WO2013138963A1 - 双效回热吸收-发生系统与回热式第一类吸收式热泵 - Google Patents

双效回热吸收-发生系统与回热式第一类吸收式热泵 Download PDF

Info

Publication number
WO2013138963A1
WO2013138963A1 PCT/CN2012/001101 CN2012001101W WO2013138963A1 WO 2013138963 A1 WO2013138963 A1 WO 2013138963A1 CN 2012001101 W CN2012001101 W CN 2012001101W WO 2013138963 A1 WO2013138963 A1 WO 2013138963A1
Authority
WO
WIPO (PCT)
Prior art keywords
generator
solution
heat exchanger
new
absorber
Prior art date
Application number
PCT/CN2012/001101
Other languages
English (en)
French (fr)
Inventor
李华玉
Original Assignee
Li Huayu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Li Huayu filed Critical Li Huayu
Publication of WO2013138963A1 publication Critical patent/WO2013138963A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/008Sorption machines, plants or systems, operating continuously, e.g. absorption type with multi-stage operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • the invention belongs to the technical field of low temperature waste heat utilization heat pump.
  • regenerative heat is an effective method to increase the heat supply temperature of the heat pump.
  • the use of heat recovery can also make the first type of absorption heat pump have adjustable heating parameters, continuous change of performance index and adaptation.
  • the advantage of variable operating conditions When the temperature of the waste heat resource is relatively low, the temperature drop of the driving heat medium is required to be large. At this time, the heat recovery is adopted, and the high temperature driving heat medium that completes the heat recovery process has a large temperature difference between the heat medium and the heated medium; The high-grade heat load of the medium is only subjected to a heat recovery process, and the temperature difference cannot be fully utilized.
  • the refrigerant vapor produced by the first regenerative process is used to further increase the concentration of the solution and release the refrigerant vapor for the secondary reheat.
  • the heat can be fully utilized to drive the heat, and the heat transfer temperature difference can be fully utilized to improve the performance index of the first type of absorption heat pump.
  • a primary object of the present invention is to provide a double-effect regenerative absorption-generation system and a regenerative first-type absorption heat pump, the specific contents of which are set forth below:
  • Double-effect regenerative absorption-generation system mainly consisting of a first generator, a second generator, a first absorber, a second absorber, a third absorber, a steam dividing chamber, a first solution pump, and a second solution a pump, a third solution pump, a first solution heat exchanger, a second solution heat exchanger, a third solution heat exchanger and a fourth solution heat exchanger;
  • the third absorber has a dilute solution line through the third solution
  • the pump and the fourth solution heat exchanger are in communication with the second absorber, and the second absorber and the dilute solution line are in communication with the first absorber via the second solution pump and the third solution heat exchanger, the first absorber further The dilute solution line is connected to the first generator via the first solution pump, the second solution heat exchanger and the first solution heat exchanger, and the first generator further has a concentrated solution line through the first solution heat exchanger and the second
  • the generator is connected, the second generator and the concentrated solution pipeline are connected to the steam separation chamber through the
  • Double-effect regenerative absorption-generation system in the double-effect regenerative absorption-generation system described in item 1, cancel the second solution heat exchanger, increase the solution throttle valve, and pump the first solution pump
  • the solution line is connected to the first generator via the second solution heat exchanger and the first solution heat exchanger to be adjusted to be a first solution pump having a dilute solution line connected to the first generator via the first solution heat exchanger
  • the second generator has a concentrated solution pipeline connected to the steam separation chamber through the second solution heat exchanger and the first absorber to adjust the second generator to have a concentrated solution pipeline through the solution throttle valve and the first absorber and the steam distribution chamber Connected to form a double-effect regenerative absorption-generation system.
  • Double-effect regenerative absorption-generation system mainly consisting of a first generator, a second generator, a first absorber, a second absorber, a third absorber, a fourth absorber, a steam dividing chamber, and a first solution Pump, second solution pump, third solution pump, first solution a heat exchanger, a second solution heat exchanger, a third solution heat exchanger and a fourth solution heat exchanger;
  • the third absorber has a dilute solution line through the third solution pump and the fourth solution heat exchanger a second absorber is connected, the second absorber and the dilute solution line are connected to the fourth absorber via the second solution pump and the third solution heat exchanger, and the fourth absorber further has a dilute solution line and a first absorber Connected, the first absorber and the dilute solution pipeline are connected to the first generator via the first solution pump, the second solution heat exchanger and the first solution heat exchanger, and the first generator further has a concentrated solution pipeline a solution heat exchanger is in communication with the second generator, the second generator
  • Double-effect regenerative absorption-generation system in the double-effect regenerative absorption-generation system described in item 3, the second absorber has a dilute solution line through the second solution pump and the third solution heat exchange The second absorber has a dilute solution line connected to the first absorber through the second solution pump and the third solution heat exchanger, and the first absorber has a dilute solution line and the first The solution pump is connected to be adjusted so that the first absorber has a dilute solution line communicating with the fourth absorber, and the fourth absorber and the dilute solution line are in communication with the first solution pump to form a double-effect regenerative absorption-generation system.
  • Double-effect regenerative absorption-generation system in any of the double-effect regenerative absorption-generation systems described in items 3-4, canceling the second solution heat exchanger, increasing the solution throttle valve, and the first solution
  • the pump has a dilute solution line connected to the first generator via the second solution heat exchanger and the first solution heat exchanger to adjust the first solution pump to have a dilute solution line connected to the first generator via the first solution heat exchanger
  • the second generator has a concentrated solution pipeline connected to the first solution heat exchanger and the first absorber and the steam distribution chamber to adjust the second generator to have a concentrated solution pipeline through the solution throttle valve and the first absorber and
  • the steam separation chamber is connected to form a double-effect heat recovery absorption system.
  • the regenerative type I absorption heat pump is a double-effect regenerative absorption-generation system as described in items 1-5.
  • the condenser, the evaporator and the throttle valve are added, and the first generator has The refrigerant vapor passage is connected to the outside to determine that the first generator has a refrigerant vapor passage communicating with the condenser, and the condenser and the refrigerant liquid conduit are connected to the evaporator via the throttle valve, and the third absorber has a refrigerant vapor.
  • the passage between the passage and the outside is determined to be that the evaporator has a refrigerant vapor passage communicating with the third absorber, the condenser and the heated medium conduit are connected to the outside, and the evaporator and the waste heat medium conduit are connected to the outside to form a regenerative type.
  • Regenerative type I absorption heat pump in any of the double-effect regenerative absorption-generation systems described in items 2 and 5, adding condensers, evaporators, throttles, new generators, new The solution heat exchanger and the newly added throttle valve, the first solution pump is added with a dilute solution pipeline, and the new solution heat exchanger is connected with the newly added generator, and the new generator and the concentrated solution pipeline are heated by the added solution.
  • the exchanger is in communication with the second generator, and the first generator has a refrigerant vapor passage communicating with the outside to determine that the first generator has a refrigerant vapor passage and the new generator is connected, and the new generator is further provided with a refrigerant liquid pipe.
  • the new throttle valve is connected to the condenser, and the new generator and the refrigerant vapor passage are connected to the condenser.
  • the condenser and the refrigerant liquid pipeline are connected to the evaporator through the throttle valve, and the third absorber is connected.
  • the refrigerant vapor passage is connected to the outside to determine that the evaporator has a refrigerant vapor passage communicating with the third absorber, the condenser and the heated medium conduit are connected to the outside, and the evaporator and the waste heat medium conduit are connected to the outside to form Regenerative first type absorption heat pump; Wherein, when the refrigerant vapor pressure of the second generator is higher than the refrigerant vapor pressure of the newly added generator, a new solution pump may be added at the outlet of the concentrated solution of the newly added generator. 8.
  • the first solution pump has a dilute solution pipe connected to the first generator through the first solution heat exchanger to adjust the first solution pump to have a dilute solution pipe through the first solution
  • the heat exchanger and the new solution heat exchanger are connected to the first generator, and the first generator has a concentrated solution pipeline connected to the second generator via the first solution heat exchanger to adjust the first generator to have a concentrated solution tube
  • the new solution heat exchanger is connected with the newly added generator, and the new generator and the concentrated solution pipeline are connected to the second generator through the first solution heat exchanger, and the first generator has a refrigerant vapor channel and
  • the external connection is determined as the first generator has a refrigerant vapor channel connected with the newly added generator, and the new generator is further connected with the refrigerant liquid pipeline through the new throttle valve and the
  • the steam passage is connected to the condenser, and the condenser also has a refrigerant liquid line
  • the throttle valve communicates with the evaporator, and the third absorber has a refrigerant vapor passage communicating with the outside to determine that the evaporator has a refrigerant vapor passage communicating with the third absorber, and the condenser and the heated medium conduit are connected to the outside.
  • the evaporator and the residual heat medium pipeline communicate with the outside to form a regenerative first type absorption heat pump; wherein, when the second generator has a refrigerant vapor pressure higher than the refrigerant pressure of the newly added generator, Add a new solution pump to the outlet of the concentrated solution of the new generator.
  • Regenerative type I absorption heat pump in any of the double-effect regenerative absorption-generation systems described in items 2 and 5, adding condensers, evaporators, throttles, new generators, new a solution-increasing heat exchanger, a new throttle valve and a new solution pump, and the first solution pump has a dilute solution line connected to the first generator through the first solution heat exchanger to adjust the first solution pump to a dilute solution tube
  • the first solution heat exchanger is connected to the newly added generator, and the new generator and the concentrated solution pipeline are connected to the first generator through the new solution pump and the new solution heat exchanger, and the first generator has The concentrated solution pipeline is connected to the second generator via the first solution heat exchanger to be adjusted to be a first generator having a concentrated solution pipeline connected to the second generator via the new solution heat exchanger and the first solution heat exchanger,
  • the first generator has a refrigerant vapor passage connected to the outside to determine that the first generator has a refrigerant vapor passage and is connected to the newly added generator
  • the device Connected, new generators with coolant vapor channels and cold
  • the device is connected, the condenser and the refrigerant liquid pipeline are connected to the evaporator via a throttle, and the third absorber has a refrigerant vapor passage communicating with the outside to determine that the evaporator has a refrigerant vapor passage communicating with the third absorber.
  • the condenser is also connected to the outside by the heating medium pipeline, and the evaporator and the waste heat medium pipeline communicate with the outside to form a regenerative first type absorption heat pump; wherein the second generator has a higher refrigerant vapor pressure than the new one When the refrigerant vapor pressure of the generator is increased, the first solution pump can be omitted.
  • the regenerative type I absorption heat pump is a double-effect regenerative absorption-generation system as described in items 1 and 3-4, adding a condenser, an evaporator, a throttle valve, and a new generator. , adding a solution heat exchanger and adding a new throttle, and connecting the first solution pump with the dilute solution pipeline through the second solution heat exchanger and the first solution heat exchanger to the first generator to adjust to the first solution pump After the dilute solution pipeline passes through the second solution heat exchanger, it is respectively connected to the first generator through the first solution heat exchanger and then connected to the newly added generator through the new solution heat exchanger, and the new generator is further added.
  • the concentrated solution pipeline is connected to the second generator via the newly added solution heat exchanger, and the first generator has a refrigerant vapor passage communicating with the outside to determine that the first generator has a refrigerant vapor passage connected with the newly added generator.
  • the generator has a refrigerant liquid pipeline connected to the condenser via a new throttle, and a new generator and a refrigerant vapor passage are connected to the condenser, and the condenser has a refrigerant liquid pipeline through the throttle valve and
  • the evaporator is connected, and the third absorber has a refrigerant vapor passage and an external It is determined that the evaporator has a refrigerant vapor passage communicating with the third absorber, the condenser is also connected to the outside by the heated medium pipeline, and the evaporator and the waste heat medium pipeline are connected to the outside to form a regenerative first type absorption.
  • the heat pump wherein, when the refrigerant vapor pressure of the second generator is higher than
  • the regenerative type I absorption heat pump is a double-effect regenerative absorption-generation system as described in items 1, 3 to 4, adding a condenser, an evaporator, a throttle valve, and a new generator. , adding a solution heat exchanger and adding a new throttle, and connecting the first solution pump with the dilute solution pipeline through the second solution heat exchanger and the first solution heat exchanger to the first generator to adjust to the first solution pump
  • the dilute solution line is connected to the first generator via the second solution heat exchanger, the first solution heat exchanger and the new solution heat exchanger, and the first generator has a concentrated solution line through the first solution heat exchanger Connected with the second generator to adjust the first generator to have a concentrated solution pipeline connected to the newly added generator through the new solution heat exchanger, and the new generator has a concentrated solution pipeline through the first solution heat exchanger and the first
  • the two generators are connected, and the first generator has a refrigerant vapor passage communicating with the outside to determine that the first generator has a refriger
  • the throttle valve is connected to the condenser, and the new generator is also cold.
  • the steam passage is connected to the condenser, the condenser and the refrigerant liquid pipeline are connected to the evaporator through the throttle valve, and the third absorber has a refrigerant vapor passage communicating with the outside to determine that the evaporator has a refrigerant vapor passage and the third
  • the absorber is connected, the condenser is also connected to the outside by the heating medium pipeline, and the evaporator and the residual heat medium pipeline communicate with the outside to form a regenerative first type absorption heat pump; wherein the second generator is cooled by the refrigerant vapor
  • a new solution pump can be added to the outlet of the concentrated solution of the newly added generator.
  • the regenerative type I absorption heat pump is a double-effect regenerative absorption-generation system as described in items 1, 3, 4, adding a condenser, an evaporator, a throttle valve, and a new generator. a new solution heat exchanger, a new throttle valve and a new solution pump, and the first solution pump has a dilute solution line connected to the first generator via the second solution heat exchanger and the first solution heat exchanger.
  • the first solution pump has a dilute solution pipeline connected to the newly added generator through the second solution heat exchanger and the first solution heat exchanger, and the new generator has a concentrated solution pipeline through the newly added solution pump and the newly added solution.
