunt cycle first type absorption heat pump.
  • Shunt cycle type I absorption heat pump is the first type of absorption heat in any of the shunt cycles described in items 1-16.
  • the pipeline is connected to the newly added steam compartment through the new solution pump, the new solution heat exchanger and the second absorber, and the new steam compartment is thick.
  • the solution is connected to the newly added absorber through the new solution heat exchanger, and the new steam distribution chamber has a refrigerant vapor channel and a new condenser.
  • the new condenser and the refrigerant liquid pipeline are connected to the new evaporator via a new throttle valve, and the new evaporator and refrigerant vapor are added.
  • the channel is connected to the newly added absorber, and the newly added absorber and the newly added condenser are respectively connected to the outside by the heated medium pipe.
  • the evaporator and the residual heat medium pipeline communicate with the outside to form a first-stage absorption heat pump of the bypass cycle.
  • Shunt cycle type I absorption heat pump is the first type of absorption type in any of the shunt cycles described in items 35-37.
  • the evaporator, the second evaporator and the newly added evaporator are combined into one to form a first-stage absorption heat pump of the bypass cycle.
  • the refrigerant vapor flows through the second generator 2, and the solution heated into it is released and supplies the refrigerant vapor to the condenser 5,
  • the driving heat achieves a second temperature drop in the second solution circulation loop; the refrigerant vapor generated by the second evaporator 7 enters the second suction
  • the receiver 4 is absorbed by the concentrated solution and warmed up, thereby achieving the second utilization of the driving temperature difference.
  • absorber 3 absorber 3, second absorber 4 and condenser 5 jointly provide external heat, and absorber 3 supplies heat for single-effect process, second The absorber 4 and the condenser 5 are heated by a simple double-effect process, and are particularly suitable for a wide temperature range of the heated medium. It is beneficial to improve the thermodynamic perfection of the cycle and obtain a higher performance index.
  • the high temperature part is used for the generator 1, and the driving heat after the temperature is lowered is used for the third round.
  • the generator 14, the third generator 14 and the third absorber 20 constitute a second temperature difference utilization, further increasing the heat of driving Degree of utilization.
  • the third generator 14 and the third absorber 20 constitute a regenerative process, which is driven to the temperature.
  • the poor utilization is reflected in providing the driving heat load to the second generator 2; the newly added generator A and the newly added absorber E constitute a regenerative heat
  • the process can still make the driving temperature difference further utilized, thereby achieving full utilization of the driving temperature difference.
  • Figure 1 is a schematic view showing the first structure and flow of a first-stage absorption heat pump of a shunt cycle according to the present invention.
  • FIG. 2 is a schematic view showing the second structure and flow of the first type absorption heat pump of the shunt cycle according to the present invention.
  • FIG 3 is a schematic view showing the third structure and flow of the first type absorption heat pump of the shunt cycle according to the present invention.
  • FIG. 4 is a schematic view showing the fourth structure and flow of the first type absorption heat pump of the shunt cycle according to the present invention.
  • Figure 5 is a schematic view showing the fifth structure and flow of the first type absorption heat pump of the shunt cycle according to the present invention.
  • FIG. 6 is a schematic view showing the sixth structure and flow of the first type absorption heat pump of the shunt cycle according to the present invention.
  • Figure 7 is a schematic view showing the seventh structure and flow of the first type absorption heat pump of the shunt cycle according to the present invention.
  • Figure 8 is a schematic view showing the eighth structure and flow of the first type absorption heat pump of the shunt cycle according to the present invention.
  • Figure 9 is a schematic view showing the ninth structure and flow of the first type absorption heat pump of the shunt cycle according to the present invention.
  • Figure 10 is a schematic view showing the tenth structure and flow of the first type absorption heat pump of the shunt cycle according to the present invention.
  • Figure 11 is a schematic view showing the eleventh structure and flow of the first type absorption heat pump of the shunt cycle according to the present invention.
  • Figure 12 is a schematic view showing the structure and flow of the twelfth type of the first type of absorption heat pump according to the present invention.
  • Figure 13 is a schematic view showing the thirteenth structure and flow of the first type absorption heat pump of the shunt cycle according to the present invention.
  • Figure 14 is a schematic view showing the 14th structure and flow of the first type absorption heat pump of the shunt cycle according to the present invention.
  • Figure 15 is a schematic view showing the 15th structure and flow of the first type absorption heat pump of the shunt cycle according to the present invention.
  • Figure 16 is a schematic view showing the structure and flow of the sixteenth type of absorption heat pump of the shunt cycle according to the present invention.
  • Figure 17 is a schematic view showing the structure and flow of the seventeenth type of absorption heat pump of the shunt cycle according to the present invention.
  • Figure 18 is a schematic view showing the structure and flow of the 18th type of absorption heat pump of the first type of bypass circuit according to the present invention.
  • Figure 19 is a schematic view showing the 19th structure and flow of the first type absorption heat pump of the shunt cycle according to the present invention.
  • Figure 20 is a schematic view showing the 20th structure and flow of the first type absorption heat pump of the shunt cycle according to the present invention.
  • Figure 21 is a schematic view showing the 21st structure and flow of the first type absorption heat pump of the shunt cycle according to the present invention.
  • Figure 22 is a schematic view showing the 22nd structure and flow of the first type absorption heat pump of the shunt cycle according to the present invention.
  • Figure 23 is a schematic view showing the 23rd structure and flow of the first type absorption heat pump of the shunt cycle according to the present invention.
  • Figure 24 is a schematic view showing the structure and flow of the 24th type of the first type of absorption heat pump according to the present invention.
  • Figure 25 is a schematic view showing the structure and flow of the 25th type of the absorption heat pump of the first type of bypass circuit according to the present invention.
  • Figure 26 is a schematic view showing the structure and flow of the 26th type of absorption heat pump of the first type of bypass circuit according to the present invention.
  • Figure 27 is a schematic view showing the 27th structure and flow of the first type absorption heat pump of the shunt cycle according to the present invention.
  • the shunt cycle first type of absorption heat pump shown in Figure 1 is implemented as follows:
  • the absorber 3 has a dilute solution line connected to the generator 1 via the solution pump 8 and the solution heat exchanger 12, the generator 1 There is also a concentrated solution line connected to the absorber 3 via the solution heat exchanger 12, the generator 1 also has a refrigerant vapor channel and a second hair After the generator 2 is connected, the second generator 2 has a refrigerant liquid pipeline connected to the evaporator 6 via the throttle valve 10, and the evaporator 6 is also cooled.
  • the vapor channel of the agent is in communication with the absorber 3; the second absorber 4 has a dilute solution line exchanged with the second solution pump 9 and the second solution
  • the device 13 is in communication with the second generator 2, and the second generator 2 has a concentrated solution line through the second solution heat exchanger 13 and the second suction
  • the receiver 4 is connected, the second generator 2 has a refrigerant vapor passage communicating with the condenser 5, and the condenser 5 has a refrigerant liquid pipeline.
  • the second throttle valve 11 is in communication with the second evaporator 7, and the second evaporator 7 has a refrigerant vapor passage communicating with the second absorber 4;
  • the generator 1 also has a driving heat medium line communicating with the outside, and the absorber 3, the second absorber 4 and the condenser 5 are respectively The heating medium line is in communication with the outside, and the evaporator 6 and the second evaporator 7 respectively have a residual heat medium line communicating with the outside.
  • the dilute solution of the absorber 3 is heated by the solution pump 8 and the solution heat exchanger 12 to enter the generator 1 after being heated up.
  • the refrigerant vapor generated by the generator 1 serves as a driving heat medium for the second generator 2
  • the concentrated solution of the generator 1 passes through the solution heat exchanger 12 after the exotherm and cooling, enter the absorber 3, absorb the refrigerant vapor and release the heat to the heated medium;
  • the second solution pump 9 and the second solution heat exchanger 13 absorb heat and enter the second generator 2, and the refrigerant vapor flows through the second hair.
  • the burner 2 the solution heated into it is released and supplies the refrigerant vapor to the condenser 5, and the refrigerant flowing through the second generator 2 is steamed. After the steam is cooled into a refrigerant liquid, it is throttled into the evaporator 6 through the throttle valve 10, and the residual heat is absorbed into the refrigerant vapor and supplied to the absorber 3.
  • the concentrated solution of the second generator 2 is heated and cooled by the second solution heat exchanger 13 to enter the second absorber 4, and the refrigerant is vaporized.
  • the steam is exothermic to the heated medium; the refrigerant vapor of the condenser 5 is radiated to the heated medium to form a refrigerant liquid, and the refrigerant of the condenser 5
  • the liquid is throttled and depressurized into the second evaporator 7 through the second throttle valve 11 to absorb the residual heat into the refrigerant vapor and to the second absorber 4
  • a split-cycle first type of absorption heat pump For the formation of a split-cycle first type of absorption heat pump.
  • the shunt cycle first type of absorption heat pump shown in Figure 2 is implemented as follows:
  • the absorber 3 is provided with a dilute solution line through the third solution pump 15 and the third solution heat
  • the exchanger 17 is in communication with a third generator 14, and the third generator 14 has a concentrated solution line via the third solution heat exchanger 17
  • the absorber 3 is connected, and the generator 1 has a refrigerant vapor channel connected to the second generator 2, and the second generator 2 has a refrigerant liquid.
  • the pipeline is connected to the evaporator 6 through the throttle valve 10 to be adjusted to be the generator 1 having the refrigerant vapor passage communicating with the third generator 14
  • the third generator 14 has a refrigerant liquid line connected to the evaporator 6 via the third throttle valve 16, and the third generator 14 also has a refrigerant steaming.
  • the second generator 2 is further connected to the evaporator 6 via the throttle valve 10 via the throttle valve 10.
  • the refrigerant vapor generated by the generator 1 is supplied to the third generator 14 for driving the heat medium, and the absorber 3 A portion of the dilute solution enters the third generator 14 via the third solution pump 15 and the third solution heat exchanger 17, and the refrigerant vapor flows through the first
  • the three generators 14, the solution into which the heat is introduced, are released and the refrigerant is supplied to the second generator 2 - the third generator 14
  • the generated refrigerant vapor is supplied to the second generator 2 as a driving heat medium, and the concentrated solution of the third generator 14 is heated by the third solution
  • the exchanger 17 enters the absorber 3, and the refrigerant vapor flowing through the third generator 14 is released into a refrigerant liquid and then passed through the third throttle valve 16
  • the throttling enters the evaporator 6 to form a shunt cycle first type absorption heat pump.
  • the shunt cycle first type of absorption heat pump shown in Figure 3 is implemented as follows:
  • the third solution heat exchanger 17 is in communication with the absorber 3, and the generator 1 has a refrigerant vapor passage connected to the second generator 2.
  • the generator 1 has a refrigerant vapor pass.
  • the third generator 14 is in communication with the third generator 14, the third generator 14 is further connected to the evaporator 6 via the third throttle valve 16 through the third throttle valve 16 .
  • the third generator 14 also has a refrigerant vapor passage connected to the second generator 2, and the second generator 2 has a refrigerant liquid pipeline traverse section
  • the flow valve 10 is in communication with the evaporator 6.
  • the refrigerant vapor generated by the generator 1 is supplied to the third generator 14 for driving the heat medium, and the absorber 3
  • the dilute solution enters the generator 1 through the solution pump 8, the third solution heat exchanger 17, and the solution heat exchanger 12, and the generator 1 is rich.
  • the solution enters the third generator 14 via the solution heat exchanger 12, and the refrigerant vapor flows through the third generator 14 and is heated therein.
  • the solution releases and supplies refrigerant vapor to the second generator 2 - the refrigerant vapor generated by the third generator 14 is supplied to the second hair
  • the burner 2 serves as a driving heat medium, and the concentrated solution of the third generator 14 enters the absorber 3 through the third solution heat exchanger 17, and flows through
  • the refrigerant vapor of the third generator 14 is released into the refrigerant liquid, and then throttled into the evaporator 6 through the third throttle valve 16 to form a branch circuit. Cycle the first type of absorption heat pump.
  • the second generator 2 After the agent steam passage is in communication with the second generator 2, the second generator 2 has a refrigerant liquid line connected to the evaporator 6 via the throttle valve 10 After adjusting, the generator 1 has a refrigerant vapor passage communicating with the third generator 14, and the third generator 14 has a refrigerant liquid pipeline.
  • the third throttle valve 16 is in communication with the evaporator 6, and the third generator 14 has a refrigerant vapor passage connected to the second generator 2
  • the second generator 2 is further connected to the evaporator 6 via a throttle valve 10 via a refrigerant liquid line.
  • the refrigerant vapor generated by the generator 1 is supplied to the third generator 14 for driving the heat medium, and the absorber 3
  • the dilute solution enters the third generator 14 via the solution pump 8 and the solution heat exchanger 12, and the refrigerant vapor flows through the third generator 14, plus The solution entering the heat is released and supplies the refrigerant vapor to the second generator 2 - the refrigerant vapor generated by the third generator 14
  • the concentrated solution of the third generator 14 is heated by the third solution pump 15 and the third solution
  • the exchanger 17 enters the generator 1, and the concentrated solution of the generator 1 passes through the third solution heat exchanger 17 and the solution heat exchanger 12
  • the refrigerant vapor flowing through the third generator 14 is released into a refrigerant liquid, and then throttled through the third throttle valve 16 to be steamed.
  • the generator 6 forms a shunt cycle first type absorption heat pump.
  • the shunt cycle first type of absorption heat pump shown in Figure 5 is implemented as follows:
  • the dilute solution of the absorber 3 is fed through the solution pump 8, the third solution heat exchanger 17, and the solution heat exchanger 12.
  • the concentrated solution of the generator 1 enters the third generator 14 via the solution heat exchanger 12, and drives the heat medium through the first
  • the three generators 14, the solution heated therein, are released and supply refrigerant vapor to the second condenser 18, the third generator 14
  • the concentrated solution enters the absorber 3 through the third solution heat exchanger 17; the refrigerant vapor of the second condenser 18 exotherms in the heated medium
  • the refrigerant liquid is cooled, and the refrigerant liquid of the second condenser 18 is throttled into the evaporator 6 through the third throttle valve 16 to form a branching cycle.
  • a type of absorption heat pump is used to form a branching cycle.
  • the shunt cycle first type of absorption heat pump shown in Figure 6 is implemented as follows:
  • the second condenser 18 is heated to be connected to the outside. a medium line, the second absorber 4 has a dilute solution line through the second solution pump 9 and the second solution heat exchanger 13 and the second hair
  • the generator 2 is adjusted to be connected to the second absorber 4 having a dilute solution line through the second solution pump 9, the second solution heat exchanger 13 and the
  • the second condenser 18 is in communication with the second generator 2; the dilute solution of the second absorber 4 is heated by the second solution pump 9 and the second solution
  • the heat absorption portion is vaporized and then enters the second generator 2 to form a first type of branching cycle.
  • Absorption heat pump Absorption heat pump.
  • the third generator in the first type of absorption heat pump of the shunt cycle shown in FIG. 1, the third generator, the third solution pump, a third solution heat exchanger and a third absorber, the absorber 3 having a dilute solution line through the solution pump 8 and the solution heat exchanger 12 Connected to the generator 1 to adjust the absorber 3 to have a dilute solution line through the solution pump 8 and the third solution heat exchanger 17 and the third suction
  • the receiver 20 is in communication, and the third absorber 20 has a dilute solution line through the third solution pump 15 and the solution heat exchanger 12 and the generator 1 connected, the generator 1 has a concentrated solution pipeline connected to the absorber 3 through the solution heat exchanger 12 to adjust the generator 1 to be thick
  • the solution line is in communication with the third generator 14 via the solution heat exchanger 12, and the third generator 14 has a concentrated solution line through the third
  • the solution heat exchanger 17 is in communication with the absorber 3, and the third generator 14 also has a refrigerant vapor passage communicating with the third absorber 20.
  • the dilute solution of the absorber 3 enters the third absorber 20 via the solution pump 8 and the third solution heat exchanger 17 Absorbing refrigerant vapor and exothermic to the heated medium, the dilute solution of the third absorber 20 is heat exchanged by the third solution pump 15 and the solution
  • the device 12 enters the generator 1, and the concentrated solution of the generator 1 enters the third generator 14 via the solution heat exchanger 12 to drive the heat medium.
  • the solution into which it is heated is released and provides refrigerant vapor to the third absorber 20, the third occurrence
  • the concentrated solution of the unit 14 enters the absorber 3 via the third solution heat exchanger 17 to form a bypass type first type absorption heat pump.
  • the shunt cycle first type absorption heat pump shown in Figure 8 is implemented as follows:
  • the absorber 3 has a dilute solution line and is heated by the solution pump 8 and the solution
  • the converter 12 is connected to the generator 1 to be adjusted so that the absorber 3 has a dilute solution line through the solution pump 8 and the third solution heat exchanger 17
  • the third absorber 20 is in communication, and the third absorber 20 has a dilute solution line through the third solution pump 15 and the solution heat exchanger 12 and
  • the generator 1 is connected, and the concentrated solution line of the generator 1 is connected to the absorber 3 through the solution heat exchanger 12 to be adjusted into a generator.
  • the concentrated solution line is connected to the third generator 14 via the solution heat exchanger 12, and the third generator 14 has a concentrated solution line.
  • the third generator 14 also has a refrigerant vapor channel and a third absorber 20 communicating; adjusting the second generator 2 having a concentrated solution line through the second solution heat exchanger 13 and the second absorber 4 to
  • the second generator 2 has a concentrated solution line connected to the steam dividing chamber 19 via the third absorber 20, and the split steam chamber 19 has a concentrated solution line.
  • the second solution heat exchanger 13 is in communication with the second absorber 4, and the steam dividing chamber 19 has a refrigerant vapor passage communicating with the condenser 5,
  • the third generator 14 also has a drive heat medium line in communication with the exterior.
  • the dilute solution of the absorber 3 enters the third absorber 20 via the solution pump 8 and the third solution heat exchanger 17 Absorbing the refrigerant vapor and exothermic to the solution flowing therethrough, the dilute solution of the third absorber 20 is passed through the third solution pump 15 and the solution heat
  • the exchanger 12 enters the generator 1, and the concentrated solution of the generator 1 enters the third generator 14 via the solution heat exchanger 12, driving the heat The medium flows through the third generator 14, the solution heated into it is released, and the refrigerant vapor is supplied to the third absorber 20, and the third
  • the concentrated solution of the generator 14 enters the absorber 3 through the third solution heat exchanger 17; the concentrated solution of the second generator 2 flows through the third
  • the absorber 20 and the heat absorbing portion are vaporized and then enter the steam dividing chamber 19, and the concentrated solution of the steam dividing chamber 19 is fed through the second solution heat exchanger 13
  • the refrigerant vapor of the steam dividing chamber 19 enters the condenser 5 to form
  • the shunt cycle first type of absorption heat pump shown in Figure 9 is implemented as follows:
  • the absorber 3 has a dilute solution line through the solution pump 8
  • the solution heat exchanger 12 is connected to the generator 1 to adjust to the absorber 3 having a dilute solution line through the solution pump 8 and the solution heat exchange
  • the device 12 is in communication with the third absorber 20, and the third absorber 20 has a dilute solution line through the second solution throttle valve 22 and the generator 1 connected, the generator 1 has a concentrated solution pipeline connected to the absorber 3 through the solution heat exchanger 12 to adjust the generator 1 to be thick
  • the solution line is in communication with the third generator 14 via the third solution pump 15, and the third generator 14 has a concentrated solution line through the solution section.
  • the flow valve 21 and the third absorber 20 are in communication with the steam dividing chamber 19, and the steam dividing chamber 19 has a concentrated solution line through the solution heat exchanger 12.
  • the third generator 14 also has a refrigerant vapor passage communicating with the third absorber 20 to cool the generator 1
  • the agent steam passage is in communication with the second generator 2
  • the second generator 2 has a refrigerant liquid line connected to the evaporator 6 via the throttle valve 10
  • the second generator 2 is cooled again after the refrigerant 1 and the steam dividing chamber 19 are connected to the second generator 2
  • the agent liquid line communicates with the evaporator 6 via the throttle valve 10, and the third generator 14 also drives the heat medium line to communicate with the outside.
  • the dilute solution of the absorber 3 enters the third absorber 20 through the solution pump 8 and the solution heat exchanger 12, and absorbs The refrigerant vapor is exothermic to the solution flowing therethrough, and the dilute solution of the third absorber 20 is throttled and depressurized by the second solution throttle valve 22.
  • the concentrated solution of the generator 1 enters the third generator 14 via the third solution pump 15, driving the heat medium through the first a three-generator 14, the solution into which it is heated is released and supplies refrigerant vapor to the third absorber 20, the third generator 14
  • the concentrated solution is throttled and depressurized by the solution throttle valve 21, then flows through the third absorber 20, and the heat absorption portion is vaporized and then enters the steam separation chamber 19,
  • the concentrated solution of the steam dividing chamber 19 enters the absorber 3 through the solution heat exchanger 12, and the refrigerant vapor released from the steam dividing chamber 19 is supplied to the first
  • the second generator 2 serves as a driving heat medium to form a split type first absorption heat pump.
  • the shunt cycle first type of absorption heat pump shown in Figure 10 is implemented as follows:
  • the absorber 3 has a dilute solution line through the solution pump 8 and the solution heat exchanger 12 and the generator 1
  • the communication is adjusted so that the absorber 3 has a dilute solution line connected to the third absorber 20 via the solution pump 8 and the solution heat exchanger 12,
  • the triple absorber 20 also has a dilute solution line connected to the third generator 14, and the third generator 14 has a concentrated solution line through the solution.
  • the throttle valve 21 is in communication with the generator 1, and the concentrated solution line of the generator 1 is connected to the absorber 3 via the solution heat exchanger 12
  • the generator 1 has a concentrated solution line connected to the steam dividing chamber 19 via the third absorber 20, and the steam dividing chamber 19 has a concentrated solution line.
  • the solution heat exchanger 12 is in communication with the absorber 3, and the third generator 14 has a refrigerant vapor passage connected to the third absorber 20.
  • the generator 1 has a refrigerant vapor passage communicating with the second generator 2, and the second generator 2 is further throttled by the refrigerant liquid conduit
  • the valve 10 is connected to the evaporator 6 to be adjusted so that the generator 1 and the steam dividing chamber 19 have a refrigerant vapor passage connected to the second generator 2
  • the second generator 2 has a refrigerant liquid pipeline connected to the evaporator 6 via the throttle valve 10, and the third generator 14 also drives the heat medium tube.
  • the road is connected to the outside.
  • the dilute solution of the absorber 3 enters the third absorber 20 through the solution pump 8 and the solution heat exchanger 12, and absorbs The refrigerant vapor is exothermic to the solution flowing therethrough, and the dilute solution of the third absorber 20 enters the third generator 14 to drive the thermal medium.
  • the mass flow is released by the third generator 14, the solution heated therein, and the refrigerant vapor is supplied to the third absorber 20, the third
  • the concentrated solution of the generator 14 is throttled and reduced into the generator 1 through the solution throttle valve 21, and the concentrated solution of the generator 1 flows through the third absorption.
  • the heat absorbing portion enters the steam dividing chamber 19, and the concentrated solution of the steam dividing chamber 19 enters the absorber through the solution heat exchanger 12. 3.
  • the refrigerant vapor released by the steam dividing chamber 19 is supplied to the second generator 2 for driving the heat medium to form a first type of absorption in the bypass cycle. Heat pump.
  • the third generator and the third solution heat are added.
  • the exchanger, the steam dividing chamber and the third absorber, the absorber 3 has a dilute solution line through the solution pump 8 and the solution heat exchanger 12
  • the generator 1 is connected to be adjusted so that the absorber 3 has a dilute solution line through the solution pump 8, the solution heat exchanger 12 and the third solution.
  • the converter 17 is in communication with the third absorber 20, and the third absorber 20 has a dilute solution line in communication with the third generator 14, third
  • the generator 14 further has a concentrated solution line connected to the generator 1 via the third solution heat exchanger 17, and the generator 1 has a concentrated solution tube.
  • the passage solution heat exchanger 12 is connected to the absorber 3 to be adjusted so that the generator 1 has a concentrated solution line through the third absorber 20 and the steam separation
  • the chamber 19 is connected, and the steam dividing chamber 19 has a concentrated solution line communicating with the absorber 3 via the solution heat exchanger 12, and the third generator 14
  • the generator 1 and the steam dividing chamber 19 are After the refrigerant vapor passage is in communication with the second generator 2, the second generator 2 has a refrigerant liquid pipeline through the throttle valve 10 and the evaporator 6
  • the third generator 14 also has a drive heat medium line in communication with the outside.
  • the dilute solution of the absorber 3 is fed through the solution pump 8, the solution heat exchanger 12 and the third solution heat exchanger 17 Into the third absorber 20, absorbing the refrigerant vapor and exothermic to the solution flowing therethrough, the dilute solution of the third absorber 20 enters the first a three-generator 14 that drives the heat medium to flow through the third generator 14, and the solution into which it is heated is released and directed to the third absorber 20 Providing refrigerant vapor, the concentrated solution of the third generator 14 enters the generator 1 through the third solution heat exchanger 17, the generator 1 The concentrated solution flows through the third absorber 20, and the endothermic portion is vaporized and then enters the steam dividing chamber 19, and the concentrated solution of the steam dividing chamber 19 is heated by the solution.
  • the converter 12 enters the absorber 3, and the refrigerant vapor released from the steam dividing chamber 19 is supplied to the second generator 2 to drive the heat medium to form Shunt cycle first type absorption heat pump.
  • the shunt cycle first type of absorption heat pump shown in Figure 12 is implemented as follows:
  • the heat exchanger 12 is connected to the absorber 3 to be adjusted so that the generator 1 has a concentrated solution line through the solution heat exchanger 12 and the third generator. 14 connected, the third generator 14 and the concentrated solution pipeline are connected to the steam distribution chamber 19 via the solution throttle valve 21 and the third absorber 20. Then, the steam dividing chamber 19 has a concentrated solution line communicating with the absorber 3 via the third solution heat exchanger 17, and the third generator 14 is further The refrigerant vapor passage is in communication with the third absorber 20, and the steam dividing chamber 19 and the refrigerant vapor passage are in communication with the second condenser 18.
  • the second condenser 18 also has a refrigerant liquid line connected to the evaporator 6 via the third throttle valve 16, and the third generator 14 also has a drive.
  • the heat medium line communicates with the outside, and the second condenser 18 also has a heated medium line that communicates with the outside.
  • the dilute solution of the absorber 3 enters the third absorber 20 via the solution pump 8 and the third solution heat exchanger 17 Absorbing the refrigerant vapor and exothermic to the solution flowing therethrough, the dilute solution of the third absorber 20 is passed through the third solution pump 15 and the solution heat
  • the exchanger 12 enters the generator 1, and the concentrated solution of the generator 1 enters the third generator 14 via the solution heat exchanger 12, driving the heat
  • the medium flows through the third generator 14, the solution heated into it is released, and the refrigerant vapor is supplied to the third absorber 20, and the third
  • the concentrated solution of the generator 14 is throttled and depressurized by the solution throttle valve 21, then flows through the third absorber 20, and the endothermic portion is vaporized and then advanced.
  • the concentrated solution of the steam dividing chamber 19 enters the absorber 3 through the third solution heat exchanger 17, and the steam dividing chamber 19 is released.
  • the refrigerant vapor enters the second condenser 18, radiates heat to the heated medium to form a refrigerant liquid, and the refrigerant liquid of the second condenser 18 passes through the third
  • the throttle valve 16 is throttled and depressurized, it enters the evaporator 6, absorbs the residual heat into the refrigerant vapor, and supplies it to the absorber 3 to form a branch. Cycle the first type of absorption heat pump.
  • the heat exchanger 17 is in communication with the absorber 3, and the third generator 14 has a refrigerant vapor passage communicating with the third absorber 20,
  • the vapor chamber 19 also has a refrigerant vapor passage communicating with the fourth absorber 24, and the third generator 14 also drives the heat medium conduit and the outer portion.
  • the fourth absorber 24 is further connected to the outside by the medium to be heated.
  • the dilute solution of the absorber 3 enters the fourth absorber 24 via the solution pump 8 and the third solution heat exchanger 17 Absorbing the refrigerant vapor and exothermic to the heated medium, the dilute solution of the fourth absorber 24 is passed through the third solution pump 15 and the fourth solution heat
  • the exchanger 26 enters the third absorber 20, absorbs the refrigerant vapor and exotherms the solution flowing therethrough, the third absorber 20
  • the dilute solution enters the generator 1 through the fourth solution pump 25 and the solution heat exchanger 12, and the concentrated solution of the generator 1 is subjected to solution heat exchange.
  • the device 12 enters the third generator 14, drives the heat medium to flow through the third generator 14, and heats the solution into the solution to release
  • the triple absorber 20 supplies the refrigerant vapor
  • the concentrated solution of the third generator 14 is throttled and reduced by the solution throttle valve 21, and then flows through the first
  • the triple absorber 20 and the heat absorbing portion are vaporized and then enter the steam dividing chamber 19, and the concentrated solution of the steam dividing chamber 19 passes through the fourth solution heat exchanger 26
  • the third solution heat exchanger 17 enters the absorber 3, and the refrigerant vapor released from the steam dividing chamber 19 enters the fourth absorber 24 to form Shunt cycle first type absorption heat pump.
  • the absorber 3 having a dilute solution line passing through the solution pump 8 and the solution heat exchanger 12
  • the device 1 is adjusted to be connected to the absorber 3 with a dilute solution line through the solution pump 8 and the third solution heat exchanger 17 and the fourth absorber 24 Connected, the fourth absorber 24 also has a dilute solution line through the third solution pump 15 and the fourth solution heat exchanger 26 and the third absorption
  • the device 20 is connected, and the third absorber 20 has a dilute solution line through the fourth solution pump 25 and the solution heat exchanger 12 and the generator 1 Connected, the generator 1 has a concentrated solution line connected to the absorber 3 through the solution heat exchanger 12 to adjust the generator 1 to be concentrated
  • the flow valve 21 and the third absorber 20 are in communication with the second steam dividing chamber 23, and the second steam dividing chamber 23 has a concentrated solution line through the fourth solution.
  • the heat exchanger 26 and the third solution heat exchanger 17 are in communication with the absorber 3, and the third generator 14 also has a refrigerant vapor passage and
  • the third absorber 20 is in communication, and the second steam dividing chamber 23 has a refrigerant vapor passage communicating with the fourth absorber 24, which will occur second.
  • the second solution 2 has a concentrated solution line connected to the second absorber 4 via the second solution heat exchanger 13 to be condensed
  • the liquid pipeline communicates with the steam dividing chamber 19 via the fourth absorber 24, and the steam dividing chamber 19 has a concentrated solution pipeline passing through the second solution heat exchanger.
  • 13 is in communication with the second absorber 4, and the steam dividing chamber 19 has a refrigerant vapor passage communicating with the condenser 5, and the third generator 14 is further There is a drive heat medium line that communicates with the outside.
  • the dilute solution of the absorber 3 enters the fourth absorber 24 via the solution pump 8 and the third solution heat exchanger 17 Absorbing the refrigerant vapor and exothermic to the solution flowing therethrough, the dilute solution of the fourth absorber 24 is passed through the third solution pump 15 and the fourth solution
  • the liquid heat exchanger 26 enters the third absorber 20, absorbs the refrigerant vapor and radiates heat to the solution flowing therethrough, and the third absorber 20
  • the dilute solution enters the generator 1 through the fourth solution pump 25 and the solution heat exchanger 12, and the concentrated solution of the generator 1 is heated by the solution.
  • the converter 12 enters the third generator 14, drives the heat medium to flow through the third generator 14, and the solution heated into it is released and directed
  • the third absorber 20 supplies refrigerant vapor, and the concentrated solution of the third generator 14 flows through the solution throttle valve 21 to reduce the pressure and then flows through
  • the third absorber 20 and the heat absorbing portion are vaporized and then enter the second steam dividing chamber 23, and the concentrated solution of the second steam dividing chamber 23 is heated by the fourth solution.
  • the exchanger 26 and the third solution heat exchanger 17 enter the absorber 3, and the refrigerant vapor released from the second steam dividing chamber 23 enters the fourth The absorber 24; the concentrated solution of the second generator 2 flows through the fourth absorber 24, and the heat absorption portion is vaporized and then enters the steam separation chamber 19, The concentrated solution of the vapor chamber 19 enters the second absorber 4 via the second solution heat exchanger 13, and the refrigerant vapor released from the steam dividing chamber 19 enters Into the condenser 5, a split type first absorption heat pump is formed.
  • the shunt cycle first type of absorption heat pump shown in Figure 15 is implemented as follows:
  • the generator 1 has a refrigerant vapor channel connected to the second generator 2, and the second is
  • the burner 2 has a refrigerant liquid pipeline connected to the evaporator 6 through the throttle valve 10 to adjust the generator 1 to have a refrigerant vapor passage and a third
  • the absorber 20 is in communication, and the third absorber 20 has a dilute solution line via the third solution pump 15 and the third solution heat exchanger 17
  • the third generator 14 is in communication, and the third generator 14 has a concentrated solution line through the third solution heat exchanger 17 and the third absorber.
  • the third generator 14 has a refrigerant vapor passage connected to the second generator 2, and the second generator 2 has a refrigerant liquid
  • the pipeline communicates with the evaporator 6 via the throttle valve 10, and the third generator 14 also drives the heat medium pipeline to communicate with the outside, the third suction
  • the receiver 20 is also in communication with the outside by a heated medium line.
  • the refrigerant vapor of the generator 1 enters the third absorber 20, is absorbed by the concentrated solution, and radiates heat to the heated medium.
  • the dilute solution of the third absorber 20 enters the third generator 14 via the third solution pump 15 and the third solution heat exchanger 17, Driving the heat medium through the third generator 14, releasing the solution into which it is heated and supplying the refrigerant vapor to the second generator 2,
  • the concentrated solution of the third generator 14 enters the third absorber 20 via the third solution heat exchanger 17 to form a first type of branching cycle Absorption heat pump.
  • the shunt cycle first type absorption heat pump shown in Figure 16 is implemented as follows:
  • the third absorber 20 is heated to be connected to the outside. a medium pipeline, adding a steam separation chamber, and having a second solution 2 having a concentrated solution pipeline through the second solution heat exchanger 13 and a second absorption
  • the device 4 is connected to be adjusted to have a second solution 2 having a concentrated solution line connected to the steam dividing chamber 19 via the third absorber 20, and the steam dividing chamber 19 Further, the concentrated solution line is connected to the second absorber 4 via the second solution heat exchanger 13, and the steam dividing chamber 19 has a refrigerant vapor channel.
  • the concentrated solution of the second generator 2 flows through the third absorber 20, and the heat absorption portion is vaporized and then enters the steam separation chamber. 19.
  • the concentrated solution of the steam dividing chamber 19 enters the second absorber 4 via the second solution heat exchanger 13, and the refrigerant released from the steam dividing chamber 19 The steam enters the condenser 5 to form a split type first absorption heat pump.
  • the shunt cycle first type of absorption heat pump shown in Figure 17 is implemented as follows:
  • the burner 2 has a refrigerant vapor passage communicating with the condenser 5 to adjust the second generator 2 to have a refrigerant vapor passage and a new generator A After the connection, the generator A is newly added, and then the refrigerant liquid pipeline is connected to the condenser 5 through the newly added throttle valve B, and the new generator A is also cooled.
  • the agent vapor passage is in communication with the condenser 5.
  • the refrigerant vapor generated by the second generator 2 is supplied to the newly added generator A for driving the heat medium, and the second absorption Part of the dilute solution of the device 4 enters the new generator A through the second solution pump 9 and the newly added solution heat exchanger C, and the refrigerant vapor flows through New generator A, the solution heated into it is released and the refrigerant vapor is supplied to the condenser 5, and the new generator A is dissolved.
  • the liquid enters the second absorber 4 through the new solution heat exchanger C, and the refrigerant vapor flowing through the newly added generator A is released into the refrigerant liquid.
  • the new throttle valve B is throttled into the condenser 5 to form a split type first absorption heat pump.
  • the shunt cycle first type of absorption heat pump shown in Figure 18 is implemented as follows:
  • the solution heat exchanger C is in communication with the second absorber 4, and the second generator 2 has a refrigerant vapor passage connected to the condenser 5 for adjustment.
  • the second generator 2 there is a refrigerant vapor channel connected with the newly added generator A, and then the new generator A is added and the refrigerant liquid pipeline is newly added.
  • the throttle valve B is in communication with the condenser 5, and the new generator A and the refrigerant vapor passage are in communication with the condenser 5.
  • the refrigerant vapor generated by the second generator 2 is supplied to the newly added generator A for driving the heat medium, and the second absorption
  • the dilute solution of the device 4 enters the second occurrence via the second solution pump 9, the new solution heat exchanger C and the second solution heat exchanger 13 2, the concentrated solution of the second generator 2 enters the new generator A through the second solution heat exchanger 13, and the refrigerant vapor flows through
  • the generator A the solution heated into it is released and supplies the refrigerant vapor to the condenser 5, and the concentrated solution of the generator A is added.
  • the new solution heat exchanger C enters the second absorber 4, and the refrigerant vapor flowing through the newly added generator A is released into a refrigerant liquid and then passed through a new
  • the throttle valve B is throttled into the condenser 5 to form a split type first absorption heat pump.
  • the second generator 2 there is a refrigerant vapor channel connected with the newly added generator A, and then the new generator A is added and the refrigerant liquid pipeline is newly added.
  • the throttle valve B is in communication with the condenser 5, and the new generator A and the refrigerant vapor passage are in communication with the condenser 5.
  • the refrigerant vapor generated by the second generator 2 is supplied to the newly added generator A for driving the heat medium, and the second absorption
  • the dilute solution of the device 4 enters the new generator A through the second solution pump 9 and the second solution heat exchanger 13, and the refrigerant vapor flows through the new Increasing the generator A, heating the solution into it and releasing the refrigerant vapor to the condenser 5, adding a concentrated solution of the generator A
  • the new solution pump D and the new solution heat exchanger C enter the second generator 2, and the concentrated solution of the second generator 2 is newly dissolved.
  • the liquid heat exchanger C and the second solution heat exchanger 13 enter the second absorber 4, and flow through the refrigerant vapor of the newly added generator A.
  • a first type of absorption heat pump is formed.
  • the shunt cycle first type absorption heat pump shown in Figure 20 is realized as follows:
  • the solution heat exchanger C is in communication with the newly added absorber E, and the new generator A and the refrigerant vapor passage are connected to the second absorber 4,
  • the second generator 2 has a refrigerant liquid pipeline through the throttle valve 10 is connected to the evaporator 6 to adjust to the generator 1 having a refrigerant vapor passage in sequence to connect the second generator 2 and the new generator A
  • the generator A is newly added, and the refrigerant liquid pipeline is connected to the evaporator 6 through the throttle valve 10, and the newly added absorber E is heated.
  • the media line is connected to the outside.
  • the refrigerant vapor generated by the generator 1 is supplied to the second generator 2 and the new generator A is used as a driving heat medium.
  • the dilute solution of the new absorber E is added to the new generator A through the new solution pump D and the new solution heat exchanger C, and the wet refrigerant is steamed.
  • the steam flows through the newly added generator A, the solution heated into it is released, and the refrigerant vapor is supplied to the second absorber 4, and the addition occurs.
  • the concentrated solution of the device A is added to the new absorber E through the new solution heat exchanger C, absorbing the refrigerant vapor and radiating heat to the heated medium.
  • the refrigerant vapor flowing through the newly added generator A is released into the refrigerant liquid, and then throttled into the evaporator 6 through the throttle valve 10 to form a branching path.
  • the first type of absorption heat pump is used as a driving heat medium.
  • the device C is connected to the second absorber 4, and the new generator A and the refrigerant vapor channel are connected with the newly added absorber E, and the generator is 1 after the refrigerant vapor passage is connected with the second generator 2, the second generator 2 has a refrigerant liquid pipeline through the throttle valve 10 and evaporating
  • the device 6 is connected and adjusted to have a refrigerant vapor channel connected to the second generator 2 and the new generator A in turn.
  • the burner A has a refrigerant liquid pipeline connected to the evaporator 6 via the throttle valve 10, and the newly added absorber E has a heated medium pipeline and Externally connected.
  • the refrigerant vapor generated by the generator 1 is supplied to the second generator 2 and the new generator A is used as a driving heat medium.
  • the dilute solution of the second absorber 4 enters the new absorber E and the absorption refrigerant through the second solution pump 9 and the newly added solution heat exchanger C.
  • the new throttle valve is added, and the generator 1 provides the refrigerant vapor to the newly added generator A in two ways, that is, the generator. 1 after the agent vapor channel communicates with the second generator 2, the second generator 2 has a refrigerant liquid pipeline through the throttle valve 10 and the evaporator 6 Connected, generator 1 has a solvent vapor channel connected to add new generator A, then add generator A and then refrigerant liquid pipeline through throttle valve B It is in communication with the evaporator 6, which makes it easy to adjust the thermal load of the new generator A and the new absorber E.
  • the solution heat exchanger H is connected with the newly added absorber E, and the new absorber E is further added to the dilute solution line by adding the second solution pump G and The second solution heat exchanger 13 is in communication, and the second solution heat exchanger 13 has a concentrated solution line connected to the second absorber 4 to be adjusted.
  • the second solution heat exchanger 13 has a concentrated solution line connected to the newly added generator A, and the new generator A has a concentrated solution line.
  • the new solution throttle valve J and the newly added absorber E are connected with the new steam separation chamber I, and the new steam separation chamber I is further provided with a concentrated solution pipeline.
  • the second solution heat exchanger H and the new solution heat exchanger C are connected to the second absorber 4, and the new generator A is also cooled.
  • the vapor channel of the agent is connected with the newly added absorber E, and the newly added steam compartment I and the refrigerant vapor passage are connected with the newly added second absorber F.
  • the second generator 2 has a refrigerant liquid pipeline through the throttle valve 10 is connected to the evaporator 6 to adjust to the generator 1 having a refrigerant vapor passage in sequence to connect the second generator 2 and the new generator A
  • the generator A is newly added, and the refrigerant liquid pipeline is connected to the evaporator 6 through the throttle valve 10, and the absorber E and the second addition are added.
  • the absorber F also has a medium to be heated to communicate with the outside.
  • the refrigerant vapor generated by the generator 1 is supplied to the second generator 2 and the new generator A is used as a driving heat medium.
  • the dilute solution of the second absorber 4 enters the newly added second absorber F through the second solution pump 9 and the newly added solution heat exchanger C, and absorbs The refrigerant vapor is exothermic to the heated medium, and the dilute solution of the second absorber F is newly added through the new solution pump D and the second solution is added.
  • the heat exchanger H enters the newly added absorber E, absorbs the refrigerant vapor, and radiates heat to the heated medium and the solution flowing therethrough, respectively.
  • Adding the dilute solution of the absorber E to the second generator 2 by adding the second solution pump G and the second solution heat exchanger 13 The concentrated solution of the second generator 2 enters the newly added generator A through the second solution heat exchanger 13, and the wet refrigerant vapor flows through the newly occurring A, the solution heated into it is released and the refrigerant vapor is supplied to the newly added absorber E, and the concentrated solution of the generator A is newly added.
  • the new solution throttle valve J is throttled and depressurized and flows through the new absorber E.
  • the heat absorption part is vaporized and then enters the new steam separation chamber I.
  • the concentrated solution of the increased steam chamber I enters the second absorber 4 by adding the second solution heat exchanger H and the new solution heat exchanger C,
  • the refrigerant vapor released from the steam distribution chamber I is added to the newly added second absorber F, and the refrigerant vapor flowing through the newly added generator A is released into heat.
  • the refrigerant liquid is throttled into the evaporator 6 through the throttle valve 10 to form a first-stage absorption heat pump of the bypass cycle.
  • the dilute solution of the second absorber 4 enters the new absorption through the second solution pump 9 and the newly added solution heat exchanger C.
  • E absorbs the refrigerant vapor and exotherms in the heated medium, and adds a dilute solution of the absorber E through the new solution pump D and the second solution
  • the liquid heat exchanger 13 enters the second generator 2
  • the concentrated solution of the second generator 2 enters the second solution heat exchanger 13 Generator A, driving the heat medium to flow through the new generator A, heating the solution into it and releasing it to the newly added absorber E
  • the refrigerant vapor, the new concentrated solution of the generator A is added to the second absorber 4 through the newly added solution heat exchanger C, forming a branching cycle
  • the first type of absorption heat pump is used to the first type of absorption heat pump.
  • the pump D and the newly added second solution heat exchanger H are connected with the newly added absorber E, and the newly added absorber E and the diluted solution pipeline are newly added.
  • the second solution pump G and the second solution heat exchanger 13 are in communication with the second generator 2, and the second generator 2 has a concentrated solution line Connected to the second absorber 4 via the second solution heat exchanger 13 to adjust the second generator 2 to have a concentrated solution line through the second solution.
  • the heat exchanger 13 is connected with the newly added generator A, and the new generator A and the concentrated solution pipeline are added through the new solution throttle valve J and new
  • the absorber E is connected to the newly added steam compartment I, and the new steam compartment I is added to the concentrated solution pipeline by adding the second solution heat exchanger H.
  • the new solution heat exchanger C is connected with the second absorber 4, and the new generator A has a refrigerant vapor channel and a new absorber.
  • E-connected, new steam compartment I and refrigerant vapor channel are connected with the new second absorber F, and the new generator A has a drive.
  • the heat medium pipe is connected to the outside, and the newly added absorber E and the newly added second absorber F also have the heated medium pipe and the outside respectively. Connected.
  • the dilute solution of the second absorber 4 enters the second addition through the second solution pump 9 and the new solution heat exchanger C.
  • the absorber F absorbing the refrigerant vapor and radiating heat to the heated medium, adding a dilute solution of the second absorber F through the new solution pump D
  • adding the second solution heat exchanger H to the newly added absorber E, absorbing the refrigerant vapor and respectively releasing the heat to the heated medium and the flow
  • the diluted solution of the new absorber E is added to the second solution pump G and the second solution heat exchanger 13 to enter the first
  • the second generator 2 the concentrated solution of the second generator 2 enters the newly added generator A through the second solution heat exchanger 13 to drive the heat medium Flowing through the new generator A, heating the solution into it and releasing the refrigerant vapor to the new absorber E, adding a generator
  • the concentrated solution of A is throttled and depressurized by the new solution throttle valve J, and then flows through the newly added absorber E, and the heat absorption
  • the concentrated solution of the new steam separation chamber I is added to the second solution heat exchanger H and the new solution heat exchanger C.
  • the second absorber 4 adds the refrigerant vapor released by the steam separation chamber I into the newly added second absorber F to form a first type of bypass cycle Retractable heat pump.
  • the shunt cycle first type of absorption heat pump shown in Figure 25 is implemented as follows:
  • the refrigerant vapor channel is connected with the newly added generator A, and the new generator A is added.
  • the refrigerant liquid pipeline is connected to the condenser 5 via the newly added throttle valve B, and the new generator A has a refrigerant vapor passage and a condenser 5 through.
  • the refrigerant vapor released by the second generator 2 and the steam dividing chamber 19 is supplied to the newly added generator A for driving the heat medium.
  • the dilute solution of the second absorber 4 enters the new generator A through the second solution pump 9 and the second solution heat exchanger 13 and is cooled.
  • the agent vapor flows through the new generator A, the solution heated into it is released, and the refrigerant vapor is supplied to the condenser 5, and the addition occurs.
  • the concentrated solution of the device A enters the second generator 2 through the addition of the solution pump D and the new solution heat exchanger C, and the concentrated solution of the steam separation chamber 19
  • the liquid enters the second absorber 4 via the new solution heat exchanger C and the second solution heat exchanger 13 to form a first type of branching cycle Absorption heat pump.
  • a refrigerant vapor passage is connected to the second absorber 4, and a new generator A and a concentrated solution pipeline are added to the new solution heat exchanger C.
  • a new generator A and a concentrated solution pipeline are added to the new solution heat exchanger C.
  • the new generator A Connected with the newly added absorber E, added the absorber E and the dilute solution pipeline via the new solution pump D and the new solution heat exchanger C
  • the new generator A and the refrigerant vapor channel are connected to the condenser 5, and the new absorber E is added.
  • the heated medium pipeline communicates with the outside, and the new evaporator K and the residual heat medium pipeline communicate with the outside.
  • the refrigerant vapor generated by the second generator 2 is supplied to the newly added generator A for driving the heat medium, and the second evaporation
  • the refrigerant vapor generated by the device 7 enters the newly added absorber E, is absorbed by the concentrated solution and radiates heat to the heated medium, and adds the absorber E.
  • the dilute solution enters the new generator A through the addition of the solution pump D and the new solution heat exchanger C, and the refrigerant vapor flow occurs newly.
  • Device A the solution heated into it is released and the refrigerant vapor is supplied to the condenser 5, and the concentrated solution of the newly added generator A is newly added.
  • the solution heat exchanger C enters the new absorber E, and the refrigerant vapor flowing through the newly added generator A is released into a refrigerant liquid and then added through the new section.
  • the flow valve B throttles into the newly added evaporator K, absorbs the residual heat into the refrigerant vapor, and supplies it to the second absorber 4 to form a branching cycle.
  • the first type of absorption heat pump is the first type of absorption heat pump.
  • the L and the refrigerant liquid line are connected to the newly added evaporator K via the newly added throttle valve B, and the new evaporator K and the refrigerant vapor channel are added.
  • the newly added absorber E In connection with the newly added absorber E, the newly added absorber E and the newly added condenser L are also respectively connected to the outside by the heated medium pipe.
  • the new evaporator K and the waste heat medium pipeline are connected to the outside.
  • the dilute solution of the newly added absorber E flows through the second after adding the solution pump D and the new solution heat exchanger C.
  • the absorber 4 and the endothermic portion are vaporized and then enter the new steam separation chamber I, and the concentrated solution of the steam distribution chamber I is added to the new solution heat exchanger C.
  • thermodynamic parameters are changed smoothly, the heating parameters can be adjusted, and the heating parameters can be well adapted. Change in condition, resulting in higher thermodynamic perfection.
  • the process with the regenerative heating end can realize the deep utilization of the driving heat source or can increase the temperature of the residual heat. Amplitude, improve heat utilization.
  • thermodynamic parameters are smoothly changed, and the heating parameters can be adjusted. It can better adapt to changes in working conditions and obtain high performance index and thermodynamic perfection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

