WO2013149366A1 - 双效回热吸收-发生系统与回热式第三类吸收式热泵 - Google Patents

双效回热吸收-发生系统与回热式第三类吸收式热泵 Download PDF

Info

Publication number
WO2013149366A1
WO2013149366A1 PCT/CN2012/001103 CN2012001103W WO2013149366A1 WO 2013149366 A1 WO2013149366 A1 WO 2013149366A1 CN 2012001103 W CN2012001103 W CN 2012001103W WO 2013149366 A1 WO2013149366 A1 WO 2013149366A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
generator
absorber
pump
heat exchanger
Prior art date
Application number
PCT/CN2012/001103
Other languages
English (en)
French (fr)
Inventor
李华玉
Original Assignee
Li Huayu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Li Huayu filed Critical Li Huayu
Publication of WO2013149366A1 publication Critical patent/WO2013149366A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/008Sorption machines, plants or systems, operating continuously, e.g. absorption type with multi-stage operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • the invention belongs to the technical field of low temperature waste heat utilization heat pump.
  • the heating temperature can also make the third type of absorption heat pump have the advantages of adjustable heating parameters, continuous performance index and adapting to variable operating conditions.
  • the temperature difference between the high-temperature driving heat medium and the heated medium is large, if the high-grade heat load of the high-temperature driving heat medium is only subjected to the heat recovery process, the temperature difference may not be fully utilized.
  • the refrigerant vapor produced by the first regenerative process is used to further increase the concentration of the solution and release the refrigerant vapor for the secondary reheat.
  • the heat can be fully utilized to drive the heat, and the heat transfer temperature difference can be fully utilized to improve the performance index of the third type of absorption heat pump.
  • the main object of the present invention is to provide a double-effect regenerative absorption-generation system and a regenerative third-type absorption heat pump, and the specific contents of the invention are as follows:
  • Double-effect regenerative absorption-generation system mainly by a first generator, a second generator, a first absorber, a second absorber, a third absorber, a first solution pump, a second solution pump, and a third a solution pump, a first solution heat exchanger, a second solution heat exchanger, a third solution heat exchanger, a fourth solution heat exchanger, and a steam separation chamber;
  • the first generator has a concentrated solution pipeline through the first solution
  • the pump, the first solution heat exchanger, the second solution heat exchanger and the second absorber are in communication with the steam distribution chamber, and the steam distribution chamber has a concentrated solution pipeline through the second solution pump and the fourth solution heat exchanger and the second
  • the generator is connected, the second generator and the concentrated solution pipeline are connected to the first absorber via the fourth solution heat exchanger and the third solution heat exchanger, and the first absorber and the dilute solution pipeline are passed through the third solution pump
  • the third solution heat exchanger is in communication with the second absorber, the second absorber and the di
  • Double-effect regenerative absorption-generation system mainly by first generator, second generator, first absorber, second absorber, third absorber, first solution pump, second solution pump, third a solution pump, a first solution heat exchanger, a second solution heat exchanger, a third solution heat exchanger, a fourth solution heat exchanger, a steam dividing chamber and a fourth absorber;
  • the first generator has a concentrated solution tube
  • the first solution pump, the first solution heat exchanger, the second solution heat exchanger and the second absorber are connected to the steam distribution chamber, and the steam distribution chamber has a concentrated solution pipeline through the second solution pump and the fourth solution heat
  • the exchanger is in communication with the second generator, and the second generator further has a concentrated solution line communicating with the first absorber via the fourth solution heat exchanger and the third solution heat exchanger, the first absorber and the dilute solution line
  • the third solution pump and the third solution heat exchanger are in communication with the second absorber, and the second absorber is also thin
  • the solution line is in communication with the fourth absorber
  • the regenerative third type absorption heat pump is a double-effect regenerative absorption-generation system according to item 2, wherein the fourth absorber has a heated medium line connected to the outside and is adjusted to a second absorber.
  • the heated medium pipeline is connected to the outside, and the first generator has a concentrated solution pipeline connected to the steam distribution chamber through the first solution pump, the first solution heat exchanger, the second solution heat exchanger and the second absorber
  • a concentrated solution line for the first generator is connected to the steam separation chamber through the first solution pump, the first solution heat exchanger, the second solution heat exchanger and the fourth absorber to form a double effect heat recovery absorption system.
  • the regenerative third type absorption heat pump is a double-effect regenerative absorption-generation system according to item 1-3, adding a condenser, an evaporator and a refrigerant liquid pump, and the first generator
  • the refrigerant vapor passage is connected to the outside to determine that the first generator has a refrigerant vapor passage communicating with the condenser, and the condenser and the refrigerant liquid pipeline are connected to the evaporator via the refrigerant liquid pump, and the first absorber is cooled.
  • the vapor passage of the agent is connected to the outside to determine that the evaporator has a refrigerant vapor passage communicating with the first absorber, the condenser and the cooling medium conduit are connected to the outside, and the evaporator and the waste heat medium conduit are connected to the outside to form a regenerative type.
  • the third type of absorption heat pump is connected to the outside to determine that the evaporator has a refrigerant vapor passage communicating with the first absorber, the condenser and the cooling medium conduit are connected to the outside, and the evaporator and the waste heat medium conduit are connected to the outside to form a regenerative type.
  • a regenerative third type absorption heat pump in which any of the regenerative third type absorption heat pumps described in item 4 is added with a third generator, a throttle valve or a second refrigerant liquid pump, a fourth solution pump and a fifth solution heat exchanger, the third absorber is provided with a dilute solution line connected to the third generator via the fifth solution heat exchanger, and the third generator has a concentrated solution line through the fourth solution pump And the fifth solution heat exchanger and the first generator are merged through the first solution pump and the concentrated solution pipeline after the first solution heat exchanger, and the first generator has a refrigerant vapor passage connected to the condenser to be adjusted to the first
  • the generator has a refrigerant vapor passage connected to the third generator, and the third generator further has a refrigerant liquid pipeline connected to the condenser through the throttle valve or communicates with the evaporator via the second refrigerant liquid pump, the third generator There is also a refrigerant vapor passage communicating with the condenser to form
  • a regenerative third type absorption heat pump in any of the regenerative third type absorption heat pumps described in item 4, adding a throttle valve or a second refrigerant liquid pump, a third generator and a fifth solution heat exchanger, wherein the first generator has a concentrated solution pipeline connected to the first solution heat exchanger via the first solution pump to adjust the first generator to have a concentrated solution pipeline through the fifth solution heat exchanger and the first The third generator is connected, the third generator further has a concentrated solution pipeline connected to the first solution heat exchanger via the first solution pump and the fifth solution heat exchanger, and the first generator has a refrigerant vapor passage connected to the condenser Adjusting to the first generator having a refrigerant vapor passage communicating with the third generator, the third generator is further provided with a refrigerant liquid line connected to the condenser via a throttle or connected to the evaporator via the second coolant pump The third generator also has a refrigerant vapor passage communicating with the condenser to form a regenerative third type ab
  • a regenerative third type absorption heat pump in any of the regenerative third type absorption heat pumps described in item 4, adding a throttle valve or a second refrigerant liquid pump, a third generator, a fourth solution pump and a fifth solution heat exchanger, wherein the third absorber has a dilute solution line connected to the first generator via the first solution heat exchanger to adjust the third absorber to have a dilute solution line through the first solution
  • the heat exchanger and the fifth solution heat exchanger are in communication with the third generator, and the third generator further has a concentrated solution line communicating with the first generator via the fourth solution pump and the fifth solution heat exchanger, which will occur first
  • the refrigerant has a refrigerant vapor passage and is connected to the condenser for adjustment.
  • the third generator After the first generator has a refrigerant vapor passage and communicates with the third generator, the third generator has a refrigerant liquid pipeline connected to the condenser through the throttle valve or communicates with the evaporator via the second refrigerant liquid pump, The three generators also have a refrigerant vapor passage that communicates with the condenser to form a regenerative third type absorption heat pump.
  • the regenerative third type absorption heat pump is added to any of the regenerative third type absorption heat pumps described in item 4, adding new generators, adding new absorbers, adding new solution pumps and new
  • the increasing solution heat exchanger the first generator has a refrigerant vapor passage connected to the condenser, and the first generator has a refrigerant vapor passage communicating with the newly added absorber, and the new absorber and the dilute solution pipeline are newly
  • the solution pump and the new solution heat exchanger are connected to the newly added generator, and the new generator and the concentrated solution pipeline are connected to the newly added absorber through the new solution heat exchanger, and the new generator and the refrigerant vapor are added.
  • the passage is connected to the condenser, and the new generator and the residual heat medium pipeline are connected to the outside.
  • the newly added absorber and the cooling medium pipeline communicate with the outside to form a regenerative third type absorption heat pump.
  • Regenerative type III absorption heat pump in any of the regenerative third type absorption heat pumps described in items 5-7, adding new generators, adding new absorbers, adding new solution pumps And a new solution heat exchanger, the third generator has a refrigerant vapor passage connected to the condenser to be adjusted to a third generator having a refrigerant vapor passage communicating with the newly added absorber, adding a absorber and a dilute solution pipeline
  • the new solution pump and the new solution heat exchanger are connected to the newly added generator, and the new generator and the concentrated solution pipeline are connected to the newly added absorber through the new solution heat exchanger, and the new generator is also cooled.
  • the agent steam passage is connected with the condenser, and the newly added generator and the waste heat medium pipeline communicate with the outside, and the newly added absorber and the cooling medium pipeline communicate with the outside to form a regenerative third type absorption heat pump.
  • the regenerative third type absorption heat pump is a regenerative heat pump of any type of regenerative third type absorption heat pump according to item 9
  • the throttle valve or the newly added refrigerant liquid pump, the first generator is connected with the refrigerant vapor channel and is connected with the newly added generator, and the new generator is added, and then the refrigerant liquid pipeline is connected to the condenser through the newly added throttle valve.
  • the newly added refrigerant liquid pump is connected with the evaporator to form a regenerative third type absorption heat pump.
  • a regenerative third type absorption heat pump in any of the regenerative third type absorption heat pumps described in item 8, adding a re-enlargement condenser and a re-cooling agent liquid pump, the first generator Adding a refrigerant vapor passage to communicate with the re-condensing condenser, and further increasing the condenser and the refrigerant liquid pipeline to communicate with the evaporator through the re-cooling agent liquid pump, and further increasing the condenser and the cooling medium pipeline to communicate with the outside to form A regenerative third type absorption heat pump.