  • the heat exchanger is connected to the first generator, and the first generator has a concentrated solution pipeline connected to the second generator through the first solution heat exchanger to adjust the first generator to have a concentrated solution pipeline through the new solution heat exchange And the first solution heat exchanger is in communication with the second generator, and the first generator has a refrigerant vapor passage communicating with the outside to determine that the first generator has a refrigerant vapor passage and the new generator is connected to the new generator.
  • the new generator and the refrigerant vapor passage are connected to the condenser, and the condenser and the refrigerant liquid pipeline are connected to the evaporator through the throttle valve, and the third absorber has a refrigerant vapor passage and the external communication is determined as
  • the evaporator has a refrigerant vapor passage communicating with the third absorber, the condenser and the heated medium pipeline are connected to the outside, and the evaporator and the waste heat medium pipeline are connected to the outside to form a regenerative first type absorption heat pump; Thereafter, when the refrigerant vapor pressure of the second generator is higher than the refrigerant vapor pressure of the newly added generator, the first solution pump may be omitted.
  • the regenerative type I absorption heat pump is a driving heat medium pipeline that cancels the connection between the second generator and the outside in any of the double-effect regenerative absorption-generation systems described in items 7-12, adding a new The second throttle valve is added, the first generator is connected with the refrigerant vapor passage and the second generator is connected, and the second generator is further connected with the refrigerant liquid pipeline via the newly added second throttle valve to form a heat recovery.
  • the first type of absorption heat pump is a driving heat medium pipeline that cancels the connection between the second generator and the outside in any of the double-effect regenerative absorption-generation systems described in items 7-12, adding a new The second throttle valve is added, the first generator is connected with the refrigerant vapor passage and the second generator is connected, and the second generator is further connected with the refrigerant liquid pipeline via the newly added second throttle valve to form a heat recovery.
  • the first type of absorption heat pump is a driving heat medium pipeline that cancels the connection between the second generator and the outside in any of
  • Regenerative type I absorption heat pump in any of the double-effect regenerative absorption-generation systems described in items 7 and 10, adding a second generator, the first generator has a concentrated solution tube
  • the first solution heat exchanger is connected to the second generator to be connected to the first generator, and the concentrated solution pipeline is connected with the newly added second generator.
  • the second generator is added and the concentrated solution is passed through the first solution.
  • the heat exchanger is in communication with the second generator; the driving heat medium line connecting the second generator to the outside is cancelled, the second second throttle valve is added, and the second generator is added with the refrigerant vapor channel and the second generator After the communication, the second generator has a refrigerant liquid pipeline connected to the condenser through the addition of the second section of the flow, and the second generator and the driving heat medium pipeline are connected to the outside to form a regenerative first type. Absorption heat pump.
  • the regenerative type I absorption heat pump is in any of the double-effect regenerative absorption-generation systems described in items 8 and 11. Adding a second generator, adding a concentrated solution pipeline of the first generator to the newly added generator through the newly added solution heat exchanger to adjust the first generator to have a concentrated solution pipeline and connecting the newly added second generator , adding a second generator and then a concentrated solution pipeline is connected to the newly added generator through the new solution heat exchanger; canceling the driving heat medium pipeline connecting the second generator with the outside, adding a new second throttle valve
  • the second generator has a refrigerant vapor passage connected to the second generator, and the second generator has a refrigerant liquid pipeline connected to the condenser via a new second throttle valve, and a second generator is added.
  • the driving heat medium pipeline communicates with the outside to form a regenerative first type absorption heat pump.
  • a regenerative type I absorption heat pump in any of the double-effect regenerative absorption-generation systems described in items 9 and 12, adding a second new generator, the first generator having a concentrated solution tube
  • the new solution heat exchanger and the first solution heat exchanger are connected to the second generator to be adjusted to be connected to the first generator, and the second generator is connected to the newly added second generator.
  • the solution line is connected to the second generator via the new solution heat exchanger and the first solution heat exchanger; canceling the second occurrence
  • the driving heat medium pipeline connected to the outside is added with the addition of the second throttle valve, and the second generator has a refrigerant vapor passage connected with the second generator, and the second generator has a refrigerant liquid pipeline.
  • a second throttle valve is connected to the condenser, and a second generator is added to drive the heat medium pipeline to communicate with the outside to form a heat recovery type first absorption heat pump.
  • the regenerative type I absorption heat pump is a new type of generator, new absorber, new solution heat exchanger and new one in the double-effect regenerative absorption-generation system described in item 6.
  • the solution pump is configured to adjust the first generator to have a refrigerant vapor passage and the condenser to be connected to the first generator, and the refrigerant vapor passage is connected with the newly added absorber, and the new absorber and the dilute solution pipeline are added with the new solution.
  • the pump and the new solution heat exchanger are connected to the new generator.
  • the new generator and the concentrated solution line are connected to the newly added absorber through the new solution heat exchanger.
  • the new generator also has a refrigerant vapor channel and The condenser is connected, the new generator and the driving heat medium pipeline are connected to the outside, and the newly added absorber and the heated medium pipeline communicate with the outside to form a regenerative first type absorption heat pump.
  • the regenerative type I absorption heat pump is added to any double-effect regenerative absorption-generation system described in item 6, adding new generators, adding new absorbers, adding solution heat exchangers, new Adding solution pump, adding new condenser and adding new throttle valve, the first generator adds refrigerant vapor channel to connect with new absorber, adding absorber and dilute solution pipeline through new solution pump and new solution
  • the heat exchanger is connected to the newly added generator.
  • the new generator and the concentrated solution pipeline are connected to the newly added absorber through the new solution heat exchanger.
  • the new generator and the refrigerant vapor passage are connected to the newly added condenser.
  • the new condenser and the refrigerant liquid pipeline are connected to the condenser or the evaporator via a new throttle valve, and the new generator and the driving heat medium pipeline are connected to the outside, and the new absorber and the new condenser are added.
  • the refrigerant vapor generated by the second generator 2 is supplied to the first absorber 3, and is supplied from the second absorber.
  • the solution of 4 absorbs and exotherms the solution flowing through the first absorber 3 and the heated medium, respectively, to complete the first heat recovery process; the solution absorbs heat and vaporizes and enters the steam separation chamber 6, and the second generator 2 generates A part of the heat in the refrigerant vapor is transferred to the refrigerant vapor released by the steam dividing chamber 6, and the steam dividing chamber 6 supplies the refrigerant vapor to the second absorber 4, is absorbed by the solution from the third absorber 5, and radiates heat.
  • the heated medium completes the second heat recovery process.
  • the regenerative heat load can be adjusted to make the absorption heat pump have a reasonable and continuous performance index.
  • FIG. 2 is a schematic view showing the second structure and flow of a double-effect regenerative absorption-generation system according to the present invention.
  • Figure 3 is a schematic view showing the first structure and flow of a regenerative first type absorption heat pump according to the present invention.
  • Figure 4 is a schematic view showing the second structure and flow of the regenerative first type absorption heat pump according to the present invention.
  • Figure 5 is a schematic view showing the third structure and flow of the regenerative first type absorption heat pump according to the present invention.
  • Figure 6 is a schematic view showing the fourth structure and flow of the regenerative first type absorption heat pump according to the present invention.
  • Figure 7 is a schematic view showing the fifth structure and flow of a regenerative first type absorption heat pump according to the present invention.
  • Fig. 8 is a view showing the sixth structure and flow chart of the regenerative first type absorption heat pump according to the present invention.
  • Figure 9 is a schematic view showing the seventh structure and flow of the regenerative first type absorption heat pump according to the present invention.
  • Fig. 10 is a view showing the eighth structure and flow chart of the regenerative first type absorption heat pump according to the present invention.
  • Figure 11 is a schematic view showing the structure and flow of a ninth type of a regenerative first type absorption heat pump according to the present invention.
  • Figure 12 is a schematic view showing the tenth structure and flow of a regenerative first type absorption heat pump according to the present invention.
  • Figure 13 is a perspective view showing the eleventh structure and flow of a regenerative first type absorption heat pump according to the present invention.
  • a - new generator, B - new solution heat exchanger, C Axin Increase throttle valve, D—add new solution pump, E—add new throttle valve, F—add new absorber, G—add new condenser, H—add new generator.
  • the heat recovery process when the first absorber 3 is not connected to the outside by the heating medium pipe, the heat recovery process is double-effect; when the first absorber 3 has the heated medium pipe connected to the outside, the heat recovery process includes Single-effect regenerative and double-effect regenerative. For the sake of simplicity, the same is called a double-effect regenerative absorption-generation system.
  • a solution pump may be added at the outlet of the concentrated solution of the newly added generator A.
  • the first generator 1 structurally, it is a double-effect regenerative absorption-generation system, mainly composed of a first generator, a second generator, a first absorber, a second absorber, a third absorber, a steam separation chamber, a first solution pump, a second solution pump, a third solution pump, a first solution heat exchanger, a second solution heat exchanger, a third solution heat exchanger and a fourth solution heat exchanger;
  • the third absorber 5 has a dilute solution line
  • the third solution pump 9 and the fourth solution heat exchanger 13 are in communication with the second absorber 4, and the second absorber 4 has a dilute solution line through the second solution pump 8 and the third solution heat exchanger 12 and the first
  • the absorber 3 is in communication, and the first absorber 3 has a dilute solution line through the first solution pump 7, the second solution heat exchanger 11 and the first solution heat exchanger 10 and the first generator 1 Connected, the first generator 1 and the concentrated solution line are in communication with the second generator 2 via the first solution heat
  • the dilute solution of the third absorber 5 enters the second absorber 4 via the third solution pump 9 and the fourth solution heat exchanger 13, absorbs the refrigerant vapor from the steam separation chamber 6, and radiates heat to the heated medium.
  • the dilute solution of the second absorber 4 enters the first absorber 3 via the second solution pump 8 and the third solution heat exchanger 12, absorbs the refrigerant vapor from the second generator 2, and radiates heat therein, respectively.
  • a second generator 2 driving the heat medium to flow through the second generator 2, releasing the solution into which it is heated and supplying the refrigerant vapor to the first absorber 3, and the concentrated solution of the second generator 2 passing through the second solution heat exchanger
  • the heat absorbing portion is vaporized and then enters the steam dividing chamber 6, the steam dividing chamber 6 supplies the refrigerant vapor to the second absorber 4, and the concentrated solution of the steam dividing chamber 6 passes through the third solution heat exchanger.
  • the 12 and fourth solution heat exchangers 13 enter the third absorber 5, absorb refrigerant vapor from the outside, and release heat to the heated medium to form a double-effect heat recovery absorption system.
  • the first generator mainly consists of a first generator, a second generator, a first absorber, a second absorber, a third absorber, a fourth absorber, a steam dividing chamber, a first solution pump, a second solution pump a third solution pump, a first solution heat exchanger, a solution throttle valve, a third solution heat exchanger, and a fourth solution heat exchanger;
  • the third absorber 5 has a dilute solution line through the third solution pump 9
  • the fourth solution heat exchanger 13 is in communication with the second absorber 4, and the second absorber 4 and the dilute solution line are connected to the fourth absorber 14 via the second solution pump 8 and the third solution heat exchanger 12,
  • the fourth absorber 14 further has a dilute solution line communicating with the first absorber 3, and the first absorber 3 and the dilute solution line are connected to the first generator 1 via the first solution pump 7 and the first solution heat exchanger 10.
  • the first generator 1 and the concentrated solution line are connected to the second generator 2 via the first solution heat exchanger 10, and the second generator 2 has a concentrated solution line through the solution throttle valve 15 and the first absorber.
  • 3 is connected with the steam dividing chamber 6, and the steam dividing chamber 6 has a concentrated solution pipeline which is heated by the third solution.
  • the converter 12 and the fourth solution heat exchanger 13 are in communication with the third absorber 5, the first generator 1 also has a refrigerant vapor passage communicating with the outside, and the second generator 2 also has a refrigerant vapor passage and a first absorption, respectively
  • the third reactor 14 is in communication with the fourth absorber 14 and the refrigerant vapor passage is connected to the second absorber 4, and the third absorber 5 has a refrigerant vapor passage communicating with the outside, the first generator 1 and the
  • the second generator 2 also has a driving heat medium line respectively communicating with the outside, and the second absorber 4, the third absorber 5 and the fourth absorber 14 are also respectively connected to the outside by the heated medium line.
  • the dilute solution of the third absorber 5 enters the second absorber 4 via the third solution pump 9 and the fourth solution heat exchanger 13, absorbs the refrigerant vapor from the steam separation chamber 6, and radiates heat to the heated medium.
  • the dilute solution of the second absorber 4 enters the fourth absorber 14 via the second solution pump 8 and the third solution heat exchanger 12, absorbs the refrigerant vapor from the second generator 2, and radiates heat therethrough.
  • the steam dividing chamber 6 supplies refrigerant vapor to the second absorber 4, and the concentrated solution of the steam dividing chamber 6 enters the third absorber 5 through the third solution heat exchanger 12 and the fourth solution heat exchanger 13, and is absorbed from the outside.
  • the refrigerant vapor is exothermic to the heated medium to form a double-effect regenerative absorption-generation system.
  • the regenerative first type absorption heat pump shown in Figure 3 is realized in this way - in the double-effect heat recovery absorption system shown in Figure 1, the condenser, the evaporator and the throttle valve are added, and the first generator is 1
  • the refrigerant vapor passage is connected to the outside to determine that the first generator 1 has a refrigerant vapor passage communicating with the condenser 16, and the condenser 16 and the refrigerant liquid conduit are connected to the evaporator 17 via the throttle width 18,
  • the triple absorber 5 has a refrigerant vapor passage communicating with the outside to determine that the evaporator 17 has a refrigerant vapor passage communicating with the third absorber 5, and the condenser 16 is also connected to the outside by the heated medium conduit, and the evaporator 17 is further
  • the waste heat medium pipeline communicates with the outside; the refrigerant vapor generated by the first generator 1 enters the condenser 16 and radiates heat to the heated medium to form a refrigerant
  • the first solution pump 7 has a dilute solution line connected to the first generator 1 via the second solution heat exchanger 11 and the first solution heat exchanger 10 to be adjusted to be the first solution pump, and the dilute solution line is heated by the first solution.
  • the exchanger 10 is in communication with the first generator 1, and the concentrated solution line of the second generator 2 is connected to the steam dividing chamber 6 via the second solution heat exchanger 11 and the first absorber 3 to be adjusted to be the second generator 2
