WO2011134129A1 - 回热式吸收-发生系统与回热式第一类吸收式热泵 - Google Patents

回热式吸收-发生系统与回热式第一类吸收式热泵 Download PDF

Info

Publication number
WO2011134129A1
WO2011134129A1 PCT/CN2010/001785 CN2010001785W WO2011134129A1 WO 2011134129 A1 WO2011134129 A1 WO 2011134129A1 CN 2010001785 W CN2010001785 W CN 2010001785W WO 2011134129 A1 WO2011134129 A1 WO 2011134129A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorber
generator
solution
heat exchanger
pump
Prior art date
Application number
PCT/CN2010/001785
Other languages
English (en)
French (fr)
Inventor
李华玉
Original Assignee
Li Huayu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Li Huayu filed Critical Li Huayu
Publication of WO2011134129A1 publication Critical patent/WO2011134129A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/008Sorption machines, plants or systems, operating continuously, e.g. absorption type with multi-stage operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • the invention belongs to the technical field of refrigeration and low temperature waste heat utilization heat pump.
  • the premise of using the absorption heat pump technology for waste heat utilization is that the heat pump can raise the heat from the residual heat temperature to the temperature required by the user, and at the same time make the performance index of the absorption heat pump unit as high as possible; similarly, the user is satisfied during cooling. Under the premise of the demand, the cooling efficiency of driving the heat medium should also be exerted as high as possible. This requires that the corresponding units used have a reasonable structure and workflow, and that there is a corresponding high-performance index absorption heat pump with different operating parameters.
  • the key is to reduce the concentration of the solution entering the generator; in order to be able to utilize the lower temperature residual heat, the key is to increase the concentration of the solution entering the absorber. It would be very important to take reasonable technical measures, increase the concentration of the solution entering the absorber and reduce the concentration of the solution entering the generator, and be able to select the range of increase and decrease of the solution concentration according to the demand within a certain range. .
  • the present invention employs a clever process to apply the regenerative principle.
  • the absorption-generation process of the solution establishes a regenerative absorption-generation system and obtains a regenerative first-type absorption heat pump with different effects and different stages. Combined with existing technical measures, different working parameter intervals are realized.
  • the continuous connection of the first type of absorption heat pump in the working parameter interval and the performance index is realized.
  • the main object of the present invention is to provide a regenerative absorption-generation system and a regenerative first-type absorption heat pump, which first proposes a regenerative absorption-generation system, and then adds different components in the regenerative absorption-generation system. , obtained a series of regenerative first-class absorption heat pumps.
  • the specific content of the invention is as follows:
  • a regenerative absorption-generation system consisting mainly of a first absorber, a second absorber, a generator, a first solution pump, a second solution pump and a solution heat exchanger;
  • the first absorber has a dilute solution line
  • the second solution pump is in communication with the second absorber, the second absorber and the dilute solution line are connected to the generator via the first solution pump and the solution heat exchanger, and the generator has a concentrated solution line through the solution heat exchanger
  • the second absorber is in communication with the first absorber, the first absorber further has a heated medium line communicating with the outside and a refrigerant vapor channel communicating with the outside, and the external refrigerant liquid line is connected to the first absorber
  • the first absorber further has a refrigerant vapor passage communicating with the second absorber, and the generator further has a driving heat medium pipeline connected to the outside and a refrigerant vapor passage communicating with the outside to form a regenerative absorption-generation system; Wherein, when the generator is turned
  • a regenerative absorption-generation system mainly composed of a first absorber, a second absorber, a generator, a first solution pump, a second solution pump, a solution heat exchanger, a steam separation chamber and a third absorber;
  • the first absorber has a dilute solution line connected to the third absorber, the third absorber and the dilute solution line are connected to the second absorber via the second solution pump, and the second absorber has a dilute solution line
  • a solution pump and a solution heat exchanger are connected to the generator, and the generator and the concentrated solution pipeline are connected to the steam separation chamber through the solution heat exchanger and the second absorber, and the separation chamber has a concentrated solution pipeline and the first absorption.
  • the first absorber also has a medium to be heated connected to the outside and a refrigerant vapor passage to communicate with the outside, and the steam dividing chamber has a refrigerant vapor passage and a first
  • the third absorber is connected, and the external refrigerant liquid line is in communication with the third absorber, and the S-absorber and the refrigerant vapor channel are in communication with the second absorber, and the third absorber and the refrigerant vapor channel are connected to the outside.
  • a refrigerant vapor channel is connected to the outside and a heated medium pipe is connected to the outside
  • the generator also has a driving heat medium pipe connected to the outside and a refrigerant vapor channel to communicate with the outside to form a regenerative absorption- a generating system
  • the second absorber when the generator is a rectification column, the second absorber has a dilute solution line connected to the rectification column through the first solution pump and the solution heat exchanger, and the rectification column further has a concentrated solution line through the solution heat
  • the exchanger and the second absorber are in communication with the steam separation chamber
  • the distillation tower further has a driving heat medium pipeline connected to the outside, a heated medium pipeline communicating with the outside, and a refrigerant vapor passage communicating with the outside.
  • a regenerative absorption-generation system in the regenerative absorption-generation system in which the third absorber has a heated medium line connected to the outside, adding a third solution pump and solution throttling a valve, the concentrated solution line in the steam distribution chamber is connected to the first absorber, and is adjusted to be a concentrated solution line in the steam distribution chamber, and the third solution pump is connected to the first absorber, and the first absorber has a dilute solution line and The third absorber is connected to be adjusted so that the first absorber has a dilute solution line connected to the third absorber via the solution throttle valve to form a regenerative absorption-generation system.
