WO2014127681A1 - 复合发生第一类吸收式热泵 - Google Patents

复合发生第一类吸收式热泵 Download PDF

Info

Publication number
WO2014127681A1
WO2014127681A1 PCT/CN2014/000161 CN2014000161W WO2014127681A1 WO 2014127681 A1 WO2014127681 A1 WO 2014127681A1 CN 2014000161 W CN2014000161 W CN 2014000161W WO 2014127681 A1 WO2014127681 A1 WO 2014127681A1
Authority
WO
WIPO (PCT)
Prior art keywords
new
generator
solution
condenser
absorber
Prior art date
Application number
PCT/CN2014/000161
Other languages
English (en)
French (fr)
Inventor
李华玉
Original Assignee
Li Huayu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Li Huayu filed Critical Li Huayu
Publication of WO2014127681A1 publication Critical patent/WO2014127681A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/008Sorption machines, plants or systems, operating continuously, e.g. absorption type with multi-stage operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • the invention belongs to the field of low temperature waste heat utilization and heat pump/refrigeration technology.
  • the first type of absorption heat pump uses a temperature difference between a heat medium and a heated medium as a driving force, and when the driving temperature difference is large, a double-effect or multi-effect process should be used to achieve full utilization of driving heat;
  • the waste of temperature difference in the heat transfer section will bring about a reduction in the utilization rate of heat energy. Only by making full use of the temperature difference can a reasonable thermodynamic perfection be guaranteed.
  • the temperature difference between the heat-releasing portion of the heat medium and the low-temperature heat-dissipating portion and the heated medium is different. Moreover, the temperature difference between the high temperature section driving the heat medium and the low temperature section of the heated medium is greater.
  • the solution generation process is completed in a single-effect process, the temperature difference is insufficiently utilized, and the performance index of the cycle is not ideal; if the solution process is completed by the classical double-effect process, it is required to drive between the heat medium and the heated medium. Sufficient temperature difference, this requires a new cycle process to make up.
  • the first type of absorption heat pump cycle process has to fulfill more requirements, including: smooth changes in thermodynamic parameters, adjustable heating parameters, and better adaptability Conditional change, with the best performance index; can achieve deep utilization of high temperature thermal resources, or use different grades of driving heat to achieve comprehensive utilization of different grades of thermal energy.
  • the invention provides a series of composite first-generation absorption heat pumps which are formed by a classic single-effect process and a generation-absorption type double-effect process to increase the utilization value of the heat load and the utilization rate of heat energy.
  • the main purpose of the present invention is to provide a first-generation absorption heat pump that is compounded, and the specific contents of the invention are as follows -
  • the first type of absorption heat pump is compounded, mainly consisting of a generator, a second generator, an absorber, a second absorber, a condenser, a second condenser, an evaporator, a solution pump, a second solution pump, and a solution section.
  • the second absorber has a dilute solution line through the second solution pump and the solution heat exchanger
  • the absorber and the dilute solution line are connected to the second generator via the solution throttle valve
  • the second generator and the concentrated solution line are connected to the generator via the solution pump
  • the generator also has a concentrated solution tube.
  • the second solution throttle valve and the absorber are connected to the steam distribution chamber, and the steam distribution chamber and the concentrated solution pipeline are connected to the second absorber through the solution heat exchanger, and the generator and the refrigerant vapor passage are connected to the absorber.
  • the steam distribution chamber has a refrigerant vapor passage communicating with the condenser, the second generator and the refrigerant vapor passage are in communication with the second condenser, and the condenser and the refrigerant liquid pipeline are connected to the evaporator via the throttle valve.
  • the second condenser also has a refrigerant liquid pipe
  • the second throttle valve is in communication with the evaporator, the evaporator and the refrigerant vapor passage are in communication with the second absorber, and the generator and the second generator respectively have a driving heat medium pipeline connected to the outside, the second absorber,
  • the condenser and the second condenser are respectively connected to the outside by the heated medium pipeline, and the evaporator and the residual heat medium pipeline communicate with the outside to form a composite type first absorption heat pump.
  • the first type of absorption heat pump is compounded, mainly by generator, second generator, absorber, second absorber, condenser, second condenser, evaporator, solution pump, second solution pump, solution section a flow valve, a throttle valve, a second throttle valve, a solution heat exchanger, a second solution heat exchanger, and a steam separation chamber;
  • the second absorber has a dilute solution line through the second solution pump and the solution heat exchanger Communicating with the absorber, the absorber and the dilute solution line are connected to the second generator via the solution throttle valve
  • the second generator further has a concentrated solution pipeline connected to the generator via the solution pump and the second solution heat exchanger, and the generator and the concentrated solution pipeline are connected to the steam distribution chamber via the second solution heat exchanger and the absorber, and the steam separation
  • the chamber also has a concentrated solution line connected to the second absorber via the solution heat exchanger, the generator also has a refrigerant vapor channel communicating with the absorber, and the steam dividing chamber and the refrig
  • the first type of absorption heat pump is compounded.
  • the second condenser and the second throttle valve are eliminated, and the second generator has refrigerant vapor.
  • the passage is connected to the second condenser to adjust to a second generator having a refrigerant vapor passage and a condenser to form a composite type first absorption heat pump.
  • the first type of absorption heat pump is compounded.
  • the second condenser and the second throttle valve are eliminated, and the second generator has refrigerant vapor.
  • the passage is connected to the second condenser to adjust to a second generator having a refrigerant vapor passage and a condenser to form a composite type first absorption heat pump.
  • the first type of absorption heat pump is compounded.
  • the second throttle valve, the third generator and the second solution heat exchanger are added.
  • the solution pump adds a dilute solution pipeline to communicate with the third generator via the second solution heat exchanger, and the third generator and the concentrated solution pipeline communicate with the second absorber via the second solution heat exchanger, and the second generator
  • the steam distribution chamber has a refrigerant vapor passage connected to the condenser to adjust the second generator and the steam distribution chamber, and the refrigerant vapor passage is connected with the third generator, and the third generator has a refrigerant liquid pipeline through the second section.
  • the flow valve is in communication with the condenser, and the third generator has a refrigerant vapor passage communicating with the condenser to form a first type of absorption heat pump.
  • the first type of absorption heat pump is compounded.
  • the second throttle valve, the third generator and the second solution heat exchanger are added.
  • the two solution pump has a dilute solution pipeline connected to the absorber through the solution heat exchanger and is adjusted to be a second solution pump.
  • the dilute solution pipeline is connected to the absorber through the second solution heat exchanger and the solution heat exchanger, and the steam distribution chamber has The concentrated solution pipeline is connected to the second absorber through the solution heat exchanger and is adjusted to be a concentrated solution pipeline.
  • the concentrated solution pipeline is connected to the third generator through the solution heat exchanger, and the third generator has a concentrated solution pipeline through the second
  • the solution heat exchanger is in communication with the second absorber, and the second generator and the steam distribution chamber have a refrigerant vapor passage connected to the condenser, and the second generator and the steam distribution chamber have a refrigerant vapor passage connected to the third generator.
  • the third generator further has a refrigerant liquid pipeline connected to the condenser via the second throttle valve, and the third generator has a refrigerant vapor passage communicating with the condenser to form a first type of absorption heat pump.
  • the first type of absorption heat pump is compounded, which is the first type of absorption heat pump according to item 3, adding the second section of the flow, the third generator, the second solution heat exchanger and the third a solution pump, the second solution pump has a dilute solution pipeline connected to the absorber through the solution heat exchanger to adjust to a second solution pump, the dilute solution pipeline is connected to the third generator via the second solution heat exchanger, and the third occurs
  • the concentrated solution pipeline is connected to the absorber through the third solution pump and the solution heat exchanger, and the concentrated solution pipeline in the steam distribution chamber is connected to the second absorber through the solution heat exchanger to adjust to a concentrated solution in the steam distribution chamber.
  • the pipeline communicates with the second absorber through the solution heat exchanger and the second solution heat exchanger, and the second generator and the steam distribution chamber have a refrigerant vapor passage and a cold
  • the condenser is adjusted to be connected to the second generator and the steam distribution chamber, and the refrigerant vapor passage is connected with the third generator, and then the third generator is further connected with the refrigerant through the second throttle valve, and the third occurs.
  • the refrigerant vapor passage is connected to the condenser to form a first type of absorption heat pump.
  • the first type of absorption heat pump is compounded.
  • the second throttle valve, the third generator and the third solution heat exchanger are added.
  • the solution pump adds a dilute solution pipeline to communicate with the third generator via the third solution heat exchanger, and the third generator and the concentrated solution pipeline communicate with the second absorber via the third solution heat exchanger, and the second generator
  • the steam distribution chamber has a refrigerant vapor passage connected to the condenser to adjust the second generator and the steam distribution chamber, and the refrigerant vapor passage is connected with the third generator, and the third generator has a refrigerant liquid pipeline through the second section.
  • the flow valve is in communication with the condenser, and the third generator has a refrigerant vapor passage communicating with the condenser to form a first type of absorption heat pump.
  • the first type of absorption heat pump is compounded.
  • the second throttle valve, the third generator and the third solution heat exchanger are added.
  • the two solution pump has a dilute solution pipeline connected to the absorber through the solution heat exchanger and is adjusted to be a second solution pump.
  • the dilute solution pipeline is connected to the absorber through the third solution heat exchanger and the solution heat exchanger, and the steam separation chamber has The concentrated solution pipeline is connected to the second absorber through the solution heat exchanger and is adjusted to be a concentrated solution pipeline.
  • the concentrated solution pipeline communicates with the third generator through the solution heat exchanger, and the third generator has a concentrated solution pipeline through the third
  • the solution heat exchanger is in communication with the second absorber, and the second generator and the steam distribution chamber have a refrigerant vapor passage connected to the condenser, and the second generator and the steam distribution chamber have a refrigerant vapor passage connected to the third generator.
  • the third generator further has a refrigerant liquid pipeline connected to the condenser via the second throttle valve, and the third generator has a refrigerant vapor passage communicating with the condenser to form a first type of absorption heat pump.
  • the first type of absorption heat pump is compounded.
  • the second throttle valve, the third generator, the third solution heat exchanger and the third are added.
  • a solution pump the second solution pump has a dilute solution pipeline connected to the absorber through the solution heat exchanger to adjust to a second solution pump
  • the dilute solution pipeline is connected to the third generator via the third solution heat exchanger
  • the third occurs
  • the concentrated solution pipeline is connected to the absorber through the third solution pump and the solution heat exchanger
  • the concentrated solution pipeline in the steam distribution chamber is connected to the second absorber through the solution heat exchanger to adjust to a concentrated solution in the steam distribution chamber.
  • the pipeline communicates with the second absorber through the solution heat exchanger and the third solution heat exchanger, and the refrigerant flow channel of the second generator and the steam distribution chamber is connected to the condenser to be adjusted to be the second generator and the steam distribution chamber.
  • the third generator further has a refrigerant liquid pipeline connected to the condenser via the second throttle valve, and the third generator has a refrigerant vapor passage communicating with the condenser to form a composite
  • the first type of absorption heat pump occurs.
  • the first type of absorption heat pump is compounded.
  • the third generator, the third absorber, the third solution pump and the second solution heat exchange are added.
  • a second solution pump having a dilute solution line connected to the absorber through the solution heat exchanger to adjust to a second solution pump having a dilute solution line communicating with the third absorber via the second solution heat exchanger, the third absorber.
  • the dilute solution pipeline is connected to the absorber through the third solution pump and the solution heat exchanger
  • the concentrated solution pipeline in the steam distribution chamber is connected to the second absorber through the solution heat exchanger to be adjusted into a concentrated solution tube in the steam distribution chamber.
  • the passage solution heat exchanger is in communication with the third generator, and the third generator further has a concentrated solution line connected to the second absorber via the second solution heat exchanger, and the third generator further has a refrigerant vapor passage and a third
  • the absorber is connected, the third generator also drives the heat medium pipeline to communicate with the outside, and the third absorber and the heated medium pipeline communicate with the outside to form a first type of absorption heat pump.
  • the first type of absorption heat pump is compounded.
  • the third generator, the third absorber, the third solution pump and the third solution heat exchange are added. Pumping the second solution to a dilute solution tube
  • the passage solution heat exchanger is connected to the absorber to be adjusted to be a second solution pump having a dilute solution line connected to the third absorber via the third solution heat exchanger, and the third absorber is further provided with a dilute solution line through the third solution pump
  • the solution heat exchanger is connected with the absorber, and the concentrated solution pipeline in the steam distribution chamber is connected to the second absorber through the solution heat exchanger to be adjusted into a steam distribution chamber having a concentrated solution pipeline through the solution heat exchanger and the third generator
  • the third generator further has a concentrated solution line connected to the second absorber via the third solution heat exchanger
  • the third generator further has a refrigerant vapor passage communicating with the third absorber
  • the third generator also has a drive
  • the heat medium pipeline communicates with the outside, and the
  • the first type of absorption heat pump is compounded. It is added to the first type of absorption heat pump in any of the composites mentioned in items 1-2 and 11-12. Adding new generators, adding new absorbers, adding a solution pump and a new solution heat exchanger, the second generator has a refrigerant vapor channel connected to the second condenser, and the second generator has a refrigerant vapor channel connected to the newly added absorber, and the new absorber has The dilute solution pipeline is connected to the newly added generator through the new solution pump and the new solution heat exchanger, and the newly added generator and the concentrated solution pipeline are connected to the newly added absorber through the newly added solution heat exchanger, and newly added occurs. The refrigerant vapor passage is connected to the second condenser, and the newly added generator also drives the heat medium pipeline to communicate with the outside. The newly added absorber and the heated medium pipeline communicate with the outside to form a composite type. Absorption heat pump.
  • the first type of absorption heat pump is compounded, which is added to the first type of absorption heat pump according to any of the items 1-2, 11-12, adding new generators, adding absorbers, adding Solution pump, new solution heat exchanger, new condenser and new throttle valve, second generator added refrigerant vapor channel to connect with new absorber, new absorber and dilute solution pipeline added
  • the solution pump and the new solution heat exchanger are connected to the newly added generator, and the new generator and the concentrated solution pipeline are connected to the newly added absorber through the new solution heat exchanger, and the new generator and the refrigerant vapor passage are added.
  • the new condenser and the refrigerant liquid pipeline are connected to the second condenser or the evaporator via the new throttle valve, and the new generator and the driving heat medium pipeline are connected to the outside.
  • the absorber and the newly added condenser are respectively connected to the outside by the medium to be heated, and a first type of absorption heat pump is formed to form a composite.
  • the first type of absorption heat pump is compounded, which is added to the first type of absorption heat pump according to any of the items 1-2, 11-12, adding new generators, adding absorbers, adding
  • the solution pump and the newly added solution heat exchanger connect the refrigerant vapor passage of the steam distribution chamber to the condenser to adjust the refrigerant chamber to have a refrigerant vapor passage and communicate with the newly added absorber, and the new absorber and the dilute solution pipeline
  • the new solution pump and the new solution heat exchanger are connected to the newly added generator, and the new generator and the concentrated solution pipeline are connected to the newly added absorber through the new solution heat exchanger, and the new generator is also cooled.
  • the agent steam passage is connected to the condenser, and the newly added generator also drives the heat medium pipeline to communicate with the outside, and the newly added absorber and the heated medium pipeline communicate with the outside to form a first type of absorption heat pump.
  • the first type of absorption heat pump is compounded, which is added to the first type of absorption heat pump according to any of the items 1-2, 11-12, adding new generators, adding absorbers, adding Solution pump, new solution heat exchanger, new condenser and new throttle valve, adding steam vapor channel to the steam distribution chamber and connecting with new absorber, adding absorber and dilute solution pipeline through new solution
  • the pump and the new solution heat exchanger are connected to the newly added generator, and the new generator and the concentrated solution pipeline are connected to the newly added absorber through the new solution heat exchanger, and the new generator has a refrigerant vapor passage and New condenser connection, new condenser and refrigerant liquid pipeline connected to condenser or evaporator via new throttle valve, new generator and drive heat medium pipeline to communicate with external, new absorber
  • the newly added condenser also has a medium to be heated and communicated with the outside to form a first type of absorption heat pump.
  • the first type of absorption heat pump is compounded.
  • the second condenser and the second throttle valve are eliminated, and a new generator is added.
  • the generator has a refrigerant vapor passage connected to the second condenser, and the second generator has a refrigerant vapor passage connected with the newly added absorber, and the newly added absorber and the dilute solution pipeline are added with the new solution pump and the newly added solution.
  • the heat exchanger is connected to the newly added generator, and the new generator and the concentrated solution pipeline are connected to the newly added absorber through the new solution heat exchanger, and the new generator and the refrigerant vapor passage are connected to the condenser.
  • the generator also drives the heat medium pipeline to communicate with the outside, and the newly added absorber and the medium to be heated are connected to the outside to form a first type of absorption heat pump.
  • the first type of absorption heat pump is compounded.
  • adding new generator, adding new absorber, adding new solution pump, adding Solution heat exchanger, new condenser and new throttle valve, second generator and steam compartment add refrigerant vapor channel to connect with new absorber, add absorber and dilute solution pipeline through new solution
  • the pump and the new solution heat exchanger are connected to the newly added generator, and the new generator and the concentrated solution pipeline are connected to the newly added absorber through the new solution heat exchanger, and the new generator has a refrigerant vapor passage and New condenser connection, new condenser and refrigerant liquid pipeline connected to the evaporator through the new throttle valve, new generator and drive heat medium pipeline to communicate with the outside, new absorber and new
  • the condenser also has a medium to be heated and communicated with the outside to form a first type of absorption heat pump.
  • the first type of absorption heat pump is compounded, which is the first type of absorption heat pump according to any of the items mentioned in items 1-4. Adding new generators, adding new absorbers, adding new solution pumps and new ones.
  • the solution heat exchanger has a refrigerant vapor passage connected to the second absorber to adjust the evaporator to have a refrigerant vapor passage and communicate with the newly added absorber, and the new absorber and the dilute solution pipeline are added with the new solution.
  • the pump and the new solution heat exchanger are connected to the newly added generator, and the new generator and the concentrated solution pipeline are connected to the newly added absorber through the new solution heat exchanger, and the new generator has a refrigerant vapor passage and
  • the second absorber is connected, the new generator also drives the heat medium pipeline to communicate with the outside, and the newly added absorber and the heated medium pipeline communicate with the outside to form a first type of absorption heat pump.
  • the first type of absorption heat pump is compounded, which is the first type of absorption heat pump in any of the composites mentioned in items 1-4.