  • the regenerative third type absorption heat pump is a reheating condenser and re-refrigerating liquid pump in any of the regenerative third-class absorption heat pumps described in items 9-10.
  • the condenser and the re-cooling agent liquid pump are connected, the third generator is connected with the refrigerant vapor channel and communicates with the re-condensing condenser, and the condenser and the refrigerant liquid pipeline are connected to the evaporator through the re-cooling agent liquid pump.
  • the additional condenser and the cooling medium line communicate with the outside to form a regenerative third type absorption heat pump.
  • the regenerative third type absorption heat pump is added to any of the regenerative third type absorption heat pumps described in item 4, adding new generators, adding new absorbers, adding new solution pumps and new a solution heat exchanger, wherein the third absorber has a dilute solution line connected to the first generator through the first solution heat exchanger to be adjusted to a third absorber having a dilute solution line through the first solution heat exchanger and adding The absorber is connected, the new absorber and the dilute solution pipeline are connected to the first generator through the new solution pump and the new solution heat exchanger, and the first generator has a concentrated solution pipeline through the first solution pump and the first The heat exchange connection of one solution is adjusted to be that the first generator has a concentrated solution pipeline connected to the newly added generator through the new solution heat exchanger, and the new generator has a concentrated solution pipeline and is heated by the first solution pump and the first solution.
  • the exchanger is connected, the new generator and the waste heat medium pipeline are connected to the outside, and the new absorber and the cooling medium pipeline are connected to the outside to form a regenerative third type absorption heat pump.
  • the following is a brief description of the present invention by taking the recuperative third type absorption heat pump shown in FIG. 3 as an example:
  • the refrigerant vapor generated by the second generator 2 is supplied to the second absorber 4, absorbed by the solution from the first absorber 3, and radiated to the solution flowing through the second absorber 4 and the heated medium, respectively.
  • the first heat recovery process is completed; the solution flowing through the second absorber 4 is vaporized by heat and enters the steam separation chamber 13, and a part of the refrigerant vapor generated by the second generator 2 is transferred to the steam separation chamber 13
  • the steam dividing chamber 13 supplies the refrigerant vapor to the third absorber 5, is absorbed by the solution from the second absorber 4, and radiates heat to the heated medium, completing the second heat recovery process.
  • the main effects are as follows:
  • the heat load for regenerative heat can be adjusted to make the absorption heat pump achieve rationalization and continuous performance index.
  • FIG. 1 is a schematic view showing the first structure and flow of a double-effect regenerative absorption-generation system according to the present invention.
  • Figure 2 is a schematic view showing the second structure and flow of the double-effect regenerative absorption-generation system according to the present invention.
  • Fig. 3 is a schematic view showing the first structure and flow of a regenerative third type absorption heat pump according to the present invention.
  • Figure 4 is a schematic view showing the second structure and flow of a regenerative third type absorption heat pump according to the present invention.
  • Figure 5 is a schematic view showing the third structure and flow of a regenerative third type absorption heat pump according to the present invention.
  • Figure 6 is a fourth structural and flow diagram of a regenerative third type absorption heat pump according to the present invention.
  • Figure 7 is a schematic view showing the fifth structure and flow of a regenerative third type absorption heat pump according to the present invention.
  • Fig. 8 is a view showing the sixth structure and flow diagram of a regenerative third type absorption heat pump according to the present invention.
  • Figure 9 is a schematic view showing the seventh structure and flow of a regenerative third type absorption heat pump according to the present invention.
  • Figure 10 is a schematic view showing the eighth structure and flow of a regenerative third type absorption heat pump according to the present invention.
  • Figure 11 is a schematic view showing the structure and flow of the ninth type of the regenerative third type absorption heat pump according to the present invention.
  • the first generator 1 structurally, it is mainly a first generator, a second generator, a first absorber, a second absorber, a third absorber, a first solution pump, a second solution pump, a third solution pump, a first solution a heat exchanger, a second solution heat exchanger, a third solution heat exchanger, a fourth solution heat exchanger and a steam separation chamber;
  • the first generator 1 has a concentrated solution pipeline through the first solution pump 6, first
  • the solution heat exchanger 9, the second solution heat exchanger 10 and the second absorber 4 are in communication with the steam dividing chamber 13, and the steam dividing chamber 13 is further
  • the concentrated solution line is connected to the second generator 2 via the second solution pump 7 and the fourth solution heat exchanger 12, and the second generator 2 has a concentrated solution line through the fourth solution heat exchanger 12 and the third solution.
  • the heat exchanger 11 is in communication with the first absorber 3, and the first absorber 3 and the dilute solution line are in communication with the second absorber 4 via the third solution pump 8 and the third solution heat exchanger 11, the second absorber 4
  • the dilute solution line is further connected to the third absorber 5 via the second solution heat exchanger 10, and the third absorber 5 and the dilute solution line are connected to the first generator 1 via the first solution heat exchanger 9, a generator 1 also has a refrigerant vapor passage communicating with the outside, a second generator 2 and a refrigerant vapor passage communicating with the second absorber 4, the first absorber 3 and the refrigerant vapor passage communicating with the outside, the steam separation
  • the chamber 13 also has a refrigerant vapor passage communicating with the third absorber 5, the first generator 1 and the residual heat medium conduit are in communication with the outside, and the second generator 2 also drives the heat medium conduit to communicate with the outside, the first absorption
  • the second absorber 4, the second absorber 4, and the third absorber 5 are also respectively connected to the
  • the residual heat medium flows through the first generator 1, and the solution heated into the solution is released and the refrigerant vapor is externally supplied.
  • the concentrated solution of the first generator 1 passes through the first solution pump 6 and the first solution heat exchanger 9
  • the second solution heat exchanger 10 flows through the second absorber 4, and the heat absorption portion is vaporized and then enters the steam separation chamber 13, and the steam distribution chamber 13 releases and supplies refrigerant vapor to the third absorber 5, and the steam separation chamber 13
  • the concentrated solution enters the second generator 2 via the second solution pump 7 and the fourth solution heat exchanger 12, drives the heat medium to flow through the second generator 2, and the solution heated therein is released and provides cold to the second absorber 4.
  • the vapor of the second generator 2 enters the first absorber 3 through the fourth solution heat exchanger 12 and the third solution heat exchanger 11, absorbs the refrigerant vapor from the outside, and releases the heat to the heated medium, a dilute solution of the absorber 3 enters the second absorber 4 via the third solution pump 8 and the third solution heat exchanger 11, absorbs the refrigerant vapor, and respectively exotherms the solution flowing through the medium and the heated medium, second The dilute solution of the absorber 4 is dissolved in the second The heat exchanger 10 enters the third absorber 5, absorbs the refrigerant vapor and radiates heat to the heated medium, and the diluted solution of the third absorber 5 enters the first generator 1 through the first solution heat exchanger 9, forming a double effect Heat absorption-generation system.
  • the first generator 1 structurally, mainly by the first generator, the second generator, the first absorber, the second absorber, the third absorber, the first solution pump, the second solution pump, the third solution pump, the first solution heat
  • the first generator 1 has a concentrated solution pipeline through the first solution pump 6.
  • the first solution heat exchanger 9, the second solution heat exchanger 10 and the second absorber 4 are in communication with the steam dividing chamber 13, and the steam dividing chamber 13 has a concentrated solution line passing through the second solution pump 7 and the fourth solution.
  • the heat exchanger 12 is in communication with the second generator 2, and the second generator 2 and the concentrated solution line are in communication with the first absorber 3 via the fourth solution heat exchanger 12 and the third solution heat exchanger 11, the first absorption
  • the dilute solution line is further connected to the second absorber 4 via the third solution pump 8 and the third solution heat exchanger 11, and the second absorber 4 and the dilute solution line are in communication with the fourth absorber 14,
  • the four absorbers 14 also have a dilute solution line through the second solution heat exchanger 10 and the third
  • the absorber 5 is in communication, and the third absorber 5 and the dilute solution line are connected to the first generator 1 via the first solution heat exchanger 9, and the first generator 1 has a refrigerant vapor passage communicating with the outside, the second occurrence occurs.
  • the refrigerant 2 also has a refrigerant vapor passage communicating with the second absorber 4 and the fourth absorber 14, respectively, the first absorber 3 and the refrigerant vapor passage communicating with the outside, the steam dividing chamber 13 and the refrigerant vapor passage and the second
  • the third absorber 5 is in communication, the first generator 1 and the residual heat medium pipeline communicate with the outside, and the second generator 2 also drives the heat medium pipeline to communicate with the outside, the first absorber 3, the third absorber 5 and the
  • the four absorbers 14 also have a medium to be heated to communicate with the outside.
  • the residual heat medium flows through the first generator 1, and the solution heated into the solution is released and the refrigerant vapor is externally supplied.
  • the concentrated solution of the first generator 1 passes through the first solution pump 6 and the first solution heat exchanger 9 And flow after the second solution heat exchanger 10
  • the heat absorption portion is vaporized and enters the steam dividing chamber 13
  • the steam dividing chamber 13 is released and the refrigerant vapor is supplied to the third absorber 5
  • the concentrated solution of the steam dividing chamber 13 is passed through the second solution pump 7 and the first
  • the four solution heat exchanger 12 enters the second generator 2, drives the heat medium to flow through the second generator 2, and the solution heated therein is released and supplies the refrigerant vapor to the second absorber 4 and the fourth absorber 14, respectively.
  • the concentrated solution of the second generator 2 enters the first absorber 3 through the fourth solution heat exchanger 12 and the third solution heat exchanger 11, absorbs the refrigerant vapor from the outside, and radiates heat to the heated medium, the first absorber
  • the dilute solution of 3 enters the second absorber 4 through the third solution pump 8 and the third solution heat exchanger 11, absorbs the refrigerant vapor and releases the solution flowing through the solution, and the dilute solution of the second absorber 4 enters the first
  • the four absorbers 14, absorb the refrigerant vapor and exotherm to the heated medium, and the dilute solution of the fourth absorber 14 enters the third absorber 5 through the second solution heat exchanger 10, absorbs the refrigerant vapor, and releases the heat to be heated.
  • the medium, the dilute solution of the third absorber 5 enters through the first solution heat exchanger 9
  • the regenerative third type absorption heat pump shown in Figure 3 is implemented as follows:
  • the condenser, the evaporator, and the refrigerant liquid pump are added, and the first generator 1 has a refrigerant vapor passage connected to the outside to determine that the first generator 1 has
  • the refrigerant vapor passage is in communication with the condenser 15, and the condenser 15 and the refrigerant liquid pipeline are connected to the evaporator 16 via the refrigerant liquid pump 17, and the first absorber 3 has a refrigerant vapor passage connected to the outside to be determined as an evaporator.
  • the 16 has a refrigerant vapor passage communicating with the first absorber 3, the condenser 15 and the cooling medium conduit are in communication with the outside, and the evaporator 16 and the waste heat medium conduit are in communication with the outside; the refrigerant vapor generated by the first generator 1