分路循环第一类吸收式热泵,包括发生器(1)、第二发生器(2)、吸收器(3)、第二吸收器(4)、冷凝器(5)、蒸发器(6)、第二蒸发器(7)、溶液泵(8)、第二溶液泵(9)、节流阀(10)、第二节流阀(11)、溶液热交换器(12)和第二溶液热交换器(13)。吸收器(3)经溶液泵(8)和溶液热交换器(12)与发生器(1)连通,发生器(1)经溶液热交换器(12)与吸收器(3)连通,发生器(1)还有冷剂蒸汽通道与第二发生器(2)连通后第二发生器(2)再经节流阀(10)与蒸发器(6)连通。蒸发器(6)有冷剂蒸汽通道与吸收器(3)连通。第二吸收器(4)经第二溶液泵(9)、第二溶液热交换器(13)与第二发生器(2)连通。第二发生器(2)还有冷剂蒸汽通道与冷凝器(5)连通,冷凝器(5)经第二节流阀(11)与第二蒸发器(7)连通。第二蒸发器(7)通过冷剂蒸汽通道与第二吸收器(4)连通。发生器(1)还有驱动热介质管路与外部连通,吸收器(3)、第二吸收器(4)和冷凝器(5)还分别有被加热介质管路与外部连通,蒸发器(6)和第二蒸发器(7)还分别有余热介质管路与外部连通。