  • Adding new generators, adding new absorbers, adding new solution pumps, new The solution heat exchanger, the newly added condenser and the newly added throttle valve connect the refrigerant vapor channel to the second absorber to adjust the evaporator to have a refrigerant vapor channel and communicate with the newly added absorber, and newly absorb
  • the dilute solution pipeline is connected to the newly added generator through the new solution pump and the new solution heat exchanger, and the new generator and the concentrated solution pipeline are connected to the newly added absorber through the new solution heat exchanger.
  • the newly added generator and the refrigerant vapor passage are respectively connected with the second absorber and the newly added condenser, and the newly added condenser and the refrigerant liquid pipeline are connected with the evaporator through the newly added throttle valve, and the new generator is also added.
  • the driving heat medium pipeline is connected to the outside, and the newly added absorber and the newly added condenser are respectively connected with the externally heated medium pipeline to form a first type of absorption heat pump.
  • the first type of absorption heat pump is compounded.
  • a new absorber, a new solution pump, and a new solution heat exchanger are added.
  • the dilute solution pipeline is connected to the condenser via the new solution pump and the new solution heat exchanger, the condenser also has a concentrated solution pipeline connected to the second condenser, and the second condenser has a concentrated solution pipeline through the second
  • the absorber is connected to the new steam compartment
  • the new steam distribution chamber and the concentrated solution pipeline are connected to the newly added absorber through the new solution heat exchanger;
  • the refrigerant vapor passage in the steam distribution chamber is connected to the condenser and the condenser has a refrigerant liquid pipeline.
  • the throttle valve is connected to the evaporator to adjust to the steam separation chamber, and the refrigerant vapor passage is connected with the condenser, and then the condenser and the refrigerant liquid pipeline are connected to the evaporator through the throttle valve - the condenser is used as the generator after the steam separation chamber
  • the second generator has a refrigerant vapor passage communicating with the second condenser
  • the second condenser has a refrigerant liquid pipeline connected to the evaporator through the second throttle valve to be adjusted to a second occurrence
  • the second condenser and the refrigerant liquid pipeline are connected to the evaporator via the second throttle valve - the second condenser is used as the generator after the second generator
  • the second condenser provides driving heat medium; the condenser, the second condenser and the newly added steam dividing chamber respectively have a refriger
  • the valve is connected to the new evaporator, and the evaporator is added with refrigerant.
  • the first type of absorption heat pump is compounded.
  • the heat transfer medium of the evaporator is connected to the outside to be changed to the evaporator and the medium to be heated.
  • the pipeline is connected to the outside to form a composite type of absorption heat pump.
  • the first type of absorption heat pump is compounded.
  • the throttle block and the second throttle valve are eliminated, and the new refrigerant liquid pump is added.
  • a second refrigerant liquid pump is added, and the residual heat medium pipeline of the evaporator is connected to the outside to be changed to an evaporator.
  • the heat medium pipeline is driven to communicate with the outside, and the refrigerant vapor passage of the steam distribution chamber is connected to the condenser.
  • the refrigerant liquid pipeline is connected to the evaporator through the throttle valve to adjust to the steam distribution chamber, and the refrigerant vapor passage is connected with the condenser, and then the refrigerant liquid pipeline is connected to the evaporator through the refrigerant liquid pump.
  • the second generator has a refrigerant vapor passage connected to the second condenser, and the second condenser further has a refrigerant liquid pipeline connected to the evaporator via the second throttle valve to adjust the second generator to have a refrigerant vapor passage and a second After the second condenser is connected, the second condenser and the refrigerant liquid pipeline are connected to the evaporator through the second refrigerant liquid pump to form a composite first type absorption heat pump.
  • the first type of absorption heat pump is compounded, which is added to the first type of absorption heat pump according to any of the items 3-4, adding a new absorber, a new solution pump, and a new solution heat exchanger. , adding a new condenser, adding a new throttle, adding a new evaporator and adding a steam separation chamber, canceling the heated medium line that the condenser and the second absorber are respectively connected to the outside, and adding a new thinner tube to the absorber
  • the new solution pump and the new solution heat exchanger are connected to the condenser, and the condenser and the concentrated solution pipeline are connected to the newly added steam separation chamber through the second absorber, and the new steam distribution chamber has a concentrated solution pipeline.
  • the new solution heat exchanger is connected with the newly added absorber; the steam distribution chamber and the second generator have a refrigerant vapor passage communicating with the condenser, and the condenser has a refrigerant liquid pipeline connected to the evaporator through the throttle valve After the refrigerant compartment and the second generator have a refrigerant vapor passage communicating with the condenser, the condenser and the refrigerant liquid pipeline are connected to the evaporator through the throttle valve - the condenser is used as a generator after the steam compartment and the second The generator collectively supplies the driving heat medium to the condenser; condensation And the newly added steam separation chamber has a refrigerant vapor passage to communicate with the newly added condenser, and the new condenser and the refrigerant liquid pipeline are connected with the newly added evaporator through the newly added throttle valve, and the new evaporator is also cooled.
  • the steam passage of the agent is connected with the newly added absorber, and the newly added condenser and the medium to be heated are connected to the outside, and the newly added evaporator and the waste heat medium pipeline communicate with the outside to form a first type of absorption heat pump.
  • the first type of absorption heat pump is compounded.
  • the external heat medium of the evaporator is connected to the outside to be changed to the evaporator and the heat medium is driven.
  • the pipeline is connected to the outside to form The first type of absorption heat pump occurs in combination.
  • the first type of absorption heat pump is compounded.
  • the throttle valve is cancelled, the new refrigerant liquid pump is added, and the evaporator has residual heat medium.
  • the communication between the pipeline and the outside is changed to the evaporator having the driving heat medium pipeline communicating with the outside, the refrigerant compartment and the second generator having the refrigerant vapor passage communicating with the condenser, and then the condenser and the refrigerant liquid pipeline are throttled.
  • the valve is connected to the evaporator to be adjusted to be a steam separation chamber and the second generator has a refrigerant vapor passage communicating with the condenser, and then the condenser has a refrigerant liquid pipeline connected to the evaporator through the newly added refrigerant liquid pump to form a composite occurrence A type of absorption heat pump.
  • the first type of absorption heat pump is compounded, which is added to the first type of absorption heat pump according to any of the items 5-10, adding a new absorber, a new solution pump, and a new solution heat exchanger. , adding a new condenser, adding a new throttle, adding a new evaporator and adding a steam separation chamber, canceling the heated medium pipeline that the condenser and the second absorber are respectively connected to the outside, and adding a weak solution tube to the absorber
  • the new solution pump and the new solution heat exchanger are connected to the condenser, and the condenser and the concentrated solution pipeline are connected to the newly added steam separation chamber through the second absorber, and the new steam distribution chamber has a concentrated solution pipeline.
  • the new solution heat exchanger is connected to the newly added absorber; the steam distribution chamber and the second generator have a refrigerant vapor passage connected with the third generator, and the third generator has a refrigerant liquid pipeline through the second section
  • the flow valve is connected to the condenser and is adjusted to be the steam separation chamber and the second generator.
  • the refrigerant vapor passage is connected with the third generator, and the third generator and the refrigerant liquid pipeline are connected to the evaporator via the second throttle valve.
  • the third generator has a refrigerant vapor passage communicating with the condenser and a condenser
  • the refrigerant liquid pipeline is connected to the evaporator through the throttling and is connected to the third generator.
  • the refrigerant vapor passage is connected with the condenser, and the condenser is further connected with the evaporator through the throttle valve through the throttle valve.
  • the third generator supplies the driving heat medium to the condenser; the condenser and the newly added steam dividing chamber respectively have a refrigerant vapor passage communicating with the newly added condenser, and the new condenser and the refrigerant liquid pipeline are newly
  • the throttle valve is connected with the newly added evaporator, the new evaporator and the refrigerant vapor channel are connected with the newly added absorber, and the newly added condenser and the heated medium pipeline are connected to the outside, and the new evaporator and the residual heat are added.
  • the medium pipe is connected to the outside to form a first type of absorption heat pump.
  • the first type of absorption heat pump is compounded.
  • the external heat medium of the evaporator is connected to the outside to be changed to the evaporator and the heat medium is driven.
  • the pipeline is connected to the outside to form a composite type of absorption heat pump.
  • the first type of absorption heat pump is compounded.
  • the throttle valve is cancelled, the new refrigerant liquid pump is added, and the evaporator has residual heat medium.
  • the connection between the pipeline and the outside is changed to the evaporator having the driving heat medium pipeline communicating with the outside, the third generator having the refrigerant vapor passage communicating with the condenser, the condenser and the refrigerant liquid pipeline passing through the throttle and the evaporator
  • the communication is adjusted so that the third generator has a refrigerant vapor passage communicating with the condenser, and then the condenser has a refrigerant liquid pipeline connected to the evaporator via the newly added refrigerant liquid pump to form a first type of absorption heat pump.
  • the first type of absorption heat pump is compounded.
  • the throttle valve and the second throttle valve are eliminated, and the new refrigerant liquid pump is added.
  • a second refrigerant liquid pump is added, and the residual heat medium pipeline of the evaporator is connected to the outside to be changed to an evaporator.
  • the heat medium pipeline is driven to communicate with the outside, and the third generator has a refrigerant vapor passage connected to the condenser and condensed.
  • the refrigerant liquid pipeline is connected to the evaporator through the throttle valve to adjust to the third generator, and the refrigerant vapor passage is connected with the condenser, and then the condenser has a refrigerant liquid pipeline through the newly added refrigerant liquid pump and evaporation.
  • the device is connected to connect the steam distribution chamber and the second generator with the refrigerant vapor passage to communicate with the third generator, and then the third generator and the refrigerant liquid pipeline are connected to the evaporator through the second throttle valve to be adjusted into a steam distribution chamber.
  • the second generator has a refrigerant vapor channel connected to the third generator and the third generator Then, the refrigerant liquid pipeline is connected with the evaporator by adding a second refrigerant liquid pump to form a first type of absorption heat pump.
  • the invention will now be further illustrated by the composite first-generation absorption heat pump shown in Figure 1:
  • thermodynamic parameters are changed smoothly, the heating parameters can be adjusted, and the changes in working conditions can be well adapted to obtain a higher performance index and thermodynamic perfection.
  • Fig. 1 is a schematic view showing the first structure and flow of a first-stage absorption heat pump according to the present invention.
  • Figure 2 is a schematic view showing the second structure and flow of the first type of absorption heat pump according to the present invention.
  • Fig. 3 is a schematic view showing the third structure and flow of the first type of absorption heat pump according to the present invention.
  • Figure 4 is a schematic view showing the fourth structure and flow of the first type of absorption heat pump according to the present invention.
  • Figure 5 is a schematic view showing the fifth structure and flow of the first type of absorption heat pump according to the present invention.
  • Figure 6 is a schematic view showing the sixth structure and flow of the first type of absorption heat pump according to the present invention.
  • Figure 7 is a schematic view showing the seventh structure and flow of the first type of absorption heat pump according to the present invention.
  • Figure 8 is a schematic view showing the eighth structure and flow of the first type of absorption heat pump according to the present invention.
  • Figure 9 is a schematic view showing the structure and flow of the ninth type of the first type of absorption heat pump according to the present invention.
  • Figure 10 is a schematic view showing the tenth structure and flow of a composite first-generation absorption heat pump according to the present invention.
  • Figure 11 is a schematic view showing the eleventh structure and flow of the first-generation absorption heat pump according to the present invention.
  • Figure 12 is a schematic view showing the structure and flow of the 12th type of the first type of absorption heat pump according to the present invention.
  • Figure 13 is a schematic view showing the structure and flow of the thirteenth type of the first type of absorption heat pump according to the present invention.
  • Figure 14 is a schematic view showing the structure and flow of the 14th type of the first type of absorption heat pump according to the present invention.
  • Figure 15 is a schematic view showing the structure and flow of the fifteenth type of the first type of absorption heat pump according to the present invention.
  • Figure 16 is a schematic view showing the structure and flow of the 16th type of the first type of absorption heat pump according to the present invention.
  • a new solution pump was added, and J added a second coolant pump.
  • the first type of absorption heat pump shown in Figure 1 is realized in this way: 1 structurally, it mainly consists of generator, second generator, absorber, second absorber, condenser, second condenser, evaporator, solution pump, second solution pump, solution throttle valve, second solution a throttle valve, a throttle valve, a second throttle valve, a solution heat exchanger and a steam separation chamber; the second absorber 4 has a dilute solution line through the second solution pump 9 and the solution heat exchanger 14 and the absorber 3 connected, the absorber 3 and the dilute solution pipeline are connected to the second generator 2 via the solution throttle valve 10, and the second generator 2 and the concentrated solution pipeline are connected to the generator 1 via the solution pump 8, the generator 1 Further, the concentrated solution pipeline communicates with the steam splitting chamber 15 via the second solution throttle valve 11 and the absorber 3, and the split steam chamber 15 and the concentrated solution pipeline communicate with the second absorber 4 via the solution heat exchanger 14 to occur.
  • the refrigerant 1 also has a refrigerant vapor passage communicating with the absorber 3, the steam split chamber 15 and the refrigerant vapor passage communicating with the condenser 5, and the second generator 2 and the refrigerant vapor passage communicating with the second condenser 6 to condense
  • the refrigerant 5 is also connected to the evaporator 7 via the throttle valve 12, and the second condenser 6 has a refrigerant liquid line.
  • the second section 13 is connected to the evaporator 7, and the evaporator 7 has a refrigerant vapor passage communicating with the second absorber 4.
  • the generator 1 and the second generator 2 also respectively drive the heat medium pipeline to communicate with the outside.
  • the second absorber 4, the condenser 5 and the second condenser 6 are also respectively connected to the outside by the medium to be heated, and the evaporator 7 and the heat remaining medium line communicate with the outside.
  • the dilute solution of the second absorber 4 enters the absorber 3 through the second solution pump 9 and the solution heat exchanger 14, absorbs the refrigerant vapor and releases the solution flowing through the solution, the dilute solution of the absorber 3
  • the solution throttle valve 10 is throttled and depressurized into the second generator 2, and the driving heat medium flows through the second generator 2, and the solution heated into the solution is released and supplies the refrigerant vapor to the second condenser 6, the second occurrence occurs.
  • the concentrated solution of the device 2 enters the generator 1 through the solution pump 8, drives the heat medium to flow through the generator 1, and the solution heated therein is released and supplies the refrigerant vapor to the absorber 3, and the concentrated solution of the generator 1 passes through the second solution.
  • the throttle valve 11 After the throttle valve 11 is throttled and depressurized, it flows through the absorber 3, and the heat absorption portion is vaporized and then enters the steam separation chamber 15. The refrigerant vapor of the steam distribution chamber 15 enters the condenser 5, and the concentrated solution of the steam distribution chamber 15 is subjected to solution heat exchange.
  • the device 14 enters the second absorber 4, absorbs the refrigerant vapor and radiates heat to the heated medium; the refrigerant vapor of the condenser 5 radiates heat to the heated medium to form a refrigerant liquid, and the coolant liquid of the condenser 5 passes through the throttle valve 12 throttling into the evaporator 7, the second condenser 6
  • the agent vapor exotherms in the heated medium to form a refrigerant liquid, and the refrigerant liquid in the second condenser 6 is throttled into the evaporator 7 via the second throttle valve 13, and the refrigerant liquid in the evaporator 7 absorbs the residual heat into the refrigerant vapor and Provided to the second absorber 4, a composite generation first type absorption heat pump is formed.
  • the composite first-stage absorption heat pump shown in Figure 2 is implemented as follows:
  • the second absorber 4 has a dilute solution line through the second solution pump 9 and the solution heat exchanger 14 and the absorber 3 connected, the absorber 3 and the dilute solution pipeline are connected to the second generator 2 via the solution throttle valve 10, and the second generator 2 also has a concentrated solution pipeline via the solution pump 8 and the second solution heat exchanger 16
  • the generator 1 is connected, the generator 1 and the concentrated solution pipeline are connected to the steam distribution chamber 15 via the second solution heat exchanger 16 and the absorber 3, and the steam distribution chamber 15 and the concentrated solution pipeline are passed through the solution heat exchanger 14 and
  • the second absorber 4 is connected, the generator 1 also has a refrigerant vapor passage communicating with the absorber 3, the steam split chamber 15 and the refrigerant
  • the generator 1 and the second generator 2 further have driving heat medium pipes respectively communicating with the outside, and the second absorber 4, the condenser 5 and the second condenser 6 are respectively connected to the outside by the heated medium pipe, the evaporator 7 There is also a waste heat medium pipeline connected to the outside.
  • the dilute solution of the second absorber 4 enters the absorber 3 via the second solution pump 9 and the solution heat exchanger 14 Absorbing the refrigerant vapor and exothermic to the solution flowing therethrough, the dilute solution of the absorber 3 is throttled down through the solution throttle valve 10 into the second generator 2, and the driving heat medium flows through the second generator 2, heating The solution entering therein is released and supplies refrigerant vapor to the second condenser 6, and the concentrated solution of the second generator 2 enters the generator 1 via the solution pump 8 and the second solution heat exchanger 16, and drives the heat medium through the generator. 1. The solution heated into the solution is released and the refrigerant vapor is supplied to the absorber 3.
  • the concentrated solution of the generator 1 is subjected to heat exchange and depressurization by the second solution heat exchanger, then flows through the absorber 3, and the heat absorption portion is vaporized and then enters the fraction.
  • the refrigerant vapor of the steam compartment 15 and the steam splitting chamber 15 enters the condenser 5, and the concentrated solution of the steam splitting chamber 15 enters the second absorber 4 through the solution heat exchanger 14, absorbs the refrigerant vapor and radiates heat to the heated medium;
  • the refrigerant vapor of the device 5 is radiated to the heated medium to form a refrigerant liquid, and the refrigerant liquid of the condenser 5 is throttled into the evaporator 7 through the throttle valve 12, and the refrigerant vapor of the second condenser 6 is heated to be heated.
  • the medium is a refrigerant liquid
  • the refrigerant liquid of the second condenser 6 is throttled through the second throttle valve 13
  • the refrigerant liquid of the evaporator 7 absorbs the residual heat into the refrigerant vapor and supplies it to the second absorber 4 to form a composite type first absorption heat pump.
  • the composite first-generation absorption heat pump shown in Figure 3 is implemented as follows:
  • the second condenser and the second throttle valve are eliminated, and the second generator 2 has a refrigerant vapor passage connected to the second condenser 6 to be adjusted to the second.
  • the generator 2 has a refrigerant vapor passage and a condenser 5, forming a first type of absorption heat pump.
  • the composite first-generation absorption heat pump shown in Figure 4 is implemented as follows:
  • the second throttle valve, the third generator and the second solution heat exchanger are added, and the second solution pump 9 is provided with a dilute solution pipeline.
  • the second solution heat exchanger 16 is in communication with the third generator 17, and the third generator 17 and the concentrated solution line are in communication with the second absorber 4 via the second solution heat exchanger 16, the second generator 2 and the minute
  • the steam chamber 15 has a refrigerant vapor passage communicating with the condenser 5 to be adjusted to the second generator 2 and the steam dividing chamber 15.
  • the refrigerant vapor passage is in communication with the third generator 17, and the third generator 17 has a refrigerant liquid line.
  • the third throttle valve 13 is in communication with the condenser 5 via a second throttle valve 13 and the refrigerant vapor passage is in communication with the condenser 5.