  • the concentrated solution pipeline communicates with the steam splitting chamber 6 via the solution throttle valve 15 and the first absorber 3; the condenser, the evaporator and the throttle valve are added, and the refrigerant flow passage of the first generator 1 is connected to the outside to be determined as
  • the first generator 1 has a refrigerant vapor passage communicating with the condenser 16, and the condenser 16 and the refrigerant liquid conduit are connected to the evaporator 17 via the throttle valve 18, and the third absorber 5 has a refrigerant vapor passage and an external portion.
  • connection is determined as the evaporator 17 has a refrigerant vapor passage connected to the third absorber 5
  • the condenser 16 is further connected to the outside by the heating medium pipeline, and the evaporator 17 and the waste heat medium pipeline communicate with the outside; the refrigerant vapor generated by the first generator 1 enters the condenser 16 and radiates heat to the heated medium.
  • the refrigerant liquid, the refrigerant liquid of the condenser 16 is throttled into the evaporator 17 through the throttle valve 18, and the residual heat is absorbed into the refrigerant vapor and supplied to the third absorber 15, forming a regenerative first type absorption heat pump.
  • the regenerative first type absorption heat pump shown in Figure 5 is implemented as follows:
  • the condenser, the evaporator and the throttle valve are added, and the refrigerant flow passage of the first generator 1 is connected to the outside to determine that the first generator 1 is cold.
  • the vapor channel of the agent is in communication with the condenser 16, the condenser 16 and the coolant liquid pipeline are connected to the evaporator 17 via the throttle valve 18, and the refrigerant passage of the third absorber 5 is communicated with the outside to determine that the evaporator 17 has
  • the refrigerant vapor passage is in communication with the third absorber 5, and the condenser 16 is further connected to the outside by the heated medium line, and the evaporator 17 and the heat remaining medium line communicate with the outside; the refrigerant vapor generated by the first generator 1 enters
  • the condenser 16 radiates heat to the heated medium to form a refrigerant liquid, and the refrigerant liquid of the condenser 16 is throttled into the evaporator 17 through the throttle valve 18, absorbs the residual heat into the refrigerant vapor, and is supplied to the third absorber 15 to form A regenerative first type absorption heat pump.
  • the regenerative first type absorption heat pump shown in Fig. 6 is realized as follows. - In the regenerative first type absorption heat pump shown in Fig. 5, the second absorber 4 has a dilute solution line through the first The two solution pump 8 and the third solution heat exchanger 12 are connected to the fourth absorber 14 to be adjusted so that the second absorber 4 has a dilute solution line through the second solution.
  • the liquid pump 8 and the third solution heat exchanger 12 are in communication with the first absorber 3, and the first absorber 3 has a dilute solution line connected to the first solution pump 7 to be adjusted so that the first absorber 3 has a dilute solution line and
  • the fourth absorber 14 is in communication, and the fourth absorber 14 is further connected to the first solution pump 7 by a dilute solution line to form a regenerative first type absorption heat pump.
  • the regenerative first type absorption heat pump shown in Figure 7 is implemented as follows:
  • the steam passage is connected to the outside to determine that the first generator 1 has a refrigerant vapor passage and newly added Generator A is connected to add new generator A and then the refrigerant liquid pipeline is newly throttled.
  • the valve C is in communication with the condenser 16, and the new generator A and the refrigerant vapor passage are connected to the condenser 16.
  • the condenser 16 and the refrigerant liquid pipeline are connected to the evaporator 17 via the throttle valve 18, and the third absorption is performed.
  • the refrigerant 5 has a refrigerant vapor passage communicating with the outside to determine that the evaporator 17 has a refrigerant vapor passage communicating with the third absorber 5, and the condenser 16 is also connected to the outside by the heated medium conduit, and the evaporator 17 and the residual heat medium tube The road is connected to the outside.
  • the refrigerant vapor generated by the first generator 1 is used as the driving heat medium of the newly added generator A, and a part of the diluted solution of the first absorber 3 enters the new solution through the first solution pump 7 and the newly added solution heat exchanger B.
  • the refrigerant vapor flows through the newly added generator A, the solution heated into it is released, and the refrigerant vapor is supplied to the condenser 16, and the concentrated solution of the newly added generator A is introduced through the new solution heat exchanger B.
  • the second generator 2 the refrigerant vapor flowing through the newly added generator A is radiated into a refrigerant liquid, and then throttled into the condenser 16 through the addition of a new throttle valve C, and the refrigerant vapor of the condenser 16 is radiated to the
  • the heating medium is formed into a refrigerant liquid, and the refrigerant liquid of the condenser 16 is throttled into the evaporator 17 through the throttle valve 18, and the residual heat is absorbed into the refrigerant vapor and supplied to the third absorber 15 to form a regenerative first type absorption type. Heat pump.
  • the regenerative first type absorption heat pump shown in Figure 8 is implemented as follows:
  • a solution heat exchanger 10 is connected to the first generator 1 to be adjusted so that the first solution pump 7 has a dilute solution line connected to the first generator 1 via the first solution heat exchanger 10 and the new solution heat exchanger B,
  • the first generator 1 has a concentrated solution line connected to the second generator 2 via the first solution heat exchanger 10 to adjust to the first occurrence 1
  • the concentrated solution pipeline is connected to the newly added generator A via the new solution heat exchanger B, and the new generator A and the concentrated solution pipeline are connected to the second generator 2 via the first solution heat exchanger 10,
  • the first generator 1 has a refrigerant vapor passage communicating with the outside to determine that the first generator 1 has a refrigerant vapor passage and the new generator A is connected, and the new generator A is added and the refrigerant liquid pipeline is newly throttled
  • the valve C is in communication with the condenser 16, and the new generator A and the refrigerant vapor passage are connected to the condenser 16, and the condenser 16 has a refrigerant liquid pipeline via the throttle valve 18 and
  • the evaporator 17 is in communication, and the third absorber 5 has a refrigerant vapor passage communicating with the outside to determine that the evaporator 17 has a refrigerant vapor passage communicating with the third absorber 5, and the condenser 16 is also connected to the outside by the heated medium conduit.
  • the evaporator 17 also has a heat remaining medium line that communicates with the outside.
  • the refrigerant vapor generated by the first generator 1 is used as the driving heat medium of the newly added generator A, and the diluted solution of the first absorber 3 passes through the first solution pump 7, the first solution heat exchanger 10, and the newly added
  • the solution heat exchanger B enters the first generator 1
  • the concentrated solution of the first generator 1 enters the newly added generator A through the newly added solution heat exchanger B
  • the refrigerant vapor flows through the newly added generator A, and is heated into the inside.
  • the solution releases and supplies refrigerant vapor to the condenser 16, and the concentrated solution of the newly added generator A enters the second generator 2 through the first solution heat exchanger 10, and the refrigerant vapor flowing through the newly added generator A is released into heat.
  • the refrigerant liquid is throttled into the condenser 16 by the addition of a new throttle valve C.
  • the refrigerant vapor of the condenser 16 is radiated to the heated medium to form a refrigerant liquid, and the refrigerant liquid of the condenser 16 is passed through the throttle valve 18
  • the flow enters the evaporator 17, absorbs the residual heat into the refrigerant vapor, and supplies it to the third absorber 15, forming a regenerative first type absorption heat pump.
  • the regenerative first type absorption heat pump shown in Figure 9 is implemented as follows:
  • the first solution pump 7 has a dilute solution line connected to the first generator 1 through the second solution heat exchanger 11 and the first solution heat exchanger 10 to adjust the first solution pump 7 to have a dilute solution line
  • the first solution heat exchanger 10 is in communication with the first generator 1, and the second generator 2 has a concentrated solution line connected to the second solution heat exchanger 11 and the first absorber 3 and the steam dividing chamber 6 to be adjusted.
  • the second generator 2 has a concentrated solution line connected to the steam dividing chamber 6 via the solution throttle valve 15 and the first absorber 3; adding a condenser, an evaporator, a throttle valve, a new generator, and a new solution heat exchanger Adding a new throttle valve and a new solution pump, and connecting the first solution pump 7 with a dilute solution line through the first solution heat exchanger 10 to the first generator 1 to adjust the first solution pump 7 to have a dilute solution line
  • the first generator 1 has a concentrated solution line connected to the second generator 2 via the first solution heat exchanger 10
  • the first generator 1 has a concentrated solution pipeline connected to the second generator 2 via the new solution heat exchanger B and the first solution heat exchanger 10, and the first generator 1 has a refrigerant vapor passage connected to the outside.
  • the first generator 1 has a refrigerant vapor passage connected with the newly added generator A, and then the new generator A is added, and then the refrigerant liquid pipeline is connected to the condenser 16 via the newly added throttle ⁇ C, and the generator A is newly added. Further, a refrigerant vapor passage is connected to the condenser 16, and the condenser 16 and the refrigerant liquid pipeline are connected to the evaporator 17 via the throttle valve 18, and the third absorber 5 has a refrigerant vapor passage communicating with the outside to determine evaporation.
  • the refrigerant 17 has a refrigerant vapor passage communicating with the third absorber 5, and the condenser 16 is further connected to the outside by the heated medium conduit, and the evaporator 17 and the heat remaining medium conduit are in communication with the outside.
  • the refrigerant vapor generated by the first generator 1 is used as the driving heat medium of the newly added generator A, and the diluted solution of the first absorber 3 is newly added through the first solution pump 7 and the first solution heat exchanger 10 Generator A, refrigerant vapor flows through the new generator A, the solution heated into it is released and the refrigerant vapor is supplied to the condenser 16, and the concentrated solution of the generator A is newly added through the new solution pump D and the newly added solution.
  • the heat exchanger B enters the first generator 1, and the concentrated solution of the first generator 1 enters the second generator 2 via the new solution heat exchanger B and the first solution heat exchanger 10, and flows through the new generator A.
  • the refrigerant vapor is exothermic into a refrigerant liquid, and is throttled into the condenser 16 by a new throttle valve C.
  • the refrigerant vapor of the condenser 16 is radiated to the heated medium to form a refrigerant liquid, and the refrigerant liquid of the condenser 16
  • the throttle valve 18 is throttled into the evaporator 17, and the residual heat is absorbed into the refrigerant vapor and supplied to the third absorber 15, forming a regenerative first type absorption heat pump.
  • the regenerative first type absorption heat pump shown in Fig. 10 is realized in the same manner as in the regenerative first type absorption heat pump shown in Fig. 9, the driving heat medium in which the second generator 2 is connected to the outside is cancelled.
  • the second throttle valve is added, the first generator 1 is connected with the refrigerant vapor passage and the second generator 2 is connected, and the second generator 2 is further provided with the second throttle by the refrigerant liquid pipeline.
  • the wide E is connected to the condenser 16; the refrigerant vapor generated by the first generator 1 is supplied to the newly added generator A and the second generator 2, respectively, and the refrigerant vapor flows through the second generator 2 to heat the solution therein.
  • the refrigerant vapor is released and supplied to the first absorber 3, and the refrigerant vapor flowing through the second generator 2 is radiated into a refrigerant liquid, and then added to the condenser 16 by adding a second section of the overflow E to form a condenser.
  • Thermal first type absorption heat pump
  • the regenerative first type absorption heat pump shown in Figure 11 is implemented as follows:
  • the second generator H has a refrigerant vapor passage connected with the second generator 2, and the second generator 2 has a refrigerant liquid pipeline connected to the condenser 16 via a new second throttle valve E, and a second generator is added. H also drives the heat medium line to communicate with the outside.
  • the concentrated solution of the first generator 1 enters the newly added second generator H, drives the heat medium to flow through the newly added second generator H, releases the solution heated therein and provides cooling to the second generator 2
  • the vapor of the agent the new concentrated solution of the second generator H is added to the second generator 2 via the new solution heat exchanger B and the first solution heat exchanger 10, and the refrigerant vapor flows through the second generator 2 and is heated into the same
  • the solution inside releases and supplies refrigerant vapor to the first absorber 3, and the refrigerant vapor flowing through the second generator 2 is released into a refrigerant liquid, and then throttled into the condenser 16 by adding a second throttle valve E. , forming a regenerative first type absorption heat pump.
  • the regenerative first type absorption heat pump shown in Figure 12 is implemented as follows:
  • the new generator A and the concentrated solution pipeline are added to the new solution heat exchanger B and new The increaser F is connected, the new generator A and the refrigerant vapor passage are connected with the condenser 16, the new generator A and the driving heat medium pipeline are connected to the outside, and the new absorber F and the heated medium tube are added.
  • the road is connected to the outside.
  • the refrigerant vapor generated by the first generator 1 enters the newly added absorber F, and the new generator A concentrated solution is added to the new absorber F through the newly added solution heat exchanger B, and the refrigerant vapor is absorbed and released.
  • the dilute solution of the new absorber F is added to the new generator A through the new solution pump D and the new solution heat exchanger B, and the heat medium is driven to flow through the newly added generator and the solution into which the heat is introduced.
  • the refrigerant vapor is released and supplied to the condenser 6 to form a regenerative first type absorption heat pump.
  • the regenerative first type absorption heat pump shown in Figure 13 is implemented as follows:
  • the new condenser G and the refrigerant liquid pipeline are connected to the condenser 16 through the newly added throttle valve C.
  • the newly added generator A also drives the heat medium pipeline to communicate with the outside, and newly absorbs.
  • the F and the newly added condenser G are also respectively connected to the outside by the medium to be heated.
  • the refrigerant vapor generated by the first generator 1 is supplied to the condenser 6 and the newly added absorber F, respectively, and the new generator A concentrated solution is added to the new solution heat exchanger B to enter the newly added absorber F, and absorbed.
  • the refrigerant vapor is exothermic to the heated medium, and the diluted solution of the new absorber F is added to the new generator A through the new solution pump D and the new solution heat exchanger B, and the driving heat medium flows through the new generator A.
  • the solution heated into the solution is released and the refrigerant vapor is supplied to the newly added condenser G.
  • the refrigerant vapor of the new condenser G is added to the heated medium to form a refrigerant liquid, and the coolant liquid of the new condenser G is added.
  • a new throttle valve C is throttled into the condenser 6 to form a regenerative first type absorption heat pump.
  • Double-effect heat recovery absorption system achieving double-effect heat recovery, giving full play to the role of high-temperature driving heat, making full use of heat transfer temperature difference, and improving the thermodynamic perfection of the system.
  • the regenerative type I absorption heat pump can adjust the regenerative load to maximize the performance index of the first type of absorption heat pump under variable operating conditions.
  • the heating load of the first absorber 3 can be adjusted, and the ratio between single-effect heat recovery and double-effect heat recovery can be adjusted, which is beneficial to improve in variable working conditions. Performance index of the first type of absorption heat pump.
  • Regenerative type I absorption heat pump, second absorber, third absorber and condenser or plus first absorber to achieve multi-end heating, which is beneficial to the first type of absorption heat pump Large temperature difference heating is carried out under the premise of performance index.
  • the regenerative type I absorption heat pump enriches the type and process of the absorption heat pump, expands and enriches the application range of the absorption heat pump, and has good creativity, novelty and practicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