Description

分路循环第一类吸收式热泵 技术领域:
本发明属于低温余热利用与热泵/制冷技术领域。
背景技术:
从温差利用角度看,第一类吸收式热泵以驱动热介质与被加热介质之间的温差作为驱动 力,当驱动温差较大时应采用两次或多次温差利用流程来提高温差利用的程度,从而实现热 能利用的高效化;而从工作介质的角度看,吸收式热泵的工作介质为溶液,受物质性质的限 制,每一种溶液都有其适合的工作范围;这样,当驱动热介质的温度和温降超出了单一溶液 的工作范围时,应该采用不同的溶液进行分路循环来完成对驱动温差的充分利用,即驱动温 差分别在不同的溶液循环回路中加以利用,实现驱动温差利用的合理化。
在考虑充分利用温差的同时,第一类吸收式热泵的循环流程还要实现更多的要求,这些 要求包括:热力学参数平滑变化,供热参数可调节,能够较好地适应工况变化,具有最佳的 性能指数;能够实现对高温热源的深度利用,或利用不同品位的热源以实现其综合利用等。
发明内容:
本发明主要目的是要提供系列分路循环第一类吸收式热泵,采用两路或三路溶液循环, 逐步实现温差的充分利用,具体发明内容分项阐述如下:
1.分路循环第一类吸收式热泵,主要由发生器、第二发生器、吸收器、第二吸收器、 冷凝器、蒸发器、第二蒸发器、溶液泵、第二溶液泵、节流阀、第二节流阀、溶液热交换器 和第二溶液热交换器所组成;吸收器有稀溶液管路经溶液泵和溶液热交换器与发生器连通, 发生器还有浓溶液管路经溶液热交换器与吸收器连通,发生器还有冷剂蒸汽通道与第二发生 器连通后第二发生器再有冷剂液管路经节流阀与蒸发器连通,蒸发器还有冷剂蒸汽通道与吸 收器连通;第二吸收器有稀溶液管路经第二溶液泵和第二溶液热交换器与第二发生器连通, 第二发生器还有浓溶液管路经第二溶液热交换器与第二吸收器连通,第二发生器还有冷剂蒸 汽通道与冷凝器连通,冷凝器还有冷剂液管路经第二节流阀与第二蒸发器连通,第二蒸发器 还有冷剂蒸汽通道与第二吸收器连通;发生器还有驱动热介质管路与外部连通,吸收器、第 二吸收器和冷凝器还分别有被加热介质管路与外部连通,蒸发器和第二蒸发器还分别有余热 介质管路与外部连通,形成分路循环第一类吸收式热泵。
2.分路循环第一类吸收式热泵,是在第1项所述的分路循环第一类吸收式热泵中,增 加第三发生器、第三溶液泵、第三节流阀和第三溶液热交换器,吸收器增设稀溶液管路经第 三溶液泵和第三溶液热交换器与第三发生器连通,第三发生器还有浓溶液管路经第三溶液热 交换器与吸收器连通,将发生器有冷剂蒸汽通道与第二发生器连通后第二发生器再有冷剂液 管路经节流阀与蒸发器连通调整为发生器有冷剂蒸汽通道与第三发生器连通后第三发生器 再有冷剂液管路经第三节流阀与蒸发器连通,第三发生器还有冷剂蒸汽通道与第二发生器连 通后第二发生器再有冷剂液管路经节流阀与蒸发器连通,形成分路循环第一类吸收式热泵。
3.分路循环第一类吸收式热泵,是在第1项所述的分路循环第一类吸收式热泵中,增 加第三发生器、第三节流阀和第三溶液热交换器,将吸收器有稀溶液管路经溶液泵和溶液热 交换器与发生器连通调整为吸收器有稀溶液管路经溶液泵、第三溶液热交换器和溶液热交换 器与发生器连通,将发生器有浓溶液管路经溶液热交换器与吸收器连通调整为发生器有浓溶 液管路经溶液热交换器与第三发生器连通,第三发生器再有浓溶液管路经第三溶液热交换器 与吸收器连通,将发生器有冷剂蒸汽通道与第二发生器连通后第二发生器再有冷剂液管路经 节流阀与蒸发器连通调整为发生器有冷剂蒸汽通道与第三发生器连通后第三发生器再有冷 剂液管路经第三节流阀与蒸发器连通,第三发生器还有冷剂蒸汽通道与第二发生器连通后第 二发生器再有冷剂液管路经节流阀与蒸发器连通,形成分路循环第一类吸收式热泵。
4.分路循环第一类吸收式热泵,是在第1项所述的分路循环第一类吸收式热泵中,增 加第三发生器、第三溶液泵、第三节流阀和第三溶液热交换器,将吸收器有稀溶液管路经溶 液泵和溶液热交换器与发生器连通调整为吸收器有稀溶液管路经溶液泵和溶液热交换器与 第三发生器连通,第三发生器再有浓溶液管路经第三溶液泵和第三溶液热交换器与发生器连 通,将发生器有浓溶液管路经溶液热交换器与吸收器连通调整为发生器有浓溶液管路经第三 溶液热交换器和溶液热交换器与吸收器连通,将发生器有冷剂蒸汽通道与第二发生器连通后 第二发生器再有冷剂液管路经节流阀与蒸发器连通调整为发生器有冷剂蒸汽通道与第三发 生器连通后第三发生器再有冷剂液管路经第三节流阀与蒸发器连通,第三发生器还有冷剂蒸 汽通道与第二发生器连通后第二发生器再有冷剂液管路经节流阀与蒸发器连通,形成分路循 环第一类吸收式热泵。
5.分路循环第一类吸收式热泵,是在第1项所述的分路循环第一类吸收式热泵中,增 加第三发生器、第三节流阀、第三溶液热交换器和第二冷凝器,将吸收器有稀溶液管路经溶 液泵和溶液热交换器与发生器连通调整为吸收器有稀溶液管路经溶液泵、第三溶液热交换器 和溶液热交换器与发生器连通,将发生器有浓溶液管路经溶液热交换器与吸收器连通调整为 发生器有浓溶液管路经溶液热交换器与第三发生器连通,第三发生器再有浓溶液管路经第三 溶液热交换器与吸收器连通,第三发生器还有冷剂蒸汽通道与第二冷凝器连通,第二冷凝器 还有冷剂液管路经第三节流阀与蒸发器连通,第三发生器还有驱动热介质管路与外部连通, 第二冷凝器还有被加热介质管路与外部连通,形成分路循环第一类吸收式热泵。
6.分路循环第一类吸收式热泵,是在第5项所述的分路循环第一类吸收式热泵中,取 消第二冷凝器与外部连通的被加热介质管路,将第二吸收器有稀溶液管路经第二溶液泵和第 二溶液热交换器与第二发生器连通调整为第二吸收器有稀溶液管路经第二溶液泵、第二溶液 热交换器和第二冷凝器与第二发生器连通,形成分路循环第一类吸收式热泵。
7.分路循环第一类吸收式热泵,是在第1项所述的分路循环第一类吸收式热泵中,增 加第三发生器、第三吸收器、第三溶液泵和第三溶液热交换器,将吸收器有稀溶液管路经溶 液泵和溶液热交换器与发生器连通调整为吸收器有稀溶液管路经溶液泵和第三溶液热交换 器与第三吸收器连通,第三吸收器再有稀溶液管路经第三溶液泵和溶液热交换器与发生器连 通,将发生器有浓溶液管路经溶液热交换器与吸收器连通调整为发生器有浓溶液管路经溶液 热交换器与第三发生器连通,第三发生器再有浓溶液管路经第三溶液热交换器与吸收器连 通,第三发生器还有冷剂蒸汽通道与第三吸收器连通,第三发生器还有驱动热介质管路与外 部连通,第三吸收器还有被加热介质管路与外部连通,形成分路循环第一类吸收式热泵。
8.分路循环第一类吸收式热泵,是在第7项所述的分路循环第一类吸收式热泵中,取 消第三吸收器与外部连通的被加热介质管路,增加分汽室,将第二发生器有浓溶液管路经第 二溶液热交换器与第二吸收器连通调整为第二发生器有浓溶液管路经第三吸收器与分汽室 连通,分汽室再有浓溶液管路经第二溶液热交换器与第二吸收器连通,分汽室还有冷剂蒸汽 通道与冷凝器连通,形成分路循环第一类吸收式热泵。
9.分路循环第一类吸收式热泵,是在第1项所述的分路循环第一类吸收式热泵中,增 加第三发生器、第三吸收器、第三溶液泵、分汽室、溶液节流阀和第二溶液节流阀,将吸收 器有稀溶液管路经溶液泵和溶液热交换器与发生器连通调整为吸收器有稀溶液管路经溶液 泵和溶液热交换器与第三吸收器连通,第三吸收器再有稀溶液管路经第二溶液节流阀与发生 器连通,将发生器有浓溶液管路经溶液热交换器与吸收器连通调整为发生器有浓溶液管路经 第三溶液泵与第三发生器连通,第三发生器还有浓溶液管路经溶液节流阀和第三吸收器与分 汽室连通,分汽室再有浓溶液管路经溶液热交换器与吸收器连通,第三发生器还有冷剂蒸汽 通道与第三吸收器连通,将发生器有冷剂蒸汽通道与第二发生器连通后第二发生器再有冷剂 液管路经节流阀与蒸发器连通调整为发生器和分汽室有冷剂蒸汽通道与第二发生器连通后 第二发生器再有冷剂液管路经节流阀与蒸发器连通,第三发生器还有驱动热介质管路与外部 连通,形成分路循环第一类吸收式热泵。
10.分路循环第一类吸收式热泵,是在第1项所述的分路循环第一类吸收式热泵中, 增加第三发生器、第三吸收器、分汽室和溶液节流阀,将吸收器有稀溶液管路经溶液泵和溶 液热交换器与发生器连通调整为吸收器有稀溶液管路经溶液泵和溶液热交换器与第三吸收 器连通,第三吸收器还有稀溶液管路与第三发生器连通,第三发生器再有浓溶液管路经溶液 节流阀与发生器连通,将发生器有浓溶液管路经溶液热交换器与吸收器连通调整为发生器有 浓溶液管路经第三吸收器与分汽室连通,分汽室再有浓溶液管路经溶液热交换器与吸收器连 通,第三发生器还有冷剂蒸汽通道与第三吸收器连通,将发生器有冷剂蒸汽通道与第二发生 器连通后第二发生器再有冷剂液管路经节流阀与蒸发器连通调整为发生器和分汽室有冷剂 蒸汽通道与第二发生器连通后第二发生器再有冷剂液管路经节流阀与蒸发器连通,第三发生 器还有驱动热介质管路与外部连通,形成分路循环第一类吸收式热泵;其中,为方便部件布 置,或增加第三溶液泵,将第三吸收器有稀溶液管路与第三发生器连通调整为第三吸收器有 稀溶液管路经第三溶液泵与第三发生器连通。
11.分路循环第一类吸收式热泵,是在第1项所述的分路循环第一类吸收式热泵中, 增加第三发生器、第三吸收器、第三溶液热交换器和分汽室,将吸收器有稀溶液管路经溶液 泵和溶液热交换器与发生器连通调整为吸收器有稀溶液管路经溶液泵、溶液热交换器和第三 溶液热交换器与第三吸收器连通,第三吸收器还有稀溶液管路与第三发生器连通,第三发生 器再有浓溶液管路经第三溶液热交换器与发生器连通,将发生器有浓溶液管路经溶液热交换 器与吸收器连通调整为发生器有浓溶液管路经第三吸收器与分汽室连通,分汽室再有浓溶液 管路经溶液热交换器与吸收器连通,第三发生器还有冷剂蒸汽通道与第三吸收器连通,将发 生器有冷剂蒸汽通道与第二发生器连通后第二发生器再有冷剂液管路经节流阀与蒸发器连 通调整为发生器和分汽室有冷剂蒸汽通道与第二发生器连通后第二发生器再有冷剂液管路 经节流阀与蒸发器连通,第三发生器还有驱动热介质管路与外部连通,形成分路循环第一类 吸收式热泵;其中,为方便部件布置,或增加第三溶液泵,将第三吸收器有稀溶液管路与第 三发生器连通调整为第三吸收器有稀溶液管路经第三溶液泵与第三发生器连通。
12.分路循环第一类吸收式热泵,是在第1项所述的分路循环第一类吸收式热泵中, 增加第三发生器、第三吸收器、第三溶液泵、第三溶液热交换器、溶液节流阀、分汽室、第 二冷凝器和第三节流阀,将吸收器有稀溶液管路经溶液泵和溶液热交换器与发生器连通调整 为吸收器有稀溶液管路经溶液泵和第三溶液热交换器与第三吸收器连通,第三吸收器再有稀 溶液管路经第三溶液泵和溶液热交换器与发生器连通,将发生器有浓溶液管路经溶液热交换 器与吸收器连通调整为发生器有浓溶液管路经溶液热交换器与第三发生器连通,第三发生器 还有浓溶液管路经溶液节流阀和第三吸收器与分汽室连通,分汽室再有浓溶液管路经第三溶 液热交换器与吸收器连通,第三发生器还有冷剂蒸汽通道与第三吸收器连通,分汽室还有冷 剂蒸汽通道与第二冷凝器连通,第二冷凝器还有冷剂液管路经第三节流阀与蒸发器连通,第 三发生器还有驱动热介质管路与外部连通,第二冷凝器还有被加热介质管路与外部连通,第 三吸收器或还有被加热介质管路与外部连通,形成分路循环第一类吸收式热泵。
13.分路循环第一类吸收式热泵,是在第1项所述的分路循环第一类吸收式热泵中, 增加第三发生器、第三吸收器、第四吸收器、第三溶液泵、第四溶液泵、第三溶液热交换器、 第四溶液热交换器、分汽室和溶液节流阀,将吸收器有稀溶液管路经溶液泵和溶液热交换器 与发生器连通调整为吸收器有稀溶液管路经溶液泵和第三溶液热交换器与第四吸收器连通, 第四吸收器还有稀溶液管路经第三溶液泵和第四溶液热交换器与第三吸收器连通,第三吸收 器再有稀溶液管路经第四溶液泵和溶液热交换器与发生器连通,将发生器有浓溶液管路经溶 液热交换器与吸收器连通调整为发生器有浓溶液管路经溶液热交换器与第三发生器连通,第 三发生器还有浓溶液管路经溶液节流阀和第三吸收器与分汽室连通,分汽室再有浓溶液管路 经第四溶液热交换器和第三溶液热交换器与吸收器连通,第三发生器还有冷剂蒸汽通道与第 三吸收器连通,分汽室还有冷剂蒸汽通道与第四吸收器连通,第三发生器还有驱动热介质管 路与外部连通,第四吸收器还有被加热介质管路与外部连通,形成分路循环第一类吸收式热 泵。
14.分路循环第一类吸收式热泵,是在第1项所述的分路循环第一类吸收式热泵中, 增加第三发生器、第三吸收器、第四吸收器、第三溶液泵、第四溶液泵、第三溶液热交换器、 第四溶液热交换器、溶液节流阀、分汽室和第二分汽室,将吸收器有稀溶液管路经溶液泵和 溶液热交换器与发生器连通调整为吸收器有稀溶液管路经溶液泵和第三溶液热交换器与第 四吸收器连通,第四吸收器还有稀溶液管路经第三溶液泵和第四溶液热交换器与第三吸收器 连通,第三吸收器再有稀溶液管路经第四溶液泵和溶液热交换器与发生器连通,将发生器有 浓溶液管路经溶液热交换器与吸收器连通调整为发生器有浓溶液管路经溶液热交换器与第 三发生器连通,第三发生器还有浓溶液管路经溶液节流阀和第三吸收器与第二分汽室连通, 第二分汽室再有浓溶液管路经第四溶液热交换器和第三溶液热交换器与吸收器连通,第三发 生器还有冷剂蒸汽通道与第三吸收器连通,第二分汽室还有冷剂蒸汽通道与第四吸收器连 通,将第二发生器有浓溶液管路经第二溶液热交换器与第二吸收器连通调整为第二发生器有 浓溶液管路经第四吸收器与分汽室连通,分汽室再有浓溶液管路经第二溶液热交换器与第二 吸收器连通,分汽室还有冷剂蒸汽通道与冷凝器连通,第三发生器还有驱动热介质管路与外 部连通,形成分路循环第一类吸收式热泵。
15.分路循环第一类吸收式热泵,是在第1项所述的分路循环第一类吸收式热泵中, 增加第三发生器、第三吸收器、第三溶液泵和第三溶液热交换器,将发生器有冷剂蒸汽通道 与第二发生器连通后第二发生器再有冷剂液管路经节流阀与蒸发器连通调整为发生器有冷 剂蒸汽通道与第三吸收器连通,第三吸收器还有稀溶液管路经第三溶液泵和第三溶液热交换 器与第三发生器连通,第三发生器还有浓溶液管路经第三溶液热交换器与第三吸收器连通, 第三发生器还有冷剂蒸汽通道与第二发生器连通后第二发生器再有冷剂液管路经节流阀与 蒸发器连通,第三发生器还有驱动热介质管路与外部连通,第三吸收器还有被加热介质管路 与外部连通,形成分路循环第一类吸收式热泵。
16.分路循环第一类吸收式热泵,是在第15项所述的分路循环第一类吸收式热泵中, 取消第三吸收器与外部连通的被加热介质管路,增加分汽室,将第二发生器有浓溶液管路经 第二溶液热交换器与第二吸收器连通调整为第二发生器有浓溶液管路经第三吸收器与分汽 室连通,分汽室再有浓溶液管路经第二溶液热交换器与第二吸收器连通,分汽室还有冷剂蒸 汽通道与冷凝器连通,形成分路循环第一类吸收式热泵。
17.分路循环第一类吸收式热泵,是在第1-7、9-13、15项所述的任一分路循环第一 类吸收式热泵中,增加新增发生器、新增节流阀和新增溶液热交换器,第二溶液泵增设稀溶 液管路经新增溶液热交换器与新增发生器连通,新增发生器还有浓溶液管路经新增溶液热交 换器与第二吸收器连通,将第二发生器有冷剂蒸汽通道与冷凝器连通调整为第二发生器有冷 剂蒸汽通道与新增发生器连通后新增发生器再有冷剂液管路经新增节流阀与冷凝器连通,新 增发生器还有冷剂蒸汽通道与冷凝器连通,形成分路循环第一类吸收式热泵。
18.分路循环第一类吸收式热泵,是在第1-7、9-13、15项所述的任一分路循环第一 类吸收式热泵中,增加新增发生器、新增节流阀和新增溶液热交换器,将第二吸收器有稀溶 液管路经第二溶液泵与第二溶液热交换器连通调整为第二吸收器有稀溶液管路经第二溶液 泵和新增溶液热交换器与第二溶液热交换器连通,将第二溶液热交换器有浓溶液管路与第二 吸收器连通调整为第二溶液热交换器有浓溶液管路与新增发生器连通,新增发生器再有浓溶 液管路经新增溶液热交换器与第二吸收器连通,将第二发生器有冷剂蒸汽通道与冷凝器连通 调整为第二发生器有冷剂蒸汽通道与新增发生器连通后新增发生器再有冷剂液管路经新增 节流阀与冷凝器连通,新增发生器还有冷剂蒸汽通道与冷凝器连通,形成分路循环第一类吸 收式热泵。
19.分路循环第一类吸收式热泵,是在第1-5、7、9-13、15项所述的任一分路循环第 一类吸收式热泵中,增加新增发生器、新增节流阀、新增溶液热交换器和新增溶液泵,将第 二吸收器有稀溶液管路经第二溶液泵和第二溶液热交换器与第二发生器连通调整为第二吸 收器有稀溶液管路经第二溶液泵和第二溶液热交换器与新增发生器连通,新增发生器再有浓 溶液管路经新增溶液泵和新增溶液热交换器与第二发生器连通,将第二发生器有浓溶液管路 经第二溶液热交换器与第二吸收器连通调整为第二发生器有浓溶液管路经新增溶液热交换 器和第二溶液热交换器与第二吸收器连通,将第二发生器有冷剂蒸汽通道与冷凝器连通调整 为第二发生器有冷剂蒸汽通道与新增发生器连通后新增发生器再有冷剂液管路经新增节流 阀与冷凝器连通,新增发生器还有冷剂蒸汽通道与冷凝器连通,形成分路循环第一类吸收式 热泵。
20.分路循环第一类吸收式热泵,是在第1、5-8、12-14项所述的任一分路循环第一 类吸收式热泵中,增加新增发生器、新增吸收器、新增溶液热交换器和新增溶液泵,将第二 蒸发器有冷剂蒸汽通道与第二吸收器连通调整为第二蒸发器有冷剂蒸汽通道与新增吸收器 连通,新增吸收器还有稀溶液管路经新增溶液泵和新增溶液热交换器与新增发生器连通,新 增发生器还有浓溶液管路经新增溶液热交换器与新增吸收器连通,新增发生器还有冷剂蒸汽 通道与第二吸收器连通,将发生器有冷剂蒸汽通道与第二发生器连通后第二发生器再有冷剂 液管路经节流阀与蒸发器连通调整为发生器有冷剂蒸汽通道依次连通第二发生器和新增发 生器之后新增发生器再有冷剂液管路经节流阀与蒸发器连通,新增吸收器还有被加热介质管 路与外部连通,形成分路循环第一类吸收式热泵。
21.分路循环第一类吸收式热泵,是在第2-4、15-16项所述的任一分路循环第一类吸 收式热泵中,增加新增发生器、新增吸收器、新增溶液热交换器和新增溶液泵,将第二蒸发 器有冷剂蒸汽通道与第二吸收器连通调整为第二蒸发器有冷剂蒸汽通道与新增吸收器连通, 新增吸收器还有稀溶液管路经新增溶液泵和新增溶液热交换器与新增发生器连通,新增发生 器还有浓溶液管路经新增溶液热交换器与新增吸收器连通,新增发生器还有冷剂蒸汽通道与 第二吸收器连通,将第三发生器有冷剂蒸汽通道与第二发生器连通后第二发生器再有冷剂液 管路经节流阀与蒸发器连通调整为第三发生器有冷剂蒸汽通道依次连通第二发生器和新增 发生器之后新增发生器再有冷剂液管路经节流阀与蒸发器连通,新增吸收器还有被加热介质 管路与外部连通,形成分路循环第一类吸收式热泵。
22.分路循环第一类吸收式热泵,是在第9-11项所述的任一分路循环第一类吸收式热 泵中,增加新增发生器、新增吸收器、新增溶液热交换器和新增溶液泵,将第二蒸发器有冷 剂蒸汽通道与第二吸收器连通调整为第二蒸发器有冷剂蒸汽通道与新增吸收器连通,新增吸 收器还有稀溶液管路经新增溶液泵和新增溶液热交换器与新增发生器连通,新增发生器还有 浓溶液管路经新增溶液热交换器与新增吸收器连通,新增发生器还有冷剂蒸汽通道与第二吸 收器连通,将发生器和分汽室有冷剂蒸汽通道与第二发生器连通后第二发生器再有冷剂液管 路经节流阀与蒸发器连通调整为发生器和分汽室有冷剂蒸汽通道依次连通第二发生器和新 增发生器之后新增发生器再有冷剂液管路经节流阀与蒸发器连通,新增吸收器还有被加热介 质管路与外部连通,形成分路循环第一类吸收式热泵。
23.分路循环第一类吸收式热泵,是在第1、5-8、12-14项所述的任一分路循环第一 类吸收式热泵中,增加新增发生器、新增吸收器、新增溶液泵和新增溶液热交换器,将第二 吸收器有稀溶液管路经第二溶液泵与第二溶液热交换器连通调整为第二吸收器有稀溶液管 路经第二溶液泵和新增溶液热交换器与新增吸收器连通,新增吸收器再有稀溶液管路经新增 溶液泵与第二溶液热交换器连通,将第二溶液热交换器有浓溶液管路与第二吸收器连通调整 为第二溶液热交换器有浓溶液管路与新增发生器连通,新增发生器再有浓溶液管路经新增溶 液热交换器与第二吸收器连通,新增发生器还有冷剂蒸汽通道与新增吸收器连通,将发生器 有冷剂蒸汽通道与第二发生器连通后第二发生器再有冷剂液管路经节流阀与蒸发器连通调 整为发生器有冷剂蒸汽通道依次连通第二发生器和新增发生器之后新增发生器再有冷剂液 管路经节流阀与蒸发器连通,新增吸收器还有被加热介质管路与外部连通,形成分路循环第 一类吸收式热泵;其中,或增加新增节流阀,将发生器有冷剂蒸汽通道依次连通第二发生器 和新增发生器之后新增发生器再有冷剂液管路经节流阀与蒸发器连通变更为:发生器有剂蒸 汽通道连通第二发生器后第二发生器再有冷剂液管路经节流阀与蒸发器连通,发生器还有剂 蒸汽通道连通新增发生器后新增发生器再有冷剂液管路经新增节流阀与蒸发器连通。
24.分路循环第一类吸收式热泵,是在第2-4、15-16项所述的任一分路循环第一类吸 收式热泵中,增加新增发生器、新增吸收器、新增溶液泵和新增溶液热交换器,将第二吸收 器有稀溶液管路经第二溶液泵与第二溶液热交换器连通调整为第二吸收器有稀溶液管路经 第二溶液泵和新增溶液热交换器与新增吸收器连通,新增吸收器再有稀溶液管路经新增溶液 泵与第二溶液热交换器连通,将第二溶液热交换器有浓溶液管路与第二吸收器连通调整为第 二溶液热交换器有浓溶液管路与新增发生器连通,新增发生器再有浓溶液管路经新增溶液热 交换器与第二吸收器连通,新增发生器还有冷剂蒸汽通道与新增吸收器连通,将第三发生器 有冷剂蒸汽通道与第二发生器连通后第二发生器再有冷剂液管路经节流阀与蒸发器连通调 整为第三发生器有冷剂蒸汽通道依次连通第二发生器和新增发生器之后新增发生器再有冷 剂液管路经节流阀与蒸发器连通,新增吸收器还有被加热介质管路与外部连通,形成分路循 环第一类吸收式热泵;其中,或增加新增节流阀,将第三发生器有冷剂蒸汽通道依次连通第 二发生器和新增发生器之后新增发生器再有冷剂液管路经节流阀与蒸发器连通变更为:第三 发生器有剂蒸汽通道连通第二发生器后第二发生器再有冷剂液管路经节流阀与蒸发器连通, 第三发生器还有剂蒸汽通道连通新增发生器后新增发生器再有冷剂液管路经新增节流阀与 蒸发器连通。
25.分路循环第一类吸收式热泵,是在第9-11项所述的任一分路循环第一类吸收式热 泵中,增加新增发生器、新增吸收器、新增溶液泵和新增溶液热交换器,将第二吸收器有稀 溶液管路经第二溶液泵和第二溶液热交换器与第二发生器连通调整为第二吸收器有稀溶液 管路经第二溶液泵和新增溶液热交换器与新增吸收器连通,新增吸收器再有稀溶液管路经新 增溶液泵和第二溶液热交换器与第二发生器连通,将第二发生器有浓溶液管路经第二溶液热 交换器与第二吸收器连通调整为第二发生器有浓溶液管路经第二溶液热交换器与新增发生 器连通,新增发生器再有浓溶液管路经新增溶液热交换器与第二吸收器连通,新增发生器还 有冷剂蒸汽通道与新增吸收器连通,将发生器和分汽室有冷剂蒸汽通道与第二发生器连通后 第二发生器再有冷剂液管路经节流阀与蒸发器连通调整为发生器和分汽室有冷剂蒸汽通道 依次连通第二发生器和新增发生器之后新增发生器再有冷剂液管路经节流阀与蒸发器连通, 新增吸收器还有被加热介质管路与外部连通,形成分路循环第一类吸收式热泵;其中,或增 加新增节流阀,将发生器和分汽室有冷剂蒸汽通道依次连通第二发生器和新增发生器之后新 增发生器再有冷剂液管路经节流阀与蒸发器连通变更为:发生器和分汽室有剂蒸汽通道连通 第二发生器后第二发生器再有冷剂液管路经节流阀与蒸发器连通,发生器和分汽室还有剂蒸 汽通道连通新增发生器后新增发生器再有冷剂液管路经新增节流阀与蒸发器连通。
26.分路循环第一类吸收式热泵,是在第1、5-8、12-14项所述的任一分路循环第一 类吸收式热泵中,增加新增发生器、新增吸收器、新增第二吸收器、新增溶液泵、新增第二 溶液泵、新增溶液热交换器、新增第二溶液热交换器、新增溶液节流阀和新增分汽室,将第 二吸收器有稀溶液管路经第二溶液泵与第二溶液热交换器连通调整为第二吸收器有稀溶液 管路经第二溶液泵和新增溶液热交换器与新增第二吸收器连通,新增第二吸收器还有稀溶液 管路经新增溶液泵和新增第二溶液热交换器与新增吸收器连通,新增吸收器再有稀溶液管路 经新增第二溶液泵与第二溶液热交换器连通,将第二溶液热交换器有浓溶液管路与第二吸收 器连通调整为第二溶液热交换器有浓溶液管路与新增发生器连通,新增发生器还有浓溶液管 路经新增溶液节流阀和新增吸收器与新增分汽室连通,新增分汽室再有浓溶液管路经新增第 二溶液热交换器和新增溶液热交换器与第二吸收器连通,新增发生器还有冷剂蒸汽通道与新 增吸收器连通,新增分汽室还有冷剂蒸汽通道与新增第二吸收器连通,将发生器有冷剂蒸汽 通道与第二发生器连通后第二发生器再有冷剂液管路经节流阀与蒸发器连通调整为发生器 有冷剂蒸汽通道依次连通第二发生器和新增发生器之后新增发生器再有冷剂液管路经节流 阀与蒸发器连通,新增吸收器或还有被加热介质管路与外部连通,新增第二吸收器还有被加 热介质管路与外部连通,形成分路循环第一类吸收式热泵;其中,或增加新增节流阀,将发 生器有冷剂蒸汽通道依次连通第二发生器和新增发生器之后新增发生器再有冷剂液管路经 节流阀与蒸发器连通变更为:发生器有剂蒸汽通道连通第二发生器后第二发生器再有冷剂液 管路经节流阀与蒸发器连通,发生器还有剂蒸汽通道连通新增发生器后新增发生器再有冷剂 液管路经新增节流阀与蒸发器连通。
27.分路循环第一类吸收式热泵,是在第2-4、15-16项所述的任一分路循环第一类吸 收式热泵中,增加新增发生器、新增吸收器、新增第二吸收器、新增溶液泵、新增第二溶液 泵、新增溶液热交换器、新增第二溶液热交换器、新增溶液节流阀和新增分汽室,将第二吸 收器有稀溶液管路经第二溶液泵与第二溶液热交换器连通调整为第二吸收器有稀溶液管路 经第二溶液泵和新增溶液热交换器与新增第二吸收器连通,新增第二吸收器还有稀溶液管路 经新增溶液泵和新增第二溶液热交换器与新增吸收器连通,新增吸收器再有稀溶液管路经新 增第二溶液泵与第二溶液热交换器连通,将第二溶液热交换器有浓溶液管路与第二吸收器连 通调整为第二溶液热交换器有浓溶液管路与新增发生器连通,新增发生器还有浓溶液管路经 新增溶液节流阀和新增吸收器与新增分汽室连通,新增分汽室再有浓溶液管路经新增第二溶 液热交换器和新增溶液热交换器与第二吸收器连通,新增发生器还有冷剂蒸汽通道与新增吸 收器连通,新增分汽室还有冷剂蒸汽通道与新增第二吸收器连通,将第三发生器有冷剂蒸汽 通道与第二发生器连通后第二发生器再有冷剂液管路经节流阀与蒸发器连通调整为第三发 生器有冷剂蒸汽通道依次连通第二发生器和新增发生器之后新增发生器再有冷剂液管路经 节流阀与蒸发器连通,新增吸收器或还有被加热介质管路与外部连通,新增第二吸收器还有 被加热介质管路与外部连通,形成分路循环第一类吸收式热泵;其中,或增加新增节流阀, 将第三发生器有冷剂蒸汽通道依次连通第二发生器和新增发生器之后新增发生器再有冷剂 液管路经节流阀与蒸发器连通变更为:第三发生器有剂蒸汽通道连通第二发生器后第二发生 器再有冷剂液管路经节流阀与蒸发器连通,第三发生器还有剂蒸汽通道连通新增发生器后新 增发生器再有冷剂液管路经新增节流阀与蒸发器连通。
28.分路循环第一类吸收式热泵,是在第9-11项所述的任一分路循环第一类吸收式热 泵中,增加新增发生器、新增吸收器、新增第二吸收器、新增溶液泵、新增第二溶液泵、新 增溶液热交换器、新增第二溶液热交换器、新增溶液节流阀和新增分汽室,将第二吸收器有 稀溶液管路经第二溶液泵和第二溶液热交换器与第二发生器连通调整为第二吸收器有稀溶 液管路经第二溶液泵和新增溶液热交换器与新增第二吸收器连通,新增第二吸收器还有稀溶 液管路经新增溶液泵和新增第二溶液热交换器与新增吸收器连通,新增吸收器再有稀溶液管 路经新增第二溶液泵和第二溶液热交换器与第二发生器连通,将第二发生器有浓溶液管路经 第二溶液热交换器与第二吸收器连通调整为第二发生器有浓溶液管路经第二溶液热交换器 与新增发生器连通,新增发生器还有浓溶液管路经新增溶液节流阀和新增吸收器与新增分汽 室连通,新增分汽室再有浓溶液管路经新增第二溶液热交换器和新增溶液热交换器与第二吸 收器连通,新增发生器还有冷剂蒸汽通道与新增吸收器连通,新增分汽室还有冷剂蒸汽通道 与新增第二吸收器连通,将发生器和分汽室有冷剂蒸汽通道与第二发生器连通后第二发生器 再有冷剂液管路经节流阀与蒸发器连通调整为发生器和分汽室有冷剂蒸汽通道依次连通第 二发生器和新增发生器之后新增发生器再有冷剂液管路经节流阀与蒸发器连通,新增吸收器 或还有被加热介质管路与外部连通,新增第二吸收器还有被加热介质管路与外部连通,形成 分路循环第一类吸收式热泵;其中,或增加新增节流阀,将发生器和分汽室有冷剂蒸汽通道 依次连通第二发生器和新增发生器之后新增发生器再有冷剂液管路经节流阀与蒸发器连通 变更为:发生器和分汽室有剂蒸汽通道连通第二发生器后第二发生器再有冷剂液管路经节流 阀与蒸发器连通,发生器和分汽室还有剂蒸汽通道连通新增发生器后新增发生器再有冷剂液 管路经新增节流阀与蒸发器连通。,