  • the dilute solution of the second absorber 4 is divided into two paths after passing through the second solution pump 9 - the first path enters the absorber 3 via the solution heat exchanger 14 and the second path enters the second solution heat exchanger 16
  • the third generator 17; the refrigerant vapor of the second generator 2 and the steam dividing chamber 15 is supplied to the third generator 17 for driving the heat medium, and the refrigerant vapor flows through the third generator 17, and the solution heated into the same is released.
  • the concentrated solution of the third generator 17 enters the second absorber 4 through the second solution heat exchanger 16, and the refrigerant vapor flowing through the third generator 17 is released into the refrigerant liquid.
  • the second throttle valve 13 is throttled into the condenser 5 to form a composite type first absorption heat pump.
  • the composite first-generation absorption heat pump shown in Figure 5 is implemented as follows:
  • the second throttle valve, the third generator and the second solution heat exchanger are added, and the second solution pump 9 has a dilute solution pipeline.
  • the solution heat exchanger 14 is connected to the absorber 3 to be adjusted to be a second solution pump 9 having a dilute solution line connected to the absorber 3 via the second solution heat exchanger 16 and the solution heat exchanger 14 to thicken the steam separation chamber 15
  • the solution line is connected to the second absorber 4 via the solution heat exchanger 14 to be adjusted to the steam separation chamber 15.
  • the concentrated solution line is connected to the third generator 17 via the solution heat exchanger 14, and the third generator 17 has a concentrated solution.
  • the pipeline communicates with the second absorber 4 via the second solution heat exchanger 16, and the second generator 2 and the steam compartment 15 have a refrigerant vapor passage communicating with the condenser 5 to be adjusted into the second generator 2 and the steam distribution chamber.
  • the third generator 17 is further connected to the condenser 5 via the second throttle valve 13 and the third generator 17 has a refrigerant vapor passage. It is in communication with the condenser 5.
  • the dilute solution of the second absorber 4 enters the absorber 3 via the second solution pump 9, the second solution heat exchanger 16, and the solution heat exchanger 14, and the concentrated solution of the steam separation chamber 15 passes through the solution heat exchanger 14.
  • the refrigerant vapor entering the third generator 17, the second generator 2 and the steam dividing chamber 15 is supplied to the third generator 17 for driving the heat medium, and the refrigerant vapor flows through the third generator 17, and the solution into which the heat is introduced
  • the refrigerant vapor is released and supplied to the condenser 5, and the concentrated solution of the third generator 17 enters the second absorber 4 via the second solution heat exchanger 16, and the refrigerant vapor flowing through the third generator 17 is released into a refrigerant.
  • the liquid is then throttled into the condenser 5 via the second throttle valve 13 to form a first type of absorption heat pump.
  • the composite type first absorption heat pump shown in Figure 6 is realized in this way.
  • the second condenser and the second throttle valve are eliminated, and the second generator 2 has a refrigerant vapor passage connected to the second condenser 6. Adjusted to the second generator 2 with a refrigerant vapor channel communicating with the condenser 5; adding a second throttle, a third generator, a third solution heat exchanger and a third solution pump, the second solution pump 9 is thin
  • the solution line is connected to the absorber 3 via the solution heat exchanger 14 to be adjusted to a second solution pump.
  • the dilute solution line is connected to the third generator 17 via the third solution heat exchanger 18, and the third generator 17 is thicker.
  • the solution line communicates with the absorber 3 via the third solution pump 19 and the solution heat exchanger 14 , and the concentrated solution line of the steam distribution chamber 15 is connected to the second absorber 4 via the solution heat exchanger 14 to be adjusted into the steam separation chamber 15 .
  • the concentrated solution line communicates with the second absorber 4 via the solution heat exchanger 14 and the third solution heat exchanger 18, and the second generator 2 and the steam dividing chamber 15 have a refrigerant vapor passage connected to the condenser 5 to be adjusted to
  • the second generator 2 and the steam dividing chamber 15 have a refrigerant steam ramp and a third After the third generator 17 communicates generator 17 and then the refrigerant liquid pipe of the throttle valve 13 in communication with the second condenser 5, a third generator 17, the refrigerant vapor passage 5 communicating with the condenser.
  • the refrigerant vapor of the second generator 2 and the steam dividing chamber 15 is supplied to the third generator 17 to drive the heat medium, and the dilute solution of the second absorber 4 is exchanged by the second solution pump 9 and the third solution.
  • the heater 18 enters the third generator 17, the refrigerant vapor flows through the third generator 17, the solution heated therein is released and supplies the refrigerant vapor to the condenser 5, and the refrigerant vapor flowing through the third generator 17 releases heat.
  • the refrigerant liquid is throttled into the condenser 5 through the second throttle valve 13, and the concentrated solution of the third generator 17 enters the absorber 3 through the third solution pump 19 and the solution heat exchanger 14, and the steam separation chamber 15
  • the concentrated solution enters the second absorber 4 via the solution heat exchanger 14 and the third solution heat exchanger 18 to form a composite first type absorption heat pump.
  • the composite first-stage absorption heat pump shown in Figure 7 is implemented as follows:
  • the third generator, the third absorber, the third solution pump and the second solution heat exchanger are added, and the second solution pump 9 is
  • the dilute solution line is connected to the absorber 3 via the solution heat exchanger to be adjusted to be a second solution pump 9 having a dilute solution line communicating with the third absorber 20 via the second solution heat exchanger 16 and the third absorber 20 having a thinner
  • the solution line communicates with the absorber 3 via the third solution pump 19 and the solution heat exchanger 14
  • the concentrated solution line of the steam distribution chamber 15 is connected to the second absorber 4 via the solution heat exchanger 14 to be adjusted into the steam separation chamber 15 .
  • the concentrated solution line is in communication with the third generator 17 via the solution heat exchanger 14, and the third generator 17 has a concentrated solution line connected to the second absorber 4 via the second solution heat exchanger 16, the third generator There is also a refrigerant vapor passage communicating with the third absorber 20, the third generator 17 also driving the heat medium conduit in communication with the outside, and the third absorber 20 and the heated medium conduit are in communication with the outside.
  • the dilute solution of the second absorber 4 enters the third absorber 20 through the second solution pump 9 and the second solution heat exchanger 16, absorbs the refrigerant vapor and radiates heat to the heated medium, and the third absorber 20
  • the dilute solution enters the absorber 3 via the third solution pump 19 and the solution heat exchanger 14;
  • the concentrated solution of the steam separation chamber 15 enters the third generator 17 via the solution heat exchanger 14
  • the driving heat medium flows through the third generator 17, the solution heated into it is released and supplies the refrigerant vapor to the third absorber 20, and the concentrated solution of the third generator 17 enters the second absorption through the second solution heat exchanger 16.
  • the fourth type of absorption heat pump is formed in combination.
  • the composite first-generation absorption heat pump shown in Figure 8 is implemented as follows:
  • the refrigerant vapor generated by the second generator 2 enters the newly added absorber B, is absorbed by the concentrated solution and radiates heat to the heated medium, and the diluted solution of the new absorber B is newly added to the solution pump C and newly added
  • the solution heat exchanger D enters the newly added generator A, drives the heat medium to flow through the new generator A, releases the solution into which it is heated, and supplies the refrigerant vapor to the second condenser 6, and adds a concentrated solution of the generator A.
  • a first type of absorption heat pump is formed.
  • the composite first-generation absorption heat pump shown in Figure 9 is implemented as follows:
  • the new condenser E and the refrigerant liquid pipeline are connected to the second condenser 6 via the newly added throttle valve F, and the new generator A and the driving heat medium pipeline are connected to the outside, and the absorber B and the new absorber are added.
  • the newly added condenser E also has a medium to be heated to communicate with the outside.
  • the refrigerant vapor generated by the second generator 2 enters the newly added absorber B and the second condenser 6, respectively, and the refrigerant vapor entering the newly added absorber B is absorbed by the concentrated solution and radiated to the heated medium.
  • the condenser E is supplied with refrigerant vapor, and the concentrated solution of the new generator A is added to the new absorber B through the new solution heat exchanger D, and the refrigerant vapor of the new condenser E is added to the heated medium to form a refrigerant.
  • the liquid, the refrigerant liquid of the new condenser E is throttled into the second condenser 6 by the new throttle valve F, and a first type of absorption heat pump is formed.
  • the composite first-generation absorption heat pump shown in Figure 10 is implemented as follows:
  • the device 5 is connected, the new generator A and the driving heat medium pipe are connected to the outside, and the newly added absorber B and the heated medium pipe are connected to the outside. 2
  • the refrigerant vapor released by the steam separation chamber 15 is sucked into the newly added absorber B, absorbed by the concentrated solution and radiated to the heated medium, and the diluted solution of the new absorber B is added by the new solution pump C and newly added.
  • the solution heat exchanger D enters the newly added generator A, drives the heat medium to flow through the newly added generator A, releases the solution into which it is heated, and supplies the refrigerant vapor to the condenser 5, and adds the concentrated solution of the generator A through the new
  • the solubilizing solution heat exchanger D enters the newly added absorber B to form a composite type first absorption heat pump.
  • the composite first-generation absorption heat pump shown in Figure 11 is implemented as follows:
  • the solution heat exchanger has a refrigerant vapor passage communicating with the condenser 5 in the steam distribution chamber 15 to be adjusted to a steam compartment 15 having a refrigerant vapor passage communicating with the newly added absorber B, and the second generator 2 having a refrigerant vapor passage Connected with the second condenser 6 to adjust the second generator 2 to have a refrigerant vapor passage communicating with the newly added absorber B, adding the absorber B and the dilute solution pipeline through the new solution pump C and the new solution heat exchange
  • the device D is connected with the newly added generator A, and the newly added generator A and the concentrated solution pipeline are connected to the newly added absorber B via the newly added solution heat exchanger D, and the new generator A has a refrigerant vapor passage and condensation.
  • the device 5 is connected, the new generator
  • the refrigerant vapor released by the second generator 2 and the steam dividing chamber 15 enters the newly added absorber B, is absorbed by the concentrated solution and radiates heat to the heated medium, and the diluted solution of the absorber B is newly added through the newly added solution.
  • Pump C and new solution heat exchanger D enter new generator A, drive heat medium to flow through new generator A, heat the solution into it and supply refrigerant vapor to condenser 5, add generator A
  • the concentrated solution is added to the solution heat exchanger! ) Entering the new absorber ⁇ Forming a composite generation
  • the first type of absorption heat pump is used to the refrigerant vapor released by the second generator 2 and the steam dividing chamber 15 enters the newly added absorber B, is absorbed by the concentrated solution and radiates heat to the heated medium, and the diluted solution of the absorber B is newly added through the newly added solution.
  • Pump C and new solution heat exchanger D enter new generator A, drive heat medium to flow through new generator A, heat the solution into it and supply
  • the composite first-generation absorption heat pump shown in Figure 12 is implemented as follows:
  • the device D is connected with the newly added generator A, and the newly added generator A and the concentrated solution pipeline are connected to the newly added absorber B via the newly added solution heat exchanger D, and the new generator A has a refrigerant vapor passage and the first
  • the two absorbers 4 are connected, the new generator A and the driving heat medium pipeline are connected to the outside, and the newly added absorber B and the heated medium pipeline are connected to the outside.
  • the refrigerant vapor of the evaporator 7 enters the newly added absorber B, is absorbed by the concentrated solution and radiates heat to the heated medium, and the diluted solution of the new absorber B is newly exchanged by the solution pump C and the newly added solution.
  • the device D enters the newly added generator A, drives the heat medium to flow through the newly added generator A, releases the solution into which it is heated, and supplies the refrigerant vapor to the second absorber 4.
  • the new concentrated solution of the generator A is newly added.
  • the solution heat exchanger D enters the newly added absorber B to form a composite type first absorption heat pump.
  • the first type of absorption heat pump shown in Figure 13 is realized in this way -
  • the new steam compartment H and the concentrated solution pipeline are connected to the newly added absorber B via the new solution heat exchanger D; the steam compartment 15 is cooled by a refrigerant.
  • the steam passage communicates with the condenser 5 and the condenser 5 has a refrigerant liquid pipeline connected to the evaporator 7 through the throttle valve 12, and is adjusted to be a steam chamber 15 having a refrigerant vapor passage communicating with the condenser 5, and the condenser 5 is further cooled.
  • the agent liquid pipeline communicates with the evaporator 7 via the throttle valve 12, the second generator 2 has a refrigerant vapor passage communicating with the second condenser 6, and the second condenser 6 has a refrigerant liquid pipeline passing through the second throttle
  • the valve 13 is connected to the evaporator 7 to be adjusted so that the second generator 2 has a refrigerant vapor passage communicating with the second condenser 6, and the second condenser 6 has a refrigerant liquid pipeline passing through the second throttle valve 13 and the evaporator 7 Connected; the condenser 5, the second condenser 6 and the newly added steam compartment H respectively have a refrigerant vapor passage communicating with the newly added condenser E, and the new condenser E and the refrigerant liquid pipeline are added with a new throttle valve.
  • the new evaporator G and the refrigerant vapor channel are connected with the newly added absorber B.
  • the new condenser E and the heated medium pipe are connected to the outside, and the new evaporator G is added.
  • the residual heat medium pipe is connected to the outside.
  • the dilute solution of the new absorber B is added to the condenser 5 through the new solution pump C and the new solution heat exchanger D, and the steam distribution chamber 15 supplies the refrigerant vapor to the condenser 5 as its driving heat medium, which is cold.
  • the agent vapor flows through the condenser 5, and the solution heated into the solution is released and supplies the refrigerant vapor to the newly added condenser E.
  • the refrigerant vapor flowing through the condenser 5 is released into a refrigerant liquid, and then passes through the throttle valve 12 sections.
  • the solution heated into the solution is released and the refrigerant vapor is supplied to the new condenser E.
  • the refrigerant vapor flowing through the second condenser 6 is released into a refrigerant liquid, and then throttled through the second throttle tube 13 to evaporate.
  • the concentrated solution of the second condenser 6 flows through the second absorber 4, and the heat absorption portion vaporizes and enters the new steam separation chamber H, and the refrigerant vapor of the new steam separation chamber H enters the new condenser E, new The concentrated solution of the increased steam chamber H enters the new absorber B through the new solution heat exchanger D, The refrigerant vapor is cooled and radiated to the heated medium; the refrigerant vapor of the new condenser E is added to the heated medium to form a refrigerant liquid, and the refrigerant liquid of the new condenser E is throttled by the new throttle valve F. Entering the new evaporator 6, absorbing residual heat into the refrigerant vapor and supplying it to the newly added absorber B, forming a composite type first absorption heat pump.
  • the composite first-generation absorption heat pump shown in Figure 14 is implemented as follows:
  • the throttle valve and the second throttle valve are eliminated, the new refrigerant liquid pump is added, and the second refrigerant liquid pump is added, and the evaporator 7 has residual heat.
  • the medium pipeline is connected to the outside to be changed to the evaporator 7 to drive the heat medium pipeline to communicate with the outside, and the steam compartment 15 has a refrigerant vapor passage communicating with the condenser 5, and then the condenser 5 is further throttled by the refrigerant liquid pipeline.
  • the valve 12 is connected to the evaporator 7 to be adjusted so that the steam dividing chamber 15 has a refrigerant vapor passage communicating with the condenser 5, and then the condenser 5 has a refrigerant liquid pipeline connected to the evaporator 7 through the refrigerant liquid pump I, which will occur second.
  • the second condenser 6 and the refrigerant liquid pipeline are connected to the evaporator 7 via the second throttle valve 13 to adjust the second generator 2 to have a refrigerant vapor.
  • the second condenser 6 is further connected to the evaporator 7 via the second refrigerant liquid pump J; the refrigerant vapor flowing through the condenser 5 is released into a refrigerant liquid. And then pressurized into the evaporator 7 by the newly added refrigerant liquid pump I, and the refrigerant vapor flowing through the second condenser 6 is released into heat.
  • the liquid solution is further pressurized into the evaporator 7 by adding a second refrigerant liquid pump J, and the refrigerant liquid of the evaporator 7 absorbs heat into the refrigerant vapor and supplies it to the second absorber 4 to form a first type of absorption. Heat pump.
  • the composite first-generation absorption heat pump shown in Figure 15 is implemented as follows:
  • the solution heat exchanger D is in communication with the newly added absorber B; After the steam distribution chamber 15 and the second generator 2 have the refrigerant vapor passage communicating with the third generator 17, the third generator 17 and the refrigerant liquid pipeline are connected to the condenser 5 via the second throttle valve 13 to be adjusted to After the steam dividing chamber 15 and the second generator 2 have the refrigerant vapor passage communicating with the third generator 17, the third generator 17 and the refrigerant liquid pipeline are connected to the evaporator 7 via the second throttle valve 13
  • the third generator 17 has a refrigerant vapor passage communicating with the condenser 5, and the condenser 5 has a refrigerant liquid pipeline connected to the evaporator 7 via the throttle valve 12 to be adjusted to a third generator 17 having a refrigerant vapor passage and a condenser 5
  • the condenser 5 has a refrigerant liquid pipeline connected to the evaporator 7 via the throttle valve 12; the condenser 5 and the newly added steam compartment H have ref
  • the diluted solution of the new absorber B is added to the condenser 5 via the new solution pump C and the new solution heat exchanger D, and the third generator 17 supplies the refrigerant vapor to the condenser 5 as the driving heat medium.
  • the refrigerant vapor flows through the condenser 5, and the solution heated therein is released and supplies the refrigerant vapor to the newly added condenser E.
  • the refrigerant vapor flowing through the condenser 5 is released into the refrigerant liquid and then through the throttle valve 12
  • the throttle enters the evaporator 7; the concentrated solution of the condenser 5 flows through the second absorber 4, and the heat absorption portion vaporizes and enters the newly added steam chamber H, and the refrigerant vapor of the new steam chamber H enters the new condenser E.
  • the new concentrated solution of the steam separation chamber H is added to the new absorber 8 through the new solution heat exchanger D, absorbing the refrigerant vapor and radiating heat to the heated medium; the refrigerant vapor of the new condenser E is heated to be heated
  • the heating medium is formed into a refrigerant liquid, and the refrigerant liquid of the newly added condenser E is throttled into the new evaporator G through the newly added throttle valve F, and the residual heat is absorbed into the refrigerant vapor and supplied to the newly added absorber B to form a composite occurrence.
  • the first type of absorption heat pump is used to the new absorber 8 through the new solution heat exchanger D, absorbing the refrigerant vapor and radiating heat to the heated medium; the refrigerant vapor of the new condenser E is heated to be heated
  • the heating medium is formed into a refrigerant liquid, and the refrigerant liquid of the newly added condenser E is throttled into the new evapor
  • the composite type first absorption heat pump shown in Fig. 16 is realized in the same manner as in the composite type first absorption heat pump shown in Fig. 15, the throttle valve is cancelled, the new refrigerant liquid pump is added, and the evaporator is added. 7
  • the residual heat medium pipeline communicates with the outside to change the evaporator 7 to drive the heat medium pipeline to communicate with the outside, and the third generator 17 has a refrigerant vapor passage connected with the condenser 5, and the condenser 5 has a refrigerant liquid pipe.
  • the passage throttle valve 12 is connected to the evaporator 7 to be adjusted so that the third generator 17 has a refrigerant vapor passage communicating with the condenser 5, and then the condenser 5 has a refrigerant liquid pipeline through the newly added refrigerant liquid pump I and the evaporator. 7 is connected; the refrigerant vapor flowing through the condenser 5 is exothermic into a refrigerant liquid, and then pressurized into the evaporator 7 by the newly added refrigerant liquid pump I, and the refrigerant liquid of the evaporator 7 absorbs heat into the refrigerant vapor and
  • the second absorber 4 is provided to form a composite type first absorption heat pump.
  • thermodynamic parameters are changed smoothly, the heating parameters can be adjusted, and the changes in working conditions can be well adapted to obtain a higher performance index and thermodynamic perfection.
  • the first type of absorption heat pump with regenerative heating end can realize the full utilization of the first type of driving temperature difference.
  • the circulation of the solution solution can be carried out by different working solutions, which is beneficial to the matching of the working parameters of the heat medium and the circulation process, and the utilization of the temperature difference is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