  • the condenser 15 is heated to the cooling medium to form a refrigerant liquid, and the refrigerant liquid of the condenser 15 is pressurized into the evaporator 16 by the refrigerant liquid pump 17, and the residual heat is absorbed into the refrigerant vapor and supplied to the first absorber 3.
  • a regenerative third type absorption heat pump is formed.
  • the regenerative third-type absorption heat pump shown in Figure 4 is implemented as follows:
  • the condenser, the evaporator and the refrigerant liquid pump are added, and the first generator 1 has a refrigerant vapor passage communicating with the outside to determine that the first generator 1 has
  • the refrigerant vapor passage is in communication with the condenser 15, and the condenser 15 and the refrigerant liquid pipeline are connected to the evaporator 16 via the refrigerant liquid pump 17, and the first absorber 3 has a refrigerant vapor passage connected to the outside to be determined as an evaporator.
  • the 16 has a refrigerant vapor passage communicating with the first absorber 3, the condenser 15 and the cooling medium conduit are in communication with the outside, and the evaporator 16 and the waste heat medium conduit are in communication with the outside; the refrigerant vapor generated by the first generator 1
  • the condenser 15 is heated to the cooling medium to form a refrigerant liquid, and the refrigerant liquid of the condenser 15 is pressurized into the evaporator 16 by the refrigerant liquid pump 17, and the residual heat is absorbed into the refrigerant vapor and supplied to the first absorber 3.
  • a regenerative third type absorption heat pump is formed.
  • the third generator, the throttle valve, the fourth solution pump and the fifth solution heat exchanger are added, and the third absorber 5 is provided with a dilute solution.
  • the pipeline is in communication with the third generator 18 via the fifth solution heat exchanger 20, and the third generator 18 has a concentrated solution line via the fourth solution pump 19 and the fifth solution heat exchanger 20 and the first generator 1
  • the first solution pump 6 and the concentrated solution line after the first solution heat exchanger 9 meet, and the first generator 1 has a refrigerant vapor channel connected to the condenser 15 to adjust the first generator 1 to have a refrigerant vapor channel and
  • the third generator 18 is further connected to the condenser 15 via the throttle valve 21 via the throttle valve 21, and the third generator 18 has a refrigerant vapor passage communicating with the condenser 15.
  • the refrigerant vapor generated by the first generator 1 is supplied to the third generator 18 as a driving heat medium, and a part of the diluted solution of the third absorber 5 passes through the fifth solution heat exchanger 20 to enter the third generator 18,
  • the refrigerant vapor flows through the third generator 18, the solution heated into it is released, and the refrigerant vapor is supplied to the condenser 15, and the concentrated solution of the third generator 18 passes through the fourth solution.
  • the second refrigerant liquid pump, the third generator and the fifth solution heat exchanger are added, and the first generator 1 has a concentrated solution tube.
  • the first solution pump 6 communicates with the first solution heat exchanger 9 to adjust the first generator 1 to have a concentrated solution line communicating with the third generator 18 via the fifth solution heat exchanger 20, and the third generator 18
  • the concentrated solution line is connected to the first solution heat exchanger 9 via the first solution pump 6 and the fifth solution heat exchanger 20, and the first generator 1 has a refrigerant vapor passage connected to the condenser 15 to be adjusted to be the first occurrence.
  • the third generator 18 After the refrigerant 1 has a refrigerant vapor passage communicating with the third generator 18, the third generator 18 has a refrigerant liquid line connected to the evaporator 16 via the second refrigerant liquid pump 22, and the third generator 18 has a refrigerant.
  • the steam passage is in communication with the condenser 15.
  • the refrigerant vapor generated by the first generator 1 is supplied to the third generator 18 to drive the heat medium, and the concentrated solution of the first generator 1 passes through the fifth solution heat exchanger 20 to enter the third generator 18, which is cold.
  • the agent vapor flows through the third generator 18, and the solution heated into the solution is released and supplies the refrigerant vapor to the condenser 15.
  • the concentrated solution of the third generator 18 passes through the first solution pump 6, the fifth solution heat exchanger 20,
  • the first solution heat exchanger 9, the second solution heat exchanger 10 and the second absorber 4 enter the steam dividing chamber 13, and the refrigerant vapor flowing through the third generator 18 is released into a refrigerant liquid and then passed through the second refrigerant.
  • the liquid pump 22 is pressurized into the evaporator 16 to form a regenerative third type absorption heat pump.
  • the second refrigerant liquid pump, the third generator, the fourth solution pump and the fifth solution heat exchanger are added, and the third absorber is added 5 having a dilute solution line connected to the first generator 1 via the first solution heat exchanger 9 to be adjusted to a third absorber 5 having a dilute solution line passing through the first solution heat exchanger 9 and the fifth solution heat exchanger 20
  • the third generator 18 is in communication, and the third generator 18 has a concentrated solution line connected to the first generator 1 via the fourth solution pump 19 and the fifth solution heat exchanger 20, and the first generator 1 has a refrigerant vapor.
  • the passage is connected to the condenser 15 to be adjusted so that the first generator 1 has a refrigerant vapor passage communicating with the third generator 18, and then the third generator 18 has a refrigerant liquid pipeline passing through the second refrigerant liquid pump 22 and the evaporator 16 In communication, the third generator 18 also has a refrigerant vapor passage in communication with the condenser 15.
  • the refrigerant vapor generated by the first generator 1 is supplied to the third generator 18 as a driving heat medium, and the diluted solution of the third absorber 5 passes through the first solution heat exchanger 9 and the fifth solution heat exchanger 20 Entering the third generator 18, the refrigerant vapor flows through the third generator 18, the solution heated therein is released and supplies the refrigerant vapor to the condenser 15, and the concentrated solution of the third generator 18 passes through the fourth solution pump 19 and The fifth solution heat exchanger 20 enters the first generator 1, and the refrigerant vapor flowing through the third generator 18 is released into a refrigerant liquid, and then pressurized into the evaporator 16 through the second refrigerant liquid pump 22 to form a heat recovery.
  • the third type of absorption heat pump is used to the third generator 18 as a driving heat medium.
  • the regenerative third type absorption heat pump shown in Figure 8 is implemented as follows:
  • the first generator 1 has a refrigerant vapor passage connected to the condenser 15 to be adjusted to be the first generator 1 having a refrigerant vapor passage communicating with the newly added absorber B, adding the absorber B
  • the new generator A and the concentrated solution pipeline are connected to the newly added absorber B via the new solution heat exchanger D.
  • the new generator A and the refrigerant vapor passage are connected to the condenser 5, and a new generator is added.
  • A also has a waste heat medium pipeline connected to the outside, and a new absorber B and a cooling medium pipeline are connected to the outside.
  • the refrigerant vapor generated by the first generator 1 enters the newly added absorber B, and the concentrated solution of the newly added generator A enters the newly added absorber 8 through the newly added solution heat exchanger D, absorbs the refrigerant vapor and puts Hot to the cooling medium, the diluted solution of the new absorber B is added to the new generator A through the new solution pump C and the new solution heat exchanger D, and the driving heat medium flows through the newly added generator A, and is heated into the inside.
  • the solution is released and provides refrigerant vapor to the condenser 15 to form a recuperative third type absorption heat pump.
  • the regenerative third type absorption heat pump shown in Figure 9 is implemented as follows:
  • the absorber B is connected, the new generator A and the refrigerant vapor passage are connected with the condenser 5, the new generator A and the waste heat medium pipeline are connected to the outside, and the new absorber B and the cooling medium pipeline and the outside are added. Connected.
  • the refrigerant vapor generated by the third generator 18 enters the newly added absorber B, and the concentrated solution of the newly added generator A enters the newly added absorber 8 through the newly added solution heat exchanger D, absorbs the refrigerant vapor and puts Hot to the cooling medium, the diluted solution of the new absorber B is added to the new generator A through the new solution pump C and the new solution heat exchanger D, and the driving heat medium flows through the newly added generator A, and is heated into the inside.
  • the solution is released and provides refrigerant vapor to the condenser 15 to form a recuperative third type absorption heat pump.
  • the regenerative third type absorption heat pump shown in Figure 10 is implemented as follows:
  • the re-upper condenser and the re-refrigerant liquid pump are added, and the first generator 1 is connected with the refrigerant vapor passage to communicate with the re-increment condenser E, and then the condensation is increased.
  • the coolant E is connected to the evaporator 16 via the re-refrigerant liquid pump F, and the condenser E and the cooling medium pipeline are connected to the outside; the refrigerant vapor generated by the first generator 1 is respectively directed to Adding the absorber B and the re-upper condenser E, the refrigerant vapor of the condenser E is added to the cooling medium to form a refrigerant liquid, and the coolant liquid of the condenser E is further increased by the re-cooling agent liquid pump F.
  • the pressure enters the evaporator 16, absorbs the residual heat into the refrigerant vapor, and supplies it to the first absorber 3 to form a regenerative third type absorption heat pump.
  • the regenerative third type absorption heat pump shown in Figure 11 is realized as follows:
  • the concentrated solution line of the device 1 is connected to the first solution heat exchanger 9 via the first solution pump 6 to be adjusted to be the first generator 1; the concentrated solution line is connected to the newly added generator A via the new solution heat exchanger D, The new generator A and the concentrated solution pipeline are connected to the first solution heat exchanger 9 via the first solution pump 6, and the new generator A and the waste heat medium pipeline are connected to the outside, and the new absorber B is cooled.
  • the media line is connected to the outside.
  • the dilute solution of the third absorber 5 enters the new absorber B through the first solution heat exchanger 9, and the absorption comes from
  • the coolant vapor of the generator A is newly added and radiated to the cooling medium, and the diluted solution of the new absorber B is added to the first generator 1 through the new solution pump C and the new solution heat exchanger B, the first generator 1
  • the concentrated solution enters the newly added generator A through the newly added solution heat exchanger D, and the residual heat medium flows through the newly added generator A, the solution heated into the solution is released, and the refrigerant vapor is supplied to the newly added absorber B, and the addition occurs.
  • the concentrated solution of the device A enters the steam separation chamber 13 through the first solution pump 6, the first solution heat exchanger 9, the second solution heat exchanger 10, and the second absorber 4 to form a regenerative third type absorption heat pump.
  • Double-effect regenerative absorption-generating system achieving double-effect heat recovery, giving full play to the role of high-temperature driving heat, making full use of heat transfer temperature difference, and improving the thermodynamic perfection of the system.
  • Regenerative type III absorption heat pump the regenerative load can be adjusted to achieve rationalization and continuous performance index, so that the third type of absorption heat pump can maximize the performance index under variable operating conditions.
  • the heating load of the second absorber 4 can be adjusted, and the ratio between single-effect heat recovery and double-effect heat recovery can be adjusted, which is beneficial to improve in variable working conditions.
  • the performance index of the third type of absorption heat pump is beneficial to improve in variable working conditions.
  • Regenerative type III absorption heat pump the first absorber, the third absorber or the second absorber realizes multi-end heating, which is beneficial to the third type of absorption heat pump in maintaining the high performance index Under the large temperature difference heating.
  • the regenerative third type absorption heat pump enriches the type and process of the absorption heat pump, expands and enriches the application range of the absorption heat pump, and has good creativity, novelty and practicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

