WO2014180163A1 - 分路循环第一类吸收式热泵 - Google Patents

分路循环第一类吸收式热泵 Download PDF

Info

Publication number
WO2014180163A1
WO2014180163A1 PCT/CN2014/000457 CN2014000457W WO2014180163A1 WO 2014180163 A1 WO2014180163 A1 WO 2014180163A1 CN 2014000457 W CN2014000457 W CN 2014000457W WO 2014180163 A1 WO2014180163 A1 WO 2014180163A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
generator
absorber
heat exchanger
new
Prior art date
Application number
PCT/CN2014/000457
Other languages
English (en)
French (fr)
Inventor
李华玉
Original Assignee
Li Huayu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Li Huayu filed Critical Li Huayu
Publication of WO2014180163A1 publication Critical patent/WO2014180163A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/04Heat pumps of the sorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/008Sorption machines, plants or systems, operating continuously, e.g. absorption type with multi-stage operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • the invention belongs to the field of low temperature waste heat utilization and heat pump/refrigeration technology.
  • the first type of absorption heat pump uses the temperature difference between the heat medium and the heated medium as the driving force.
  • the driving temperature difference is large, two or more temperature difference utilization processes should be used to increase the degree of temperature difference utilization.
  • the working medium of the absorption heat pump is a solution, which is limited by the nature of the material, and each solution has a suitable working range; thus, when driving the heat medium
  • different solutions should be used for the shunt cycle to fully utilize the driving temperature difference, that is, the driving temperature difference is sequentially utilized in different solution circulation loops, thereby realizing the driving temperature difference utilization. Rationalization.
  • the cycle of the first type of absorption heat pump has to fulfill more requirements. These requirements include: smooth changes in thermodynamic parameters, adjustable heating parameters, and better adaptation to changing conditions. The best performance index; can achieve deep utilization of high-temperature heat sources, or use different grades of heat sources to achieve their comprehensive utilization.
  • the stepwise utilization of the temperature difference in different solution loops involves the transfer of heat load in different links; in the process of heat load transfer, the waste of temperature difference in any heat transfer link will bring about a decrease in the utilization rate of heat energy. Therefore, whether it is the transfer of heat of condensation or the transfer of heat, the heat transfer of any heat load should be in one step; in addition, the heat load and heat load of the heat transfer in different solution circuits should be considered.
  • the temperature configuration or the order of delivery is guaranteed to ensure a more reasonable thermodynamic perfection.
  • the main object of the present invention is to provide a first-stage absorption heat pump with a shunt cycle, and the specific contents of the invention are as follows:
  • Shunt cycle type I absorption heat pump mainly by generator, second generator, absorber, second absorber, condenser, evaporator, second evaporator, solution pump, second solution pump, section a flow valve, a second throttle valve, a solution heat exchanger and a second solution heat exchanger;
  • the absorber has a dilute solution line connected to the generator via the solution pump and the solution heat exchanger, and the generator also has a concentrated solution tube
  • the passage solution heat exchanger is in communication with the absorber, and the generator and the refrigerant vapor passage are connected to the second generator, and the second generator and the refrigerant liquid pipeline are connected to the evaporator through the throttle valve, and the evaporator has The refrigerant vapor passage is in communication with the absorber;
  • the second absorber has a dilute solution line connected to the second generator via the second solution pump, the second solution heat exchanger and the absorber, and the second generator has a concentrated solution line
  • the second solution heat exchanger is in communication with the second absorb
  • Shunt circulation type I absorption heat pump is the third type generator, the second condenser, the solution throttle valve, the third section in the first type of absorption heat pump of the shunt cycle described in item 1.
  • Flowing pottery and steam separation chamber connecting the absorber with a dilute solution pipeline through the solution pump and the solution heat exchanger and the generator to adjust the absorber to a dilute solution pipeline through the solution pump and the solution heat exchanger to communicate with the third generator
  • the third generator further has a concentrated solution pipeline connected to the generator through the solution throttle, the third generator has a refrigerant vapor passage communicating with the second condenser, and the second condenser has a refrigerant liquid pipeline
  • the third throttle valve is in communication with the evaporator, and the second generator has a concentrated solution pipeline connected to the second absorber via the second solution heat exchanger to be adjusted to have a second generator
  • the concentrated solution pipeline is connected to the steam separation chamber through the second condenser, and the concentrated solution pipeline is further connected to the second absorber through the
  • Shunt cycle type I absorption heat pump is a third type generator, a second condenser, a third throttle valve and a third type in the first type of absorption heat pump of the shunt cycle described in Item 1.
  • a solution heat exchanger wherein the absorber has a dilute solution line connected to the generator through the solution pump and the solution heat exchanger to adjust the absorber to a dilute solution line through the solution pump, the third solution heat exchanger and the solution heat exchanger
  • the generator is connected, and the concentrated solution pipeline of the generator is connected to the absorber through the solution heat exchanger to adjust the generator to have a concentrated solution pipeline connected to the third generator through the solution heat exchanger, and the third generator has a concentrated solution.
  • the pipeline is connected to the absorber via the third solution heat exchanger, the third generator has a refrigerant vapor passage communicating with the second condenser, and the second condenser has a refrigerant liquid pipeline passing through the third throttle valve and evaporating
  • the third generator also has a driving heat medium pipeline connected to the outside, and the second condenser has a heated medium pipeline communicating with the outside to form a bypass type first type absorption heat pump.
  • Shunt cycle type I absorption heat pump which is the third type generator, the second condenser, the third throttle valve and the solution section in the first type of absorption heat pump of the shunt cycle described in item 1.
  • the generator has a concentrated solution pipeline connected to the absorber through the solution heat exchanger to adjust the generator to have a concentrated solution pipeline connected to the third generator via the solution throttle valve, and the third generator has a concentrated solution tube
  • the passage solution heat exchanger is in communication with the absorber
  • the third generator further has a refrigerant vapor passage communicating with the second condenser, and the second condenser and the refrigerant liquid conduit are connected to the evaporator via the third section of the flow.
  • the third generator also has a driving heat medium pipe connected to the outside, and the second condenser and the heated medium pipe communicate with the outside to form a bypass type first type absorption heat pump.
  • Shunt cycle type I absorption heat pump is a third type generator, a third absorber, a third solution heat exchanger and the first type of absorption heat pump of the shunt cycle described in Item 1.
  • a three-solution pump wherein the absorber has a dilute solution line connected to the generator through the solution pump and the solution heat exchanger to adjust the absorber to a dilute solution line through the solution pump and the third solution heat exchanger to communicate with the third absorber
  • the third absorber further has a dilute solution pipeline connected to the generator via the third solution pump and the solution heat exchanger, and the concentrated solution pipeline of the generator is connected to the absorber through the solution heat exchanger to adjust the generator to have a concentrated solution tube.
  • the passage solution heat exchanger is in communication with the third generator, and the third generator further has a concentrated solution line connected to the absorber via the third solution heat exchanger, and the third generator further has a refrigerant vapor passage and a third absorber
  • the third generator also drives the heat medium pipeline to communicate with the outside, and the third absorber and the heated medium pipeline communicate with the outside to form a bypass type first absorption heat pump.
  • Shunt cycle type I absorption heat pump which is the first type of absorption heat pump of the shunt cycle described in item 1, adding a third generator, a third absorber, a third solution heat exchanger, a three-solution pump and a steam separation chamber, the absorber has a dilute solution pipeline connected to the generator through the solution pump and the solution heat exchanger to adjust the absorber to a dilute solution pipeline through the solution pump and the third solution heat exchanger and the third The absorber is connected, the third absorber and the dilute solution pipeline are connected to the generator via the third solution pump and the solution heat exchanger, and the concentrated solution pipeline of the generator is connected to the absorber through the solution heat exchanger to adjust the generator.
  • the concentrated solution pipeline is connected to the third generator via the solution heat exchanger, and the third generator further has a concentrated solution pipeline connected to the absorber via the third solution heat exchanger, and the third generator further has a refrigerant vapor passage and
  • the third absorber is connected, and the second generator has a concentrated solution pipeline connected to the second absorber through the second solution heat exchanger to be adjusted to be a second generator having a concentrated solution pipeline connected to the steam distribution chamber through the third absorber , the steam separation chamber has a concentrated solution pipeline
  • the solution heat exchanger is in communication with the second absorber, the steam distribution chamber and the refrigerant vapor passage are connected to the condenser, and the third generator also drives the heat medium pipeline to communicate with the outside to form a bypass type first absorption heat pump. . 7.
  • Shunt cycle type I absorption heat pump is a third type generator, a second condenser, a third throttle valve, and a solution section in the first type of absorption heat pump of the shunt cycle described in Item 1.
  • a flow valve, a third solution heat exchanger, a third absorber, a third solution pump and a steam separation chamber, and the diluted solution line of the absorber is connected to the generator through the solution pump and the solution heat exchanger to adjust the absorber to be thin
  • the solution line is connected to the third absorber via the solution pump and the third solution heat exchanger, and the third absorber and the dilute solution line are connected to the generator via the third solution pump and the solution heat exchanger, and the generator is thick
  • the solution pipeline is connected to the absorber through the solution heat exchanger to adjust the generator to have a concentrated solution pipeline connected to the third generator via the solution heat exchanger, and the third generator also has a concentrated solution pipeline through the solution throttle valve and the first
  • the third absorber is connected to the steam distribution chamber, and the concentrated
  • the second condenser further has a refrigerant liquid pipeline connected to the evaporator via a third throttle valve, the third generator also has a driving heat medium pipeline connected to the outside, and the second condenser has a heated medium pipeline connected to the outside.
  • the bypass type first absorption heat pump is a third type generator, a third absorber, a fourth absorber, and a third solution in the first type of absorption heat pump of the shunt cycle described in Item 1.
  • a pump, a fourth solution pump, a solution throttle valve, a steam separation chamber, a third solution heat exchanger, and a fourth solution heat exchanger and the absorber has a dilute solution line connected to the generator through the solution pump and the solution heat exchanger Adjusting to the absorber, the dilute solution pipeline is connected to the fourth absorber through the solution pump and the third solution heat exchanger, and the fourth absorber has a dilute solution pipeline through the fourth solution pump and the fourth solution heat exchanger and the first
  • the third absorber is connected, the third absorber and the dilute solution pipeline are connected to the generator through the third solution pump and the solution heat exchanger, and the concentrated solution pipeline of the generator is connected to the absorber through the solution heat exchanger to adjust to occur.
  • the concentrated solution pipeline is connected to the third generator via the solution heat exchanger, the third generator has a concentrated solution pipeline solution throttle valve and the third absorber is connected with the steam distribution chamber, and the steam separation chamber has a concentrated solution.
  • the pipeline passes through the fourth solution heat exchanger and the third solution
  • the exchanger is in communication with the absorber
  • the third generator has a refrigerant vapor passage communicating with the third absorber
  • the steam chamber and the refrigerant vapor passage are in communication with the fourth absorber
  • the third generator also drives the heat medium tube
  • the road is connected to the outside, and the fourth absorber is further connected to the outside by the heated medium pipeline to form a bypass type first type absorption heat pump; wherein, or the third absorber increases the medium to be heated to communicate with the outside.
  • the first type of absorption heat pump of the bypass cycle is the third type generator, the third absorber, the fourth absorber and the third solution added in the first type of absorption heat pump of the shunt cycle described in the first item.
  • Pump, fourth solution pump, solution throttling, steam dividing chamber, third solution heat exchanger, fourth solution heat exchanger and second steam dividing chamber the absorber has a dilute solution pipeline through the solution pump and the solution heat
  • the exchanger is connected to the generator and is adjusted to have a dilute solution line through the solution pump and the third solution heat exchanger is connected to the fourth absorber, and the fourth absorber has a dilute solution line through the fourth solution pump and the fourth
  • the solution heat exchanger is in communication with the third absorber, and the third absorber further has a dilute solution line connected to the generator via the third solution pump and the solution heat exchanger, and the generator has a concentrated solution line through the solution heat exchanger and
  • the absorber is connected to be adjusted to have a concentrated solution pipeline connected to the third generator via the solution heat
  • Shunt cycle type I absorption heat pump in the first type of absorption heat pump of the shunt cycle described in item 1, adding third generator, third absorber, third solution pump, steam separation chamber , the solution throttle valve and the second solution throttle valve, the absorber has a dilute solution pipeline connected to the generator through the solution pump and the solution heat exchanger to adjust the absorber to a dilute solution pipeline through the solution pump and the solution heat exchanger Communicating with the third absorber, the third absorber further has a dilute solution line connected to the generator via the second solution throttle valve, and the generator has a concentrated solution line connected to the absorber through the solution heat exchanger to adjust the generator The concentrated solution pipeline is connected to the third generator via the third solution pump, and the third generator has a concentrated solution pipeline connected to the steam distribution chamber through the solution throttle valve and the third absorber, and the concentrated steam chamber has a concentrated solution.
  • the pipeline is connected to the absorber via the solution heat exchanger, and the third generator has a refrigerant vapor passage communicating with the third absorber; the second coolant is connected to the second generator by the refrigerant vapor passage of the generator
  • the refrigerant liquid pipeline is connected to the evaporator through the throttle valve After the refrigerant vapor channel is connected to the second generator for the generator and the steam distribution chamber, the second generator and the refrigerant liquid pipeline are connected to the evaporator through the throttle valve, and the third generator also drives the heat medium pipeline. Connected to the outside to form a shunt cycle type I absorption heat pump.
  • Shunt cycle type I absorption heat pump is a third type generator, a third absorber, a steam separation chamber and a solution throttle valve in the first type of absorption heat pump of the shunt cycle described in Item 1.
  • the absorber has a dilute solution pipeline connected to the generator through the solution pump and the solution heat exchanger to adjust the absorber to a dilute solution pipeline through the solution pump and the solution heat exchanger to communicate with the third absorber, and the third absorber is further
  • the dilute solution pipeline is connected with the third generator, and the third generator further has a concentrated solution pipeline connected to the generator through the solution throttle valve, and the concentrated solution pipeline of the generator is connected to the absorber through the solution heat exchanger.
  • the concentrated solution pipeline for the generator is connected to the steam distribution chamber through the third absorber, and the concentrated solution pipeline is connected to the absorber through the solution heat exchanger, and the third generator has a refrigerant vapor passage and the first
  • the third absorber is connected;
  • the generator has a refrigerant vapor passage connected with the second generator, and the second generator is further connected with the refrigerant liquid pipeline through the throttle valve and the evaporator to adjust the generator and the steam distribution chamber to have a refrigerant
  • the second side of the steam passage is connected to the second generator
  • the refrigerant further has a refrigerant liquid pipeline connected to the evaporator via a throttle valve, and the third generator also drives the heat medium pipeline to communicate with the outside to form a bypass type first absorption heat pump; wherein, for convenient component arrangement , or adding a third solution pump, connecting the third absorber having a dilute solution line to the third generator to adjust to a third absorber having a dilute solution line connected to the third generator via the third
  • Shunt cycle type I absorption heat pump in the first type of absorption heat pump of the shunt cycle described in Item 1, adding the third generator, the third absorber, the third solution heat exchanger and the minute In the steam chamber, the absorber has a dilute solution line connected to the generator through the solution pump and the solution heat exchanger to adjust the absorber to a dilute solution line through the solution pump, the solution heat exchanger and the third solution heat exchanger and the third
  • the absorber is connected, the third absorber and the dilute solution pipeline are connected to the third generator, and the third generator further has a concentrated solution pipeline connected to the generator via the third solution heat exchanger, and the generator has a concentrated solution tube
  • the passage solution heat exchanger is connected to the absorber to be adjusted to have a concentrated solution pipeline connected to the steam distribution chamber through the third absorber, and the concentrated solution pipeline is connected to the absorber through the solution heat exchanger.
  • the three generators also have a refrigerant vapor passage communicating with the third absorber; the generator has a refrigerant vapor passage communicating with the second generator, and the second generator is further connected to the evaporator via a throttle valve via a throttle valve Adjusted to the generator and the steam compartment with refrigerant After the steam passage is connected with the second generator, the second generator further has a refrigerant liquid pipeline connected to the evaporator through the throttle valve, and the third generator also drives the heat medium pipeline to communicate with the outside to form a bypass cycle first.
  • An absorption type heat pump wherein, for convenient component arrangement, or adding a third solution pump, the third absorber has a dilute solution line connected to the third generator to be adjusted to a third absorber having a dilute solution line through the third solution
  • the pump is in communication with the third generator.
  • the first type of absorption heat pump of the bypass cycle is the third type generator, the third throttle valve, the third solution heat exchanger and the first type of absorption heat pump of the shunt cycle described in the first item.
  • the third solution pump, the absorber is provided with a dilute solution pipeline
  • the third solution pump and the third solution heat exchanger are in communication with the third generator, and the third generator further has a concentrated solution line connected to the absorber via the third solution heat exchanger, and the generator has a refrigerant vapor passage and a first
  • the second generator is further connected with the refrigerant liquid pipeline through the throttling and the evaporator, and the generator has a refrigerant vapor passage connected with the third generator, and the third generator has a refrigerant liquid pipe.
  • the third throttle valve is connected to the evaporator through the third throttle valve, and the third generator further has a refrigerant vapor passage connected with the second generator, and the second generator further has a refrigerant liquid pipeline connected to the evaporator through the throttle valve to form Shunt cycle first type absorption heat pump.
  • Shunt cycle type I absorption heat pump which is a third type generator, a third section wide and a third solution heat exchanger in the first type of absorption heat pump of the shunt cycle described in Item 1.
  • the absorber has a dilute solution pipeline connected to the generator through the solution pump and the solution heat exchanger to adjust the absorber to a dilute solution pipeline through the solution pump, the third solution heat exchanger and the solution heat exchanger to communicate with the generator,
  • the generator has a concentrated solution pipeline connected to the absorber through the solution heat exchanger to adjust the generator to have a concentrated solution pipeline connected to the third generator through the solution heat exchanger, and the third generator has a concentrated solution pipeline through the third
  • the solution heat exchanger is in communication with the absorber, and the generator has a refrigerant vapor passage communicating with the second generator, and the second generator is further connected with the refrigerant liquid pipeline through the throttle valve and the evaporator to adjust the generator to have a refrigerant After the steam passage is in communication with the third generator, the third generator
  • Shunt cycle type I absorption heat pump is a third type generator, a third throttle valve, a third solution pump and a third type in the first type absorption heat pump of the shunt cycle described in item 1.
  • a solution heat exchanger wherein the absorber has a dilute solution line connected to the generator through the solution pump and the solution heat exchanger to adjust the absorber to a dilute solution line through the solution pump and the second solution heat exchanger to communicate with the third generator
  • the third generator further has a concentrated solution pipeline connected to the generator via the third solution pump and the third solution heat exchanger, and the concentrated solution pipeline of the generator is connected to the absorber through the solution heat exchanger to adjust the generator to have
  • the concentrated solution pipeline communicates with the absorber through the third solution heat exchanger and the solution heat exchanger, and the second generator is connected to the second generator by the refrigerant vapor passage, and then the second generator is throttled by the refrigerant liquid pipeline
  • the valve is connected to the evaporator to adjust the generator to have a refrigerant
  • Shunt cycle type I absorption heat pump is added to the first type of absorption heat pump of any of the bypass cycles described in items 1, 3-5, 7-8, and 10-15.
  • the concentrated solution pipeline is connected to the second absorber through the new solution heat exchanger, and the second generator has a refrigerant vapor passage connected to the condenser to adjust the second generator to have a refrigerant vapor passage and newly occurred.
  • a new generator is added, and a refrigerant liquid pipeline is connected to the condenser through a new throttle valve, and a new generator and a refrigerant vapor passage are connected with the condenser to form a bypass type first absorption heat pump. .
  • Shunt cycle type I absorption heat pump is added to the first type of absorption heat pump of any of the bypass cycles described in items 1, 3-5, 7-8, and 10-15.
  • a new throttle valve and a new solution heat exchanger and the second absorber has a dilute solution line connected to the second generator through the second solution pump, the second solution heat exchanger and the absorber to adjust to a second absorption
  • the dilute solution line is connected to the second generator via the second solution pump, the new solution heat exchanger, the second solution heat exchanger and the absorber, and the second generator has the concentrated solution line through the second solution heat
  • the exchanger is connected to the second absorber and adjusted to the second generator
  • the concentrated solution pipeline is connected to the newly added generator through the second solution heat exchanger, and the newly added generator and the concentrated solution pipeline are connected to the second absorber through the new solution heat exchanger, and the second generator is cooled.
  • the steam passage of the agent is connected to the condenser to be adjusted so that the second generator has a refrigerant vapor passage connected with the newly added generator, and then the new generator is connected, and the refrigerant liquid pipeline is connected to the condenser through the newly added throttle valve, and newly added occurs.
  • the refrigerant vapor passage is connected to the condenser to form a first-stage absorption heat pump of the bypass cycle.
  • Shunt-cycle type I absorption heat pump is added to the first type of absorption heat pump of any of the bypass cycles described in items 1, 3-5, 7-8, and 10-15.