一种复合发生第一类吸收式热泵,包括第一发生器(1)、第二发生器(2)、第一吸收器(3)、第二吸收器(4)、第一冷凝器(5)和第二冷凝器(6),其中第二吸收器(4)与第一吸收器(3)连通,第一吸收器(3)与第二发生器(2)连通,第二发生器(2)与第一发生器(1)连通,第一发生器(1)与分汽室(15)连通,分汽室(15)与第二吸收器(4)连通,第一发生器(1)与第一吸收器(3)连通,分汽室(15)与第一冷凝器(5)连通,第二发生器(2)与第二冷凝器(6)连通,第一冷凝器(5)、第二冷凝器(6)分别经节流阀(12,13)与蒸发器(7)连通,蒸发器(7)与第二吸收器(4)连通。

Description

复合发生第一类吸收式热泵
技术领域:
本发明属于低温余热利用与热泵 /制冷技术领域。
背景技术- 第一类吸收式热泵以驱动热介质与被加热介质之间的温差作为驱动力,当驱动温差较大 时应釆用双效或多效流程来实现对驱动热的充分利用;任何传热环节的温差浪费都将带来热 能利用率的降低, 只有充分利用温差才可以保证得到合理的热力学完善度。
在被加热介质的温度范围较宽时, 尤其又遇到利用驱动热介质提供显热的场合, 驱动热 介质的髙温放热部分和低温放热部分与被加热介质之间的温差有区别,且驱动热介质的高温 段与被加热介质的低温段之间存在的温差更大。 此时, 若以单效流程完成溶液发生过程, 则 温差利用不充分, 循环的性能指数不理想; 若采用经典双效流程完成溶液发生过程, 则要求 驱动热介质与被加热介质之间要有足够的温差, 这需要新的循环流程来弥补。
除了应该消除较大的传热温差之外, 第一类吸收式热泵的循环流程还要实现更多的要 求, 这些要求包括: 热力学参数平滑变化, 供热参数可调节, 能够较好地适应工况变化, 具 有最佳的性能指数; 能够实现对高温热资源的深度利用, 或利用不同品位的驱动热以实现不 同品位热能的综合利用。
本发明提供由经典单效流程和发生-吸收型双效流程形成复合发生流程的系列复合发生 第一类吸收式热泵, 以提高驱动热负荷的利用价值和热能利用率。
发明内容:
本发明主要目的是要提供复合发生第一类吸收式热泵, 具体发明内容分项阐述如下-
1. 复合发生第一类吸收式热泵, 主要由发生器、 第二发生器、 吸收器、 第二吸收器、 冷凝器、 第二冷凝器、 蒸发器、 溶液泵、 第二溶液泵、 溶液节流阀、 第二溶液节流阔、 节流 阀、 第二节流阀、 溶液热交换器和分汽室所组成; 第二吸收器有稀溶液管路经第二溶液泵和 溶液热交换器与吸收器连通, 吸收器还有稀溶液管路经溶液节流阀与第二发生器连通, 第二 发生器还有浓溶液管路经溶液泵与发生器连通,发生器还有浓溶液管路经第二溶液节流阀和 吸收器与分汽室连通, 分汽室还有浓溶液管路经溶液热交换器与第二吸收器连通, 发生器还 有冷剂蒸汽通道与吸收器连通, 分汽室还有冷剂蒸汽通道与冷凝器连通, 第二发生器还有冷 剂蒸汽通道与第二冷凝器连通, 冷凝器还有冷剂液管路经节流阀与蒸发器连通, 第二冷凝器 还有冷剂液管路经第二节流阀与蒸发器连通, 蒸发器还有冷剂蒸汽通道与第二吸收器连通, 发生器和第二发生器还分别有驱动热介质管路与外部连通, 第二吸收器、冷凝器和第二冷凝 器还分别有被加热介质管路与外部连通, 蒸发器还有余热介质管路与外部连通, 形成复合发 生第一类吸收式热泵。
2. 复合发生第一类吸收式热泵, 主要由发生器、 第二发生器、 吸收器、 第二吸收器、 冷凝器、 第二冷凝器、 蒸发器、 溶液泵、 第二溶液泵、 溶液节流阀、 节流阀、 第二节流阀、 溶液热交换器、第二溶液热交换器和分汽室所组成; 第二吸收器有稀溶液管路经第二溶液泵 和溶液热交换器与吸收器连通, 吸收器还有稀溶液管路经溶液节流阀与第二发生器连通, 第 二发生器还有浓溶液管路经溶液泵和第二溶液热交换器与发生器连通,发生器还有浓溶液管 路经第二溶液热交换器和吸收器与分汽室连通,分汽室还有浓溶液管路经溶液热交换器与第 二吸收器连通, 发生器还有冷剂蒸汽通道与吸收器连通, 分汽室还有冷剂蒸汽通道与冷凝器 连通, 第二发生器还有冷剂蒸汽通道与第二冷凝器连通, 冷凝器还有冷剂液管路经节流阔与 蒸发器连通, 第二冷凝器还有冷剂液管路经第二节流阀与蒸发器连通, 蒸发器还有冷剂蒸汽 通道与第二吸收器连通, 发生器和第二发生器还分别有驱动热介质管路与外部连通, 第二吸 收器、冷凝器和第二冷凝器还分别有被加热介质管路与外部连通, 蒸发器还有余热介质管路 与外部连通, 形成复合发生第一类吸收式热泵; 其中, 或增加第二溶液节流阀, 将发生器有 浓溶液管路经第二溶液热交换器和吸收器与分汽室连通调整为发生器有浓溶液管路经第二 溶液热交换器、 第二溶液节流阀和吸收器与分汽室连通。
3. 复合发生第一类吸收式热泵, 是在第 1项所述的复合发生第一类吸收式热泵中, 取 消第二冷凝器和第二节流阀,将第二发生器有冷剂蒸汽通道与第二冷凝器连通调整为第二发 生器有冷剂蒸汽通道与冷凝器, 形成复合发生第一类吸收式热泵。
4. 复合发生第一类吸收式热泵, 是在第 2项所述的复合发生第一类吸收式热泵中, 取 消第二冷凝器和第二节流阀,将第二发生器有冷剂蒸汽通道与第二冷凝器连通调整为第二发 生器有冷剂蒸汽通道与冷凝器, 形成复合发生第一类吸收式热泵。
5. 复合发生第一类吸收式热泵, 是在第 3项所述的复合发生第一类吸收式热泵中, 增 加第二节流阀、第三发生器和第二溶液热交换器, 第二溶液泵增设稀溶液管路经第二溶液热 交换器与第三发生器连通,第三发生器还有浓溶液管路经第二溶液热交换器与第二吸收器连 通,将第二发生器和分汽室有冷剂蒸汽通道与冷凝器连通调整为第二发生器和分汽室有冷剂 蒸汽通道与第三发生器连通后第三发生器再有冷剂液管路经第二节流阀与冷凝器连通,第三 发生器还有冷剂蒸汽通道与冷凝器连通, 形成复合发生第一类吸收式热泵。
6. 复合发生第一类吸收式热泵, 是在第 3项所述的复合发生第一类吸收式热泵中, 增 加第二节流阀、第三发生器和第二溶液热交换器, 将第二溶液泵有稀溶液管路经溶液热交换 器与吸收器连通调整为第二溶液泵有稀溶液管路经第二溶液热交换器和溶液热交换器与吸 收器连通,将分汽室有浓溶液管路经溶液热交换器与第二吸收器连通调整为分汽室有浓溶液 管路经溶液热交换器与第三发生器连通,第三发生器再有浓溶液管路经第二溶液热交换器与 第二吸收器连通,将第二发生器和分汽室有冷剂蒸汽通道与冷凝器连通调整为第二发生器和 分汽室有冷剂蒸汽通道与第三发生器连通后第三发生器再有冷剂液管路经第二节流阀与冷 凝器连通, 第三发生器还有冷剂蒸汽通道与冷凝器连通, 形成复合发生第一类吸收式热泵。
7. 复合发生第一类吸收式热泵, 是在第 3项所述的复合发生第一类吸收式热泵中, 增 加第二节流阔、 第三发生器、 第二溶液热交换器和第三溶液泵, 将第二溶液泵有稀溶液管路 经溶液热交换器与吸收器连通调整为第二溶液泵有稀溶液管路经第二溶液热交换器与第三 发生器连通, 第三发生器再有浓溶液管路经第三溶液泵和溶液热交换器与吸收器连通,将分 汽室有浓溶液管路经溶液热交换器与第二吸收器连通调整为分汽室有浓溶液管路经溶液热 交换器和第二溶液热交换器与第二吸收器连通,将第二发生器和分汽室有冷剂蒸汽通道与冷 凝器连通调整为第二发生器和分汽室有冷剂蒸汽通道与第三发生器连通后第三发生器再有 冷剂液管路经第二节流阀与冷凝器连通, 第三发生器还有冷剂蒸汽通道与冷凝器连通, 形成 复合发生第一类吸收式热泵。
8. 复合发生第一类吸收式热泵, 是在第 4项所述的复合发生第一类吸收式热泵中, 增 加第二节流阀、第三发生器和第三溶液热交换器, 第二溶液泵增设稀溶液管路经第三溶液热 交换器与第三发生器连通,第三发生器还有浓溶液管路经第三溶液热交换器与第二吸收器连 通,将第二发生器和分汽室有冷剂蒸汽通道与冷凝器连通调整为第二发生器和分汽室有冷剂 蒸汽通道与第三发生器连通后第三发生器再有冷剂液管路经第二节流阀与冷凝器连通,第三 发生器还有冷剂蒸汽通道与冷凝器连通, 形成复合发生第一类吸收式热泵。
9. 复合发生第一类吸收式热泵, 是在第 4项所述的复合发生第一类吸收式热泵中, 增 加第二节流阀、第三发生器和第三溶液热交换器, 将第二溶液泵有稀溶液管路经溶液热交换 器与吸收器连通调整为第二溶液泵有稀溶液管路经第三溶液热交换器和溶液热交换器与吸 收器连通,将分汽室有浓溶液管路经溶液热交换器与第二吸收器连通调整为分汽室有浓溶液 管路经溶液热交换器与第三发生器连通,第三发生器再有浓溶液管路经第三溶液热交换器与 第二吸收器连通,将第二发生器和分汽室有冷剂蒸汽通道与冷凝器连通调整为第二发生器和 分汽室有冷剂蒸汽通道与第三发生器连通后第三发生器再有冷剂液管路经第二节流阀与冷 凝器连通, 第三发生器还有冷剂蒸汽通道与冷凝器连通, 形成复合发生第一类吸收式热泵。
10. 复合发生第一类吸收式热泵, 是在第 4项所述的复合发生第一类吸收式热泵中, 增加第二节流阀、 第三发生器、 第三溶液热交换器和第三溶液泵, 将第二溶液泵有稀溶液管 路经溶液热交换器与吸收器连通调整为第二溶液泵有稀溶液管路经第三溶液热交换器与第 三发生器连通, 第三发生器再有浓溶液管路经第三溶液泵和溶液热交换器与吸收器连通, 将 分汽室有浓溶液管路经溶液热交换器与第二吸收器连通调整为分汽室有浓溶液管路经溶液 热交换器和第三溶液热交换器与第二吸收器连通,将第二发生器和分汽室有冷剂蒸汽通道与 冷凝器连通调整为第二发生器和分汽室有冷剂蒸汽通道与第三发生器连通后第三发生器再 有冷剂液管路经第二节流阀与冷凝器连通, 第三发生器还有冷剂蒸汽通道与冷凝器连通, 形 成复合发生第一类吸收式热泵。
11. 复合发生第一类吸收式热泵, 是在第 1项所述的复合发生第一类吸收式热泵中, 增加第三发生器、 第三吸收器、第三溶液泵和第二溶液热交换器, 将第二溶液泵有稀溶液管 路经溶液热交换器与吸收器连通调整为第二溶液泵有稀溶液管路经第二溶液热交换器与第 三吸收器连通, 第三吸收器再有稀溶液管路经第三溶液泵和溶液热交换器与吸收器连通, 将 分汽室有浓溶液管路经溶液热交换器与第二吸收器连通调整为分汽室有浓溶液管路经溶液 热交换器与第三发生器连通,第三发生器再有浓溶液管路经第二溶液热交换器与第二吸收器 连通, 第三发生器还有冷剂蒸汽通道与第三吸收器连通, 第三发生器还有驱动热介质管路与 外部连通, 第三吸收器还有被加热介质管路与外部连通, 形成复合发生第一类吸收式热泵。
12. 复合发生第一类吸收式热泵, 是在第 2项所述的复合发生第一类吸收式热泵中, 增加第三发生器、 第三吸收器、 第三溶液泵和第三溶液热交换器, 将第二溶液泵有稀溶液管 路经溶液热交换器与吸收器连通调整为第二溶液泵有稀溶液管路经第三溶液热交换器与第 三吸收器连通, 第三吸收器再有稀溶液管路经第三溶液泵和溶液热交换器与吸收器连通, 将 分汽室有浓溶液管路经溶液热交换器与第二吸收器连通调整为分汽室有浓溶液管路经溶液 热交换器与第三发生器连通,第三发生器再有浓溶液管路经第三溶液热交换器与第二吸收器 连通, 第三发生器还有冷剂蒸汽通道与第三吸收器连通, 第三发生器还有驱动热介质管路与 外部连通, 第三吸收器还有被加热介质管路与外部连通, 形成复合发生第一类吸收式热泵。
13. 复合发生第一类吸收式热泵, 是在第 1-2、 11-12项所述的任一复合发生第一类吸 收式热泵中, 增加新增发生器、 新增吸收器、 新增溶液泵和新增溶液热交换器, 将第二发生 器有冷剂蒸汽通道与第二冷凝器连通调整为第二发生器有冷剂蒸汽通道与新增吸收器连通, 新增吸收器还有稀溶液管路经新增溶液泵和新增溶液热交换器与新增发生器连通,新增发生 器还有浓溶液管路经新增溶液热交换器与新增吸收器连通,新增发生器还有冷剂蒸汽通道与 第二冷凝器连通, 新增发生器还有驱动热介质管路与外部连通, 新增吸收器还有被加热介质 管路与外部连通, 形成复合发生第一类吸收式热泵。
14. 复合发生第一类吸收式热泵, 是在第 1-2、 11- 12项所述的任一复合发生第一类吸 收式热泵中, 增加新增发生器、 新增吸收器、 新增溶液泵、 新增溶液热交换器、 新增冷凝器 和新增节流阀, 第二发生器增设冷剂蒸汽通道与新增吸收器连通, 新增吸收器还有稀溶液管 路经新增溶液泵和新增溶液热交换器与新增发生器连通,新增发生器还有浓溶液管路经新增 溶液热交换器与新增吸收器连通, 新增发生器还有冷剂蒸汽通道与新增冷凝器连通, 新增冷 凝器还有冷剂液管路经新增节流阀与第二冷凝器或蒸发器连通,新增发生器还有驱动热介质 管路与外部连通, 新增吸收器和新增冷凝器还分别有被加热介质管路与外部连通, 形成复合 发生第一类吸收式热泵。
15. 复合发生第一类吸收式热泵, 是在第 1-2、 11- 12项所述的任一复合发生第一类吸 收式热泵中, 增加新增发生器、 新增吸收器、 新增溶液泵和新增溶液热交换器, 将分汽室有 冷剂蒸汽通道与冷凝器连通调整为分汽室有冷剂蒸汽通道与新增吸收器连通,新增吸收器还 有稀溶液管路经新增溶液泵和新增溶液热交换器与新增发生器连通,新增发生器还有浓溶液 管路经新增溶液热交换器与新增吸收器连通, 新增发生器还有冷剂蒸汽通道与冷凝器连通, 新增发生器还有驱动热介质管路与外部连通, 新增吸收器还有被加热介质管路与外部连通, 形成复合发生第一类吸收式热泵。
16. 复合发生第一类吸收式热泵, 是在第 1-2、 11- 12项所述的任一复合发生第一类吸 收式热泵中, 增加新增发生器、 新增吸收器、 新增溶液泵、 新增溶液热交换器、 新增冷凝器 和新增节流阀, 分汽室增设冷剂蒸汽通道与新增吸收器连通, 新增吸收器还有稀溶液管路经 新增溶液泵和新增溶液热交换器与新增发生器连通,新增发生器还有浓溶液管路经新增溶液 热交换器与新增吸收器连通, 新增发生器还有冷剂蒸汽通道与新增冷凝器连通, 新增冷凝器 还有冷剂液管路经新增节流阀与冷凝器或蒸发器连通,新增发生器还有驱动热介质管路与外 部连通, 新增吸收器和新增冷凝器还分别有被加热介质管路与外部连通, 形成复合发生第一 类吸收式热泵。 17. 复合发生第一类吸收式热泵, 是在第 1或第 2项所述的复合发生第一类吸收式热 泵中, 取消第二冷凝器和第二节流阀, 增加新增发生器、 新增吸收器、 新增溶液泵和新增溶 液热交换器,将分汽室有冷剂蒸汽通道与冷凝器连通调整为分汽室有冷剂蒸汽通道与新增吸 收器连通,将第二发生器有冷剂蒸汽通道与第二冷凝器连通调整为第二发生器有冷剂蒸汽通 道与新增吸收器连通,新增吸收器还有稀溶液管路经新增溶液泵和新增溶液热交换器与新增 发生器连通, 新增发生器还有浓溶液管路经新增溶液热交换器与新增吸收器连通, 新增发生 器还有冷剂蒸汽通道与冷凝器连通, 新增发生器还有驱动热介质管路与外部连通,新增吸收 器还有被加热介质管路与外部连通, 形成复合发生第一类吸收式热泵。
18. 复合发生第一类吸收式热泵, 是在第 1或第 2项所述的复合发生第一类吸收式热 泵中, 增加新增发生器、 新增吸收器、 新增溶液泵、 新增溶液热交换器、 新增冷凝器和新增 节流阀, 第二发生器和分汽室增设冷剂蒸汽通道与新增吸收器连通, 新增吸收器还有稀溶液 管路经新增溶液泵和新增溶液热交换器与新增发生器连通,新增发生器还有浓溶液管路经新 增溶液热交换器与新增吸收器连通, 新增发生器还有冷剂蒸汽通道与新增冷凝器连通, 新增 冷凝器还有冷剂液管路经新增节流阀与蒸发器连通,新增发生器还有驱动热介质管路与外部 连通, 新增吸收器和新增冷凝器还分别有被加热介质管路与外部连通, 形成复合发生第一类 吸收式热泵。
19. 复合发生第一类吸收式热泵, 是在第 1-4项所述的任一复合发生第一类吸收式热 泵中, 增加新增发生器、 新增吸收器、 新增溶液泵和新增溶液热交换器, 将蒸发器有冷剂蒸 汽通道与第二吸收器连通调整为蒸发器有冷剂蒸汽通道与新增吸收器连通,新增吸收器还有 稀溶液管路经新增溶液泵和新增溶液热交换器与新增发生器连通,新增发生器还有浓溶液管 路经新增溶液热交换器与新增吸收器连通, 新增发生器还有冷剂蒸汽通道与第二吸收器连 通, 新增发生器还有驱动热介质管路与外部连通, 新增吸收器还有被加热介质管路与外部连 通, 形成复合发生第一类吸收式热泵。
20. 复合发生第一类吸收式热泵, 是在第 1-4项所述的任一复合发生第一类吸收式热 泵中, 增加新增发生器、 新增吸收器、 新增溶液泵、 新增溶液热交换器、 新增冷凝器和新增 节流阀,将蒸发器有冷剂蒸汽通道与第二吸收器连通调整为蒸发器有冷剂蒸汽通道与新增吸 收器连通, 新增吸收器还有稀溶液管路经新增溶液泵和新增溶液热交换器与新增发生器连 通, 新增发生器还有浓溶液管路经新增溶液热交换器与新增吸收器连通, 新增发生器还有冷 剂蒸汽通道分别与第二吸收器和新增冷凝器连通,新增冷凝器还有冷剂液管路经新增节流阀 与蒸发器连通, 新增发生器还有驱动热介质管路与外部连通, 新增吸收器和新增冷凝器还分 别有被加热介质管路与外部连通, 形成复合发生第一类吸收式热泵。