双效回热吸收-发生系统与回热式第三类吸收式热泵,其中:双效回热吸收-发生系统主要由第一发生器(1)、第二发生器(2)、第一吸收器(3)、第二吸收器(4)、第三吸收器(5)、分汽室(13)、若干溶液泵(6、7、8)和若干溶液热交换器(9、10、11、12)组成;第一发生器(1)向冷凝器(15)提供冷剂蒸汽,第二发生器(2)向第二吸收器(4)提供冷剂蒸汽,分汽室(13)向第三吸收器(5)提供冷剂蒸汽,蒸发器(16)向第一吸收器(3)提供冷剂蒸汽,冷凝器(15)经冷剂液泵(17)向蒸发器(16)提供冷剂液,第一吸收器(3)、第三吸收器(5)或者再加上第二吸收器(4)对外供热,冷凝器(15)放出低温热,形成具有双效回热流程的回热式第三类吸收式热泵。

Description

双效回热吸收 -发生系统与回热式第三类吸收式热泵 技术领域:
本发明属于低温余热利用热泵技术领域。
背景技术:
在采用高温发生器和高温吸收器来实现溶液浓度变化的第三类吸收式热泵流程中, 高温 发生器和高温吸收器之间形成了回热流程, 这不仅能够提高第三类吸收式热泵的供热温度, 也可以使第三类吸收式热泵具有供热参数可调节、性能指数连续化和适应变工况运行的优势。 但是, 当高温驱动热介质与被加热介质之间温差较大时, 若高温驱动热介质的高品位热负荷 只进行一次回热流程, 则会出现温差不能充分利用的情况。 此时, 应该考虑使高温驱动热负 荷进行双效回热流程——将第一次回热流程产生的冷剂蒸汽用于溶液浓度的进一步提升并释 放出用于二次回热的冷剂蒸汽, 则可充分发挥高温驱动热的作用, 充分利用传热温差, 提高 第三类吸收式热泵的性能指数。
发明内容:
本发明的主要目的是提供双效回热吸收-发生系统与回热式第三类吸收式热泵,具体发明 内容分项阐述如下:
1. 双效回热吸收 -发生系统, 主要由第一发生器、 第二发生器、 第一吸收器、 第二吸收 器、 第三吸收器、 第一溶液泵、 第二溶液泵、 第三溶液泵、 第一溶液热交换器、 第二溶液热 交换器、 第三溶液热交换器、 第四溶液热交换器和分汽室所组成; 第一发生器有浓溶液管路 经第一溶液泵、 第一溶液热交换器、 第二溶液热交换器和第二吸收器与分汽室连通, 分汽室 还有浓溶液管路经第二溶液泵和第四溶液热交换器与第二发生器连通, 第二发生器还有浓溶 液管路经第四溶液热交换器和第三溶液热交换器与第一吸收器连通, 第一吸收器还有稀溶液 管路经第三溶液泵和第三溶液热交换器与第二吸收器连通, 第二吸收器还有稀溶液管路经第 二溶液热交换器与第三吸收器连通, 第三吸收器还有稀溶液管路经第一溶液热交换器与第一 发生器连通, 第一发生器还有冷剂蒸汽通道与外部连通, 第二发生器还有冷剂蒸汽通道与第 二吸收器连通, 第一吸收器还有冷剂蒸汽通道与外部连通, 分汽室还有冷剂蒸汽通道与第三 吸收器连通, 第一发生器还有余热介质管路与外部连通, 第二发生器还有驱动热介质管路与 外部连通, 第一吸收器和第三吸收器还分别有被加热介质管路与外部连通, 第二吸收器或还 有被加热介质管路与外部连通, 形成双效回热吸收-发生系统。
2. 双效回热吸收 -发生系统, 主要由第一发生器、 第二发生器、 第一吸收器、 第二吸收 器、 第三吸收器、 第一溶液泵、 第二溶液泵、 第三溶液泵、 第一溶液热交换器、 第二溶液热 交换器、 第三溶液热交换器、 第四溶液热交换器、 分汽室和第四吸收器所组成; 第一发生器 有浓溶液管路经第一溶液泵、 第一溶液热交换器、 第二溶液热交换器和第二吸收器与分汽室 连通, 分汽室还有浓溶液管路经第二溶液泵和第四溶液热交换器与第二发生器连通, 第二发 生器还有浓溶液管路经第四溶液热交换器和第三溶液热交换器与第一吸收器连通, 第一吸收 器还有稀溶液管路经第三溶液泵和第三溶液热交换器与第二吸收器连通, 第二吸收器还有稀 溶液管路与第四吸收器连通, 第四吸收器还有稀溶液管路经第二溶液热交换器与第三吸收器 连通, 第三吸收器还有稀溶液管路经第一溶液热交换器与第一发生器连通, 第一发生器还有 冷剂蒸汽通道与外部连通, 第二发生器还有冷剂蒸汽通道分别与第二吸收器和第四吸收器连 通, 第一吸收器还有冷剂蒸汽通道与外部连通, 分汽室还有冷剂蒸汽通道与第三吸收器连通, 第一发生器还有余热介质管路与外部连通, 第二发生器还有驱动热介质管路与外部连通, 第 一吸收器、 第三吸收器和第四吸收器还分别有被加热介质管路与外部连通, 形成双效回热吸 收 -发生系统。
3. 回热式第三类吸收式热泵, 是在第 2项所述的双效回热吸收-发生系统中, 将第四吸 收器有被加热介质管路与外部连通调整为第二吸收器有被加热介质管路与外部连通, 将第一 发生器有浓溶液管路经第一溶液泵、 第一溶液热交换器、 第二溶液热交换器和第二吸收器与 分汽室连通调整为第一发生器有浓溶液管路经第一溶液泵、 第一溶液热交换器、 第二溶液热 交换器和第四吸收器与分汽室连通, 形成双效回热吸收-发生系统。
4. 回热式第三类吸收式热泵, 是在第 1-3项所述的任一双效回热吸收-发生系统中, 增 加冷凝器、 蒸发器和冷剂液泵, 将第一发生器有冷剂蒸汽通道与外部连通确定为第一发生器 有冷剂蒸汽通道与冷凝器连通, 冷凝器还有冷剂液管路经冷剂液泵与蒸发器连通, 将第一吸 收器有冷剂蒸汽通道与外部连通确定为蒸发器有冷剂蒸汽通道与第一吸收器连通, 冷凝器还 有冷却介质管路与外部连通, 蒸发器还有余热介质管路与外部连通, 形成回热式第三类吸收 式热泵。
5. 回热式第三类吸收式热泵, 是在第 4项所述的任一回热式第三类吸收式热泵中, 增 加第三发生器、 节流阀或第二冷剂液泵、 第四溶液泵和第五溶液热交换器, 第三吸收器增设 稀溶液管路经第五溶液热交换器与第三发生器连通, 第三发生器还有浓溶液管路经第四溶液 泵和第五溶液热交换器与第一发生器经第一溶液泵和第一溶液热交换器之后的浓溶液管路汇 合, 将第一发生器有冷剂蒸汽通道与冷凝器连通调整为第一发生器有冷剂蒸汽通道与第三发 生器连通后第三发生器再有冷剂液管路经节流阀与冷凝器连通或经第二冷剂液泵与蒸发器连 通, 第三发生器还有冷剂蒸汽通道与冷凝器连通, 形成回热式第三类吸收式热泵。
6. 回热式第三类吸收式热泵, 是在第 4项所述的任一回热式第三类吸收式热泵中, 增 加节流阀或第二冷剂液泵、 第三发生器和第五溶液热交换器, 将第一发生器有浓溶液管路经 第一溶液泵与第一溶液热交换器连通调整为第一发生器有浓溶液管路经第五溶液热交换器与 第三发生器连通, 第三发生器再有浓溶液管路经第一溶液泵和第五溶液热交换器与第一溶液 热交换器连通, 将第一发生器有冷剂蒸汽通道与冷凝器连通调整为第一发生器有冷剂蒸汽通 道与第三发生器连通后第三发生器再有冷剂液管路经节流阔与冷凝器连通或经第二冷剂液泵 与蒸发器连通, 第三发生器还有冷剂蒸汽通道与冷凝器连通, 形成回热式第三类吸收式热泵。
7. 回热式第三类吸收式热泵, 是在第 4项所述的任一回热式第三类吸收式热泵中, 增 加节流阀或第二冷剂液泵、 第三发生器、 第四溶液泵和第五溶液热交换器, 将第三吸收器有 稀溶液管路经第一溶液热交换器与第一发生器连通调整为第三吸收器有稀溶液管路经第一溶 液热交换器和第五溶液热交换器与第三发生器连通, 第三发生器再有浓溶液管路经第四溶液 泵和第五溶液热交换器与第一发生器连通, 将第一发生器有冷剂蒸汽通道与冷凝器连通调整 为第一发生器有冷剂蒸汽通道与第三发生器连通后第三发生器再有冷剂液管路经节流阀与冷 凝器连通或经第二冷剂液泵与蒸发器连通, 第三发生器还有冷剂蒸汽通道与冷凝器连通, 形 成回热式第三类吸收式热泵。
8. 回热式第三类吸收式热泵, 是在第 4项所述的任一回热式第三类吸收式热泵中, 增 加新增发生器、 新增吸收器、 新增溶液泵和新增溶液热交换器, 将第一发生器有冷剂蒸汽通 道与冷凝器连通调整为第一发生器有冷剂蒸汽通道与新增吸收器连通, 新增吸收器还有稀溶 液管路经新增溶液泵和新增溶液热交换器与新增发生器连通, 新增发生器还有浓溶液管路经 新增溶液热交换器与新增吸收器连通, 新增发生器还有冷剂蒸汽通道与冷凝器连通, 新增发 生器还有余热介质管路与外部连通, 新增吸收器还有冷却介质管路与外部连通, 形成回热式 第三类吸收式热泵。
9. 回热式第三类吸收式热泵, 是在第 5-7项所述的任一回热式第三类吸收式热泵中, 增加新增发生器、 新增吸收器、 新增溶液泵和新增溶液热交换器, 将第三发生器有冷剂蒸汽 通道与冷凝器连通调整为第三发生器有冷剂蒸汽通道与新增吸收器连通, 新增吸收器还有稀 溶液管路经新增溶液泵和新增溶液热交换器与新增发生器连通, 新增发生器还有浓溶液管路 经新增溶液热交换器与新增吸收器连通, 新增发生器还有冷剂蒸汽通道与冷凝器连通, 新增 发生器还有余热介质管路与外部连通, 新增吸收器还有冷却介质管路与外部连通, 形成回热 式第三类吸收式热泵。
10. 回热式第三类吸收式热泵, 是在第 9项所述的任一回热式第三类吸收式热泵中, 取 消新增发生器与外部连通的余热介质管路, 增加新增节流阀或新增冷剂液泵, 第一发生器增 设冷剂蒸汽通道与新增发生器连通后新增发生器再有冷剂液管路经新增节流阀与冷凝器连通 后经新增冷剂液泵与蒸发器连通, 形成回热式第三类吸收式热泵。
11. 回热式第三类吸收式热泵, 是在第 8项所述的任一回热式第三类吸收式热泵中, 增 加再增冷凝器和再增冷剂液泵, 第一发生器增设冷剂蒸汽通道与再增冷凝器连通, 再增冷凝 器还有冷剂液管路经再增冷剂液泵与蒸发器连通,再增冷凝器还有冷却介质管路与外部连通, 形成回热式第三类吸收式热泵。
12. 回热式第三类吸收式热泵,是在第 9-10项所述的任一回热式第三类吸收式热泵中, 增加再增冷凝器和再增冷剂液泵, 增加再增冷凝器和再增冷剂液泵, 第三发生器增设冷剂蒸 汽通道与再增冷凝器连通, 再增冷凝器还有冷剂液管路经再增冷剂液泵与蒸发器连通, 再增 冷凝器还有冷却介质管路与外部连通, 形成回热式第三类吸收式热泵。