29.分路循环第一类吸收式热泵,是在第1-16项所述的任一分路循环第一类吸收式热 泵中,增加新增发生器、新增吸收器、新增溶液泵和新增溶液热交换器,将第二吸收器有稀 溶液管路经第二溶液泵与第二溶液热交换器连通调整为第二吸收器有稀溶液管路经第二溶 液泵和新增溶液热交换器与新增吸收器连通,新增吸收器再有稀溶液管路经新增溶液泵与第 二溶液热交换器连通,将第二溶液热交换器有浓溶液管路与第二吸收器连通调整为第二溶液 热交换器有浓溶液管路与新增发生器连通,新增发生器再有浓溶液管路经新增溶液热交换器 与第二吸收器连通,新增发生器还有冷剂蒸汽通道与新增吸收器连通,新增发生器还有驱动 热介质管路与外部连通,新增吸收器还有被加热介质管路与外部连通,形成分路循环第一类 吸收式热泵。
30.分路循环第一类吸收式热泵,是在第1-16项所述的任一分路循环第一类吸收式热 泵中,增加新增发生器、新增吸收器、新增第二吸收器、新增溶液泵、新增第二溶液泵、新 增溶液热交换器、新增第二溶液热交换器、新增溶液节流阀和新增分汽室,将第二吸收器有 稀溶液管路经第二溶液泵与第二溶液热交换器连通调整为第二吸收器有稀溶液管路经第二 溶液泵和新增溶液热交换器与新增第二吸收器连通,新增第二吸收器还有稀溶液管路经新增 溶液泵和新增第二溶液热交换器与新增吸收器连通,新增吸收器再有稀溶液管路经新增第二 溶液泵与第二溶液热交换器连通,将第二溶液热交换器有浓溶液管路与第二吸收器连通调整 为第二溶液热交换器有浓溶液管路与新增发生器连通,新增发生器还有浓溶液管路经新增溶 液节流阀和新增吸收器与新增分汽室连通,新增分汽室再有浓溶液管路经新增第二溶液热交 换器和新增溶液热交换器与第二吸收器连通,新增发生器还有冷剂蒸汽通道与新增吸收器连 通,新增分汽室还有冷剂蒸汽通道与新增第二吸收器连通,新增发生器还有驱动热介质管路 与外部连通,新增吸收器或还有被加热介质管路与外部连通,新增第二吸收器还有被加热介 质管路与外部连通,形成分路循环第一类吸收式热泵。
31.分路循环第一类吸收式热泵,是在第8、14、16项所述的任一分路循环第一类吸 收式热泵中,增加新增发生器、新增节流阀和新增溶液热交换器,第二溶液泵增设稀溶液管 路经新增溶液热交换器与新增发生器连通,新增发生器还有浓溶液管路经新增溶液热交换器 与第二吸收器连通,将第二发生器和分汽室有冷剂蒸汽通道与冷凝器连通调整为第二发生器 和分汽室有冷剂蒸汽通道与新增发生器连通后新增发生器再有冷剂液管路经新增节流阀与 冷凝器连通,新增发生器还有冷剂蒸汽通道与冷凝器连通,形成分路循环第一类吸收式热泵。
32.分路循环第一类吸收式热泵,是在第8、14、16项所述的任一分路循环第一类吸 收式热泵中,增加新增发生器、新增节流阀和新增溶液热交换器,将第二吸收器有稀溶液管 路经第二溶液泵和第二溶液热交换器与第二发生器连通调整为第二吸收器有稀溶液管路经 第二溶液泵、新增溶液热交换器和第二溶液热交换器与第二发生器连通,将分汽室有浓溶液 管路经第二溶液热交换器与第二吸收器连通调整为分汽室有浓溶液管路经第二溶液热交换 器与新增发生器连通,新增发生器再有浓溶液管路经新增溶液热交换器与第二吸收器连通, 将第二发生器和分汽室有冷剂蒸汽通道与冷凝器连通调整为第二发生器和分汽室有冷剂蒸 汽通道与新增发生器连通后新增发生器再有冷剂液管路经新增节流阀与冷凝器连通,新增发 生器还有冷剂蒸汽通道与冷凝器连通,形成分路循环第一类吸收式热泵。
33.分路循环第一类吸收式热泵,是在第8、14、16项所述的任一分路循环第一类吸 收式热泵中,增加新增发生器、新增节流阀、新增溶液热交换器和新增溶液泵,将第二吸收 器有稀溶液管路经第二溶液泵和第二溶液热交换器与第二发生器连通调整为第二吸收器有 稀溶液管路经第二溶液泵和第二溶液热交换器与新增发生器连通,新增发生器再有浓溶液管 路经新增溶液泵和新增溶液热交换器与第二发生器连通,将分汽室有浓溶液管路经第二溶液 热交换器与第二吸收器连通调整为分汽室有浓溶液管路经新增溶液热交换器和第二溶液热 交换器与第二吸收器连通,将第二发生器和分汽室有冷剂蒸汽通道与冷凝器连通调整为第二 发生器和分汽室有冷剂蒸汽通道与新增发生器连通后新增发生器再有冷剂液管路经新增节 流阀与冷凝器连通,新增发生器还有冷剂蒸汽通道与冷凝器连通,形成分路循环第一类吸收 式热泵。
34.分路循环第一类吸收式热泵,是在第1-33项所述的任一分路循环第一类吸收式热 泵中,将蒸发器和第二蒸发器合二为一,形成分路循环第一类吸收式热泵。
35.分路循环第一类吸收式热泵,是在第1-7、9-13、15项所述的任一分路循环第一 类吸收式热泵中,增加新增发生器、新增吸收器、新增节流阀、新增溶液热交换器、新增溶 液泵和新增蒸发器,将第二蒸发器有冷剂蒸汽通道与第二吸收器连通调整为第二蒸发器有冷 剂蒸汽通道与新增吸收器连通,将第二发生器有冷剂蒸汽通道与冷凝器连通调整为第二发生 器有冷剂蒸汽通道与新增发生器连通后新增发生器再有冷剂液管路经新增节流阀与新增蒸 发器连通,新增蒸发器还有冷剂蒸汽通道与第二吸收器连通,新增发生器还有浓溶液管路经 新增溶液热交换器与新增吸收器连通,新增吸收器还有稀溶液管路经新增溶液泵和新增溶液 热交换器与新增发生器连通,新增发生器还有冷剂蒸汽通道与冷凝器连通,新增吸收器还有 被加热介质管路与外部连通,新增蒸发器还有余热介质管路与外部连通,形成分路循环第一 类吸收式热泵。
36.分路循环第一类吸收式热泵,是在第8、14、16项所述的任一分路循环第一类吸 收式热泵中,增加新增发生器、新增吸收器、新增节流阀、新增溶液热交换器、新增溶液泵 和新增蒸发器,将第二蒸发器有冷剂蒸汽通道与第二吸收器连通调整为第二蒸发器有冷剂蒸 汽通道与新增吸收器连通,将第二发生器和分汽室有冷剂蒸汽通道与冷凝器连通调整为第二 发生器和分汽室有冷剂蒸汽通道与新增发生器连通后新增发生器再有冷剂液管路经新增节 流阀与新增蒸发器连通,新增蒸发器还有冷剂蒸汽通道与第二吸收器连通,新增发生器还有 浓溶液管路经新增溶液热交换器与新增吸收器连通,新增吸收器还有稀溶液管路经新增溶液 泵和新增溶液热交换器与新增发生器连通,新增发生器还有冷剂蒸汽通道与冷凝器连通,新 增吸收器还有被加热介质管路与外部连通,新增蒸发器还有余热介质管路与外部连通,形成 分路循环第一类吸收式热泵。
37.分路循环第一类吸收式热泵,是在第1-16项所述的任一分路循环第一类吸收式热 泵中,增加新增吸收器、新增节流阀、新增溶液热交换器、新增溶液泵、新增分汽室、新增 冷凝器和新增蒸发器,取消第二吸收器与外部连通的被加热介质管路,新增吸收器有稀溶液 管路经新增溶液泵、新增溶液热交换器和第二吸收器与新增分汽室连通,新增分汽室还有浓 溶液经新增溶液热交换器与新增吸收器连通,新增分汽室还有冷剂蒸汽通道与新增冷凝器连 通,新增冷凝器还有冷剂液管路经新增节流阀与新增蒸发器连通,新增蒸发器还有冷剂蒸汽 通道与新增吸收器连通,新增吸收器和新增冷凝器还分别有被加热介质管路与外部连通,新 增蒸发器还有余热介质管路与外部连通,形成分路循环第一类吸收式热泵。
38.分路循环第一类吸收式热泵,是在第35-37项所述的任一分路循环第一类吸收式 热泵中,将蒸发器、第二蒸发器和新增蒸发器合三为一,形成分路循环第一类吸收式热泵。
下面结合图1、图7和图23所示分路循环第一类吸收式热泵进一步说明本发明的特点 和实质:
①驱动热介质流经发生器1、加热进入其内的溶液释放并向第二发生器2提供冷剂蒸汽, 驱动热在第一个溶液循环回路中进行第一次温降;蒸发器6产生的冷剂蒸汽进入吸收器3、 被浓溶液吸收并升温,从而实现驱动温差的第一次利用。
②冷剂蒸汽流经第二发生器2、加热进入其内的溶液释放并向冷凝器5提供冷剂蒸汽, 驱动热在第二个溶液循环回路中实现第二次温降;第二蒸发器7产生的冷剂蒸汽进入第二吸 收器4、被浓溶液吸收并升温,从而实现驱动温差的第二次利用。
③吸收器3、第二吸收器4和冷凝器5共同对外供热,吸收器3为单效流程供热,第二 吸收器4和冷凝器5为单纯的双效流程供热,特别适合被加热介质温度变化范围宽的情况, 有利于提高循环的热力学完善度,得到较高的性能指数。
④对于驱动热为显热的场合,高温部分用于发生器1,温度降低后的驱动热用于第三发 生器14,第三发生器14和第三吸收器20构成第二次温差利用,进一步增大了对驱动热的 利用程度。
⑤图7与图23相结合,第三发生器14和第三吸收器20构成的回热流程,其对驱动温 差的利用体现在向第二发生器2提供驱动热负荷;新增发生器A和新增吸收器E构成的回热 流程,仍然能够使驱动温差再进一步被利用,从而实现对驱动温差的充分利用。
附图说明:
图1是依据本发明所提供的分路循环第一类吸收式热泵第1种结构和流程示意图。
图2是依据本发明所提供的分路循环第一类吸收式热泵第2种结构和流程示意图。
图3是依据本发明所提供的分路循环第一类吸收式热泵第3种结构和流程示意图。
图4是依据本发明所提供的分路循环第一类吸收式热泵第4种结构和流程示意图。
图5是依据本发明所提供的分路循环第一类吸收式热泵第5种结构和流程示意图。
图6是依据本发明所提供的分路循环第一类吸收式热泵第6种结构和流程示意图。
图7是依据本发明所提供的分路循环第一类吸收式热泵第7种结构和流程示意图。
图8是依据本发明所提供的分路循环第一类吸收式热泵第8种结构和流程示意图。
图9是依据本发明所提供的分路循环第一类吸收式热泵第9种结构和流程示意图。
图10是依据本发明所提供的分路循环第一类吸收式热泵第10种结构和流程示意图。
图11是依据本发明所提供的分路循环第一类吸收式热泵第11种结构和流程示意图。
图12是依据本发明所提供的分路循环第一类吸收式热泵第12种结构和流程示意图。
图13是依据本发明所提供的分路循环第一类吸收式热泵第13种结构和流程示意图。
图14是依据本发明所提供的分路循环第一类吸收式热泵第14种结构和流程示意图。
图15是依据本发明所提供的分路循环第一类吸收式热泵第15种结构和流程示意图。
图16是依据本发明所提供的分路循环第一类吸收式热泵第16种结构和流程示意图。
图17是依据本发明所提供的分路循环第一类吸收式热泵第17种结构和流程示意图。
图18是依据本发明所提供的分路循环第一类吸收式热泵第18种结构和流程示意图。
图19是依据本发明所提供的分路循环第一类吸收式热泵第19种结构和流程示意图。
图20是依据本发明所提供的分路循环第一类吸收式热泵第20种结构和流程示意图。
图21是依据本发明所提供的分路循环第一类吸收式热泵第21种结构和流程示意图。
图22是依据本发明所提供的分路循环第一类吸收式热泵第22种结构和流程示意图。
图23是依据本发明所提供的分路循环第一类吸收式热泵第23种结构和流程示意图。
图24是依据本发明所提供的分路循环第一类吸收式热泵第24种结构和流程示意图。
图25是依据本发明所提供的分路循环第一类吸收式热泵第25种结构和流程示意图。
图26是依据本发明所提供的分路循环第一类吸收式热泵第26种结构和流程示意图。
图27是依据本发明所提供的分路循环第一类吸收式热泵第27种结构和流程示意图。
图中,1-发生器,2-第二发生器,3-吸收器,4-第二吸收器,5-冷凝器,6-蒸发 器,7-第二蒸发器,8-溶液泵,9-第二溶液泵,10-节流阀,11-第二节流阀,12-溶 液热交换器,13-第二溶液热交换器,14-第三发生器,15-第三溶液泵,16-第三节流阀, 17-第三溶液热交换器,18-第二冷凝器,19-分汽室,20-第三吸收器,21-溶液节流阀, 22-第二溶液节流阀,23-第二分汽室,24-第四吸收器,25-第四溶液泵,26-第四溶液 热交换器;A-新增发生器,B-新增节流阀,C-新增溶液热交换器,D-新增溶液泵,E- 新增吸收器,F-新增第二吸收器,G-新增第二溶液泵,H-新增第二溶液热交换器,I-新 增分汽室,J-新增溶液节流阀,K-新增蒸发器,L-新增冷凝器。
具体实施方式:
首先要说明的是,在结构和流程的表述上,非必要情况下不重复进行;对显而易见的流 程不作表述。下面结合附图和实例来详细描述本发明。
图1所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,它主要由发生器、第二发生器、吸收器、第二吸收器、冷凝器、蒸发器、第 二蒸发器、溶液泵、第二溶液泵、节流阀、第二节流阀、溶液热交换器和第二溶液热交换器 所组成;吸收器3有稀溶液管路经溶液泵8和溶液热交换器12与发生器1连通,发生器1 还有浓溶液管路经溶液热交换器12与吸收器3连通,发生器1还有冷剂蒸汽通道与第二发 生器2连通后第二发生器2再有冷剂液管路经节流阀10与蒸发器6连通,蒸发器6还有冷 剂蒸汽通道与吸收器3连通;第二吸收器4有稀溶液管路经第二溶液泵9和第二溶液热交换 器13与第二发生器2连通,第二发生器2还有浓溶液管路经第二溶液热交换器13与第二吸 收器4连通,第二发生器2还有冷剂蒸汽通道与冷凝器5连通,冷凝器5还有冷剂液管路经 第二节流阀11与第二蒸发器7连通,第二蒸发器7还有冷剂蒸汽通道与第二吸收器4连通; 发生器1还有驱动热介质管路与外部连通,吸收器3、第二吸收器4和冷凝器5还分别有被 加热介质管路与外部连通,蒸发器6和第二蒸发器7还分别有余热介质管路与外部连通。
②流程上,吸收器3的稀溶液经溶液泵8和溶液热交换器12吸热升温后进入发生器1, 驱动热介质流经发生器1、加热进入其内的溶液释放并向第二发生器2提供冷剂蒸汽——发 生器1产生的冷剂蒸汽作为第二发生器2的驱动热介质,发生器1的浓溶液经溶液热交换器 12放热降温后进入吸收器3、吸收冷剂蒸汽并放热于被加热介质;第二吸收器4的稀溶液经 第二溶液泵9和第二溶液热交换器13吸热升温后进入第二发生器2,冷剂蒸汽流经第二发 生器2、加热进入其内的溶液释放并向冷凝器5提供冷剂蒸汽,流经第二发生器2的冷剂蒸 汽放热成冷剂液后经节流阀10节流进入蒸发器6、吸收余热成冷剂蒸汽并向吸收器3提供, 第二发生器2的浓溶液经第二溶液热交换器13放热降温后进入第二吸收器4、吸收冷剂蒸 汽并放热于被加热介质;冷凝器5的冷剂蒸汽放热于被加热介质成冷剂液,冷凝器5的冷剂 液经第二节流阀11节流降压进入第二蒸发器7、吸收余热成冷剂蒸汽并向第二吸收器4提 供,形成分路循环第一类吸收式热泵。
图2所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图1所示的分路循环第一类吸收式热泵中,增加第三发生器、第三溶液泵、 第三节流阀和第三溶液热交换器,吸收器3增设稀溶液管路经第三溶液泵15和第三溶液热 交换器17与第三发生器14连通,第三发生器14还有浓溶液管路经第三溶液热交换器17与 吸收器3连通,将发生器1有冷剂蒸汽通道与第二发生器2连通后第二发生器2再有冷剂液 管路经节流阀10与蒸发器6连通调整为发生器1有冷剂蒸汽通道与第三发生器14连通后第 三发生器14再有冷剂液管路经第三节流阀16与蒸发器6连通,第三发生器14还有冷剂蒸 汽通道与第二发生器2连通后第二发生器2再有冷剂液管路经节流阀10与蒸发器6连通。
②流程上,发生器1产生的冷剂蒸汽提供给第三发生器14作驱动热介质,吸收器3的 部分稀溶液经第三溶液泵15和第三溶液热交换器17进入第三发生器14,冷剂蒸汽流经第 三发生器14、加热进入其内的溶液释放并向第二发生器2提供冷剂蒸汽——第三发生器14 产生的冷剂蒸汽提供给第二发生器2作驱动热介质,第三发生器14的浓溶液经第三溶液热 交换器17进入吸收器3,流经第三发生器14的冷剂蒸汽放热成冷剂液后再经第三节流阀16 节流进入蒸发器6,形成分路循环第一类吸收式热泵。
图3所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图1所示的分路循环第一类吸收式热泵中,增加第三发生器、第三节流阀 和第三溶液热交换器,将吸收器3有稀溶液管路经溶液泵8和溶液热交换器12与发生器1 连通调整为吸收器3有稀溶液管路经溶液泵8、第三溶液热交换器17和溶液热交换器12与 发生器1连通,将发生器1有浓溶液管路经溶液热交换器12与吸收器3连通调整为发生器 1有浓溶液管路经溶液热交换器12与第三发生器14连通,第三发生器14再有浓溶液管路 经第三溶液热交换器17与吸收器3连通,将发生器1有冷剂蒸汽通道与第二发生器2连通 后第二发生器2再有冷剂液管路经节流阀10与蒸发器6连通调整为发生器1有冷剂蒸汽通 道与第三发生器14连通后第三发生器14再有冷剂液管路经第三节流阀16与蒸发器6连通, 第三发生器14还有冷剂蒸汽通道与第二发生器2连通后第二发生器2再有冷剂液管路经节 流阀10与蒸发器6连通。
②流程上,发生器1产生的冷剂蒸汽提供给第三发生器14作驱动热介质,吸收器3的 稀溶液经溶液泵8、第三溶液热交换器17和溶液热交换器12进入发生器1,发生器1的浓 溶液经溶液热交换器12进入第三发生器14,冷剂蒸汽流经第三发生器14、加热进入其内的 溶液释放并向第二发生器2提供冷剂蒸汽——第三发生器14产生的冷剂蒸汽提供给第二发 生器2作驱动热介质,第三发生器14的浓溶液经第三溶液热交换器17进入吸收器3,流经 第三发生器14的冷剂蒸汽放热成冷剂液后再经第三节流阀16节流进入蒸发器6,形成分路 循环第一类吸收式热泵。
图4所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图1所示的分路循环第一类吸收式热泵中,增加第三发生器、第三溶液泵、 第三节流阀和第三溶液热交换器,将吸收器3有稀溶液管路经溶液泵8和溶液热交换器12 与发生器1连通调整为吸收器3有稀溶液管路经溶液泵8和第二溶液热交换器12与第三发 生器14连通,第三发生器14再有浓溶液管路经第三溶液泵15和第三溶液热交换器17与发 生器1连通,将发生器1有浓溶液管路经溶液热交换器12与吸收器3连通调整为发生器1 有浓溶液管路经第三溶液热交换器17和溶液热交换器12与吸收器3连通,将发生器1有冷 剂蒸汽通道与第二发生器2连通后第二发生器2再有冷剂液管路经节流阀10与蒸发器6连 通调整为发生器1有冷剂蒸汽通道与第三发生器14连通后第三发生器14再有冷剂液管路经 第三节流阀16与蒸发器6连通,第三发生器14还有冷剂蒸汽通道与第二发生器2连通后第 二发生器2再有冷剂液管路经节流阀10与蒸发器6连通。
②流程上,发生器1产生的冷剂蒸汽提供给第三发生器14作驱动热介质,吸收器3的 稀溶液经溶液泵8和溶液热交换器12进入第三发生器14,冷剂蒸汽流经第三发生器14、加 热进入其内的溶液释放并向第二发生器2提供冷剂蒸汽——第三发生器14产生的冷剂蒸汽 提供给第二发生器2作驱动热介质,第三发生器14的浓溶液经第三溶液泵15和第三溶液热 交换器17进入发生器1,发生器1的浓溶液经第三溶液热交换器17和溶液热交换器12进 入吸收器3,流经第三发生器14的冷剂蒸汽放热成冷剂液后再经第三节流阀16节流进入蒸 发器6,形成分路循环第一类吸收式热泵。
图5所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图1所示的分路循环第一类吸收式热泵中,增加第三发生器、第三节流阀、 第三溶液热交换器和第二冷凝器,将吸收器3有稀溶液管路经溶液泵8和溶液热交换器12 与发生器1连通调整为吸收器3有稀溶液管路经溶液泵8、第三溶液热交换器17和溶液热 交换器12与发生器1连通,将发生器1有浓溶液管路经溶液热交换器12与吸收器3连通调 整为发生器1有浓溶液管路经溶液热交换器12与第三发生器14连通,第三发生器14再有 浓溶液管路经第三溶液热交换器17与吸收器3连通,第三发生器14还有冷剂蒸汽通道与第 二冷凝器18连通,第二冷凝器18还有冷剂液管路经第三节流阀16与蒸发器6连通,第三 发生器14还有驱动热介质管路与外部连通,第二冷凝器18还有被加热介质管路与外部连通。
②流程上,吸收器3的稀溶液经溶液泵8、第三溶液热交换器17和溶液热交换器12进 入发生器1,发生器1的浓溶液经溶液热交换器12进入第三发生器14,驱动热介质流经第 三发生器14、加热进入其内的溶液释放并向第二冷凝器18提供冷剂蒸汽,第三发生器14 的浓溶液经第三溶液热交换器17进入吸收器3;第二冷凝器18的冷剂蒸汽放热于被加热介 质成冷剂液,第二冷凝器18的冷剂液经第三节流阀16节流进入蒸发器6,形成分路循环第 一类吸收式热泵。
图6所示的分路循环第一类吸收式热泵是这样实现的:
在图5所示的分路循环第一类吸收式热泵中,取消第二冷凝器18与外部连通的被加热 介质管路,将第二吸收器4有稀溶液管路经第二溶液泵9和第二溶液热交换器13与第二发 生器2连通调整为第二吸收器4有稀溶液管路经第二溶液泵9、第二溶液热交换器13和第 二冷凝器18与第二发生器2连通;第二吸收器4的稀溶液经第二溶液泵9和第二溶液热交 换器13之后流经第二冷凝器18、吸热部分汽化后进入第二发生器2,形成分路循环第一类 吸收式热泵。
图7所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图1所示的分路循环第一类吸收式热泵中,增加第三发生器、第三溶液泵、 第三溶液热交换器和第三吸收器,将吸收器3有稀溶液管路经溶液泵8和溶液热交换器12 与发生器1连通调整为吸收器3有稀溶液管路经溶液泵8和第三溶液热交换器17与第三吸 收器20连通,第三吸收器20再有稀溶液管路经第三溶液泵15和溶液热交换器12与发生器 1连通,将发生器1有浓溶液管路经溶液热交换器12与吸收器3连通调整为发生器1有浓 溶液管路经溶液热交换器12与第三发生器14连通,第三发生器14再有浓溶液管路经第三 溶液热交换器17与吸收器3连通,第三发生器14还有冷剂蒸汽通道与第三吸收器20连通, 第三发生器14还有驱动热介质管路与外部连通,第三吸收器20还有被加热介质管路与外部 连通。
②流程上,吸收器3的稀溶液经溶液泵8和第三溶液热交换器17进入第三吸收器20、 吸收冷剂蒸汽并放热于被加热介质,第三吸收器20的稀溶液经第三溶液泵15和溶液热交换 器12进入发生器1,发生器1的浓溶液经溶液热交换器12进入第三发生器14,驱动热介质 流经第三发生器14、加热进入其内的溶液释放并向第三吸收器20提供冷剂蒸汽,第三发生 器14的浓溶液经第三溶液热交换器17进入吸收器3,形成分路循环第一类吸收式热泵。
图8所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图1所示的分路循环第一类吸收式热泵中,增加第三发生器、第三溶液泵、 第三溶液热交换器、第三吸收器和分汽室,将吸收器3有稀溶液管路经溶液泵8和溶液热交 换器12与发生器1连通调整为吸收器3有稀溶液管路经溶液泵8和第三溶液热交换器17与 第三吸收器20连通,第三吸收器20再有稀溶液管路经第三溶液泵15和溶液热交换器12与 发生器1连通,将发生器1有浓溶液管路经溶液热交换器12与吸收器3连通调整为发生器 1有浓溶液管路经溶液热交换器12与第三发生器14连通,第三发生器14再有浓溶液管路 经第三溶液热交换器17与吸收器3连通,第三发生器14还有冷剂蒸汽通道与第三吸收器 20连通;将第二发生器2有浓溶液管路经第二溶液热交换器13与第二吸收器4连通调整为 第二发生器2有浓溶液管路经第三吸收器20与分汽室19连通,分汽室19再有浓溶液管路 经第二溶液热交换器13与第二吸收器4连通,分汽室19还有冷剂蒸汽通道与冷凝器5连通, 第三发生器14还有驱动热介质管路与外部连通。
②流程上,吸收器3的稀溶液经溶液泵8和第三溶液热交换器17进入第三吸收器20、 吸收冷剂蒸汽并放热于流经其内的溶液,第三吸收器20的稀溶液经第三溶液泵15和溶液热 交换器12进入发生器1,发生器1的浓溶液经溶液热交换器12进入第三发生器14,驱动热 介质流经第三发生器14、加热进入其内的溶液释放并向第三吸收器20提供冷剂蒸汽,第三 发生器14的浓溶液经第三溶液热交换器17进入吸收器3;第二发生器2的浓溶液流经第三 吸收器20、吸热部分汽化后进入分汽室19,分汽室19的浓溶液经第二溶液热交换器13进 入第二吸收器4,分汽室19的冷剂蒸汽进入冷凝器5,形成分路循环第一类吸收式热泵。
图9所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图1所示的分路循环第一类吸收式热泵中,增加第三发生器、第三吸收器、 第三溶液泵、分汽室、溶液节流阀和第二溶液节流阀,将吸收器3有稀溶液管路经溶液泵8 和溶液热交换器12与发生器1连通调整为吸收器3有稀溶液管路经溶液泵8和溶液热交换 器12与第三吸收器20连通,第三吸收器20再有稀溶液管路经第二溶液节流阀22与发生器 1连通,将发生器1有浓溶液管路经溶液热交换器12与吸收器3连通调整为发生器1有浓 溶液管路经第三溶液泵15与第三发生器14连通,第三发生器14还有浓溶液管路经溶液节 流阀21和第三吸收器20与分汽室19连通,分汽室19再有浓溶液管路经溶液热交换器12 与吸收器3连通,第三发生器14还有冷剂蒸汽通道与第三吸收器20连通,将发生器1有冷 剂蒸汽通道与第二发生器2连通后第二发生器2再有冷剂液管路经节流阀10与蒸发器6连 通调整为发生器1和分汽室19有冷剂蒸汽通道与第二发生器2连通后第二发生器2再有冷 剂液管路经节流阀10与蒸发器6连通,第三发生器14还有驱动热介质管路与外部连通。
②流程上,吸收器3的稀溶液经溶液泵8和溶液热交换器12进入第三吸收器20、吸收 冷剂蒸汽并放热于流经其内的溶液,第三吸收器20的稀溶液经第二溶液节流阀22节流降压 进入发生器1,发生器1的浓溶液经第三溶液泵15进入第三发生器14,驱动热介质流经第 三发生器14、加热进入其内的溶液释放并向第三吸收器20提供冷剂蒸汽,第三发生器14的 浓溶液经溶液节流阀21节流降压之后流经第三吸收器20、吸热部分汽化后进入分汽室19, 分汽室19的浓溶液经溶液热交换器12进入吸收器3,分汽室19释放的冷剂蒸汽提供给第 二发生器2作驱动热介质,形成分路循环第一类吸收式热泵。
图10所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图1所示的分路循环第一类吸收式热泵中,增加第三发生器、第三吸收器、 分汽室和溶液节流阀,将吸收器3有稀溶液管路经溶液泵8和溶液热交换器12与发生器1 连通调整为吸收器3有稀溶液管路经溶液泵8和溶液热交换器12与第三吸收器20连通,第 三吸收器20还有稀溶液管路与第三发生器14连通,第三发生器14再有浓溶液管路经溶液 节流阀21与发生器1连通,将发生器1有浓溶液管路经溶液热交换器12与吸收器3连通调 整为发生器1有浓溶液管路经第三吸收器20与分汽室19连通,分汽室19再有浓溶液管路 经溶液热交换器12与吸收器3连通,第三发生器14还有冷剂蒸汽通道与第三吸收器20连 通,将发生器1有冷剂蒸汽通道与第二发生器2连通后第二发生器2再有冷剂液管路经节流 阀10与蒸发器6连通调整为发生器1和分汽室19有冷剂蒸汽通道与第二发生器2连通后第 二发生器2再有冷剂液管路经节流阀10与蒸发器6连通,第三发生器14还有驱动热介质管 路与外部连通。
②流程上,吸收器3的稀溶液经溶液泵8和溶液热交换器12进入第三吸收器20、吸收 冷剂蒸汽并放热于流经其内的溶液,第三吸收器20的稀溶液进入第三发生器14,驱动热介 质流经第三发生器14、加热进入其内的溶液释放并向第三吸收器20提供冷剂蒸汽,第三发 生器14的浓溶液经溶液节流阀21节流降压进入发生器1,发生器1的浓溶液流经第三吸收 器20、吸热部分汽化后进入分汽室19,分汽室19的浓溶液经溶液热交换器12进入吸收器 3,分汽室19释放的冷剂蒸汽提供给第二发生器2作驱动热介质,形成分路循环第一类吸收 式热泵。
图11所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图1所示的分路循环第一类吸收式热泵中,增加第三发生器、第三溶液热 交换器、分汽室和第三吸收器,将吸收器3有稀溶液管路经溶液泵8和溶液热交换器12与 发生器1连通调整为吸收器3有稀溶液管路经溶液泵8、溶液热交换器12和第三溶液热交 换器17与第三吸收器20连通,第三吸收器20还有稀溶液管路与第三发生器14连通,第三 发生器14再有浓溶液管路经第三溶液热交换器17与发生器1连通,将发生器1有浓溶液管 路经溶液热交换器12与吸收器3连通调整为发生器1有浓溶液管路经第三吸收器20与分汽 室19连通,分汽室19再有浓溶液管路经溶液热交换器12与吸收器3连通,第三发生器14 还有冷剂蒸汽通道与第三吸收器20连通,将发生器1有冷剂蒸汽通道与第二发生器2连通 后第二发生器2再有冷剂液管路经节流阀10与蒸发器6连通调整为发生器1和分汽室19有 冷剂蒸汽通道与第二发生器2连通后第二发生器2再有冷剂液管路经节流阀10与蒸发器6 连通,第三发生器14还有驱动热介质管路与外部连通。