21. 复合发生第一类吸收式热泵, 是在第 1或第 2项所述的复合发生第一类吸收式热 泵中, 增加新增吸收器、 新增溶液泵、 新增溶液热交换器、 新增冷凝器、 新增节流阀、 新增 蒸发器和新增分汽室, 取消冷凝器、第二冷凝器和第二吸收器分别与外部连通的被加热介质 管路, 新增吸收器有稀溶液管路经新增溶液泵和新增溶液热交换器与冷凝器连通, 冷凝器还 有浓溶液管路与第二冷凝器连通,第二冷凝器还有浓溶液管路经第二吸收器与新增分汽室连 通, 新增分汽室还有浓溶液管路经新增溶液热交换器与新增吸收器连通; 将分汽室有冷剂蒸 汽通道与冷凝器连通和冷凝器有冷剂液管路经节流阀与蒸发器连通调整为分汽室有冷剂蒸 汽通道与冷凝器连通后冷凝器再有冷剂液管路经节流阀与蒸发器连通——冷凝器用作发生 器之后分汽室向冷凝器提供驱动热介质,将第二发生器有冷剂蒸汽通道与第二冷凝器连通和 第二冷凝器有冷剂液管路经第二节流阀与蒸发器连通调整为第二发生器有冷剂蒸汽通道与 第二冷凝器连通后第二冷凝器再有冷剂液管路经第二节流阀与蒸发器连通——第二冷凝器 用作发生器之后第二发生器向第二冷凝器提供驱动热介质; 冷凝器、第二冷凝器和新增分汽 室分别有冷剂蒸汽通道与新增冷凝器连通,新增冷凝器还有冷剂液管路经新增节流阀与新增 蒸发器连通, 新增蒸发器还有冷剂蒸汽通道与新增吸收器连通, 新增冷凝器还有被加热介质 管路与外部连通, 新增蒸发器还有余热介质管路与外部连通, 形成复合发生第一类吸收式热 泵。
22. 复合发生第一类吸收式热泵, 是在第 21项所述的任一复合发生第一类吸收式热泵 中, 将蒸发器有余热介质管路与外部连通变更为蒸发器有被加热介质管路与外部连通, 形成 复合发生第一类吸收式热泵。
23. 复合发生第一类吸收式热泵, 是在第 21项所述的任一复合发生第一类吸收式热泵 中, 取消节流阔和第二节流阀, 增加新增冷剂液泵和新增第二冷剂液泵, 将蒸发器有余热介 质管路与外部连通变更为蒸发器有驱动热介质管路与外部连通,将分汽室有冷剂蒸汽通道与 冷凝器连通后冷凝器再有冷剂液管路经节流阀与蒸发器连通调整为分汽室有冷剂蒸汽通道 与冷凝器连通后冷凝器再有冷剂液管路经冷剂液泵与蒸发器连通,将第二发生器有冷剂蒸汽 通道与第二冷凝器连通后第二冷凝器再有冷剂液管路经第二节流阀与蒸发器连通调整为第 二发生器有冷剂蒸汽通道与第二冷凝器连通后第二冷凝器再有冷剂液管路经第二冷剂液泵 与蒸发器连通, 形成复合发生第一类吸收式热泵。
24. 复合发生第一类吸收式热泵, 是在第 3-4项所述的任一复合发生第一类吸收式热 泵中, 增加新增吸收器、 新增溶液泵、 新增溶液热交换器、 新增冷凝器、 新增节流闽、 新增 蒸发器和新增分汽室, 取消冷凝器和第二吸收器分别与外部连通的被加热介质管路, 新增吸 收器有稀溶液管路经新增溶液泵和新增溶液热交换器与冷凝器连通,冷凝器还有浓溶液管路 经第二吸收器与新增分汽室连通,新增分汽室还有浓溶液管路经新增溶液热交换器与新增吸 收器连通; 将分汽室和第二发生器有冷剂蒸汽通道与冷凝器连通、冷凝器有冷剂液管路经节 流阀与蒸发器连通调整为分汽室和第二发生器有冷剂蒸汽通道与冷凝器连通后冷凝器再有 冷剂液管路经节流阀与蒸发器连通——冷凝器用作发生器之后分汽室和第二发生器共同向 冷凝器提供驱动热介质; 冷凝器和新增分汽室分别有冷剂蒸汽通道与新增冷凝器连通, 新增 冷凝器还有冷剂液管路经新增节流阀与新增蒸发器连通,新增蒸发器还有冷剂蒸汽通道与新 增吸收器连通, 新增冷凝器还有被加热介质管路与外部连通, 新增蒸发器还有余热介质管路 与外部连通, 形成复合发生第一类吸收式热泵。
25. 复合发生第一类吸收式热泵, 是在第 24项所述的任一复合发生第一类吸收式热泵 中, 将蒸发器有余热介质管路与外部连通变更为蒸发器有驱动热介质管路与外部连通, 形成 复合发生第一类吸收式热泵。
26. 复合发生第一类吸收式热泵, 是在第 24项所述的任一复合发生第一类吸收式热泵 中, 取消节流阀, 增加新增冷剂液泵, 将蒸发器有余热介质管路与外部连通变更为蒸发器有 驱动热介质管路与外部连通,将分汽室和第二发生器有冷剂蒸汽通道与冷凝器连通后冷凝器 再有冷剂液管路经节流阀与蒸发器连通调整为分汽室和第二发生器有冷剂蒸汽通道与冷凝 器连通后冷凝器再有冷剂液管路经新增冷剂液泵与蒸发器连通,形成复合发生第一类吸收式 热泵。
27. 复合发生第一类吸收式热泵, 是在第 5-10项所述的任一复合发生第一类吸收式热 泵中, 增加新增吸收器、 新增溶液泵、 新增溶液热交换器、 新增冷凝器、 新增节流阔、 新增 蒸发器和新增分汽室, 取消冷凝器和第二吸收器分别与外部连通的被加热介质管路, 新增吸 收器有稀溶液管路经新增溶液泵和新增溶液热交换器与冷凝器连通,冷凝器还有浓溶液管路 经第二吸收器与新增分汽室连通,新增分汽室还有浓溶液管路经新增溶液热交换器与新增吸 收器连通;将分汽室和第二发生器有冷剂蒸汽通道与第三发生器连通后第三发生器再有冷剂 液管路经第二节流阀与冷凝器连通调整为分汽室和第二发生器有冷剂蒸汽通道与第三发生 器连通后第三发生器再有冷剂液管路经第二节流阀与蒸发器连通,将第三发生器有冷剂蒸汽 通道与冷凝器连通、冷凝器有冷剂液管路经节流阔与蒸发器连通调整为第三发生器有冷剂蒸 汽通道与冷凝器连通后冷凝器再有冷剂液管路经节流阀与蒸发器连通——冷凝器用作发生 器之后第三发生器向冷凝器提供驱动热介质;冷凝器和新增分汽室分别有冷剂蒸汽通道与新 增冷凝器连通, 新增冷凝器还有冷剂液管路经新增节流阀与新增蒸发器连通, 新增蒸发器还 有冷剂蒸汽通道与新增吸收器连通, 新增冷凝器还有被加热介质管路与外部连通, 新增蒸发 器还有余热介质管路与外部连通, 形成复合发生第一类吸收式热泵。
28. 复合发生第一类吸收式热泵, 是在第 27项所述的任一复合发生第一类吸收式热泵 中, 将蒸发器有余热介质管路与外部连通变更为蒸发器有驱动热介质管路与外部连通, 形成 复合发生第一类吸收式热泵。
29. 复合发生第一类吸收式热泵, 是在第 27项所述的任一复合发生第一类吸收式热泵 中, 取消节流阀, 增加新增冷剂液泵, 将蒸发器有余热介质管路与外部连通变更为蒸发器有 驱动热介质管路与外部连通,将第三发生器有冷剂蒸汽通道与冷凝器连通后冷凝器再有冷剂 液管路经节流阔与蒸发器连通调整为第三发生器有冷剂蒸汽通道与冷凝器连通后冷凝器再 有冷剂液管路经新增冷剂液泵与蒸发器连通, 形成复合发生第一类吸收式热泵。
30. 复合发生第一类吸收式热泵, 是在第 27项所述的任一复合发生第一类吸收式热泵 中, 取消节流阀和第二节流阀, 增加新增冷剂液泵和新增第二冷剂液泵, 将蒸发器有余热介 质管路与外部连通变更为蒸发器有驱动热介质管路与外部连通,将第三发生器有冷剂蒸汽通 道与冷凝器连通后冷凝器再有冷剂液管路经节流阀与蒸发器连通调整为第三发生器有冷剂 蒸汽通道与冷凝器连通后冷凝器再有冷剂液管路经新增冷剂液泵与蒸发器连通,将分汽室和 第二发生器有冷剂蒸汽通道与第三发生器连通后第三发生器再有冷剂液管路经第二节流阀 与蒸发器连通调整为分汽室和第二发生器有冷剂蒸汽通道与第三发生器连通后第三发生器 再有冷剂液管路经新增第二冷剂液泵与蒸发器连通, 形成复合发生第一类吸收式热泵。 下面以图 1所示的复合发生第一类吸收式热泵来进一步说明本发明:
在图 1所示的复合发生第一类吸收式热泵中, 两个发生过程来完成对来自第二吸收器 4 稀溶液浓度提升, 其一是由第二发生器 2完成, 其二是由发生器 1、 吸收器 3并结合分汽室 15 完成; 前者为传统的单效发生流程, 后者为发生与吸收相结合的双效发生流程; 两发生 过程之间的比例可调节。 这带来如下优势:
(1)可实现传热温差的充分利用, 对应循环的热力学完善度得到保障。
(2)能够分段实现对驱动热的合理利用, 提高驱动热和余热的利用率。
(3)热力学参数平滑变化, 供热参数可调节, 能够较好地适应工况变化, 得到较高的性能 指数和热力学完善度。
附图说明:
图 1是依据本发明所提供的复合发生第一类吸收式热泵第 1种结构和流程示意图。 图 2是依据本发明所提供的复合发生第一类吸收式热泵第 2种结构和流程示意图。 图 3是依据本发明所提供的复合发生第一类吸收式热泵第 3种结构和流程示意图。 图 4是依据本发明所提供的复合发生第一类吸收式热泵第 4种结构和流程示意图。 图 5是依据本发明所提供的复合发生第一类吸收式热泵第 5种结构和流程示意图。 图 6是依据本发明所提供的复合发生第一类吸收式热泵第 6种结构和流程示意图。 图 7是依据本发明所提供的复合发生第一类吸收式热泵第 7种结构和流程示意图。 图 8是依据本发明所提供的复合发生第一类吸收式热泵第 8种结构和流程示意图。 图 9是依据本发明所提供的复合发生第一类吸收式热泵第 9种结构和流程示意图。 图 10是依据本发明所提供的复合发生第一类吸收式热泵第 10种结构和流程示意图。 图 11是依据本发明所提供的复合发生第一类吸收式热泵第 11种结构和流程示意图。 图 12是依据本发明所提供的复合发生第一类吸收式热泵第 12种结构和流程示意图。 图 13是依据本发明所提供的复合发生第一类吸收式热泵第 13种结构和流程示意图。 图 14是依据本发明所提供的复合发生第一类吸收式热泵第 14种结构和流程示意图。 图 15是依据本发明所提供的复合发生第一类吸收式热泵第 15种结构和流程示意图。 图 16是依据本发明所提供的复合发生第一类吸收式热泵第 16种结构和流程示意图。 图中, 1一发生器, 2—第二发生器, 3—吸收器, 4一第二吸收器, 5—冷凝器, 6—第二 冷凝器, 7—蒸发器, 8—溶液泵, 9一第二溶液泵, 10—溶液节流阀, 11一第二溶液节流阀, 12—节流阀, 13—第二节流阀, 14一溶液热交换器, 15—分汽室, 16—第二溶液热交换器, 17—第三发生器, 18—第三溶液热交换器, 19一第三溶液泵, 20—第三吸收器; A—新增发 生器, B—新增吸收器, C一新增溶液泵, D~新增溶液热交换器, E—新增冷凝器, F—新增 节流阀, G—新增蒸发器, H—新增分汽室, I一新增溶液泵, J一新增第二冷剂液泵。
具体实施方式:
首先要说明的是, 在结构和流程的表述上, 非必要情况下不重复进行; 对显而易见的流 程不作表述。 下面结合附图和实例来详细描述本发明。
图 1所示的复合发生第一类吸收式热泵是这样实现的: ①结构上, 它主要由发生器、第二发生器、吸收器、第二吸收器、冷凝器、第二冷凝器、 蒸发器、 溶液泵、 第二溶液泵、 溶液节流阀、 第二溶液节流阀、 节流阀、 第二节流阀、 溶液 热交换器和分汽室所组成; 第二吸收器 4有稀溶液管路经第二溶液泵 9和溶液热交换器 14 与吸收器 3连通, 吸收器 3还有稀溶液管路经溶液节流阀 10与第二发生器 2连通, 第二发 生器 2还有浓溶液管路经溶液泵 8与发生器 1连通,发生器 1还有浓溶液管路经第二溶液节 流阀 11和吸收器 3与分汽室 15连通,分汽室 15还有浓溶液管路经溶液热交换器 14与第二 吸收器 4连通, 发生器 1还有冷剂蒸汽通道与吸收器 3连通, 分汽室 15还有冷剂蒸汽通道 与冷凝器 5连通, 第二发生器 2还有冷剂蒸汽通道与第二冷凝器 6连通, 冷凝器 5还有冷剂 液管路经节流阀 12与蒸发器 7连通,第二冷凝器 6还有冷剂液管路经第二节流阔 13与蒸发 器 7连通, 蒸发器 7还有冷剂蒸汽通道与第二吸收器 4连通, 发生器 1和第二发生器 2还分 别有驱动热介质管路与外部连通, 第二吸收器 4、 冷凝器 5和第二冷凝器 6还分别有被加热 介质管路与外部连通, 蒸发器 7还有余热介质管路与外部连通。
②流程上, 第二吸收器 4的稀溶液经第二溶液泵 9和溶液热交换器 14进入吸收器 3、 吸收冷剂蒸汽并放热于流经其内的溶液, 吸收器 3的稀溶液经溶液节流阀 10节流降压进入 第二发生器 2, 驱动热介质流经第二发生器 2、 加热进入其内的溶液释放并向第二冷凝器 6 提供冷剂蒸汽, 第二发生器 2的浓溶液经溶液泵 8进入发生器 1, 驱动热介质流经发生器 1、 加热进入其内的溶液释放并向吸收器 3提供冷剂蒸汽,发生器 1的浓溶液经第二溶液节流阀 11节流降压之后流经吸收器 3、 吸热部分汽化后进入分汽室 15, 分汽室 15的冷剂蒸汽进入 冷凝器 5, 分汽室 15的浓溶液经溶液热交换器 14进入第二吸收器 4、 吸收冷剂蒸汽并放热 于被加热介质; 冷凝器 5的冷剂蒸汽放热于被加热介质成冷剂液, 冷凝器 5的冷剂液经节流 阀 12节流进入蒸发器 7, 第二冷凝器 6的冷剂蒸汽放热于被加热介质成冷剂液, 第二冷凝 器 6的冷剂液经第二节流阀 13节流进入蒸发器 7, 蒸发器 7的冷剂液吸收余热成冷剂蒸汽 并向第二吸收器 4提供, 形成复合发生第一类吸收式热泵。
图 2所示的复合发生第一类吸收式热泵是这样实现的:
①结构上, 它主要由发生器、第二发生器、吸收器、第二吸收器、冷凝器、第二冷凝器、 蒸发器、 溶液泵、 第二溶液泵、 溶液节流阀、 节流阀、 第二节流阀、 溶液热交换器、 第二溶 液热交换器和分汽室所组成; 第二吸收器 4有稀溶液管路经第二溶液泵 9和溶液热交换器 14与吸收器 3连通, 吸收器 3还有稀溶液管路经溶液节流阀 10与第二发生器 2连通, 第二 发生器 2还有浓溶液管路经溶液泵 8和第二溶液热交换器 16与发生器 1连通, 发生器 1还 有浓溶液管路经第二溶液热交换器 16和吸收器 3与分汽室 15连通, 分汽室 15还有浓溶液 管路经溶液热交换器 14与第二吸收器 4连通,发生器 1还有冷剂蒸汽通道与吸收器 3连通, 分汽室 15还有冷剂蒸汽通道与冷凝器 5连通, 第二发生器 2还有冷剂蒸汽通道与第二冷凝 器 6连通, 冷凝器 5还有冷剂液管路经节流阀 12与蒸发器 7连通, 第二冷凝器 6还有冷剂 液管路经第二节流阀 13与蒸发器 7连通,蒸发器 7还有冷剂蒸汽通道与第二吸收器 4连通, 发生器 1和第二发生器 2还分别有驱动热介质管路与外部连通, 第二吸收器 4、 冷凝器 5和 第二冷凝器 6还分别有被加热介质管路与外部连通,蒸发器 7还有余热介质管路与外部连通。
②流程上, 第二吸收器 4的稀溶液经第二溶液泵 9和溶液热交换器 14进入吸收器 3、 吸收冷剂蒸汽并放热于流经其内的溶液, 吸收器 3的稀溶液经溶液节流阀 10节流降压进入 第二发生器 2, 驱动热介质流经第二发生器 2、 加热进入其内的溶液释放并向第二冷凝器 6 提供冷剂蒸汽, 第二发生器 2的浓溶液经溶液泵 8和第二溶液热交换器 16进入发生器 1, 驱动热介质流经发生器 1、 加热进入其内的溶液释放并向吸收器 3提供冷剂蒸汽, 发生器 1 的浓溶液经第二溶液热交换器换热降压之后流经吸收器 3、 吸热部分汽化后进入分汽室 15, 分汽室 15的冷剂蒸汽进入冷凝器 5, 分汽室 15的浓溶液经溶液热交换器 14进入第二吸收 器 4、吸收冷剂蒸汽并放热于被加热介质;冷凝器 5的冷剂蒸汽放热于被加热介质成冷剂液, 冷凝器 5的冷剂液经节流阀 12节流进入蒸发器 7, 第二冷凝器 6的冷剂蒸汽放热于被加热 介质成冷剂液, 第二冷凝器 6的冷剂液经第二节流阀 13节流进入蒸发器 7, 蒸发器 7的冷 剂液吸收余热成冷剂蒸汽并向第二吸收器 4提供, 形成复合发生第一类吸收式热泵。
图 3所示的复合发生第一类吸收式热泵是这样实现的:
在图 1所示的复合发生第一类吸收式热泵中, 取消第二冷凝器和第二节流阀, 将第二发 生器 2有冷剂蒸汽通道与第二冷凝器 6连通调整为第二发生器 2有冷剂蒸汽通道与冷凝器 5, 形成复合发生第一类吸收式热泵。
图 4所示的复合发生第一类吸收式热泵是这样实现的:
①结构上, 在图 3所示的复合发生第一类吸收式热泵中, 增加第二节流阀、 第三发生器 和第二溶液热交换器, 第二溶液泵 9增设稀溶液管路经第二溶液热交换器 16与第三发生器 17连通, 第三发生器 17还有浓溶液管路经第二溶液热交换器 16与第二吸收器 4连通, 将 第二发生器 2和分汽室 15有冷剂蒸汽通道与冷凝器 5连通调整为第二发生器 2和分汽室 15 有冷剂蒸汽通道与第三发生器 17连通后第三发生器 17再有冷剂液管路经第二节流阀 13与 冷凝器 5连通, 第三发生器 17还有冷剂蒸汽通道与冷凝器 5连通。
②流程上,第二吸收器 4的稀溶液经第二溶液泵 9之后分成两路——第一路经溶液热交 换器 14进入吸收器 3, 第二路经第二溶液热交换器 16进入第三发生器 17; 第二发生器 2和 分汽室 15的冷剂蒸汽提供给第三发生器 17作驱动热介质, 冷剂蒸汽流经第三发生器 17、 加热进入其内的溶液释放并向冷凝器 5提供冷剂蒸汽, 第三发生器 17的浓溶液经第二溶液 热交换器 16进入第二吸收器 4, 流经第三发生器 17的冷剂蒸汽放热成冷剂液、 再经第二节 流阀 13节流进入冷凝器 5, 形成复合发生第一类吸收式热泵。
图 5所示的复合发生第一类吸收式热泵是这样实现的:
①结构上, 在图 3所示的复合发生第一类吸收式热泵中, 增加第二节流阀、 第三发生器 和第二溶液热交换器, 将第二溶液泵 9有稀溶液管路经溶液热交换器 14与吸收器 3连通调 整为第二溶液泵 9有稀溶液管路经第二溶液热交换器 16和溶液热交换器 14与吸收器 3连通, 将分汽室 15有浓溶液管路经溶液热交换器 14与第二吸收器 4连通调整为分汽室 15有浓溶 液管路经溶液热交换器 14与第三发生器 17连通, 第三发生器 17再有浓溶液管路经第二溶 液热交换器 16与第二吸收器 4连通,将第二发生器 2和分汽室 15有冷剂蒸汽通道与冷凝器 5连通调整为第二发生器 2和分汽室 15有冷剂蒸汽通道与第三发生器 17连通后第三发生器 17再有冷剂液管路经第二节流阀 13与冷凝器 5连通, 第三发生器 17还有冷剂蒸汽通道与 冷凝器 5连通。 ②流程上, 第二吸收器 4的稀溶液经第二溶液泵 9、 第二溶液热交换器 16和溶液热交 换器 14进入吸收器 3, 分汽室 15的浓溶液经溶液热交换器 14进入第三发生器 17, 第二发 生器 2和分汽室 15的冷剂蒸汽提供给第三发生器 17作驱动热介质,冷剂蒸汽流经第三发生 器 17、 加热进入其内的溶液释放并向冷凝器 5提供冷剂蒸汽, 第三发生器 17的浓溶液经第 二溶液热交换器 16进入第二吸收器 4, 流经第三发生器 17的冷剂蒸汽放热成冷剂液、 再经 第二节流阀 13节流进入冷凝器 5, 形成复合发生第一类吸收式热泵。