一种双效回热吸收-发生系统与回热式第一类吸收式热泵。双效回热吸收-发生系统主要包括第一发生器(1)、第二发生器(2)、第一吸收器(3)、第二吸收器(4)、第三吸收器(5)、分汽室(6)、溶液节流阀(15)、若干溶液泵(7,8,9)和若干溶液热交换器(10,11,12,13)。第一发生器(1)向冷凝器(16)提供冷剂蒸汽,第二发生器(2)向第一吸收器(3)提供冷剂蒸汽。分汽室(6)向第二吸收器(4)提供冷剂蒸汽,蒸发器(17)向第三吸收器(5)提供冷剂蒸汽。冷凝器(16)、蒸发器(17)、节流阀(18)及上述双效回热吸收-发生系统形成回热式第一类吸收式热泵。

Description

说 明 书
双效回热吸收 -发生系统与回热式第一类吸收式热泵 技术领域:
本发明属于低温余热利用热泵技术领域。
背景技术:
在第一类吸收式热泵流程中, 回热是提高热泵供热温度的有效方法; 同时, 采用回热还 可以使第一类吸收式热泵具有供热参数可调节、 性能指数实现连续变化和适应变工况运行的 优势。 当余热资源温度相对较低时, 驱动热介质的温降要求大, 此时采用回热, 则完成回热 流程的高温驱动热介质与被加热介质之间具有较大的温差; 若高温驱动热介质的高品位热负 荷只进行一次回热流程, 则会出现温差不能充分利用的情况。 此时, 应该考虑使高温驱动热 负荷进行双效回热流程——将第一次回热流程产生的冷剂蒸汽用于溶液浓度的进一步提升并 释放出用于二次回热的冷剂蒸汽, 则可充分发挥高温驱动热的作用, 充分利用传热温差, 提 高第一类吸收式热泵的性能指数。
发明内容- 本发明的主要目的是提供双效回热吸收 -发生系统与回热式第一类吸收式热泵,具体发明 内容分项阐述如下:
1. 双效回热吸收 -发生系统, 主要由第一发生器、 第二发生器、 第一吸收器、 第二吸收 器、 第三吸收器、 分汽室、 第一溶液泵、 第二溶液泵、 第三溶液泵、 第一溶液热交换器、 第 二溶液热交换器、 第三溶液热交换器和第四溶液热交换器所组成; 第三吸收器有稀溶液管路 经第三溶液泵和第四溶液热交换器与第二吸收器连通, 第二吸收器还有稀溶液管路经第二溶 液泵和第三溶液热交换器与第一吸收器连通, 第一吸收器还有稀溶液管路经第一溶液泵、 第 二溶液热交换器和第一溶液热交换器与第一发生器连通, 第一发生器还有浓溶液管路经第一 溶液热交换器与第二发生器连通, 第二发生器还有浓溶液管路经第二溶液热交换器和第一吸 收器与分汽室连通, 分汽室还有浓溶液管路经第三溶液热交换器和第四溶液热交换器与第三 吸收器连通, 第一发生器还有冷剂蒸汽通道与外部连通, 第二发生器还有冷剂蒸汽通道与第 一吸收器连通, 分汽室还有冷剂蒸汽通道与第二吸收器连通, 第三吸收器还有冷剂蒸汽通道 与外部连通, 第一发生器和第二发生器还分别有驱动热介质管路与外部连通, 第一吸收器或 还有被加热介质管路与外部连通, 第二吸收器和第三吸收器还分别有被加热介质管路与外部 连通, 形成双效回热吸收-发生系统。
2. 双效回热吸收 -发生系统, 是在第 1 项所述的双效回热吸收-发生系统中, 取消第二 溶液热交换器, 增加溶液节流阀, 将第一溶液泵有稀溶液管路经第二溶液热交换器和第一溶 液热交换器与第一发生器连通调整为第一溶液泵有稀溶液管路经第一溶液热交换器与第一发 生器连通, 将第二发生器有浓溶液管路经第二溶液热交换器和第一吸收器与分汽室连通调整 为第二发生器有浓溶液管路经溶液节流阀和第一吸收器与分汽室连通, 形成双效回热吸收- 发生系统。
3. 双效回热吸收 -发生系统, 主要由第一发生器、 第二发生器、 第一吸收器、 第二吸收 器、 第三吸收器、 第四吸收器、 分汽室、 第一溶液泵、 第二溶液泵、 第三溶液泵、 第一溶液 说 明 书 热交换器、 第二溶液热交换器、 第三溶液热交换器和第四溶液热交换器所组成; 第三吸收器 有稀溶液管路经第三溶液泵和第四溶液热交换器与第二吸收器连通, 第二吸收器还有稀溶液 管路经第二溶液泵和第三溶液热交换器与第四吸收器连通, 第四吸收器还有稀溶液管路与第 一吸收器连通, 第一吸收器还有稀溶液管路经第一溶液泵、 第二溶液热交换器和第一溶液热 交换器与第一发生器连通, 第一发生器还有浓溶液管路经第一溶液热交换器与第二发生器连 通, 第二发生器还有浓溶液管路经第二溶液热交换器和第一吸收器与分汽室连通, 分汽室还 有浓溶液管路经第三溶液热交换器和第四溶液热交换器与第三吸收器连通, 第一发生器还有 冷剂蒸汽通道与外部连通, 第二发生器还有冷剂蒸汽通道分别与第一吸收器和第四吸收器连 通,分汽室还有冷剂蒸汽通道与第二吸收器连通,第三吸收器还有冷剂蒸汽通道与外部连通, 第一发生器和第二发生器还分别有驱动热介质管路与外部连通, 第二吸收器、 第三吸收器和 第四吸收器还分别有被加热介质管路与外部连通, 形成双效回热吸收 -发生系统。
4. 双效回热吸收 -发生系统, 是在第 3项所述的双效回热吸收-发生系统中, 将第二吸 收器有稀溶液管路经第二溶液泵和第三溶液热交换器与第四吸收器连通调整为第二吸收器有 稀溶液管路经第二溶液泵和第三溶液热交换器与第一吸收器连通, 将第一吸收器有稀溶液管 路与第一溶液泵连通调整为第一吸收器有稀溶液管路与第四吸收器连通, 第四吸收器再有稀 溶液管路与第一溶液泵连通, 形成双效回热吸收 -发生系统。
5. 双效回热吸收 -发生系统, 是在第 3-4项所述的任一双效回热吸收-发生系统中, 取 消第二溶液热交换器, 增加溶液节流阀, 将第一溶液泵有稀溶液管路经第二溶液热交换器和 第一溶液热交换器与第一发生器连通调整为第一溶液泵有稀溶液管路经第一溶液热交换器与 第一发生器连通, 将第二发生器有浓溶液管路经第二溶液热交换器和第一吸收器与分汽室连 通调整为第二发生器有浓溶液管路经溶液节流阀和第一吸收器与分汽室连通, 形成双效回热 吸收-发生系统。
6. 回热式第一类吸收式热泵, 是在第 1-5项所述的任一双效回热吸收-发生系统中, 增 加冷凝器、 蒸发器和节流阀, 将第一发生器有冷剂蒸汽通道与外部连通确定为第一发生器有 冷剂蒸汽通道与冷凝器连通, 冷凝器还有冷剂液管路经节流阀与蒸发器连通, 将第三吸收器 有冷剂蒸汽通道与外部连通确定为蒸发器有冷剂蒸汽通道与第三吸收器连通, 冷凝器还有被 加热介质管路与外部连通, 蒸发器还有余热介质管路与外部连通, 形成回热式第一类吸收式 热泵。
7. 回热式第一类吸收式热泵, 是在第 2、 5项所述的任一双效回热吸收-发生系统中, 增加冷凝器、 蒸发器、 节流阀、 新增发生器、 新增溶液热交换器和新增节流阀, 第一溶液泵 增设稀溶液管路经新增溶液热交换器与新增发生器连通, 新增发生器还有浓溶液管路经新增 溶液热交换器与第二发生器连通, 将第一发生器有冷剂蒸汽通道与外部连通确定为第一发生 器有冷剂蒸汽通道与新增发生器连通后新增发生器再有冷剂液管路经新增节流阀与冷凝器连 通, 新增发生器还有冷剂蒸汽通道与冷凝器连通, 冷凝器还有冷剂液管路经节流阀与蒸发器 连通, 将第三吸收器有冷剂蒸汽通道与外部连通确定为蒸发器有冷剂蒸汽通道与第三吸收器 连通, 冷凝器还有被加热介质管路与外部连通, 蒸发器还有余热介质管路与外部连通, 形成 回热式第一类吸收式热泵;其中, 第二发生器的冷剂蒸汽压高于新增发生器的冷剂蒸汽压时, 可在新增发生器的浓溶液管路出口增设新增溶液泵。 8. 回热式第一类吸收式热泵, 是在第 2、 5项所述的任一双效回热吸收-发生系统中, 增加冷凝器、 蒸发器、 节流阀、 新增发生器、 新增溶液热交换器和新增节流阆, 将第一溶液 泵有稀溶液管路经第一溶液热交换器与第一发生器连通调整为第一溶液泵有稀溶液管路经第 一溶液热交换器和新增溶液热交换器与第一发生器连通, 将第一发生器有浓溶液管路经第一 溶液热交换器与第二发生器连通调整为第一发生器有浓溶液管路经新增溶液热交换器与新增 发生器连通, 新增发生器再有浓溶液管路经第一溶液热交换器与第二发生器连通, 将第一发 生器有冷剂蒸汽通道与外部连通确定为第一发生器有冷剂蒸汽通道与新增发生器连通后新增 发生器再有冷剂液管路经新增节流阀与冷凝器连通, 新增发生器还有冷剂蒸汽通道与冷凝器 连通, 冷凝器还有冷剂液管路经节流阀与蒸发器连通, 将第三吸收器有冷剂蒸汽通道与外部 连通确定为蒸发器有冷剂蒸汽通道与第三吸收器连通, 冷凝器还有被加热介质管路与外部连 通, 蒸发器还有余热介质管路与外部连通, 形成回热式第一类吸收式热泵; 其中, 第二发生 器的冷剂蒸汽压高于新增发生器的冷剂蒸汽压时, 可在新增发生器的浓溶液管路出口增设新 增溶液泵。
9. 回热式第一类吸收式热泵, 是在第 2、 5项所述的任一双效回热吸收-发生系统中, 增加冷凝器、 蒸发器、 节流阀、 新增发生器、 新增溶液热交换器、 新增节流阀和新增溶液泵, 将第一溶液泵有稀溶液管路经第一溶液热交换器与第一发生器连通调整为第一溶液泵有稀溶 液管路经第一溶液热交换器与新增发生器连通, 新增发生器再有浓溶液管路经新增溶液泵和 新增溶液热交换器与第一发生器连通, 将第一发生器有浓溶液管路经第一溶液热交换器与第 二发生器连通调整为第一发生器有浓溶液管路经新增溶液热交换器和第一溶液热交换器与第 二发生器连通, 将第一发生器有冷剂蒸汽通道与外部连通确定为第一发生器有冷剂蒸汽通道 与新增发生器连通后新增发生器再有冷剂液管路经新增节流阀与冷凝器连通, 新增发生器还 有冷剂蒸汽通道与冷凝器连通, 冷凝器还有冷剂液管路经节流阓与蒸发器连通, 将第三吸收 器有冷剂蒸汽通道与外部连通确定为蒸发器有冷剂蒸汽通道与第三吸收器连通, 冷凝器还有 被加热介质管路与外部连通, 蒸发器还有余热介质管路与外部连通, 形成回热式第一类吸收 式热泵; 其中, 第二发生器的冷剂蒸汽压高于新增发生器的冷剂蒸汽压时, 第一溶液泵可省 略。
10. 回热式第一类吸收式热泵,是在第 1、3-4项所述的任一双效回热吸收-发生系统中, 增加冷凝器、 蒸发器、 节流阀、 新增发生器、 新增溶液热交换器和新增节流阔, 将第一溶液 泵有稀溶液管路经第二溶液热交换器和第一溶液热交换器与第一发生器连通调整为第一溶液 泵有稀溶液管路经第二溶液热交换器之后分别再经第一溶液热交换器与第一发生器连通和再 经新增溶液热交换器与新增发生器连通, 新增发生器还有浓溶液管路经新增溶液热交换器与 第二发生器连通, 将第一发生器有冷剂蒸汽通道与外部连通确定为第一发生器有冷剂蒸汽通 道与新增发生器连通后新增发生器再有冷剂液管路经新增节流闽与冷凝器连通, 新增发生器 还有冷剂蒸汽通道与冷凝器连通, 冷凝器还有冷剂液管路经节流阀与蒸发器连通, 将第三吸 收器有冷剂蒸汽通道与外部连通确定为蒸发器有冷剂蒸汽通道与第三吸收器连通, 冷凝器还 有被加热介质管路与外部连通, 蒸发器还有余热介质管路与外部连通, 形成回热式第一类吸 收式热泵; 其中, 第二发生器的冷剂蒸汽压高于新增发生器的冷剂蒸汽压时, 可在新增发生 器的浓溶液管路出口增设新增溶液泵。 说 明 书
11. 回热式第一类吸收式热泵,是在第 1、 3- 4项所述的任一双效回热吸收-发生系统中, 增加冷凝器、 蒸发器、 节流阀、 新增发生器、 新增溶液热交换器和新增节流阔, 将第一溶液 泵有稀溶液管路经第二溶液热交换器和第一溶液热交换器与第一发生器连通调整为第一溶液 泵有稀溶液管路经第二溶液热交换器、 第一溶液热交换器和新增溶液热交换器与第一发生器 连通, 将第一发生器有浓溶液管路经第一溶液热交换器与第二发生器连通调整为第一发生器 有浓溶液管路经新增溶液热交换器与新增发生器连通, 新增发生器再有浓溶液管路经第一溶 液热交换器与第二发生器连通, 将第一发生器有冷剂蒸汽通道与外部连通确定为第一发生器 有冷剂蒸汽通道与新增发生器连通后新增发生器再有冷剂液管路经新增节流阀与冷凝器连 通, 新增发生器还有冷剂蒸汽通道与冷凝器连通, 冷凝器还有冷剂液管路经节流阀与蒸发器 连通, 将第三吸收器有冷剂蒸汽通道与外部连通确定为蒸发器有冷剂蒸汽通道与第三吸收器 连通, 冷凝器还有被加热介质管路与外部连通, 蒸发器还有余热介质管路与外部连通, 形成 回热式第一类吸收式热泵; 其中,第二发生器的冷剂蒸汽压高于新增发生器的冷剂蒸汽压时, 可在新增发生器的浓溶液管路出口增设新增溶液泵。
12. 回热式第一类吸收式热泵,是在第 1、3- 4项所述的任一双效回热吸收-发生系统中, 增加冷凝器、 蒸发器、 节流阀、 新增发生器、 新增溶液热交换器、 新增节流阀和新增溶液泵, 将第一溶液泵有稀溶液管路经第二溶液热交换器和第一溶液热交换器与第一发生器连通调整 为第一溶液泵有稀溶液管路经第二溶液热交换器和第一溶液热交换器与新增发生器连通, 新 增发生器再有浓溶液管路经新增溶液泵和新增溶液热交换器与第一发生器连通, 将第一发生 器有浓溶液管路经第一溶液热交换器与第二发生器连通调整为第一发生器有浓溶液管路经新 增溶液热交换器和第一溶液热交换器与第二发生器连通, 将第一发生器有冷剂蒸汽通道与外 部连通确定为第一发生器有冷剂蒸汽通道与新增发生器连通后新增发生器再有冷剂液管路经 新增节流阀与冷凝器连通, 新增发生器还有冷剂蒸汽通道与冷凝器连通, 冷凝器还有冷剂液 管路经节流阀与蒸发器连通, 将第三吸收器有冷剂蒸汽通道与外部连通确定为蒸发器有冷剂 蒸汽通道与第三吸收器连通, 冷凝器还有被加热介质管路与外部连通, 蒸发器还有余热介质 管路与外部连通, 形成回热式第一类吸收式热泵; 其屮, 第二发生器的冷剂蒸汽压高于新增 发生器的冷剂蒸汽压时, 第一溶液泵可省略。
13. 回热式第一类吸收式热泵, 是在第 7-12项所述的任一双效回热吸收-发生系统中, 取消第二发生器与外部连通的驱动热介质管路, 增加新增第二节流阀, 第一发生器增设冷剂 蒸汽通道与第二发生器连通后第二发生器再有冷剂液管路经新增第二节流阀与冷凝器连通, 形成回热式第一类吸收式热泵。