  • a new throttle valve, a new solution pump and a new solution heat exchanger, and the second absorber has a dilute solution line connected to the second generator via the second solution pump, the second solution heat exchanger and the absorber Adjusted to a second absorber with a dilute solution line connected to the new generator via a second solution pump, a second solution heat exchanger and an absorber, a new generator and a concentrated solution line via a new solution pump and a new
  • the increasing solution heat exchanger is in communication with the second generator, and the second generator has a concentrated solution line connected to the second absorber via the second solution heat exchanger to be adjusted to a second generator having a concentrated solution line through the added solution
  • the heat exchanger and the second solution heat exchanger are in communication with the second absorber, and the second generator has a refrigerant vapor passage communicating with the condens
  • Shunt cycle type I absorption heat pump is added to the first type of absorption heat pump of any of the bypass cycles described in items 1, 3-5, 7-8, 13-15. Adding an absorber, a new solution pump and a new solution heat exchanger, and adjusting the second absorber having a dilute solution line through the second solution pump, the second solution heat exchanger and the absorber to the second generator
  • the second absorber has a dilute solution pipeline connected to the newly added absorber through the second solution pump and the new solution heat exchanger, and the new absorber has a dilute solution pipeline through the new solution pump and the second solution heat exchange.
  • the absorber is connected to the second generator, and the second generator has a concentrated solution pipeline connected to the second absorber through the second solution heat exchanger to adjust the second generator to have a concentrated solution pipeline through the second solution heat
  • the exchanger is connected to the newly added generator, and the new generator is further connected with the concentrated solution heat exchanger and the second absorber through the new solution heat exchanger, and the new generator and the refrigerant vapor passage are connected with the newly added absorber.
  • the generator has a refrigerant vapor channel connected to the second generator and the second hair
  • the burner has a refrigerant liquid pipeline connected to the evaporator through the throttle valve to adjust the generator to have a refrigerant vapor passage, which in turn connects the second generator and the new generator, and then adds a new generator and then a refrigerant liquid pipeline.
  • the throttle valve is connected to the evaporator, and the newly added absorber and the medium to be heated are connected to the outside to form a bypass type first absorption heat pump.
  • Shunt cycle type I absorption heat pump is added to the first type of absorption heat pump of any of the bypass cycles described in items 1, 3-5, 7-8, 13-15. , new absorbers, new second absorbers, new solution pumps, new second solution pumps, new solution heat exchangers, new second solution heat exchangers, new solution throttles and new additions a steam separation chamber, wherein the second absorber has a dilute solution line connected to the second generator via the second solution pump, the second solution heat exchanger and the absorber, and the second absorber has a dilute solution line through the second solution
  • the pump and the new solution heat exchanger are connected to the newly added second absorber, and the second absorber and the dilute solution pipeline are connected to the newly added absorber through the new solution pump and the newly added second solution heat exchanger.
  • the new absorber and the dilute solution pipeline are connected to the second generator through the addition of the second solution pump, the second solution heat exchanger and the absorber, and the second generator has the concentrated solution pipeline exchanged with the second solution.
  • New generator connection, new generator and concentrated solution pipeline through the new solution throttle and new absorber connected with the new steam compartment, new steam compartment and thick solution pipeline added
  • the second solution heat exchanger and the new solution heat exchanger are in communication with the second absorber, and the new generator has a refrigerant vapor channel and a new absorber.
  • the new steam distribution chamber and the refrigerant vapor passage are connected with the newly added second absorber, and the generator has a refrigerant vapor passage connected with the second generator, and the second generator has a refrigerant liquid pipeline passage section.
  • the flow valve is connected with the evaporator to adjust the generator to have a refrigerant vapor channel, and then the second generator and the new generator are sequentially connected, and then the new generator is connected, and then the refrigerant liquid pipeline is connected to the evaporator through the throttle valve.
  • the second absorber is further connected to the outside by the heated medium pipeline to form a bypass type first type absorption heat pump; wherein, or the newly added absorber increases the connected medium to communicate with the outside.
  • Shunt circulation type I absorption heat pump is added to the first type of absorption heat pump of any of the bypass cycles described in items 10-12, adding new generators, adding new absorbers, adding new solution pumps.
  • the second absorber has a dilute solution pipeline connected to the second generator through the second solution pump, the second solution heat exchanger and the absorber to adjust the second absorber to a dilute solution pipeline
  • the second solution pump and the new solution heat exchanger are connected to the newly added absorber, and the new absorber and the dilute solution pipeline are connected to the second generator via the new solution pump, the second solution heat exchanger and the absorber.
  • the second generator has a concentrated solution pipeline connected to the second absorber through the second solution heat exchanger to adjust the second generator to have a concentrated solution pipeline connected to the newly added generator through the second solution heat exchanger, new The increasing generator and the concentrated solution pipeline are connected to the second absorber through the new solution heat exchanger, and the newly added generator and the refrigerant vapor passage are connected with the newly added absorber, and the generator and the steam dividing chamber are provided with a refrigerant.
  • the second generator After the steam passage is connected to the second generator, the second generator is The refrigerant liquid pipeline is connected to the evaporator through the throttling and is connected to the generator and the steam distribution chamber, and the refrigerant vapor passage is connected to the second generator and the new generator, and then the new generator and the refrigerant liquid pipeline are added.
  • the throttling is connected to the evaporator, and the newly added absorber and the medium to be heated are connected to the outside to form a first-stage absorption heat pump of the bypass cycle.
  • Shunt cycle type I absorption heat pump is added to the first type of absorption heat pump of any of the shunt cycles mentioned in items 10-12, adding new generator, adding absorber, adding second Absorber, new solution pump, new second solution pump, new solution heat exchanger, new second solution heat exchanger, new solution throttle valve and new steam distribution chamber, the second absorber has The dilute solution line is connected to the second generator via the second solution pump, the second solution heat exchanger and the absorber to adjust the second absorber to have a dilute solution line through the second solution pump and the new solution heat exchanger and the new The second absorber is connected to the second absorber, and the second absorber and the dilute solution pipeline are connected with the newly added absorber through the newly added solution pump and the newly added second solution heat exchanger, and the new absorber and the dilute solution pipeline are added.
  • the second solution pump, the second solution heat exchanger and the absorber are connected to the second generator, and the second generator has a concentrated solution pipeline connected to the second absorber through the second solution heat exchanger to be adjusted to the first
  • the second generator has a concentrated solution line through the second solution heat exchanger and newly added Connected, the new generator and the concentrated solution pipeline are connected to the new steam distribution chamber through the new solution throttle and the new absorber, and the new steam distribution chamber is added with the second solution heat.
  • the exchanger and the new solution heat exchanger are connected to the second absorber, and the new generator and the refrigerant vapor passage are connected with the newly added absorber, and the new steam distribution chamber has a refrigerant vapor passage and a second absorption.
  • the device is connected to connect the generator and the steam distribution chamber with the refrigerant vapor passage and the second generator, and the second generator and the refrigerant liquid pipeline are connected to the evaporator through the throttle valve to adjust the generator and the steam distribution chamber.
  • the refrigerant vapor passage is connected to the second generator and the new generator in turn, and then the new generator is connected, and then the refrigerant liquid pipeline is connected to the evaporator through the throttle valve, and the second absorber and the heated medium pipeline are added.
  • Shunt cycle type I absorption heat pump is added to the first type of absorption heat pump of any of the shunt cycles mentioned in items 1, 3-5, 7-8, and 10-15.
  • Adding an absorber, a new solution pump and a new solution heat exchanger, and adjusting the second absorber having a dilute solution line through the second solution pump, the second solution heat exchanger and the absorber to the second generator The second absorber has a dilute solution pipeline connected to the newly added absorber through the second solution pump and the new solution heat exchanger, and newly absorbed
  • the dilute solution line is further connected to the second generator via the new solution pump, the second solution heat exchanger and the absorber, and the second generator has the concentrated solution line through the second solution heat exchanger and the second absorption
  • the device is connected to adjust the second generator to have a concentrated solution pipeline connected to the newly added generator through the second solution heat exchanger, and the new generator and the concentrated solution pipeline are connected to the second absorber via the newly added solution heat exchanger.
  • the newly added generator and the refrigerant vapor channel are connected with the newly added absorber, and the newly added generator also drives the heat medium pipeline to communicate with the outside, and the newly added absorber and the heated medium pipeline communicate with the outside to form a branch.
  • Shunt-cycle type I absorption heat pump is added to the first type of absorption heat pump of any of the bypass cycles described in items 1, 3-5, 7-8, and 10-15. , new absorbers, new second absorbers, new solution pumps, new second solution pumps, new solution heat exchangers, new second solution heat exchangers, new solution throttles and new additions a steam separation chamber, wherein the second absorber has a dilute solution line connected to the second generator via the second solution pump, the second solution heat exchanger and the absorber, and the second absorber has a dilute solution line through the second solution
  • the pump and the new solution heat exchanger are connected to the newly added second absorber, and the second absorber and the dilute solution pipeline are connected to the newly added absorber through the new solution pump and the newly added second solution heat exchanger.
  • the new absorber and the dilute solution pipeline are connected to the second generator through the addition of the second solution pump, the second solution heat exchanger and the absorber, and the second generator has the concentrated solution pipeline exchanged with the second solution.
  • the second neutralizer has a concentrated solution line and is heated by the second solution.
  • the device is connected with the newly added generator, and the new generator and the concentrated solution pipeline are connected with the newly added steam separation chamber through the newly added solution throttle valve and the newly added absorber, and the new steam distribution chamber is further connected with the concentrated solution pipeline.
  • a new second solution heat exchanger and a new solution heat exchanger are connected to the second absorber, and a new generator and a refrigerant vapor passage are connected to the newly added absorber, and a new steam compartment and a refrigerant vapor passage are added.
  • the newly added generator also drives the heat medium pipeline to communicate with the outside, and the second absorber and the heated medium pipeline are connected to the outside to form a shunt cycle type 1 absorption type.
  • the heat pump; wherein, or the addition of the absorber increases the communication medium line to communicate with the outside.
  • the first type of absorption heat pump is the first type of absorption heat pump of any of the bypass cycles described in items 1 to 24.
  • the evaporator and the second evaporator are combined into one.
  • Figure 1 is a schematic view showing the first structure and flow of a first-stage absorption heat pump of a shunt cycle according to the present invention.
  • 2 is a schematic view showing the second structure and flow of the first type absorption heat pump of the shunt cycle according to the present invention.
  • 3 is a schematic view showing the third structure and flow of the first type absorption heat pump of the shunt cycle according to the present invention.
  • 4 is a schematic view showing the fourth structure and flow of the first type absorption heat pump of the shunt cycle according to the present invention.
  • Figure 5 is a schematic view showing the fifth structure and flow of the first type absorption heat pump of the shunt cycle according to the present invention.
  • FIG. 6 is a schematic view showing the sixth structure and flow of the first type absorption heat pump of the shunt cycle according to the present invention.
  • Figure 7 is a schematic view showing the seventh structure and flow of the first type absorption heat pump of the shunt cycle according to the present invention.
  • Figure 8 is a schematic view showing the eighth structure and flow of the first type absorption heat pump of the shunt cycle according to the present invention.
  • Figure 9 is a schematic view showing the ninth structure and flow of the first type absorption heat pump of the shunt cycle according to the present invention.
  • Figure 10 is a schematic view showing the tenth structure and flow of the first type absorption heat pump of the shunt cycle according to the present invention.
  • Figure 11 is a schematic view showing the eleventh structure and flow of the first type absorption heat pump of the shunt cycle according to the present invention.
  • Figure 12 is a schematic view showing the structure and flow of the twelfth type of the first type of absorption heat pump according to the present invention.
  • Figure 13 is a schematic view showing the thirteenth structure and flow of the first type absorption heat pump of the shunt cycle according to the present invention.
  • Figure 14 is a schematic view showing the 14th structure and flow of the first type absorption heat pump of the shunt cycle according to the present invention.
  • Figure 15 is a schematic view showing the 15th structure and flow of the first type absorption heat pump of the shunt cycle according to the present invention.
  • Figure 16 is a schematic view showing the structure and flow of the sixteenth type of absorption heat pump of the shunt cycle according to the present invention.
  • Figure 17 is a schematic view showing the structure and flow of the seventeenth type of absorption heat pump of the shunt cycle according to the present invention.
  • Figure 18 is a schematic view showing the structure and flow of the 18th type of absorption heat pump of the first type of bypass circuit according to the present invention.
  • Figure 19 is a schematic view showing the 19th structure and flow of the first type absorption heat pump of the shunt cycle according to the present invention.
  • Figure 20 is a schematic view showing the 20th structure and flow of the first type absorption heat pump of the shunt cycle according to the present invention.
  • the shunt cycle first type of absorption heat pump shown in Figure 1 is implemented as follows:
  • the absorber 3 has a dilute solution line connected to the generator 1 via the solution pump 8 and the solution heat exchanger 12, and the generator 1 and the concentrated solution line are
  • the solution heat exchanger 12 is in communication with the absorber 3, and the generator 1 and the refrigerant vapor passage are in communication with the second generator 2, and the second generator 2 is further connected to the evaporator 6 via the throttle valve 10
  • the evaporator 6 also has a refrigerant vapor passage communicating with the absorber 3;
  • the second absorber 4 has a dilute solution line passing through the second solution pump 9, the second solution heat exchanger 13, and the absorber 3 and the second generator 2 Connected, the second generator 2 and the concentrated solution line
  • the dilute solution of the absorber 3 enters the generator 1 via the solution pump 8 and the solution heat exchanger 12, drives the heat medium to flow through the generator 1, and the solution heated into it is released and provides cold to the second generator 2.
  • the vapor of the generator - the refrigerant vapor generated by the generator acts as the driving heat medium of the second generator, and the concentrated solution of the generator 1 enters the absorber 3 through the solution heat exchanger 12, absorbs the refrigerant vapor and radiates heat therein.
  • the dilute solution of the second absorber 4 passes through the second solution pump 9 and the second solution heat exchanger 13 and then flows through the absorber 3, and the endothermic portion is vaporized and then enters the second generator 2, and the refrigerant vapor flows through the first
  • the second generator 2 the solution heated into the solution is released and supplies the refrigerant vapor to the condenser 5, and the refrigerant vapor flowing through the second generator 2 is released into the refrigerant liquid, and then enters the evaporator 6 through the throttle valve 10,
  • the residual heat is absorbed into the refrigerant vapor and supplied to the absorber 3.
  • the concentrated solution of the second generator 2 enters the second absorber 4 through the second solution heat exchanger 13, absorbs the refrigerant vapor, and releases the heat.
  • the steam is supplied to the second absorber 4 to form a split-cycle first type absorption heat pump.
  • the shunt cycle first type of absorption heat pump shown in Figure 2 is implemented as follows:
  • the third generator, the second condenser, the solution throttle valve, the third throttle valve and the steam separation chamber are added, and the absorber is 3 having a dilute solution line connected to the generator 1 via the solution pump 8 and the solution heat exchanger 12 to adjust the absorber 3 to have a dilute solution line connected to the third generator 14 via the solution pump 8 and the solution heat exchanger 12,
  • the three generators 14 further have a concentrated solution line connected to the generator 1 via the solution throttle 16 and the third generator 14 has a refrigerant vapor passage communicating with the second condenser 15, and the second condenser 15 also has a refrigerant.
  • the liquid pipeline communicates with the evaporator 6 via the third throttle valve 17, and the concentrated solution pipeline of the second generator 2 is connected to the second absorber 4 via the second solution heat exchanger 13 to be adjusted to be the second generator 2
  • the concentrated solution line communicates with the steam dividing chamber 18 via the second condenser 15, and the splitting chamber 18 has a concentrated solution line that communicates with the second absorber 4 via the second solution heat exchanger 13, and the steam dividing chamber 18 is also cold.
  • the agent vapor passage is in communication with the condenser 5, and the third generator 14 also drives the heat medium line and the outside Pass.
  • the dilute solution of the absorber 3 enters the third generator 14 via the solution pump 8 and the solution heat exchanger 12, drives the heat medium to flow through the third generator 14, and the solution heated into it is released and is condensed to the second
  • the refrigerant 15 is supplied with refrigerant vapor, and the concentrated solution of the third generator 14 is throttled and depressurized into the generator 1 through the solution throttle valve 16, and the refrigerant vapor of the second condenser 15 is exothermic to the solution flowing through the refrigerant.
  • the liquid solution, the refrigerant liquid of the second condenser 15 is throttled into the evaporator 6 through the third throttle valve 17, absorbs the residual heat into the refrigerant vapor and is supplied to the absorber 3; the concentrated solution of the second generator 2 flows through the first The second condenser 15 and the heat absorbing portion are vaporized and then enter the steam dividing chamber 18.
  • the concentrated solution of the steam dividing chamber 18 enters the second absorber 4 through the second solution heat exchanger 13, and the refrigerant vapor released from the steam dividing chamber 18 enters the condenser. 5.
  • the shunt cycle first type of absorption heat pump shown in Figure 3 is implemented as follows:
  • the dilute solution of the absorber 3 enters the generator 1 through the solution pump 8, the third solution heat exchanger 19 and the solution heat exchanger 12, and the concentrated solution of the generator 1 enters the third generator through the solution heat exchanger 12 14.
  • the driving heat medium flows through the third generator 14, the solution heated therein is released, and the refrigerant vapor is supplied to the second condenser 15, and the concentrated solution of the third generator 14 enters the absorption through the third solution heat exchanger 19.
  • the absorbing refrigerant vapor of the second condenser 15 is exothermic to the heated medium to form a refrigerant liquid, and the refrigerant liquid of the second condenser 15 is throttled and depressurized by the third throttle valve 17 and then enters the evaporator 6. Forming a split-cycle first type of absorption heat pump.
  • the shunt cycle first type of absorption heat pump shown in Figure 4 is implemented as follows:
  • the third generator, the third absorber, The third solution heat exchanger and the third solution pump adjust the absorber 3 having a dilute solution line through the solution pump 8 and the solution heat exchanger 12 to the generator 1 to adjust the absorber 3 to have a dilute solution line through the solution pump 8
  • the third solution heat exchanger 19 is in communication with the third absorber 20, and the third absorber 20 has a dilute solution line connected to the generator 1 via the third solution pump 21 and the solution heat exchanger 12, and the generator 1 has The concentrated solution pipeline is connected to the absorber 3 through the solution heat exchanger 12 to be adjusted to be the generator 1 having a concentrated solution pipeline connected to the third generator 14 via the solution heat exchanger 12, and the third generator 14 has a concentrated solution pipeline
  • the third solution 14 further communicates with the absorber 3 via the third solution heat exchanger 19, and the third generator 14 also communicates with the third absorber 20, and the third generator 14 also drives the heat medium line to communicate with the outside,
  • the third solution 14 further communicates with the absorber 3 via the third solution heat exchanger 19, and the
  • the dilute solution of the absorber 3 enters the third absorber 20 via the solution pump 8 and the third solution heat exchanger 19, absorbs the refrigerant vapor and radiates heat to the heated medium, and the diluted solution of the third absorber 20 passes through
  • the third solution pump 21 and the solution heat exchanger 12 enter the generator 1, and the concentrated solution of the generator 1 enters the third generator 14 via the solution heat exchanger 12, and drives the heat medium to flow through the third generator 14 and heat therein.
  • the solution releases and supplies refrigerant vapor to the third absorber 20, and the concentrated solution of the third generator 14 enters the absorber 3 via the third solution heat exchanger 19 to form a shunt cycle first type absorption heat pump.
  • the dilute solution line has a dilute solution line connected to the generator 1 via the solution pump 8 and the solution heat exchanger 12 to adjust the absorber 3 to have a dilute solution line through the solution pump 8 and the third solution heat exchanger 19 and the third absorber 20
  • the third absorber 20 has a dilute solution line connected to the generator 1 via the third solution pump 21 and the solution heat exchanger 12
  • the generator 1 has a concentrated solution line through the solution heat exchanger 12 and the absorber 3.
  • the communication is adjusted so that the concentrated solution line of the generator 1 is connected to the third generator 14 via the solution heat exchanger 12, and the third generator 14 is further connected to the absorber 3 via the third solution heat exchanger 19.
  • the third generator 14 further has a refrigerant vapor passage communicating with the third absorber 20; and the second generator 2 has a concentrated solution line connected to the second absorber 4 via the second solution heat exchanger 13 to be adjusted to a second occurrence.
  • the split steam chamber 18 has a concentrated solution line connected to the second absorber 4 via the second solution heat exchanger 13, and the steam dividing chamber 18 has a refrigerant vapor passage communicating with the condenser 5, and the third generator 14 is further There is a drive heat medium line that communicates with the outside.
  • the dilute solution of the absorber 3 enters the third absorber 20 via the solution pump 8 and the third solution heat exchanger 19, absorbs the refrigerant vapor and radiates heat to the solution flowing therethrough, and the third absorber 20
  • the dilute solution enters the generator 1 through the third solution pump 21 and the solution heat exchanger 12, and the concentrated solution of the generator 1 enters the third generator 14 through the solution heat exchanger 12, drives the heat medium to flow through the third generator 14, and heats
  • the solution entering therein releases and supplies refrigerant vapor to the third absorber 20, and the concentrated solution of the third generator 14 enters the absorber 3 through the third solution heat exchanger 19; the concentrated solution of the second generator 2 flows through the first
  • the triple absorber 20 and the heat absorbing portion are vaporized and then enter the steam dividing chamber 18.
  • the concentrated solution of the steam dividing chamber 18 enters the second absorber 4 through the second solution heat exchanger 13, and the refrigerant vapor released from the steam dividing chamber 18 enters the condenser. 5. Forming a split-cycle first type of absorption heat pump.
  • the shunt cycle first type of absorption heat pump shown in Figure 6 is implemented as follows:
  • the pump 8 and the third solution heat exchanger 19 are in communication with the third absorber 20, and the third absorber 20 has a dilute solution