②流程上,吸收器3的稀溶液经溶液泵8、溶液热交换器12和第三溶液热交换器17进 入第三吸收器20、吸收冷剂蒸汽并放热于流经其内的溶液,第三吸收器20的稀溶液进入第 三发生器14,驱动热介质流经第三发生器14、加热进入其内的溶液释放并向第三吸收器20 提供冷剂蒸汽,第三发生器14的浓溶液经第三溶液热交换器17进入发生器1,发生器1的 浓溶液流经第三吸收器20、吸热部分汽化后进入分汽室19,分汽室19的浓溶液经溶液热交 换器12进入吸收器3,分汽室19释放的冷剂蒸汽提供给第二发生器2作驱动热介质,形成 分路循环第一类吸收式热泵。
图12所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图1所示的分路循环第一类吸收式热泵中,增加第三发生器、第三吸收器、 第三溶液泵、第三溶液热交换器、溶液节流阀、分汽室、第二冷凝器和第三节流阀,将吸收 器3有稀溶液管路经溶液泵8和溶液热交换器12与发生器1连通调整为吸收器3有稀溶液 管路经溶液泵8和第三溶液热交换器17与第三吸收器20连通,第三吸收器20再有稀溶液 管路经第三溶液泵15和溶液热交换器12与发生器1连通,将发生器1有浓溶液管路经溶液 热交换器12与吸收器3连通调整为发生器1有浓溶液管路经溶液热交换器12与第三发生器 14连通,第三发生器14还有浓溶液管路经溶液节流阀21和第三吸收器20与分汽室19连 通,分汽室19再有浓溶液管路经第三溶液热交换器17与吸收器3连通,第三发生器14还 有冷剂蒸汽通道与第三吸收器20连通,分汽室19还有冷剂蒸汽通道与第二冷凝器18连通, 第二冷凝器18还有冷剂液管路经第三节流阀16与蒸发器6连通,第三发生器14还有驱动 热介质管路与外部连通,第二冷凝器18还有被加热介质管路与外部连通。
②流程上,吸收器3的稀溶液经溶液泵8和第三溶液热交换器17进入第三吸收器20、 吸收冷剂蒸汽并放热于流经其内的溶液,第三吸收器20的稀溶液经第三溶液泵15和溶液热 交换器12进入发生器1,发生器1的浓溶液经溶液热交换器12进入第三发生器14,驱动热 介质流经第三发生器14、加热进入其内的溶液释放并向第三吸收器20提供冷剂蒸汽,第三 发生器14的浓溶液经溶液节流阀21节流降压之后流经第三吸收器20、吸热部分汽化后进 入分汽室19,分汽室19的浓溶液经第三溶液热交换器17进入吸收器3,分汽室19释放的 冷剂蒸汽进入第二冷凝器18、放热于被加热介质成冷剂液,第二冷凝器18的冷剂液经第三 节流阀16节流降压之后进入蒸发器6、吸收余热成冷剂蒸汽并向吸收器3提供,形成分路 循环第一类吸收式热泵。
图13所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图1所示的分路循环第一类吸收式热泵中,增加第三发生器、第三吸收器、 第四吸收器、第三溶液泵、第四溶液泵、第三溶液热交换器、第四溶液热交换器、分汽室和 溶液节流阀,将吸收器3有稀溶液管路经溶液泵8和溶液热交换器12与发生器1连通调整 为吸收器3有稀溶液管路经溶液泵8和第三溶液热交换器17与第四吸收器24连通,第四吸 收器24还有稀溶液管路经第三溶液泵15和第四溶液热交换器26与第三吸收器20连通,第 三吸收器20再有稀溶液管路经第四溶液泵25和溶液热交换器12与发生器1连通,将发生 器1有浓溶液管路经溶液热交换器12与吸收器3连通调整为发生器1有浓溶液管路经溶液 热交换器12与第三发生器14连通,第三发生器14还有浓溶液管路经溶液节流阀21和第三 吸收器20与分汽室19连通,分汽室19再有浓溶液管路经第四溶液热交换器26和第三溶液 热交换器17与吸收器3连通,第三发生器14还有冷剂蒸汽通道与第三吸收器20连通,分 汽室19还有冷剂蒸汽通道与第四吸收器24连通,第三发生器14还有驱动热介质管路与外 部连通,第四吸收器24还有被加热介质管路与外部连通。
②流程上,吸收器3的稀溶液经溶液泵8和第三溶液热交换器17进入第四吸收器24、 吸收冷剂蒸汽并放热于被加热介质,第四吸收器24的稀溶液经第三溶液泵15和第四溶液热 交换器26进入第三吸收器20、吸收冷剂蒸汽并放热于流经其内的溶液,第三吸收器20的 稀溶液经第四溶液泵25和溶液热交换器12进入发生器1,发生器1的浓溶液经溶液热交换 器12进入第三发生器14,驱动热介质流经第三发生器14、,加热进入其内的溶液释放并向第 三吸收器20提供冷剂蒸汽,第三发生器14的浓溶液经溶液节流阀21节流降压之后流经第 三吸收器20、吸热部分汽化后进入分汽室19,分汽室19的浓溶液经第四溶液热交换器26 和第三溶液热交换器17进入吸收器3,分汽室19释放的冷剂蒸汽进入第四吸收器24,形成 分路循环第一类吸收式热泵。
图14所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图1所示的分路循环第一类吸收式热泵中,增加第三发生器、第三吸收器、 第四吸收器、第三溶液泵、第四溶液泵、第三溶液热交换器、第四溶液热交换器、溶液节流 阀、分汽室和第二分汽室,将吸收器3有稀溶液管路经溶液泵8和溶液热交换器12与发生 器1连通调整为吸收器3有稀溶液管路经溶液泵8和第三溶液热交换器17与第四吸收器24 连通,第四吸收器24还有稀溶液管路经第三溶液泵15和第四溶液热交换器26与第三吸收 器20连通,第三吸收器20再有稀溶液管路经第四溶液泵25和溶液热交换器12与发生器1 连通,将发生器1有浓溶液管路经溶液热交换器12与吸收器3连通调整为发生器1有浓溶 液管路经溶液热交换器12与第三发生器14连通,第三发生器14还有浓溶液管路经溶液节 流阀21和第三吸收器20与第二分汽室23连通,第二分汽室23再有浓溶液管路经第四溶液 热交换器26和第三溶液热交换器17与吸收器3连通,第三发生器14还有冷剂蒸汽通道与 第三吸收器20连通,第二分汽室23还有冷剂蒸汽通道与第四吸收器24连通,将第二发生 器2有浓溶液管路经第二溶液热交换器13与第二吸收器4连通调整为第二发生器2有浓溶 液管路经第四吸收器24与分汽室19连通,分汽室19再有浓溶液管路经第二溶液热交换器 13与第二吸收器4连通,分汽室19还有冷剂蒸汽通道与冷凝器5连通,第三发生器14还 有驱动热介质管路与外部连通。
②流程上,吸收器3的稀溶液经溶液泵8和第三溶液热交换器17进入第四吸收器24、 吸收冷剂蒸汽并放热于流经其内的溶液,第四吸收器24的稀溶液经第三溶液泵15和第四溶 液热交换器26进入第三吸收器20、吸收冷剂蒸汽并放热于流经其内的溶液,第三吸收器20 的稀溶液经第四溶液泵25和溶液热交换器12进入发生器1,发生器1的浓溶液经溶液热交 换器12进入第三发生器14,驱动热介质流经第三发生器14、加热进入其内的溶液释放并向 第三吸收器20提供冷剂蒸汽,第三发生器14的浓溶液经溶液节流阀21节流降压之后流经 第三吸收器20、吸热部分汽化后进入第二分汽室23,第二分汽室23的浓溶液经第四溶液热 交换器26和第三溶液热交换器17进入吸收器3,第二分汽室23释放的冷剂蒸汽进入第四 吸收器24;第二发生器2的浓溶液流经第四吸收器24、吸热部分汽化后进入分汽室19,分 汽室19的浓溶液经第二溶液热交换器13进入第二吸收器4,分汽室19释放的冷剂蒸汽进 入冷凝器5,形成分路循环第一类吸收式热泵。
图15所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图1所示的分路循环第一类吸收式热泵中,增加第三发生器、第三吸收器、 第三溶液泵和第三溶液热交换器,将发生器1有冷剂蒸汽通道与第二发生器2连通后第二发 生器2再有冷剂液管路经节流阀10与蒸发器6连通调整为发生器1有冷剂蒸汽通道与第三 吸收器20连通,第三吸收器20还有稀溶液管路经第三溶液泵15和第三溶液热交换器17与 第三发生器14连通,第三发生器14还有浓溶液管路经第三溶液热交换器17与第三吸收器 20连通,第三发生器14还有冷剂蒸汽通道与第二发生器2连通后第二发生器2再有冷剂液 管路经节流阀10与蒸发器6连通,第三发生器14还有驱动热介质管路与外部连通,第三吸 收器20还有被加热介质管路与外部连通。
②流程上,发生器1的冷剂蒸汽进入第三吸收器20、被浓溶液吸收并放热于被加热介 质,第三吸收器20的稀溶液经第三溶液泵15和第三溶液热交换器17进入第三发生器14, 驱动热介质流经第三发生器14、加热进入其内的溶液释放并向第二发生器2提供冷剂蒸汽, 第三发生器14的浓溶液经第三溶液热交换器17进入第三吸收器20,形成分路循环第一类 吸收式热泵。
图16所示的分路循环第一类吸收式热泵是这样实现的:
在图15所示的分路循环第一类吸收式热泵中,取消第三吸收器20与外部连通的被加热 介质管路,增加分汽室,将第二发生器2有浓溶液管路经第二溶液热交换器13与第二吸收 器4连通调整为第二发生器2有浓溶液管路经第三吸收器20与分汽室19连通,分汽室19 再有浓溶液管路经第二溶液热交换器13与第二吸收器4连通,分汽室19还有冷剂蒸汽通道 与冷凝器5连通;第二发生器2的浓溶液流经第三吸收器20、吸热部分气化后进入分汽室 19,分汽室19的浓溶液经第二溶液热交换器13进入第二吸收器4,分汽室19释放的冷剂 蒸汽进入冷凝器5,形成分路循环第一类吸收式热泵。
图17所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图1所示的分路循环第一类吸收式热泵中,增加新增发生器、新增节流阀 和新增溶液热交换器,第二溶液泵9增设稀溶液管路经新增溶液热交换器C与新增发生器A 连通,新增发生器A还有浓溶液管路经新增溶液热交换器C与第二吸收器4连通,将第二发 生器2有冷剂蒸汽通道与冷凝器5连通调整为第二发生器2有冷剂蒸汽通道与新增发生器A 连通后新增发生器A再有冷剂液管路经新增节流阀B与冷凝器5连通,新增发生器A还有冷 剂蒸汽通道与冷凝器5连通。
②流程上,第二发生器2产生的冷剂蒸汽提供给新增发生器A作驱动热介质,第二吸收 器4的部分稀溶液经第二溶液泵9和新增溶液热交换器C进入新增发生器A,冷剂蒸汽流经 新增发生器A、加热进入其内的溶液释放并向冷凝器5提供冷剂蒸汽,新增发生器A的浓溶 液经新增溶液热交换器C进入第二吸收器4,流经新增发生器A的冷剂蒸汽放热成冷剂液后 经新增节流阀B节流进入冷凝器5,形成分路循环第一类吸收式热泵。
图18所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图1所示的分路循环第一类吸收式热泵中,增加新增发生器、新增节流阀 和新增溶液热交换器,将第二吸收器4有稀溶液管路经第二溶液泵9与第二溶液热交换器 13连通调整为第二吸收器4有稀溶液管路经第二溶液泵9和新增溶液热交换器C与第二溶 液热交换器13连通,将第二溶液热交换器13有浓溶液管路与第二吸收器4连通调整为第二 溶液热交换器13有浓溶液管路与新增发生器A连通,新增发生器A再有浓溶液管路经新增 溶液热交换器C与第二吸收器4连通,将第二发生器2有冷剂蒸汽通道与冷凝器5连通调整 为第二发生器2有冷剂蒸汽通道与新增发生器A连通后新增发生器A再有冷剂液管路经新增 节流阀B与冷凝器5连通,新增发生器A还有冷剂蒸汽通道与冷凝器5连通。
②流程上,第二发生器2产生的冷剂蒸汽提供给新增发生器A作驱动热介质,第二吸收 器4的稀溶液经第二溶液泵9、新增溶液热交换器C和第二溶液热交换器13进入第二发生 器2,第二发生器2的浓溶液经第二溶液热交换器13进入新增发生器A,冷剂蒸汽流经新增 发生器A、加热进入其内的溶液释放并向冷凝器5提供冷剂蒸汽,新增发生器A的浓溶液经 新增溶液热交换器C进入第二吸收器4,流经新增发生器A的冷剂蒸汽放热成冷剂液后经新 增节流阀B节流进入冷凝器5,形成分路循环第一类吸收式热泵。
图19所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图1所示的分路循环第一类吸收式热泵中,增加新增发生器、新增节流阀、 新增溶液热交换器和新增溶液泵,将第二吸收器4有稀溶液管路经第二溶液泵9和第二溶液 热交换器13与第二发生器2连通调整为第二吸收器4有稀溶液管路经第二溶液泵9和第二 溶液热交换器13与新增发生器A连通,新增发生器A再有浓溶液管路经新增溶液泵D和新 增溶液热交换器C与第二发生器2连通,将第二发生器2有浓溶液管路经第二溶液热交换器 13与第二吸收器4连通调整为第二发生器2有浓溶液管路经新增溶液热交换器C和第二溶 液热交换器13与第二吸收器4连通,将第二发生器2有冷剂蒸汽通道与冷凝器5连通调整 为第二发生器2有冷剂蒸汽通道与新增发生器A连通后新增发生器A再有冷剂液管路经新增 节流阀B与冷凝器5连通,新增发生器A还有冷剂蒸汽通道与冷凝器5连通。
②流程上,第二发生器2产生的冷剂蒸汽提供给新增发生器A作驱动热介质,第二吸收 器4的稀溶液经第二溶液泵9和第二溶液热交换器13进入新增发生器A,冷剂蒸汽流经新 增发生器A、加热进入其内的溶液释放并向冷凝器5提供冷剂蒸汽,新增发生器A的浓溶液 经新增溶液泵D和新增溶液热交换器C进入第二发生器2,第二发生器2的浓溶液经新增溶 液热交换器C和第二溶液热交换器13进入第二吸收器4,流经新增发生器A的冷剂蒸汽放 热成冷剂液后经新增节流阀B节流进入冷凝器5,形成分路循环第一类吸收式热泵。
图20所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图1所示的分路循环第一类吸收式热泵中,增加新增发生器、新增吸收器、 新增溶液热交换器和新增溶液泵,将第二蒸发器7有冷剂蒸汽通道与第二吸收器4连通调整 为第二蒸发器7有冷剂蒸汽通道与新增吸收器E连通,新增吸收器E还有稀溶液管路经新增 溶液泵D和新增溶液热交换器C与新增发生器A连通,新增发生器A还有浓溶液管路经新增 溶液热交换器C与新增吸收器E连通,新增发生器A还有冷剂蒸汽通道与第二吸收器4连通, 将发生器1有冷剂蒸汽通道与第二发生器2连通后第二发生器2再有冷剂液管路经节流阀 10与蒸发器6连通调整为发生器1有冷剂蒸汽通道依次连通第二发生器2和新增发生器A 之后新增发生器A再有冷剂液管路经节流阀10与蒸发器6连通,新增吸收器E还有被加热 介质管路与外部连通。
②流程上,发生器1产生的冷剂蒸汽提供给第二发生器2和新增发生器A作驱动热介质, 新增吸收器E的稀溶液经新增溶液泵D和新增溶液热交换器C进入新增发生器A,湿冷剂蒸 汽流经新增发生器A、加热进入其内的溶液释放并向第二吸收器4提供冷剂蒸汽,新增发生 器A的浓溶液经新增溶液热交换器C进入新增吸收器E、吸收冷剂蒸汽并放热于被加热介质, 流经新增发生器A的冷剂蒸汽放热成冷剂液后经节流阀10节流进入蒸发器6,形成分路循 环第一类吸收式热泵。
图21所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图1所示的分路循环第一类吸收式热泵中,增加新增发生器、新增吸收器、 新增溶液泵和新增溶液热交换器,将第二吸收器4有稀溶液管路经第二溶液泵9与第二溶液 热交换器13连通调整为第二吸收器4有稀溶液管路经第二溶液泵9和新增溶液热交换器C 与新增吸收器E连通,新增吸收器E再有稀溶液管路经新增溶液泵D与第二溶液热交换器 13连通,将第二溶液热交换器13有浓溶液管路与第二吸收器4连通调整为第二溶液热交换 器13有浓溶液管路与新增发生器A连通,新增发生器A再有浓溶液管路经新增溶液热交换 器C与第二吸收器4连通,新增发生器A还有冷剂蒸汽通道与新增吸收器E连通,将发生器 1有冷剂蒸汽通道与第二发生器2连通后第二发生器2再有冷剂液管路经节流阀10与蒸发 器6连通调整为发生器1有冷剂蒸汽通道依次连通第二发生器2和新增发生器A之后新增发 生器A再有冷剂液管路经节流阀10与蒸发器6连通,新增吸收器E还有被加热介质管路与 外部连通。
②流程上,发生器1产生的冷剂蒸汽提供给第二发生器2和新增发生器A作驱动热介质, 第二吸收器4的稀溶液经第二溶液泵9和新增溶液热交换器C进入新增吸收器E、吸收冷剂 蒸汽并放热于被加热介质,新增吸收器E的稀溶液经新增溶液泵D和第二溶液热交换器13 进入第二发生器2,第二发生器2的浓溶液经第二溶液热交换器13进入新增发生器A,湿冷 剂蒸汽流经新增发生器A、加热进入其内的溶液释放并向新增吸收器E提供冷剂蒸汽,新增 发生器A的浓溶液经新增溶液热交换器C进入第二吸收器4,流经新增发生器A的冷剂蒸汽 放热成冷剂液后经节流阀10节流进入蒸发器6,形成分路循环第一类吸收式热泵。
本实例中,增加新增节流阀,发生器1分两路向新增发生器A提供冷剂蒸汽,即发生器 1有剂蒸汽通道连通第二发生器2后第二发生器2再有冷剂液管路经节流阀10与蒸发器6 连通,发生器1有剂蒸汽通道连通新增发生器A后新增发生器A再有冷剂液管路经节流阀B 与蒸发器6连通,这样可以便于调节新增发生器A和新增吸收器E的热负荷。
图22所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图1所示的分路循环第一类吸收式热泵中,增加新增发生器、新增吸收器、 新增第二吸收器、新增溶液泵、新增第二溶液泵、新增溶液热交换器、新增第二溶液热交换 器、新增溶液节流阀和新增分汽室,将第二吸收器4有稀溶液管路经第二溶液泵9与第二溶 液热交换器13连通调整为第二吸收器4有稀溶液管路经第二溶液泵9和新增溶液热交换器 C与新增第二吸收器F连通,新增第二吸收器F还有稀溶液管路经新增溶液泵D和新增第二 溶液热交换器H与新增吸收器E连通,新增吸收器E再有稀溶液管路经新增第二溶液泵G与 第二溶液热交换器13连通,将第二溶液热交换器13有浓溶液管路与第二吸收器4连通调整 为第二溶液热交换器13有浓溶液管路与新增发生器A连通,新增发生器A还有浓溶液管路 经新增溶液节流阀J和新增吸收器E与新增分汽室I连通,新增分汽室I再有浓溶液管路经 新增第二溶液热交换器H和新增溶液热交换器C与第二吸收器4连通,新增发生器A还有冷 剂蒸汽通道与新增吸收器E连通,新增分汽室I还有冷剂蒸汽通道与新增第二吸收器F连通, 将发生器1有冷剂蒸汽通道与第二发生器2连通后第二发生器2再有冷剂液管路经节流阀 10与蒸发器6连通调整为发生器1有冷剂蒸汽通道依次连通第二发生器2和新增发生器A 之后新增发生器A再有冷剂液管路经节流阀10与蒸发器6连通,新增吸收器E和新增第二 吸收器F还分别有被加热介质管路与外部连通。
②流程上,发生器1产生的冷剂蒸汽提供给第二发生器2和新增发生器A作驱动热介质, 第二吸收器4的稀溶液经第二溶液泵9和新增溶液热交换器C进入新增第二吸收器F、吸收 冷剂蒸汽并放热于被加热介质,新增第二吸收器F的稀溶液经新增溶液泵D和新增第二溶液 热交换器H进入新增吸收器E、吸收冷剂蒸汽并分别放热于被加热介质和流经其内的溶液, 新增吸收器E的稀溶液经新增第二溶液泵G和第二溶液热交换器13进入第二发生器2,第 二发生器2的浓溶液经第二溶液热交换器13进入新增发生器A,湿冷剂蒸汽流经新增发生 器A、加热进入其内的溶液释放并向新增吸收器E提供冷剂蒸汽,新增发生器A的浓溶液经 新增溶液节流阀J节流降压之后流经新增吸收器E、吸热部分汽化后进入新增分汽室I,新 增分汽室I的浓溶液经新增第二溶液热交换器H和新增溶液热交换器C进入第二吸收器4, 新增分汽室I释放的冷剂蒸汽进入新增第二吸收器F,流经新增发生器A的冷剂蒸汽放热成 冷剂液后经节流阀10节流进入蒸发器6,形成分路循环第一类吸收式热泵。
图23所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图1所示的分路循环第一类吸收式热泵中,增加新增发生器、新增吸收器、 新增溶液泵和新增溶液热交换器,将第二吸收器4有稀溶液管路经第二溶液泵9和第二溶液 热交换器13与第二发生器2连通调整为第二吸收器4有稀溶液管路经第二溶液泵9和新增 溶液热交换器C与新增吸收器E连通,新增吸收器E再有稀溶液管路经新增溶液泵D和第二 溶液热交换器13与第二发生器2连通,将第二发生器2有浓溶液管路经第二溶液热交换器 13与第二吸收器4连通调整为第二发生器2有浓溶液管路经第二溶液热交换器13与新增发 生器A连通,新增发生器A再有浓溶液管路经新增溶液热交换器C与第二吸收器4连通,新 增发生器A还有冷剂蒸汽通道与新增吸收器E连通,新增发生器A还有驱动热介质管路与外 部连通,新增吸收器E还有被加热介质管路与外部连通。
②流程上,第二吸收器4的稀溶液经第二溶液泵9和新增溶液热交换器C进入新增吸收 器E、吸收冷剂蒸汽并放热于被加热介质,新增吸收器E的稀溶液经新增溶液泵D和第二溶 液热交换器13进入第二发生器2,第二发生器2的浓溶液经第二溶液热交换器13进入新增 发生器A,驱动热介质流经新增发生器A、加热进入其内的溶液释放并向新增吸收器E提供 冷剂蒸汽,新增发生器A的浓溶液经新增溶液热交换器C进入第二吸收器4,形成分路循环 第一类吸收式热泵。
图24所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图1所示的分路循环第一类吸收式热泵中,增加新增发生器、新增吸收器、 新增第二吸收器、新增溶液泵、新增第二溶液泵、新增溶液热交换器、新增第二溶液热交换 器、新增溶液节流阀和新增分汽室,将第二吸收器4有稀溶液管路经第二溶液泵9和第二溶 液热交换器13与第二发生器2连通调整为第二吸收器4有稀溶液管路经第二溶液泵9和新 增溶液热交换器C与新增第二吸收器F连通,新增第二吸收器F还有稀溶液管路经新增溶液 泵D和新增第二溶液热交换器H与新增吸收器E连通,新增吸收器E再有稀溶液管路经新增 第二溶液泵G和第二溶液热交换器13与第二发生器2连通,将第二发生器2有浓溶液管路 经第二溶液热交换器13与第二吸收器4连通调整为第二发生器2有浓溶液管路经第二溶液 热交换器13与新增发生器A连通,新增发生器A还有浓溶液管路经新增溶液节流阀J和新 增吸收器E与新增分汽室I连通,新增分汽室I再有浓溶液管路经新增第二溶液热交换器H 和新增溶液热交换器C与第二吸收器4连通,新增发生器A还有冷剂蒸汽通道与新增吸收器 E连通,新增分汽室I还有冷剂蒸汽通道与新增第二吸收器F连通,新增发生器A还有驱动 热介质管路与外部连通,新增吸收器E和新增第二吸收器F还分别有被加热介质管路与外部 连通。
②流程上,第二吸收器4的稀溶液经第二溶液泵9和新增溶液热交换器C进入新增第二 吸收器F、吸收冷剂蒸汽并放热于被加热介质,新增第二吸收器F的稀溶液经新增溶液泵D 和新增第二溶液热交换器H进入新增吸收器E、吸收冷剂蒸汽并分别放热于被加热介质和流 经其内的溶液,新增吸收器E的稀溶液经新增第二溶液泵G和第二溶液热交换器13进入第 二发生器2,第二发生器2的浓溶液经第二溶液热交换器13进入新增发生器A,驱动热介质 流经新增发生器A、加热进入其内的溶液释放并向新增吸收器E提供冷剂蒸汽,新增发生器 A的浓溶液经新增溶液节流阀J节流降压之后流经新增吸收器E、吸热部分汽化后进入新增 分汽室I,新增分汽室I的浓溶液经新增第二溶液热交换器H和新增溶液热交换器C进入第 二吸收器4,新增分汽室I释放的冷剂蒸汽进入新增第二吸收器F,形成分路循环第一类吸 收式热泵。
图25所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图8所示的分路循环第一类吸收式热泵中,增加新增发生器、新增节流阀、 新增溶液热交换器和新增溶液泵,将第二吸收器4有稀溶液管路经第二溶液泵9和第二溶液 热交换器13与第二发生器2连通调整为第二吸收器4有稀溶液管路经第二溶液泵9和第二 溶液热交换器13与新增发生器A连通,新增发生器A再有浓溶液管路经新增溶液泵D和新 增溶液热交换器C与第二发生器2连通,将分汽室19有浓溶液管路经第二溶液热交换器13 与第二吸收器4连通调整为分汽室19有浓溶液管路经新增溶液热交换器C和第二溶液热交 换器13与第二吸收器4连通,将第二发生器2和分汽室19有冷剂蒸汽通道与冷凝器5连通 调整为第二发生器2和分汽室19有冷剂蒸汽通道与新增发生器A连通后新增发生器A再有 冷剂液管路经新增节流阀B与冷凝器5连通,新增发生器A还有冷剂蒸汽通道与冷凝器5连 通。
②流程上,第二发生器2和分汽室19释放的冷剂蒸汽提供给新增发生器A作驱动热介 质,第二吸收器4的稀溶液经第二溶液泵9和第二溶液热交换器13进入新增发生器A,冷 剂蒸汽流经新增发生器A、加热进入其内的溶液释放并向冷凝器5提供冷剂蒸汽,新增发生 器A的浓溶液经新增溶液泵D和新增溶液热交换器C进入第二发生器2,分汽室19的浓溶 液经新增溶液热交换器C和第二溶液热交换器13进入第二吸收器4,形成分路循环第一类 吸收式热泵。
图26所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图1所示的分路循环第一类吸收式热泵中,增加新增发生器、新增吸收器、 新增节流阀、新增溶液热交换器、新增溶液泵和新增蒸发器,将第二蒸发器7有冷剂蒸汽通 道与第二吸收器4连通调整为第二蒸发器7有冷剂蒸汽通道与新增吸收器E连通,将第二发 生器2有冷剂蒸汽通道与冷凝器5连通调整为第二发生器2有冷剂蒸汽通道与新增发生器A 连通后新增发生器A再有冷剂液管路经新增节流阀B与新增蒸发器K连通,新增蒸发器K还 有冷剂蒸汽通道与第二吸收器4连通,新增发生器A还有浓溶液管路经新增溶液热交换器C 与新增吸收器E连通,新增吸收器E还有稀溶液管路经新增溶液泵D和新增溶液热交换器C 与新增发生器A连通,新增发生器A还有冷剂蒸汽通道与冷凝器5连通,新增吸收器E还有 被加热介质管路与外部连通,新增蒸发器K还有余热介质管路与外部连通。
②流程上,第二发生器2产生的冷剂蒸汽提供给新增发生器A作驱动热介质,第二蒸发 器7产生的冷剂蒸汽进入新增吸收器E、被浓溶液吸收并放热于被加热介质,新增吸收器E 的稀溶液经新增溶液泵D和新增溶液热交换器C进入新增发生器A,冷剂蒸汽流经新增发生 器A、加热进入其内的溶液释放并向冷凝器5提供冷剂蒸汽,新增发生器A的浓溶液经新增 溶液热交换器C进入新增吸收器E,流经新增发生器A的冷剂蒸汽放热成冷剂液后经新增节 流阀B节流进入新增蒸发器K、吸收余热成冷剂蒸汽并向第二吸收器4提供,形成分路循环 第一类吸收式热泵。
图27所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图1所示的分路循环第一类吸收式热泵中,增加新增吸收器、新增节流阀、 新增溶液热交换器、新增溶液泵、新增分汽室、新增冷凝器和新增蒸发器,取消第二吸收器 4与外部连通的被加热介质管路,新增吸收器E有稀溶液管路经新增溶液泵D、新增溶液热 交换器C和第二吸收器4与新增分汽室I连通,新增分汽室I还有浓溶液经新增溶液热交换 器C与新增吸收器E连通,新增分汽室I还有冷剂蒸汽通道与新增冷凝器L连通,新增冷凝 器L还有冷剂液管路经新增节流阀B与新增蒸发器K连通,新增蒸发器K还有冷剂蒸汽通道 与新增吸收器E连通,新增吸收器E和新增冷凝器L还分别有被加热介质管路与外部连通, 新增蒸发器K还有余热介质管路与外部连通。
②流程上,新增吸收器E的稀溶液经新增溶液泵D和新增溶液热交换器C之后流经第二 吸收器4、吸热部分汽化后进入新增分汽室I,新增分汽室I的浓溶液新增溶液热交换器C 进入新增吸收器E、吸收冷剂蒸汽并放热于被加热介质,新增分汽室I释放的冷剂蒸汽进入 新增冷凝器L、放热于被加热介质成冷剂液,新增冷凝器L的冷剂液经新增节流阀B进入新 增蒸发器K、吸收余热成冷剂蒸汽并向新增吸收器E提供,形成分路循环第一类吸收式热泵。
本发明技术可以实现的效果——本发明所提出的分路循环第一类吸收式热泵具有如下 的效果和优势:
(1)分路循环并分步实现温降,可采用不同工作溶液,有利于驱动热介质、循环溶液和循 环流程之间的选择和匹配,克服单一工作介质的限制,提高温差利用水平。
(2)多端供热,能够较好地适应被加热介质的温度变化范围较宽的工况,得到合理的热力 学完善度。
(3)具有回热供热端的流程,热力学参数平滑变化,供热参数可调节,能够较好地适应工 况变化,得到较高的热力学完善度。
(4)具有回热供热端的流程,能够实现驱动热源的深度利用或是能够增大余热温度的提升 幅度,提高热能利用率。
(5)包含单效供热流程和双效供热流程,分步实现温差利用,有利于提高循环的性能指数 和热力学完善度。
(6)具有单效-双效回热或具有双效回热的流程,热力学参数平滑变化,供热参数可调节, 能够较好地适应工况变化,得到较高的性能指数和热力学完善度。
(7)丰富了第一类吸收式热泵的类型,扩展了第一类吸收式热泵的应用范围,有利于更好 地采用第一类吸收式热泵来实现温差利用,提高热能利用效率。