13. 回热式第三类吸收式热泵, 是在第 4项所述的任一回热式第三类吸收式热泵中, 增 加新增发生器、 新增吸收器、 新增溶液泵和新增溶液热交换器, 将第三吸收器有稀溶液管路 经第一溶液热交换器与第一发生器连通调整为第三吸收器有稀溶液管路经第一溶液热交换器 与新增吸收器连通, 新增吸收器再有稀溶液管路经新增溶液泵和新增溶液热交换器与第一发 生器连通, 将第一发生器有浓溶液管路经第一溶液泵与第一溶液热交换连通调整为第一发生 器有浓溶液管路经新增溶液热交换器与新增发生器连通, 新增发生器再有浓溶液管路经第一 溶液泵与第一溶液热交换器连通, 新增发生器还有余热介质管路与外部连通, 新增吸收器还 有冷却介质管路与外部连通, 形成回热式第三类吸收式热泵。 下面以图 3所示的回热式第三类吸收式热泵为例简要说明本发明:
图 3中, 第二发生器 2产生的冷剂蒸汽向第二吸收器 4提供、 被来自第一吸收器 3的溶 液吸收并分别放热于流经第二吸收器 4的溶液和被加热介质, 完成第一次回热流程; 流经第 二吸收器 4的溶液吸热汽化并进入分汽室 13, 第二发生器 2所产生的冷剂蒸汽中的一部分热 转移到分汽室 13所释放的冷剂蒸汽中, 分汽室 13向第三吸收器 5提供冷剂蒸汽、 被来自第 二吸收器 4的溶液吸收并放热于被加热介质, 完成第二次回热流程。 主要效果如下:
(1)第二发生器 2产生的冷剂蒸汽在第二吸收器 4内完成一次回热, 第二吸收器 4结合分 汽室 13产生的冷剂蒸汽又在第三吸收器 5内完成二次回热, 实现双效回热。
(2)用于回热的热负荷可调节, 使该类吸收式热泵实现性能指数的合理化和连续化。
(3)比较单效回热, 双效回热实现了高温驱动热负荷的两次利用, 降低了高温驱动热负荷, 能够显著提高第三类吸收式热泵的性能指数。
附图说明:
图 1是依据本发明所提供的双效回热吸收 -发生系统第 1种结构和流程示意图。
图 2是依据本发明所提供的双效回热吸收 -发生系统第 2种结构和流程示意图。
图 3是依据本发明所提供的回热式第三类吸收式热泵第 1种结构和流程示意图。
图 4是依据本发明所提供的回热式第三类吸收式热泵第 2种结构和流程示意图。
图 5是依据本发明所提供的回热式第三类吸收式热泵第 3种结构和流程示意图。
图 6是依据本发明所提供的回热式第三类吸收式热泵第 4种结构和流程示意图。
图 7是依据本发明所提供的回热式第三类吸收式热泵第 5种结构和流程示意图。
图 8是依据本发明所提供的回热式第三类吸收式热泵第 6种结构和流程示意图。
图 9是依据本发明所提供的回热式第三类吸收式热泵第 7种结构和流程示意图。
图 10是依据本发明所提供的回热式第三类吸收式热泵第 8种结构和流程示意图。
图 11是依据本发明所提供的回热式第三类吸收式热泵第 9种结构和流程示意图。
图中, 1一第一发生器, 2—第二发生器, 3—第一吸收器, 4一第二吸收器, 5—第三吸收 器, 6—第一溶液泵, 7—第二溶液泵, 8—第三溶液泵, 9一第一溶液热交换器, 10—第二溶 液热交换器, 11一第三溶液热交换器, 12—第四溶液热交换器, 13—分汽室, 14一第四吸收 器, 15—冷凝器, 16—蒸发器, 17—冷剂液泵, 18—第三发生器, 19一第四溶液泵, 20—第 五溶液热交换器, 21—节流阀, 22—第二冷剂液泵; A—新增发生器, B—新增吸收器, C一新 增溶液泵, D—新增溶液热交换器; E—再增冷凝器, F—再增冷剂液泵。
具体实施方式:
首先要说明的是, 在结构和流程的表述上, 非必要情况下不重复进行; 对显而易见的流 程不作表述。 下面结合附图和实例来详细描述本发明。
图 1所示的双效回热吸收 -发生系统是这样实现的-
①结构上, 它主要 ώ第一发生器、 第二发生器、 第一吸收器、 第二吸收器、 第三吸收器、 第一溶液泵、 第二溶液泵、 第三溶液泵、 第一溶液热交换器、 第二溶液热交换器、 第三溶液 热交换器、 第四溶液热交换器和分汽室所组成; 第一发生器 1有浓溶液管路经第一溶液泵 6、 第一溶液热交换器 9、 第二溶液热交换器 10和第二吸收器 4与分汽室 13连通, 分汽室 13还 有浓溶液管路经第二溶液泵 7和第四溶液热交换器 12与第二发生器 2连通,第二发生器 2还 有浓溶液管路经第四溶液热交换器 12和第三溶液热交换器 11与第一吸收器 3连通, 第一吸 收器 3还有稀溶液管路经第三溶液泵 8和第三溶液热交换器 11与第二吸收器 4连通,第二吸 收器 4还有稀溶液管路经第二溶液热交换器 10与第三吸收器 5连通,第三吸收器 5还有稀溶 液管路经第一溶液热交换器 9与第一发生器 1连通, 第一发生器 1还有冷剂蒸汽通道与外部 连通, 第二发生器 2还有冷剂蒸汽通道与第二吸收器 4连通, 第一吸收器 3还有冷剂蒸汽通 道与外部连通, 分汽室 13还有冷剂蒸汽通道与第三吸收器 5连通, 第一发生器 1还有余热介 质管路与外部连通, 第二发生器 2还有驱动热介质管路与外部连通, 第一吸收器 3、 第二吸 收器 4和第三吸收器 5还分别有被加热介质管路与外部连通。
②流程上, 余热介质流经第一发生器 1、 加热进入其内的溶液释放并对外提供冷剂蒸汽, 第一发生器 1的浓溶液经第一溶液泵 6、 第一溶液热交换器 9和第二溶液热交换器 10之后流 经第二吸收器 4、吸热部分汽化后进入分汽室 13, 分汽室 13释放并向第三吸收器 5提供冷剂 蒸汽, 分汽室 13的浓溶液经第二溶液泵 7和第四溶液热交换器 12进入第二发生器 2, 驱动 热介质流经第二发生器 2、 加热进入其内的溶液释放并向第二吸收器 4提供冷剂蒸汽, 第二 发生器 2的浓溶液经第四溶液热交换器 12和第三溶液热交换器 11进入第一吸收器 3、 吸收 来自外部的冷剂蒸汽并放热于被加热介质, 第一吸收器 3的稀溶液经第三溶液泵 8和第三溶 液热交换器 11进入第二吸收器 4、吸收冷剂蒸汽并分别放热于流经其内的溶液和被加热介质, 第二吸收器 4的稀溶液经第二溶液热交换器 10进入第三吸收器 5、 吸收冷剂蒸汽并放热于被 加热介质, 第三吸收器 5的稀溶液经第一溶液热交换器 9进入第一发生器 1, 形成双效回热 吸收-发生系统。
图 2所示的双效回热吸收 -发生系统是这样实现的:
①结构上, 主要由第一发生器、 第二发生器、 第一吸收器、 第二吸收器、 第三吸收器、 第一溶液泵、 第二溶液泵、 第三溶液泵、 第一溶液热交换器、 第二溶液热交换器、 第三溶液 热交换器、 第四溶液热交换器、 分汽室和第四吸收器所组成; 第一发生器 1有浓溶液管路经 第一溶液泵 6、第一溶液热交换器 9、第二溶液热交换器 10和第二吸收器 4与分汽室 13连通, 分汽室 13还有浓溶液管路经第二溶液泵 7和第四溶液热交换器 12与第二发生器 2连通, 第 二发生器 2还有浓溶液管路经第四溶液热交换器 12和第三溶液热交换器 11与第一吸收器 3 连通, 第一吸收器 3还有稀溶液管路经第三溶液泵 8和第三溶液热交换器 11与第二吸收器 4 连通, 第二吸收器 4还有稀溶液管路与第四吸收器 14连通, 第四吸收器 14还有稀溶液管路 经第二溶液热交换器 10与第三吸收器 5连通,第三吸收器 5还有稀溶液管路经第一溶液热交 换器 9与第一发生器 1连通, 第一发生器 1还有冷剂蒸汽通道与外部连通, 第二发生器 2还 有冷剂蒸汽通道分别与第二吸收器 4和第四吸收器 14连通,第一吸收器 3还有冷剂蒸汽通道 与外部连通, 分汽室 13还有冷剂蒸汽通道与第三吸收器 5连通, 第一发生器 1还有余热介质 管路与外部连通, 第二发生器 2还有驱动热介质管路与外部连通, 第一吸收器 3、 第三吸收 器 5和第四吸收器 14还分别有被加热介质管路与外部连通。
②流程上, 余热介质流经第一发生器 1、 加热进入其内的溶液释放并对外提供冷剂蒸汽, 第一发生器 1的浓溶液经第一溶液泵 6、 第一溶液热交换器 9和第二溶液热交换器 10之后流 经第二吸收器 4、吸热部分汽化后进入分汽室 13, 分汽室 13释放并向第三吸收器 5提供冷剂 蒸汽, 分汽室 13的浓溶液经第二溶液泵 7和第四溶液热交换器 12进入第二发生器 2, 驱动 热介质流经第二发生器 2、 加热进入其内的溶液释放并分别向第二吸收器 4和第四吸收器 14 提供冷剂蒸汽, 第二发生器 2的浓溶液经第四溶液热交换器 12和第三溶液热交换器 11进入 第一吸收器 3、 吸收来自外部的冷剂蒸汽并放热于被加热介质, 第一吸收器 3的稀溶液经第 三溶液泵 8和第三溶液热交换器 11进入第二吸收器 4、 吸收冷剂蒸汽并放热于流经其内的溶 液, 第二吸收器 4的稀溶液进入第四吸收器 14、 吸收冷剂蒸汽并放热于被加热介质, 第四吸 收器 14的稀溶液经第二溶液热交换器 10进入第三吸收器 5、 吸收冷剂蒸汽并放热于被加热 介质, 第三吸收器 5的稀溶液经第一溶液热交换器 9进入第一发生器 1, 形成双效回热吸收- 发生系统。
图 3所示的回热式第三类吸收式热泵是这样实现的:
在图 1所示的双效回热吸收-发生系统中, 增加冷凝器、 蒸发器和冷剂液泵, 将第一发生 器 1有冷剂蒸汽通道与外部连通确定为第一发生器 1有冷剂蒸汽通道与冷凝器 15连通,冷凝 器 15还有冷剂液管路经冷剂液泵 17与蒸发器 16连通,将第一吸收器 3有冷剂蒸汽通道与外 部连通确定为蒸发器 16有冷剂蒸汽通道与第一吸收器 3连通, 冷凝器 15还有冷却介质管路 与外部连通, 蒸发器 16还有余热介质管路与外部连通; 第一发生器 1产生的冷剂蒸汽进入冷 凝器 15、 放热于冷却介质成冷剂液, 冷凝器 15的冷剂液经冷剂液泵 17加压进入蒸发器 16、 吸收余热成冷剂蒸汽并向第一吸收器 3提供, 形成回热式第三类吸收式热泵。
图 4所示的回热式第三类吸收式热泵是这样实现的:
在图 2所示的双效回热吸收-发生系统中, 增加冷凝器、 蒸发器和冷剂液泵, 将第一发生 器 1有冷剂蒸汽通道与外部连通确定为第一发生器 1有冷剂蒸汽通道与冷凝器 15连通,冷凝 器 15还有冷剂液管路经冷剂液泵 17与蒸发器 16连通,将第一吸收器 3有冷剂蒸汽通道与外 部连通确定为蒸发器 16有冷剂蒸汽通道与第一吸收器 3连通, 冷凝器 15还有冷却介质管路 与外部连通, 蒸发器 16还有余热介质管路与外部连通; 第一发生器 1产生的冷剂蒸汽进入冷 凝器 15、 放热于冷却介质成冷剂液, 冷凝器 15的冷剂液经冷剂液泵 17加压进入蒸发器 16、 吸收余热成冷剂蒸汽并向第一吸收器 3提供, 形成回热式第三类吸收式热泵。