图 6所示的复合发生第一类吸收式热泵是这样实现的. -
①结构上,在图 2所示的复合发生第一类吸收式热泵中,取消第二冷凝器和第二节流阀, 将第二发生器 2有冷剂蒸汽通道与第二冷凝器 6连通调整为第二发生器 2有冷剂蒸汽通道与 冷凝器 5连通; 增加第二节流阔、 第三发生器、 第三溶液热交换器和第三溶液泵, 将第二溶 液泵 9有稀溶液管路经溶液热交换器 14与吸收器 3连通调整为第二溶液泵 9有稀溶液管路 经第三溶液热交换器 18与第三发生器 17连通, 第三发生器 17再有浓溶液管路经第三溶液 泵 19和溶液热交换器 14与吸收器 3连通,将分汽室 15有浓溶液管路经溶液热交换器 14与 第二吸收器 4连通调整为分汽室 15有浓溶液管路经溶液热交换器 14和第三溶液热交换器 18与第二吸收器 4连通, 将第二发生器 2和分汽室 15有冷剂蒸汽通道与冷凝器 5连通调整 为第二发生器 2和分汽室 15有冷剂蒸汽逋道与第三发生器 17连通后第三发生器 17再有冷 剂液管路经第二节流阀 13与冷凝器 5连通,第三发生器 17还有冷剂蒸汽通道与冷凝器 5连 通。
②流程上, 第二发生器 2和分汽室 15的冷剂蒸汽提供给第三发生器 17作驱动热介质, 第二吸收器 4的稀溶液经第二溶液泵 9和第三溶液热交换器 18进入第三发生器 17, 冷剂蒸 汽流经第三发生器 17、 加热进入其内的溶液释放并向冷凝器 5提供冷剂蒸汽, 流经第三发 生器 17的冷剂蒸汽放热成冷剂液、 再经第二节流阀 13节流进入冷凝器 5, 第三发生器 17 的浓溶液经第三溶液泵 19和溶液热交换器 14进入吸收器 3, 分汽室 15的浓溶液经溶液热 交换器 14和第三溶液热交换器 18进入第二吸收器 4, 形成复合发生第一类吸收式热泵。
图 7所示的复合发生第一类吸收式热泵是这样实现的:
①结构上,在图 1所示的复合发生第一类吸收式热泵中,增加第三发生器、第三吸收器、 第三溶液泵和第二溶液热交换器, 将第二溶液泵 9有稀溶液管路经溶液热交换器 与吸收 器 3连通调整为第二溶液泵 9有稀溶液管路经第二溶液热交换器 16与第三吸收器 20连通, 第三吸收器 20再有稀溶液管路经第三溶液泵 19和溶液热交换器 14与吸收器 3连通, 将分 汽室 15有浓溶液管路经溶液热交换器 14与第二吸收器 4连通调整为分汽室 15有浓溶液管 路经溶液热交换器 14与第三发生器 17连通, 第三发生器 17再有浓溶液管路经第二溶液热 交换器 16与第二吸收器 4连通, 第三发生器 17还有冷剂蒸汽通道与第三吸收器 20连通, 第三发生器 17还有驱动热介质管路与外部连通,第三吸收器 20还有被加热介质管路与外部 连通。
②流程上, 第二吸收器 4的稀溶液经第二溶液泵 9和第二溶液热交换器 16进入第三吸 收器 20、 吸收冷剂蒸汽并放热于被加热介质, 第三吸收器 20的稀溶液经第三溶液泵 19和 溶液热交换器 14进入吸收器 3;分汽室 15的浓溶液经溶液热交换器 14进入第三发生器 17, 驱动热介质流经第三发生器 17、加热进入其内的溶液释放并向第三吸收器 20提供冷剂蒸汽, 第三发生器 17的浓溶液经第二溶液热交换器 16进入第二吸收器 4, 形成复合发生第一类吸 收式热泵。
图 8所示的复合发生第一类吸收式热泵是这样实现的:
①结构上,在图 1所示的复合发生第一类吸收式热泵中,增加新增发生器、新增吸收器、 新增溶液泵和新增溶液热交换器,将第二发生器 2有冷剂蒸汽通道与第二冷凝器 6连通调整 为第二发生器 2有冷剂蒸汽通道与新增吸收器 B连通,新增吸收器 B还有稀溶液管路经新增 溶液泵 C和新增溶液热交换器 D与新增发生器 A连通,新增发生器 A还有浓溶液管路经新增 溶液热交换器 D与新增吸收器 B连通,新增发生器 A还有冷剂蒸汽通道与第二冷凝器 6连通, 新增发生器 A还有驱动热介质管路与外部连通,新增吸收器 B还有被加热介质管路与外部连 通。
②流程上, 第二发生器 2产生的冷剂蒸汽进入新增吸收器 B、 被浓溶液吸收并放热于被 加热介质,新增吸收器 B的稀溶液经新增溶液泵 C和新增溶液热交换器 D进入新增发生器 A, 驱动热介质流经新增发生器 A、 加热进入其内的溶液释放并向第二冷凝器 6提供冷剂蒸汽, 新增发生器 A的浓溶液经新增溶液热交换器 D进入新增吸收器 B, 形成复合发生第一类吸收 式热泵。
图 9所示的复合发生第一类吸收式热泵是这样实现的:
①结构上,在图 1所示的复合发生第一类吸收式热泵中,增加新增发生器、新增吸收器、 新增溶液泵、 新增溶液热交换器、 新增冷凝器和新增节流阀, 第二发生器 2增设冷剂蒸汽通 道与新增吸收器 B连通,新增吸收器 B还有稀溶液管路经新增溶液泵 C和新增溶液热交换器 D与新增发生器 A连通, 新增发生器 A还有浓溶液管路经新增溶液热交换器 D与新增吸收器 B连通, 新增发生器 A还有冷剂蒸汽通道与新增冷凝器 E连通, 新增冷凝器 E还有冷剂液管 路经新增节流阀 F与第二冷凝器 6连通, 新增发生器 A还有驱动热介质管路与外部连通, 新 增吸收器 B和新增冷凝器 E还分别有被加热介质管路与外部连通。
②流程上, 第二发生器 2产生的冷剂蒸汽分别进入新增吸收器 B和第二冷凝器 6, 进入 新增吸收器 B的冷剂蒸汽被浓溶液吸收并放热于被加热介质,新增吸收器 B的稀溶液经新增 溶液泵 C和新增溶液热交换器 D进入新增发生器八, 驱动热介质流经新增发生器 A、 加热进 入其内的溶液释放并向新增冷凝器 E提供冷剂蒸汽,新增发生器 A的浓溶液经新增溶液热交 换器 D进入新增吸收器 B, 新增冷凝器 E的冷剂蒸汽放热于被加热介质成冷剂液, 新增冷凝 器 E的冷剂液经新增节流阀 F节流迸入第二冷凝器 6, 形成复合发生第一类吸收式热泵。
图 10所示的复合发生第一类吸收式热泵是这样实现的:
①结构上,在图 1所示的复合发生第一类吸收式热泵中,增加新增发生器、新增吸收器、 新增溶液泵和新增溶液热交换器, 将分汽室 15有冷剂蒸汽通道与冷凝器 5连通调整为分汽 室 15有冷剂蒸汽通道与新增吸收器 B连通, 新增吸收器 B还有稀溶液管路经新增溶液泵 C 和新增溶液热交换器 D与新增发生器 A连通,新增发生器 A还有浓溶液管路经新增溶液热交 换器 D与新增吸收器 B连通, 新增发生器 A还有冷剂蒸汽通道与冷凝器 5连通, 新增发生器 A还有驱动热介质管路与外部连通, 新增吸收器 B还有被加热介质管路与外部连通。 ②流程上, 分汽室 15释放的冷剂蒸汽迸入新增吸收器 B、 被浓溶液吸收并放热于被加 热介质, 新增吸收器 B的稀溶液经新增溶液泵 C和新增溶液热交换器 D进入新增发生器 A, 驱动热介质流经新增发生器 A、 加热进入其内的溶液释放并向冷凝器 5提供冷剂蒸汽, 新增 发生器 A的浓溶液经新增溶液热交换器 D进入新增吸收器 B, 形成复合发生第一类吸收式热 泵。
图 11所示的复合发生第一类吸收式热泵是这样实现的:
①结构上,在图 1所示的复合发生第一类吸收式热泵中,取消第二冷凝器和第二节流阀, 增加新增发生器、 新增吸收器、 新增溶液泵和新增溶液热交换器, 将分汽室 15有冷剂蒸汽 通道与冷凝器 5连通调整为分汽室 15有冷剂蒸汽通道与新增吸收器 B连通, 将第二发生器 2有冷剂蒸汽通道与第二冷凝器 6连通调整为第二发生器 2有冷剂蒸汽通道与新增吸收器 B 连通, 新增吸收器 B还有稀溶液管路经新增溶液泵 C和新增溶液热交换器 D与新增发生器 A 连通, 新增发生器 A还有浓溶液管路经新增溶液热交换器 D与新增吸收器 B连通, 新增发生 器 A还有冷剂蒸汽通道与冷凝器 5连通, 新增发生器 A还有驱动热介质管路与外部连通, 新 增吸收器 B还有被加热介质管路与外部连通。
②流程上, 第二发生器 2和分汽室 15释放的冷剂蒸汽进入新增吸收器 B、 被浓溶液吸 收并放热于被加热介质,新增吸收器 B的稀溶液经新增溶液泵 C和新增溶液热交换器 D进入 新增发生器 A, 驱动热介质流经新增发生器 A、 加热进入其内的溶液释放并向冷凝器 5提供 冷剂蒸汽, 新增发生器 A的浓溶液经新增溶液热交换器!)进入新增吸收器^ 形成复合发生 第一类吸收式热泵。
图 12所示的复合发生第一类吸收式热泵是这样实现的:
①结构上,在图 1所示的复合发生第一类吸收式热泵中,增加新增发生器、新增吸收器、 新增溶液泵和新增溶液热交换器,将蒸发器 7有冷剂蒸汽通道与第二吸收器 4连通调整为蒸 发器 7有冷剂蒸汽通道与新增吸收器 B连通, 新增吸收器 B还有稀溶液管路经新增溶液泵 C 和新增溶液热交换器 D与新增发生器 A连通,新增发生器 A还有浓溶液管路经新增溶液热交 换器 D与新增吸收器 B连通, 新增发生器 A还有冷剂蒸汽通道与第二吸收器 4连通, 新增发 生器 A还有驱动热介质管路与外部连通, 新增吸收器 B还有被加热介质管路与外部连通。
②流程上,蒸发器 7的冷剂蒸汽进入新增吸收器 B、被浓溶液吸收并放热于被加热介质, 新增吸收器 B的稀溶液经新增溶液泵 C和新增溶液热交换器 D进入新增发生器 A, 驱动热介 质流经新增发生器 A、 加热进入其内的溶液释放并向第二吸收器 4提供冷剂蒸汽, 新增发生 器 A的浓溶液经新增溶液热交换器 D进入新增吸收器 B, 形成复合发生第一类吸收式热泵。
图 13所示的复合发生第一类吸收式热泵是这样实现的-
①结构上,在图 1所示的复合发生第一类吸收式热泵中,增加新增吸收器、新增溶液泵、 新增溶液热交换器、 新增冷凝器、 新增节流阀、 新增蒸发器和新增分汽室, 取消冷凝器 5、 第二冷凝器 6和第二吸收器 4分别与外部连通的被加热介质管路,新增吸收器 B有稀溶液管 路经新增溶液泵 C和新增溶液热交换器 D与冷凝器 5连通,冷凝器 5还有浓溶液管路与第二 冷凝器 6连通, 第二冷凝器 6还有浓溶液管路经第二吸收器 4与新增分汽室 H连通, 新增分 汽室 H还有浓溶液管路经新增溶液热交换器 D与新增吸收器 B连通; 将分汽室 15有冷剂蒸 汽通道与冷凝器 5连通和冷凝器 5有冷剂液管路经节流阀 12与蒸发器 7连通调整为分汽室 15有冷剂蒸汽通道与冷凝器 5连通后冷凝器 5再有冷剂液管路经节流阀 12与蒸发器 7连通, 将第二发生器 2有冷剂蒸汽通道与第二冷凝器 6连通和第二冷凝器 6有冷剂液管路经第二节 流阀 13与蒸发器 7连通调整为第二发生器 2有冷剂蒸汽通道与第二冷凝器 6连通后第二冷 凝器 6再有冷剂液管路经第二节流阀 13与蒸发器 7连通; 冷凝器 5、 第二冷凝器 6和新增 分汽室 H分别有冷剂蒸汽通道与新增冷凝器 E连通,新增冷凝器 E还有冷剂液管路经新增节 流阀 F与新增蒸发器 G连通, 新增蒸发器 G还有冷剂蒸汽通道与新增吸收器 B连通, 新增冷 凝器 E还有被加热介质管路与外部连通, 新增蒸发器 G还有余热介质管路与外部连通。
②流程上,新增吸收器 B的稀溶液经新增溶液泵 C和新增溶液热交换器 D进入冷凝器 5, 分汽室 15向冷凝器 5提供冷剂蒸汽作其驱动热介质, 冷剂蒸汽流经冷凝器 5、 加热进入其 内的溶液释放并向新增冷凝器 E提供冷剂蒸汽, 流经冷凝器 5的冷剂蒸汽放热成冷剂液、再 经节流阀 12节流进入蒸发器 7; 冷凝器 5的浓溶液进入第二冷凝器 6, 第二发生器 2向第二 冷凝器 6提供冷剂蒸汽作其驱动热介质, 冷剂蒸汽流经第二冷凝器 6、 加热进入其内的溶液 释放并向新增冷凝器 E提供冷剂蒸汽, 流经第二冷凝器 6的冷剂蒸汽放热成冷剂液、再经第 二节流陶 13节流进入蒸发器 7; 第二冷凝器 6的浓溶液流经第二吸收器 4、吸热部分汽化后 进入新增分汽室 H, 新增分汽室 H的冷剂蒸汽进入新增冷凝器 E, 新增分汽室 H的浓溶液经 新增溶液热交换器 D进入新增吸收器 B、 吸收冷剂蒸汽并放热于被加热介质; 新增冷凝器 E 的冷剂蒸汽放热于被加热介质成冷剂液,新增冷凝器 E的冷剂液经新增节流阀 F节流进入新 增蒸发器6、吸收余热成冷剂蒸汽并向新增吸收器 B提供,形成复合发生第一类吸收式热泵。
图 14所示的复合发生第一类吸收式热泵是这样实现的:
在图 13所示的复合发生第一类吸收式热泵中, 取消节流阀和第二节流阀, 增加新增冷 剂液泵和新增第二冷剂液泵,将蒸发器 7有余热介质管路与外部连通变更为蒸发器 7有驱动 热介质管路与外部连通, 将分汽室 15有冷剂蒸汽通道与冷凝器 5连通后冷凝器 5再有冷剂 液管路经节流阀 12与蒸发器 7连通调整为分汽室 15有冷剂蒸汽通道与冷凝器 5连通后冷凝 器 5再有冷剂液管路经冷剂液泵 I与蒸发器 7连通,将第二发生器 2有冷剂蒸汽通道与第二 冷凝器 6连通后第二冷凝器 6再有冷剂液管路经第二节流阀 13与蒸发器 7连通调整为第二 发生器 2有冷剂蒸汽通道与第二冷凝器 6连通后第二冷凝器 6再有冷剂液管路经第二冷剂液 泵 J与蒸发器 7连通; 流经冷凝器 5的冷剂蒸汽放热成冷剂液、 再经新增冷剂液泵 I加压进 入蒸发器 7, 流经第二冷凝器 6的冷剂蒸汽放热成冷剂液、 再经新增第二冷剂液泵 J加压进 入蒸发器 7, 蒸发器 7的冷剂液吸热成冷剂蒸汽并向第二吸收器 4提供, 形成复合发生第一 类吸收式热泵。
图 15所示的复合发生第一类吸收式热泵是这样实现的:
①结构上,在图 4所示的复合发生第一类吸收式热泵中,增加新增吸收器、新增溶液泵、 新增溶液热交换器、 新增冷凝器、 新增节流阀、 新增蒸发器和新增分汽室, 取消冷凝器 5和 第二吸收器 4分别与外部连通的被加热介质管路,新增吸收器 B有稀溶液管路经新增溶液泵 C和新增溶液热交换器 D与冷凝器 5连通, 冷凝器 5还有浓溶液管路经第二吸收器 4与新增 分汽室 H连通, 新增分汽室 H还有浓溶液管路经新增溶液热交换器 D与新增吸收器 B连通; 将分汽室 15和第二发生器 2有冷剂蒸汽通道与第三发生器 17连通后第三发生器 17再有冷 剂液管路经第二节流阀 13与冷凝器 5连通调整为分汽室 15和第二发生器 2有冷剂蒸汽通道 与第三发生器 17连通后第三发生器 17再有冷剂液管路经第二节流阀 13与蒸发器 7连通, 将第三发生器 17有冷剂蒸汽通道与冷凝器 5连通、冷凝器 5有冷剂液管路经节流阀 12与蒸 发器 7连通调整为第三发生器 17有冷剂蒸汽通道与冷凝器 5连通后冷凝器 5再有冷剂液管 路经节流阀 12与蒸发器 7连通; 冷凝器 5和新增分汽室 H分别有冷剂蒸汽通道与新增冷凝 器 E连通, 新增冷凝器 E还有冷剂液管路经新增节流阀 F与新增蒸发器 G连通, 新增蒸发器 G还有冷剂蒸汽通道与新增吸收器 B连通, 新增冷凝器 E还有被加热介质管路与外部连通, 新增蒸发器 G还有余热介质管路与外部连通。
②流程上,新增吸收器 B的稀溶液经新增溶液泵 C和新增溶液热交换器 D进入冷凝器 5, 第三发生器 17向冷凝器 5提供冷剂蒸汽作其驱动热介质, 冷剂蒸汽流经冷凝器 5、 加热进 入其内的溶液释放并向新增冷凝器 E提供冷剂蒸汽,流经冷凝器 5的冷剂蒸汽放热成冷剂液、 再经节流阀 12节流进入蒸发器 7; 冷凝器 5的浓溶液流经第二吸收器 4、吸热部分汽化后进 入新增分汽室 H, 新增分汽室 H的冷剂蒸汽进入新增冷凝器 E, 新增分汽室 H的浓溶液经新 增溶液热交换器 D进入新增吸收器8、 吸收冷剂蒸汽并放热于被加热介质; 新增冷凝器 E的 冷剂蒸汽放热于被加热介质成冷剂液,新增冷凝器 E的冷剂液经新增节流阀 F节流进入新增 蒸发器 G、 吸收余热成冷剂蒸汽并向新增吸收器 B提供, 形成复合发生第一类吸收式热泵。
图 16所示的复合发生第一类吸收式热泵是这样实现的- 在图 15所示的复合发生第一类吸收式热泵中, 取消节流阀, 增加新增冷剂液泵, 将蒸 发器 7有余热介质管路与外部连通变更为蒸发器 7有驱动热介质管路与外部连通,将第三发 生器 17有冷剂蒸汽通道与冷凝器 5连通后冷凝器 5再有冷剂液管路经节流阀 12与蒸发器 7 连通调整为第三发生器 17有冷剂蒸汽通道与冷凝器 5连通后冷凝器 5再有冷剂液管路经新 增冷剂液泵 I与蒸发器 7连通; 流经冷凝器 5的冷剂蒸汽放热成冷剂液、再经新增冷剂液泵 I加压进入蒸发器 7, 蒸发器 7的冷剂液吸热成冷剂蒸汽并向第二吸收器 4提供, 形成复合 发生第一类吸收式热泵。
本发明技术可以实现的效果——本发明所提出的复合发生第一类吸收式热泵具有如下 的效果和优势-
(1)包含的由单效和双效构成的复合发生流程,其中的单效发生过程和双效发生过程的比 例可调节, 温差利用充分, 对应循环的热力学完善度得到保障。
(2)能够分段实现对驱动热的合理利用, 提髙驱动热和余热的利用率。
(3)热力学参数平滑变化, 供热参数可调节, 能够较好地适应工况变化, 得到较高的性能 指数和热力学完善度。
(4)具有回热供热端的复合发生第一类吸收式热泵, 可实现第一类驱动温差的充分利用。
(5)分路溶液循环,可采用不同工作溶液,有利于驱动热介质工作参数与循环流程的匹配, 提高温差利用程度。
(6)丰富了第一类吸收式热泵的类型, 扩展了第一类吸收式热泵的应用范围, 有利于更好 地采用第一类吸收式热泵来实现温差利用, 提高能源利用率。