  • Regenerative type I absorption heat pump in the regenerative absorption-generation system described in item 1, adding a condenser, an evaporator, a first throttle valve, a refrigerant liquid pump or a second section a flow valve, the generator has a refrigerant vapor passage connected to the outside to determine that the generator has a refrigerant vapor passage communicating with the condenser, and the condenser and the refrigerant liquid pipeline are connected to the evaporator via the first throttle valve, An absorber having a refrigerant vapor passage communicating with the outside is determined to be an evaporator having a refrigerant vapor passage communicating with the first absorber, and connecting the external refrigerant liquid conduit to the first absorber, the first absorber having a refrigerant The steam passage is connected to the second absorber to determine that the evaporator has a refrigerant liquid pipeline connected to the first absorber through the refrigerant liquid pump, and then the first absorber is further connected to the second absorber
  • Regenerative type I absorption heat pump in the regenerative absorption-generation system described in item 2, adding a condenser, an evaporator, a first throttle valve, a refrigerant liquid pump or a second section
  • the generator has a refrigerant vapor passage and the external communication is determined as the generator has a refrigerant vapor passage communicating with the condenser
  • the condenser and the refrigerant liquid pipeline are connected to the evaporator through the first section
  • the first An absorber having a refrigerant vapor passage communicating with the outside is determined to be an evaporator having a refrigerant vapor passage communicating with the first absorber
  • a third absorber having a refrigerant vapor passage communicating with the outside is determined to be an evaporator having a refrigerant vapor passage and
  • the third absorber is connected, and the external refrigerant liquid pipeline is connected with the third absorber, and the third absorber is further connected with the refrigerant vapor passage and
  • the third absorber is further connected to the second absorber by the refrigerant vapor passage, or is determined to be the condenser having the refrigerant liquid pipeline connected to the third absorber through the second throttle valve.
  • the third absorber has a refrigerant vapor passage and a second The absorber is connected, the condenser is also connected to the outside by the heated medium pipeline, and the evaporator and the residual heat medium pipeline communicate with the outside to form a single-stage single-effect regenerative first-type absorption heat pump.
  • the regenerative first type absorption heat pump is the regenerative absorption-generation system according to item 3, wherein the condenser, the first evaporator, the second evaporator, the first throttle valve, and the first
  • the two throttle valve, the refrigerant liquid pump or the third throttle valve connect the generator refrigerant vapor passage to the outside to determine that the generator has a refrigerant vapor passage communicating with the condenser, and the condenser also has a refrigerant liquid pipeline
  • the first throttle valve communicates with the first evaporator, the first evaporator communicates with the refrigerant liquid pipeline, and the second throttle valve communicates with the second evaporator, and the first absorber has a refrigerant vapor passage and the outside
  • the communication is determined to be that the first evaporator has a refrigerant vapor passage communicating with the first absorber
  • the third absorber having the refrigerant vapor passage communicating with the outside is determined to be that the second evaporator has
  • the third absorber is further The vapor channel of the agent is in communication with the second absorber, or is determined to be connected to the second absorber by the third liquid trap via the third throttle valve and the third absorber.
  • the condenser is also connected to the outside by the heated medium pipeline, and the first evaporator and the second evaporator respectively have a residual heat medium pipeline communicating with the outside to form a single-stage single-effect regenerative first-type absorption heat pump.
  • the regenerative type I absorption heat pump is added to the regenerative first type absorption heat pump described in item 4 a two-liquid heat exchanger and a new throttle valve, the first solution pump is further provided with a dilute heat exchanger connected to the second generator, and the second generator has a concentrated solution pipeline after passing through the second solution heat exchanger and the first The generator is merged through the concentrated solution pipeline after the first solution heat exchanger, and then communicates with the first absorber through the second absorber, and the first generator has a refrigerant vapor passage connected to the condenser and is adjusted to the first generator.
  • the second generator and the refrigerant liquid pipeline are connected to the condenser via the newly added throttle valve - the refrigerant vapor generated by the first generator is used as the second generator
  • the heat medium is driven, and the second generator and the refrigerant vapor passage are connected with the condenser to form a single-stage parallel double-effect regenerative first-type absorption heat pump.
  • the regenerative type I absorption heat pump is a second type generator, a second solution heat exchanger and a new throttle in the regenerative first type absorption heat pump described in items 5-6.
  • a valve a first solution pump is provided with a dilute solution line connected to the second generator via the second solution heat exchanger, and the second generator further has a concentrated solution line passing through the second solution heat exchanger and the first generator
  • the concentrated solution pipeline after the solution heat exchanger merges, and then communicates with the steam distribution chamber through the second absorber
  • the first generator has a refrigerant vapor passage connected to the condenser to adjust the first generator to have a refrigerant vapor passage.
  • the second generator After communicating with the second generator, the second generator further has a refrigerant liquid line connected to the condenser via a new throttle valve - the refrigerant vapor generated by the first generator acts as a driving heat medium for the second generator,
  • the second generator also has a refrigerant vapor passage communicating with the condenser to form a single-stage parallel double-effect regenerative first-class absorption heat pump.
  • the regenerative type I absorption heat pump is the second type of generator, the second solution heat exchanger and the new throttle type in the regenerative first type absorption heat pump according to item 4.
  • the second absorber has a dilute solution pipeline connected to the first generator through the first solution pump and the first solution heat exchanger to adjust the second absorber to have a dilute solution pipeline through the first solution pump, the first solution heat exchange And the second solution heat exchanger is in communication with the first generator, and the first generator has a concentrated solution line connected to the first absorber via the first solution heat exchanger and the second absorber to adjust the first generator to have
  • the concentrated solution pipeline is connected to the second generator via the second solution heat exchanger, and the second generator and the concentrated solution pipeline are connected to the first absorber via the first solution heat exchanger and the second absorber, and will be first
  • the generator has a refrigerant vapor passage communicating with the condenser to adjust the first generator to have a refrigerant vapor passage communicating with the second generator, and then the second generator is further connected to the
  • the regenerative type I absorption heat pump is a second type generator, a second solution heat exchanger and a new throttle in the regenerative first type absorption heat pump described in items 5-6.