14. 回热式第一类吸收式热泵, 是在第 7、 10项所述的任一双效回热吸收-发生系统中, 增加新增第二发生器, 将第一发生器有浓溶液管路经第一溶液热交换器与第二发生器连通调 整为第一发生器有浓溶液管路与新增第二发生器连通, 新增第二发生器再有浓溶液管路经第 一溶液热交换器与第二发生器连通; 取消第二发生器与外部连通的驱动热介质管路, 增加新 增第二节流阀, 新增第二发生器有冷剂蒸汽通道与第二发生器连通后第二发生器再有冷剂液 管路经新增第二节流阔与冷凝器连通, 新增第二发生器还有驱动热介质管路与外部连通, 形 成回热式第一类吸收式热泵。
15. 回热式第一类吸收式热泵, 是在第 8、 11项所述的任一双效回热吸收-发生系统中, 增加新增第二发生器, 将第一发生器有浓溶液管路经新增溶液热交换器与新增发生器连通调 整为第一发生器有浓溶液管路与新增第二发生器连通, 新增第二发生器再有浓溶液管路经新 增溶液热交换器与新增发生器连通; 取消第二发生器与外部连通的驱动热介质管路, 增加新 增第二节流阀, 新增第二发生器有冷剂蒸汽通道与第二发生器连通后第二发生器再有冷剂液 管路经新增第二节流阀与冷凝器连通, 新增第二发生器还有驱动热介质管路与外部连通, 形 成回热式第一类吸收式热泵。
16. 回热式第一类吸收式热泵,是在第 9、 12项所述的任一双效回热吸收-发生系统中, 增加新增第二发生器, 将第一发生器有浓溶液管路经新增溶液热交换器和第一溶液热交换器 与第二发生器连通调整为第一发生器有浓溶液管路与新增第二发生器连通, 新增第二发生器 再有浓溶液管路经新增溶液热交换器和第一溶液热交换器与第二发生器连通; 取消第二发生
器与外部连通的驱动热介质管路, 增加新增第二节流阀, 新增第二发生器有冷剂蒸汽通道与 第二发生器连通后第二发生器再有冷剂液管路经新增第二节流阀与冷凝器连通, 新增第二发 生器还有驱动热介质管路与外部连通, 形成回热式书第一类吸收式热泵。
17. 回热式第一类吸收式热泵, 是在第 6项所述的任一双效回热吸收-发生系统中, 增 加新增发生器、 新增吸收器、 新增溶液热交换器和新增溶液泵, 将第一发生器有冷剂蒸汽通 道与冷凝器连通调整为第一发生器有冷剂蒸汽通道与新增吸收器连通, 新增吸收器还有稀溶 液管路经新增溶液泵和新增溶液热交换器与新增发生器连通, 新增发生器还有浓溶液管路经 新增溶液热交换器与新增吸收器连通, 新增发生器还有冷剂蒸汽通道与冷凝器连通, 新增发 生器还有驱动热介质管路与外部连通, 新增吸收器还有被加热介质管路与外部连通, 形成回 热式第一类吸收式热泵。
18. 回热式第一类吸收式热泵, 是在第 6项所述的任一双效回热吸收-发生系统中, 增 加新增发生器、 新增吸收器、 新增溶液热交换器、 新增溶液泵、 新增冷凝器和新增节流阀, 第一发生器增设冷剂蒸汽通道与新增吸收器连通, 新增吸收器还有稀溶液管路经新增溶液泵 和新增溶液热交换器与新增发生器连通, 新增发生器还有浓溶液管路经新增溶液热交换器与 新增吸收器连通, 新增发生器还有冷剂蒸汽通道与新增冷凝器连通, 新增冷凝器还有冷剂液 管路经新增节流阀与冷凝器或蒸发器连通, 新增发生器还有驱动热介质管路与外部连通, 新 增吸收器和新增冷凝器还分别有被加热介质管路与外部连通,形成回热式第一类吸收式热泵。
下面以图 4所示回热式第一类吸收式热泵为例简要说明本发明- 图 4中, 第二发生器 2产生的冷剂蒸汽向第一吸收器 3提供、 被来自第二吸收器 4的溶 液吸收并分别放热于流经第一吸收器 3的溶液和被加热介质, 完成第一次回热流程; 溶液吸 热汽化并进入分汽室 6, 第二发生器 2所产生的冷剂蒸汽中的一部分热转移到分汽室 6所释 放的冷剂蒸汽中, 分汽室 6向第二吸收器 4提供冷剂蒸汽、 被来自第三吸收器 5的溶液吸收 并放热于被加热介质, 完成第二次回热流程。 具有如下效果:
(1)第二发生器 2产生的冷剂蒸汽在第一吸收器 3内完成一次回热, 第一吸收器 3结合分 汽室 6产生的冷剂蒸汽又在第二吸收器 4内完成二次回热, 实现双效回热。
(2)回热热负荷可调节, 使该类吸收式热泵具有合理且连续性变化的性能指数。
(3)比较单效回热, 双效回热实现了回热用驱动热负荷的两次利用, 降低了回热负荷, 能 够显著提高第一类吸收式热泵的性能指数。 说 明 书 附图说明- 图 1是依据本发明所提供的双效回热吸收-发生系统第 1种结构和流程示意图。
图 2是依据本发明所提供的双效回热吸收-发生系统第 2种结构和流程示意图。
图 3是依据本发明所提供的回热式第一类吸收式热泵第 1种结构和流程示意图。
图 4是依据本发明所提供的回热式第一类吸收式热泵第 2种结构和流程示意图。
图 5是依据本发明所提供的回热式第一类吸收式热泵第 3种结构和流程示意图。
图 6是依据本发明所提供的回热式第一类吸收式热泵第 4种结构和流程示意图。
图 7是依据本发明所提供的回热式第一类吸收式热泵第 5种结构和流程示意图。
图 8是依据本发明所提供的回热式第一类吸收式热泵第 6种结构和流程示意图。
图 9是依据本发明所提供的回热式第一类吸收式热泵第 7种结构和流程示意图。
图 10是依据本发明所提供的回热式第一类吸收式热泵第 8种结构和流程示意图。
图 11是依据本发明所提供的回热式第一类吸收式热泵第 9种结构和流程示意图。
图 12是依据本发明所提供的回热式第一类吸收式热泵第 10种结构和流程示意图。
图 13是依据本发明所提供的回热式第一类吸收式热泵第 11种结构和流程示意图。
图中, 1一第一发生器, 2—第二发生器, 3—第一吸收器, 4一第二吸收器, 5—第三吸收 器, 6—分汽室, 7—第一溶液泵, 8—第二溶液泵, 9一第三溶液泵, 10—第一溶液热交换器, 11一第二溶液热交换器, 12—第三溶液热交换器, 13—第四溶液热交换器, 14一第四吸收器, 15—溶液节流阔, 16—冷凝器, 17—蒸发器, 18—节流闽; A—新增发生器, B—新增溶液热 交换器, C一新增节流阀, D—新增溶液泵, E—新增第二节流阀, F—新增吸收器, G—新增冷 凝器, H—新增第二发生器。
需要指出的是-
(1)图 1中, 第一吸收器 3无被加热介质管路与外部连通时, 回热流程为双效; 第一吸收 器 3有被加热介质管路与外部连通时, 回热流程包含单效回热和双效回热。 为简便起见, 同 一称之为双效回热吸收 -发生系统。
(2)图 7-8中, 第二发生器 2的冷剂蒸汽压高于新增发生器 A的冷剂蒸汽压时, 可在新增 发生器 A的浓溶液管路出口增设溶液泵。
(3)图 9中, 第二发生器 2的冷剂蒸汽压高于新增发生器 A的冷剂蒸汽压时, 第一溶液泵 7可省略。
具体实施方式. - 首先要说明的是, 在结构和流程的表述上, 非必要情况下不重复进行; 对显而易见的流 程不作表述。 下面结合附图和实例来详细描述本发明。
图 1所示的双效回热吸收 -发生系统是这样实现的-
①结构上, 它双效回热吸收-发生系统, 主要由第一发生器、 第二发生器、 第一吸收器、 第二吸收器、 第三吸收器、 分汽室、 第一溶液泵、 第二溶液泵、 第三溶液泵、 第一溶液热交 换器、 第二溶液热交换器、 第三溶液热交换器和第四溶液热交换器所组成; 第三吸收器 5有 稀溶液管路经第三溶液泵 9和第四溶液热交换器 13与第二吸收器 4连通,第二吸收器 4还有 稀溶液管路经第二溶液泵 8和第三溶液热交换器 12与第一吸收器 3连通,第一吸收器 3还有 稀溶液管路经第一溶液泵 7、 第二溶液热交换器 11和第一溶液热交换器 10与第一发生器 1 连通,第一发生器 1还有浓溶液管路经第一溶液热交换器 10与第二发生器 2连通,第二发生 器 2还有浓溶液管路经第二溶液热交换器 11和第一吸收器 3与分汽室 6连通,分汽室 6还有 浓溶液管路经第三溶液热交换器 12和第四溶液热交换器 13与第三吸收器 5连通, 第一发生 器 1还有冷剂蒸汽通道与外部连通, 第二发生器 2还有冷剂蒸汽通道与第一吸收器 3连通, 分汽室 6还有冷剂蒸汽通道与第二吸收器 4连通, 第三吸收器 5还有冷剂蒸汽通道与外部连 通, 第一发生器 1和第二发生器 2还分别有驱动热介质管路与外部连通, 第一吸收器 3、 第 二吸收器 4和第三吸收器 5还分别有被加热介质管路与外部连通。
②流程上,第三吸收器 5的稀溶液经第三溶液泵 9和第四溶液热交换器 13进入第二吸收 器 4、 吸收来自分汽室 6的冷剂蒸汽并放热于被加热介质, 第二吸收器 4的稀溶液经第二溶 液泵 8和第三溶液热交换器 12进入第一吸收器 3、 吸收来自第二发生器 2的冷剂蒸汽并分别 放热于流经其内的溶液和被加热介质,说第一吸收器 3的稀溶液经第一溶液泵 7、 第二溶液热 交换器 11和第一溶液热交换器 10进入第一发生器 1, 驱动介质流经第一发生器 1、加热进入 其内的溶液释放并对外提供冷剂蒸汽,第一发生器 1的浓溶液经第一溶液热交换器 10进入第
二发生器 2,驱动热介质流经第二发生器 2、加热进入其内的溶液释放并向第一吸收器 3提供 冷剂蒸汽, 第二发生器 2的浓溶液经第二溶液热交换器 11之后流经第一吸收器 3、 吸热部分 汽化后进入分汽室 6, 分汽室 6向第二吸收器 4提供冷剂蒸汽, 分汽室 6的浓溶液经第三溶 液热交换器 12和第四溶液热交换器 13进入第三吸收器 5、 吸收来自外部的冷剂蒸汽并放热 于被加热介质, 形成双效回热吸收 -发生系统。
图 2所示的双效回热吸收 -发生系统是这样实现的:
①结构上, 它主要由第一发生器、 第二发生器、 第一吸收器、 第二吸收器、 第三吸收器、 第四吸收器、 分汽室、 第一溶液泵、 第二溶液泵、 第三溶液泵、 第一溶液热交换器、 溶液节 流阀、 第三溶液热交换器和第四溶液热交换器所组成; 第三吸收器 5有稀溶液管路经第三溶 液泵 9和第四溶液热交换器 13与第二吸收器 4连通,第二吸收器 4还有稀溶液管路经第二溶 液泵 8和第三溶液热交换器 12与第四吸收器 14连通,第四吸收器 14还有稀溶液管路与第一 吸收器 3连通,第一吸收器 3还有稀溶液管路经第一溶液泵 7和第一溶液热交换器 10与第一 发生器 1连通, 第一发生器 1还有浓溶液管路经第一溶液热交换器 10与第二发生器 2连通, 第二发生器 2还有浓溶液管路经溶液节流阀 15和第一吸收器 3与分汽室 6连通,分汽室 6还 有浓溶液管路经第三溶液热交换器 12和第四溶液热交换器 13与第三吸收器 5连通, 第一发 生器 1还有冷剂蒸汽通道与外部连通, 第二发生器 2还有冷剂蒸汽通道分别与第一吸收器 3 和第四吸收器 14连通, 分汽室 6还有冷剂蒸汽通道与第二吸收器 4连通,第三吸收器 5还有 冷剂蒸汽通道与外部连通, 第一发生器 1和第二发生器 2还分别有驱动热介质管路与外部连 通, 第二吸收器 4、 第三吸收器 5和第四吸收器 14还分别有被加热介质管路与外部连通。
②流程上,第三吸收器 5的稀溶液经第三溶液泵 9和第四溶液热交换器 13进入第二吸收 器 4、 吸收来自分汽室 6的冷剂蒸汽并放热于被加热介质, 第二吸收器 4的稀溶液经第二溶 液泵 8和第三溶液热交换器 12进入第四吸收器 14、 吸收来自第二发生器 2的冷剂蒸汽并放 热于流经其内的被加热介质, 第四吸收器 14的稀溶液进入第一吸收器 3、 吸收来自第二发生 器 2的冷剂蒸汽并放热于流经其内的溶液, 第一吸收器 3的稀溶液经第一溶液泵 7和第一溶 液热交换器 10进入第一发生器 1 , 驱动介质流经第一发生器 1、 加热进入其内的溶液释放并 对外提供冷剂蒸汽, 第一发生器 1的浓溶液经第一溶液热交换器 10进入第二发生器 2, 驱动 热介质流经第二发生器 2、 加热进入其内的溶液释放并分别向第一吸收器 3和第四吸收器 14 提供冷剂蒸汽, 第二发生器 2的浓溶液经溶液节流阀 15节流之后流经第一吸收器 3、 吸热部 分汽化后进入分汽室 6, 分汽室 6向第二吸收器 4提供冷剂蒸汽, 分汽室 6的浓溶液经第三 溶液热交换器 12和第四溶液热交换器 13进入第三吸收器 5、 吸收来自外部的冷剂蒸汽并放 热于被加热介质, 形成双效回热吸收 -发生系统。
图 3所示的回热式第一类吸收式热泵是这样实现的- 在图 1所示的双效回热吸收 发生系统中, 增加冷凝器、蒸发器和节流阀, 将第一发生器 1有冷剂蒸汽通道与外部连通确定为第一发生器 1有冷剂蒸汽通道与冷凝器 16连通, 冷凝器 16还有冷剂液管路经节流阔 18与蒸发器 17连通, 将第三吸收器 5有冷剂蒸汽通道与外部连 通确定为蒸发器 17有冷剂蒸汽通道与第说三吸收器 5连通, 冷凝器 16还有被加热介质管路与 外部连通,蒸发器 17还有余热介质管路与外部连通; 第一发生器 1产生的冷剂蒸汽进入冷凝 器 16、放热于被加热介质成冷剂液, 冷凝器 16的冷剂液经节流阀 18节流进入蒸发器 17、吸 收余热成冷剂蒸汽并向第三吸收器 15提供, 形成书回热式第一类吸收式热泵。
图 4所示的回热式第一类吸收式热泵中是这样实现的- 在图 1所示的双效回热吸收 发生系统中, 取消第二溶液热交换器, 增加溶液节流阀, 将 第一溶液泵 7有稀溶液管路经第二溶液热交换器 11和第一溶液热交换器 10与第一发生器 1 连通调整为第一溶液泵 Ί有稀溶液管路经第一溶液热交换器 10与第一发生器 1连通,将第二 发生器 2有浓溶液管路经第二溶液热交换器 11和第一吸收器 3与分汽室 6连通调整为第二发 生器 2有浓溶液管路经溶液节流阀 15和第一吸收器 3与分汽室 6连通; 增加冷凝器、蒸发器 和节流阀, 将第一发生器 1有冷剂蒸汽通道与外部连通确定为第一发生器 1有冷剂蒸汽通道 与冷凝器 16连通, 冷凝器 16还有冷剂液管路经节流阀 18与蒸发器 17连通, 将第三吸收器 5有冷剂蒸汽通道与外部连通确定为蒸发器 17有冷剂蒸汽通道与第三吸收器 5连通, 冷凝器 16还有被加热介质管路与外部连通, 蒸发器 17还有余热介质管路与外部连通; 第一发生器 1 产生的冷剂蒸汽进入冷凝器 16、 放热于被加热介质成冷剂液, 冷凝器 16的冷剂液经节流阀 18节流进入蒸发器 17、 吸收余热成冷剂蒸汽并向第三吸收器 15提供, 形成回热式第一类吸 收式热泵。
图 5所示的回热式第一类吸收式热泵是这样实现的:
在图 2所示的双效回热吸收-发生系统中, 增加冷凝器、蒸发器和节流阀, 将第一发生器 1有冷剂蒸汽通道与外部连通确定为第一发生器 1有冷剂蒸汽通道与冷凝器 16连通, 冷凝器 16还有冷剂液管路经节流阀 18与蒸发器 17连通, 将第三吸收器 5有冷剂蒸汽通道与外部连 通确定为蒸发器 17有冷剂蒸汽通道与第三吸收器 5连通, 冷凝器 16还有被加热介质管路与 外部连通,蒸发器 17还有余热介质管路与外部连通; 第一发生器 1产生的冷剂蒸汽进入冷凝 器 16、放热于被加热介质成冷剂液, 冷凝器 16的冷剂液经节流阀 18节流进入蒸发器 17、吸 收余热成冷剂蒸汽并向第三吸收器 15提供, 形成回热式第一类吸收式热泵。
图 6所示的回热式第一类吸收式热泵是这样实现的. - 在图 5所示的回热式第一类吸收式热泵中, 将第二吸收器 4有稀溶液管路经第二溶液泵 8和第三溶液热交换器 12与第四吸收器 14连通调整为第二吸收器 4有稀溶液管路经第二溶 液泵 8和第三溶液热交换器 12与第一吸收器 3连通,将第一吸收器 3有稀溶液管路与第一溶 液泵 7连通调整为第一吸收器 3有稀溶液管路与第四吸收器 14连通, 第四吸收器 14再有稀 溶液管路与第一溶液泵 7连通, 形成回热式第一类吸收式热泵。
图 7所示的回热式第一类吸收式热泵是这样实现的:
①结构上, 在图 1所示的双效回热吸收-发生系统中, 取消第二溶液热交换器, 增加溶液 节流阀, 将第一溶液泵 7有稀溶液管路经第二溶液热交换器 11和第一溶液热交换器 10与第 一发生器 1连通调整为第一溶液泵 7有稀溶液管路经第一溶液热交换器 10与第一发生器 1连 通,将第二发生器 2有浓溶液管路经第二溶液热交换器 11和第一吸收器 3与分汽室 6连通调 整为第二发生器 2有浓溶液管路经溶液节流阀 15和第一吸收器 3与分汽室 6连通;增加冷凝 器、 蒸发器、 节流阀、 新增发生器、 新增溶液热交换器和新增节流阀, 第一溶液泵 7增设稀 溶液管路经新增溶液热交换器 B与新增说发生器 A连通, 新增发生器 A还有浓溶液管路经新增 溶液热交换器 B与第二发生器 2连通, 将第一发生器 1有冷剂蒸汽通道与外部连通确定为第 一发生器 1有冷剂蒸汽通道与新增发生器 A连通后新增发生器 A再有冷剂液管路经新增节流
阀 C与冷凝器 16连通,新增发生器 A还有冷剂蒸汽通道与冷凝器 16连通,冷凝器 16还有冷 剂液管路经节流阀 18与蒸发器 17连通, 将第三吸收器 5有冷剂蒸汽通道与外部连通确定为 蒸发器 17有冷剂蒸汽通道与第三吸收器 5连通,冷凝器 16还有被加热介质管路与外部连通, 蒸发器 17还有余热介质管路与外部连通。
②流程上, 第一发生器 1产生的冷剂蒸汽作为新增发生器 A的驱动热介质, 第一吸收器 3的部分稀溶液经第一溶液泵 7和新增溶液热交换器 B进入新增发生器 A,冷剂蒸汽流经新增 发生器 A、 加热进入其内的溶液释放并向冷凝器 16提供冷剂蒸汽, 新增发生器 A的浓溶液经 新增溶液热交换器 B进入第二发生器 2, 流经新增发生器 A的冷剂蒸汽放热成冷剂液、 再经 新增节流阀 C节流进入冷凝器 16, 冷凝器 16的冷剂蒸汽放热于被加热介质成冷剂液, 冷凝 器 16的冷剂液经节流阀 18节流进入蒸发器 17、 吸收余热成冷剂蒸汽并向第三吸收器 15提 供, 形成回热式第一类吸收式热泵。
图 8所示的回热式第一类吸收式热泵是这样实现的:
①结构上, 在图 1所示的双效回热吸收-发生系统中, 取消第二溶液热交换器, 增加溶液 节流阀, 将第一溶液泵 7有稀溶液管路经第二溶液热交换器 11和第一溶液热交换器 10与第 一发生器 1连通调整为第一溶液泵 7有稀溶液管路经第一溶液热交换器 10与第一发生器 1连 通,将第二发生器 2有浓溶液管路经第二溶液热交换器 11和第一吸收器 3与分汽室 6连通调 整为第二发生器 2有浓溶液管路经溶液节流阀 15和第一吸收器 3与分汽室 6连通;增加冷凝 器、 蒸发器、 节流阀、 新增发生器、 新增溶液热交换器和新增节流阀, 将第一溶液泵 7有稀 溶液管路经第一溶液热交换器 10与第一发生器 1连通调整为第一溶液泵 7有稀溶液管路经第 一溶液热交换器 10和新增溶液热交换器 B与第一发生器 1连通,将第一发生器 1有浓溶液管 路经第一溶液热交换器 10与第二发生器 2连通调整为第一发生器 1有浓溶液管路经新增溶液 热交换器 B与新增发生器 A连通,新增发生器 A再有浓溶液管路经第一溶液热交换器 10与第 二发生器 2连通, 将第一发生器 1有冷剂蒸汽通道与外部连通确定为第一发生器 1有冷剂蒸 汽通道与新增发生器 A连通后新增发生器 A再有冷剂液管路经新增节流阀 C与冷凝器 16连通, 新增发生器 A还有冷剂蒸汽通道与冷凝器 16连通,冷凝器 16还有冷剂液管路经节流阀 18与 蒸发器 17连通, 将第三吸收器 5有冷剂蒸汽通道与外部连通确定为蒸发器 17有冷剂蒸汽通 道与第三吸收器 5连通, 冷凝器 16还有被加热介质管路与外部连通, 蒸发器 17还有余热介 质管路与外部连通。
②流程上, 第一发生器 1产生的冷剂蒸汽作为新增发生器 A的驱动热介质, 第一吸收器 3的稀溶液经第一溶液泵 7、第一溶液热交换器 10和新增溶液热交换器 B进入第一发生器 1, 第一发生器 1的浓溶液经新增溶液热交换器 B进入新增发生器 A,冷剂蒸汽流经新增发生器 A、 加热进入其内的溶液释放并向冷凝器 16提供冷剂蒸汽,新增发生器 A的浓溶液经第一溶液热 交换器 10进入第二发生器 2, 流经新增发生器 A的冷剂蒸汽放热成冷剂液、 再经新增节流阀 C节流进入冷凝器 16, 冷凝器 16的冷剂蒸汽放热于被加热介质成冷剂液, 冷凝器 16的冷剂 液经节流阀 18节流进入蒸发器 17、 吸收余热成冷剂蒸汽并向第三吸收器 15提供, 形成回热 式第一类吸收式热泵。 说
图 9所示的回热式第一类吸收式热泵是这样实现的:
①结构上, 在图 1所示的双效回热吸收-发生系统中, 取消第二溶液热交换器, 增加溶液
节流阀, 将第一溶液泵 7有稀溶液管路经第二溶液热交换器 11和第一溶液热交换器 10与第 一发生器 1连通调整为第一溶液泵 7有稀溶液管路经第一溶液热交换器 10与第一发生器 1连 通,将第二发生器 2有浓溶液管路经第二溶液热交换器 11和第一吸收器 3与分汽室 6连通调 整为第二发生器 2有浓溶液管路经溶液节流阀 15和第一吸收器 3与分汽室 6连通;增加冷凝 器、 蒸发器、 节流阀、 新增发生器、 新增溶液热交换器、 新增节流阀和新增溶液泵, 将第一 溶液泵 7有稀溶液管路经第一溶液热交换器 10与第一发生器 1连通调整为第一溶液泵 7有稀 溶液管路经第一溶液热交换器 10与新增发生器 A连通,新增发生器 A再有浓溶液管路经新增 溶液泵 D和新增溶液热交换器 B与第一发生器 1连通, 将第一发生器 1有浓溶液管路经第一 溶液热交换器 10与第二发生器 2连通调整为第一发生器 1有浓溶液管路经新增溶液热交换器 B和第一溶液热交换器 10与第二发生器 2连通, 将第一发生器 1有冷剂蒸汽通道与外部连通 确定为第一发生器 1有冷剂蒸汽通道与新增发生器 A连通后新增发生器 A再有冷剂液管路经 新增节流阖 C与冷凝器 16连通, 新增发生器 A还有冷剂蒸汽通道与冷凝器 16连通, 冷凝器 16还有冷剂液管路经节流阀 18与蒸发器 17连通, 将第三吸收器 5有冷剂蒸汽通道与外部连 通确定为蒸发器 17有冷剂蒸汽通道与第三吸收器 5连通, 冷凝器 16还有被加热介质管路与 外部连通, 蒸发器 17还有余热介质管路与外部连通。
②流程上, 第一发生器 1产生的冷剂蒸汽作为新增发生器 A的驱动热介质, 第一吸收器 3的稀溶液经第一溶液泵 7和第一溶液热交换器 10进入新增发生器 A, 冷剂蒸汽流经新增发 生器 A、 加热进入其内的溶液释放并向冷凝器 16提供冷剂蒸汽, 新增发生器 A的浓溶液经新 增溶液泵 D和新增溶液热交换器 B进入第一发生器 1, 第一发生器 1的浓溶液经新增溶液热 交换器 B和第一溶液热交换器 10进入第二发生器 2, 流经新增发生器 A的冷剂蒸汽放热成冷 剂液、 再经新增节流阀 C节流进入冷凝器 16, 冷凝器 16的冷剂蒸汽放热于被加热介质成冷 剂液, 冷凝器 16的冷剂液经节流阀 18节流进入蒸发器 17、 吸收余热成冷剂蒸汽并向第三吸 收器 15提供, 形成回热式第一类吸收式热泵。
图 10所示的回热式第一类吸收式热泵是这样实现的- 在图 9所示的回热式第一类吸收式热泵中, 取消第二发生器 2与外部连通的驱动热介质 说 明 书 管路, 增加新增第二节流阀, 第一发生器 1增设冷剂蒸汽通道与第二发生器 2连通后第二发 生器 2再有冷剂液管路经新增第二节流阔 E与冷凝器 16连通;第一发生器 1产生的冷剂蒸汽 分别向新增发生器 A和第二发生器 2提供, 冷剂蒸汽流经第二发生器 2、 加热进入其内的溶 液释放并向第一吸收器 3提供冷剂蒸汽, 流经第二发生器 2的冷剂蒸汽放热成冷剂液、 再经 新增第二节流阔 E节流进入冷凝器 16, 形成回热式第一类吸收式热泵。
图 11所示的回热式第一类吸收式热泵是这样实现的:
①结构上, 在图 9所示的回热式第一类吸收式热泵中, 增加新增第二发生器, 将第一发 生器 1有浓溶液管路经新增溶液热交换器 B和第一溶液热交换器 10与第二发生器 2连通调整 为第一发生器 1有浓溶液管路与新增第二发生器 H连通, 新增第二发生器 H再有浓溶液管路 经新增溶液热交换器 B和第一溶液热交换器 10与第二发生器 2连通;取消第二发生器 2与外 部连通的驱动热介质管路, 增加新增第二节流阀, 新增第二发生器 H有冷剂蒸汽通道与第二 发生器 2连通后第二发生器 2再有冷剂液管路经新增第二节流阀 E与冷凝器 16连通,新增第 二发生器 H还有驱动热介质管路与外部连通。
②流程上, 第一发生器 1 的浓溶液进入新增第二发生器 H, 驱动热介质流经新增第二发 生器 H、 加热进入其内的溶液释放并向第二发生器 2提供冷剂蒸汽, 新增第二发生器 H的浓 溶液经新增溶液热交换器 B和第一溶液热交换器 10进入第二发生器 2, 冷剂蒸汽流经第二发 生器 2、 加热进入其内的溶液释放并向第一吸收器 3提供冷剂蒸汽, 流经第二发生器 2的冷 剂蒸汽放热成冷剂液、 再经新增第二节流阀 E节流进入冷凝器 16, 形成回热式第一类吸收式 热泵。
图 12所示的回热式第一类吸收式热泵是这样实现的:
①结构上, 在图 4所示的回热式第一类吸收式热泵中, 取消第一吸收器 3与外部连通的 被加热介质管路, 增加新增发生器、 新增吸收器、 新增溶液热交换器和新增溶液泵, 将第一 发生器 1有冷剂蒸汽通道与冷凝器 16连通调整为第一发生器 1有冷剂蒸汽通道与新增吸收器 F连通,新增吸收器 F还有稀溶液管路经新增溶液泵 D和新增溶液热交换器 B与新增发生器 A 连通, 新增发生器 A还有浓溶液管路经新增溶液热交换器 B与新增吸收器 F连通, 新增发生 器 A还有冷剂蒸汽通道与冷凝器 16连通,新增发生器 A还有驱动热介质管路与外部连通,新 增吸收器 F还有被加热介质管路与外部连通。
②流程上, 第一发生器 1产生的冷剂蒸汽进入新增吸收器 F, 新增发生器 A浓溶液经新 增溶液热交换器 B进入新增吸收器 F、 吸收冷剂蒸汽并放热于被加热介质, 新增吸收器 F的 稀溶液经新增溶液泵 D和新增溶液热交换器 B进入新增发生器 A, 驱动热介质流经新增发生 器 、 加热进入其内的溶液释放并向冷凝器 6提供冷剂蒸汽, 形成回热式第一类吸收式热泵。
图 13所示的回热式第一类吸收式热泵是这样实现的:
①结构上, 在图 4所示的回热式第一类吸收式热泵中, 增加新增发生器、 新增吸收器、 新增溶液热交换器、 新增溶液泵、 新增冷凝器和新增节流阀, 第一发生器 1增设冷剂蒸汽通 道与新增吸收器 F连通, 新增吸收器 F还有稀溶液管路经新增溶液泵 D和新增溶液热交换器 B与新增发生器 A连通,新增发生器 A还有浓溶液管路经新增溶液热交换器 B与新增吸收器 F 连通, 新增发生器 A还有冷剂蒸汽通道与新增冷凝器 G连通, 新增冷凝器 G还有冷剂液管路 经新增节流阀 C与冷凝器 16连通,新增发生器 A还有驱动热介质管路与外部连通,新增吸收 器 F和新增冷凝器 G还分别有被加热介质管路与外部连通。
②流程上, 第一发生器 1产生的冷剂蒸汽分别向冷凝器 6和新增吸收器 F提供, 新增发 生器 A浓溶液经新增溶液热交换器 B进入新增吸收器 F、吸收冷剂蒸汽并放热于被加热介质, 新增吸收器 F的稀溶液经新增溶液泵 D和新增溶液热交换器 B进入新增发生器 A, 驱动热介 质流经新增发生器 A、 加热进入其内的溶液释放并向新增冷凝器 G提供冷剂蒸汽, 新增冷凝 器 G的冷剂蒸汽放热于被加热介质成冷剂液, 新增冷凝器 G的冷剂液经新增节流阀 C节流进 入冷凝器 6, 形成回热式第一类吸收式热泵。
本发明技术可以实现的效果——本发明所提出的双效回热吸收-发生系统与回热式第一 类吸收式热泵, 具有如下的效果和优势:
(1)比较单效回热, 双效回热实现了回热用驱动热负荷的两次利用, 降低了回热负荷, 能 够显著提高第一类吸收式热泵的性能指说数。
(2)双效回热吸收发生系统, 实现双效回热, 充分发挥高温驱动热的作用, 充分利用传热 温差, 提高了系统的热力学完善度。
(3)回热式第一类吸收式热泵, 回热负荷可调节, 使第一类吸收式热泵在变工况运行情况 下实现性能指数的最大化。
(4)回热式第一类吸收式热泵, 第一吸收器 3的供热负荷可调节, 单效回热和双效回热之 间的比例可调节, 有利于在变工况运行时提高第一类吸收式热泵的性能指数。
(5)回热式第一类吸收式热泵, 第二吸收器、 第三吸收器和冷凝器或再加上第一吸收器实 现多端供热, 有利于第一类吸收式热泵在保持较高性能指数前提下进行大温差供热。
(6)回热式第一类吸收式热泵, 丰富了吸收式热泵种类和流程, 扩展和丰富了吸收式热泵 的应用范围, 具有很好的创造性、 新颖性和实用性。