Claims (38)

  1. 分路循环第一类吸收式热泵,主要由发生器、第二发生器、吸收器、第二吸收器、 冷凝器、蒸发器、第二蒸发器、溶液泵、第二溶液泵、节流阀、第二节流阀、溶液热交换器 和第二溶液热交换器所组成;吸收器(3)有稀溶液管路经溶液泵(8)和溶液热交换器(12) 与发生器(1)连通,发生器(1)还有浓溶液管路经溶液热交换器(12)与吸收器(3)连 通,发生器(1)还有冷剂蒸汽通道与第二发生器(2)连通后第二发生器(2)再有冷剂液 管路经节流阀(10)与蒸发器(6)连通,蒸发器(6)还有冷剂蒸汽通道与吸收器(3)连 通;第二吸收器(4)有稀溶液管路经第二溶液泵(9)和第二溶液热交换器(13)与第二发 生器(2)连通,第二发生器(2)还有浓溶液管路经第二溶液热交换器(13)与第二吸收器 (4)连通,第二发生器(2)还有冷剂蒸汽通道与冷凝器(5)连通,冷凝器(5)还有冷剂 液管路经第二节流阀(11)与第二蒸发器(7)连通,第二蒸发器(7)还有冷剂蒸汽通道与 第二吸收器(4)连通;发生器(1)还有驱动热介质管路与外部连通,吸收器(3)、第二吸 收器(4)和冷凝器(5)还分别有被加热介质管路与外部连通,蒸发器(6)和第二蒸发器 (7)还分别有余热介质管路与外部连通,形成分路循环第一类吸收式热泵。
  2. 分路循环第一类吸收式热泵,是在权利要求1所述的分路循环第一类吸收式热泵中, 增加第三发生器、第三溶液泵、第三节流阀和第三溶液热交换器,吸收器(3)增设稀溶液 管路经第三溶液泵(15)和第三溶液热交换器(17)与第三发生器(14)连通,第三发生器 (14)还有浓溶液管路经第三溶液热交换器(17)与吸收器(3)连通,将发生器(1)有冷 剂蒸汽通道与第二发生器(2)连通后第二发生器(2)再有冷剂液管路经节流阀(10)与蒸 发器(6)连通调整为发生器(1)有冷剂蒸汽通道与第三发生器(14)连通后第三发生器(14) 再有冷剂液管路经第三节流阀(16)与蒸发器(6)连通,第三发生器(14)还有冷剂蒸汽 通道与第二发生器(2)连通后第二发生器(2)再有冷剂液管路经节流阀(10)与蒸发器(6) 连通,形成分路循环第一类吸收式热泵。
  3. 分路循环第一类吸收式热泵,是在权利要求1所述的分路循环第一类吸收式热泵中, 增加第三发生器、第三节流阀和第三溶液热交换器,将吸收器(3)有稀溶液管路经溶液泵 (8)和溶液热交换器(12)与发生器(1)连通调整为吸收器(3)有稀溶液管路经溶液泵 (8)、第三溶液热交换器(17)和溶液热交换器(12)与发生器(1)连通,将发生器(1) 有浓溶液管路经溶液热交换器(12)与吸收器(3)连通调整为发生器(1)有浓溶液管路经 溶液热交换器(12)与第三发生器(14)连通,第三发生器(14)再有浓溶液管路经第三溶 液热交换器(17)与吸收器(3)连通,将发生器(1)有冷剂蒸汽通道与第二发生器(2) 连通后第二发生器(2)再有冷剂液管路经节流阀(10)与蒸发器(6)连通调整为发生器(1) 有冷剂蒸汽通道与第三发生器(14)连通后第三发生器(14)再有冷剂液管路经第三节流阀 (16)与蒸发器(6)连通,第三发生器(14)还有冷剂蒸汽通道与第二发生器(2)连通后 第二发生器(2)再有冷剂液管路经节流阀(10)与蒸发器(6)连通,形成分路循环第一类 吸收式热泵。
  4. 分路循环第一类吸收式热泵,是在权利要求1所述的分路循环第一类吸收式热泵中, 增加第三发生器、第三溶液泵、第三节流阀和第三溶液热交换器,将吸收器(3)有稀溶液 管路经溶液泵(8)和溶液热交换器(12)与发生器(1)连通调整为吸收器(3)有稀溶液 管路经溶液泵(8)和溶液热交换器(12)与第三发生器(14)连通,第三发生器(14)再 有浓溶液管路经第三溶液泵(15)和第三溶液热交换器(17)与发生器(1)连通,将发生 器(1)有浓溶液管路经溶液热交换器(12)与吸收器(3)连通调整为发生器(1)有浓溶 液管路经第三溶液热交换器(17)和溶液热交换器(12)与吸收器(3)连通,将发生器(1) 有冷剂蒸汽通道与第二发生器(2)连通后第二发生器(2)再有冷剂液管路经节流阀(10) 与蒸发器(6)连通调整为发生器(1)有冷剂蒸汽通道与第三发生器(14)连通后第三发生 器(14)再有冷剂液管路经第三节流阀(16)与蒸发器(6)连通,第三发生器(14)还有 冷剂蒸汽通道与第二发生器(2)连通后第二发生器(2)再有冷剂液管路经节流阀(10)与 蒸发器(6)连通,形成分路循环第一类吸收式热泵。
  5. 分路循环第一类吸收式热泵,是在权利要求1所述的分路循环第一类吸收式热泵中, 增加第三发生器、第三节流阀、第三溶液热交换器和第二冷凝器,将吸收器(3)有稀溶液 管路经溶液泵(8)和溶液热交换器(12)与发生器(1)连通调整为吸收器(3)有稀溶液 管路经溶液泵(8)、第三溶液热交换器(17)和溶液热交换器(12)与发生器(1)连通, 将发生器(1)有浓溶液管路经溶液热交换器(12)与吸收器(3)连通调整为发生器(1) 有浓溶液管路经溶液热交换器(12)与第三发生器(14)连通,第三发生器(14)再有浓溶 液管路经第三溶液热交换器(17)与吸收器(3)连通,第三发生器(14)还有冷剂蒸汽通 道与第二冷凝器(18)连通,第二冷凝器(18)还有冷剂液管路经第三节流阀(16)与蒸发 器(6)连通,第三发生器(14)还有驱动热介质管路与外部连通,第二冷凝器(18)还有 被加热介质管路与外部连通,形成分路循环第一类吸收式热泵。
  6. 分路循环第一类吸收式热泵,是在权利要求5所述的分路循环第一类吸收式热泵中, 取消第二冷凝器(18)与外部连通的被加热介质管路,将第二吸收器(4)有稀溶液管路经 第二溶液泵(9)和第二溶液热交换器(13)与第二发生器(2)连通调整为第二吸收器(4) 有稀溶液管路经第二溶液泵(9)、第二溶液热交换器(13)和第二冷凝器(18)与第二发生 器(2)连通,形成分路循环第一类吸收式热泵。
  7. 分路循环第一类吸收式热泵,是在权利要求1所述的分路循环第一类吸收式热泵中, 增加第三发生器、第三吸收器、第三溶液泵和第三溶液热交换器,将吸收器(3)有稀溶液 管路经溶液泵(8)和溶液热交换器(12)与发生器(1)连通调整为吸收器(3)有稀溶液 管路经溶液泵(8)和第三溶液热交换器(17)与第三吸收器(20)连通,第三吸收器(20) 再有稀溶液管路经第三溶液泵(15)和溶液热交换器(12)与发生器(1)连通,将发生器 (1)有浓溶液管路经溶液热交换器(12)与吸收器(3)连通调整为发生器(1)有浓溶液 管路经溶液热交换器(12)与第三发生器(14)连通,第三发生器(14)再有浓溶液管路经 第三溶液热交换器(17)与吸收器(3)连通,第三发生器(14)还有冷剂蒸汽通道与第三 吸收器(20)连通,第三发生器(14)还有驱动热介质管路与外部连通,第三吸收器(20) 还有被加热介质管路与外部连通,形成分路循环第一类吸收式热泵。
  8. 分路循环第一类吸收式热泵,是在权利要求7所述的分路循环第一类吸收式热泵中, 取消第三吸收器(20)与外部连通的被加热介质管路,增加分汽室,将第二发生器(2)有 浓溶液管路经第二溶液热交换器(13)与第二吸收器(4)连通调整为第二发生器(2)有浓 溶液管路经第三吸收器(20)与分汽室(19)连通,分汽室(19)再有浓溶液管路经第二溶 液热交换器(13)与第二吸收器(4)连通,分汽室(19)还有冷剂蒸汽通道与冷凝器(5) 连通,形成分路循环第一类吸收式热泵。
  9. 分路循环第一类吸收式热泵,是在权利要求1所述的分路循环第一类吸收式热泵中, 增加第三发生器、第三吸收器、第三溶液泵、分汽室、溶液节流阀和第二溶液节流阀,将吸 收器(3)有稀溶液管路经溶液泵(8)和溶液热交换器(12)与发生器(1)连通调整为吸 收器(3)有稀溶液管路经溶液泵(8)和溶液热交换器(12)与第三吸收器(20)连通,第 三吸收器(20)再有稀溶液管路经第二溶液节流阀(22)与发生器(1)连通,将发生器(1) 有浓溶液管路经溶液热交换器(12)与吸收器(3)连通调整为发生器(1)有浓溶液管路经 第三溶液泵(15)与第三发生器(14)连通,第三发生器(14)还有浓溶液管路经溶液节流 阀(21)和第三吸收器(20)与分汽室(19)连通,分汽室(19)再有浓溶液管路经溶液热 交换器(12)与吸收器(3)连通,第三发生器(14)还有冷剂蒸汽通道与第三吸收器(20) 连通,将发生器(1)有冷剂蒸汽通道与第二发生器(2)连通后第二发生器(2)再有冷剂 液管路经节流阀(10)与蒸发器(6)连通调整为发生器(1)和分汽室(19)有冷剂蒸汽通 道与第二发生器(2)连通后第二发生器(2)再有冷剂液管路经节流阀(10)与蒸发器(6) 连通,第三发生器(14)还有驱动热介质管路与外部连通,形成分路循环第一类吸收式热泵。
  10. 分路循环第一类吸收式热泵,是在权利要求1所述的分路循环第一类吸收式热泵 中,增加第三发生器、第三吸收器、分汽室和溶液节流阀,将吸收器(3)有稀溶液管路经 溶液泵(8)和溶液热交换器(12)与发生器(1)连通调整为吸收器(3)有稀溶液管路经 溶液泵(8)和溶液热交换器(12)与第三吸收器(20)连通,第三吸收器(20)还有稀溶 液管路与第三发生器(14)连通,第三发生器(14)再有浓溶液管路经溶液节流阀(21)与 发生器(1)连通,将发生器(1)有浓溶液管路经溶液热交换器(12)与吸收器(3)连通 调整为发生器(1)有浓溶液管路经第三吸收器(20)与分汽室(19)连通,分汽室(19) 再有浓溶液管路经溶液热交换器(12)与吸收器(3)连通,第三发生器(14)还有冷剂蒸 汽通道与第三吸收器(20)连通,将发生器(1)有冷剂蒸汽通道与第二发生器(2)连通后 第二发生器(2)再有冷剂液管路经节流阀(10)与蒸发器(6)连通调整为发生器(1)和 分汽室(19)有冷剂蒸汽通道与第二发生器(2)连通后第二发生器(2)再有冷剂液管路经 节流阀(10)与蒸发器(6)连通,第三发生器(14)还有驱动热介质管路与外部连通,形 成分路循环第一类吸收式热泵;其中,为方便部件布置,或增加第三溶液泵,将第三吸收器 (20)有稀溶液管路与第三发生器(14)连通调整为第三吸收器(20)有稀溶液管路经第三 溶液泵(15)与第三发生器(14)连通。
  11. 分路循环第一类吸收式热泵,是在权利要求1所述的分路循环第一类吸收式热泵 中,增加第三发生器、第三吸收器、第三溶液热交换器和分汽室,将吸收器(3)有稀溶液 管路经溶液泵(8)和溶液热交换器(12)与发生器(1)连通调整为吸收器(3)有稀溶液 管路经溶液泵(8)、溶液热交换器(12)和第三溶液热交换器(17)与第三吸收器(20)连 通,第三吸收器(20)还有稀溶液管路与第三发生器(14)连通,第三发生器(14)再有浓 溶液管路经第三溶液热交换器(17)与发生器(1)连通,将发生器(1)有浓溶液管路经溶 液热交换器(12)与吸收器(3)连通调整为发生器(1)有浓溶液管路经第三吸收器(20) 与分汽室(19)连通,分汽室(19)再有浓溶液管路经溶液热交换器(12)与吸收器(3) 连通,第三发生器(14)还有冷剂蒸汽通道与第三吸收器(20)连通,将发生器(1)有冷 剂蒸汽通道与第二发生器(2)连通后第二发生器(2)再有冷剂液管路经节流阀(10)与蒸 发器(6)连通调整为发生器(1)和分汽室(19)有冷剂蒸汽通道与第二发生器(2)连通 后第二发生器(2)再有冷剂液管路经节流阀(10)与蒸发器(6)连通,第三发生器(14) 还有驱动热介质管路与外部连通,形成分路循环第一类吸收式热泵;其中,为方便部件布置, 或增加第三溶液泵,将第三吸收器(20)有稀溶液管路与第三发生器(14)连通调整为第三 吸收器(20)有稀溶液管路经第三溶液泵(15)与第三发生器(14)连通。
  12. 分路循环第一类吸收式热泵,是在权利要求1所述的分路循环第一类吸收式热泵 中,增加第三发生器、第三吸收器、第三溶液泵、第三溶液热交换器、溶液节流阀、分汽室、 第二冷凝器和第三节流阀,将吸收器(3)有稀溶液管路经溶液泵(8)和溶液热交换器(12) 与发生器(1)连通调整为吸收器(3)有稀溶液管路经溶液泵(8)和第三溶液热交换器(17) 与第三吸收器(20)连通,第三吸收器(20)再有稀溶液管路经第三溶液泵(15)和溶液热 交换器(12)与发生器(1)连通,将发生器(1)有浓溶液管路经溶液热交换器(12)与吸 收器(3)连通调整为发生器(1)有浓溶液管路经溶液热交换器(12)与第三发生器(14) 连通,第三发生器(14)还有浓溶液管路经溶液节流阀(21)和第三吸收器(20)与分汽室 (19)连通,分汽室(19)再有浓溶液管路经第三溶液热交换器(17)与吸收器(3)连通, 第三发生器(14)还有冷剂蒸汽通道与第三吸收器(20)连通,分汽室(19)还有冷剂蒸汽 通道与第二冷凝器(18)连通,第二冷凝器(18)还有冷剂液管路经第三节流阀(16)与蒸 发器(6)连通,第三发生器(14)还有驱动热介质管路与外部连通,第二冷凝器(18)还 有被加热介质管路与外部连通,第三吸收器(20)或还有被加热介质管路与外部连通,形成 分路循环第一类吸收式热泵。
  13. 分路循环第一类吸收式热泵,是在权利要求1所述的分路循环第一类吸收式热泵 中,增加第三发生器、第三吸收器、第四吸收器、第三溶液泵、第四溶液泵、第三溶液热交 换器、第四溶液热交换器、分汽室和溶液节流阀,将吸收器(3)有稀溶液管路经溶液泵(8) 和溶液热交换器(12)与发生器(1)连通调整为吸收器(3)有稀溶液管路经溶液泵(8) 和第三溶液热交换器(17)与第四吸收器(24)连通,第四吸收器(24)还有稀溶液管路经 第三溶液泵(15)和第四溶液热交换器(26)与第三吸收器(20)连通,第三吸收器(20) 再有稀溶液管路经第四溶液泵(25)和溶液热交换器(12)与发生器(1)连通,将发生器 (1)有浓溶液管路经溶液热交换器(12)与吸收器(3)连通调整为发生器(1)有浓溶液 管路经溶液热交换器(12)与第三发生器(14)连通,第三发生器(14)还有浓溶液管路经 溶液节流阀(21)和第三吸收器(20)与分汽室(19)连通,分汽室(19)再有浓溶液管路 经第四溶液热交换器(26)和第三溶液热交换器(17)与吸收器(3)连通,第三发生器(14) 还有冷剂蒸汽通道与第三吸收器(20)连通,分汽室(19)还有冷剂蒸汽通道与第四吸收器 (24)连通,第三发生器(14)还有驱动热介质管路与外部连通,第四吸收器(24)还有被 加热介质管路与外部连通,形成分路循环第一类吸收式热泵。
  14. 分路循环第一类吸收式热泵,是在权利要求1所述的分路循环第一类吸收式热泵 中,增加第三发生器、第三吸收器、第四吸收器、第三溶液泵、第四溶液泵、第三溶液热交 换器、第四溶液热交换器、溶液节流阀、分汽室和第二分汽室,将吸收器(3)有稀溶液管 路经溶液泵(8)和溶液热交换器(12)与发生器(1)连通调整为吸收器(3)有稀溶液管 路经溶液泵(8)和第三溶液热交换器(17)与第四吸收器(24)连通,第四吸收器(24) 还有稀溶液管路经第三溶液泵(15)和第四溶液热交换器(26)与第三吸收器(20)连通, 第三吸收器(20)再有稀溶液管路经第四溶液泵(25)和溶液热交换器(12)与发生器(1) 连通,将发生器(1)有浓溶液管路经溶液热交换器(12)与吸收器(3)连通调整为发生器 (1)有浓溶液管路经溶液热交换器(12)与第三发生器(14)连通,第三发生器(14)还 有浓溶液管路经溶液节流阀(21)和第三吸收器(20)与第二分汽室(23)连通,第二分汽 室(23)再有浓溶液管路经第四溶液热交换器(26)和第三溶液热交换器(17)与吸收器(3) 连通,第三发生器(14)还有冷剂蒸汽通道与第三吸收器(20)连通,第二分汽室(23)还 有冷剂蒸汽通道与第四吸收器(24)连通,将第二发生器(2)有浓溶液管路经第二溶液热 交换器(13)与第二吸收器(4)连通调整为第二发生器(2)有浓溶液管路经第四吸收器(24) 与分汽室(19)连通,分汽室(19)再有浓溶液管路经第二溶液热交换器(13)与第二吸收 器(4)连通,分汽室(19)还有冷剂蒸汽通道与冷凝器(5)连通,第三发生器(14)还有 驱动热介质管路与外部连通,形成分路循环第一类吸收式热泵。
  15. 分路循环第一类吸收式热泵,是在权利要求1所述的分路循环第一类吸收式热泵 中,增加第三发生器、第三吸收器、第三溶液泵和第三溶液热交换器,将发生器(1)有冷 剂蒸汽通道与第二发生器(2)连通后第二发生器(2)再有冷剂液管路经节流阀(10)与蒸 发器(6)连通调整为发生器(1)有冷剂蒸汽通道与第三吸收器(20)连通,第三吸收器(20) 还有稀溶液管路经第三溶液泵(15)和第三溶液热交换器(17)与第三发生器(14)连通, 第三发生器(14)还有浓溶液管路经第三溶液热交换器(17)与第三吸收器(20)连通,第 三发生器(14)还有冷剂蒸汽通道与第二发生器(2)连通后第二发生器(2)再有冷剂液管 路经节流阀(10)与蒸发器(6)连通,第三发生器(14)还有驱动热介质管路与外部连通, 第三吸收器(20)还有被加热介质管路与外部连通,形成分路循环第一类吸收式热泵。
  16. 分路循环第一类吸收式热泵,是在权利要求15所述的分路循环第一类吸收式热泵 中,取消第三吸收器(20)与外部连通的被加热介质管路,增加分汽室,将第二发生器(2) 有浓溶液管路经第二溶液热交换器(13)与第二吸收器(4)连通调整为第二发生器(2)有 浓溶液管路经第三吸收器(20)与分汽室(19)连通,分汽室(19)再有浓溶液管路经第二 溶液热交换器(13)与第二吸收器(4)连通,分汽室(19)还有冷剂蒸汽通道与冷凝器(5) 连通,形成分路循环第一类吸收式热泵。
  17. 分路循环第一类吸收式热泵,是在权利要求1-7、9-13、15所述的任一分路循环 第一类吸收式热泵中,增加新增发生器、新增节流阀和新增溶液热交换器,第二溶液泵(9) 增设稀溶液管路经新增溶液热交换器(C)与新增发生器(A)连通,新增发生器(A)还有 浓溶液管路经新增溶液热交换器(C)与第二吸收器(4)连通,将第二发生器(2)有冷剂 蒸汽通道与冷凝器(5)连通调整为第二发生器(2)有冷剂蒸汽通道与新增发生器(A)连 通后新增发生器(A)再有冷剂液管路经新增节流阀(B)与冷凝器(5)连通,新增发生器 (A)还有冷剂蒸汽通道与冷凝器(5)连通,形成分路循环第一类吸收式热泵。
  18. 分路循环第一类吸收式热泵,是在权利要求1-7、9-13、15所述的任一分路循环 第一类吸收式热泵中,增加新增发生器、新增节流阀和新增溶液热交换器,将第二吸收器(4) 有稀溶液管路经第二溶液泵(9)与第二溶液热交换器(13)连通调整为第二吸收器(4)有 稀溶液管路经第二溶液泵(9)和新增溶液热交换器(C)与第二溶液热交换器(13)连通, 将第二溶液热交换器(13)有浓溶液管路与第二吸收器(4)连通调整为第二溶液热交换器 (13)有浓溶液管路与新增发生器(A)连通,新增发生器(A)再有浓溶液管路经新增溶液 热交换器(C)与第二吸收器(4)连通,将第二发生器(2)有冷剂蒸汽通道与冷凝器(5) 连通调整为第二发生器(2)有冷剂蒸汽通道与新增发生器(A)连通后新增发生器(A)再 有冷剂液管路经新增节流阀(B)与冷凝器(5)连通,新增发生器(A)还有冷剂蒸汽通道 与冷凝器(5)连通,形成分路循环第一类吸收式热泵。
  19. 分路循环第一类吸收式热泵,是在权利要求1-5、7、9-13、15所述的任一分路循 环第一类吸收式热泵中,增加新增发生器、新增节流阀、新增溶液热交换器和新增溶液泵, 将第二吸收器(4)有稀溶液管路经第二溶液泵(9)和第二溶液热交换器(13)与第二发生 器(2)连通调整为第二吸收器(4)有稀溶液管路经第二溶液泵(9)和第二溶液热交换器 (13)与新增发生器(A)连通,新增发生器(A)再有浓溶液管路经新增溶液泵(D)和新 增溶液热交换器(C)与第二发生器(2)连通,将第二发生器(2)有浓溶液管路经第二溶 液热交换器(13)与第二吸收器(4)连通调整为第二发生器(2)有浓溶液管路经新增溶液 热交换器(C)和第二溶液热交换器(13)与第二吸收器(4)连通,将第二发生器(2)有 冷剂蒸汽通道与冷凝器(5)连通调整为第二发生器(2)有冷剂蒸汽通道与新增发生器(A) 连通后新增发生器(A)再有冷剂液管路经新增节流阀(B)与冷凝器(5)连通,新增发生 器(A)还有冷剂蒸汽通道与冷凝器(5)连通,形成分路循环第一类吸收式热泵。
  20. 分路循环第一类吸收式热泵,是在权利要求1、5-8、12-14所述的任一分路循环 第一类吸收式热泵中,增加新增发生器、新增吸收器、新增溶液热交换器和新增溶液泵,将 第二蒸发器(7)有冷剂蒸汽通道与第二吸收器(4)连通调整为第二蒸发器(7)有冷剂蒸 汽通道与新增吸收器(E)连通,新增吸收器(E)还有稀溶液管路经新增溶液泵(D)和新 增溶液热交换器(C)与新增发生器(A)连通,新增发生器(A)还有浓溶液管路经新增溶 液热交换器(C)与新增吸收器(E)连通,新增发生器(A)还有冷剂蒸汽通道与第二吸收 器(4)连通,将发生器(1)有冷剂蒸汽通道与第二发生器(2)连通后第二发生器(2)再 有冷剂液管路经节流阀(10)与蒸发器(6)连通调整为发生器(1)有冷剂蒸汽通道依次连 通第二发生器(2)和新增发生器(A)之后新增发生器(A)再有冷剂液管路经节流阀(10) 与蒸发器(6)连通,新增吸收器(E)还有被加热介质管路与外部连通,形成分路循环第一 类吸收式热泵。
  21. 分路循环第一类吸收式热泵,是在权利要求2-4、15-16所述的任一分路循环第一 类吸收式热泵中,增加新增发生器、新增吸收器、新增溶液热交换器和新增溶液泵,将第二 蒸发器(7)有冷剂蒸汽通道与第二吸收器(4)连通调整为第二蒸发器(7)有冷剂蒸汽通 道与新增吸收器(E)连通,新增吸收器(E)还有稀溶液管路经新增溶液泵(D)和新增溶 液热交换器(C)与新增发生器(A)连通,新增发生器(A)还有浓溶液管路经新增溶液热 交换器(C)与新增吸收器(E)连通,新增发生器(A)还有冷剂蒸汽通道与第二吸收器(4) 连通,将第三发生器(14)有冷剂蒸汽通道与第二发生器(2)连通后第二发生器(2)再有 冷剂液管路经节流阀(10)与蒸发器(6)连通调整为第三发生器(14)有冷剂蒸汽通道依 次连通第二发生器(2)和新增发生器(A)之后新增发生器(A)再有冷剂液管路经节流阀 (10)与蒸发器(6)连通,新增吸收器(E)还有被加热介质管路与外部连通,形成分路循 环第一类吸收式热泵。