  • the second absorber has a dilute solution line connected to the first generator through the first solution pump and the first solution heat exchanger to adjust the second absorber to have a dilute solution line through the first solution pump, the first solution
  • the heat exchanger and the second solution heat exchanger are in communication with the first generator
  • the first generator has a concentrated solution line connected to the steam distribution chamber through the first solution heat exchanger and the second absorber to adjust to the first generator
  • the concentrated solution pipeline is connected to the second generator via the second solution heat exchanger, and the second generator and the concentrated solution pipeline are connected to the steam distribution chamber via the first solution heat exchanger and the second absorber, and will be first
  • the generator has a refrigerant vapor passage communicating with the condenser to adjust the first generator to have a refrigerant vapor passage communicating with the second generator, and then the second
  • the regenerative first type absorption heat pump is a regenerative first type absorption heat pump according to Item 9-10, wherein the second absorber has a dilute solution line through the first solution pump, a solution heat exchanger and a second solution heat exchanger are connected to the first generator to be adjusted to be connected to the second generator, and the dilute solution line is directly connected to the second generator through the first solution pump and the first solution heat exchanger And communicating with the first generator through the second solution heat exchanger to form a single-stage series-parallel double-effect regenerative first type absorption heat pump.
  • the regenerative type I absorption heat pump is a second type of generator, a second solution heat exchanger, a new throttle valve, and the like, in the regenerative first type absorption heat pump according to item 4.
  • Adding a solution pump connecting the second absorber having a dilute solution line through the first solution pump and the first solution heat exchanger to the first generator to adjust the second absorber to have a dilute solution line through the first solution pump and
  • the first solution heat exchanger is in communication with the second generator, the second generator has a concentrated solution line via the new solution pump and the second
  • the solution heat is further connected to the first generator, and the first generator has a concentrated solution pipeline connected to the first absorber through the first bath heat exchanger and the second absorber to adjust the first generator to have a concentrated solution
  • the pipeline is in communication with the first absorber via the second solution heat exchanger, the first solution heat exchanger and the second absorber, and the first generator has a refrigerant vapor passage communicating with the condenser to adjust the first generator to be cold After
  • the regenerative type I absorption heat pump is a second type generator, a second solution heat exchanger, and a new throttle in the regenerative first type absorption heat pump described in items 5-6. a valve and a new solution pump, wherein the second absorber has a dilute solution line connected to the first generator through the first solution pump and the first solution heat exchanger to adjust the second absorber to have a dilute solution line through the first solution
  • the pump and the first solution heat exchanger are in communication with the second generator, and the second generator and the concentrated solution line are connected to the first generator via the new solution pump and the second solution heat exchanger, and the first generator has The concentrated solution pipeline is connected to the steam separation chamber through the first solution heat exchanger and the second absorber to adjust the first generator to have a concentrated solution pipeline through the second solution heat exchanger, the first solution heat exchanger and the second absorption
  • the device is connected to the steam distribution chamber, and the first generator has a refrigerant vapor passage connected to the condenser to be adjusted to be a first generator having
  • the regenerative first type absorption heat pump is the regenerative first type absorption heat pump according to Item 12-13, wherein the second absorber has a dilute solution line through the first solution pump and the first a solution heat exchanger is connected to the second generator to adjust to a second absorber having a dilute solution line connected to the second generator and communicating with the first generator through the first solution pump and the first solution heat exchanger, respectively
  • a single-stage series-parallel double-effect regenerative first-class absorption heat pump is formed.
  • the regenerative first type absorption heat pump is the second type generator, the third generator, the second solution heat exchanger, and the second type of absorption heat pump according to item 4 a three-solution heat exchanger, a first-stage flow-opening and a second-additional second throttle valve, and the first solution pump is provided with a dilute solution pipeline connected to the second generator via the second solution heat exchanger and through the third solution
  • the heat exchanger is in communication with the third generator, the second generator has a concentrated solution line after passing through the second solution heat exchanger and the third generator has a concentrated solution line through the third solution heat exchanger and both occur first
  • the concentrated solution line after the first solution heat exchanger merges, and then communicates with the first absorber through the second absorber, and the first generator has a refrigerant vapor channel connected to the condenser to adjust the first generator to have After the refrigerant vapor passage is connected with the second generator, the second generator and the refrigerant liquid pipeline are connected to the condenser via the newly added first
  • a regenerative first type absorption heat pump wherein in the regenerative first type absorption heat pump according to items 5-6, the second generator, the third generator, and the second solution heat exchanger are added a third solution heat exchanger, a first first throttle valve and a second second throttle valve, and the first solution pump is provided with a dilute solution pipeline connected to the second generator via the second solution heat exchanger and The three-solution heat exchanger is in communication with the third generator, and the second generator has a concentrated solution line through the second solution heat exchanger and the third generator has a concentrated solution line through the third solution heat exchanger a generator is merged through the concentrated solution pipeline after the first solution heat exchanger, and then communicates with the steam distribution chamber through the second absorber, and the first generator has a refrigerant vapor passage connected to the condenser to be adjusted to the first generator After the refrigerant vapor passage is connected with the second generator, the second generator and the refrigerant liquid pipeline are connected to the condenser via the newly added first throttle valve - the refrig
  • the regenerative first type absorption heat pump is the second type generator, the third generator, the second solution heat exchanger, and the second type of absorption heat pump according to item 4 Three-solution heat exchanger, new first throttle valve and new addition Two! , ::
  • the absorber has a dilute solution line through the first solution ⁇ and the first solution 'heater ⁇ pass adjusts to the second absorber has a dilute solution line through the first solution pump, the first solution heat exchanger, the second The solution heat exchanger and the third solution heat exchanger are in communication with the first generator, and the first generator has a concentrated solution line connected to the first absorber via the first solution heat exchanger and the second absorber to be adjusted to the first
  • the generator has a concentrated solution pipeline connected to the second generator via the third solution heat exchanger, and the second generator and the concentrated solution pipeline are connected to the third generator via the second solution heat exchanger, and the third generator is further
  • the concentrated solution pipeline communicates with the first absorber through the first solution heat exchanger and the second absorber, and the
  • the second generator also has a refrigerant vapor channel and a third occurrence
  • the third generator has a refrigerant liquid pipeline connected to the condenser via a new second throttle valve - the refrigerant vapor generated by the second generator is used as the driving heat medium of the third generator, and the third occurs
  • the refrigerant vapor passage is connected to the condenser to form a single-stage series three-effect regenerative first-class absorption heat pump.