  • the pipeline is connected to the generator 1 via the third solution pump 21 and the solution heat exchanger 12, and the concentrated solution pipeline of the generator 1 is connected to the absorber 3 through the solution heat exchanger 12 to be adjusted to a concentrated solution pipeline of the generator 1
  • the solution heat exchanger 12 is in communication with the third generator 14, and the third generator 14 and the concentrated solution line are connected to the steam dividing chamber 18 via the solution throttle valve 16 and the third absorber 20, and the steam dividing chamber 18
  • the dilute solution of the absorber 3 enters the third absorber 20 via the solution pump 8 and the third solution heat exchanger 19, absorbs the refrigerant vapor and radiates heat to the solution flowing therethrough, and the third absorber 20
  • the dilute solution enters the generator 1 through the third solution pump 21 and the solution heat exchanger 12, and the concentrated solution of the generator 1 enters the third generator 14 through the solution heat exchanger 12, drives the heat medium to flow through the third generator 14, and heats
  • the solution entering therein releases and supplies refrigerant vapor to the third absorber 20.
  • the concentrated solution of the third generator 14 is throttled and depressurized by the solution throttle valve 16 and then flows through the third absorber 20, and the endothermic portion is vaporized.
  • the steam dividing chamber 18 releases and supplies the refrigerant vapor to the second condenser 15, and the concentrated solution of the steam dividing chamber 18 enters the absorber 3 through the third solution heat exchanger 19; the cold of the second condenser 15
  • the agent vapor exotherms in the heated medium to form a refrigerant liquid, and the refrigerant liquid in the second condenser 15 is throttled into the evaporator 6 through the third throttle valve 21 to form a bypass type first type absorption heat pump.
  • the fourth solution heat exchanger 24 and the third solution heat exchanger 19 are in communication with the absorber 3, and the third generator 14 also has a refrigerant vapor passage communicating with the third absorber 20, and the steam separation chamber 18 also has a refrigerant vapor.
  • the passage communicates with the fourth absorber 22, and the third generator 14 also drives the heat medium line to communicate with the outside, and the fourth absorber 22 also has a heated medium line that communicates with the outside.
  • the dilute solution of the absorber 3 enters the fourth absorber 22 through the solution pump 8 and the third solution heat exchanger 19, absorbs the refrigerant vapor and radiates heat to the heated medium, and the diluted solution of the fourth absorber 22 passes through
  • the fourth solution pump 23 and the fourth solution heat exchanger 24 enter the third absorber 20, absorb the refrigerant vapor and exotherm the solution flowing therethrough, and the dilute solution of the third absorber 20 passes through the third solution pump 21 and
  • the solution heat exchanger 12 enters the generator 1, and the concentrated solution of the generator 1 enters the third generator 14 through the solution heat exchanger 12, and drives the heat medium to flow through the third generator 14, and the solution heated into the solution is released and directed to
  • the triple absorber 20 provides refrigerant vapor, and the concentrated solution of the third generator 14 is throttled and depressurized by the solution throttle valve 16 and then flows through the third absorber 20, and the heat absorption portion is vaporized and then enters the steam separation chamber 18, and the steam distribution chamber 18 releases and supplies refrig
  • the third generator, the third absorber, the third solution pump, the steam dividing chamber, the solution throttle valve and the second solution section are added.
  • the absorber 3 has a dilute solution pipeline connected to the generator 1 through the solution pump 8 and the solution heat exchanger 12 to adjust the absorber 3 to have a dilute solution pipeline through the solution pump 8 and the solution heat exchanger 12 and the third
  • the absorber 20 is in communication
  • the third absorber 20 has a dilute solution line communicating with the generator 1 via the second solution throttle valve 25, and the concentrated solution line of the generator 1 is connected to the absorber 3 via the solution heat exchanger 12.
  • Adjusted to the generator 1 has a concentrated solution line connected to the third generator 14 via the third solution pump 21, the third generator 14 also has a concentrated solution line through the solution throttle valve 16 and the third absorber 20 and the steam separation
  • the chamber 18 is connected, the steam dividing chamber 18 has a concentrated solution pipeline communicating with the absorber 3 via the solution heat exchanger 12, and the third generator 14 has a refrigerant vapor passage communicating with the third absorber 20;
  • the second generator 2 is cooled again after the refrigerant vapor passage is in communication with the second generator 2
  • the liquid pipeline communicates with the evaporator 6 through the throttle valve 10 to adjust the generator 1 and the steam dividing chamber 18 to have a refrigerant vapor passage communicating with the second generator 2, and then the second generator 2 has a refrigerant liquid pipeline passage section
  • the flow valve 10 is in communication with the evaporator 6, and the third generator 14 also has a drive heat medium line in communication with the outside.
  • the dilute solution of the absorber 3 enters the third absorber 20 through the solution pump 8 and the solution heat exchanger 12, absorbs the refrigerant vapor and releases the solution flowing through the solution, and the dilute solution of the third absorber 20
  • the second solution throttle valve 25 is throttled and depressurized into the generator 1, and the concentrated solution of the generator 1 is pressurized by the third solution pump 21 into the third generator 14, driving the heat medium to flow through the third generator 14, heating The solution entering therein is released and the refrigerant vapor is supplied to the third absorber 20.
  • the concentrated solution of the third generator 14 is throttled and depressurized by the solution throttle valve 16 and then flows through the third absorber 20, and the endothermic portion is vaporized.
  • the refrigerant vapor released by the steam dividing chamber 18 is supplied to the second generator 2 for driving the heat medium, and the concentrated solution of the steam dividing chamber 18 enters the absorber 3 through the solution heat exchanger 12 to form a branching cycle.
  • the shunt cycle first type of absorption heat pump shown in Figure 9 is implemented as follows:
  • the third generator, the third absorber, the steam dividing chamber and the solution throttle valve are added, and the absorber 3 has a dilute solution pipeline.
  • the solution pump 8 and the solution heat exchanger 12 are connected to the generator 1 to be adjusted so that the absorber 3 has a dilute solution line communicating with the third absorber 20 via the solution pump 8 and the solution heat exchanger 12, and the third absorber 20 is further
  • the dilute solution line is in communication with the third generator 14, and the third generator 14 has a concentrated solution line connected to the generator 1 via the solution throttle valve 16, and the generator 1 has a concentrated solution line through the solution heat exchanger 12.
  • the generator 1 has a concentrated solution line connected to the steam dividing chamber 18 via the third absorber 20, and the splitting chamber 18 has a concentrated solution line connected to the absorber 3 via the solution heat exchanger 12,
  • the third generator 14 also has a refrigerant vapor passage communicating with the third absorber 20; the second generator 2 has a refrigerant liquid passage symmetry after the generator 1 has a refrigerant vapor passage communicating with the second generator 2
  • the flow valve 10 is connected to the evaporator 6 and adjusted to have a refrigerant for the generator 1 and the steam dividing chamber 18 After the steam passage communicating with the second generator 2 the second generator 2. Further communication liquid pipe of the refrigerant evaporator 10 and the throttle valve 6, the third generator 14 also drives the heat medium pipe passage in communication with the outside.
  • the dilute solution of the absorber 3 enters the third absorber 20 via the solution pump 8 and the solution heat exchanger 12, absorbs the refrigerant vapor and releases the solution flowing through the solution, and the dilute solution of the third absorber 20 Entering the third generator 14, driving the heat medium through the third generator 14, releasing the solution into which it is heated and supplying the refrigerant vapor to the third absorber 20, the concentrated solution of the third generator 14 passing through the solution throttle valve After the throttling and depressurization, the generator 1 enters the generator 1, and the concentrated solution of the generator 1 flows through the third absorber 20, and the endothermic portion is vaporized and then passed through the steam dividing chamber 18.
  • the refrigerant vapor released from the steam dividing chamber 18 is supplied to the second occurrence.
  • the device 2 drives the heat medium, and the concentrated solution of the steam separation chamber 18 enters the absorber 3 through the solution heat exchanger 12 to form a first type of branching cycle. Retractable heat pump.
  • the third absorber 20 has a dilute solution line connected to the third generator 14, and the third generator 14 has a concentrated solution line connected to the generator 1 via the third solution heat exchanger 19, and the generator 1
  • the concentrated solution pipeline is connected to the absorber 3 through the solution heat exchanger 12 and is adjusted to be the generator 1.
  • the concentrated solution pipeline is connected to the steam splitting chamber 18 via the third absorber 20, and the split steam chamber 18 has a concentrated solution pipeline.
  • the solution heat exchanger 12 is in communication with the absorber 3, and the third generator 14 has a refrigerant vapor passage communicating with the third absorber 20; the generator 1 has a refrigerant vapor passage connected to the second generator 2 and the second The generator 2 has a refrigerant liquid pipeline through the throttle valve 10 and the evaporator 6 After adjusting, the generator 1 and the steam dividing chamber 18 have a refrigerant vapor passage communicating with the second generator 2, and then the second generator 2 has a refrigerant liquid pipeline connected to the evaporator 6 via the throttle valve 10, and the third occurs.
  • the unit 14 also has a drive heat medium line in communication with the outside.
  • the dilute solution of the absorber 3 enters the third absorber 20 via the solution pump 8, the solution heat exchanger 12 and the third solution heat exchanger 19, absorbs the refrigerant vapor, and releases the solution flowing through the solution.
  • the dilute solution of the third absorber 20 enters the third generator 14, the driving heat medium flows through the third generator 14, the solution heated therein is released, and the refrigerant vapor is supplied to the third absorber 20, the third generator 14
  • the concentrated solution enters the generator 1 through the third solution heat exchanger 19, and the concentrated solution of the generator 1 flows through the third absorber 20, and the endothermic portion is vaporized and then enters the steam dividing chamber 18, and the refrigerant vapor released from the steam dividing chamber 18
  • the second generator 2 is supplied to drive the heat medium, and the concentrated solution of the steam separation chamber 18 enters the absorber 3 through the solution heat exchanger 12 to form a bypass type first type absorption heat pump.
  • the shunt cycle first type of absorption heat pump shown in Figure 11 is implemented as follows:
  • the second generator 2 and the refrigerant liquid pipeline are connected to the evaporator 6 via the throttle valve 10 to adjust the generator 1 to have a refrigerant vapor passage and
  • the third generator 14 has a refrigerant liquid pipeline connected to the evaporator 6 via the third throttle valve 17, and the third generator 14 has a refrigerant vapor passage connected to the second generator 2.
  • the second second generator 2 is further connected to the evaporator 6 via a throttle valve 10 via a refrigerant liquid line.
  • the refrigerant vapor generated by the generator 1 is supplied to the third generator 14 to drive the heat medium, and a part of the diluted solution of the absorber 3 enters the third generator through the third solution pump 21 and the third solution heat exchanger 19. 14.
  • the refrigerant vapor flows through the third generator 14, the solution heated therein is released, and the refrigerant vapor is supplied to the second generator 2 to drive the heat medium, and the concentrated solution of the third generator 14 is subjected to heat exchange through the third solution.
  • the device 19 enters the absorber 3, and the refrigerant vapor flowing through the third generator 14 is released into a refrigerant liquid, and then thawed and depressurized into the evaporator 6 through the third throttle valve 17, forming a first-stage absorption of the bypass cycle. Heat pump.
  • the shunt cycle first type of absorption heat pump shown in Figure 12 is implemented as follows:
  • the device 3 is connected, and the generator 1 has a refrigerant vapor passage connected with the second generator 2, and then the second generator 2 has a refrigerant liquid pipeline connected to the evaporator 6 through the throttle valve 10 to adjust the generator 1 to be cold.
  • the agent steam passage is in communication with the third generator 14
  • the third generator 14 has a refrigerant liquid line connected to the evaporator 6 via the third throttle valve 17, and the third generator 14 has a refrigerant vapor passage and a second
  • the second generator 2 is further connected to the evaporator 6 via the throttle valve 10 via the throttle valve 10.
  • the refrigerant vapor generated by the generator 1 is supplied to the third generator 14 to drive the heat medium, and the diluted solution of the absorber 3 enters through the solution pump 8, the third solution heat exchanger 19 and the solution heat exchanger 12
  • the concentrated solution of the generator 1 enters the third generator 14 via the solution heat exchanger 12, and the refrigerant vapor flows through the third generator 14, the solution heated therein is released, and the refrigerant is supplied to the second generator 2.
  • the steam acts as a driving heat medium, and the concentrated solution of the third generator 14 enters the absorber 3 through the third solution heat exchanger 19, and the refrigerant vapor flowing through the third generator 14 is released into a refrigerant liquid and then passes through the third section.
  • the flow valve 17 is throttled and depressurized into the evaporator 6, forming a branching type first absorption heat pump.
  • the shunt cycle first type of absorption heat pump shown in Figure 13 is implemented as follows:
  • the concentrated solution line is connected to the absorber 3 via the third solution heat exchanger 19 and the solution heat exchanger 12, and the generator 1 has a refrigerant vapor passage connected to the second generator 2 and then occurs second.
  • the refrigerant 2 is further connected to the evaporator 6 through the throttle valve 10 to adjust the generator 1 to have a refrigerant vapor passage communicating with the third generator 14 and then the third generator 14 is further provided with a refrigerant liquid pipeline.
  • the third throttle valve 17 is in communication with the evaporator 6, and the third generator 14 is also provided with a refrigerant. After the steam passage communicating with the second generator 2 generator 2. Further the second communication liquid pipe of the refrigerant evaporator 10 and the throttle valve 6.
  • the refrigerant vapor generated by the generator 1 is supplied to the third generator 14 to drive the heat medium, and the diluted solution of the absorber 3 enters the third generator 14 through the solution pump 8 and the solution heat exchanger 12, and the refrigerant vapor
  • the solution flowing through the third generator 14 and heated therein is released and supplies the refrigerant vapor to the second generator 2 as a driving heat medium, and the concentrated solution of the third generator 14 passes through the third solution pump 21 and the third solution heat.
  • the exchanger 19 enters the generator 1, and the concentrated solution of the generator 1 enters the absorber 3 through the third solution heat exchanger 19 and the solution heat exchanger 12, and the refrigerant vapor flowing through the third generator 14 is released into a refrigerant liquid.
  • the third throttle valve 17 is throttled and depressurized into the evaporator 6, forming a first-stage absorption heat pump of the bypass cycle.
  • the shunt cycle first type of absorption heat pump shown in Figure 14 is implemented as follows:
  • the refrigerant vapor generated by the second generator 2 is supplied to the newly added generator A as a driving heat medium, and a part of the dilute solution of the second absorber 4 is introduced through the newly added solution pump C and the newly added solution heat exchanger D.
  • the refrigerant vapor flows through the newly added generator A, the solution heated into it is released, and the refrigerant vapor is supplied to the condenser 5, and the concentrated solution of the generator A is newly added to the new solution heat exchanger D.
  • the refrigerant vapor flowing through the newly added generator A is radiated into a refrigerant liquid, and then throttled into the condenser 5 through a new throttle valve B to form a first-stage absorption heat pump of the bypass circuit.
  • the shunt cycle first type of absorption heat pump shown in Figure 15 is implemented as follows:
  • the D, the second solution heat exchanger 13 and the absorber 3 are in communication with the second generator 2, and the second generator 2 has a concentrated solution line connected to the second absorber 4 via the second solution heat exchanger 13 to be adjusted to
  • the second generator 2 has a concentrated solution line connected to the newly added generator A via the second solution heat exchanger 13, and the new generator A has a concentrated solution line through the newly added solution heat exchanger D and the second absorber.
  • the second generator 2 has a refrigerant vapor channel connected to the condenser 5 to be adjusted to the second generator 2 has a refrigerant vapor channel connected with the newly added generator A, and then adds a generator A and then a refrigerant liquid pipe
  • the new throttle valve B is connected to the condenser 5, and the new generator A has refrigerant vapor.
  • Channel 5 communicates with the condenser.
  • the refrigerant vapor generated by the second generator 2 is supplied to the new generator A as a driving heat medium, and the dilute solution of the second absorber 4 is passed through the second solution pump 9, the new solution heat exchanger D, The two solution heat exchanger 13 and the absorber 3 enter the second generator 2, and the concentrated solution of the second generator 2 enters the new generator A through the second solution heat exchanger 13, and the refrigerant vapor flows through the new generator eight.
  • the solution heated into the solution is released and the refrigerant vapor is supplied to the condenser 5, and the concentrated solution of the newly added generator A is introduced into the second absorber 4 through the newly added solution heat exchanger D, and flows through the cold of the newly added generator A.
  • the agent steam is released into the refrigerant liquid, it is added into the condenser 5 by adding a new throttle B-throttle to form a first-stage absorption heat pump of the branching cycle.
  • the shunt cycle first type of absorption heat pump shown in Figure 16 is implemented as follows:
  • the refrigerant vapor generated by the second generator 2 is supplied to the newly added generator A as a driving heat medium, and the diluted solution of the second absorber 4 is passed through the second solution pump 9, the second solution heat exchanger 13, and the absorption.
  • the device 3 enters the newly added generator A, the refrigerant vapor flows through the newly added generator A, the solution heated into the solution is released, and the refrigerant vapor is supplied to the condenser 5, and the concentrated solution of the generator A is newly added through the new solution pump.
  • the second occurrence of the generator 1 has a refrigerant vapor passage connected to the second generator 2 2
  • a refrigerant liquid pipeline connected to the evaporator 6 through the throttle valve 10 to adjust the generator 1 to have a refrigerant vapor passage, which in turn connects the second generator 2 and the new generator A, and then adds the generator A to be cold again.
  • the agent liquid pipeline communicates with the evaporator 6 via the throttle valve 10, and the newly added absorber E and the heated medium pipeline communicate with the outside.
  • the refrigerant vapor generated by the generator 1 is supplied to the second generator 2 and the new generator A is used to drive the heat medium, and the dilute solution of the second absorber 4 is exchanged with the new solution pump 9 and the newly added solution.
  • the device D enters the new absorber E, absorbs the refrigerant vapor and radiates heat to the heated medium, and the diluted solution of the new absorber E is added to the second solution through the new solution pump C, the second solution heat exchanger 13 and the absorber 3 to enter the second
  • the concentrated solution of the generator 2 the second generator 2 enters the newly added generator A through the second solution heat exchanger 13, and a certain dryness of the wet refrigerant vapor flows through the newly added generator A, and the solution heated into the release is released.
  • the refrigerant absorber steam is supplied to the newly added absorber E, and the concentrated solution of the newly added generator A is introduced into the second absorber 4 through the newly added solution heat exchanger D, and the wet refrigerant vapor flowing through the newly added generator A is released into a refrigerant.
  • a first type of absorption heat pump is formed.
  • the exchanger I and the new solution heat exchanger D are in communication with the second absorber 4, and the new generator A and the refrigerant vapor passage are connected with the newly added absorber E, and the new steam compartment J and the refrigerant vapor passage are added.
  • the generator 1 has a refrigerant vapor passage connected with the second generator 2
  • the second generator 2 has a refrigerant liquid pipeline through the throttle valve 10 is connected to the evaporator 6 to adjust to the generator 1 having a refrigerant vapor passage in sequence to connect the second generator 2 and the new generator A.
  • the refrigerant vapor generated by the generator 1 is supplied to the second generator 2 and the new generator A is used to drive the heat medium, and the dilute solution of the second absorber 4 is exchanged with the new solution pump 9 and the newly added solution.
  • the device D enters the newly added second absorber F, absorbs the refrigerant vapor and radiates heat to the heated medium, and adds the dilute solution of the second absorber F through the newly added solution pump C and the newly added second solution heat exchanger I.
  • the steam separation chamber J, the concentrated solution of the new steam separation chamber J is added with the second solution heat
  • the converter I and the newly added solution heat exchanger D enter the second absorber 4, and the refrigerant vapor of the new steam separation chamber J enters the newly added second absorber F, and the wet refrigerant vapor flowing through the newly added generator A radiates heat.
  • the refrigerant liquid is throttled into the evaporator 6 through the throttle valve 10, a first-stage absorption heat pump of the bypass cycle is formed.
  • the shunt cycle first type of absorption heat pump shown in Figure 19 is implemented as follows:
  • the dilute solution of the second absorber 4 enters the newly added absorber E through the second solution pump 9 and the newly added solution heat exchanger D, absorbs the refrigerant vapor and radiates heat to the heated medium, and adds the absorber E.
  • the dilute solution enters the second generator 2 via the new solution pump C, the second solution heat exchanger 13 and the absorber 3, and the concentrated solution of the second generator 2 enters the new generator A via the second solution heat exchanger 13
  • the driving heat medium flows through the newly added generator A, the solution heated into the solution is released, and the refrigerant vapor is supplied to the newly added absorber E, and the concentrated solution of the new generator A is added to the second through the new solution heat exchanger D.
  • the absorber 4 forms a shunt cycle first type absorption heat pump.
  • the shunt cycle first type of absorption heat pump shown in Figure 20 is implemented as follows:
  • the flow-height H and the newly-added absorber E are connected to the new steam-distribution chamber J, and the new steam-distribution chamber J has a concentrated solution pipeline through the addition of the second solution heat exchanger I and the new solution heat exchanger D and the first
  • the second absorber 4 is connected, the new generator A and the refrigerant vapor channel are connected with the newly added absorber E, and the newly added steam chamber J and the refrigerant vapor channel are connected with the newly added second absorber F, and newly added occurs.
  • the device A also drives the heat medium pipe to communicate with the outside, and the second absorber F and the heated medium pipe are connected to the outside.
  • the dilute solution of the second absorber 4 passes through the second solution pump 9 and the newly added solution heat exchanger D to enter the newly added second absorber F, absorbs the refrigerant vapor and radiates heat to the heated medium, adding a new
  • the dilute solution of the second absorber F is added to the new absorber through the new solution pump C and the second solution heat exchanger I; the refrigerant vapor is absorbed and the solution flowing through the solution is added, and the absorber is added.
  • the dilute solution of E is added to the second generator 2 by adding the second solution pump G, the second solution heat exchanger 13 and the absorber 3, and the concentrated solution of the second generator 2 is introduced into the second solution heat exchanger 13
  • the generator A drives the heat medium to flow through the newly added generator.
  • the solution heated into the solution is released and the refrigerant vapor is supplied to the newly added absorber E.
  • the concentrated solution of the generator A is newly added through the new solution throttle valve H. After the throttle is depressurized, it flows through the newly added absorber E, and the endothermic portion is vaporized and then enters the new steam dividing chamber J.
  • the concentrated solution of the new steam dividing chamber J is added by adding the second solution heat exchanger I and the newly added solution heat.
  • the exchanger D enters the second absorber 4, and the refrigerant vapor of the steam dividing chamber J is newly entered.
  • the second absorber by F, forming a first shunt type absorption heat pump cycle.
  • the process with the regenerative heating end can realize the deep utilization of the driving heat source or can increase the increase of the residual heat temperature and improve the utilization rate of thermal energy.
  • thermodynamic parameters are smoothly changed, the heating parameters can be adjusted, and it can better adapt to the change of working conditions, and obtain a higher performance index and thermodynamic perfectity. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