Claims

权 利 要 求 书
1. 双效回热吸收 -发生系统, 主要由第一发生器、 第二发生器、 第一吸收器、 第二吸收 器、 第三吸收器、 分汽室、 第一溶液泵、 第二溶液泵、 第三溶液泵、 第一溶液热交換器、 第 二溶液热交换器、 第三溶液热交换器和第四溶液热交换器所组成; 第三吸收器(5)有稀溶液 管路经第三溶液泵(9 )和第四溶液热交换器(13)与第二吸收器(4)连通, 第二吸收器(4) 还有稀溶液管路经第二溶液泵 (8) 和第三溶液热交换器(12) 与第一吸收器 (3)连通, 第 一吸收器(3)还有稀溶液管路经第一溶液泵(7)、 第二溶液热交换器(11 )和第一溶液热交 换器(10) 与第一发生器 (1 ) 连通, 第一发生器(1 ) 还有浓溶液管路经第一溶液热交换器
( 10)与第二发生器(2)连通, 第二发生器(2)还有浓溶液管路经第二溶液热交换器(11 ) 和第一吸收器(3)与分汽室(6)连通,分汽室(6)还有浓溶液管路经第三溶液热交换器(12) 和第四溶液热交换器(13) 与第三吸收器 (5) 连通, 第一发生器 (1 )还有冷剂蒸汽通道与 外部连通, 第二发生器(2)还有冷剂蒸汽通道与第一吸收器(3)连通, 分汽室(6)还有冷 剂蒸汽通道与第二吸收器 (4) 连通, 第三吸收器(5) 还有冷剂蒸汽通道与外部连通, 第一 发生器(1 )和第二发生器(2)还分别有驱动热介质管路与外部连通, 第一吸收器(3)或还 有被加热介质管路与外部连通, 第二吸收器 (4) 和第三吸收器 (5) 还分别有被加热介质管 路与外部连通, 形成双效回热吸收-发生系统。
2. 双效回热吸收 -发生系统, 是在权利要求 1 所述的双效回热吸收-发生系统中, 取消 第二溶液热交换器, 增加溶液节流阔, 将第一溶液泵(7)有稀溶液管路经第二溶液热交换器
( 11 ) 和第一溶液热交换器(10) 与第一发生器 (1 )连通调整为第一溶液泵 (7 ) 有稀溶液 管路经第一溶液热交换器 (10) 与第一发生器 (1 ) 连通, 将第二发生器 (2)有浓溶液管路 经第二溶液热交换器(11 )和第一吸收器(3)与分汽室(6)连通调整为第二发生器(2)有 浓溶液管路经溶液节流阀 (15 )和第一吸收器(3 )与分汽室(6)连通, 形成双效回热吸收- 发生系统。
3. 双效回热吸收 -发生系统, 主要 ώ第一发生器、 第二发生器、 第一吸收器、 第二吸收 器、 第三吸收器、 第四吸收器、 分汽室、 第一溶液泵、 第二溶液泵、 第三溶液泵、 第一溶液 热交换器、 第二溶液热交换器、 第三溶液热交换器和第四溶液热交换器所组成; 第三吸收器
(5)有稀溶液管路经第三溶液泵 (9) 和第四溶液热交换器 (13) 与第二吸收器(4)连通, 第二吸收器 (4) 还有稀溶液管路经第二溶液泵 (8 )和第三溶液热交换器 (12) 与第四吸收 器(14)连通, 第四吸收器(14)还有稀溶液管路与第一吸收器(3)连通, 第一吸收器(3) 还有稀溶液管路经第一溶液泵 (7)、 第二溶液热交换器 (11 )和第一溶液热交换器 (10) 与 第一发生器 (1 ) 连通, 第一发生器 (1 )还有浓溶液管路经第一溶液热交换器(10) 与第二 发生器 (2) 连通, 第二发生器 (2)还有浓溶液管路经第二溶液热交换器 (11 ) 和第一吸收 器(3)与分汽室 (6)连通, 分汽室(6)还有浓溶液管路经第三溶液热交换器(12)和第四 溶液热交换器 (13) 与第三吸收器(5) 连通, 第一发生器 (1 ) 还有冷剂蒸汽通道与外部连 通, 第二发生器 (2) 还有冷剂蒸汽通道分别与第一吸收器 (3) 和第四吸收器(14)连通, 分汽室(6)还有冷剂蒸汽通道与第二吸收器(4)连通, 第三吸收器(5)还有冷剂蒸汽通道 与外部连通, 第一发生器 (1 ) 和第二发生器 (2) 还分别有驱动热介质管路与外部连通, 第 权 利 要 求 书 二吸收器(4)、 第三吸收器(5)和第四吸收器 (14)还分别有被加热介质管路与外部连通, 形成双效回热吸收 -发生系统。
4. 双效回热吸收 -发生系统, 是在权利要求 3所述的双效回热吸收-发生系统中, 将第 二吸收器(4)有稀溶液管路经第二溶液泵(8)和第三溶液热交换器(12)与第四吸收器(14) 连通调整为第二吸收器 (4) 有稀溶液管路经第二溶液泵 (8)和第三溶液热交换器 (12) 与 第一吸收器(3)连通, 将第一吸收器(3)有稀溶液管路与第一溶液泵(7)连通调整为第一 吸收器(3)有稀溶液管路与第四吸收器(14)连通, 第四吸收器(14)再有稀溶液管路与第 一溶液泵 (7)连通, 形成双效回热吸收 -发生系统。
5. 双效回热吸收 -发生系统, 是在权利要求 3-4所述的任一双效回热吸收-发生系统中, 取消第二溶液热交换器, 增加溶液节流阀, 将第一溶液泵(7)有稀溶液管路经第二溶液热交 换器(11 ) 和第一溶液热交换器 (10) 与第一发生器 (1 ) 连通调整为第一溶液泵 (7) 有稀 溶液管路经第一溶液热交换器 (10) 与第一发生器 (1 ) 连通, 将第二发生器(2 ) 有浓溶液 管路经第二溶液热交换器(11 )和第一吸收器(3)与分汽室(6)连通调整为第二发生器(2) 有浓溶液管路经溶液节流阀 (15) 和第一吸收器 (3) 与分汽室 (6) 连通, 形成双效回热吸 收 -发生系统。
6. 回热式第一类吸收式热泵,是在权利要求 1-5所述的任一双效回热吸收-发生系统中, 增加冷凝器、 蒸发器和节流阔, 将第一发生器(1 )有冷剂蒸汽通道与外部连通确定为第一发 生器(1 )有冷剂蒸汽通道与冷凝器(16)连通, 冷凝器(16)还有冷剂液管路经节流阀(18) 与蒸发器(17)连通, 将第三吸收器(5)有冷剂蒸汽通道与外部连通确定为蒸发器(17)有 冷剂蒸汽通道与第三吸收器(5)连通, 冷凝器(16)还有被加热介质管路与外部连通, 蒸发 器 (17) 还有余热介质管路与外部连通, 形成回热式第一类吸收式热泵。
7. 回热式第一类吸收式热泵, 是在权利要求 2、 5所述的任一双效回热吸收-发生系统 中, 增加冷凝器、 蒸发器、 节流阔、 新增发生器、 新增溶液热交换器和新增节流阀, 第一溶 液泵(7)增设稀溶液管路经新增溶液热交换器(B)与新增发生器(A)连通,新增发生器(A) 还有浓溶液管路经新增溶液热交换器(B)与第二发生器(2)连通, 将第一发生器(1 )有冷 剂蒸汽通道与外部连通确定为第一发生器 (1 ) 有冷剂蒸汽通道与新增发生器(A) 连通后新 增发生器(A)再有冷剂液管路经新增节流阀 (C)与冷凝器(16)连通, 新增发生器(A)还 有冷剂蒸汽通道与冷凝器 (16) 连通, 冷凝器 (16) 还有冷剂液管路经节流阀 (18) 与蒸发 器(17)连通, 将第三吸收器(5)有冷剂蒸汽通道与外部连通确定为蒸发器(17)有冷剂蒸 汽通道与第三吸收器(5)连通, 冷凝器(16)还有被加热介质管路与外部连通, 蒸发器(17) 还有余热介质管路与外部连通, 形成回热式第一类吸收式热泵; 其中, 第二发生器(2)的冷 剂蒸汽压高于新增发生器 (A) 的冷剂蒸汽压时, 可在新增发生器(A) 的浓溶液管路出口增 设新增溶液泵。
8. 回热式第一类吸收式热泵, 是在权利要求 2、 5所述的任一双效回热吸收-发生系统 中, 增加冷凝器、 蒸发器、 节流阀、 新增发生器、 新增溶液热交换器和新增节流阀, 将第一 溶液泵 (7 ) 有稀溶液管路经第一溶液热交换器(10) 与第一发生器 (1 ) 连通调整为第一溶 权 利 要 求 书 液泵 (7)有稀溶液管路经第一溶液热交换器 (10) 和新增溶液热交换器 (B) 与第一发生器 ( 1 ) 连通, 将第一发生器 (1 ) 有浓溶液管路经第一溶液热交换器(10) 与第二发生器 (2) 连通调整为第一发生器(1 )有浓溶液管路经新增溶液热交换器(B)与新增发生器(A)连通, 新增发生器(A) 再有浓溶液管路经第一溶液热交换器 (10) 与第二发生器 (2)连通, 将第 一发生器 (1 ) 有冷剂蒸汽通道与外部连通确定为第一发生器 (1 ) 有冷剂蒸汽通道与新增发 生器 (A) 连通后新增发生器 (A) 再有冷剂液管路经新增节流阀 (C) 与冷凝器 U6)连通, 新增发生器(A)还有冷剂蒸汽通道与冷凝器(16)连通, 冷凝器(16)还有冷剂液管路经节 流阀 (18) 与蒸发器(17 )连通, 将第三吸收器(5)有冷剂蒸汽通道与外部连通确定为蒸发 器(17)有冷剂蒸汽通道与第三吸收器(5)连通, 冷凝器(16)还有被加热介质管路与外部 连通, 蒸发器 (17 ) 还有余热介质管路与外部连通, 形成回热式第一类吸收式热泵; 其中, 第二发生器 (2 ) 的冷剂蒸汽压高于新增发生器(A) 的冷剂蒸汽压时, 可在新增发生器(A) 的浓溶液管路出口增设新增溶液泵。
9. 回热式第一类吸收式热泵, 是在权利要求 2、 5所述的任一双效回热吸收-发生系统 中, 增加冷凝器、 蒸发器、 节流阀、 新增发生器、 新增溶液热交换器、 新增节流阀和新增溶 液泵, 将第一溶液泵 (7) 有稀溶液管路经第一溶液热交换器 (10) 与第一发生器 (1 ) 连通 调整为第一溶液泵 (7)有稀溶液管路经第一溶液热交换器 (10 ) 与新增发生器 )连通, 新增发生器(A)再有浓溶液管路经新增溶液泵(D)和新增溶液热交换器(B)与第一发生器
( 1 )连通, 将第一发生器 (1 ) 有浓溶液管路经第一溶液热交换器 (10) 与第二发生器 (2) 连通调整为第一发生器( 1 )有浓溶液管路经新增溶液热交换器(B)和第一溶液热交换器( 10) 与第二发生器(2 )连通, 将第一发生器 (1 )有冷剂蒸汽通道与外部连通确定为第一发生器
( 1 )有冷剂蒸汽通道与新增发生器(A)连通后新增发生器 (A)再有冷剂液管路经新增节流 阀 (C) 与冷凝器 (16) 连通, 新增发生器(A) 还有冷剂蒸汽通道与冷凝器 (16) 连通, 冷 凝器(16)还有冷剂液管路经节流阀 (18)与蒸发器(17)连通, 将第三吸收器(5)有冷剂 蒸汽通道与外部连通确定为蒸发器(17)有冷剂蒸汽通道与第三吸收器(5)连通,冷凝器(16) 还有被加热介质管路与外部连通, 蒸发器(17 ) 还有余热介质管路与外部连通, 形成回热式 第一类吸收式热泵; 其中, 第二发生器 (2) 的冷剂蒸汽压高于新增发生器 (A) 的冷剂蒸汽 压时, 第一溶液泵 (7 ) 可省略。
10. 回热式第一类吸收式热泵,是在权利要求 1、 3- 4所述的任一双效回热吸收-发生系 统中, 增加冷凝器、 蒸发器、 节流阀、 新增发生器、 新增溶液热交换器和新增节流阀, 将第 一溶液泵(7)有稀溶液管路经第二溶液热交换器(11 )和第一溶液热交换器(10)与第一发 生器(1 )连通调整为第一溶液泵 (7) 有稀溶液管路经第二溶液热交换器 (11 ) 之后分别再 经第一溶液热交换器 (10) 与第一发生器 (1 ) 连通和再经新增溶液热交换器(B) 与新增发 生器(A)连通,新增发生器(A)还有浓溶液管路经新增溶液热交换器(B)与第二发生器(2) 连通, 将第一发生器 G )有冷剂蒸汽通道与外部连通确定为第一发生器 (1 )有冷剂蒸汽通 道与新增发生器(A)连通后新增发生器(Α)再有冷剂液管路经新增节流阀(C)与冷凝器(16) 连通, 新增发生器(Α) 还有冷剂蒸汽通道与冷凝器(16)连通, 冷凝器(16)还有冷剂液管 权 利 要 求 书 路经节流阀 (18) 与蒸发器(17)连通, 将第三吸收器(5)有冷剂蒸汽通道与外部连通确定 为蒸发器(17)有冷剂蒸汽通道与第三吸收器(5 )连通, 冷凝器(16)还有被加热介质管路 与外部连通, 蒸发器 (17 ) 还有余热介质管路与外部连通, 形成回热式第一类吸收式热泵; 其中, 第二发生器 (2) 的冷剂蒸汽压高于新增发生器 (A) 的冷剂蒸汽压时, 可在新增发生 器 (A) 的浓溶液管路出口增设新增溶液泵。
11. 回热式第一类吸收式热泵, 是在权利要求 1、 3- 4所述的任一双效回热吸收-发生系 统中, 增加冷凝器、 蒸发器、 节流阀、 新增发生器、 新增溶液热交换器和新增节流阀, 将第 一溶液泵(7)有稀溶液管路经第二溶液热交换器(11 )和第一溶液热交换器(10)与第一发 生器(1 )连通调整为第一溶液泵(7)有稀溶液管路经第二溶液热交换器(11 )、 第一溶液热 交换器(10)和新增溶液热交换器(B)与第一发生器(1 )连通, 将第一发生器(1 )有浓溶 液管路经第一溶液热交换器(10) 与第二发生器 (2) 连通调整为第一发生器(1 )有浓溶液 管路经新增溶液热交换器(B )与新增发生器(A)连通, 新增发生器(A)再有浓溶液管路经 第一溶液热交换器 (10) 与第二发生器 (2) 连通, 将第一发生器 (1 )有冷剂蒸汽通道与外 部连通确定为第一发生器(1 )有冷剂蒸汽通道与新增发生器(Α)连通后新增发生器(Α)再 有冷剂液管路经新增节流阀 (C) 与冷凝器 (16)连通, 新增发生器 (Α) 还有冷剂蒸汽通道 与冷凝器 (16)连通, 冷凝器 (16 ) 还有冷剂液管路经节流阀 (18) 与蒸发器 (17 )连通, 将第三吸收器(5)有冷剂蒸汽通道与外部连通确定为蒸发器(17)有冷剂蒸汽通道与第三吸 收器(5)连通, 冷凝器(16)还有被加热介质管路与外部连通, 蒸发器(17 )还有余热介质 管路与外部连通, 形成回热式第一类吸收式热泵; 其中, 第二发生器(2) 的冷剂蒸汽压高于 新增发生器(Α)的冷剂蒸汽压时, 可在新增发生器(Α)的浓溶液管路出口增设新增溶液泵。
12. 回热式第一类吸收式热泵, 是在权利要求 1、 3- 4所述的任一双效回热吸收-发生系 统中, 增加冷凝器、 蒸发器、 节流阀、 新增发生器、 新增溶液热交换器、 新增节流阀和新增 溶液泵,将第一溶液泵(7)有稀溶液管路经第二溶液热交换器(11 )和第一溶液热交换器(10) 与第一发生器 (1 )连通调整为第一溶液泵 (7)有稀溶液管路经第二溶液热交换器(11 ) 和 第一溶液热交换器 (10) 与新增发生器 (Α)连通, 新增发生器 ( 再有浓溶液管路经新增 溶液泵 (D) 和新增溶液热交换器 (Β) 与第一发生器(1 )连通, 将第一发生器 (1 )有浓溶 液管路经第一溶液热交换器 (10) 与第二发生器(2)连通调整为第一发生器(1 ) 有浓溶液 管路经新增溶液热交换器 (Β) 和第一溶液热交换器 (10) 与第二发生器 (2)连通, 将第一 发生器 (1 ) 有冷剂蒸汽通道与外部连通确定为第一发生器 (1 ) 有冷剂蒸汽通道与新增发生 器(Α)连通后新增发生器(Α)再有冷剂液管路经新增节流阀 (C) 与冷凝器(16)连通, 新 增发生器(Α)还有冷剂蒸汽通道与冷凝器(16 )连通, 冷凝器(16)还有冷剂液管路经节流 阀 (18)与蒸发器(17)连通, 将第三吸收器(5)有冷剂蒸汽通道与外部连通确定为蒸发器
( 17)有冷剂蒸汽通道与第三吸收器(5)连通, 冷凝器(16)还有被加热介质管路与外部连 通, 蒸发器(17) 还有余热介质管路与外部连通, 形成回热式第一类吸收式热泵; 其中, 第 二发生器(2)的冷剂蒸汽压高于新增发生器 )的冷剂蒸汽压时, 第一溶液泵(7 )可省略。
13. 回热式第一类吸收式热泵,是在权利要求 7-12所述的任一双效 0热吸收-发生系统 权 利 要 求 书 中, 取消第二发生器(2)与外部连通的驱动热介质管路, 增加新增第二节流阀, 第一发生器 ( 1 )增设冷剂蒸汽通道与第二发生器(2 )连通后第二发生器(2)再有冷剂液管路经新增第 二节流阀 (E) 与冷凝器(16) 连通, 形成回热式第一类吸收式热泵。
14. 回热式第一类吸收式热泵, 是在权利要求 7、 10所述的任一双效回热吸收-发生系 统中, 增加新增第二发生器, 将第一发生器(1 )有浓溶液管路经第一溶液热交换器(10)与 第二发生器(2)连通调整为第一发生器(1 )有浓溶液管路与新增第二发生器(H)连通, 新 增第二发生器 〔H) 再有浓溶液管路经第一溶液热交换器 (10) 与第二发生器 (2) 连通; 取 消第二发生器(2 )与外部连通的驱动热介质管路,增加新增第二节流阀,新增第二发生器(H) 有冷剂蒸汽通道与第二发生器 (2) 连通后第二发生器 (2) 再有冷剂液管路经新增第二节流 阀 (E)与冷凝器 (16)连通, 新增第二发生器 (H) 还有驱动热介质管路与外部连通, 形成 回热式第一类吸收式热泵。
15. 回热式第一类吸收式热泵, 是在权利要求 8、 11所述的任一双效回热吸收-发生系 统中, 增加新增第二发生器, 将第一发生器 (1 ) 有浓溶液管路经新增溶液热交换器(B) 与 新增发生器(A)连通调整为第一发生器(1 )有浓溶液管路与新增第二发生器(H)连通, 新 增第二发生器(H)再有浓溶液管路经新增溶液热交换器(B)与新增发生器(A)连通; 取消 第二发生器(2)与外部连通的驱动热介质管路, 增加新增第二节流阀, 新增第二发生器(H) 有冷剂蒸汽通道与第二发生器 (2) 连通后第二发生器 (2) 再有冷剂液管路经新增第二节流 阀 (E)与冷凝器 (16)连通, 新增第二发生器 (H) 还有驱动热介质管路与外部连通, 形成 回热式第一类吸收式热泵。
16. 回热式第一类吸收式热泵, 是在权利要求 9、 12所述的任一双效回热吸收-发生系 统中, 增加新增第二发生器, 将第一发生器 (1 ) 有浓溶液管路经新增溶液热交换器(B)和 第一溶液热交换器 (10) 与第二发生器 (2) 连通调整为第一发生器 (1 ) 有浓溶液管路与新 增第二发生器(H)连通, 新增第二发生器(H) 再有浓溶液管路经新增溶液热交换器(B)和 第一溶液热交换器 (10) 与第二发生器 (2) 连通; 取消第二发生器 (2) 与外部连通的驱动 热介质管路, 增加新增第二节流阀, 新增第二发生器(H)有冷剂蒸汽通道与第二发生器(2) 连通后第二发生器 (2 ) 再有冷剂液管路经新增第二节流阀 (E) 与冷凝器 (16) 连通, 新增 第二发生器 (H) 还有驱动热介质管路与外部连通, 形成回热式第一类吸收式热泵。
17. 回热式第一类吸收式热泵,是在权利要求 6所述的任一双效回热吸收-发生系统中, 增加新增发生器、 新增吸收器、 新增溶液热交换器和新增溶液泵, 将第一发生器(1 )有冷剂 蒸汽通道与冷凝器 (16)连通调整为第一发生器(1 )有冷剂蒸汽通道与新增吸收器(F)连 通, 新增吸收器(F)还有稀溶液管路经新增溶液泵(D)和新增溶液热交换器(B)与新增发 生器(A)连通,新增发生器(A)还有浓溶液管路经新增溶液热交换器(B)与新增吸收器(F) 连通, 新增发生器 (A) 还有冷剂蒸汽通道与冷凝器 (16) 连通, 新增发生器(A) 还有驱动 热介质管路与外部连通, 新增吸收器(F)还有被加热介质管路与外部连通, 形成回热式第一 类吸收式热泵。
18. 回热式第一类吸收式热泵,是在权利要求 6所述的任一双效回热吸收-发生系统中,
PCT/CN2012/001101 2012-03-23 2012-08-17 双效回热吸收-发生系统与回热式第一类吸收式热泵 WO2013138963A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210094127.5 2012-03-23
CN201210094127 2012-03-23