Claims

1. 复合发生第一类吸收式热泵, 主要由发生器、 第二发生器、 吸收器、 第二吸收器、 冷凝器、 第二冷凝器、 蒸发器、 溶液泵、 第二溶液泵、 溶液节流阀、 第二溶液节流阀、 节流 阀、 第二节流阀、 溶液热交换器和分汽室所组成; 第二吸收器 (4) 有稀溶液管路经第二溶 液泵 (9) 和溶液热交换器 (14) 与吸收器 (3) 连通, 吸收器 (3) 还有稀溶液管路经溶液 节流阀 (10) 与第二发生器 (2) 连通, 第二发生器 (2) 还有浓溶液管路经溶液泵 (8) 与 发生器 (1 ) 连通, 发生器 (1 ) 还有浓溶液管路经第二溶液节流阀 (11 ) 和吸收器 (3) 与 分汽室(15) 连通, 分汽室 (15)还有浓溶液管路经溶液热交换器(14) 与第二吸收器(4) 连通, 发生器(1 )还有冷剂蒸汽通道与吸收器 (3)连通, 分汽室(15)还有冷剂蒸汽通道 与冷凝器 (5) 连通, 第二发生器 (2) 还有冷剂蒸汽通道与第二冷凝器 (6) 连通, 冷凝器 (5) 还有冷剂液管路经节流阀 (12) 与蒸发器 (7) 连通, 第二冷凝器 (6) 还有冷剂液管 路经第二节流阀(13)与蒸发器(7)连通, 蒸发器(7)还有冷剂蒸汽通道与第二吸收器(4) 连通,发生器(1 )和第二发生器(2)还分别有驱动热介质管路与外部连通,第二吸收器(4)、 冷凝器 (5) 和第二冷凝器 (6) 还分别有被加热介质管路与外部连通, 蒸发器 (7) 还有余 热介质管路与外部连通, 形成复合发生第一类吸收式热泵。
2. 复合发生第一类吸收式热泵, 主要由发生器、 第二发生器、 吸收器、 第二吸收器、 冷凝器、 第二冷凝器、 蒸发器、 溶液泵、 第二溶液泵、 溶液节流阀、 节流阀、 第二节流阀、 溶液热交换器、 第二溶液热交换器和分汽室所组成; 第二吸收器 (4) 有稀溶液管路经第二 溶液泵 (9) 和溶液热交换器 (14) 与吸收器 (3) 连通, 吸收器 (3) 还有稀溶液管路经溶 液节流阀 (10) 与第二发生器 (2) 连通, 第二发生器 (2) 还有浓溶液管路经溶液泵 (8) 和第二溶液热交换器 (16) 与发生器 (1 )连通, 发生器(1 )还有浓溶液管路经第二溶液热 交换器 (16) 和吸收器 (3) 与分汽室 (15) 连通, 分汽室 (15) 还有浓溶液管路经溶液热 交换器 (14) 与第二吸收器 (4)连通, 发生器 (1 )还有冷剂蒸汽通道与吸收器(3)连通, 分汽室 (15)还有冷剂蒸汽通道与冷凝器(5)连通, 第二发生器(2)还有冷剂蒸汽通道与 第二冷凝器 (6) 连通, 冷凝器 (5) 还有冷剂液管路经节流阀 (12) 与蒸发器 (7) 连通, 第二冷凝器 (6) 还有冷剂液管路经第二节流阀 (13) 与蒸发器 (7) 连通, 蒸发器 (7) 还 有冷剂蒸汽通道与第二吸收器 (4) 连通, 发生器 (1 ) 和第二发生器 (2) 还分别有驱动热 介质管路与外部连通, 第二吸收器(4)、 冷凝器 (5)和第二冷凝器(6)还分别有被加热介 质管路与外部连通, 蒸发器 (7) 还有余热介质管路与外部连通, 形成复合发生第一类吸收 式热泵; 其中, 或增加第二溶液节流阀, 将发生器 (1 ) 有浓溶液管路经第二溶液热交换器
( 16)和吸收器 (3) 与分汽室 (15)连通调整为发生器 (1 ) 有浓溶液管路经第二溶液热交 换器 (16)、 第二溶液节流阀 (11 ) 和吸收器 (3) 与分汽室 (15) 连通。
3. 复合发生第一类吸收式热泵,是在权利要求 1所述的复合发生第一类吸收式热泵中, 取消第二冷凝器和第二节流阀, 将第二发生器(2)有冷剂蒸汽通道与第二冷凝器(6)连通 调整为第二发生器 (2) 有冷剂蒸汽通道与冷凝器 (5), 形成复合发生第一类吸收式热泵。
4. 复合发生第一类吸收式热泵,是在权利要求 2所述的复合发生第一类吸收式热泵中, 取消第二冷凝器和第二节流阀, 将第二发生器 (2)有冷剂蒸汽通道与第二冷凝器(6)连通 调整为第二发生器 (2) 有冷剂蒸汽通道与冷凝器 (5), 形成复合发生第一类吸收式热泵。
5. 复合发生第一类吸收式热泵,是在权利要求 3所述的复合发生第一类吸收式热泵中, 增加第二节流阀、 第三发生器和第二溶液热交换器, 第二溶液泵 (9 ) 增设稀溶液管路经第 二溶液热交换器(16) 与第三发生器(17)连通, 第三发生器 (17)还有浓溶液管路经第二 溶液热交换器 (16) 与第二吸收器 (4) 连通, 将第二发生器 (2) 和分汽室 (15)有冷剂蒸 汽通道与冷凝器(5 )连通调整为第二发生器(2)和分汽室 (15 )有冷剂蒸汽通道与第三发 生器 (17) 连通后第三发生器 (17) 再有冷剂液管路经第二节流阀 (13) 与冷凝器 (5) 连 通, 第三发生器 (17 ) 还有冷剂蒸汽通道与冷凝器 (5) 连通, 形成复合发生第一类吸收式 执冤。
6. 复合发生第一类吸收式热泵,是在权利要求 3所述的复合发生第一类吸收式热泵中, 增加第二节流阀、 第三发生器和第二溶液热交换器, 将第二溶液泵 (9) 有稀溶液管路经溶 液热交换器(14) 与吸收器(3)连通调整为第二溶液泵(9 )有稀溶液管路经第二溶液热交 换器 (16) 和溶液热交换器 (14) 与吸收器 (3) 连通, 将分汽室 (15) 有浓溶液管路经溶 液热交换器 (14) 与第二吸收器 (4) 连通调整为分汽室 (15) 有浓溶液管路经溶液热交换 器(14) 与第三发生器(17)连通, 第三发生器(17) 再有浓溶液管路经第二溶液热交换器
( 16) 与第二吸收器 (4)连通, 将第二发生器(2)和分汽室 (15)有冷剂蒸汽通道与冷凝 器(5)连通调整为第二发生器 (2) 和分汽室(15)有冷剂蒸汽通道与第三发生器(17)连 通后第三发生器 (17 ) 再有冷剂液管路经第二节流阔 ( 13) 与冷凝器 (5) 连通, 第三发生 器 (17) 还有冷剂蒸汽通道与冷凝器 (5) 连通, 形成复合发生第一类吸收式热泵。
7. 复合发生第一类吸收式热泵,是在权利要求 3所述的复合发生第一类吸收式热泵中, 增加第二节流阀、 第三发生器、 第二溶液热交换器和第三溶液泵, 将第二溶液泵 (9) 有稀 溶液管路经溶液热交换器(14) 与吸收器(3)连通调整为第二溶液泵 (9)有稀溶液管路经 第二溶液热交换器(16) 与第三发生器 (17 )连通, 第三发生器 (17) 再有浓溶液管路经第 三溶液泵 (19) 和溶液热交换器 (14) 与吸收器 (3) 连通, 将分汽室 (15) 有浓溶液管路 经溶液热交换器 (14) 与第二吸收器 (4) 连通调整为分汽室 (15) 有浓溶液管路经溶液热 交换器(14) 和第二溶液热交换器 (16) 与第二吸收器 (4) 连通, 将第二发生器 (2) 和分 汽室(15 ) 有冷剂蒸汽通道与冷凝器 (5 )连通调整为第二发生器 (2) 和分汽室(15)有冷 剂蒸汽通道与第三发生器(17)连通后第三发生器(17)再有冷剂液管路经第二节流阀(13 ) 与冷凝器(5)连通, 第三发生器(17)还有冷剂蒸汽通道与冷凝器 (5)连通, 形成复合发 生第一类吸收式热泵。
8. 复合发生第一类吸收式热泵,是在权利要求 4所述的复合发生第一类吸收式热泵中, 增加第二节流阀、 第三发生器和第三溶液热交换器, 第二溶液泵 (9 ) 增设稀溶液管路经第 三溶液热交换器(18) 与第三发生器 (17 ) 连通, 第三发生器(17 )还有浓溶液管路经第三 溶液热交换器 (18) 与第二吸收器 (4) 连通, 将第二发生器 (2)和分汽室 (15 )有冷剂蒸 汽通道与冷凝器(5)连通调整为第二发生器(2)和分汽室(15 )有冷剂蒸汽通道与第三发 生器 (17) 连通后第三发生器 (17) 再有冷剂液管路经第二节流阀 (13) 与冷凝器 (5) 连 通, 第三发生器 (17 ) 还有冷剂蒸汽通道与冷凝器 (5) 连通, 形成复合发生第一类吸收式 热泵。
9. 复合发生第一类吸收式热泵,是在权利要求 4所述的复合发生第一类吸收式热泵中, 增加第二节流阀、 第三发生器和第三溶液热交换器, 将第二溶液泵 (9) 有稀溶液管路经溶 液热交换器(14) 与吸收器(3)连通调整为第二溶液泵 (9)有稀溶液管路经第三溶液热交 换器 (18) 和溶液热交换器 (14) 与吸收器 (3) 连通, 将分汽室 (15) 有浓溶液管路经溶 液热交换器 (14) 与第二吸收器 (4) 连通调整为分汽室 (15) 有浓溶液管路经溶液热交换 器(14) 与第三发生器 (17 )连通, 第三发生器(17 ) 再有浓溶液管路经第三溶液热交换器
( 18) 与第二吸收器 (4)连通, 将第二发生器(2)和分汽室 (15)有冷剂蒸汽通道与冷凝 器(5)连通调整为第二发生器(2)和分汽室 (15) 有冷剂蒸汽通道与第三发生器(17)连 通后第三发生器 (17) 再有冷剂液管路经第二节流阀 (13 ) 与冷凝器 (5) 连通, 第三发生 器 (17) 还有冷剂蒸汽通道与冷凝器 (5 ) 连通, 形成复合发生第一类吸收式热泵。
10. 复合发生第一类吸收式热泵, 是在权利要求 4所述的复合发生第一类吸收式热泵 中, 增加第二节流阀、 第三发生器、 第三溶液热交换器和第三溶液泵, 将第二溶液泵 (9) 有稀溶液管路经溶液热交换器(14) 与吸收器(3)连通调整为第二溶液泵(9)有稀溶液管 路经第三溶液热交换器(18) 与第三发生器 (17 ) 连通, 第三发生器(17) 再有浓溶液管路 经第三溶液泵 (19) 和溶液热交换器 (14) 与吸收器 (3) 连通, 将分汽室 (15) 有浓溶液 管路经溶液热交换器 (14) 与第二吸收器 (4) 连通调整为分汽室 (15) 有浓溶液管路经溶 液热交换器 (14) 和第三溶液热交换器 (18) 与第二吸收器 (4) 连通, 将第二发生器 (2) 和分汽室 (15) 有冷剂蒸汽通道与冷凝器 (5) 连通调整为第二发生器 (2) 和分汽室 (15) 有冷剂蒸汽通道与第三发生器(17)连通后第三发生器(17 )再有冷剂液管路经第二节流阔
( 13) 与冷凝器 (5)连通, 第三发生器 (17) 还有冷剂蒸汽通道与冷凝器 (5)连通, 形成 复合发生第一类吸收式热泵。
11. 复合发生第一类吸收式热泵, 是在权利要求 1 所述的复合发生第一类吸收式热泵 中, 增加第三发生器、 第三吸收器、 第三溶液泵和第二溶液热交换器, 将第二溶液泵 (9) 有稀溶液管路经溶液热交换器(14) 与吸收器(3)连通调整为第二溶液泵 (9)有稀溶液管 路经第二溶液热交换器 (16) 与第三吸收器 (20)连通, 第三吸收器(20) 再有稀溶液管路 经第三溶液泵 (19) 和溶液热交换器 (14) 与吸收器 (3 ) 连通, 将分汽室 (15 ) 有浓溶液 管路经溶液热交换器 (14) 与第二吸收器 (4 ) 连通调整为分汽室 (15) 有浓溶液管路经溶 液热交换器(14) 与第三发生器(17)连通, 第三发生器 (17) 再有浓溶液管路经第二溶液 热交换器 (16) 与第二吸收器 (4 ) 连通, 第三发生器 (17) 还有冷剂蒸汽通道与第三吸收 器(20)连通, 第三发生器(17 )还有驱动热介质管路与外部连通, 第三吸收器(20)还有 被加热介质管路与外部连通, 形成复合发生第一类吸收式热泵。
12. 复合发生第一类吸收式热泵, 是在权利要求 2所述的复合发生第一类吸收式热泵 中, 增加第三发生器、 第三吸收器、 第三溶液泵和第三溶液热交换器, 将第二溶液泵 (9) 有稀溶液管路经溶液热交换器(14) 与吸收器(3 )连通调整为第二溶液泵(9)有稀溶液管 路经第三溶液热交换器(18) 与第三吸收器(20)连通, 第三吸收器(20) 再有稀溶液管路 经第三溶液泵 (19 ) 和溶液热交换器 (14) 与吸收器 (3 ) 连通, 将分汽室 (15 ) 有浓溶液 管路经溶液热交换器 U4) 与第二吸收器 (4) 连通调整为分汽室 (15) 有浓溶液管路经溶 液热交换器(14) 与第三发生器(17)连通, 第三发生器(17) 再有浓溶液管路经第三溶液 热交换器 (18) 与第二吸收器 (4) 连通, 第三发生器 (17 ) 还有冷剂蒸汽通道与第三吸收 器(20)连通, 第三发生器 (17)还有驱动热介质管路与外部连通, 第三吸收器(20)还有 被加热介质管路与外部连通, 形成复合发生第一类吸收式热泵。
13. 复合发生第一类吸收式热泵, 是在权利要求 1-2、 11-12所述的任一复合发生第一 类吸收式热泵中, 增加新增发生器、 新增吸收器、 新增溶液泵和新增溶液热交换器, 将第二 发生器 (2) 有冷剂蒸汽通道与第二冷凝器 (6) 连通调整为第二发生器 (2) 有冷剂蒸汽通 道与新增吸收器 (B) 连通, 新增吸收器 (B) 还有稀溶液管路经新增溶液泵 (C) 和新增溶 液热交换器 (D) 与新增发生器 (A) 连通, 新增发生器 (A) 还有浓溶液管路经新增溶液热 交换器(D)与新增吸收器(B)连通, 新增发生器(A)还有冷剂蒸汽通道与第二冷凝器(6) 连通, 新增发生器 (A)还有驱动热介质管路与外部连通, 新增吸收器(B)还有被加热介质 管路与外部连通, 形成复合发生第一类吸收式热泵。
14. 复合发生第一类吸收式热泵, 是在权利要求 1-2、 11- 12所述的任一复合发生第一 类吸收式热泵中, 增加新增发生器、 新增吸收器、 新增溶液泵、 新增溶液热交换器、 新增冷 凝器和新增节流阀, 第二发生器(2)增设冷剂蒸汽通道与新增吸收器(B)连通, 新增吸收 器(B)还有稀溶液管路经新增溶液泵 (C)和新增溶液热交换器 (D) 与新增发生器(A)连 通, 新增发生器 (A) 还有浓溶液管路经新增溶液热交换器 (D) 与新增吸收器 (B) 连通, 新增发生器 (A) 还有冷剂蒸汽通道与新增冷凝器 (E) 连通, 新增冷凝器 (E) 还有冷剂液 管路经新增节流阀 (F) 与第二冷凝器 (6)或蒸发器 (7)连通, 新增发生器 (A)还有驱动 热介质管路与外部连通, 新增吸收器(B)和新增冷凝器(E)还分别有被加热介质管路与外 部连通, 形成复合发生第一类吸收式热泵。
15. 复合发生第一类吸收式热泵, 是在权利要求 1-2、 11-12所述的任一复合发生第一 类吸收式热泵中, 增加新增发生器、 新增吸收器、 新增溶液泵和新增溶液热交换器, 将分汽 室 (15) 有冷剂蒸汽通道与冷凝器 (5) 连通调整为分汽室 (15) 有冷剂蒸汽通道与新增吸 收器 (B) 连通, 新增吸收器 (B) 还有稀溶液管路经新增溶液泵 (C) 和新增溶液热交换器
(D) 与新增发生器 (A) 连通, 新增发生器 (A) 还有浓溶液管路经新增溶液热交换器 (D) 与新增吸收器 (B) 连通, 新增发生器 (A) 还有冷剂蒸汽通道与冷凝器 (5) 连通, 新增发 生器(A)还有驱动热介质管路与外部连通, 新增吸收器(B)还有被加热介质管路与外部连 通, 形成复合发生第一类吸收式热泵。
16. 复合发生第一类吸收式热泵, 是在权利要求 1-2、 11-12所述的任一复合发生第一 类吸收式热泵中, 增加新增发生器、 新增吸收器、 新增溶液泵、 新增溶液热交换器、 新增冷 凝器和新增节流阔, 分汽室 (15) 增设冷剂蒸汽通道与新增吸收器 (B) 连通, 新增吸收器
(B)还有稀溶液管路经新增溶液泵(C)和新增溶液热交换器(D)与新增发生器(A)连通, 新增发生器 (A) 还有浓溶液管路经新增溶液热交换器 (D) 与新增吸收器 (B) 连通, 新增 发生器 (A) 还有冷剂蒸汽通道与新增冷凝器 (E) 连通, 新增冷凝器 (E) 还有冷剂液管路 经新增节流阀 (F) 与冷凝器 (5 ) 或蒸发器(7)连通, 新增发生器 (A)还有驱动热介质管 路与外部连通, 新增吸收器 (B) 和新增冷凝器 (E) 还分别有被加热介质管路与外部连通, 形成复合发生第一类吸收式热泵。
17. 复合发生第一类吸收式热泵, 是在权利要求 1或权利要求 2所述的复合发生第一 类吸收式热泵中, 取消第二冷凝器和第二节流阀, 增加新增发生器、 新增吸收器、 新增溶液 泵和新增溶液热交换器, 将分汽室 (15) 有冷剂蒸汽通道与冷凝器 (5) 连通调整为分汽室
( 15 )有冷剂蒸汽通道与新增吸收器(B)连通, 将第二发生器(2 )有冷剂蒸汽通道与第二 冷凝器 (6) 连通调整为第二发生器 (2) 有冷剂蒸汽通道与新增吸收器 (B) 连通, 新增吸 收器 (B) 还有稀溶液管路经新增溶液泵 (C) 和新增溶液热交换器 (D) 与新增发生器 (A) 连通, 新增发生器(A)还有浓溶液管路经新增溶液热交换器(D) 与新增吸收器 (B)连通, 新增发生器 (A) 还有冷剂蒸汽通道与冷凝器 (5) 连通, 新增发生器 (A) 还有驱动热介质 管路与外部连通, 新增吸收器 (B) 还有被加热介质管路与外部连通, 形成复合发生第一类 吸收式热泵。
18. 复合发生第一类吸收式热泵, 是在权利要求 1或权利要求 2所述的复合发生第一 类吸收式热泵中, 增加新增发生器、 新增吸收器、 新增溶液泵、 新增溶液热交换器、 新增冷 凝器和新增节流阀, 第二发生器 (2) 和分汽室 (15) 增设冷剂蒸汽通道与新增吸收器 (B) 连通, 新增吸收器 (B) 还有稀溶液管路经新增溶液泵 (C) 和新增溶液热交换器 (D) 与新 增发生器 (A) 连通, 新增发生器 (A) 还有浓溶液管路经新增溶液热交换器 (D) 与新增吸 收器 (B) 连通, 新增发生器 (A) 还有冷剂蒸汽通道与新增冷凝器 (E) 连通, 新增冷凝器
(E)还有冷剂液管路经新增节流阀 (F) 与蒸发器 (7) 连通, 新增发生器(A)还有驱动热 介质管路与外部连通, 新增吸收器(B)和新增冷凝器(E)还分别有被加热介质管路与外部 连通, 形成复合发生第一类吸收式热泵。
19. 复合发生第一类吸收式热泵, 是在权利要求 1-4所述的任一复合发生第一类吸收 式热泵中, 增加新增发生器、 新增吸收器、 新增溶液泵和新增溶液热交换器, 将蒸发器(7) 有冷剂蒸汽通道与第二吸收器(4)连通调整为蒸发器(7)有冷剂蒸汽通道与新增吸收器(B) 连通, 新增吸收器 (B) 还有稀溶液管路经新增溶液泵 (C) 和新增溶液热交换器 (D) 与新 增发生器 (A) 连通, 新增发生器 (A) 还有浓溶液管路经新增溶液热交换器 (D) 与新增吸 收器 (B) 连通, 新增发生器 (A) 还有冷剂蒸汽通道与第二吸收器 (4) 连通, 新增发生器
(A) 还有驱动热介质管路与外部连通, 新增吸收器 (B) 还有被加热介质管路与外部连通, 形成复合发生第一类吸收式热泵。
20. 复合发生第一类吸收式热泵, 是在权利要求 1-4所述的任一复合发生第一类吸收 式热泵中, 增加新增发生器、 新增吸收器、 新增溶液泵、 新增溶液热交换器、 新增冷凝器和 新增节流阀, 将蒸发器 (7) 有冷剂蒸汽通道与第二吸收器 (4) 连通调整为蒸发器 (7 ) 有 冷剂蒸汽通道与新增吸收器(B)连通, 新增吸收器(B)还有稀溶液管路经新增溶液泵(C) 和新增溶液热交换器 (D) 与新增发生器 (A) 连通, 新增发生器 (A) 还有浓溶液管路经新 增溶液热交换器 (D) 与新增吸收器 (B) 连通, 新增发生器 (A) 还有冷剂蒸汽通道分别与 第二吸收器 (4) 和新增冷凝器 (E) 连通, 新增冷凝器 (E) 还有冷剂液管路经新增节流阀 (F) 与蒸发器 (7) 连通, 新增发生器 (A) 还有驱动热介质管路与外部连通, 新增吸收器 (B)和新增冷凝器(E)还分别有被加热介质管路与外部连通, 形成复合发生第一类吸收式 热泵。
21. 复合发生第一类吸收式热泵, 是在权利要求 1或权利要求 2所述的复合发生第一 类吸收式热泵中, 增加新增吸收器、 新增溶液泵、 新增溶液热交换器、 新增冷凝器、 新增节 流阀、 新增蒸发器和新增分汽室, 取消冷凝器(5)、 第二冷凝器 (6)和第二吸收器(4)分 别与外部连通的被加热介质管路, 新增吸收器(B)有稀溶液管路经新增溶液泵(C)和新增 溶液热交换器 (D) 与冷凝器 (5) 连通, 冷凝器 (5)还有浓溶液管路与第二冷凝器(6) 连 通, 第二冷凝器 (6) 还有浓溶液管路经第二吸收器 (4) 与新增分汽室 (H) 连通, 新增分 汽室(H)还有浓溶液管路经新增溶液热交换器(D)与新增吸收器(B)连通; 将分汽室(15) 有冷剂蒸汽通道与冷凝器(5)连通和冷凝器(5 )有冷剂液管路经节流阀(12)与蒸发器(7 ) 连通调整为分汽室 (15)有冷剂蒸汽通道与冷凝器(5)连通后冷凝器(5) 再有冷剂液管路 经节流調 ( 12) 与蒸发器 (7 ) 连通——冷凝器用作发生器之后分汽室向冷凝器提供驱动热 介质, 将第二发生器 (2) 有冷剂蒸汽通道与第二冷凝器 (6) 连通和第二冷凝器 (6) 有冷 剂液管路经第二节流阀 (13) 与蒸发器(7 )连通调整为第二发生器(2 )有冷剂蒸汽通道与 第二冷凝器(6)连通后第二冷凝器(6) 再有冷剂液管路经第二节流阀 (13) 与蒸发器(7) 连通——第二冷凝器用作发生器之后第二发生器向第二冷凝器提供驱动热介质;冷凝器(5 )、 第二冷凝器 (6) 和新增分汽室 (H) 分别有冷剂蒸汽通道与新增冷凝器 (E) 连通, 新增冷 凝器(E)还有冷剂液管路经新增节流阔 (F) 与新增蒸发器 (G) 连通, 新增蒸发器(G)还 有冷剂蒸汽通道与新增吸收器(B)连通, 新增冷凝器(E)还有被加热介质管路与外部连通, 新增蒸发器 (G) 还有余热介质管路与外部连通, 形成复合发生第一类吸收式热泵。
22. 复合发生第一类吸收式热泵,是在权利要求 21所述的任一复合发生第一类吸收式 热泵中, 将蒸发器(7 )有余热介质管路与外部连通变更为蒸发器(7)有被加热介质管路与 外部连通, 形成复合发生第一类吸收式热泵。
23. 复合发生第一类吸收式热泵, 是在权利要求 21所述的任一复合发生第一类吸收式 热泵中, 取消节流阀和第二节流阀, 增加新增冷剂液泵和新增第二冷剂液泵, 将蒸发器(7) 有余热介质管路与外部连通变更为蒸发器(7)有驱动热介质管路与外部连通,将分汽室( 15) 有冷剂蒸汽通道与冷凝器(5)连通后冷凝器(5)再有冷剂液管路经节流阀 (12)与蒸发器
(7) 连通调整为分汽室 (15) 有冷剂蒸汽通道与冷凝器 (5 ) 连通后冷凝器 (5) 再有冷剂 液管路经冷剂液泵 (I ) 与蒸发器 (7 ) 连通, 将第二发生器 (2 ) 有冷剂蒸汽通道与第二冷 凝器 (6) 连通后第二冷凝器 (6) 再有冷剂液管路经第二节流阀 (13) 与蒸发器 (7) 连通 调整为第二发生器 (2 ) 有冷剂蒸汽通道与第二冷凝器 (6) 连通后第二冷凝器 (6) 再有冷 剂液管路经第二冷剂液泵 (J) 与蒸发器 (7) 连通, 形成复合发生第一类吸收式热泵。
24. 复合发生第一类吸收式热泵, 是在权利要求 3-4所述的任一复合发生第一类吸收 式热泵中, 增加新增吸收器、 新增溶液泵、 新增溶液热交换器、 新增冷凝器、 新增节流阀、 新增蒸发器和新增分汽室, 取消冷凝器(5)和第二吸收器(4)分别与外部连通的被加热介 质管路, 新增吸收器 (B) 有稀溶液管路经新增溶液泵 (C) 和新增溶液热交换器 (D) 与冷 凝器 (5) 连通, 冷凝器 (5) 还有浓溶液管路经第二吸收器 (4) 与新增分汽室 (H) 连通, 新增分汽室 (H) 还有浓溶液管路经新增溶液热交换器 (D) 与新增吸收器 (B) 连通; 将分 汽室 (15) 和第二发生器 (2 ) 有冷剂蒸汽通道与冷凝器 (5) 连通、 冷凝器 (5) 有冷剂液 管路经节流阈 ( 12) 与蒸发器(7)连通调整为分汽室(15)和第二发生器(2)有冷剂蒸汽 通道与冷凝器 (5) 连通后冷凝器 (5) 再有冷剂液管路经节流阀 (12 ) 与蒸发器 (7) 连通 ——冷凝器用作发生器之后分汽室和第二发生器共同向冷凝器提供驱动热介质; 冷凝器(5) 和新增分汽室 (H) 分别有冷剂蒸汽通道与新增冷凝器 (E) 连通, 新增冷凝器 (E) 还有冷 剂液管路经新增节流阀 (F) 与新增蒸发器 (G) 连通, 新增蒸发器 (G) 还有冷剂蒸汽通道 与新增吸收器(B)连通, 新增冷凝器(E)还有被加热介质管路与外部连通, 新增蒸发器(G) 还有余热介质管路与外部连通, 形成复合发生第一类吸收式热泵。
25. 复合发生第一类吸收式热泵,是在权利要求 24所述的任一复合发生第一类吸收式 热泵中, 将蒸发器(7 )有余热介质管路与外部连通变更为蒸发器(7)有驱动热介质管路与 外部连通, 形成复合发生第一类吸收式热泵。
26. 复合发生第一类吸收式热泵, 是在权利要求 24所述的任一复合发生第一类吸收式 热泵中, 取消节流阀, 增加新增冷剂液泵, 将蒸发器 (7 ) 有余热介质管路与外部连通变更 为蒸发器(7)有驱动热介质管路与外部连通, 将分汽室 (15)和第二发生器(2)有冷剂蒸 汽通道与冷凝器 (5) 连通后冷凝器 (5) 再有冷剂液管路经节流阀 (12) 与蒸发器 (7 ) 连 通调整为分汽室 (15)和第二发生器(2) 有冷剂蒸汽通道与冷凝器(5)连通后冷凝器(5) 再有冷剂液管路经新增冷剂液泵(I )与蒸发器(7 )连通, 形成复合发生第一类吸收式热泵。
27. 复合发生第一类吸收式热泵, 是在权利要求 5-10所述的任一复合发生第一类吸收 式热泵中, 增加新增吸收器、 新增溶液泵、 新增溶液热交换器、 新增冷凝器、 新增节流阀、 新增蒸发器和新增分汽室, 取消冷凝器(5)和第二吸收器(4)分别与外部连通的被加热介 质管路, 新增吸收器 (B) 有稀溶液管路经新增溶液泵 (C) 和新增溶液热交换器 (D) 与冷 凝器 (5 ) 连通, 冷凝器 (5 ) 还有浓溶液管路经第二吸收器 (4) 与新增分汽室 (H) 连通, 新增分汽室 (H) 还有浓溶液管路经新增溶液热交换器 (D) 与新增吸收器 (B) 连通; 将分 汽室 (15)和第二发生器 (2) 有冷剂蒸汽通道与第三发生器 (17)连通后第三发生器(17) 再有冷剂液管路经第二节流阔 ( 13 ) 与冷凝器 (5) 连通调整为分汽室 (15) 和第二发生器
(2) 有冷剂蒸汽通道与第三发生器 (17) 连通后第三发生器 (17) 再有冷剂液管路经第二 节流阀(13)与蒸发器(7 )连通, 将第三发生器(17 )有冷剂蒸汽通道与冷凝器(5)连通、 冷凝器(5)有冷剂液管路经节流阀 (12) 与蒸发器 (7 )连通调整为第三发生器(17)有冷 剂蒸汽通道与冷凝器 (5)连通后冷凝器 (5 ) 再有冷剂液管路经节流闽 ( 12 ) 与蒸发器(7) 连通——冷凝器用作发生器之后第三发生器向冷凝器提供驱动热介质; 冷凝器 (5) 和新增 分汽室 (H) 分别有冷剂蒸汽通道与新增冷凝器 (E) 连通, 新增冷凝器 (E) 还有冷剂液管 路经新增节流阀 (F) 与新增蒸发器 (G) 连通, 新增蒸发器 (G) 还有冷剂蒸汽通道与新增 吸收器 (B) 连通, 新增冷凝器 (E) 还有被加热介质管路与外部连通, 新增蒸发器 (G) 还 有余热介质管路与外部连通, 形成复合发生第一类吸收式热泵。
28. 复合发生第一类吸收式热泵, 是在权利要求 27所述的任一复合发生第一类吸收式 热泵中, 将蒸发器(7)有余热介质管路与外部连通变更为蒸发器(7)有驱动热介质管路与 外部连通, 形成复合发生第一类吸收式热泵。
29. 复合发生第一类吸收式热泵, 是在权利要求 27所述的任一复合发生第一类吸收式 热泵中, 取消节流阀, 增加新增冷剂液泵, 将蒸发器 (7 ) 有余热介质管路与外部连通变更 为蒸发器 (7 ) 有驱动热介质管路与外部连通, 将第三发生器 (17) 有冷剂蒸汽通道与冷凝 器 (5) 连通后冷凝器 (5) 再有冷剂液管路经节流阀 (12) 与蒸发器 (7) 连通调整为第三 发生器(17)有冷剂蒸汽通道与冷凝器(5)连通后冷凝器(5) 再有冷剂液管路经新增冷剂 液泵 (I ) 与蒸发器 (7 ) 连通, 形成复合发生第一类吸收式热泵。
30. 复合发生第一类吸收式热泵, 是在权利要求 27所述的任一复合发生第一类吸收式 热泵中, 取消节流阀和第二节流阀, 增加新增冷剂液泵和新增第二冷剂液泵, 将蒸发器(7) 有余热介质管路与外部连通变更为蒸发器 (7 ) 有驱动热介质管路与外部连通, 将第三发生 器 (17 ) 有冷剂蒸汽通道与冷凝器 (5) 连通后冷凝器 (5) 再有冷剂液管路经节流阀 (12) 与蒸发器(7)连通调整为第三发生器(17 )有冷剂蒸汽通道与冷凝器(5)连通后冷凝器(5) 再有冷剂液管路经新增冷剂液泵(I )与蒸发器(7)连通, 将分汽室(15)和第二发生器(2) 有冷剂蒸汽通道与第三发生器(17)连通后第三发生器(17 )再有冷剂液管路经第二节流阔
( 13) 与蒸发器(7)连通调整为分汽室 (15) 和第二发生器(2)有冷剂蒸汽通道与第三发 生器(17)连通后第三发生器(17)再有冷剂液管路经新增第二冷剂液泵(J)与蒸发器(7 ) 连通, 形成复合发生第一类吸收式热泵。
PCT/CN2014/000161 2013-02-21 2014-02-19 复合发生第一类吸收式热泵 WO2014127681A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310070645.8 2013-02-21
CN201310070645 2013-02-21