提供了一种分路循环第一类吸收式热泵。吸收器(3)、溶液泵(8)、溶液热交换器(12)和发生器(1)构成溶液回路,发生器(1)有冷剂蒸汽通道连通第二发生器(2)后再经节流阀(10)连通蒸发器(6),蒸发器(6)有冷剂蒸汽通道与吸收器(3)连通。第二吸收器(4)、第二溶液泵(9)、第二溶液热交换器(13)、吸收器(3)和第二发生器(2)构成另一溶液回路,第二发生器(2)有冷剂蒸汽通道与冷凝器(5)连通,冷凝器(5)经第二节流阀(11)与第二蒸发器(7)连通,第二蒸发器(7)有冷剂蒸汽通道与第二吸收器(4)连通。发生器(1)有驱动热介质管路与外部连通,第二吸收器(4)和冷凝器(5)有被加热介质管路与外部连通,蒸发器(6)和第二蒸发器(7)有余热介质管路与外部连通,从而形成分路循环第一类吸收式热泵。

Description

分路循环第一类吸收式热泵
技术领域:
本发明属于低温余热利用与热泵 /制冷技术领域。
背景技术:
从温差利用角度看,第一类吸收式热泵以驱动热介质与被加热介质之间的温差作为驱动 力, 当驱动温差较大时应采用两次或多次温差利用流程来提高温差利用的程度, 从而实现热 能利用的高效化;从工作介质的角度看,吸收式热泵的工作介质为溶液,受物质性质的限制, 每一种溶液都有其适合的工作范围; 这样, 当驱动热介质的温度和温降超出了单一溶液的工 作范围时,应该采用不同的溶液进行分路循环来完成对驱动温差的充分利用, 即驱动温差依 次在不同的溶液循环回路中加以利用, 从而实现驱动温差利用的合理化。
在考虑充分利用温差的同时,第一类吸收式热泵的循环流程还要实现更多的要求, 这些 要求包括: 热力学参数平滑变化, 供热参数可调节, 能够较好地适应工况变化, 具有最佳的 性能指数; 能够实现对高温热源的深度利用, 或利用不同品位的热源以实现其综合利用等。
在不同溶液回路中进行温差的分步利用, 涉及到不同环节中的热负荷传递; 在热负荷传 递过程中, 任何传热环节的温差浪费都将带来热能利用率的降低。 因此, 不论是冷凝热的传 递, 还是吸收热的传递, 任何热负荷的传热环节都应该一步到位; 除此之外, 还应考虑不同 溶液回路的热负荷传递中吸收热负荷和冷凝热负荷的温度配置或传递的先后顺序问题,以保 证得到更加合理的热力学完善度。
发明内容:
本发明主要目的是要提供分路循环第一类吸收式热泵, 具体发明内容分项阐述如下:
1. 分路循环第一类吸收式热泵, 主要由发生器、 第二发生器、 吸收器、 第二吸收器、 冷凝器、 蒸发器、 第二蒸发器、 溶液泵、 第二溶液泵、 节流阀、 第二节流阀、 溶液热交换器 和第二溶液热交换器所组成; 吸收器有稀溶液管路经溶液泵和溶液热交换器与发生器连通, 发生器还有浓溶液管路经溶液热交换器与吸收器连通,发生器还有冷剂蒸汽通道与第二发生 器连通后第二发生器再有冷剂液管路经节流阀与蒸发器连通,蒸发器还有冷剂蒸汽通道与吸 收器连通; 第二吸收器有稀溶液管路经第二溶液泵、第二溶液热交换器和吸收器与第二发生 器连通,第二发生器还有浓溶液管路经第二溶液热交换器与第二吸收器连通,第二发生器还 有冷剂蒸汽通道与冷凝器连通, 冷凝器还有冷剂液管路经第二节流阀与第二蒸发器连通, 第 二蒸发器还有冷剂蒸汽通道与第二吸收器连通; 发生器还有驱动热介质管路与外部连通,第 二吸收器和冷凝器还分别有被加热介质管路与外部连通,蒸发器和第二蒸发器还分别有余热 介质管路与外部连通, 形成分路循环第一类吸收式热泵。
2. 分路循环第一类吸收式热泵, 是在第 1项所述的分路循环第一类吸收式热泵中, 增 加第三发生器、 第二冷凝器、 溶液节流阀、 第三节流陶和分汽室, 将吸收器有稀溶液管路经 溶液泵和溶液热交换器与发生器连通调整为吸收器有稀溶液管路经溶液泵和溶液热交换器 与第三发生器连通, 第三发生器再有浓溶液管路经溶液节流阔与发生器连通,第三发生器还 有冷剂蒸汽通道与第二冷凝器连通, 第二冷凝器还有冷剂液管路经第三节流阀与蒸发器连 通,将第二发生器有浓溶液管路经第二溶液热交换器与第二吸收器连通调整为第二发生器有 浓溶液管路经第二冷凝器与分汽室连通,分汽室再有浓溶液管路经第二溶液热交换器与第二 吸收器连通, 分汽室还有冷剂蒸汽通道与冷凝器连通,第三发生器还有驱动热介质管路与外 部连通, 形成分路循环第一类吸收式热泵。
3. 分路循环第一类吸收式热泵, 是在第 1项所述的分路循环第一类吸收式热泵中, 增 加第三发生器、 第二冷凝器、 第三节流阀和第三溶液热交换器, 将吸收器有稀溶液管路经溶 液泵和溶液热交换器与发生器连通调整为吸收器有稀溶液管路经溶液泵、第三溶液热交换器 和溶液热交换器与发生器连通,将发生器有浓溶液管路经溶液热交换器与吸收器连通调整为 发生器有浓溶液管路经溶液热交换器与第三发生器连通,第三发生器再有浓溶液管路经第三 溶液热交换器与吸收器连通,第三发生器还有冷剂蒸汽通道与第二冷凝器连通,第二冷凝器 还有冷剂液管路经第三节流阀与蒸发器连通, 第三发生器还有驱动热介质管路与外部连通, 第二冷凝器还有被加热介质管路与外部连通, 形成分路循环第一类吸收式热泵。
4. 分路循环第一类吸收式热泵, 是在第 1项所述的分路循环第一类吸收式热泵中, 增 加第三发生器、 第二冷凝器、第三节流阀和溶液节流阀, 将发生器有浓溶液管路经溶液热交 换器与吸收器连通调整为发生器有浓溶液管路经溶液节流阀与第三发生器连通,第三发生器 再有浓溶液管路经溶液热交换器与吸收器连通,第三发生器还有冷剂蒸汽通道与第二冷凝器 连通, 第二冷凝器还有冷剂液管路经第三节流阔与蒸发器连通,第三发生器还有驱动热介质 管路与外部连通, 第二冷凝器还有被加热介质管路与外部连通, 形成分路循环第一类吸收式 热泵。
5. 分路循环第一类吸收式热泵, 是在第 1项所述的分路循环第一类吸收式热泵中, 增 加第三发生器、第三吸收器、第三溶液热交换器和第三溶液泵, 将吸收器有稀溶液管路经溶 液泵和溶液热交换器与发生器连通调整为吸收器有稀溶液管路经溶液泵和第三溶液热交换 器与第三吸收器连通,第三吸收器再有稀溶液管路经第三溶液泵和溶液热交换器与发生器连 通,将发生器有浓溶液管路经溶液热交换器与吸收器连通调整为发生器有浓溶液管路经溶液 热交换器与第三发生器连通, 第三发生器再有浓溶液管路经第三溶液热交换器与吸收器连 通, 第三发生器还有冷剂蒸汽通道与第三吸收器连通, 第三发生器还有驱动热介质管路与外 部连通, 第三吸收器还有被加热介质管路与外部连通, 形成分路循环第一类吸收式热泵。
6. 分路循环第一类吸收式热泵, 是在第 1项所述的分路循环第一类吸收式热泵中, 增 加第三发生器、 第三吸收器、 第三溶液热交换器、 第三溶液泵和分汽室, 将吸收器有稀溶液 管路经溶液泵和溶液热交换器与发生器连通调整为吸收器有稀溶液管路经溶液泵和第三溶 液热交换器与第三吸收器连通,第三吸收器再有稀溶液管路经第三溶液泵和溶液热交换器与 发生器连通,将发生器有浓溶液管路经溶液热交换器与吸收器连通调整为发生器有浓溶液管 路经溶液热交换器与第三发生器连通,第三发生器再有浓溶液管路经第三溶液热交换器与吸 收器连通, 第三发生器还有冷剂蒸汽通道与第三吸收器连通, 将第二发生器有浓溶液管路经 第二溶液热交换器与第二吸收器连通调整为第二发生器有浓溶液管路经第三吸收器与分汽 室连通,分汽室再有浓溶液管路经第二溶液热交换器与第二吸收器连通, 分汽室还有冷剂蒸 汽通道与冷凝器连通,第三发生器还有驱动热介质管路与外部连通, 形成分路循环第一类吸 收式热泵。 7. 分路循环第一类吸收式热泵, 是在第 1项所述的分路循环第一类吸收式热泵中, 增 加第三发生器、 第二冷凝器、 第三节流阀、 溶液节流阀、 第三溶液热交换器、 第三吸收器、 第三溶液泵和分汽室,将吸收器有稀溶液管路经溶液泵和溶液热交换器与发生器连通调整为 吸收器有稀溶液管路经溶液泵和第三溶液热交换器与第三吸收器连通,第三吸收器再有稀溶 液管路经第三溶液泵和溶液热交换器与发生器连通,将发生器有浓溶液管路经溶液热交换器 与吸收器连通调整为发生器有浓溶液管路经溶液热交换器与第三发生器连通,第三发生器还 有浓溶液管路经溶液节流阀和第三吸收器与分汽室连通,分汽室再有浓溶液管路经第三溶液 热交换器与吸收器连通, 第三发生器还有冷剂蒸汽通道与第三吸收器连通, 分汽室还有冷剂 蒸汽通道与第二冷凝器连通,第二冷凝器还有冷剂液管路经第三节流阀与蒸发器连通,第三 发生器还有驱动热介质管路与外部连通, 第二冷凝器还有被加热介质管路与外部连通, 形成 分路循环第一类吸收式热泵; 其中, 或第三吸收器增加被加热介质管路与外部连通。
8. 分路循环第一类吸收式热泵, 是在第 1项所述的分路循环第一类吸收式热泵中, 增 加第三发生器、第三吸收器、第四吸收器、第三溶液泵、第四溶液泵、溶液节流阀、分汽室、 第三溶液热交换器和第四溶液热交换器,将吸收器有稀溶液管路经溶液泵和溶液热交换器与 发生器连通调整为吸收器有稀溶液管路经溶液泵和第三溶液热交换器与第四吸收器连通,第 四吸收器还有稀溶液管路经第四溶液泵和第四溶液热交换器与第三吸收器连通,第三吸收器 再有稀溶液管路经第三溶液泵和溶液热交换器与发生器连通,将发生器有浓溶液管路经溶液 热交换器与吸收器连通调整为发生器有浓溶液管路经溶液热交换器与第三发生器连通,第三 发生器还有浓溶液管路溶液节流阀和第三吸收器与分汽室连通,分汽室再有浓溶液管路经第 四溶液热交换器和第三溶液热交换器与吸收器连通,第三发生器还有冷剂蒸汽通道与第三吸 收器连通,分汽室还有冷剂蒸汽通道与第四吸收器连通, 第三发生器还有驱动热介质管路与 外部连通, 第四吸收器还有被加热介质管路与外部连通, 形成分路循环第一类吸收式热泵; 其中, 或第三吸收器增加被加热介质管路与外部连通。
9. 分路循环第一类吸收式热泵, 是在第 1项所述的分路循环第一类吸收式热泵中, 增 加第三发生器、第三吸收器、第四吸收器、第三溶液泵、第四溶液泵、溶液节流阔、分汽室、 第三溶液热交换器、第四溶液热交换器和第二分汽室, 将吸收器有稀溶液管路经溶液泵和溶 液热交换器与发生器连通调整为吸收器有稀溶液管路经溶液泵和第三溶液热交换器与第四 吸收器连通,第四吸收器还有稀溶液管路经第四溶液泵和第四溶液热交换器与第三吸收器连 通, 第三吸收器再有稀溶液管路经第三溶液泵和溶液热交换器与发生器连通,将发生器有浓 溶液管路经溶液热交换器与吸收器连通调整为发生器有浓溶液管路经溶液热交换器与第三 发生器连通, 第三发生器还有浓溶液管路溶液节流阀和第三吸收器与分汽室连通, 分汽室再 有浓溶液管路经第四溶液热交换器和第三溶液热交换器与吸收器连通,第三发生器还有冷剂 蒸汽通道与第三吸收器连通, 分汽室还有冷剂蒸汽通道与第四吸收器连通, 将第二发生器有 浓溶液管路经第二溶液热交换器与第二吸收器连通调整为第二发生器有浓溶液管路经第四 吸收器或再经第三吸收器与第二分汽室连通,第二分汽室再有浓溶液管路经第二溶液热交换 器与第二吸收器连通, 第二分汽室还有冷剂蒸汽通道与冷凝器连通, 第三发生器还有驱动热 介质管路与外部连通, 形成分路循环第一类吸收式热泵。 10. 分路循环第一类吸收式热泵, 是在第 1项所述的分路循环第一类吸收式热泵中, 增加第三发生器、 第三吸收器、 第三溶液泵、 分汽室、 溶液节流阀和第二溶液节流阀, 将吸 收器有稀溶液管路经溶液泵和溶液热交换器与发生器连通调整为吸收器有稀溶液管路经溶 液泵和溶液热交换器与第三吸收器连通,第三吸收器再有稀溶液管路经第二溶液节流阀与发 生器连通,将发生器有浓溶液管路经溶液热交换器与吸收器连通调整为发生器有浓溶液管路 经第三溶液泵与第三发生器连通,第三发生器还有浓溶液管路经溶液节流阀和第三吸收器与 分汽室连通, 分汽室再有浓溶液管路经溶液热交换器与吸收器连通, 第三发生器还有冷剂蒸 汽通道与第三吸收器连通;将发生器有冷剂蒸汽通道与第二发生器连通后第二发生器再有冷 剂液管路经节流阀与蒸发器连通调整为发生器和分汽室有冷剂蒸汽通道与第二发生器连通 后第二发生器再有冷剂液管路经节流阀与蒸发器连通,第三发生器还有驱动热介质管路与外 部连通, 形成分路循环第一类吸收式热泵。
11. 分路循环第一类吸收式热泵, 是在第 1项所述的分路循环第一类吸收式热泵中, 增加第三发生器、第三吸收器、分汽室和溶液节流阀, 将吸收器有稀溶液管路经溶液泵和溶 液热交换器与发生器连通调整为吸收器有稀溶液管路经溶液泵和溶液热交换器与第三吸收 器连通,第三吸收器还有稀溶液管路与第三发生器连通,第三发生器再有浓溶液管路经溶液 节流阀与发生器连通,将发生器有浓溶液管路经溶液热交换器与吸收器连通调整为发生器有 浓溶液管路经第三吸收器与分汽室连通,分汽室再有浓溶液管路经溶液热交换器与吸收器连 通,第三发生器还有冷剂蒸汽通道与第三吸收器连通; 将发生器有冷剂蒸汽通道与第二发生 器连通后第二发生器再有冷剂液管路经节流阀与蒸发器连通调整为发生器和分汽室有冷剂 蒸汽通道与第二发生器连通后第二发生器再有冷剂液管路经节流阀与蒸发器连通,第三发生 器还有驱动热介质管路与外部连通, 形成分路循环第一类吸收式热泵; 其中, 为方便部件布 置, 或增加第三溶液泵, 将第三吸收器有稀溶液管路与第三发生器连通调整为第三吸收器有 稀溶液管路经第三溶液泵与第三发生器连通。
12. 分路循环第一类吸收式热泵, 是在第 1项所述的分路循环第一类吸收式热泵中, 增加第三发生器、第三吸收器、第三溶液热交换器和分汽室, 将吸收器有稀溶液管路经溶液 泵和溶液热交换器与发生器连通调整为吸收器有稀溶液管路经溶液泵、溶液热交换器和第三 溶液热交换器与第三吸收器连通, 第三吸收器还有稀溶液管路与第三发生器连通, 第三发生 器再有浓溶液管路经第三溶液热交换器与发生器连通,将发生器有浓溶液管路经溶液热交换 器与吸收器连通调整为发生器有浓溶液管路经第三吸收器与分汽室连通,分汽室再有浓溶液 管路经溶液热交换器与吸收器连通,第三发生器还有冷剂蒸汽通道与第三吸收器连通;将发 生器有冷剂蒸汽通道与第二发生器连通后第二发生器再有冷剂液管路经节流阀与蒸发器连 通调整为发生器和分汽室有冷剂蒸汽通道与第二发生器连通后第二发生器再有冷剂液管路 经节流阀与蒸发器连通,第三发生器还有驱动热介质管路与外部连通, 形成分路循环第一类 吸收式热泵; 其中, 为方便部件布置, 或增加第三溶液泵, 将第三吸收器有稀溶液管路与第 三发生器连通调整为第三吸收器有稀溶液管路经第三溶液泵与第三发生器连通。
13. 分路循环第一类吸收式热泵, 是在第 1项所述的分路循环第一类吸收式热泵中, 增加第三发生器、第三节流阀、第三溶液热交换器和第三溶液泵, 吸收器增设稀溶液管路经 第三溶液泵和第三溶液热交换器与第三发生器连通,第三发生器还有浓溶液管路经第三溶液 热交换器与吸收器连通,将发生器有冷剂蒸汽通道与第二发生器连通后第二发生器再有冷剂 液管路经节流阔与蒸发器连通调整为发生器有冷剂蒸汽通道与第三发生器连通后第三发生 器再有冷剂液管路经第三节流阀与蒸发器连通,第三发生器还有冷剂蒸汽通道与第二发生器 连通后第二发生器再有冷剂液管路经节流阀与蒸发器连通, 形成分路循环第一类吸收式热 泵。
14. 分路循环第一类吸收式热泵, 是在第 1项所述的分路循环第一类吸收式热泵中, 增加第三发生器、第三节流阔和第三溶液热交换器,将吸收器有稀溶液管路经溶液泵和溶液 热交换器与发生器连通调整为吸收器有稀溶液管路经溶液泵、第三溶液热交换器和溶液热交 换器与发生器连通,将发生器有浓溶液管路经溶液热交换器与吸收器连通调整为发生器有浓 溶液管路经溶液热交换器与第三发生器连通,第三发生器再有浓溶液管路经第三溶液热交换 器与吸收器连通,将发生器有冷剂蒸汽通道与第二发生器连通后第二发生器再有冷剂液管路 经节流阀与蒸发器连通调整为发生器有冷剂蒸汽通道与第三发生器连通后第三发生器再有 冷剂液管路经第三节流阀与蒸发器连通,第三发生器还有冷剂蒸汽通道与第二发生器连通后 第二发生器再有冷剂液管路经节流阀与蒸发器连通, 形成分路循环第一类吸收式热泵。
15. 分路循环第一类吸收式热泵, 是在第 1项所述的分路循环第一类吸收式热泵中, 增加第三发生器、 第三节流阀、第三溶液泵和第三溶液热交换器, 将吸收器有稀溶液管路经 溶液泵和溶液热交换器与发生器连通调整为吸收器有稀溶液管路经溶液泵和第二溶液热交 换器与第三发生器连通,第三发生器再有浓溶液管路经第三溶液泵和第三溶液热交换器与发 生器连通,将发生器有浓溶液管路经溶液热交换器与吸收器连通调整为发生器有浓溶液管路 经第三溶液热交换器和溶液热交换器与吸收器连通,将发生器有冷剂蒸汽通道与第二发生器 连通后第二发生器再有冷剂液管路经节流阀与蒸发器连通调整为发生器有冷剂蒸汽通道与 第三发生器连通后第三发生器再有冷剂液管路经第三节流阀与蒸发器连通,第三发生器还有 冷剂蒸汽通道与第二发生器连通后第二发生器再有冷剂液管路经节流阅与蒸发器连通,形成 分路循环第一类吸收式热泵。
16. 分路循环第一类吸收式热泵, 是在第 1、 3-5、 7-8、 10-15项所述的任一分路循环 第一类吸收式热泵中, 增加新增发生器、 新增节流阀、 新增溶液泵和新增溶液热交换器, 第 二吸收器增设稀溶液管路经新增溶液泵和新增溶液热交换器与新增发生器连通,新增发生器 还有浓溶液管路经新增溶液热交换器与第二吸收器连通,将第二发生器有冷剂蒸汽通道与冷 凝器连通调整为第二发生器有冷剂蒸汽通道与新增发生器连通后新增发生器再有冷剂液管 路经新增节流阀与冷凝器连通, 新增发生器还有冷剂蒸汽通道与冷凝器连通, 形成分路循环 第一类吸收式热泵。
17. 分路循环第一类吸收式热泵, 是在第 1、 3-5、 7-8、 10-15项所述的任一分路循环 第一类吸收式热泵中, 增加新增发生器、 新增节流阀和新增溶液热交换器, 将第二吸收器有 稀溶液管路经第二溶液泵、第二溶液热交换器和吸收器与第二发生器连通调整为第二吸收器 有稀溶液管路经第二溶液泵、新增溶液热交换器、第二溶液热交换器和吸收器与第二发生器 连通,将第二发生器有浓溶液管路经第二溶液热交换器与第二吸收器连通调整为第二发生器 有浓溶液管路经第二溶液热交换器与新增发生器连通,新增发生器再有浓溶液管路经新增溶 液热交换器与第二吸收器连通,将第二发生器有冷剂蒸汽通道与冷凝器连通调整为第二发生 器有冷剂蒸汽通道与新增发生器连通后新增发生器再有冷剂液管路经新增节流阀与冷凝器 连通, 新增发生器还有冷剂蒸汽通道与冷凝器连通, 形成分路循环第一类吸收式热泵。
18. 分路循环第一类吸收式热泵, 是在第 1、 3-5、 7-8、 10-15项所述的任一分路循环 第一类吸收式热泵中, 增加新增发生器、 新增节流阀、 新增溶液泵和新增溶液热交换器, 将 第二吸收器有稀溶液管路经第二溶液泵、第二溶液热交换器和吸收器与第二发生器连通调整 为第二吸收器有稀溶液管路经第二溶液泵、 第二溶液热交换器和吸收器与新增发生器连通, 新增发生器再有浓溶液管路经新增溶液泵和新增溶液热交换器与第二发生器连通,将第二发 生器有浓溶液管路经第二溶液热交换器与第二吸收器连通调整为第二发生器有浓溶液管路 经新增溶液热交换器和第二溶液热交换器与第二吸收器连通,将第二发生器有冷剂蒸汽通道 与冷凝器连通调整为第二发生器有冷剂蒸汽通道与新增发生器连通后新增发生器再有冷剂 液管路经新增节流阀与冷凝器连通, 新增发生器还有冷剂蒸汽通道与冷凝器连通, 形成分路 循环第一类吸收式热泵。
19. 分路循环第一类吸收式热泵, 是在第 1、 3-5、 7-8、 13- 15项所述的任一分路循环 第一类吸收式热泵中, 增加新增发生器、 新增吸收器、 新增溶液泵和新增溶液热交换器, 将 第二吸收器有稀溶液管路经第二溶液泵、第二溶液热交换器和吸收器与第二发生器连通调整 为第二吸收器有稀溶液管路经第二溶液泵和新增溶液热交换器与新增吸收器连通,新增吸收 器再有稀溶液管路经新增溶液泵、第二溶液热交换器和吸收器与第二发生器连通, 将第二发 生器有浓溶液管路经第二溶液热交换器与第二吸收器连通调整为第二发生器有浓溶液管路 经第二溶液热交换器与新增发生器连通,新增发生器再有浓溶液管路经新增溶液热交换器与 第二吸收器连通, 新增发生器还有冷剂蒸汽通道与新增吸收器连通, 将发生器有冷剂蒸汽通 道与第二发生器连通后第二发生器再有冷剂液管路经节流阀与蒸发器连通调整为发生器有 冷剂蒸汽通道依次连通第二发生器和新增发生器之后新增发生器再有冷剂液管路经节流阀 与蒸发器连通, 新增吸收器还有被加热介质管路与外部连通, 形成分路循环第一类吸收式热 泵。
20. 分路循环第一类吸收式热泵, 是在第 1、 3-5、 7-8、 13- 15项所述的任一分路循环 第一类吸收式热泵中, 增加新增发生器、 新增吸收器、 新增第二吸收器、 新增溶液泵、 新增 第二溶液泵、 新增溶液热交换器、 新增第二溶液热交换器、 新增溶液节流阀和新增分汽室, 将第二吸收器有稀溶液管路经第二溶液泵、第二溶液热交换器和吸收器与第二发生器连通调 整为第二吸收器有稀溶液管路经第二溶液泵和新增溶液热交换器与新增第二吸收器连通,新 增第二吸收器还有稀溶液管路经新增溶液泵和新增第二溶液热交换器与新增吸收器连通,新 增吸收器再有稀溶液管路经新增第二溶液泵、 第二溶液热交换器和吸收器与第二发生器连 通,将第二发生器有浓溶液管路经第二溶液热交换器与第二吸收器连通调整为第二发生器有 浓溶液管路经第二溶液热交换器与新增发生器连通,新增发生器还有浓溶液管路经新增溶液 节流阔和新增吸收器与新增分汽室连通,新增分汽室再有浓溶液管路经新增第二溶液热交换 器和新增溶液热交换器与第二吸收器连通, 新增发生器还有冷剂蒸汽通道与新增吸收器连 通,新增分汽室还有冷剂蒸汽通道与新增第二吸收器连通, 将发生器有冷剂蒸汽通道与第二 发生器连通后第二发生器再有冷剂液管路经节流阀与蒸发器连通调整为发生器有冷剂蒸汽 通道依次连通第二发生器和新增发生器之后新增发生器再有冷剂液管路经节流阀与蒸发器 连通, 新增第二吸收器还有被加热介质管路与外部连通, 形成分路循环第一类吸收式热泵; 其中, 或新增吸收器增加被加热介质管路与外部连通。
21. 分路循环第一类吸收式热泵, 是在第 10-12项所述的任一分路循环第一类吸收式 热泵中, 增加新增发生器、 新增吸收器、 新增溶液泵和新增溶液热交换器, 将第二吸收器有 稀溶液管路经第二溶液泵、第二溶液热交换器和吸收器与第二发生器连通调整为第二吸收器 有稀溶液管路经第二溶液泵和新增溶液热交换器与新增吸收器连通,新增吸收器再有稀溶液 管路经新增溶液泵、第二溶液热交换器和吸收器与第二发生器连通, 将第二发生器有浓溶液 管路经第二溶液热交换器与第二吸收器连通调整为第二发生器有浓溶液管路经第二溶液热 交换器与新增发生器连通,新增发生器再有浓溶液管路经新增溶液热交换器与第二吸收器连 通,新增发生器还有冷剂蒸汽通道与新增吸收器连通, 将发生器和分汽室有冷剂蒸汽通道与 第二发生器连通后第二发生器再有冷剂液管路经节流阔与蒸发器连通调整为发生器和分汽 室有冷剂蒸汽通道依次连通第二发生器和新增发生器之后新增发生器再有冷剂液管路经节 流阔与蒸发器连通, 新增吸收器还有被加热介质管路与外部连通,形成分路循环第一类吸收 式热泵。