  • a regenerative first type absorption heat pump wherein in the regenerative first type absorption heat pump according to item 5-6, the second generator, the third generator, and the second solution heat exchanger are added a third solution heat exchanger, a first section of the first section and a second throttle valve, the second absorber having a dilute solution line through the first solution pump and the first solution heat exchanger and the first occurrence Connected to the second absorber with a dilute solution line connected to the first generator via the first solution pump, the first solution heat exchanger, the second solution heat exchanger and the third solution heat exchanger, which will occur first
  • the concentrated solution pipeline is connected to the steam separation chamber through the first solution heat exchanger and the second absorber to be adjusted to be the first generator, and the concentrated solution pipeline is connected to the second generator via the third solution heat exchanger, second
  • the generator further has a concentrated solution pipeline connected to the third generator via the second solution heat exchanger, and the third generator and the concentrated solution pipeline are connected to the steam distribution chamber via the first solution heat exchanger and the second absorber
  • the regenerative first type absorption heat pump is the second type generator, the third generator, the second solution heat exchanger, and the second type of absorption heat pump according to the fourth item.
  • Three solution heat exchanger, new first throttle valve, new second throttle valve, new first solution pump and new second solution pump, the second absorber has a dilute solution line through the first solution
  • the pump and the first solution heat exchanger are connected to the first generator to be adjusted to have a second solution having a dilute solution line connected to the third generator via the first solution pump and the first solution heat exchanger, and the third generator further
  • the concentrated solution pipeline is connected to the second generator via the newly added first solution pump and the second solution heat exchanger, and the second generator and the concentrated solution pipeline are added with the second solution pump and the third solution heat exchanger.
  • the first generator is connected, and the first generator has a concentrated solution pipeline connected to the first absorber through the first solution heat exchanger and the second absorber to adjust the first generator to have a concentrated solution pipeline through the third solution heat Exchanger, second solution heat exchanger, first solution heat exchanger and second
  • the absorber is in communication with the first absorber, and the first generator has a refrigerant vapor passage communicating with the condenser to adjust the first generator to have a refrigerant vapor passage communicating with the second generator, and the second generator is further provided with a refrigerant liquid
  • the pipeline is connected to the condenser via a new first throttle valve - the refrigerant vapor generated by the first generator acts as a driving heat medium for the second generator, and the second generator also has a refrigerant vapor passage and a third generator
  • the third generator further has a refrigerant liquid pipeline connected to the condenser via a new second throttle valve - the refrigerant vapor generated by the second generator is used as the driving heat medium
  • the regenerative first type absorption heat pump is a second type generator, a third generator, and a second solution heat exchanger in the regenerative first type absorption heat pump according to items 5-6.
  • the hot king is ⁇ , the second brother and the king ⁇
  • the bathing officer 3 ⁇ 43 ⁇ 4 ⁇ is connected with the first generator, the first generator has a concentrated solution pipeline through the first solution heat exchanger and the second absorption Connected to the steam separation chamber to adjust the first generator to have a concentrated solution line connected to
  • the regenerative first type absorption heat pump is a second solution heat exchanger, an absorption-evaporator, and a second refrigerant pump in the regenerative first type absorption heat pump according to item 4.
  • the first absorber has a dilute solution pipeline connected to the second absorber through the second solution pump to adjust the first absorber to have a dilute solution pipeline through the second solution heat exchanger and absorb-evaporate Connected
  • the absorption-evaporator and the dilute solution line communicate with the second absorber via the second solution pump and the second solution heat exchanger
  • the evaporator has a refrigerant vapor channel connected to the first absorber to be adjusted to the evaporator
  • a refrigerant vapor passage is connected to the absorption-evaporator, and the evaporator is provided with a refrigerant liquid pipeline connected to the absorption-evaporator through the second refrigerant liquid pump, and then the absorption-evaporator is further connected to the first absorber through a refrigerant
  • the condenser is added with a refrigerant liquid pipeline.
  • the absorption-evaporator and the refrigerant vapor passage are connected with the first absorber to form a single-generator two-stage regenerative type.
  • the regenerative first type absorption heat pump is a second solution heat exchanger, an absorption-evaporator, and a second refrigerant pump in the regenerative first type absorption heat pump according to item 5.