图 5所示的回热式第三类吸收式热泵是这样实现的-
①结构上, 在图 1所示的双效回热吸收-发生系统中, 增加第三发生器、 节流阀、 第四溶 液泵和第五溶液热交换器,第三吸收器 5增设稀溶液管路经第五溶液热交换器 20与第三发生 器 18连通, 第三发生器 18还有浓溶液管路经第四溶液泵 19和第五溶液热交换器 20与第一 发生器 1经第一溶液泵 6和第一溶液热交换器 9之后的浓溶液管路汇合, 将第一发生器 1有 冷剂蒸汽通道与冷凝器 15连通调整为第一发生器 1有冷剂蒸汽通道与第三发生器 18连通后 第三发生器 18再有冷剂液管路经节流阀 21与冷凝器 15连通, 第三发生器 18还有冷剂蒸汽 通道与冷凝器 15连通。
②流程上, 第一发生器 1产生的冷剂蒸汽提供给第三发生器 18作驱动热介质, 第三吸收 器 5的部分稀溶液经第五溶液热交换器 20进入第三发生器 18,冷剂蒸汽流经第三发生器 18、 加热进入其内的溶液释放并向冷凝器 15提供冷剂蒸汽, 第三发生器 18的浓溶液经第四溶液 12 001103 泵 19和第五溶液热交换器 20之后与第一发生器 1经第一溶液泵 6和第一溶液热交换器 9之 后的浓溶液管路汇合、 再经第二溶液热交换器 10和第二吸收器 4进入分汽室 13, 流经第三 发生器 18的冷剂蒸汽放热成冷剂液后经节流阔 21节流进入冷凝器 15, 形成回热式第三类吸 收式热泵。
图 6所示的回热式第三类吸收式热泵是这样实现的-
①结构上, 在图 1所示的双效回热吸收-发生系统中, 增加第二冷剂液泵、第三发生器和 第五溶液热交换器, 将第一发生器 1有浓溶液管路经第一溶液泵 6与第一溶液热交换器 9连 通调整为第一发生器 1有浓溶液管路经第五溶液热交换器 20与第三发生器 18连通, 第三发 生器 18再有浓溶液管路经第一溶液泵 6和第五溶液热交换器 20与第一溶液热交换器 9连通, 将第一发生器 1有冷剂蒸汽通道与冷凝器 15连通调整为第一发生器 1有冷剂蒸汽通道与第三 发生器 18连通后第三发生器 18再有冷剂液管路经第二冷剂液泵 22与蒸发器 16连通, 第三 发生器 18还有冷剂蒸汽通道与冷凝器 15连通。
②流程上, 第一发生器 1产生的冷剂蒸汽提供给第三发生器 18作驱动热介质, 第一发生 器 1的浓溶液经第五溶液热交换器 20进入第三发生器 18, 冷剂蒸汽流经第三发生器 18、 加 热进入其内的溶液释放并向冷凝器 15提供冷剂蒸汽, 第三发生器 18的浓溶液经第一溶液泵 6、 第五溶液热交换器 20、 第一溶液热交换器 9、 第二溶液热交换器 10和第二吸收器 4进入 分汽室 13, 流经第三发生器 18的冷剂蒸汽放热成冷剂液后经第二冷剂液泵 22加压进入蒸发 器 16, 形成回热式第三类吸收式热泵。
图 7所示的回热式第三类吸收式热泵是这样实现的-
①结构上, 在图 1所示的双效回热吸收-发生系统中, 增加第二冷剂液泵、 第三发生器、 第四溶液泵和第五溶液热交换器, 将第三吸收器 5有稀溶液管路经第一溶液热交换器 9与第 一发生器 1连通调整为第三吸收器 5有稀溶液管路经第一溶液热交换器 9和第五溶液热交换 器 20与第三发生器 18连通, 第三发生器 18再有浓溶液管路经第四溶液泵 19和第五溶液热 交换器 20与第一发生器 1连通, 将第一发生器 1有冷剂蒸汽通道与冷凝器 15连通调整为第 一发生器 1有冷剂蒸汽通道与第三发生器 18连通后第三发生器 18再有冷剂液管路经第二冷 剂液泵 22与蒸发器 16连通, 第三发生器 18还有冷剂蒸汽通道与冷凝器 15连通。
②流程上, 第一发生器 1产生的冷剂蒸汽提供给第三发生器 18作驱动热介质, 第三吸收 器 5的稀溶液经第一溶液热交换器 9和第五溶液热交换器 20进入第三发生器 18, 冷剂蒸汽 流经第三发生器 18、 加热进入其内的溶液释放并向冷凝器 15提供冷剂蒸汽, 第三发生器 18 的浓溶液经第四溶液泵 19和第五溶液热交换器 20进入第一发生器 1, 流经第三发生器 18的 冷剂蒸汽放热成冷剂液后经第二冷剂液泵 22加压进入蒸发器 16, 形成回热式第三类吸收式 热泵。
图 8所示的回热式第三类吸收式热泵是这样实现的:
①结构上, 在图 1所示的双效回热吸收-发生系统中, 取消第二吸收器 4与外部连通的被 加热介质管路, 增加新增发生器、 新增吸收器、 新增溶液泵和新增溶液热交换器, 将第一发 生器 1有冷剂蒸汽通道与冷凝器 15连通调整为第一发生器 1有冷剂蒸汽通道与新增吸收器 B 连通, 新增吸收器 B还有稀溶液管路经新增溶液泵 C和新增溶液热交换器 D与新增发生器 A 连通, 新增发生器 A还有浓溶液管路经新增溶液热交换器 D与新增吸收器 B连通, 新增发生 器 A还有冷剂蒸汽通道与冷凝器 5连通, 新增发生器 A还有余热介质管路与外部连通, 新增 吸收器 B还有冷却介质管路与外部连通。
②流程上, 第一发生器 1产生的冷剂蒸汽进入新增吸收器 B, 新增发生器 A的浓溶液经 新增溶液热交换器 D进入新增吸收器8、 吸收冷剂蒸汽并放热于冷却介质, 新增吸收器 B的 稀溶液经新增溶液泵 C和新增溶液热交换器 D进入新增发生器 A, 驱动热介质流经新增发生 器 A、加热进入其内的溶液释放并向冷凝器 15提供冷剂蒸汽,形成回热式第三类吸收式热泵。
图 9所示的回热式第三类吸收式热泵是这样实现的:
①结构上, 在图 6所 的回热式第三类吸收式热泵屮, 取消第二吸收器 4与外部连通的 被加热介质管路, 增加新增发生器、 新增吸收器、 新增溶液泵和新增溶液热交换器, 将第三 发生器 18有冷剂蒸汽通道与冷凝器 15连通调整为第三发生器 18有冷剂蒸汽通道与新增吸收 器 B连通, 新增吸收器 B还有稀溶液管路经新增溶液泵 C和新增溶液热交换器 D与新增发生 器 A连通, 新增发生器 A还有浓溶液管路经新增溶液热交换器 D与新增吸收器 B连通, 新增 发生器 A还有冷剂蒸汽通道与冷凝器 5连通, 新增发生器 A还有余热介质管路与外部连通, 新增吸收器 B还有冷却介质管路与外部连通。
②流程上,第三发生器 18产生的冷剂蒸汽进入新增吸收器 B,新增发生器 A的浓溶液经 新增溶液热交换器 D进入新增吸收器8、 吸收冷剂蒸汽并放热于冷却介质, 新增吸收器 B的 稀溶液经新增溶液泵 C和新增溶液热交换器 D进入新增发生器 A, 驱动热介质流经新增发生 器 A、加热进入其内的溶液释放并向冷凝器 15提供冷剂蒸汽,形成回热式第三类吸收式热泵。
图 10所示的回热式第三类吸收式热泵是这样实现的:
在图 所示的回热式第三类吸收式热泵中, 增加再增冷凝器和再增冷剂液泵, 第一发生 器 1增设冷剂蒸汽通道与再增冷凝器 E连通, 再增冷凝器 E还有冷剂液管路经再增冷剂液泵 F与蒸发器 16连通, 再增冷凝器 E还有冷却介质管路与外部连通; 第一发生器 1产生的冷剂 蒸汽分别向新增吸收器 B和再增冷凝器 E提供, 再增冷凝器 E的冷剂蒸汽放热于冷却介质成 冷剂液, 再增冷凝器 E的冷剂液经再增冷剂液泵 F加压进入蒸发器 16、 吸收余热成冷剂蒸汽 并向第一吸收器 3提供, 形成回热式第三类吸收式热泵。
图 11所示的回热式第三类吸收式热泵是这样实现的:
①结构上, 在图 1所示的双效回热吸收-发生系统中, 取消第二吸收器 4与外部连通的被 加热介质管路, 增加新增发生器、 新增吸收器、 新增溶液泵和新增溶液热交换器, 将第三吸 收器 5有稀溶液管路经第一溶液热交换器 9与第一发生器 1连通调整为第三吸收器 5有稀溶 液管路经第一溶液热交换器 9与新增吸收器 B连通, 新增吸收器 B再有稀溶液管路经新增溶 液泵 C和新增溶液热交换器 D与第一发生器 1连通, 将第一发生器 1有浓溶液管路经第一溶 液泵 6与第一溶液热交换器 9连通调整为第一发生器 1有浓溶液管路经新增溶液热交换器 D 与新增发生器 A连通, 新增发生器 A再有浓溶液管路经第一溶液泵 6与第一溶液热交换器 9 连通, 新增发生器 A还有余热介质管路与外部连通, 新增吸收器 B还有冷却介质管路与外部 连通。
②流程上, 第三吸收器 5的稀溶液经第一溶液热交换器 9进入新增吸收器 B、 吸收来自 新增发生器 A的冷剂蒸汽并放热于冷却介质,新增吸收器 B的稀溶液经新增溶液泵 C和新增 溶液热交换器 B进入第一发生器 1, 第一发生器 1的浓溶液经新增溶液热交换器 D进入新增 发生器 A, 余热介质流经新增发生器 A、 加热进入其内的溶液释放并向新增吸收器 B提供冷 剂蒸汽, 新增发生器 A的浓溶液经第一溶液泵 6、 第一溶液热交换器 9、 第二溶液热交换器 10和第二吸收器 4进入分汽室 13, 形成回热式第三类吸收式热泵。
本发明技术可以实现的效果——本发明所提出的双效回热吸收-发生系统与回热式第三 类吸收式热泵, 具有如下的效果和优势:
(1)比较单效回热, 双效回热实现了高温驱动热负荷的两次利用, 能够显著提高第三类吸 收式热泵的性能指数。
(2)双效回热吸收 -发生系统, 实现双效回热, 充分发挥高温驱动热的作用, 充分利用传热 温差, 提高了系统的热力学完善度。
(3)回热式第三类吸收式热泵, 回热负荷可调节, 实现性能指数的合理化和连续化, 使第 三类吸收式热泵在变工况运行情况下实现性能指数的最大化。
(4)回热式第三类吸收式热泵, 第二吸收器 4的供热负荷可调节, 单效回热和双效回热之 间的比例可调节, 有利于在变工况运行时提高第三类吸收式热泵的性能指数。
(5)回热式第三类吸收式热泵, 第一吸收器、 第三吸收器或再加上第二吸收器实现多端供 热, 有利于第三类吸收式热泵在保持较高性能指数前提下进行大温差供热。
(6)回热式第三类吸收式热泵, 丰富了吸收式热泵种类和流程, 扩展和丰富了吸收式热泵 的应用范围, 具有很好的创造性、 新颖性和实用性。