22. 分路循环第一类吸收式热泵, 是在第 10-12项所述的任一分路循环第一类吸收式 热泵中, 增加新增发生器、 新增吸收器、 新增第二吸收器、 新增溶液泵、 新增第二溶液泵、 新增溶液热交换器、 新增第二溶液热交换器、新增溶液节流阀和新增分汽室, 将第二吸收器 有稀溶液管路经第二溶液泵、第二溶液热交换器和吸收器与第二发生器连通调整为第二吸收 器有稀溶液管路经第二溶液泵和新增溶液热交换器与新增第二吸收器连通,新增第二吸收器 还有稀溶液管路经新增溶液泵和新增第二溶液热交换器与新增吸收器连通,新增吸收器再有 稀溶液管路经新增第二溶液泵、第二溶液热交换器和吸收器与第二发生器连通, 将第二发生 器有浓溶液管路经第二溶液热交换器与第二吸收器连通调整为第二发生器有浓溶液管路经 第二溶液热交换器与新增发生器连通,新增发生器还有浓溶液管路经新增溶液节流阔和新增 吸收器与新增分汽室连通,新增分汽室再有浓溶液管路经新增第二溶液热交换器和新增溶液 热交换器与第二吸收器连通, 新增发生器还有冷剂蒸汽通道与新增吸收器连通, 新增分汽室 还有冷剂蒸汽通道与新增第二吸收器连通,将发生器和分汽室有冷剂蒸汽通道与第二发生器 连通后第二发生器再有冷剂液管路经节流阀与蒸发器连通调整为发生器和分汽室有冷剂蒸 汽通道依次连通第二发生器和新增发生器之后新增发生器再有冷剂液管路经节流阀与蒸发 器连通,新增第二吸收器还有被加热介质管路与外部连通,形成分路循环第一类吸收式热泵; 其中, 或新增吸收器增加被加热介质管路与外部连通。
23. 分路循环第一类吸收式热泵, 是在第 1、 3-5、 7-8、 10-15项所述的任一分路循环 第一类吸收式热泵中, 增加新增发生器、 新增吸收器、 新增溶液泵和新增溶液热交换器, 将 第二吸收器有稀溶液管路经第二溶液泵、第二溶液热交换器和吸收器与第二发生器连通调整 为第二吸收器有稀溶液管路经第二溶液泵和新增溶液热交换器与新增吸收器连通,新增吸收 器再有稀溶液管路经新增溶液泵、第二溶液热交换器和吸收器与第二发生器连通, 将第二发 生器有浓溶液管路经第二溶液热交换器与第二吸收器连通调整为第二发生器有浓溶液管路 经第二溶液热交换器与新增发生器连通,新增发生器再有浓溶液管路经新增溶液热交换器与 第二吸收器连通, 新增发生器还有冷剂蒸汽通道与新增吸收器连通, 新增发生器还有驱动热 介质管路与外部连通, 新增吸收器还有被加热介质管路与外部连通, 形成分路循环第一类吸 收式热泵。
24. 分路循环第一类吸收式热泵, 是在第 1、 3-5、 7-8、 10-15项所述的任一分路循环 第一类吸收式热泵中, 增加新增发生器、 新增吸收器、 新增第二吸收器、 新增溶液泵、 新增 第二溶液泵、 新增溶液热交换器、 新增第二溶液热交换器、 新增溶液节流阔和新增分汽室, 将第二吸收器有稀溶液管路经第二溶液泵、第二溶液热交换器和吸收器与第二发生器连通调 整为第二吸收器有稀溶液管路经第二溶液泵和新增溶液热交换器与新增第二吸收器连通,新 增第二吸收器还有稀溶液管路经新增溶液泵和新增第二溶液热交换器与新增吸收器连通,新 增吸收器再有稀溶液管路经新增第二溶液泵、 第二溶液热交换器和吸收器与第二发生器连 通,将第二发生器有浓溶液管路经第二溶液热交换器与第二吸收器连通调整为第二发生器有 浓溶液管路经第二溶液热交换器与新增发生器连通,新增发生器还有浓溶液管路经新增溶液 节流阀和新增吸收器与新增分汽室连通,新增分汽室再有浓溶液管路经新增第二溶液热交换 器和新增溶液热交换器与第二吸收器连通, 新增发生器还有冷剂蒸汽通道与新增吸收器连 通, 新增分汽室还有冷剂蒸汽通道与新增第二吸收器连通, 新增发生器还有驱动热介质管路 与外部连通, 新增第二吸收器还有被加热介质管路与外部连通, 形成分路循环第一类吸收式 热泵; 其中, 或新增吸收器增加被加热介质管路与外部连通。
25. 分路循环第一类吸收式热泵,是在第 1-24项所述的任一分路循环第一类吸收式热 泵中, 将蒸发器和第二蒸发器合二为一, 形成分路循环第一类吸收式热泵。
附图说明- 图 1是依据本发明所提供的分路循环第一类吸收式热泵第 1种结构和流程示意图。 图 2是依据本发明所提供的分路循环第一类吸收式热泵第 2种结构和流程示意图。 图 3是依据本发明所提供的分路循环第一类吸收式热泵第 3种结构和流程示意图。 图 4是依据本发明所提供的分路循环第一类吸收式热泵第 4种结构和流程示意图。 图 5是依据本发明所提供的分路循环第一类吸收式热泵第 5种结构和流程示意图。 图 6是依据本发明所提供的分路循环第一类吸收式热泵第 6种结构和流程示意图。 图 7是依据本发明所提供的分路循环第一类吸收式热泵第 7种结构和流程示意图。 图 8是依据本发明所提供的分路循环第一类吸收式热泵第 8种结构和流程示意图。 图 9是依据本发明所提供的分路循环第一类吸收式热泵第 9种结构和流程示意图。 图 10是依据本发明所提供的分路循环第一类吸收式热泵第 10种结构和流程示意图。 图 11是依据本发明所提供的分路循环第一类吸收式热泵第 11种结构和流程示意图。 图 12是依据本发明所提供的分路循环第一类吸收式热泵第 12种结构和流程示意图。 图 13是依据本发明所提供的分路循环第一类吸收式热泵第 13种结构和流程示意图。 图 14是依据本发明所提供的分路循环第一类吸收式热泵第 14种结构和流程示意图。 图 15是依据本发明所提供的分路循环第一类吸收式热泵第 15种结构和流程示意图。 图 16是依据本发明所提供的分路循环第一类吸收式热泵第 16种结构和流程示意图。 图 17是依据本发明所提供的分路循环第一类吸收式热泵第 17种结构和流程示意图。 图 18是依据本发明所提供的分路循环第一类吸收式热泵第 18种结构和流程示意图。 图 19是依据本发明所提供的分路循环第一类吸收式热泵第 19种结构和流程示意图。 图 20是依据本发明所提供的分路循环第一类吸收式热泵第 20种结构和流程示意图。 图中, 1一发生器, 2—第二发生器, 3—吸收器, 4一第二吸收器, 5—冷凝器, 6—蒸发 器, 7—第二蒸发器, 8—溶液泵, 9一第二溶液泵, 10—节流阀, 11一第二节流阀, 12—溶 液热交换器, 13—第二溶液热交换器, 14一第三发生器, 15—第二冷凝器, 16—溶液节流阀, 17—第三节流阀, 18—分汽室, 19一第三溶液热交换器, 20—第三吸收器, 21—第三溶液泵, 22—第四吸收器, 23—第四溶液泵, 24—第四溶液热交换器, 25—第二溶液节流阀; A—新 增发生器, B—新增节流阀, C一新增溶液泵, D—新增溶液热交换器, E—新增吸收器, F— 新增第二吸收器, G—新增第二溶液泵, H—新增溶液节流阀, I一新增第二溶液热交换器, J 一新增分汽室。
具体实施方式:
首先要说明的是, 在结构和流程的表述上, 非必要情况下不重复进行; 对显而易见的流 程不作表述。 下面结合附图和实例来详细描述本发明。
图 1所示的分路循环第一类吸收式热泵是这样实现的:
①结构上, 它主要由发生器、 第二发生器、 吸收器、 第二吸收器、 冷凝器、 蒸发器、 第 二蒸发器、 溶液泵、 第二溶液泵、 节流阀、 第二节流阀、 溶液热交换器和第二溶液热交换器 所组成; 吸收器 3有稀溶液管路经溶液泵 8和溶液热交换器 12与发生器 1连通, 发生器 1 还有浓溶液管路经溶液热交换器 12与吸收器 3连通, 发生器 1还有冷剂蒸汽通道与第二发 生器 2连通后第二发生器 2再有冷剂液管路经节流阀 10与蒸发器 6连通, 蒸发器 6还有冷 剂蒸汽通道与吸收器 3连通; 第二吸收器 4有稀溶液管路经第二溶液泵 9、 第二溶液热交换 器 13和吸收器 3与第二发生器 2连通, 第二发生器 2还有浓溶液管路经第二溶液热交换器 13与第二吸收器 4连通, 第二发生器 2还有冷剂蒸汽通道与冷凝器 5连通, 冷凝器 5还有 冷剂液管路经第二节流阀 11与第二蒸发器 7连通, 第二蒸发器 7还有冷剂蒸汽通道与第二 吸收器 4连通; 发生器 1还有驱动热介质管路与外部连通, 第二吸收器 4和冷凝器 5还分别 有被加热介质管路与外部连通,蒸发器 6和第二蒸发器 7还分别有余热介质管路与外部连通。
②流程上, 吸收器 3的稀溶液经溶液泵 8和溶液热交换器 12进入发生器 1, 驱动热介 质流经发生器 1、 加热进入其内的溶液释放并向第二发生器 2提供冷剂蒸汽——发生器产生 的冷剂蒸汽作为第二发生器的驱动热介质, 发生器 1的浓溶液经溶液热交换器 12进入吸收 器 3、 吸收冷剂蒸汽并放热于流经其内的溶液; 第二吸收器 4的稀溶液经第二溶液泵 9和第 二溶液热交换器 13之后流经吸收器 3、吸热部分汽化后进入第二发生器 2, 冷剂蒸汽流经第 二发生器 2、 加热进入其内的溶液释放并向冷凝器 5提供冷剂蒸汽, 流经第二发生器 2的冷 剂蒸汽放热成冷剂液后经节流阀 10进入蒸发器 6、 吸收余热成冷剂蒸汽并向吸收器 3提供, 第二发生器 2的浓溶液经第二溶液热交换器 13进入第二吸收器 4、 吸收冷剂蒸汽并放热于 被加热介质;冷凝器 5的冷剂蒸汽放热于被加热介质成冷剂液, 冷凝器 5的冷剂液经第二节 流阀 11节流进入第二蒸发器 7、 吸收余热成冷剂蒸汽并向第二吸收器 4提供, 形成分路循 环第一类吸收式热泵。
图 2所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图 1所示的分路循环第一类吸收式热泵中,增加第三发生器、第二冷凝器、 溶液节流阀、 第三节流阀和分汽室, 将吸收器 3有稀溶液管路经溶液泵 8和溶液热交换器 12与发生器 1连通调整为吸收器 3有稀溶液管路经溶液泵 8和溶液热交换器 12与第三发生 器 14连通, 第三发生器 14再有浓溶液管路经溶液节流阔 16与发生器 1连通, 第三发生器 14还有冷剂蒸汽通道与第二冷凝器 15连通, 第二冷凝器 15还有冷剂液管路经第三节流阀 17与蒸发器 6连通, 将第二发生器 2有浓溶液管路经第二溶液热交换器 13与第二吸收器 4 连通调整为第二发生器 2有浓溶液管路经第二冷凝器 15与分汽室 18连通, 分汽室 18再有 浓溶液管路经第二溶液热交换器 13与第二吸收器 4连通,分汽室 18还有冷剂蒸汽通道与冷 凝器 5连通, 第三发生器 14还有驱动热介质管路与外部连通。
②流程上, 吸收器 3的稀溶液经溶液泵 8和溶液热交换器 12进入第三发生器 14, 驱动 热介质流经第三发生器 14、 加热进入其内的溶液释放并向第二冷凝器 15提供冷剂蒸汽, 第 三发生器 14的浓溶液经溶液节流阀 16节流降压进入发生器 1, 第二冷凝器 15的冷剂蒸汽 放热于流经其内的溶液成冷剂液,第二冷凝器 15的冷剂液经第三节流阀 17节流进入蒸发器 6、 吸收余热成冷剂蒸汽并向吸收器 3提供; 第二发生器 2的浓溶液流经第二冷凝器 15、 吸 热部分汽化后进入分汽室 18,分汽室 18的浓溶液经第二溶液热交换器 13进入第二吸收器 4, 分汽室 18释放的冷剂蒸汽进入冷凝器 5, 形成分路循环第一类吸收式热泵。
图 3所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图 1所示的分路循环第一类吸收式热泵中,增加第三发生器、第二冷凝器、 第三节流阀和第三溶液热交换器, 将吸收器 3有稀溶液管路经溶液泵 8和溶液热交换器 12 与发生器 1连通调整为吸收器 3有稀溶液管路经溶液泵 8、 第三溶液热交换器 19和溶液热 交换器 12与发生器 1连通,将发生器 1有浓溶液管路经溶液热交换器 12与吸收器 3连通调 整为发生器 1有浓溶液管路经溶液热交换器 12与第三发生器 14连通, 第三发生器 14再有 浓溶液管路经第三溶液热交换器 19与吸收器 3连通,第三发生器 14还有冷剂蒸汽通道与第 二冷凝器 15连通, 第二冷凝器 15还有冷剂液管路经第三节流阀 17与蒸发器 6连通, 第三 发生器 14还有驱动热介质管路与外部连通,第二冷凝器 15还有被加热介质管路与外部连通。
②流程上, 吸收器 3的稀溶液经溶液泵 8、 第三溶液热交换器 19和溶液热交换器 12进 入发生器 1, 发生器 1的浓溶液经溶液热交换器 12进入第三发生器 14, 驱动热介质流经第 三发生器 14、 加热进入其内的溶液释放并向第二冷凝器 15提供冷剂蒸汽, 第三发生器 14 的浓溶液经第三溶液热交换器 19进入吸收器 3; 第二冷凝器 15的吸收冷剂蒸汽放热于被加 热介质成冷剂液, 第二冷凝器 15的冷剂液经第三节流阀 17节流降压之后进入蒸发器 6, 形 成分路循环第一类吸收式热泵。
图 4所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图 1所示的分路循环第一类吸收式热泵中,增加第三发生器、第三吸收器、 第三溶液热交换器和第三溶液泵, 将吸收器 3有稀溶液管路经溶液泵 8和溶液热交换器 12 与发生器 1连通调整为吸收器 3有稀溶液管路经溶液泵 8和第三溶液热交换器 19与第三吸 收器 20连通,第三吸收器 20再有稀溶液管路经第三溶液泵 21和溶液热交换器 12与发生器 1连通, 将发生器 1有浓溶液管路经溶液热交换器 12与吸收器 3连通调整为发生器 1有浓 溶液管路经溶液热交换器 12与第三发生器 14连通, 第三发生器 14再有浓溶液管路经第三 溶液热交换器 19与吸收器 3连通,第三发生器 14还有冷剂蒸汽通道与第三吸收器 20连通, 第三发生器 14还有驱动热介质管路与外部连通,第三吸收器 20还有被加热介质管路与外部 连通。
②流程上, 吸收器 3的稀溶液经溶液泵 8和第三溶液热交换器 19进入第三吸收器 20、 吸收冷剂蒸汽并放热于被加热介质,第三吸收器 20的稀溶液经第三溶液泵 21和溶液热交换 器 12进入发生器 1, 发生器 1的浓溶液经溶液热交换器 12进入第三发生器 14, 驱动热介质 流经第三发生器 14、 加热进入其内的溶液释放并向第三吸收器 20提供冷剂蒸汽, 第三发生 器 14的浓溶液经第三溶液热交换器 19进入吸收器 3, 形成分路循环第一类吸收式热泵。
图 5所示的分路循环第一类吸收式热泵是这样实现的-
①结构上,在图 1所示的分路循环第一类吸收式热泵中,增加第三发生器、第三吸收器、 第三溶液热交换器、第三溶液泵和分汽室,将吸收器 3有稀溶液管路经溶液泵 8和溶液热交 换器 12与发生器 1连通调整为吸收器 3有稀溶液管路经溶液泵 8和第三溶液热交换器 19与 第三吸收器 20连通,第三吸收器 20再有稀溶液管路经第三溶液泵 21和溶液热交换器 12与 发生器 1连通, 将发生器 1有浓溶液管路经溶液热交换器 12与吸收器 3连通调整为发生器 1有浓溶液管路经溶液热交换器 12与第三发生器 14连通, 第三发生器 14再有浓溶液管路 经第三溶液热交换器 19与吸收器 3连通, 第三发生器 14还有冷剂蒸汽通道与第三吸收器 20连通; 将第二发生器 2有浓溶液管路经第二溶液热交换器 13与第二吸收器 4连通调整为 第二发生器 2有浓溶液管路经第三吸收器 20与分汽室 18连通, 分汽室 18再有浓溶液管路 经第二溶液热交换器 13与第二吸收器 4连通,分汽室 18还有冷剂蒸汽通道与冷凝器 5连通, 第三发生器 14还有驱动热介质管路与外部连通。
②流程上, 吸收器 3的稀溶液经溶液泵 8和第三溶液热交换器 19进入第三吸收器 20、 吸收冷剂蒸汽并放热于流经其内的溶液,第三吸收器 20的稀溶液经第三溶液泵 21和溶液热 交换器 12进入发生器 1, 发生器 1的浓溶液经溶液热交换器 12进入第三发生器 14, 驱动热 介质流经第三发生器 14、 加热进入其内的溶液释放并向第三吸收器 20提供冷剂蒸汽, 第三 发生器 14的浓溶液经第三溶液热交换器 19进入吸收器 3; 第二发生器 2的浓溶液流经第三 吸收器 20、 吸热部分汽化后进入分汽室 18, 分汽室 18的浓溶液经第二溶液热交换器 13进 入第二吸收器 4,分汽室 18释放的冷剂蒸汽进入冷凝器 5,形成分路循环第一类吸收式热泵。
图 6所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图 1所示的分路循环第一类吸收式热泵中,增加第三发生器、第二冷凝器、 第三节流闽、 溶液节流阀、 第三溶液热交换器、 第三吸收器、 第三溶液泵和分汽室, 将吸收 器 3有稀溶液管路经溶液泵 8和溶液热交换器 12与发生器 1连通调整为吸收器 3有稀溶液 管路经溶液泵 8和第三溶液热交换器 19与第三吸收器 20连通, 第三吸收器 20再有稀溶液 管路经第三溶液泵 21和溶液热交换器 12与发生器 1连通,将发生器 1有浓溶液管路经溶液 热交换器 12与吸收器 3连通调整为发生器 1有浓溶液管路经溶液热交换器 12与第三发生器 14连通, 第三发生器 14还有浓溶液管路经溶液节流阀 16和第三吸收器 20与分汽室 18连 通, 分汽室 18再有浓溶液管路经第三溶液热交换器 19与吸收器 3连通, 第三发生器 14还 有冷剂蒸汽通道与第三吸收器 20连通,分汽室 18还有冷剂蒸汽通道与第二冷凝器 15连通, 第二冷凝器 15还有冷剂液管路经第三节流阀 17与蒸发器 6连通, 第三发生器 14还有驱动 热介质管路与外部连通, 第二冷凝器 15还有被加热介质管路与外部连通。
②流程上, 吸收器 3的稀溶液经溶液泵 8和第三溶液热交换器 19进入第三吸收器 20、 吸收冷剂蒸汽并放热于流经其内的溶液,第三吸收器 20的稀溶液经第三溶液泵 21和溶液热 交换器 12进入发生器 1, 发生器 1的浓溶液经溶液热交换器 12进入第三发生器 14, 驱动热 介质流经第三发生器 14、 加热进入其内的溶液释放并向第三吸收器 20提供冷剂蒸汽, 第三 发生器 14的浓溶液经溶液节流阀 16节流降压之后流经第三吸收器 20、 吸热部分汽化后进 入分汽室 18, 分汽室 18释放并向第二冷凝器 15提供冷剂蒸汽, 分汽室 18的浓溶液经第三 溶液热交换器 19进入吸收器 3; 第二冷凝器 15的冷剂蒸汽放热于被加热介质成冷剂液, 第 二冷凝器 15的冷剂液经第三节流阀 21节流进入蒸发器 6,形成分路循环第一类吸收式热泵。
图 7所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图 1所示的分路循环第一类吸收式热泵中,增加第三发生器、第三吸收器、 第四吸收器、 第三溶液泵、 第四溶液泵、 溶液节流阀、 分汽室、 第三溶液热交换器和第四溶 液热交换器, 将吸收器 3有稀溶液管路经溶液泵 8和溶液热交换器 12与发生器 1连通调整 为吸收器 3有稀溶液管路经溶液泵 8和第三溶液热交换器 19与第四吸收器 22连通,第四吸 收器 22还有稀溶液管路经第四溶液泵 23和第四溶液热交换器 24与第三吸收器 20连通,第 三吸收器 20再有稀溶液管路经第三溶液泵 21和溶液热交换器 12与发生器 1连通; 将发生 器 1有浓溶液管路经溶液热交换器 12与吸收器 3连通调整为发生器 1有浓溶液管路经溶液 热交换器 12与第三发生器 14连通,第三发生器 14还有浓溶液管路溶液节流阀 16和第三吸 收器 20与分汽室 18连通,分汽室 18再有浓溶液管路经第四溶液热交换器 24和第三溶液热 交换器 19与吸收器 3连通, 第三发生器 14还有冷剂蒸汽通道与第三吸收器 20连通, 分汽 室 18还有冷剂蒸汽通道与第四吸收器 22连通, 第三发生器 14还有驱动热介质管路与外部 连通, 第四吸收器 22还有被加热介质管路与外部连通。
②流程上, 吸收器 3的稀溶液经溶液泵 8和第三溶液热交换器 19进入第四吸收器 22、 吸收冷剂蒸汽并放热于被加热介质,第四吸收器 22的稀溶液经第四溶液泵 23和第四溶液热 交换器 24进入第三吸收器 20、 吸收冷剂蒸汽并放热于流经其内的溶液, 第三吸收器 20的 稀溶液经第三溶液泵 21和溶液热交换器 12进入发生器 1, 发生器 1的浓溶液经溶液热交换 器 12进入第三发生器 14, 驱动热介质流经第三发生器 14、加热进入其内的溶液释放并向第 三吸收器 20提供冷剂蒸汽, 第三发生器 14的浓溶液经溶液节流阀 16节流降压之后流经第 三吸收器 20、 吸热部分汽化后进入分汽室 18, 分汽室 18释放并向第四吸收器 22提供冷剂 蒸汽, 分汽室 18的浓溶液经第四溶液热交换器 24和第三溶液热交换器 19进入吸收器 3, 形成分路循环第一类吸收式热泵。 图 8所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图 1所示的分路循环第一类吸收式热泵中,增加第三发生器、第三吸收器、 第三溶液泵、 分汽室、 溶液节流阀和第二溶液节流阀, 将吸收器 3有稀溶液管路经溶液泵 8 和溶液热交换器 12与发生器 1连通调整为吸收器 3有稀溶液管路经溶液泵 8和溶液热交换 器 12与第三吸收器 20连通,第三吸收器 20再有稀溶液管路经第二溶液节流阀 25与发生器 1连通, 将发生器 1有浓溶液管路经溶液热交换器 12与吸收器 3连通调整为发生器 1有浓 溶液管路经第三溶液泵 21与第三发生器 14连通, 第三发生器 14还有浓溶液管路经溶液节 流阀 16和第三吸收器 20与分汽室 18连通, 分汽室 18再有浓溶液管路经溶液热交换器 12 与吸收器 3连通,第三发生器 14还有冷剂蒸汽通道与第三吸收器 20连通; 将发生器 1有冷 剂蒸汽通道与第二发生器 2连通后第二发生器 2再有冷剂液管路经节流阀 10与蒸发器 6连 通调整为发生器 1和分汽室 18有冷剂蒸汽通道与第二发生器 2连通后第二发生器 2再有冷 剂液管路经节流阀 10与蒸发器 6连通, 第三发生器 14还有驱动热介质管路与外部连通。
②流程上, 吸收器 3的稀溶液经溶液泵 8和溶液热交换器 12进入第三吸收器 20、 吸收 冷剂蒸汽并放热于流经其内的溶液,第三吸收器 20的稀溶液经第二溶液节流阀 25节流降压 进入发生器 1, 发生器 1的浓溶液经第三溶液泵 21加压进入第三发生器 14, 驱动热介质流 经第三发生器 14、 加热进入其内的溶液释放并向第三吸收器 20提供冷剂蒸汽, 第三发生器 14的浓溶液经溶液节流阀 16节流降压之后流经第三吸收器 20、吸热部分汽化后进入分汽室 18, 分汽室 18释放的冷剂蒸汽提供给第二发生器 2作驱动热介质, 分汽室 18的浓溶液经溶 液热交换器 12进入吸收器 3, 形成分路循环第一类吸收式热泵。