  • the third absorber has a dilute solution pipeline connected to the second absorber through the second solution pump to adjust the third absorber to have a dilute solution pipeline through the second solution heat exchanger and absorption-evaporation Connected, the absorption-evaporator and the dilute solution line are connected to the second absorber via the second solution pump and the second solution heat exchanger, and the evaporator has a refrigerant vapor channel respectively with the first absorber and the third absorption
  • the communication is adjusted so that the evaporator has a refrigerant vapor passage communicating with the absorption-evaporator, and the evaporator is provided with a refrigerant liquid pipeline connected to the absorption-evaporator through the second refrigerant liquid pump to absorb - the evaporator and the refrigerant
  • the new throttle valve is connected to the absorption-evaporator, and then the absorption-evaporator and the refrigerant vapor channel are respectively separated from the first absorption. And the third absorber is connected to form a single occurrence The first two recuperative heat absorption heat pump.
  • the regenerative type I absorption heat pump is a regenerative first type absorption heat pump in which the third absorber is not connected to the outside by the heating medium line, and the third solution pump is added.
  • a second solution heat exchanger, an absorption-evaporator, a second refrigerant liquid pump or a new throttle valve, and the concentrated solution line of the steam distribution chamber is connected to the first absorber to be adjusted to have a concentrated solution tube in the steam distribution chamber.
  • the solution heat exchanger is in communication with the absorption-evaporator, and the absorption-evaporator and the dilute solution line are in communication with the third absorber, and the evaporator has a refrigerant vapor passage connected to the first absorber to adjust the evaporator to have a refrigerant vapor.
  • the passage is connected to the absorption-evaporator, and the evaporator is provided with a refrigerant liquid pipeline connected to the absorption-evaporator through the second refrigerant liquid pump, and then the absorption-evaporator and the refrigerant vapor passage are connected to the first absorber, or the condenser. Adding refrigerant liquid pipeline through new throttle valve and absorption - Absorbing after the evaporator is connected - The evaporator is further connected to the first absorber by a refrigerant vapor passage to form a single-stage two-stage regenerative first type absorption heat pump.
  • the regenerative type I absorption heat pump is a regenerative first type absorption heat pump in which the third absorber is not connected to the outside by the heating medium line, and the third solution pump is added. And the second solution heat exchanger, the concentrated solution line of the steam distribution chamber is connected to the first absorber, and is adjusted to have a concentrated solution line through the third solution pump and the second solution heat exchanger and the first absorber.
  • the first absorber has a dilute solution line and the third absorber is connected to be adjusted to be a first absorber having a dilute solution line connected to the third absorber through the second solution heat exchanger, canceling the evaporator and the first absorption a refrigerant vapor passage connected to the refrigerant, the refrigerant liquid pipeline of the evaporator is connected to the third absorber through the coolant liquid pump, and the third absorber is further connected with the second absorber by the refrigerant vapor passage, or the condenser has After the second liquid flow is connected to the third absorber through the second section, the third absorber is further connected with the second absorber, and the refrigerant is connected to the second absorber to adjust the evaporator to have a refrigerant liquid pipeline through the refrigerant liquid pump.
  • the third absorber further has a refrigerant vapor passage communicating with the first absorber and the second absorber respectively, and the third buffer is connected to the third absorber through the second throttle valve and the third absorber.
  • the refrigerant vapor passages are in communication with the first absorber and the second absorber, respectively, to form a single generator two-stage regenerative first type absorption heat pump.
  • the regenerative type I absorption heat pump is a regenerative first type absorption heat pump according to item 4, adding a new absorber, a second solution heat exchanger, and a second coolant pump. Or adding a throttle valve, connecting the second absorber having a dilute solution line through the first solution pump and the first solution heat exchanger to the generator to adjust the second absorber to have a dilute solution line through the first solution pump,
  • the first solution heat exchanger and the second solution heat exchanger are in communication with the generator, and the concentrated solution line of the generator is connected to the first absorber through the first solution heat exchanger and the second absorber to adjust the generator to be thick
  • the solution line is connected to the newly added absorber through the second solution heat exchanger, and the new absorber and the dilute solution line are connected to the first absorber through the first solution heat exchanger and the second absorber, and the first absorption is
  • the device has a heating medium pipeline connected to the outside to adjust the evaporator to add a refrigerant liquid pipeline.
  • the first absorber and the refrigerant vapor channel are connected with the newly added absorber. , or adjust to the condenser to add a refrigerant liquid pipeline through the new
  • the first absorber and the refrigerant vapor passage are connected with the newly added absorber, and the newly added absorber and the heated medium pipeline communicate with the outside to form a single generator two-stage regenerative type.
  • the first type of absorption heat pump is
  • the regenerative type I absorption heat pump is a regenerative first type absorption heat pump in which the third absorber is not connected to the outside by the heating medium pipe, and the additional absorber is added.
  • the second absorber has a dilute solution line connected to the generator via the first solution pump, the first solution heat exchanger and the second solution heat exchanger, and the generator has a concentrated solution line through the first solution heat exchanger and the second
  • the absorber is connected to the steam distribution chamber to adjust the generator to have a concentrated solution pipeline connected to the newly added absorber through the second solution heat exchanger, and the new absorber and the dilute solution pipeline pass through the first solution heat exchanger and the second
  • the absorber is connected to the steam distribution chamber, and the first absorber has a heating medium pipeline connected to the outside to adjust the e
  • the regenerative type I absorption heat pump is a regenerative first type absorption heat pump according to items 4-6, adding a second generator, a new absorber, a new solution pump and a a two-solution heat exchanger, wherein the first generator has a refrigerant vapor passage connected to the condenser, and the first generator has a refrigerant vapor passage communicating with the newly added absorber, and the new absorber and the dilute solution pipeline are newly
  • the solution pump and the second solution heat exchanger are in communication with the second generator, the second generator and the concentrated solution line are connected to the newly added absorber via the second solution heat exchanger, and the second generator further has a refrigerant
  • the steam passage communicates with the condenser and has a driving heat medium pipeline communicating with the outside, and the newly added absorber and the heated medium pipeline communicate with the outside to form a double occurrence of the refrigerant vapor supplied from the first generator to the newly added absorber.