Claims

w u 2""/14 j()f> PCT/CN2012/001103 10 权 利 要 求 书
1. 双效回热吸收 -发生系统, 主要由第一发生器、 第二发生器、 第一吸收器、 第二吸收 器、 第三吸收器、 第一溶液泵、 第二溶液泵、 第三溶液泵、 第一溶液热交换器、 第二溶液热 交换器、 第三溶液热交换器、 第四溶液热交换器和分汽室所组成; 第一发生器(1 )有浓溶液 管路经第一溶液泵(6)、 第一溶液热交换器(9)、第二溶液热交换器(10)和第二吸收器(4) 与分汽室 (13)连通, 分汽室 (13)还有浓溶液管路经第二溶液泵 (7 )和第四溶液热交换器
( 12 ) 与第二发生器(2)连通, 第二发生器 (2)还有浓溶液管路经第四溶液热交换器(12) 和第三溶液热交换器 (11 ) 与第一吸收器 (3) 连通, 第一吸收器 (3) 还有稀溶液管路经第 三溶液泵 (8)和第三溶液热交换器(11 ) 与第二吸收器(4) 连通, 第二吸收器(4)还有稀 溶液管路经第二溶液热交换器 (10) 与第三吸收器 (5 ) 连通, 第三吸收器 (5) 还有稀溶液 管路经第一溶液热交换器(9) 与第一发生器(1 )连通, 第一发生器(1 )还有冷剂蒸汽通道 与外部连通, 第二发生器 (2) 还有冷剂蒸汽通道与第二吸收器 (4) 连通, 第一吸收器 (3) 还有冷剂蒸汽通道与外部连通, 分汽室 (13)还有冷剂蒸汽通道与第三吸收器(5)连通, 第 一发生器 (1 ) 还有余热介质管路与外部连通, 第二发生器 (2 ) 还有驱动热介质管路与外部 连通, 第一吸收器 (3 ) 和第三吸收器 (5) 还分别有被加热介质管路与外部连通, 第二吸收 器 (4) 或还有被加热介质管路与外部连通, 形成双效回热吸收-发生系统。
2. 双效回热吸收 -发生系统, 主要由第一发生器、 第二发生器、 第一吸收器、 第二吸收 器、 第三吸收器、 第一溶液泵、 第二溶液泵、 第三溶液泵、 第一溶液热交换器、 第二溶液热 交换器、 第三溶液热交换器、 第四溶液热交换器、 分汽室和第四吸收器所组成; 第一发生器
( 1 )有浓溶液管路经第一溶液泵(6)、 第一溶液热交换器(9)、 第二溶液热交换器(10)和 第二吸收器 (4) 与分汽室 (13) 连通, 分汽室 (13) 还有浓溶液管路经第二溶液泵 (7) 和 第四溶液热交换器 (12) 与第二发生器 (2) 连通, 第二发生器 (2) 还有浓溶液管路经第四 溶液热交换器 (12 ) 和第三溶液热交换器 (11 ) 与第一吸收器 (3) 连通, 第一吸收器 (3 ) 还有稀溶液管路经第三溶液泵 (8) 和第三溶液热交换器 (11 ) 与第二吸收器 (4 ) 连通, 第 二吸收器(4)还有稀溶液管路与第四吸收器 (14)连通, 第四吸收器(14)还有稀溶液管路 经第二溶液热交换器 (10) 与第三吸收器 (5 ) 连通, 第三吸收器 (5) 还有稀溶液管路经第 一溶液热交换器(9 )与第一发生器(1 )连通, 第一发生器(1 )还有冷剂蒸汽通道与外部连 通, 第二发生器 (2) 还有冷剂蒸汽通道分别与第二吸收器 (4) 和第四吸收器 (14) 连通, 第一吸收器(3)还有冷剂蒸汽通道与外部连通, 分汽室(13 )还有冷剂蒸汽通道与第三吸收 器(5)连通, 第一发生器 (1 )还有余热介质管路与外部连通, 第二发生器(2)还有驱动热 介质管路与外部连通, 第一吸收器(3)、 第三吸收器 (5)和第四吸收器 (14)还分别有被加 热介质管路与外部连通, 形成双效回热吸收-发生系统。
3. 回热式第三类吸收式热泵, 是在权利要求 2所述的双效回热吸收-发生系统中, 将第 四吸收器(14 )有被加热介质管路与外部连通调整为第二吸收器(4)有被加热介质管路与外 部连通, 将第一发生器 (1 )有浓溶液管路经第一溶液泵 (6)、 第一溶液热交换器(9)、 第二 溶液热交换器 (10) 和第二吸收器 (4) 与分汽室 (13 ) 连通调整为第一发生器 (1 ) 有浓溶 液管路经第一溶液泵 (6)、 第一溶液热交换器 (9 )、 第二溶液热交换器 (10) 和第四吸收器
( 14) 与分汽室 (13 ) 连通, 形成双效回热吸收-发生系统。
4. 回热式第三类吸收式热泵,是在权利要求 1-3所述的任一双效回热吸收-发生系统中, 增加冷凝器、 蒸发器和冷剂液泵, 将第一发生器(1 )有冷剂蒸汽通道与外部连通确定为第一 发生器(1 )有冷剂蒸汽通道与冷凝器 (15)连通, 冷凝器(15)还有冷剂液管路经冷剂液泵 ( 17 )与蒸发器(16)连通,将第一吸收器(3)有冷剂蒸汽通道与外部连通确定为蒸发器(16) 有冷剂蒸汽通道与第一吸收器(3 )连通, 冷凝器(15 )还有冷却介质管路与外部连通, 蒸发 器 (16) 还有余热介质管路与外部连通, 形成回热式第三类吸收式热泵。
5. 回热式第三类吸收式热泵, 是在权利要求 4所述的任一回热式第三类吸收式热泵中, 增加第三发生器、节流阀或第二冷剂液泵、第四溶液泵和第五溶液热交换器,第三吸收器(5) 增设稀溶液管路经第五溶液热交换器 (20) 与第三发生器 (18) 连通, 第三发生器 (18) 还 有浓溶液管路经第四溶液泵 (19)和第五溶液热交换器(20) 与第一发生器(1 )经第一溶液 泵 (6)和第一溶液热交换器(9)之后的浓溶液管路汇合, 将第一发生器(1 )有冷剂蒸汽通 道与冷凝器(15)连通调整为第一发生器(1 )有冷剂蒸汽通道与第三发生器 (18)连通后第 三发生器(18) 再有冷剂液管路经节流阀 (21 ) 与冷凝器 (15)连通或经第二冷剂液泵(22) 与蒸发器 (16) 连通, 第三发生器 (18) 还有冷剂蒸汽通道与冷凝器 (15) 连通, 形成回热 式第三类吸收式热泵。
6. 回热式第三类吸收式热泵, 是在权利要求 4所述的任一回热式第三类吸收式热泵中, 增加节流阀或第二冷剂液泵、 第三发生器和第五溶液热交换器, 将第一发生器(1 )有浓溶液 管路经第一溶液泵 (6) 与第一溶液热交换器(9)连通调整为第一发生器(1 )有浓溶液管路 经第五溶液热交换器 (20) 与第三发生器 (18) 连通, 第三发生器 (18) 再有浓溶液管路经 第一溶液泵 (6) 和第五溶液热交换器 (20) 与第一溶液热交换器 (9 ) 连通, 将第一发生器
( 1 ) 有冷剂蒸汽通道与冷凝器 (15 ) 连通调整为第一发生器 (1 ) 有冷剂蒸汽通道与第三发 生器 (18) 连通后第三发生器 (18) 再有冷剂液管路经节流阀 (21 ) 与冷凝器 (15) 连通或 经第二冷剂液泵 (22) 与蒸发器 (16) 连通, 第三发生器 (18) 还有冷剂蒸汽通道与冷凝器
( 15) 连通, 形成回热式第三类吸收式热泵。
7. 回热式第三类吸收式热泵, 是在权利要求 4所述的任一回热式第三类吸收式热泵中, 增加节流阀或第二冷剂液泵、 第三发生器、 第四溶液泵和第五溶液热交换器, 将第三吸收器
(5)有稀溶液管路经第一溶液热交换器(9) 与第一发生器(1 ) 连通调整为第三吸收器(5) 有稀溶液管路经第一溶液热交换器(9)和第五溶液热交换器(20)与第三发生器(18)连通, 第三发生器 (18 ) 再有浓溶液管路经第四溶液泵 (19 ) 和第五溶液热交换器 (20) 与第一发 生器 (1 ) 连通, 将第一发生器 (1 ) 有冷剂蒸汽通道与冷凝器 (15 ) 连通调整为第一发生器 ( 1 )有冷剂蒸汽通道与第三发生器(18 )连通后第三发生器(18 )再有冷剂液管路经节流阀 (21 )与冷凝器 (15)连通或经第二冷剂液泵 (22) 与蒸发器 (16)连通, 第三发生器 (18) 还有冷剂蒸汽通道与冷凝器 (15) 连通, 形成回热式第三类吸收式热泵。
8. 回热式第三类吸收式热泵, 是在权利要求 4所述的任一回热式第三类吸收式热泵中, 增加新增发生器、 新增吸收器、 新增溶液泵和新增溶液热交换器, 将第一发生器(1 )有冷剂 蒸汽通道与冷凝器 (15 ) 连通调整为第一发生器 (1 ) 有冷剂蒸汽通道与新增吸收器 (B) 连 通, 新增吸收器(B)还有稀溶液管路经新增溶液泵 (C)和新增溶液热交换器(D) 与新增发 生器(A)连通, 新增发生器(A)还有浓溶液管路经新增溶液热交换器(D)与新增吸收器(B) 连通, 新增发生器 (A) 还有冷剂蒸汽通道与冷凝器(5) 连通, 新增发生器(A)还有余热介 质管路与外部连通, 新增吸收器(B)还有冷却介质管路与外部连通, 形成回热式第三类吸收 式热泵。
9. 回热式第三类吸收式热泵, 是在权利要求 5-7 所述的任一回热式第三类吸收式热泵 中, 增加新增发生器、 新增吸收器、 新增溶液泵和新增溶液热交换器, 将第三发生器 (18) 有冷剂蒸汽通道与冷凝器 (15 ) 连通调整为第三发生器 (18 ) 有冷剂蒸汽通道与新增吸收器
(B) 连通, 新增吸收器 (B) 还有稀溶液管路经新增溶液泵 (C) 和新增溶液热交换器 (D) 与新增发生器(A)连通, 新增发生器 (A)还有浓溶液管路经新增溶液热交换器(D)与新增 吸收器(B)连通, 新增发生器(A)还有冷剂蒸汽通道与冷凝器(5) 连通, 新增发生器 (A) 还有余热介质管路与外部连通, 新增吸收器(B)还有冷却介质管路与外部连通, 形成回热式 第三类吸收式热泵。
10. 回热式第三类吸收式热泵, 是在权利要求 9 所述的任一回热式第三类吸收式热泵 中, 取消新增发生器(A)与外部连通的余热介质管路, 增加新增节流阀或新增冷剂液泵, 第 一发生器(1 )增设冷剂蒸汽通道与新增发生器(A)连通后新增发生器(A)再有冷剂液管路 经新增节流阀与冷凝器 (15) 连通后经新增冷剂液泵与蒸发器 (16) 连通, 形成回热式第三 类吸收式热泵。
11. 回热式第三类吸收式热泵, 是在权利要求 8 所述的任一回热式第三类吸收式热泵 中, 增加再增冷凝器和再增冷剂液泵, 第一发生器(1 )增设冷剂蒸汽通道与再增冷凝器(E) 连通, 再增冷凝器 (E) 还有冷剂液管路经再增冷剂液泵 (F) 与蒸发器 (16) 连通, 再增冷 凝器 (E) 还有冷却介质管路与外部连通, 形成回热式第三类吸收式热泵。
12. 回热式第三类吸收式热泵, 是在权利要求 9-10所述的任一回热式第三类吸收式热 泵中, 增加再增冷凝器和再增冷剂液泵, 增加再增冷凝器和再增冷剂液泵, 第三发生器(18) 增设冷剂蒸汽通道与再增冷凝器 (E) 连通, 再增冷凝器 (E) 还有冷剂液管路经再增冷剂液 泵 (F) 与蒸发器 (16) 连通, 再增冷凝器 (E) 还有冷却介质管路与外部连通, 形成回热式 第三类吸收式热泵。
13. 回热式第三类吸收式热泵, 是在权利要求 4 所述的任一回热式第三类吸收式热泵 中, 增加新增发生器、 新增吸收器、 新增溶液泵和新增溶液热交换器, 将第三吸收器(5)有 稀溶液管路经第一溶液热交换器(9) 与第一发生器(1 )连通调整为第三吸收器(5 )有稀溶 液管路经第一溶液热交换器(9) 与新增吸收器(B)连通, 新增吸收器(B)再有稀溶液管路 经新增溶液泵 (C) 和新增溶液热交换器 (D) 与第一发生器 (1 ) 连通, 将第一发生器 (1 ) 有浓溶液管路经第一溶液泵 (6) 与第一溶液热交换器 (9 连通调整为第一发生器 (1 ) 有浓 溶液管路经新增溶液热交换器(D) 与新增发生器(A)连通, 新增发生器 (A)再有浓溶液管 路经第一溶液泵(6) 与第一溶液热交换器(9 )连通, 新增发生器(A)还有余热介质管路与 外部连通, 新增吸收器 (B) 还有冷却介质管路与外部连通, 形成回热式第三类吸收式热泵。
PCT/CN2012/001103 2012-04-01 2012-08-17 双效回热吸收-发生系统与回热式第三类吸收式热泵 WO2013149366A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210106583.7 2012-04-01
CN201210106583 2012-04-01