图 9所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图 1所示的分路循环第一类吸收式热泵中,增加第三发生器、第三吸收器、 分汽室和溶液节流阀, 将吸收器 3有稀溶液管路经溶液泵 8和溶液热交换器 12与发生器 1 连通调整为吸收器 3有稀溶液管路经溶液泵 8和溶液热交换器 12与第三吸收器 20连通,第 三吸收器 20还有稀溶液管路与第三发生器 14连通, 第三发生器 14再有浓溶液管路经溶液 节流阀 16与发生器 1连通,将发生器 1有浓溶液管路经溶液热交换器 12与吸收器 3连通调 整为发生器 1有浓溶液管路经第三吸收器 20与分汽室 18连通, 分汽室 18再有浓溶液管路 经溶液热交换器 12与吸收器 3连通, 第三发生器 14还有冷剂蒸汽通道与第三吸收器 20连 通;将发生器 1有冷剂蒸汽通道与第二发生器 2连通后第二发生器 2再有冷剂液管路经节流 阀 10与蒸发器 6连通调整为发生器 1和分汽室 18有冷剂蒸汽通道与第二发生器 2连通后第 二发生器 2再有冷剂液管路经节流阀 10与蒸发器 6连通,第三发生器 14还有驱动热介质管 路与外部连通。
②流程上, 吸收器 3的稀溶液经溶液泵 8和溶液热交换器 12进入第三吸收器 20、 吸收 冷剂蒸汽并放热于流经其内的溶液, 第三吸收器 20的稀溶液进入第三发生器 14, 驱动热介 质流经第三发生器 14、 加热进入其内的溶液释放并向第三吸收器 20提供冷剂蒸汽, 第三发 生器 14的浓溶液经溶液节流阀 16节流降压之后进入发生器 1, 发生器 1的浓溶液流经第三 吸收器 20、吸热部分汽化后经分汽室 18, 分汽室 18释放的冷剂蒸汽提供给第二发生器 2作 驱动热介质, 分汽室 18的浓溶液经溶液热交换器 12进入吸收器 3, 形成分路循环第一类吸 收式热泵。
图 10所示的分路循环第一类吸收式热泵是这样实现的-
①结构上,在图 1所示的分路循环第一类吸收式热泵中,增加第三发生器、第三吸收器、 第三溶液热交换器和分汽室, 将吸收器 3有稀溶液管路经溶液泵 8和溶液热交换器 12与发 生器 1连通调整为吸收器 3有稀溶液管路经溶液泵 8、 溶液热交换器 12和第三溶液热交换 器 19与第三吸收器 20连通, 第三吸收器 20还有稀溶液管路与第三发生器 14连通, 第三发 生器 14再有浓溶液管路经第三溶液热交换器 19与发生器 1连通,将发生器 1有浓溶液管路 经溶液热交换器 12与吸收器 3连通调整为发生器 1有浓溶液管路经第三吸收器 20与分汽室 18连通, 分汽室 18再有浓溶液管路经溶液热交换器 12与吸收器 3连通, 第三发生器 14还 有冷剂蒸汽通道与第三吸收器 20连通; 将发生器 1有冷剂蒸汽通道与第二发生器 2连通后 第二发生器 2再有冷剂液管路经节流阀 10与蒸发器 6连通调整为发生器 1和分汽室 18有冷 剂蒸汽通道与第二发生器 2连通后第二发生器 2再有冷剂液管路经节流阀 10与蒸发器 6连 通, 第三发生器 14还有驱动热介质管路与外部连通。
②流程上, 吸收器 3的稀溶液经溶液泵 8、 溶液热交换器 12和第三溶液热交换器 19进 入第三吸收器 20、 吸收冷剂蒸汽并放热于流经其内的溶液, 第三吸收器 20的稀溶液进入第 三发生器 14, 驱动热介质流经第三发生器 14、 加热进入其内的溶液释放并向第三吸收器 20 提供冷剂蒸汽, 第三发生器 14的浓溶液经第三溶液热交换器 19进入发生器 1, 发生器 1的 浓溶液流经第三吸收器 20、吸热部分汽化后进入分汽室 18, 分汽室 18释放的冷剂蒸汽提供 给第二发生器 2作驱动热介质, 分汽室 18的浓溶液经溶液热交换器 12进入吸收器 3, 形成 分路循环第一类吸收式热泵。
图 11所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图 1所示的分路循环第一类吸收式热泵中,增加第三发生器、第三节流阀、 第三溶液热交换器和第三溶液泵, 吸收器 3增设稀溶液管路经第三溶液泵 21和第三溶液热 交换器 19与第三发生器 14连通,第三发生器 14还有浓溶液管路经第三溶液热交换器 19与 吸收器 3连通,将发生器 1有冷剂蒸汽通道与第二发生器 2连通后第二发生器 2再有冷剂液 管路经节流阀 10与蒸发器 6连通调整为发生器 1有冷剂蒸汽通道与第三发生器 14连通后第 三发生器 14再有冷剂液管路经第三节流阀 17与蒸发器 6连通, 第三发生器 14还有冷剂蒸 汽通道与第二发生器 2连通后第二发生器 2再有冷剂液管路经节流阀 10与蒸发器 6连通。
②流程上, 发生器 1产生的冷剂蒸汽提供给第三发生器 14作驱动热介质, 吸收器 3的 部分稀溶液经第三溶液泵 21和第三溶液热交换器 19进入第三发生器 14, 冷剂蒸汽流经第 三发生器 14、 加热进入其内的溶液释放并向第二发生器 2提供冷剂蒸汽作驱动热介质, 第 三发生器 14的浓溶液经第三溶液热交换器 19进入吸收器 3, 流经第三发生器 14的冷剂蒸 汽放热成冷剂液后再经第三节流阀 17节流降压进入蒸发器 6, 形成分路循环第一类吸收式 热泵。
图 12所示的分路循环第一类吸收式热泵是这样实现的:
①结构上, 在图 1所示的分路循环第一类吸收式热泵中, 增加第三发生器、 第三节流阀 和第三溶液热交换器, 将吸收器 3有稀溶液管路经溶液泵 8和溶液热交换器 12与发生器 1 连通调整为吸收器 3有稀溶液管路经溶液泵 8、 第三溶液热交换器 19和溶液热交换器 12与 发生器 1连通, 将发生器 1有浓溶液管路经溶液热交换器 12与吸收器 3连通调整为发生器 1有浓溶液管路经溶液热交换器 12与第三发生器 14连通, 第三发生器 14再有浓溶液管路 经第三溶液热交换器 19与吸收器 3连通, 将发生器 1有冷剂蒸汽通道与第二发生器 2连通 后第二发生器 2再有冷剂液管路经节流阀 10与蒸发器 6连通调整为发生器 1有冷剂蒸汽通 道与第三发生器 14连通后第三发生器 14再有冷剂液管路经第三节流阀 17与蒸发器 6连通, 第三发生器 14还有冷剂蒸汽通道与第二发生器 2连通后第二发生器 2再有冷剂液管路经节 流阀 10与蒸发器 6连通。
②流程上, 发生器 1产生的冷剂蒸汽提供给第三发生器 14作驱动热介质, 吸收器 3的 稀溶液经溶液泵 8、 第三溶液热交换器 19和溶液热交换器 12进入发生器 1, 发生器 1的浓 溶液经溶液热交换器 12进入第三发生器 14,冷剂蒸汽流经第三发生器 14、加热进入其内的 溶液释放并向第二发生器 2提供冷剂蒸汽作驱动热介质, 第三发生器 14的浓溶液经第三溶 液热交换器 19进入吸收器 3, 流经第三发生器 14的冷剂蒸汽放热成冷剂液后再经第三节流 阀 17节流降压进入蒸发器 6, 形成分路循环第一类吸收式热泵。
图 13所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图 1所示的分路循环第一类吸收式热泵中,增加第三发生器、第三节流阀、 第三溶液泵和第三溶液热交换器, 将吸收器 3有稀溶液管路经溶液泵 8和溶液热交换器 12 与发生器 1连通调整为吸收器 3有稀溶液管路经溶液泵 8和第二溶液热交换器 12与第三发 生器 14连通,第三发生器 14再有浓溶液管路经第三溶液泵 21和第三溶液热交换器 19与发 生器 1连通, 将发生器 1有浓溶液管路经溶液热交换器 12与吸收器 3连通调整为发生器 1 有浓溶液管路经第三溶液热交换器 19和溶液热交换器 12与吸收器 3连通,将发生器 1有冷 剂蒸汽通道与第二发生器 2连通后第二发生器 2再有冷剂液管路经节流阀 10与蒸发器 6连 通调整为发生器 1有冷剂蒸汽通道与第三发生器 14连通后第三发生器 14再有冷剂液管路经 第三节流阀 17与蒸发器 6连通,第三发生器 14还有冷剂蒸汽通道与第二发生器 2连通后第 二发生器 2再有冷剂液管路经节流阀 10与蒸发器 6连通。
②流程上, 发生器 1产生的冷剂蒸汽提供给第三发生器 14作驱动热介质, 吸收器 3的 稀溶液经溶液泵 8和溶液热交换器 12进入第三发生器 14,冷剂蒸汽流经第三发生器 14、加 热进入其内的溶液释放并向第二发生器 2提供冷剂蒸汽作驱动热介质, 第三发生器 14的浓 溶液经第三溶液泵 21和第三溶液热交换器 19进入发生器 1, 发生器 1的浓溶液经第三溶液 热交换器 19和溶液热交换器 12进入吸收器 3, 流经第三发生器 14的冷剂蒸汽放热成冷剂 液后再经第三节流阀 17节流降压进入蒸发器 6, 形成分路循环第一类吸收式热泵。
图 14所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图 1所示的分路循环第一类吸收式热泵中,增加新增发生器、新增节流阀、 新增溶液泵和新增溶液热交换器,第二吸收器 4增设稀溶液管路经新增溶液泵 C和新增溶液 热交换器 D与新增发生器 A连通,新增发生器 A还有浓溶液管路经新增溶液热交换器 D与第 二吸收器 4连通,将第二发生器 2有冷剂蒸汽通道与冷凝器 5连通调整为第二发生器 2有冷 剂蒸汽通道与新增发生器 A连通后新增发生器 A再有冷剂液管路经新增节流阔 B与冷凝器 5 连通, 新增发生器 A还有冷剂蒸汽通道与冷凝器 5连通。
②流程上,第二发生器 2产生的冷剂蒸汽提供给新增发生器 A作驱动热介质,第二吸收 器 4的部分稀溶液经新增溶液泵 C和新增溶液热交换器 D进入新增发生器 A, 冷剂蒸汽流经 新增发生器 A、 加热进入其内的溶液释放并向冷凝器 5提供冷剂蒸汽, 新增发生器 A的浓溶 液经新增溶液热交换器 D进入第二吸收器 4, 流经新增发生器 A的冷剂蒸汽放热成冷剂液后 经新增节流阀 B节流进入冷凝器 5, 形成分路循环第一类吸收式热泵。
图 15所示的分路循环第一类吸收式热泵是这样实现的:
①结构上, 在图 1所示的分路循环第一类吸收式热泵中, 增加新增发生器、新增节流阀 和新增溶液热交换器, 将第二吸收器 4有稀溶液管路经第二溶液泵 9、第二溶液热交换器 13 和吸收器 3与第二发生器 2连通调整为第二吸收器 4有稀溶液管路经第二溶液泵 9、 新增溶 液热交换器 D、 第二溶液热交换器 13和吸收器 3与第二发生器 2连通, 将第二发生器 2有 浓溶液管路经第二溶液热交换器 13与第二吸收器 4连通调整为第二发生器 2有浓溶液管路 经第二溶液热交换器 13与新增发生器 A连通, 新增发生器 A再有浓溶液管路经新增溶液热 交换器 D与第二吸收器 4连通,将第二发生器 2有冷剂蒸汽通道与冷凝器 5连通调整为第二 发生器 2有冷剂蒸汽通道与新增发生器 A连通后新增发生器 A再有冷剂液管路经新增节流阀 B与冷凝器 5连通, 新增发生器 A还有冷剂蒸汽通道与冷凝器 5连通。
②流程上, 第二发生器 2产生的冷剂蒸汽提供给新增发生器 A作驱动热介质,第二吸收 器 4的稀溶液经第二溶液泵 9、新增溶液热交换器 D、第二溶液热交换器 13和吸收器 3进入 第二发生器 2,第二发生器 2的浓溶液经第二溶液热交换器 13进入新增发生器 A,冷剂蒸汽 流经新增发生器八、 加热进入其内的溶液释放并向冷凝器 5提供冷剂蒸汽, 新增发生器 A的 浓溶液经新增溶液热交换器 D进入第二吸收器 4, 流经新增发生器 A的冷剂蒸汽放热成冷剂 液后经新增节流阔 B节流进入冷凝器 5, 形成分路循环第一类吸收式热泵。
图 16所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图 1所示的分路循环第一类吸收式热泵中,增加新增发生器、新增节流阀、 新增溶液泵和新增溶液热交换器, 将第二吸收器 4有稀溶液管路经第二溶液泵 9、 第二溶液 热交换器 13和吸收器 3与第二发生器 2连通调整为第二吸收器 4有稀溶液管路经第二溶液 泵 9、 第二溶液热交换器 13和吸收器 3与新增发生器 A连通, 新增发生器 A再有浓溶液管 路经新增溶液泵 C和新增溶液热交换器 D与第二发生器 2连通,将第二发生器 2有浓溶液管 路经第二溶液热交换器 13与第二吸收器 4连通调整为第二发生器 2有浓溶液管路经新增溶 液热交换器 D和第二溶液热交换器 13与第二吸收器 4连通, 将第二发生器 2有冷剂蒸汽通 道与冷凝器 5连通调整为第二发生器 2有冷剂蒸汽通道与新增发生器 A连通后新增发生器 A 再有冷剂液管路经新增节流阔 B与冷凝器 5连通,新增发生器 A还有冷剂蒸汽通道与冷凝器 5连通
②流程上,第二发生器 2产生的冷剂蒸汽提供给新增发生器 A作驱动热介质,第二吸收 器 4的稀溶液经第二溶液泵 9、第二溶液热交换器 13和吸收器 3进入新增发生器 A, 冷剂蒸 汽流经新增发生器 A、 加热进入其内的溶液释放并向冷凝器 5提供冷剂蒸汽, 新增发生器 A 的浓溶液经新增溶液泵 C和新增溶液热交换器 D进入第二发生器 2, 第二发生器 2的浓溶液 经新增溶液热交换器 D和第二溶液热交换器 13进入第二吸收器 4, 流经新增发生器 A的冷 剂蒸汽放热成冷剂液后经新增节流阀 B节流进入冷凝器 5,形成分路循环第一类吸收式热泵。
图 17所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图 1所示的分路循环第一类吸收式热泵中,增加新增发生器、新增吸收器、 新增溶液泵和新增溶液热交换器, 将第二吸收器 4有稀溶液管路经第二溶液泵 9、 第二溶液 热交换器 13和吸收器 3与第二发生器 2连通调整为第二吸收器 4有稀溶液管路经第二溶液 泵 9和新增溶液热交换器 D与新增吸收器 E连通,新增吸收器 E再有稀溶液管路经新增溶液 泵(:、 第二溶液热交换器 13和吸收器 3与第二发生器 2连通, 将第二发生器 2有浓溶液管 路经第二溶液热交换器 13与第二吸收器 4连通调整为第二发生器 2有浓溶液管路经第二溶 液热交换器 13与新增发生器 A连通, 新增发生器 A再有浓溶液管路经新增溶液热交换器 D 与第二吸收器 4连通, 新增发生器 A还有冷剂蒸汽通道与新增吸收器 E连通,将发生器 1有 冷剂蒸汽通道与第二发生器 2连通后第二发生器 2再有冷剂液管路经节流阀 10与蒸发器 6 连通调整为发生器 1有冷剂蒸汽通道依次连通第二发生器 2和新增发生器 A之后新增发生器 A再有冷剂液管路经节流阀 10与蒸发器 6连通, 新增吸收器 E还有被加热介质管路与外部 连通。
②流程上,发生器 1产生的冷剂蒸汽提供给第二发生器 2和新增发生器 A作驱动热介质, 第二吸收器 4的稀溶液经第二溶液泵 9和新增溶液热交换器 D进入新增吸收器 E、 吸收冷剂 蒸汽并放热于被加热介质, 新增吸收器 E的稀溶液经新增溶液泵 C、 第二溶液热交换器 13 和吸收器 3进入第二发生器 2, 第二发生器 2的浓溶液经第二溶液热交换器 13进入新增发 生器 A, 一定干度的湿冷剂蒸汽流经新增发生器 A、 加热进入其内的溶液释放并向新增吸收 器 E提供冷剂蒸汽, 新增发生器 A的浓溶液经新增溶液热交换器 D进入第二吸收器 4, 流经 新增发生器 A的湿冷剂蒸汽放热成冷剂液后经节流阀 10节流进入蒸发器 6, 形成分路循环 第一类吸收式热泵。
图 18所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图 1所示的分路循环第一类吸收式热泵中,增加新增发生器、新增吸收器、 新增第二吸收器、 新增溶液泵、 新增第二溶液泵、 新增溶液热交换器、 新增第二溶液热交换 器、 新增溶液节流阀和新增分汽室, 将第二吸收器 4有稀溶液管路经第二溶液泵 9、 第二溶 液热交换器 13和吸收器 3与第二发生器 2连通调整为第二吸收器 4有稀溶液管路经第二溶 液泵 9和新增溶液热交换器 D与新增第二吸收器 F连通,新增第二吸收器 F还有稀溶液管路 经新增溶液泵 C和新增第二溶液热交换器 I与新增吸收器 E连通,新增吸收器 E再有稀溶液 管路经新增第二溶液泵 G、 第二溶液热交换器 13和吸收器 3与第二发生器 2连通, 将第二 发生器 2有浓溶液管路经第二溶液热交换器 13与第二吸收器 4连通调整为第二发生器 2有 浓溶液管路经第二溶液热交换器 13与新增发生器 A连通, 新增发生器 A还有浓溶液管路经 新增溶液节流阀 H和新增吸收器 E与新增分汽室 J连通,新增分汽室 J再有浓溶液管路经新 增第二溶液热交换器 I和新增溶液热交换器 D与第二吸收器 4连通,新增发生器 A还有冷剂 蒸汽通道与新增吸收器 E连通, 新增分汽室 J还有冷剂蒸汽通道与新增第二吸收器 F连通, 将发生器 1有冷剂蒸汽通道与第二发生器 2连通后第二发生器 2再有冷剂液管路经节流阀 10与蒸发器 6连通调整为发生器 1有冷剂蒸汽通道依次连通第二发生器 2和新增发生器 A 之后新增发生器 A再有冷剂液管路经节流阀 10与蒸发器 6连通, 新增第二吸收器 F还有被 加热介质管路与外部连通。
②流程上,发生器 1产生的冷剂蒸汽提供给第二发生器 2和新增发生器 A作驱动热介质, 第二吸收器 4的稀溶液经第二溶液泵 9和新增溶液热交换器 D进入新增第二吸收器 F、 吸收 冷剂蒸汽并放热于被加热介质,新增第二吸收器 F的稀溶液经新增溶液泵 C和新增第二溶液 热交换器 I进入新增吸收器 E、 吸收冷剂蒸汽并放热于流经其内的溶液, 新增吸收器 E的稀 溶液经新增第二溶液泵0、第二溶液热交换器 13和吸收器 3进入第二发生器 2, 第二发生器 2的浓溶液经第二溶液热交换器 13进入新增发生器 A,一定干度的湿冷剂蒸汽流经新增发生 器八、 加热进入其内的溶液释放并向新增吸收器 E提供冷剂蒸汽, 新增发生器 A的浓溶液经 新增溶液节流阀 H节流降压之后流经新增吸收器 E、 吸热部分汽化后进入新增分汽室 J, 新 增分汽室 J的浓溶液经新增第二溶液热交换器 I和新增溶液热交换器 D进入第二吸收器 4, 新增分汽室 J的冷剂蒸汽进入新增第二吸收器 F, 流经新增发生器 A的湿冷剂蒸汽放热成冷 剂液后经节流阀 10节流进入蒸发器 6, 形成分路循环第一类吸收式热泵。
图 19所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图 1所示的分路循环第一类吸收式热泵中,增加新增发生器、新增吸收器、 新增溶液泵和新增溶液热交换器, 将第二吸收器 4有稀溶液管路经第二溶液泵 9、 第二溶液 热交换器 13和吸收器 3与第二发生器 2连通调整为第二吸收器 4有稀溶液管路经第二溶液 泵 9和新增溶液热交换器 D与新增吸收器 E连通,新增吸收器 E再有稀溶液管路经新增溶液 泵 C、 第二溶液热交换器 13和吸收器 3与第二发生器 2连通, 将第二发生器 2有浓溶液管 路经第二溶液热交换器 13与第二吸收器 4连通调整为第二发生器 2有浓溶液管路经第二溶 液热交换器 13与新增发生器 A连通, 新增发生器 A再有浓溶液管路经新增溶液热交换器 D 与第二吸收器 4连通, 新增发生器 A还有冷剂蒸汽通道与新增吸收器 E连通, 新增发生器 A 还有驱动热介质管路与外部连通, 新增吸收器 E还有被加热介质管路与外部连通。
②流程上,第二吸收器 4的稀溶液经第二溶液泵 9和新增溶液热交换器 D进入新增吸收 器 E、 吸收冷剂蒸汽并放热于被加热介质, 新增吸收器 E的稀溶液经新增溶液泵 C、 第二溶 液热交换器 13和吸收器 3进入第二发生器 2, 第二发生器 2的浓溶液经第二溶液热交换器 13进入新增发生器 A, 驱动热介质流经新增发生器 A、 加热进入其内的溶液释放并向新增吸 收器 E提供冷剂蒸汽, 新增发生器 A的浓溶液经新增溶液热交换器 D进入第二吸收器 4, 形 成分路循环第一类吸收式热泵。
图 20所示的分路循环第一类吸收式热泵是这样实现的:
①结构上,在图 1所示的分路循环第一类吸收式热泵中,增加新增发生器、新增吸收器、 新增第二吸收器、 新增溶液泵、 新增第二溶液泵、 新增溶液热交换器、 新增第二溶液热交换 器、 新增溶液节流阀和新增分汽室, 将第二吸收器 4有稀溶液管路经第二溶液泵 9、 第二溶 液热交换器 13和吸收器 3与第二发生器 2连通调整为第二吸收器 4有稀溶液管路经第二溶 液泵 9和新增溶液热交换器 D与新增第二吸收器 F连通,新增第二吸收器 F还有稀溶液管路 经新增溶液泵 C和新增第二溶液热交换器 I与新增吸收器 E连通,新增吸收器 E再有稀溶液 管路经新增第二溶液泵 G、 第二溶液热交换器 13和吸收器 3与第二发生器 2连通, 将第二 发生器 2有浓溶液管路经第二溶液热交换器 13与第二吸收器 4连通调整为第二发生器 2有 浓溶液管路经第二溶液热交换器 13与新增发生器 A连通, 新增发生器 A还有浓溶液管路经 新增溶液节流阔 H和新增吸收器 E与新增分汽室 J连通,新增分汽室 J再有浓溶液管路经新 增第二溶液热交换器 I和新增溶液热交换器 D与第二吸收器 4连通,新增发生器 A还有冷剂 蒸汽通道与新增吸收器 E连通, 新增分汽室 J还有冷剂蒸汽通道与新增第二吸收器 F连通, 新增发生器 A还有驱动热介质管路与外部连通,新增第二吸收器 F还有被加热介质管路与外 部连通。
②流程上,第二吸收器 4的稀溶液经第二溶液泵 9和新增溶液热交换器 D进入新增第二 吸收器 F、 吸收冷剂蒸汽并放热于被加热介质, 新增第二吸收器 F的稀溶液经新增溶液泵 C 和新增第二溶液热交换器 I进入新增吸收器1¾;、 吸收冷剂蒸汽并放热于流经其内的溶液, 新 增吸收器 E的稀溶液经新增第二溶液泵 G、 第二溶液热交换器 13和吸收器 3进入第二发生 器 2, 第二发生器 2的浓溶液经第二溶液热交换器 13进入新增发生器 A, 驱动热介质流经新 增发生器八、 加热进入其内的溶液释放并向新增吸收器 E提供冷剂蒸汽, 新增发生器 A的浓 溶液经新增溶液节流阀 H节流降压之后流经新增吸收器 E、 吸热部分汽化后进入新增分汽室 J, 新增分汽室 J的浓溶液经新增第二溶液热交换器 I和新增溶液热交换器 D进入第二吸收 器 4, 新增分汽室 J的冷剂蒸汽进入新增第二吸收器 F, 形成分路循环第一类吸收式热泵。
本发明技术可以实现的效果——本发明所提出的分路循环第一类吸收式热泵具有如下 的效果和优势:
(1)分路循环并分步实现温差利用, 可采用不同工作溶液, 有利于驱动热介质、循环溶液 和流程之间的选择和匹配, 克服单一工作介质的限制, 提高温差利用水平。
(2)能够实现对驱动热介质的多次利用, 提高驱动热的利用水平和效益。
(3)能够实现对驱动热负荷的多次利用, 以最为直接的流程实现温差利用,有利于提升循 环性能指数和提高热能利用率。
(4)具有回热供热端的流程,能够实现驱动热源的深度利用或是能够增大余热温度的提升 幅度, 提高热能利用率。
(5)具有单效-双效回热或具有双效回热的流程, 热力学参数平滑变化,供热参数可调节, 能够较好地适应工况变化, 得到较高的性能指数和热力学完善度。
(6)丰富了第一类吸收式热泵的类型, 扩展了第一类吸收式热泵的应用范围, 有利于更好 地采用第一类吸收式热泵流程来实现温差充分利用, 提高热能利用率。