  • the regenerative type I absorption heat pump is the second type of absorption heat pump of the regenerative first type absorption heat pump according to item 4, adding a second generator, adding a new absorber, adding a solution pump, and a second solution. a heat exchanger and a third solution heat exchanger, wherein the second absorber has a dilute solution line connected to the first generator through the first solution pump and the first solution heat exchanger to adjust the second absorber to a dilute solution line
  • the first solution pump, the first solution heat exchanger and the second solution heat exchanger are in communication with the second generator, and the second generator and the concentrated solution line are connected to the newly added absorber via the second solution heat exchanger.
  • the new absorber and the dilute solution pipeline are connected to the first generator via the new solution pump and the third solution heat exchanger, and the first generator has a concentrated solution pipeline through the first solution heat exchanger and the second absorption And communicating with the first absorber to adjust the first generator to have a concentrated solution pipeline through the third solution heat exchanger, the first solution heat exchanger and the second absorber to communicate with the first absorber, the first generator There is a refrigerant vapor channel connected to the condenser to adjust to the first occurrence
  • the refrigerant vapor passage is connected with the newly added absorber, and the second generator further has a refrigerant vapor passage communicating with the condenser and a driving heat medium pipeline communicating with the outside, adding the absorber and the heated medium pipeline and Externally connected, a two-stage two-stage regenerative first-type absorption heat pump that provides refrigerant vapor from the first generator to the newly added absorber is formed.
  • the first type of absorption enthalpy is the heat of the first step, added to the second generator, the new absorber, the new solution pump, the second solution heat exchanger and the third solution.
  • a heat exchanger wherein the second absorber has a dilute solution line connected to the first generator through the first solution pump and the first solution heat exchanger to adjust the second absorber to have a dilute solution line through the first solution pump, a solution heat exchanger and a second solution heat exchanger are in communication with the second generator, and the second generator and the concentrated solution line are connected to the newly added absorber via the second solution heat exchanger, and the new absorber is also diluted.
  • the solution pipeline is connected to the first generator via the new solution pump and the third solution heat exchanger, and the first generator has a concentrated solution pipeline connected to the steam distribution chamber through the first solution heat exchanger and the second absorber.
  • the first generator has a concentrated solution pipeline connected to the steam distribution chamber through the third solution heat exchanger, the first solution heat exchanger and the second absorber, and the first generator has a refrigerant vapor passage connected to the condenser. Adjusted to the first generator with refrigerant vapor channel and new absorber
  • the second generator further has a refrigerant vapor passage communicating with the condenser and a driving heat medium conduit communicating with the outside, and the newly added absorber and the heated medium conduit are connected to the outside to form a new generator from the first generator.
  • the absorber provides a dual generator two-stage regenerative first type absorption heat pump with refrigerant vapor.
  • the regenerative type I absorption heat pump is a second type of condenser and a new throttle valve added to any of the regenerative first type absorption heat pumps described in items 27-29.
  • the generator has a refrigerant vapor passage connected to the first condenser, the second generator has a refrigerant vapor passage communicating with the second condenser, and the second condenser has a refrigerant liquid pipeline via the newly added throttle valve and the first a condenser is connected, the first generator is provided with a refrigerant vapor passage communicating with the first condenser, and the second condenser is further connected to the outside by the heated medium conduit, formed by the first generator to the first condenser and the new
  • the absorber provides a dual generator two-stage regenerative first type absorption heat pump with refrigerant vapor.
  • a regenerative type I absorption heat pump in any of the regenerative first type absorption heat pumps described in item 4, adding a second generator, a new absorber, a new solution pump, and a
  • the two-solution heat exchanger has a refrigerant vapor passage connected to the first absorber to adjust the evaporator to have a refrigerant vapor passage and communicates with the newly added absorber, and the new absorber and the dilute solution pipeline are added with the new solution.
  • the pump and the second solution heat exchanger are in communication with the second generator, the second generator and the concentrated solution line are connected to the newly added absorber via the second solution heat exchanger, and the second generator further has a refrigerant vapor channel Communicating with the first absorber and driving the heat medium pipeline to communicate with the outside, the newly added absorber and the heated medium pipeline communicate with the outside to form a double occurrence of the refrigerant vapor supplied from the second generator to the first absorber.
  • Two-stage regenerative first-class absorption heat pump is in communication with the second generator, the second generator and the concentrated solution line are connected to the newly added absorber via the second solution heat exchanger, and the second generator further has a refrigerant vapor channel Communicating with the first absorber and driving the heat medium pipeline to communicate with the outside, the newly added absorber and the heated medium pipeline communicate with the outside to form a double occurrence of the refrigerant vapor supplied from the second generator to the first absorber.
  • the regenerative type I absorption heat pump is a second type of absorption heat pump of any of the regenerative first type absorption heat pumps described in item 5, adding a second generator, adding a new absorber, adding a new solution pump, and
  • the two-solution heat exchanger has a refrigerant vapor channel connected to the first absorber and the third absorber, respectively, and is adjusted to have a refrigerant vapor channel connected to the newly added absorber, and the new absorber has a dilute solution.
  • the pipeline is connected to the second generator via the new solution pump and the second solution heat exchanger, and the second generator and the concentrated solution pipeline are connected to the newly added absorber via the second solution heat exchanger, and the second generator is further a refrigerant vapor passage is respectively connected with the first absorber and the third absorber, and the second generator further has a driving heat medium pipeline connected to the outside, and the newly added absorber and the heated medium pipeline communicate with the outside, forming
  • the second generator is a two-stage two-stage regenerative first type absorption heat pump that supplies refrigerant vapor to the first absorber or to the first absorber and the third absorber, respectively.