Publications (1)

Publication Number Publication Date
WO2013149366A1 true WO2013149366A1 (zh) 2013-10-10

Family

ID=46898988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/001103 WO2013149366A1 (zh) 2012-04-01 2012-08-17 双效回热吸收-发生系统与回热式第三类吸收式热泵

Country Status (2)

Country Link
CN (1) CN102706027B (zh)
WO (1) WO2013149366A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706027B (zh) * 2012-04-01 2014-07-30 李华玉 双效回热吸收-发生系统与回热式第三类吸收式热泵
CN103697615B (zh) * 2013-12-07 2016-05-04 李华玉 多端供热第三类吸收式热泵

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101957092A (zh) * 2010-01-30 2011-01-26 李华玉 第三类吸收-发生系统与第三类吸收式热泵
CN102042712A (zh) * 2010-12-18 2011-05-04 李华玉 回热式吸收-发生系统与多端供热第三类吸收式热泵
CN102072583A (zh) * 2010-12-28 2011-05-25 李华玉 回热式吸收-发生系统与回热式第三类吸收式热泵
CN102287961A (zh) * 2011-04-29 2011-12-21 李华玉 三发生-三吸收系统与第三类吸收式热泵
CN102353172A (zh) * 2011-04-20 2012-02-15 李华玉 回热式双效与三效第二类吸收式热泵
CN102706027A (zh) * 2012-04-01 2012-10-03 李华玉 双效回热吸收-发生系统与回热式第三类吸收式热泵

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4542628A (en) * 1984-11-13 1985-09-24 The United States Of America As Represented By The United States Department Of Energy Coupled dual loop absorption heat pump
KR100426834B1 (ko) * 2001-07-10 2004-04-13 윤상국 흡수식 열펌프에서 상변화 유체의 잠열을 이용하여흡수기, 응축기, 증발기의 열을 흡수하는 시스템
CN201672587U (zh) * 2010-04-29 2010-12-15 华北电力大学 热泵耦合热电联产的供暖系统
CN102102919B (zh) * 2011-01-06 2015-11-25 李华玉 回热式两级吸收-发生系统与回热式第三类吸收式热泵
CN102183103B (zh) * 2011-03-26 2012-10-31 李华玉 第三类发生-吸收系统与回热式第三类吸收式热泵

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101957092A (zh) * 2010-01-30 2011-01-26 李华玉 第三类吸收-发生系统与第三类吸收式热泵
CN102042712A (zh) * 2010-12-18 2011-05-04 李华玉 回热式吸收-发生系统与多端供热第三类吸收式热泵
CN102072583A (zh) * 2010-12-28 2011-05-25 李华玉 回热式吸收-发生系统与回热式第三类吸收式热泵
CN102353172A (zh) * 2011-04-20 2012-02-15 李华玉 回热式双效与三效第二类吸收式热泵
CN102287961A (zh) * 2011-04-29 2011-12-21 李华玉 三发生-三吸收系统与第三类吸收式热泵
CN102706027A (zh) * 2012-04-01 2012-10-03 李华玉 双效回热吸收-发生系统与回热式第三类吸收式热泵

Also Published As

Publication number Publication date
CN102706027B (zh) 2014-07-30
CN102706027A (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
WO2013159261A1 (zh) 多端供热第一类吸收式热泵
WO2014127681A1 (zh) 复合发生第一类吸收式热泵
WO2012019329A1 (zh) 吸收-再吸收-发生系统与第一类吸收式热泵
WO2015143926A1 (zh) 第四类吸收式热泵与第五类吸收式热泵
WO2015143925A1 (zh) 第五类吸收式热泵
CN102072583B (zh) 回热式吸收-发生系统与回热式第三类吸收式热泵
WO2012129743A1 (zh) 第三类发生-吸收系统与回热式第三类吸收式热泵
WO2015143927A1 (zh) 第五类吸收式热泵
WO2015149565A1 (zh) 第五类吸收式热泵
WO2012145869A1 (zh) 三发生-三吸收系统与第三类吸收式热泵
WO2015149564A1 (zh) 第四类吸收式热泵与第五类吸收式热泵
WO2013138963A1 (zh) 双效回热吸收-发生系统与回热式第一类吸收式热泵
WO2015143924A1 (zh) 第四类吸收式热泵与第五类吸收式热泵
WO2013149366A1 (zh) 双效回热吸收-发生系统与回热式第三类吸收式热泵
WO2014161368A1 (zh) 分路循环第一类吸收式热泵
WO2014180163A1 (zh) 分路循环第一类吸收式热泵
WO2013152464A1 (zh) 双效回热吸收-发生系统与回热式第三类吸收式热泵
WO2012122683A1 (zh) 第三类发生-吸收系统与第三类吸收式热泵
WO2013170406A1 (zh) 分级冷凝第三类吸收式热泵
WO2013163784A1 (zh) 分段回热第三类吸收式热泵
WO2014161367A1 (zh) 分路循环第一类吸收式热泵
WO2013075260A1 (zh) 分级冷凝第二类吸收式热泵
WO2013143042A1 (zh) 双效回热吸收-发生系统与回热式第二类吸收式热泵
WO2013152463A1 (zh) 分级冷凝第三类吸收式热泵
WO2013075259A1 (zh) 带有余热双效驱动的第三类吸收式热泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12873688

Country of ref document: EP

Kind code of ref document: A1