  22. 分路循环第一类吸收式热泵,是在权利要求9-11所述的任一分路循环第一类吸收 式热泵中,增加新增发生器、新增吸收器、新增溶液热交换器和新增溶液泵,将第二蒸发器 (7)有冷剂蒸汽通道与第二吸收器(4)连通调整为第二蒸发器(7)有冷剂蒸汽通道与新 增吸收器(E)连通,新增吸收器(E)还有稀溶液管路经新增溶液泵(D)和新增溶液热交 换器(C)与新增发生器(A)连通,新增发生器(A)还有浓溶液管路经新增溶液热交换器 (C)与新增吸收器(E)连通,新增发生器(A)还有冷剂蒸汽通道与第二吸收器(4)连通, 将发生器(1)和分汽室(19)有冷剂蒸汽通道与第二发生器(2)连通后第二发生器(2) 再有冷剂液管路经节流阀(10)与蒸发器(6)连通调整为发生器(1)和分汽室(19)有冷 剂蒸汽通道依次连通第二发生器(2)和新增发生器(A)之后新增发生器(A)再有冷剂液 管路经节流阀(10)与蒸发器(6)连通,新增吸收器(E)还有被加热介质管路与外部连通, 形成分路循环第一类吸收式热泵。
  23. 分路循环第一类吸收式热泵,是在权利要求1、5-8、12-14所述的任一分路循环 第一类吸收式热泵中,增加新增发生器、新增吸收器、新增溶液泵和新增溶液热交换器,将 第二吸收器(4)有稀溶液管路经第二溶液泵(9)与第二溶液热交换器(13)连通调整为第 二吸收器(4)有稀溶液管路经第二溶液泵(9)和新增溶液热交换器(C)与新增吸收器(E) 连通,新增吸收器(E)再有稀溶液管路经新增溶液泵(D)与第二溶液热交换器(13)连通, 将第二溶液热交换器(13)有浓溶液管路与第二吸收器(4)连通调整为第二溶液热交换器 (13)有浓溶液管路与新增发生器(A)连通,新增发生器(A)再有浓溶液管路经新增溶液 热交换器(C)与第二吸收器(4)连通,新增发生器(A)还有冷剂蒸汽通道与新增吸收器 (E)连通,将发生器(1)有冷剂蒸汽通道与第二发生器(2)连通后第二发生器(2)再有 冷剂液管路经节流阀(10)与蒸发器(6)连通调整为发生器(1)有冷剂蒸汽通道依次连通 第二发生器(2)和新增发生器(A)之后新增发生器(A)再有冷剂液管路经节流阀(10) 与蒸发器(6)连通,新增吸收器(E)还有被加热介质管路与外部连通,形成分路循环第一 类吸收式热泵;其中,或增加新增节流阀,将发生器(1)有冷剂蒸汽通道依次连通第二发 生器(2)和新增发生器(A)之后新增发生器(A)再有冷剂液管路经节流阀(10)与蒸发 器(6)连通变更为:发生器(1)有剂蒸汽通道连通第二发生器(2)后第二发生器(2)再 有冷剂液管路经节流阀(10)与蒸发器(6)连通,发生器(1)还有剂蒸汽通道连通新增发 生器(A)后新增发生器(A)再有冷剂液管路经新增节流阀(B)与蒸发器(6)连通。
  24. 分路循环第一类吸收式热泵,是在权利要求2-4、15-16所述的任一分路循环第一 类吸收式热泵中,增加新增发生器、新增吸收器、新增溶液泵和新增溶液热交换器,将第二 吸收器(4)有稀溶液管路经第二溶液泵(9)与第二溶液热交换器(13)连通调整为第二吸 收器(4)有稀溶液管路经第二溶液泵(9)和新增溶液热交换器(C)与新增吸收器(E)连 通,新增吸收器(E)再有稀溶液管路经新增溶液泵(D)与第二溶液热交换器(13)连通, 将第二溶液热交换器(13)有浓溶液管路与第二吸收器(4)连通调整为第二溶液热交换器 (13)有浓溶液管路与新增发生器(A)连通,新增发生器(A)再有浓溶液管路经新增溶液 热交换器(C)与第二吸收器(4)连通,新增发生器(A)还有冷剂蒸汽通道与新增吸收器 (E)连通,将第三发生器(14)有冷剂蒸汽通道与第二发生器(2)连通后第二发生器(2) 再有冷剂液管路经节流阀(10)与蒸发器(6)连通调整为第三发生器(14)有冷剂蒸汽通 道依次连通第二发生器(2)和新增发生器(A)之后新增发生器(A)再有冷剂液管路经节 流阀(10)与蒸发器(6)连通,新增吸收器(E)还有被加热介质管路与外部连通,形成分 路循环第一类吸收式热泵;其中,或增加新增节流阀,将第三发生器(14)有冷剂蒸汽通道 依次连通第二发生器(2)和新增发生器(A)之后新增发生器(A)再有冷剂液管路经节流 阀(10)与蒸发器(6)连通变更为:第三发生器(14)有剂蒸汽通道连通第二发生器(2) 后第二发生器(2)再有冷剂液管路经节流阀(10)与蒸发器(6)连通,第三发生器(14) 还有剂蒸汽通道连通新增发生器(A)后新增发生器(A)再有冷剂液管路经新增节流阀(B) 与蒸发器(6)连通。
  25. 分路循环第一类吸收式热泵,是在权利要求9-11所述的任一分路循环第一类吸收 式热泵中,增加新增发生器、新增吸收器、新增溶液泵和新增溶液热交换器,将第二吸收器 (4)有稀溶液管路经第二溶液泵(9)和第二溶液热交换器(13)与第二发生器(2)连通 调整为第二吸收器(4)有稀溶液管路经第二溶液泵(9)和新增溶液热交换器(C)与新增 吸收器(E)连通,新增吸收器(E)再有稀溶液管路经新增溶液泵(D)和第二溶液热交换 器(13)与第二发生器(2)连通,将第二发生器(2)有浓溶液管路经第二溶液热交换器(13) 与第二吸收器(4)连通调整为第二发生器(2)有浓溶液管路经第二溶液热交换器(13)与 新增发生器(A)连通,新增发生器(A)再有浓溶液管路经新增溶液热交换器(C)与第二 吸收器(4)连通,新增发生器(A)还有冷剂蒸汽通道与新增吸收器(E)连通,将发生器 (1)和分汽室(19)有冷剂蒸汽通道与第二发生器(2)连通后第二发生器(2)再有冷剂 液管路经节流阀(10)与蒸发器(6)连通调整为发生器(1)和分汽室(19)有冷剂蒸汽通 道依次连通第二发生器(2)和新增发生器(A)之后新增发生器(A)再有冷剂液管路经节 流阀(10)与蒸发器(6)连通,新增吸收器(E)还有被加热介质管路与外部连通,形成分 路循环第一类吸收式热泵;其中,或增加新增节流阀,将发生器(1)和分汽室(19)有冷 剂蒸汽通道依次连通第二发生器(2)和新增发生器(A)之后新增发生器(A)再有冷剂液 管路经节流阀(10)与蒸发器(6)连通变更为:发生器(1)和分汽室(19)有剂蒸汽通道 连通第二发生器(2)后第二发生器(2)再有冷剂液管路经节流阀(10)与蒸发器(6)连 通,发生器(1)和分汽室(19)还有剂蒸汽通道连通新增发生器(A)后新增发生器(A) 再有冷剂液管路经新增节流阀(B)与蒸发器(6)连通。
  26. 分路循环第一类吸收式热泵,是在权利要求1、5-8、12-14所述的任一分路循环 第一类吸收式热泵中,增加新增发生器、新增吸收器、新增第二吸收器、新增溶液泵、新增 第二溶液泵、新增溶液热交换器、新增第二溶液热交换器、新增溶液节流阀和新增分汽室, 将第二吸收器(4)有稀溶液管路经第二溶液泵(9)与第二溶液热交换器(13)连通调整为 第二吸收器(4)有稀溶液管路经第二溶液泵(9)和新增溶液热交换器(C)与新增第二吸 收器(F)连通,新增第二吸收器(F)还有稀溶液管路经新增溶液泵(D)和新增第二溶液 热交换器(H)与新增吸收器(E)连通,新增吸收器(E)再有稀溶液管路经新增第二溶液 泵(G)与第二溶液热交换器(13)连通,将第二溶液热交换器(13)有浓溶液管路与第二 吸收器(4)连通调整为第二溶液热交换器(13)有浓溶液管路与新增发生器(A)连通,新 增发生器(A)还有浓溶液管路经新增溶液节流阀(J)和新增吸收器(E)与新增分汽室(I) 连通,新增分汽室(I)再有浓溶液管路经新增第二溶液热交换器(H)和新增溶液热交换器 (C)与第二吸收器(4)连通,新增发生器(A)还有冷剂蒸汽通道与新增吸收器(E)连通, 新增分汽室(I)还有冷剂蒸汽通道与新增第二吸收器(F)连通,将发生器(1)有冷剂蒸 汽通道与第二发生器(2)连通后第二发生器(2)再有冷剂液管路经节流阀(10)与蒸发器 (6)连通调整为发生器(1)有冷剂蒸汽通道依次连通第二发生器(2)和新增发生器(A) 之后新增发生器(A)再有冷剂液管路经节流阀(10)与蒸发器(6)连通,新增吸收器(E) 或还有被加热介质管路与外部连通,新增第二吸收器(F)还有被加热介质管路与外部连通, 形成分路循环第一类吸收式热泵;其中,或增加新增节流阀,将发生器(1)有冷剂蒸汽通 道依次连通第二发生器(2)和新增发生器(A)之后新增发生器(A)再有冷剂液管路经节 流阀(10)与蒸发器(6)连通变更为:发生器(1)有剂蒸汽通道连通第二发生器(2)后 第二发生器(2)再有冷剂液管路经节流阀(10)与蒸发器(6)连通,发生器(1)还有剂 蒸汽通道连通新增发生器(A)后新增发生器(A)再有冷剂液管路经新增节流阀(B)与蒸 发器(6)连通。
  27. 分路循环第一类吸收式热泵,是在权利要求2-4、15-16所述的任一分路循环第一 类吸收式热泵中,增加新增发生器、新增吸收器、新增第二吸收器、新增溶液泵、新增第二 溶液泵、新增溶液热交换器、新增第二溶液热交换器、新增溶液节流阀和新增分汽室,将第 二吸收器(4)有稀溶液管路经第二溶液泵(9)与第二溶液热交换器(13)连通调整为第二 吸收器(4)有稀溶液管路经第二溶液泵(9)和新增溶液热交换器(C)与新增第二吸收器 (F)连通,新增第二吸收器(F)还有稀溶液管路经新增溶液泵(D)和新增第二溶液热交 换器(H)与新增吸收器(E)连通,新增吸收器(E)再有稀溶液管路经新增第二溶液泵(G) 与第二溶液热交换器(13)连通,将第二溶液热交换器(13)有浓溶液管路与第二吸收器(4) 连通调整为第二溶液热交换器(13)有浓溶液管路与新增发生器(A)连通,新增发生器(A) 还有浓溶液管路经新增溶液节流阀(J)和新增吸收器(E)与新增分汽室(I)连通,新增 分汽室(I)再有浓溶液管路经新增第二溶液热交换器(H)和新增溶液热交换器(C)与第 二吸收器(4)连通,新增发生器(A)还有冷剂蒸汽通道与新增吸收器(E)连通,新增分 汽室(I)还有冷剂蒸汽通道与新增第二吸收器(F)连通,将第三发生器(14)有冷剂蒸汽 通道与第二发生器(2)连通后第二发生器(2)再有冷剂液管路经节流阀(10)与蒸发器(6) 连通调整为第三发生器(14)有冷剂蒸汽通道依次连通第二发生器(2)和新增发生器(A) 之后新增发生器(A)再有冷剂液管路经节流阀(10)与蒸发器(6)连通,新增吸收器(E) 或还有被加热介质管路与外部连通,新增第二吸收器(F)还有被加热介质管路与外部连通, 形成分路循环第一类吸收式热泵;其中,或增加新增节流阀,将第三发生器(14)有冷剂蒸 汽通道依次连通第二发生器(2)和新增发生器(A)之后新增发生器(A)再有冷剂液管路 经节流阀(10)与蒸发器(6)连通变更为:第三发生器(14)有剂蒸汽通道连通第二发生 器(2)后第二发生器(2)再有冷剂液管路经节流阀(10)与蒸发器(6)连通,第三发生 器(14)还有剂蒸汽通道连通新增发生器(A)后新增发生器(A)再有冷剂液管路经新增节 流阀(B)与蒸发器(6)连通。
  28. 分路循环第一类吸收式热泵,是在权利要求9-11所述的任一分路循环第一类吸收 式热泵中,增加新增发生器、新增吸收器、新增第二吸收器、新增溶液泵、新增第二溶液泵、 新增溶液热交换器、新增第二溶液热交换器、新增溶液节流阀和新增分汽室,将第二吸收器 (4)有稀溶液管路经第二溶液泵(9)和第二溶液热交换器(13)与第二发生器(2)连通 调整为第二吸收器(4)有稀溶液管路经第二溶液泵(9)和新增溶液热交换器(C)与新增 第二吸收器(F)连通,新增第二吸收器(F)还有稀溶液管路经新增溶液泵(D)和新增第 二溶液热交换器(H)与新增吸收器(E)连通,新增吸收器(E)再有稀溶液管路经新增第 二溶液泵(G)和第二溶液热交换器(13)与第二发生器(2)连通,将第二发生器(2)有 浓溶液管路经第二溶液热交换器(13)与第二吸收器(4)连通调整为第二发生器(2)有浓 溶液管路经第二溶液热交换器(13)与新增发生器(A)连通,新增发生器(A)还有浓溶液 管路经新增溶液节流阀(J)和新增吸收器(E)与新增分汽室(I)连通,新增分汽室(I) 再有浓溶液管路经新增第二溶液热交换器(H)和新增溶液热交换器(C)与第二吸收器(4) 连通,新增发生器(A)还有冷剂蒸汽通道与新增吸收器(E)连通,新增分汽室(I)还有 冷剂蒸汽通道与新增第二吸收器(F)连通,将发生器(1)和分汽室(19)有冷剂蒸汽通道 与第二发生器(2)连通后第二发生器(2)再有冷剂液管路经节流阀(10)与蒸发器(6) 连通调整为发生器(1)和分汽室(19)有冷剂蒸汽通道依次连通第二发生器(2)和新增发 生器(A)之后新增发生器(A)再有冷剂液管路经节流阀(10)与蒸发器(6)连通,新增 吸收器(E)或还有被加热介质管路与外部连通,新增第二吸收器(F)还有被加热介质管路 与外部连通,形成分路循环第一类吸收式热泵;其中,或增加新增节流阀,将发生器(1) 和分汽室(19)有冷剂蒸汽通道依次连通第二发生器(2)和新增发生器(A)之后新增发生 器(A)再有冷剂液管路经节流阀(10)与蒸发器(6)连通变更为:发生器(1)和分汽室 (19)有剂蒸汽通道连通第二发生器(2)后第二发生器(2)再有冷剂液管路经节流阀(10) 与蒸发器(6)连通,发生器(1)和分汽室(19)还有剂蒸汽通道连通新增发生器(A)后 新增发生器(A)再有冷剂液管路经新增节流阀(B)与蒸发器(6)连通。
  29. 分路循环第一类吸收式热泵,是在权利要求1-16所述的任一分路循环第一类吸收 式热泵中,增加新增发生器、新增吸收器、新增溶液泵和新增溶液热交换器,将第二吸收器 (4)有稀溶液管路经第二溶液泵(9)与第二溶液热交换器(13)连通调整为第二吸收器(4) 有稀溶液管路经第二溶液泵(9)和新增溶液热交换器(C)与新增吸收器(E)连通,新增 吸收器(E)再有稀溶液管路经新增溶液泵(D)与第二溶液热交换器(13)连通,将第二溶 液热交换器(13)有浓溶液管路与第二吸收器(4)连通调整为第二溶液热交换器(13)有 浓溶液管路与新增发生器(A)连通,新增发生器(A)再有浓溶液管路经新增溶液热交换器 (C)与第二吸收器(4)连通,新增发生器(A)还有冷剂蒸汽通道与新增吸收器(E)连通, 新增发生器(A)还有驱动热介质管路与外部连通,新增吸收器(E)还有被加热介质管路与 外部连通,形成分路循环第一类吸收式热泵。
  30. 分路循环第一类吸收式热泵,是在权利要求1-16所述的任一分路循环第一类吸收 式热泵中,增加新增发生器、新增吸收器、新增第二吸收器、新增溶液泵、新增第二溶液泵、 新增溶液热交换器、新增第二溶液热交换器、新增溶液节流阀和新增分汽室,将第二吸收器 (4)有稀溶液管路经第二溶液泵(9)与第二溶液热交换器(13)连通调整为第二吸收器(4) 有稀溶液管路经第二溶液泵(9)和新增溶液热交换器(C)与新增第二吸收器(F)连通, 新增第二吸收器(F)还有稀溶液管路经新增溶液泵(D)和新增第二溶液热交换器(H)与 新增吸收器(E)连通,新增吸收器(E)再有稀溶液管路经新增第二溶液泵(G)与第二溶 液热交换器(13)连通,将第二溶液热交换器(13)有浓溶液管路与第二吸收器(4)连通 调整为第二溶液热交换器(13)有浓溶液管路与新增发生器(A)连通,新增发生器(A)还 有浓溶液管路经新增溶液节流阀(J)和新增吸收器(E)与新增分汽室(I)连通,新增分 汽室(I)再有浓溶液管路经新增第二溶液热交换器(H)和新增溶液热交换器(C)与第二 吸收器(4)连通,新增发生器(A)还有冷剂蒸汽通道与新增吸收器(E)连通,新增分汽 室(I)还有冷剂蒸汽通道与新增第二吸收器(F)连通,新增发生器(A)还有驱动热介质 管路与外部连通,新增吸收器(E)或还有被加热介质管路与外部连通,新增第二吸收器(F) 还有被加热介质管路与外部连通,形成分路循环第一类吸收式热泵。
  31. 分路循环第一类吸收式热泵,是在权利要求8、14、16所述的任一分路循环第一 类吸收式热泵中,增加新增发生器、新增节流阀和新增溶液热交换器,第二溶液泵(9)增 设稀溶液管路经新增溶液热交换器(C)与新增发生器(A)连通,新增发生器(A)还有浓 溶液管路经新增溶液热交换器(C)与第二吸收器(4)连通,将第二发生器(2)和分汽室 (19)有冷剂蒸汽通道与冷凝器(5)连通调整为第二发生器(2)和分汽室(19)有冷剂蒸 汽通道与新增发生器(A)连通后新增发生器(A)再有冷剂液管路经新增节流阀(B)与冷 凝器(5)连通,新增发生器(A)还有冷剂蒸汽通道与冷凝器(5)连通,形成分路循环第 一类吸收式热泵。
  32. 分路循环第一类吸收式热泵,是在权利要求8、14、16所述的任一分路循环第一 类吸收式热泵中,增加新增发生器、新增节流阀和新增溶液热交换器,将第二吸收器(4) 有稀溶液管路经第二溶液泵(9)和第二溶液热交换器(13)与第二发生器(2)连通调整为 第二吸收器(4)有稀溶液管路经第二溶液泵(9)、新增溶液热交换器(C)和第二溶液热交 换器(13)与第二发生器(2)连通,将分汽室(19)有浓溶液管路经第二溶液热交换器(13) 与第二吸收器(4)连通调整为分汽室(19)有浓溶液管路经第二溶液热交换器(13)与新 增发生器(A)连通,新增发生器(A)再有浓溶液管路经新增溶液热交换器(C)与第二吸 收器(4)连通,将第二发生器(2)和分汽室(19)有冷剂蒸汽通道与冷凝器(5)连通调 整为第二发生器(2)和分汽室(19)有冷剂蒸汽通道与新增发生器(A)连通后新增发生器 (A)再有冷剂液管路经新增节流阀(B)与冷凝器(5)连通,新增发生器(A)还有冷剂蒸 汽通道与冷凝器(5)连通,形成分路循环第一类吸收式热泵。
  33. 分路循环第一类吸收式热泵,是在权利要求8、14、16所述的任一分路循环第一 类吸收式热泵中,增加新增发生器、新增节流阀、新增溶液热交换器和新增溶液泵,将第二 吸收器(4)有稀溶液管路经第二溶液泵(9)和第二溶液热交换器(13)与第二发生器(2) 连通调整为第二吸收器(4)有稀溶液管路经第二溶液泵(9)和第二溶液热交换器(13)与 新增发生器(A)连通,新增发生器(A)再有浓溶液管路经新增溶液泵(D)和新增溶液热 交换器(C)与第二发生器(2)连通,将分汽室(19)有浓溶液管路经第二溶液热交换器(13) 与第二吸收器(4)连通调整为分汽室(19)有浓溶液管路经新增溶液热交换器(C)和第二 溶液热交换器(13)与第二吸收器(4)连通,将第二发生器(2)和分汽室(19)有冷剂蒸 汽通道与冷凝器(5)连通调整为第二发生器(2)和分汽室(19)有冷剂蒸汽通道与新增发 生器(A)连通后新增发生器(A)再有冷剂液管路经新增节流阀(B)与冷凝器(5)连通, 新增发生器(A)还有冷剂蒸汽通道与冷凝器(5)连通,形成分路循环第一类吸收式热泵。
  34. 分路循环第一类吸收式热泵,是在权利要求1-33所述的任一分路循环第一类吸收 式热泵中,将蒸发器(6)和第二蒸发器(7)合二为一,形成分路循环第一类吸收式热泵。
  35. 分路循环第一类吸收式热泵,是在权利要求1-7、9-13、15所述的任一分路循环 第一类吸收式热泵中,增加新增发生器、新增吸收器、新增节流阀、新增溶液热交换器、新 增溶液泵和新增蒸发器,将第二蒸发器(7)有冷剂蒸汽通道与第二吸收器(4)连通调整为 第二蒸发器(7)有冷剂蒸汽通道与新增吸收器(E)连通,将第二发生器(2)有冷剂蒸汽 通道与冷凝器(5)连通调整为第二发生器(2)有冷剂蒸汽通道与新增发生器(A)连通后 新增发生器(A)再有冷剂液管路经新增节流阀(B)与新增蒸发器(K)连通,新增蒸发器 (K)还有冷剂蒸汽通道与第二吸收器(4)连通,新增发生器(A)还有浓溶液管路经新增 溶液热交换器(C)与新增吸收器(E)连通,新增吸收器(E)还有稀溶液管路经新增溶液 泵(D)和新增溶液热交换器(C)与新增发生器(A)连通,新增发生器(A)还有冷剂蒸汽 通道与冷凝器(5)连通,新增吸收器(E)还有被加热介质管路与外部连通,新增蒸发器(K) 还有余热介质管路与外部连通,形成分路循环第一类吸收式热泵。
  36. 分路循环第一类吸收式热泵,是在权利要求8、14、16所述的任一分路循环第一 类吸收式热泵中,增加新增发生器、新增吸收器、新增节流阀、新增溶液热交换器、新增溶 液泵和新增蒸发器,将第二蒸发器(7)有冷剂蒸汽通道与第二吸收器(4)连通调整为第二 蒸发器(7)有冷剂蒸汽通道与新增吸收器(E)连通,将第二发生器(2)和分汽室(19) 有冷剂蒸汽通道与冷凝器(5)连通调整为第二发生器(2)和分汽室(19)有冷剂蒸汽通道 与新增发生器(A)连通后新增发生器(A)再有冷剂液管路经新增节流阀(B)与新增蒸发 器(K)连通,新增蒸发器(K)还有冷剂蒸汽通道与第二吸收器(4)连通,新增发生器(A) 还有浓溶液管路经新增溶液热交换器(C)与新增吸收器(E)连通,新增吸收器(E)还有 稀溶液管路经新增溶液泵(D)和新增溶液热交换器(C)与新增发生器(A)连通,新增发 生器(A)还有冷剂蒸汽通道与冷凝器(5)连通,新增吸收器(E)还有被加热介质管路与 外部连通,新增蒸发器(K)还有余热介质管路与外部连通,形成分路循环第一类吸收式热 泵。
  37. 分路循环第一类吸收式热泵,是在权利要求1-16所述的任一分路循环第一类吸收 式热泵中,增加新增吸收器、新增节流阀、新增溶液热交换器、新增溶液泵、新增分汽室、 新增冷凝器和新增蒸发器,取消第二吸收器(4)与外部连通的被加热介质管路,新增吸收 器(E)有稀溶液管路经新增溶液泵(D)、新增溶液热交换器(C)和第二吸收器(4)与新 增分汽室(I)连通,新增分汽室(I)还有浓溶液经新增溶液热交换器(C)与新增吸收器 (E)连通,新增分汽室(I)还有冷剂蒸汽通道与新增冷凝器(L)连通,新增冷凝器(L) 还有冷剂液管路经新增节流阀(B)与新增蒸发器(K)连通,新增蒸发器(K)还有冷剂蒸 汽通道与新增吸收器(E)连通,新增吸收器(E)和新增冷凝器(L)还分别有被加热介质 管路与外部连通,新增蒸发器(K)还有余热介质管路与外部连通,形成分路循环第一类吸 收式热泵。
  38. 分路循环第一类吸收式热泵,是在权利要求35-37所述的任一分路循环第一类吸 收式热泵中,将蒸发器(6)、第二蒸发器(7)和新增蒸发器(K)合三为一,形成分路循环 第一类吸收式热泵。
PCT/CN2014/000368 2013-04-03 2014-04-03 分路循环第一类吸收式热泵 WO2014161368A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310140686 2013-04-03
CN201310140686.X 2013-04-03