Publications (1)

Publication Number Publication Date
WO2014127681A1 true WO2014127681A1 (zh) 2014-08-28

Family

ID=50859783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000161 WO2014127681A1 (zh) 2013-02-21 2014-02-19 复合发生第一类吸收式热泵

Country Status (2)

Country Link
CN (1) CN103851823B (zh)
WO (1) WO2014127681A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106225309A (zh) * 2015-11-27 2016-12-14 李华玉 第一类热驱动压缩‑吸收式热泵
CN106440497A (zh) * 2015-11-27 2017-02-22 李华玉 第一类热驱动压缩‑吸收式热泵
CN106440496A (zh) * 2015-11-27 2017-02-22 李华玉 第一类热驱动压缩‑吸收式热泵
CN106482387A (zh) * 2015-11-27 2017-03-08 李华玉 第一类热驱动压缩‑吸收式热泵
CN106440492A (zh) * 2015-11-27 2017-02-22 李华玉 第一类热驱动压缩‑吸收式热泵
CN106225308B (zh) * 2015-12-30 2020-01-31 李华玉 第一类热驱动压缩-吸收式热泵
CN106403359B (zh) * 2015-12-30 2020-01-31 李华玉 第一类热驱动压缩-吸收式热泵
CN109059353B (zh) * 2018-07-31 2021-01-26 北京华源泰盟节能设备有限公司 一种基于吸收式热泵的余热回收系统及余热回收工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274081A (ja) * 2004-03-26 2005-10-06 Tokyo Gas Co Ltd 吸収冷凍機及び制御方法
CN101957091A (zh) * 2009-09-28 2011-01-26 李华玉 回热式三效第一类吸收式热泵
CN101975484A (zh) * 2009-11-09 2011-02-16 李华玉 以单效为第一级的溶液串联循环两级第一类吸收式热泵
CN103148631A (zh) * 2013-03-03 2013-06-12 李华玉 复合发生第一类吸收式热泵
CN103148630A (zh) * 2013-02-26 2013-06-12 李华玉 复合发生第二类吸收式热泵

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274081A (ja) * 2004-03-26 2005-10-06 Tokyo Gas Co Ltd 吸収冷凍機及び制御方法
CN101957091A (zh) * 2009-09-28 2011-01-26 李华玉 回热式三效第一类吸收式热泵
CN101975484A (zh) * 2009-11-09 2011-02-16 李华玉 以单效为第一级的溶液串联循环两级第一类吸收式热泵
CN103148630A (zh) * 2013-02-26 2013-06-12 李华玉 复合发生第二类吸收式热泵
CN103148631A (zh) * 2013-03-03 2013-06-12 李华玉 复合发生第一类吸收式热泵

Also Published As

Publication number Publication date
CN103851823A (zh) 2014-06-11
CN103851823B (zh) 2016-04-27

Similar Documents

Publication Publication Date Title
WO2014127681A1 (zh) 复合发生第一类吸收式热泵
WO2011134129A1 (zh) 回热式吸收-发生系统与回热式第一类吸收式热泵
CN104654658B (zh) 热动联供系统
WO2011091567A1 (zh) 吸收-发生系统和吸收式热泵
WO2015143925A1 (zh) 第五类吸收式热泵
WO2012019329A1 (zh) 吸收-再吸收-发生系统与第一类吸收式热泵
WO2013159261A1 (zh) 多端供热第一类吸收式热泵
WO2012129743A1 (zh) 第三类发生-吸收系统与回热式第三类吸收式热泵
WO2015143927A1 (zh) 第五类吸收式热泵
WO2015149564A1 (zh) 第四类吸收式热泵与第五类吸收式热泵
CN101476798A (zh) 双效与多效及其基础上的第二类吸收式热泵
WO2013138963A1 (zh) 双效回热吸收-发生系统与回热式第一类吸收式热泵
CN103148631B (zh) 复合发生第一类吸收式热泵
WO2014161369A1 (zh) 分路循环第一类吸收式热泵
WO2015143924A1 (zh) 第四类吸收式热泵与第五类吸收式热泵
WO2014180163A1 (zh) 分路循环第一类吸收式热泵
WO2014161367A1 (zh) 分路循环第一类吸收式热泵
WO2012122683A1 (zh) 第三类发生-吸收系统与第三类吸收式热泵
WO2013075260A1 (zh) 分级冷凝第二类吸收式热泵
WO2013152464A1 (zh) 双效回热吸收-发生系统与回热式第三类吸收式热泵
WO2013149366A1 (zh) 双效回热吸收-发生系统与回热式第三类吸收式热泵
CN101799221B (zh) 双效与多效及其基础上的第二类吸收式热泵
WO2014134749A1 (zh) 复合发生第一类吸收式热泵
WO2013163784A1 (zh) 分段回热第三类吸收式热泵
WO2014134748A1 (zh) 复合发生第二类吸收式热泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14753527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14753527

Country of ref document: EP

Kind code of ref document: A1