  • the regenerative type I absorption heat pump is a second type of condenser and a new throttle valve added to any of the regenerative first type absorption heat pumps described in items 31-32.
  • the refrigerant vapor passage is connected to the second condenser, the second condenser and the refrigerant liquid pipeline are connected to the evaporator through the re-throttle valve, and the second condenser and the heated medium pipeline are connected to the outside to form a dual-generator two-stage regenerative first type absorption heat pump for supplying refrigerant vapor to the second condenser, the first absorber or the third absorber, respectively, by the second generator; wherein, The first condenser has a refrigerant liquid pipeline connected to the evaporator through the first throttle valve to be adjusted to be the first condenser, and the refrigerant liquid pipeline is connected to the second condenser via the first throttle valve.
  • a regenerative type I absorption heat pump in any of the regenerative first type absorption heat pumps described in item 4, adding a second generator, a new absorber, a new solution pump, and a a two-solution heat exchanger, wherein the first generator has a refrigerant vapor passage connected to the condenser, and the first generator has a refrigerant vapor passage communicating with the newly added absorber, and the new absorber and the dilute solution pipeline are newly
  • the solution pump and the second solution heat exchanger are in communication with the second generator, the second generator and the concentrated solution line are connected to the newly added absorber via the second solution heat exchanger, and the second generator further has a refrigerant
  • the steam passage is connected to the condenser and has _
  • the heat medium pipeline is driven to communicate with the outside, and the newly added absorber has a heated medium pipeline which is connected to the outside by the heating medium and the external suction, and the refrigerant liquid pipeline is pumped by the refrigerant liquid pump.
  • the first absorber is further connected with the second refrigerant through the coolant vapor passage and the second absorber is adjusted to be the evaporator.
  • the refrigerant liquid pipeline is connected to the first absorber through the refrigerant liquid pump, and then the first absorber is further
  • the refrigerant vapor passage is respectively connected with the second absorber and the newly added absorber, or the condenser has a refrigerant liquid pipeline connected to the first absorber through the second throttle valve, and then the first absorber has a refrigerant vapor passage
  • the second absorber is connected to the second absorber to adjust the condenser to have a refrigerant liquid pipeline connected to the first absorber through the second throttle valve, and then the first absorber has a refrigerant vapor passage respectively with the second absorber and the newly added absorber Connected to form a dual-generator two-stage regenerative first-type absorption heat pump that provides refrigerant vapor to the newly added absorber by the first absorber and the first generator.
  • the regenerative type I absorption heat pump is a second type of absorption heat pump of any of the regenerative first type absorption heat pumps described in item 4, adding a second generator, adding a new absorber, adding a solution pump, and a two-solution heat exchanger, wherein the first generator has a refrigerant vapor passage connected to the condenser, and the first generator has a refrigerant vapor passage communicating with the newly added absorber, and the new absorber and the dilute solution pipeline are newly
  • the solution pump and the second solution heat exchanger are in communication with the second generator, the second generator and the concentrated solution line are connected to the newly added absorber via the second solution heat exchanger, and the second generator further has a refrigerant
  • the steam passage communicates with the condenser and has a driving heat medium pipeline connected to the outside, and the newly added absorber and the heated medium pipeline communicate with the outside; cancel the heated medium pipeline that connects the first absorber to the outside, and add the second a refrigerant liquid pump or a new
  • the regenerative type I absorption heat pump is a regenerative first type absorption heat pump in which the third absorber is not connected to the outside by the heating medium pipe, and the second generator is added. Adding an absorber, a new solution pump and a second solution heat exchanger, and connecting the first generator with a refrigerant vapor passage to the condenser to adjust the first generator to have a refrigerant vapor passage communicating with the newly added absorber, The new absorber and the dilute solution pipeline are connected to the second generator via the new solution pump and the second solution heat exchanger, and the second generator has a concentrated solution pipeline through the second solution heat exchanger and newly absorbed The second generator further has a refrigerant vapor passage communicating with the condenser and a driving heat medium conduit communicating with the outside, and the newly added absorber and the heated medium conduit are connected to the outside; canceling the first absorber and The externally connected heated medium pipeline increases the second refrigerant liquid pump or the newly added throttle valve, and the evaporator adds the refrig
  • a generator is a dual generator two-stage regenerative first type absorption heat pump that supplies refrigerant vapor to the newly added absorber.
  • the regenerative type I absorption heat pump is a regenerative first type absorption heat pump according to item 4, adding a second generator, a second solution heat exchanger, a new solution pump, and absorption.
  • the evaporator, the second refrigerant liquid pump or the new throttle is wide, and the evaporator has a refrigerant vapor passage connected to the first absorber to adjust the evaporator to have a refrigerant vapor passage and the absorption-evaporator communication, absorption-evaporation
  • the dilute solution line is connected to the second generator via the new solution pump and the second solution heat exchanger, and the second generator and the concentrated solution line are connected to the absorption-evaporator via the second solution heat exchanger.
  • the second generator further has a refrigerant vapor passage communicating with the first absorber and a driving heat medium conduit communicating with the outside, and the evaporator adding the refrigerant liquid pipeline is connected to the absorption-evaporator through the second refrigerant liquid pump.
  • the absorption-evaporator is further connected with the first absorber by the refrigerant vapor passage, or the refrigerant liquid line of the condenser is added to the absorption-evaporator after the new throttle valve is connected, and the absorption/evaporator is further connected with the refrigerant vapor passage.
  • the first absorber is connected and formed by absorption-evaporation
  • the dual generator two-stage regenerative first type absorption heat pump in which the second generator and the second generator together supply refrigerant vapor to the first absorber.