Publications (1)

Publication Number Publication Date
WO2014161368A1 true WO2014161368A1 (zh) 2014-10-09

Family

ID=49796240

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2014/000368 WO2014161368A1 (zh) 2013-04-03 2014-04-03 分路循环第一类吸收式热泵
PCT/CN2014/000369 WO2014161369A1 (zh) 2013-04-03 2014-04-03 分路循环第一类吸收式热泵

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000369 WO2014161369A1 (zh) 2013-04-03 2014-04-03 分路循环第一类吸收式热泵

Country Status (2)

Country Link
CN (3) CN103471282B (zh)
WO (2) WO2014161368A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103471282B (zh) * 2013-04-03 2015-11-25 李华玉 分路循环第一类吸收式热泵
CN104006567B (zh) * 2013-05-08 2016-08-24 李华玉 分路循环第一类吸收式热泵
CN111595065B (zh) * 2020-06-29 2024-01-23 西安热工研究院有限公司 一种轴封溢流蒸汽驱动的吸收式热泵余热回收装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4464907A (en) * 1982-06-11 1984-08-14 Deutsche Forschungs- Und Versuchsanstalt Fur Luft- Und Raumfahrt E.V. Process for the operation of an absorption heat pump capable of bivalent operation and absorption heat pump for implementing this process
EP1045214B1 (de) * 1999-04-14 2006-05-24 Heliotherm Wärmepumpentechnik Ges.m.b.H. Absorptionswärmepumpe und Verfahren zum Betrieb einer Absorptionswärmepumpe
JP2007263461A (ja) * 2006-03-28 2007-10-11 Sanyo Electric Co Ltd 吸収冷凍機
CN102338498A (zh) * 2011-08-13 2012-02-01 李华玉 分级发生式第一类吸收式热泵
CN102706026A (zh) * 2012-03-23 2012-10-03 李华玉 双效回热吸收-发生系统与回热式第一类吸收式热泵

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004257705A (ja) * 2003-02-27 2004-09-16 Sanyo Electric Co Ltd 吸収ヒートポンプ利用濃縮装置
JP4632633B2 (ja) * 2003-03-19 2011-02-16 三洋電機株式会社 吸収ヒートポンプ装置
CN101458006B (zh) * 2009-01-01 2011-11-16 李华玉 提高热泵供热温度的方法与高温型第一类吸收式热泵
CN101706172A (zh) * 2009-11-11 2010-05-12 李华玉 以回热式单级为第一级的两级第一类吸收式热泵
CN102116538B (zh) * 2011-03-06 2012-08-29 李华玉 带有回热供热端的双效与三效第一类吸收式热泵
CN102305489B (zh) * 2011-08-19 2015-04-29 李华玉 单效流程基础上的复合第一类吸收式热泵
CN103471282B (zh) * 2013-04-03 2015-11-25 李华玉 分路循环第一类吸收式热泵

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4464907A (en) * 1982-06-11 1984-08-14 Deutsche Forschungs- Und Versuchsanstalt Fur Luft- Und Raumfahrt E.V. Process for the operation of an absorption heat pump capable of bivalent operation and absorption heat pump for implementing this process
EP1045214B1 (de) * 1999-04-14 2006-05-24 Heliotherm Wärmepumpentechnik Ges.m.b.H. Absorptionswärmepumpe und Verfahren zum Betrieb einer Absorptionswärmepumpe
JP2007263461A (ja) * 2006-03-28 2007-10-11 Sanyo Electric Co Ltd 吸収冷凍機
CN102338498A (zh) * 2011-08-13 2012-02-01 李华玉 分级发生式第一类吸收式热泵
CN102706026A (zh) * 2012-03-23 2012-10-03 李华玉 双效回热吸收-发生系统与回热式第一类吸收式热泵

Also Published As

Publication number Publication date
WO2014161369A1 (zh) 2014-10-09
CN103471282B (zh) 2015-11-25
CN103486757A (zh) 2014-01-01
CN103471282A (zh) 2013-12-25
CN103471281A (zh) 2013-12-25
CN103471281B (zh) 2015-11-25
CN103486757B (zh) 2016-02-03

Similar Documents

Publication Publication Date Title
WO2014127681A1 (zh) 复合发生第一类吸收式热泵
WO2011134129A1 (zh) 回热式吸收-发生系统与回热式第一类吸收式热泵
WO2012019329A1 (zh) 吸收-再吸收-发生系统与第一类吸收式热泵
WO2011091567A1 (zh) 吸收-发生系统和吸收式热泵
WO2010118636A1 (zh) 提高热泵供热温度的方法与高温第二类吸收式热泵
WO2012129743A1 (zh) 第三类发生-吸收系统与回热式第三类吸收式热泵
WO2013159261A1 (zh) 多端供热第一类吸收式热泵
WO2015143925A1 (zh) 第五类吸收式热泵
WO2012145869A1 (zh) 三发生-三吸收系统与第三类吸收式热泵
WO2015143927A1 (zh) 第五类吸收式热泵
WO2012159228A1 (zh) 第三类吸收-发生系统与第三类吸收式热泵
WO2014161368A1 (zh) 分路循环第一类吸收式热泵
WO2015149564A1 (zh) 第四类吸收式热泵与第五类吸收式热泵
WO2014180163A1 (zh) 分路循环第一类吸收式热泵
WO2013138963A1 (zh) 双效回热吸收-发生系统与回热式第一类吸收式热泵
WO2014161367A1 (zh) 分路循环第一类吸收式热泵
WO2015143924A1 (zh) 第四类吸收式热泵与第五类吸收式热泵
WO2012122683A1 (zh) 第三类发生-吸收系统与第三类吸收式热泵
WO2013170406A1 (zh) 分级冷凝第三类吸收式热泵
WO2013152464A1 (zh) 双效回热吸收-发生系统与回热式第三类吸收式热泵
WO2013149366A1 (zh) 双效回热吸收-发生系统与回热式第三类吸收式热泵
WO2013163784A1 (zh) 分段回热第三类吸收式热泵
WO2013033860A1 (zh) 第三类吸收-发生系统与第三类吸收式热泵
WO2013075260A1 (zh) 分级冷凝第二类吸收式热泵
WO2014134749A1 (zh) 复合发生第一类吸收式热泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14779422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14779422

Country of ref document: EP

Kind code of ref document: A1