Publications (1)

Publication Number Publication Date
WO2013138963A1 true WO2013138963A1 (zh) 2013-09-26

Family

ID=46898987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/001101 WO2013138963A1 (zh) 2012-03-23 2012-08-17 双效回热吸收-发生系统与回热式第一类吸收式热泵

Country Status (2)

Country Link
CN (1) CN102706026B (zh)
WO (1) WO2013138963A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2803923A3 (de) * 2013-05-15 2015-04-01 Ago Ag Energie + Anlagen Absorptionsprozess und -maschine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706026B (zh) * 2012-03-23 2014-12-03 李华玉 双效回热吸收-发生系统与回热式第一类吸收式热泵
CN103940142B (zh) * 2013-04-03 2016-08-17 李华玉 分路循环第一类吸收式热泵
CN103471282B (zh) * 2013-04-03 2015-11-25 李华玉 分路循环第一类吸收式热泵

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004257705A (ja) * 2003-02-27 2004-09-16 Sanyo Electric Co Ltd 吸収ヒートポンプ利用濃縮装置
CN101078576A (zh) * 2007-06-15 2007-11-28 李华玉 两端与多端供热的第二类吸收式热泵
CN101504216A (zh) * 2009-02-28 2009-08-12 李华玉 复合吸收-发生体系与高效吸收式机组
CN101979936A (zh) * 2010-04-29 2011-02-23 李华玉 回热式吸收-发生系统与回热式第一类吸收式热泵
CN102706026A (zh) * 2012-03-23 2012-10-03 李华玉 双效回热吸收-发生系统与回热式第一类吸收式热泵

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5572884A (en) * 1994-11-04 1996-11-12 The Ohio State University Research Foundation Heat pump
DE19538348C2 (de) * 1995-10-14 1997-11-06 Absotech Energiesparsysteme Gm Sorptionswärmewandleranlage mit Zusatzkomponenten zur Steigerung der Nutzleistung bzw. Erweiterung der Grenzen für die Antriebs-, Nutz- oder Kühltemperaturen
CN100449229C (zh) * 2002-09-26 2009-01-07 株式会社荏原制作所 吸收式冷冻机
JP4242866B2 (ja) * 2002-09-27 2009-03-25 株式会社荏原製作所 吸収冷凍機
CN101458006B (zh) * 2009-01-01 2011-11-16 李华玉 提高热泵供热温度的方法与高温型第一类吸收式热泵
CN101696832A (zh) * 2009-09-28 2010-04-21 李华玉 回热式双效第一类吸收式热泵
CN101694332A (zh) * 2009-09-28 2010-04-14 李华玉 回热式三效第一类吸收式热泵
CN202066245U (zh) * 2011-03-31 2011-12-07 浙江大学 一种无机械功驱动的吸收式热变换器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004257705A (ja) * 2003-02-27 2004-09-16 Sanyo Electric Co Ltd 吸収ヒートポンプ利用濃縮装置
CN101078576A (zh) * 2007-06-15 2007-11-28 李华玉 两端与多端供热的第二类吸收式热泵
CN101504216A (zh) * 2009-02-28 2009-08-12 李华玉 复合吸收-发生体系与高效吸收式机组
CN101979936A (zh) * 2010-04-29 2011-02-23 李华玉 回热式吸收-发生系统与回热式第一类吸收式热泵
CN102706026A (zh) * 2012-03-23 2012-10-03 李华玉 双效回热吸收-发生系统与回热式第一类吸收式热泵

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2803923A3 (de) * 2013-05-15 2015-04-01 Ago Ag Energie + Anlagen Absorptionsprozess und -maschine

Also Published As

Publication number Publication date
CN102706026B (zh) 2014-12-03
CN102706026A (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
WO2011091567A1 (zh) 吸收-发生系统和吸收式热泵
WO2014127681A1 (zh) 复合发生第一类吸收式热泵
WO2013159261A1 (zh) 多端供热第一类吸收式热泵
WO2012019329A1 (zh) 吸收-再吸收-发生系统与第一类吸收式热泵
WO2011134129A1 (zh) 回热式吸收-发生系统与回热式第一类吸收式热泵
WO2015143925A1 (zh) 第五类吸收式热泵
WO2012129743A1 (zh) 第三类发生-吸收系统与回热式第三类吸收式热泵
WO2012145869A1 (zh) 三发生-三吸收系统与第三类吸收式热泵
WO2015143927A1 (zh) 第五类吸收式热泵
WO2013138963A1 (zh) 双效回热吸收-发生系统与回热式第一类吸收式热泵
WO2015149564A1 (zh) 第四类吸收式热泵与第五类吸收式热泵
WO2012159228A1 (zh) 第三类吸收-发生系统与第三类吸收式热泵
CN108518888A (zh) 可变效的溶液并联型溴化锂吸收式制冷热泵机组
WO2014180163A1 (zh) 分路循环第一类吸收式热泵
WO2015143924A1 (zh) 第四类吸收式热泵与第五类吸收式热泵
WO2014161368A1 (zh) 分路循环第一类吸收式热泵
WO2013170406A1 (zh) 分级冷凝第三类吸收式热泵
WO2012122683A1 (zh) 第三类发生-吸收系统与第三类吸收式热泵
WO2013149366A1 (zh) 双效回热吸收-发生系统与回热式第三类吸收式热泵
WO2013152464A1 (zh) 双效回热吸收-发生系统与回热式第三类吸收式热泵
WO2013163784A1 (zh) 分段回热第三类吸收式热泵
WO2013075260A1 (zh) 分级冷凝第二类吸收式热泵
WO2014161367A1 (zh) 分路循环第一类吸收式热泵
WO2013143042A1 (zh) 双效回热吸收-发生系统与回热式第二类吸收式热泵
WO2014134749A1 (zh) 复合发生第一类吸收式热泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12871663

Country of ref document: EP

Kind code of ref document: A1