Claims

权 利 要 求 书
1. 分路循环第一类吸收式热泵, 主要由发生器、 第二发生器、 吸收器、 第二吸收器、 冷凝器、 蒸发器、 第二蒸发器、 溶液泵、 第二溶液泵、 节流阀、 第二节流阀、 溶液热交换器 和第二溶液热交换器所组成; 吸收器(3)有稀溶液管路经溶液泵(8)和溶液热交换器(12) 与发生器 (1 ) 连通, 发生器 (1 ) 还有浓溶液管路经溶液热交换器 (12) 与吸收器 (3 ) 连 通, 发生器 (1 ) 还有冷剂蒸汽通道与第二发生器 (2) 连通后第二发生器 (2) 再有冷剂液 管路经节流阀 (10) 与蒸发器 (6) 连通, 蒸发器 (6) 还有冷剂蒸汽通道与吸收器 (3) 连 通; 第二吸收器 (4) 有稀溶液管路经第二溶液泵 (9)、 第二溶液热交换器 (13 )和吸收器
(3) 与第二发生器(2)连通, 第二发生器(2)还有浓溶液管路经第二溶液热交换器(13) 与第二吸收器 (4) 连通, 第二发生器 (2) 还有冷剂蒸汽通道与冷凝器 (5) 连通, 冷凝器
(5) 还有冷剂液管路经第二节流阀 (11 ) 与第二蒸发器 (7 ) 连通, 第二蒸发器 (7) 还有 冷剂蒸汽通道与第二吸收器(4)连通; 发生器(1 )还有驱动热介质管路与外部连通, 第二 吸收器 (4) 和冷凝器 (5) 还分别有被加热介质管路与外部连通, 蒸发器 (6) 和第二蒸发 器 (7) 还分别有余热介质管路与外部连通, 形成分路循环第一类吸收式热泵。
2. 分路循环第一类吸收式热泵,是在权利要求 1所述的分路循环第一类吸收式热泵中, 增加第三发生器、 第二冷凝器、 溶液节流阀、 第三节流阀和分汽室, 将吸收器 (3) 有稀溶 液管路经溶液泵 (8 ) 和溶液热交换器 (12 ) 与发生器 (1 ) 连通调整为吸收器 (3 ) 有稀溶 液管路经溶液泵 (8 ) 和溶液热交换器 (12 ) 与第三发生器 (14) 连通, 第三发生器 (14) 再有浓溶液管路经溶液节流闽 ( 16 ) 与发生器 (1 ) 连通, 第三发生器 (14 ) 还有冷剂蒸汽 通道与第二冷凝器(15)连通, 第二冷凝器(15)还有冷剂液管路经第三节流阀 (17) 与蒸 发器(6)连通, 将第二发生器(2)有浓溶液管路经第二溶液热交换器(13) 与第二吸收器
(4) 连通调整为第二发生器 (2)有浓溶液管路经第二冷凝器 (15) 与分汽室 (18) 连通, 分汽室 (18) 再有浓溶液管路经第二溶液热交换器 (13) 与第二吸收器 (4) 连通, 分汽室
( 18) 还有冷剂蒸汽通道与冷凝器 (5) 连通, 第三发生器 (14) 还有驱动热介质管路与外 部连通, 形成分路循环第一类吸收式热泵。
3. 分路循环第一类吸收式热泵,是在权利要求 1所述的分路循环第一类吸收式热泵中, 增加第三发生器、 第二冷凝器、 第三节流阀和第三溶液热交换器, 将吸收器 (3 ) 有稀溶液 管路经溶液泵 (8) 和溶液热交换器 (12) 与发生器 (1 ) 连通调整为吸收器 (3) 有稀溶液 管路经溶液泵 (8)、 第三溶液热交换器 (19) 和溶液热交换器 (12) 与发生器 (1 ) 连通, 将发生器 (1 ) 有浓溶液管路经溶液热交换器 (12 ) 与吸收器 (3 ) 连通调整为发生器 (1 ) 有浓溶液管路经溶液热交换器(12) 与第三发生器(14)连通, 第三发生器( )再有浓溶 液管路经第三溶液热交换器 (19 ) 与吸收器 (3) 连通, 第三发生器 (14) 还有冷剂蒸汽通 道与第二冷凝器(15)连通, 第二冷凝器(15)还有冷剂液管路经第三节流阀 (17) 与蒸发 器(6)连通, 第三发生器(14) 还有驱动热介质管路与外部连通, 第二冷凝器 (15 ) 还有 被加热介质管路与外部连通, 形成分路循环第一类吸收式热泵。
4. 分路循环第一类吸收式热泵,是在权利要求 1所述的分路循环第一类吸收式热泵中, 增加第三发生器、 第二冷凝器、 第三节流阀和溶液节流阀, 将发生器 (1 ) 有浓溶液管路经 溶液热交换器(12)与吸收器(3)连通调整为发生器(1 )有浓溶液管路经溶液节流阔 ( 16) 与第三发生器(14)连通, 第三发生器(14)再有浓溶液管路经溶液热交换器(12) 与吸收 器(3)连通, 第三发生器 (14) 还有冷剂蒸汽通道与第二冷凝器 (15) 连通, 第二冷凝器 (15) 还有冷剂液管路经第三节流阀 (17) 与蒸发器 (6) 连通, 第三发生器(14) 还有驱 动热介质管路与外部连通, 第二冷凝器(15)还有被加热介质管路与外部连通, 形成分路循 环第一类吸收式热泵。
5. 分路循环第一类吸收式热泵,是在权利要求 1所述的分路循环第一类吸收式热泵中, 增加第三发生器、 第三吸收器、 第三溶液热交换器和第三溶液泵, 将吸收器 (3)有稀溶液 管路经溶液泵 (8) 和溶液热交换器 (12) 与发生器 (1) 连通调整为吸收器 (3) 有稀溶液 管路经溶液泵(8)和第三溶液热交换器(19)与第三吸收器(20)连通, 第三吸收器(20) 再有稀溶液管路经第三溶液泵 (21) 和溶液热交换器 (12) 与发生器 (1) 连通, 将发生器
(1) 有浓溶液管路经溶液热交换器 (12) 与吸收器 (3)连通调整为发生器 (1) 有浓溶液 管路经溶液热交换器(12) 与第三发生器(14)连通, 第三发生器(14) 再有浓溶液管路经 第三溶液热交换器 (19) 与吸收器 (3) 连通, 第三发生器 (14) 还有冷剂蒸汽通道与第三 吸收器(20) 连通, 第三发生器 (14)还有驱动热介质管路与外部连通, 第三吸收器 (20) 还有被加热介质管路与外部连通, 形成分路循环第一类吸收式热泵。
6. 分路循环第一类吸收式热泵,是在权利要求 1所述的分路循环第一类吸收式热泵中, 增加第三发生器、 第三吸收器、 第三溶液热交换器、 第三溶液泵和分汽室, 将吸收器 (3) 有稀溶液管路经溶液泵 (8) 和溶液热交换器 (12) 与发生器 (1) 连通调整为吸收器 (3) 有稀溶液管路经溶液泵 (8)和第三溶液热交换器 (19) 与第三吸收器 (20) 连通, 第三吸 收器(20)再有稀溶液管路经第三溶液泵(21)和溶液热交换器(12) 与发生器(1)连通, 将发生器 (1) 有浓溶液管路经溶液热交换器 (12) 与吸收器 (3) 连通调整为发生器 (1) 有浓溶液管路经溶液热交换器(12) 与第三发生器(14)连通, 第三发生器(14)再有浓溶 液管路经第三溶液热交换器(19) 与吸收器 (3) 连通, 第三发生器 (14) 还有冷剂蒸汽通 道与第三吸收器 (20) 连通, 将第二发生器 (2) 有浓溶液管路经第二溶液热交换器 (13) 与第二吸收器(4)连通调整为第二发生器(2)有浓溶液管路经第三吸收器(20)与分汽室
(18) 连通, 分汽室 (18) 再有浓溶液管路经第二溶液热交换器 (13) 与第二吸收器 (4) 连通, 分汽室 (18) 还有冷剂蒸汽通道与冷凝器 (5) 连通, 第三发生器 (14) 还有驱动热 介质管路与外部连通, 形成分路循环第一类吸收式热泵。
7. 分路循环第一类吸收式热泵,是在权利要求 1所述的分路循环第一类吸收式热泵中, 增加第三发生器、第二冷凝器、第三节流阀、溶液节流阀、第三溶液热交换器、第三吸收器、 第三溶液泵和分汽室, 将吸收器(3)有稀溶液管路经溶液泵(8)和溶液热交换器(12)与 发生器(1)连通调整为吸收器(3)有稀溶液管路经溶液泵 (8)和第三溶液热交换器(19) 与第三吸收器(20)连通, 第三吸收器(20)再有稀溶液管路经第三溶液泵(21)和溶液热 交换器(12)与发生器(1)连通, 将发生器(1)有浓溶液管路经溶液热交换器(12) 与吸 收器 (3)连通调整为发生器 (1) 有浓溶液管路经溶液热交换器 (12) 与第三发生器 (14) 连通, 第三发生器(14)还有浓溶液管路经溶液节流阀 (16)和第三吸收器(20) 与分汽室
(18)连通, 分汽室(18)再有浓溶液管路经第三溶液热交换器(19) 与吸收器(3)连通, 第三发生器(14)还有冷剂蒸汽通道与第三吸收器(20)连通, 分汽室 (18 )还有冷剂蒸汽 通道与第二冷凝器(15)连通, 第二冷凝器(15) 还有冷剂液管路经第三节流阀 (17) 与蒸 发器(6) 连通, 第三发生器 (14) 还有驱动热介质管路与外部连通, 第二冷凝器 (15 ) 还 有被加热介质管路与外部连通,形成分路循环第一类吸收式热泵;其中,或第三吸收器(20) 增加被加热介质管路与外部连通。
8. 分路循环第一类吸收式热泵,是在权利要求 1所述的分路循环第一类吸收式热泵中, 增加第三发生器、 第三吸收器、 第四吸收器、 第三溶液泵、 第四溶液泵、 溶液节流阀、 分汽 室、 第三溶液热交换器和第四溶液热交换器, 将吸收器(3)有稀溶液管路经溶液泵(8 )和 溶液热交换器 (12) 与发生器 (1 ) 连通调整为吸收器 (3) 有稀溶液管路经溶液泵 (8 ) 和 第三溶液热交换器 (19) 与第四吸收器(22)连通, 第四吸收器(22)还有稀溶液管路经第 四溶液泵 (23)和第四溶液热交换器 (24)与第三吸收器 (20)连通, 第三吸收器(20)再 有稀溶液管路经第三溶液泵(21 )和溶液热交换器(12)与发生器(1 )连通, 将发生器(1 ) 有浓溶液管路经溶液热交换器(12) 与吸收器(3 )连通调整为发生器(1 )有浓溶液管路经 溶液热交换器(12) 与第三发生器(14) 连通, 第三发生器(14)还有浓溶液管路溶液节流 阀 (16)和第三吸收器 (20) 与分汽室(18)连通, 分汽室(18 ) 再有浓溶液管路经第四溶 液热交换器 (24) 和第三溶液热交换器 (19) 与吸收器 (3 ) 连通, 第三发生器 (14) 还有 冷剂蒸汽通道与第三吸收器(20 )连通, 分汽室(18 )还有冷剂蒸汽通道与第四吸收器(22 ) 连通, 第三发生器(14)还有驱动热介质管路与外部连通, 第四吸收器(22)还有被加热介 质管路与外部连通, 形成分路循环第一类吸收式热泵; 其中, 或第三吸收器(20)增加被加 热介质管路与外部连通。
9. 分路循环第一类吸收式热泵,是在权利要求 1所述的分路循环第一类吸收式热泵中, 增加第三发生器、 第三吸收器、 第四吸收器、 第三溶液泵、 第四溶液泵、 溶液节流阀、 分汽 室、 第三溶液热交换器、 第四溶液热交换器和第二分汽室, 将吸收器 (3) 有稀溶液管路经 溶液泵 (8) 和溶液热交换器 (12 ) 与发生器 (1 ) 连通调整为吸收器 (3 ) 有稀溶液管路经 溶液泵 (8) 和第三溶液热交换器 (19) 与第四吸收器 (22) 连通, 第四吸收器 (22) 还有 稀溶液管路经第四溶液泵 (23)和第四溶液热交换器(24) 与第三吸收器(20)连通, 第三 吸收器(20) 再有稀溶液管路经第三溶液泵 (21 ) 和溶液热交换器 (12) 与发生器 (1 ) 连 通,将发生器(1 )有浓溶液管路经溶液热交换器(12)与吸收器(3)连通调整为发生器(1 ) 有浓溶液管路经溶液热交换器(12) 与第三发生器(14)连通, 第三发生器(14)还有浓溶 液管路溶液节流阀 (16)和第三吸收器(20) 与分汽室 (18)连通, 分汽室 (18) 再有浓溶 液管路经第四溶液热交换器 (24) 和第三溶液热交换器 (19) 与吸收器 (3) 连通, 第三发 生器(14)还有冷剂蒸汽通道与第三吸收器(20)连通, 分汽室 (18)还有冷剂蒸汽通道与 第四吸收器 (22 ) 连通, 将第二发生器 (2 ) 有浓溶液管路经第二溶液热交换器 (13 ) 与第 二吸收器(4)连通调整为第二发生器(2)有浓溶液管路经第四吸收器(22)或再经第三吸 收器(20)与第二分汽室连通, 第二分汽室再有浓溶液管路经第二溶液热交换器(13 )与第 二吸收器 (4) 连通, 第二分汽室还有冷剂蒸汽通道与冷凝器 (5 ) 连通, 第三发生器 (14) 还有驱动热介质管路与外部连通, 形成分路循环第一类吸收式热泵。
10. 分路循环第一类吸收式热泵, 是在权利要求 1所述的分路循环第一类吸收式热泵 中, 增加第三发生器、 第三吸收器、 第三溶液泵、 分汽室、 溶液节流阀和第二溶液节流阀, 将吸收器 (3) 有稀溶液管路经溶液泵 (8) 和溶液热交换器 (12) 与发生器(1) 连通调整 为吸收器(3)有稀溶液管路经溶液泵(8)和溶液热交换器(12)与第三吸收器(20)连通, 第三吸收器 (20) 再有稀溶液管路经第二溶液节流阀 (25) 与发生器 (1) 连通, 将发生器 (1) 有浓溶液管路经溶液热交换器 (12) 与吸收器 (3)连通调整为发生器 (1) 有浓溶液 管路经第三溶液泵(21) 与第三发生器(14)连通, 第三发生器(14)还有浓溶液管路经溶 液节流阔 (16)和第三吸收器(20) 与分汽室(18)连通, 分汽室(18) 再有浓溶液管路经 溶液热交换器(12) 与吸收器 (3) 连通, 第三发生器 (14) 还有冷剂蒸汽通道与第三吸收 器(20)连通; 将发生器 (1)有冷剂蒸汽通道与第二发生器 (2) 连通后第二发生器 (2) 再有冷剂液管路经节流阀 (10)与蒸发器(6)连通调整为发生器(1)和分汽室(18)有冷 剂蒸汽通道与第二发生器(2)连通后第二发生器(2)再有冷剂液管路经节流阀 (10)与蒸 发器(6) 连通, 第三发生器 (14) 还有驱动热介质管路与外部连通, 形成分路循环第一类 吸收式热泵。
11. 分路循环第一类吸收式热泵, 是在权利要求 1所述的分路循环第一类吸收式热泵 中, 增加第三发生器、 第三吸收器、 分汽室和溶液节流阀, 将吸收器 (3) 有稀溶液管路经 溶液泵 (8) 和溶液热交换器 (12) 与发生器 (1) 连通调整为吸收器 (3) 有稀溶液管路经 溶液泵 (8) 和溶液热交换器 (12) 与第三吸收器 (20) 连通, 第三吸收器 (20) 还有稀溶 液管路与第三发生器(14)连通, 第三发生器(14)再有浓溶液管路经溶液节流阀 (16)与 发生器 (1) 连通, 将发生器 (1) 有浓溶液管路经溶液热交换器 (12) 与吸收器(3) 连通 调整为发生器 (1) 有浓溶液管路经第三吸收器 (20) 与分汽室 (18) 连通, 分汽室 (18) 再有浓溶液管路经溶液热交换器 (12) 与吸收器 (3) 连通, 第三发生器 (14) 还有冷剂蒸 汽通道与第三吸收器(20)连通; 将发生器(1)有冷剂蒸汽通道与第二发生器(2)连通后 第二发生器 (2) 再有冷剂液管路经节流阀 (10) 与蒸发器 (6) 连通调整为发生器 (1) 和 分汽室(18)有冷剂蒸汽通道与第二发生器(2)连通后第二发生器(2)再有冷剂液管路经 节流阀 (10) 与蒸发器 (6) 连通, 第三发生器 (14) 还有驱动热介质管路与外部连通, 形 成分路循环第一类吸收式热泵; 其中, 为方便部件布置, 或增加第三溶液泵, 将第三吸收器
(20)有稀溶液管路与第三发生器(14)连通调整为第三吸收器(20)有稀溶液管路经第三 溶液泵 (21) 与第三发生器 (14) 连通。
12. 分路循环第一类吸收式热泵, 是在权利要求 1所述的分路循环第一类吸收式热泵 中, 增加第三发生器、 第三吸收器、 第三溶液热交换器和分汽室, 将吸收器 (3)有稀溶液 管路经溶液泵 (8) 和溶液热交换器 (12) 与发生器 (1) 连通调整为吸收器 (3) 有稀溶液 管路经溶液泵(8)、 溶液热交换器(12)和第三溶液热交换器(19) 与第三吸收器(20)连 通, 第三吸收器(20)还有稀溶液管路与第三发生器(14)连通, 第三发生器(14)再有浓 溶液管路经第三溶液热交换器(19) 与发生器(1)连通, 将发生器(1)有浓溶液管路经溶 液热交换器 (12) 与吸收器 (3) 连通调整为发生器 (1) 有浓溶液管路经第三吸收器 (20) 与分汽室 (18) 连通, 分汽室 (18) 再有浓溶液管路经溶液热交换器 (12) 与吸收器 (3) 连通, 第三发生器 (14) 还有冷剂蒸汽通道与第三吸收器 (20)连通; 将发生器 (1)有冷 剂蒸汽通道与第二发生器(2)连通后第二发生器(2)再有冷剂液管路经节流阀 (10)与蒸 发器 (6) 连通调整为发生器 (1) 和分汽室 (18) 有冷剂蒸汽通道与第二发生器 (2) 连通 后第二发生器 (2) 再有冷剂液管路经节流阀 (10) 与蒸发器 (6) 连通, 第三发生器 (14) 还有驱动热介质管路与外部连通,形成分路循环第一类吸收式热泵;其中,为方便部件布置, 或增加第三溶液泵, 将第三吸收器(20)有稀溶液管路与第三发生器(14)连通调整为第三 吸收器(20) 有稀溶液管路经第三溶液泵 (21) 与第三发生器 (14) 连通。
13. 分路循环第一类吸收式热泵, 是在权利要求 1所述的分路循环第一类吸收式热泵 中, 增加第三发生器、 第三节流阀、 第三溶液热交换器和第三溶液泵, 吸收器 (3) 增设稀 溶液管路经第三溶液泵(21)和第三溶液热交换器(19) 与第三发生器 (14)连通, 第三发 生器 (14) 还有浓溶液管路经第三溶液热交换器 (19) 与吸收器 (3) 连通, 将发生器 (1) 有冷剂蒸汽通道与第二发生器 (2) 连通后第二发生器 (2) 再有冷剂液管路经节流阀 (10) 与蒸发器(6)连通调整为发生器(1)有冷剂蒸汽通道与第三发生器(14)连通后第三发生 器 (14) 再有冷剂液管路经第三节流阀 (17) 与蒸发器 (6) 连通, 第三发生器 (14) 还有 冷剂蒸汽通道与第二发生器(2)连通后第二发生器(2)再有冷剂液管路经节流阀 (10)与 蒸发器(6) 连通, 形成分路循环第一类吸收式热泵。
14. 分路循环第一类吸收式热泵, 是在权利要求 1所述的分路循环第一类吸收式热泵 中, 增加第三发生器、 第三节流阔和第三溶液热交换器, 将吸收器 (3) 有稀溶液管路经溶 液泵 (8) 和溶液热交换器 (12) 与发生器 (1) 连通调整为吸收器 (3) 有稀溶液管路经溶 液泵 (8)、 第三溶液热交换器 (19) 和溶液热交换器 (12) 与发生器 (1) 连通, 将发生器
(1) 有浓溶液管路经溶液热交换器 (12) 与吸收器 (3) 连通调整为发生器 (1) 有浓溶液 管路经溶液热交换器(12) 与第三发生器(14)连通, 第三发生器(14)再有浓溶液管路经 第三溶液热交换器(19) 与吸收器(3)连通, 将发生器(1)有冷剂蒸汽通道与第二发生器
(2) 连通后第二发生器 (2) 再有冷剂液管路经节流阀 (10) 与蒸发器 (6)连通调整为发 生器(1) 有冷剂蒸汽通道与第三发生器 (14) 连通后第三发生器 (14) 再有冷剂液管路经 第三节流阀 (17) 与蒸发器 (6) 连通, 第三发生器 (14) 还有冷剂蒸汽通道与第二发生器
(2) 连通后第二发生器 (2) 再有冷剂液管路经节流阀 (10) 与蒸发器 (6) 连通, 形成分 路循环第一类吸收式热泵。
15. 分路循环第一类吸收式热泵, 是在权利要求 1所述的分路循环第一类吸收式热泵 中, 增加第三发生器、 第三节流阀、 第三溶液泵和第三溶液热交换器, 将吸收器 (3) 有稀 溶液管路经溶液泵 (8)和溶液热交换器 (12) 与发生器 (1) 连通调整为吸收器 (3) 有稀 溶液管路经溶液泵 (8) 和第二溶液热交换器 (12) 与第三发生器 (14) 连通, 第三发生器
(14)再有浓溶液管路经第三溶液泵(21)和第三溶液热交换器(19)与发生器(1)连通, 将发生器 (1) 有浓溶液管路经溶液热交换器 (12) 与吸收器 (3) 连通调整为发生器 (1) 有浓溶液管路经第三溶液热交换器 (19) 和溶液热交换器 (12) 与吸收器 (3) 连通, 将发 生器 (1) 有冷剂蒸汽通道与第二发生器 (2) 连通后第二发生器 (2) 再有冷剂液管路经节 流阀 (10) 与蒸发器(6)连通调整为发生器(1)有冷剂蒸汽通道与第三发生器(14)连通 后第三发生器 (14) 再有冷剂液管路经第三节流阀 (17 ) 与蒸发器 (6) 连通, 第三发生器 ( 14)还有冷剂蒸汽通道与第二发生器(2)连通后第二发生器 (2) 再有冷剂液管路经节流 阀 (10) 与蒸发器 (6 ) 连通, 形成分路循环第一类吸收式热泵。
16. 分路循环第一类吸收式热泵, 是在权利要求 1、 3-5、 7-8、 10- 15所述的任一分路 循环第一类吸收式热泵中,增加新增发生器、新增节流阀、新增溶液泵和新增溶液热交换器, 第二吸收器 (4) 增设稀溶液管路经新增溶液泵 (C) 和新增溶液热交换器 (D) 与新增发生 器(A)连通, 新增发生器(A)还有浓溶液管路经新增溶液热交换器(D)与第二吸收器(4) 连通, 将第二发生器 (2) 有冷剂蒸汽通道与冷凝器 (5 ) 连通调整为第二发生器 (2 ) 有冷 剂蒸汽通道与新增发生器 (A) 连通后新增发生器 (A) 再有冷剂液管路经新增节流阀 (B ) 与冷凝器 (5) 连通, 新增发生器 (A) 还有冷剂蒸汽通道与冷凝器 (5) 连通, 形成分路循 环第一类吸收式热泵。
17. 分路循环第一类吸收式热泵, 是在权利要求 1、 3-5、 7-8、 10-15所述的任一分路 循环第一类吸收式热泵中, 增加新增发生器、 新增节流阔和新增溶液热交换器, 将第二吸收 器(4) 有稀溶液管路经第二溶液泵 (9 )、 第二溶液热交换器 (13 ) 和吸收器 (3) 与第二发 生器(2) 连通调整为第二吸收器 (4) 有稀溶液管路经第二溶液泵 (9)、 新增溶液热交换器
(D)、 第二溶液热交换器 (13 )和吸收器 (3) 与第二发生器 (2) 连通, 将第二发生器 (2) 有浓溶液管路经第二溶液热交换器 (13) 与第二吸收器 (4) 连通调整为第二发生器 (2)有 浓溶液管路经第二溶液热交换器 (13) 与新增发生器 (A)连通, 新增发生器 (A) 再有浓溶 液管路经新增溶液热交换器 (D) 与第二吸收器 (4) 连通, 将第二发生器 (2 ) 有冷剂蒸汽 通道与冷凝器 (5) 连通调整为第二发生器 (2) 有冷剂蒸汽通道与新增发生器 (A) 连通后 新增发生器 (A) 再有冷剂液管路经新增节流阀 (B) 与冷凝器 (5 ) 连通, 新增发生器 (A) 还有冷剂蒸汽通道与冷凝器 (5 ) 连通, 形成分路循环第一类吸收式热泵。
18. 分路循环第一类吸收式热泵, 是在权利要求 1、 3-5、 7-8、 10-15所述的任一分路 循环第一类吸收式热泵中,增加新增发生器、新增节流阀、新增溶液泵和新增溶液热交换器, 将第二吸收器(4)有稀溶液管路经第二溶液泵(9)、第二溶液热交换器(13)和吸收器(3 ) 与第二发生器(2 )连通调整为第二吸收器(4) 有稀溶液管路经第二溶液泵 (9)、 第二溶液 热交换器 (13) 和吸收器 (3 ) 与新增发生器 (A) 连通, 新增发生器 (A ) 再有浓溶液管路 经新增溶液泵 (C) 和新增溶液热交换器 (D) 与第二发生器 (2 ) 连通, 将第二发生器 (2) 有浓溶液管路经第二溶液热交换器 (13) 与第二吸收器 (4)连通调整为第二发生器(2)有 浓溶液管路经新增溶液热交换器 (D) 和第二溶液热交换器 (13) 与第二吸收器 (4) 连通, 将第二发生器 (2) 有冷剂蒸汽通道与冷凝器 (5) 连通调整为第二发生器 (2 ) 有冷剂蒸汽 通道与新增发生器 (A) 连通后新增发生器 (A) 再有冷剂液管路经新增节流阀 (B) 与冷凝 器 (5 ) 连通, 新增发生器 (A) 还有冷剂蒸汽通道与冷凝器 (5 ) 连通, 形成分路循环第一 类吸收式热泵。
19. 分路循环第一类吸收式热泵, 是在权利要求 1、 3-5、 7-8、 13-15所述的任一分路 循环第一类吸收式热泵中,增加新增发生器、新增吸收器、新增溶液泵和新增溶液热交换器, 将第二吸收器(4)有稀溶液管路经第二溶液泵(9)、第二溶液热交换器(13)和吸收器(3 ) 与第二发生器 (2 ) 连通调整为第二吸收器 (4) 有稀溶液管路经第二溶液泵 (9) 和新增溶 液热交换器 (D) 与新增吸收器 (E) 连通, 新增吸收器 (E) 再有稀溶液管路经新增溶液泵 (C)、 第二溶液热交换器 (13 ) 和吸收器 (3) 与第二发生器 (2) 连通, 将第二发生器 (2) 有浓溶液管路经第二溶液热交换器 (13) 与第二吸收器 (4) 连通调整为第二发生器 (2)有 浓溶液管路经第二溶液热交换器 (13) 与新增发生器 (A) 连通, 新增发生器 (A) 再有浓溶 液管路经新增溶液热交换器 (D) 与第二吸收器 (4 ) 连通, 新增发生器 (A) 还有冷剂蒸汽 通道与新增吸收器 (E) 连通, 将发生器 (1 ) 有冷剂蒸汽通道与第二发生器 (2 ) 连通后第 二发生器 (2) 再有冷剂液管路经节流阔 ( 10 ) 与蒸发器 (6) 连通调整为发生器 (1 ) 有冷 剂蒸汽通道依次连通第二发生器 (2) 和新增发生器 (A) 之后新增发生器 (A) 再有冷剂液 管路经节流阀(10)与蒸发器(6)连通, 新增吸收器(E)还有被加热介质管路与外部连通, 形成分路循环第一类吸收式热泵。
20. 分路循环第一类吸收式热泵, 是在权利要求 1、 3-5、 7-8、 13- 15所述的任一分路 循环第一类吸收式热泵中, 增加新增发生器、 新增吸收器、 新增第二吸收器、 新增溶液泵、 新增第二溶液泵、 新增溶液热交换器、 新增第二溶液热交换器、 新增溶液节流阀和新增分汽 室, 将第二吸收器 (4 ) 有稀溶液管路经第二溶液泵 (9 )、 第二溶液热交换器 (13) 和吸收 器(3) 与第二发生器 (2) 连通调整为第二吸收器 (4 ) 有稀溶液管路经第二溶液泵 (9)和 新增溶液热交换器 (D) 与新增第二吸收器 (F) 连通, 新增第二吸收器 (F) 还有稀溶液管 路经新增溶液泵 (C) 和新增第二溶液热交换器 (I ) 与新增吸收器 (E) 连通, 新增吸收器
(E) 再有稀溶液管路经新增第二溶液泵 (G)、 第二溶液热交换器 (13 ) 和吸收器 (3 ) 与第 二发生器 (2) 连通, 将第二发生器 (2 ) 有浓溶液管路经第二溶液热交换器 (13) 与第二吸 收器(4)连通调整为第二发生器(2 )有浓溶液管路经第二溶液热交换器 (13 ) 与新增发生 器 (A) 连通, 新增发生器 (A) 还有浓溶液管路经新增溶液节流阀 (H) 和新增吸收器 (E) 与新增分汽室 (J) 连通, 新增分汽室 (J) 再有浓溶液管路经新增第二溶液热交换器 (I ) 和新增溶液热交换器 (D) 与第二吸收器 (4) 连通, 新增发生器 (A) 还有冷剂蒸汽通道与 新增吸收器 (E) 连通, 新增分汽室 (J) 还有冷剂蒸汽通道与新增第二吸收器 (F) 连通, 将发生器 (1 ) 有冷剂蒸汽通道与第二发生器 (2) 连通后第二发生器 (2 ) 再有冷剂液管路 经节流阀 (10) 与蒸发器(6) 连通调整为发生器(1 ) 有冷剂蒸汽通道依次连通第二发生器
(2 )和新增发生器(A)之后新增发生器(A)再有冷剂液管路经节流阀(10)与蒸发器(6) 连通, 新增第二吸收器 (F) 还有被加热介质管路与外部连通, 形成分路循环第一类吸收式 热泵; 其中, 或新增吸收器 (E) 增加被加热介质管路与外部连通。
21. 分路循环第一类吸收式热泵, 是在权利要求 10-12所述的任一分路循环第一类吸 收式热泵中, 增加新增发生器、 新增吸收器、 新增溶液泵和新增溶液热交换器, 将第二吸收 器 (4)有稀溶液管路经第二溶液泵 (9)、 第二溶液热交换器 (13 ) 和吸收器 (3 ) 与第二发 生器 (2) 连通调整为第二吸收器 (4 ) 有稀溶液管路经第二溶液泵 (9 ) 和新增溶液热交换 器 (D) 与新增吸收器 (E) 连通, 新增吸收器 (E) 再有稀溶液管路经新增溶液泵 (C)、 第 二溶液热交换器 (13 ) 和吸收器 (3 ) 与第二发生器 (2 ) 连通, 将第二发生器 (2 ) 有浓溶 液管路经第二溶液热交换器 (13 ) 与第二吸收器(4) 连通调整为第二发生器(2)有浓溶液 管路经第二溶液热交换器 (13 ) 与新增发生器 (A) 连通, 新增发生器 (A) 再有浓溶液管路 经新增溶液热交换器 (D) 与第二吸收器 (4) 连通, 新增发生器 (A) 还有冷剂蒸汽通道与 新增吸收器 (E) 连通, 将发生器 (1 ) 和分汽室 (18) 有冷剂蒸汽通道与第二发生器 (2 ) 连通后第二发生器(2)再有冷剂液管路经节流阀(10)与蒸发器(6)连通调整为发生器(1 ) 和分汽室 (18 )有冷剂蒸汽通道依次连通第二发生器(2) 和新增发生器 (A) 之后新增发生 器 (A) 再有冷剂液管路经节流阀 (10) 与蒸发器 (6) 连通, 新增吸收器 (E) 还有被加热 介质管路与外部连通, 形成分路循环第一类吸收式热泵。
22. 分路循环第一类吸收式热泵, 是在权利要求 10-12所述的任一分路循环第一类吸 收式热泵中, 增加新增发生器、 新增吸收器、 新增第二吸收器、 新增溶液泵、 新增第二溶液 泵、 新增溶液热交换器、 新增第二溶液热交换器、 新增溶液节流阀和新增分汽室, 将第二吸 收器 (4) 有稀溶液管路经第二溶液泵 (9 )、 第二溶液热交换器 (13) 和吸收器 (3) 与第二 发生器 (2 ) 连通调整为第二吸收器 (4) 有稀溶液管路经第二溶液泵 (9 ) 和新增溶液热交 换器 (D) 与新增第二吸收器 (F) 连通, 新增第二吸收器 (F) 还有稀溶液管路经新增溶液 泵 (C) 和新增第二溶液热交换器 (I ) 与新增吸收器 (E) 连通, 新增吸收器 (E) 再有稀溶 液管路经新增第二溶液泵 (G)、 第二溶液热交换器 (13 ) 和吸收器 (3) 与第二发生器 (2) 连通, 将第二发生器 (2 ) 有浓溶液管路经第二溶液热交换器 (13 ) 与第二吸收器 (4) 连通 调整为第二发生器 (2) 有浓溶液管路经第二溶液热交换器 (13 ) 与新增发生器 (A) 连通, 新增发生器 (A) 还有浓溶液管路经新增溶液节流阀 (H) 和新增吸收器 (E) 与新增分汽室
(J) 连通, 新增分汽室 (J) 再有浓溶液管路经新增第二溶液热交换器 (I ) 和新增溶液热 交换器(D)与第二吸收器(4)连通, 新增发生器(A)还有冷剂蒸汽通道与新增吸收器(E) 连通, 新增分汽室 (J) 还有冷剂蒸汽通道与新增第二吸收器 (F) 连通, 将发生器 (1 ) 和 分汽室 (18 ) 有冷剂蒸汽通道与第二发生器 (2)连通后第二发生器(2 ) 再有冷剂液管路经 节流阀 (10) 与蒸发器 (6) 连通调整为发生器 (1 ) 和分汽室 (18 ) 有冷剂蒸汽通道依次连 通第二发生器 (2 ) 和新增发生器(A) 之后新增发生器 (A) 再有冷剂液管路经节流阀 (10) 与蒸发器(6)连通, 新增第二吸收器(F)还有被加热介质管路与外部连通, 形成分路循环 第一类吸收式热泵; 其中, 或新增吸收器 (E) 增加被加热介质管路与外部连通。
23. 分路循环第一类吸收式热泵, 是在权利要求 1、 3-5、 7-8、 10-15所述的任一分路 循环第一类吸收式热泵中,增加新增发生器、新增吸收器、新增溶液泵和新增溶液热交换器, 将第二吸收器(4)有稀溶液管路经第二溶液泵(9)、 第二溶液热交换器(13 )和吸收器(3) 与第二发生器 (2) 连通调整为第二吸收器 (4) 有稀溶液管路经第二溶液泵 (9) 和新增溶 液热交换器 (D) 与新增吸收器 (E) 连通, 新增吸收器 (E) 再有稀溶液管路经新增溶液泵
(C)、 第二溶液热交换器 (13 ) 和吸收器 (3) 与第二发生器 (2) 连通, 将第二发生器 (2) 有浓溶液管路经第二溶液热交换器 (13) 与第二吸收器 (4) 连通调整为第二发生器(2)有 浓溶液管路经第二溶液热交换器 (13) 与新增发生器 (A) 连通, 新增发生器 (A) 再有浓溶 液管路经新增溶液热交换器 (D) 与第二吸收器 (4) 连通, 新增发生器 (A) 还有冷剂蒸汽 通道与新增吸收器 (E)连通, 新增发生器(A) 还有驱动热介质管路与外部连通, 新增吸收 器 (E) 还有被加热介质管路与外部连通, 形成分路循环第一类吸收式热泵。
24. 分路循环第一类吸收式热泵, 是在权利要求 1、 3-5、 7-8、 10- 15所述的任一分路 循环第一类吸收式热泵中, 增加新增发生器、 新增吸收器、 新增第二吸收器、 新增溶液泵、 新增第二溶液泵、 新增溶液热交换器、 新增第二溶液热交换器、 新增溶液节流阀和新增分汽 室, 将第二吸收器 (4) 有稀溶液管路经第二溶液泵 (9 )、 第二溶液热交换器 (13) 和吸收 器(3 ) 与第二发生器 (2 ) 连通调整为第二吸收器 (4 )有稀溶液管路经第二溶液泵 (9) 和 新增溶液热交换器 (D) 与新增第二吸收器 (F) 连通, 新增第二吸收器 (F) 还有稀溶液管 路经新增溶液泵 (C) 和新增第二溶液热交换器 (I ) 与新增吸收器 (E) 连通, 新增吸收器
(E) 再有稀溶液管路经新增第二溶液泵 (G)、 第二溶液热交换器 (13) 和吸收器(3 ) 与第 二发生器 (2) 连通, 将第二发生器 (2 ) 有浓溶液管路经第二溶液热交换器 (13) 与第二吸 收器 (4) 连通调整为第二发生器(2 ) 有浓溶液管路经第二溶液热交换器 (13) 与新增发生 器 (A) 连通, 新增发生器 (A) 还有浓溶液管路经新增溶液节流阀 (H) 和新增吸收器 (E) 与新增分汽室 (J) 连通, 新增分汽室 (J) 再有浓溶液管路经新增第二溶液热交换器 (I ) 和新增溶液热交换器 (D) 与第二吸收器 (4) 连通, 新增发生器 (A) 还有冷剂蒸汽通道与 新增吸收器 (E) 连通, 新增分汽室 (J) 还有冷剂蒸汽通道与新增第二吸收器 (F) 连通, 新增发生器(A)还有驱动热介质管路与外部连通, 新增第二吸收器(F)还有被加热介质管 路与外部连通, 形成分路循环第一类吸收式热泵; 其中, 或新增吸收器 (E) 增加被加热介 质管路与外部连通。
25. 分路循环第一类吸收式热泵, 是在权利要求 1-24所述的任一分路循环第一类吸收 式热泵中, 将蒸发器 (6) 和第二蒸发器 (7 ) 合二为一, 形成分路循环第一类吸收式热泵。
PCT/CN2014/000457 2013-05-08 2014-05-04 分路循环第一类吸收式热泵 WO2014180163A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310187217.3 2013-05-08
CN201310187217 2013-05-08

Publications (1)

Publication Number Publication Date
WO2014180163A1 true WO2014180163A1 (zh) 2014-11-13

Family

ID=51367350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000457 WO2014180163A1 (zh) 2013-05-08 2014-05-04 分路循环第一类吸收式热泵

Country Status (2)

Country Link
CN (1) CN104006567B (zh)
WO (1) WO2014180163A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106440493B (zh) * 2015-09-05 2020-03-17 李华玉 第四类热驱动压缩-吸收式热泵
CN106403350B (zh) * 2016-05-30 2020-04-21 李华玉 热动联供系统
CN106440466B (zh) * 2016-05-30 2020-04-21 李华玉 热动联供系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004257705A (ja) * 2003-02-27 2004-09-16 Sanyo Electric Co Ltd 吸収ヒートポンプ利用濃縮装置
CN101182962A (zh) * 2007-11-25 2008-05-21 李华玉 一种复合吸收式热泵
CN102338498A (zh) * 2011-08-13 2012-02-01 李华玉 分级发生式第一类吸收式热泵
CN103017398A (zh) * 2012-12-06 2013-04-03 李华玉 多效第一类吸收式热泵
CN103471282A (zh) * 2013-04-03 2013-12-25 李华玉 分路循环第一类吸收式热泵

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101458006B (zh) * 2009-01-01 2011-11-16 李华玉 提高热泵供热温度的方法与高温型第一类吸收式热泵
CN102230687B (zh) * 2011-04-27 2012-10-10 浙江大学 一种利用低品位热源的加热装置
WO2013033860A1 (zh) * 2011-09-07 2013-03-14 Li Huayu 第三类吸收-发生系统与第三类吸收式热泵
CN102519166B (zh) * 2011-11-29 2014-03-12 李华玉 分段吸收第一类吸收式热泵
CN102519136A (zh) * 2012-01-19 2012-06-27 江门市凯立信电气科技有限公司 一种空气能热水器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004257705A (ja) * 2003-02-27 2004-09-16 Sanyo Electric Co Ltd 吸収ヒートポンプ利用濃縮装置
CN101182962A (zh) * 2007-11-25 2008-05-21 李华玉 一种复合吸收式热泵
CN102338498A (zh) * 2011-08-13 2012-02-01 李华玉 分级发生式第一类吸收式热泵
CN103017398A (zh) * 2012-12-06 2013-04-03 李华玉 多效第一类吸收式热泵
CN103471282A (zh) * 2013-04-03 2013-12-25 李华玉 分路循环第一类吸收式热泵

Also Published As

Publication number Publication date
CN104006567A (zh) 2014-08-27
CN104006567B (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
WO2012019329A1 (zh) 吸收-再吸收-发生系统与第一类吸收式热泵
WO2011091567A1 (zh) 吸收-发生系统和吸收式热泵
WO2014127681A1 (zh) 复合发生第一类吸收式热泵
WO2010118636A1 (zh) 提高热泵供热温度的方法与高温第二类吸收式热泵
WO2013159261A1 (zh) 多端供热第一类吸收式热泵
CN101799222B (zh) 回热式发生-吸收系统与回热式第二类吸收式热泵
WO2011134129A1 (zh) 回热式吸收-发生系统与回热式第一类吸收式热泵
WO2012129743A1 (zh) 第三类发生-吸收系统与回热式第三类吸收式热泵
WO2012145869A1 (zh) 三发生-三吸收系统与第三类吸收式热泵
WO2015143925A1 (zh) 第五类吸收式热泵
WO2012159228A1 (zh) 第三类吸收-发生系统与第三类吸收式热泵
WO2015149564A1 (zh) 第四类吸收式热泵与第五类吸收式热泵
WO2014180163A1 (zh) 分路循环第一类吸收式热泵
WO2015014098A1 (zh) 热电联供、冷电联供与热电-冷电两用联供系统
WO2013138963A1 (zh) 双效回热吸收-发生系统与回热式第一类吸收式热泵
WO2014161368A1 (zh) 分路循环第一类吸收式热泵
WO2014161367A1 (zh) 分路循环第一类吸收式热泵
WO2013170406A1 (zh) 分级冷凝第三类吸收式热泵
WO2012122683A1 (zh) 第三类发生-吸收系统与第三类吸收式热泵
WO2013163784A1 (zh) 分段回热第三类吸收式热泵
WO2013149366A1 (zh) 双效回热吸收-发生系统与回热式第三类吸收式热泵
WO2014134749A1 (zh) 复合发生第一类吸收式热泵
WO2013152464A1 (zh) 双效回热吸收-发生系统与回热式第三类吸收式热泵
CN208154868U (zh) 可变效的溶液并联型溴化锂吸收式制冷热泵机组
WO2013075260A1 (zh) 分级冷凝第二类吸收式热泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14795485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14795485

Country of ref document: EP

Kind code of ref document: A1