  • the regenerative type I absorption heat pump is a heating medium line that is connected to the external absorber in any of the regenerative first type absorption heat pumps described in item 32, adding a second refrigerant liquid pump or a new throttle valve, the evaporator adds a refrigerant liquid pipeline through the second refrigerant liquid pump and the new absorber is connected, the new absorber is added, and the refrigerant vapor channel is respectively connected with the first absorber Connected to the third absorber, or the refrigerant is added to the condenser.
  • the new throttle valve is connected to the newly added absorber.
  • the absorber/cold steam passage is in communication with the first absorber and the third absorber, respectively, and is formed by the new absorber and the second generator together to the first absorber or the first absorber and the third absorber
  • the utility model provides a double generator two-stage regenerative first type absorption heat pump with refrigerant vapor.
  • the regenerative type I absorption heat pump is one of the regenerative first type absorption heat pumps described in items 7-20, adding a high temperature condenser and a high temperature throttle valve, and adding a cold to the high pressure generator.
  • the vapor channel of the agent is connected to the high temperature condenser, and the high temperature condenser and the refrigerant liquid pipeline are connected to the condenser through the high temperature throttle valve, and the high temperature condenser and the medium to be heated are connected to the outside to form a high temperature condenser.
  • the regenerative type I absorption heat pump is one of the regenerative first type absorption heat pumps described in items 15-20, adding a high temperature condenser and a high temperature throttle valve, and adding a medium pressure generator.
  • the refrigerant vapor passage is connected with the high temperature condenser, and the high temperature condenser and the refrigerant liquid pipeline are connected to the condenser through the high temperature throttle valve, and the high temperature condenser and the heated medium pipeline communicate with the outside to form a high temperature condenser.
  • the regenerative type I absorption heat pump is a secondary absorption absorber, a secondary generator, and a secondary solution pump in any of the regenerative first type absorption heat pumps described in items 7-14.
  • the low-pressure generator has a refrigerant liquid pipeline connected to the condenser through a new throttle valve and is adjusted to a low-pressure generator, and a refrigerant liquid pipeline is added through the new throttle valve and the first evaporator.
  • the low-pressure generator has a refrigerant vapor channel connected to the condenser to adjust to a low-pressure generator with a refrigerant vapor channel connected to the secondary absorber
  • the secondary absorber also has a dilute solution pipeline through the secondary solution pump and the secondary
  • the solution heat exchanger is connected to the secondary generator, and the secondary generator and the concentrated solution pipeline are connected to the secondary absorber via the secondary solution heat exchanger, and the secondary generator also has a refrigerant vapor passage connected to the condenser respectively.
  • the driving heat medium pipeline communicates with the outside
  • the secondary absorber and the heated medium pipeline communicate with the outside, forming a refrigerant vapor from the low pressure generator to the secondary absorber, and the single stage double effect is the first stage Two-stage regenerative first type absorption heat pump .
  • the regenerative type I absorption heat pump is a secondary absorption absorber, a secondary generator, a secondary solution pump in any of the regenerative first type absorption heat pumps described in items 7-14.
  • a secondary solution heat exchanger, a secondary condenser and a secondary throttle valve, a low pressure generator is provided with a refrigerant vapor passage to communicate with the secondary absorber, a secondary absorber and a dilute solution pipeline are passed through the secondary solution pump and
  • the secondary solution heat exchanger is connected to the secondary generator, the secondary generator and the concentrated solution pipeline are connected to the secondary absorber via the secondary solution heat exchanger, and the secondary generator also has a refrigerant vapor passage and two
  • the condenser of the stage is connected and has a driving heat medium pipeline connected to the outside, and the secondary condenser and the refrigerant liquid pipeline are connected to the first condenser through the secondary throttle valve, and the secondary absorber and the secondary condenser are respectively respectively
  • the heated medium pipeline communicates with the outside to
  • the regenerative type I absorption heat pump is a secondary absorption absorber, a secondary generator, and a secondary solution pump in any of the regenerative first type absorption heat pumps described in Item 15-20.
  • the medium pressure generator has a refrigerant liquid pipeline connected to the condenser through the addition of the first throttle valve and the condenser is adjusted to the medium pressure generator, and the refrigerant liquid pipeline is added with the first throttle
  • the valve is in communication with the first evaporator, and the refrigerant liquid pipeline of the low pressure generator is connected to the condenser through the addition of the second throttle valve to the low pressure generator, and the refrigerant liquid pipeline is added with the second throttle valve.
  • the first evaporator is connected, the low-pressure generator has a refrigerant vapor passage connected to the condenser, and is adjusted to be a low-pressure generator having a refrigerant vapor passage communicating with the secondary absorber, the secondary absorber and the dilute solution pipeline passing through the secondary solution.
  • the pump and the secondary solution heat exchanger are connected to the secondary generator, and the secondary generator and the concentrated solution pipeline are connected to the secondary absorber via the secondary solution heat exchanger, and the secondary generator also has a refrigerant vapor passage Connected to the condenser and has a drive heat medium line connected to the outside, Level 2
  • the absorber also has a heated medium line communicating with the outside to form a two-stage regenerative first type absorption heat pump which is provided with a refrigerant vapor from the low pressure generator to the secondary absorber and a single stage three effect as the first stage.
  • the regenerative type I absorption heat pump is a secondary absorption absorber, a secondary generator, and a secondary solution pump in any of the regenerative first type absorption heat pumps described in items 15-20.
  • the secondary solution heat exchanger, the secondary condenser and the secondary throttle are wide, the low pressure generator is provided with a refrigerant vapor passage to communicate with the secondary absorber, the secondary absorber and the dilute solution pipeline are passed through the secondary solution pump and
  • the secondary solution heat exchanger is connected to the secondary generator, the secondary generator and the concentrated solution pipeline are connected to the secondary absorber via the secondary solution heat exchanger, and the secondary generator also has a refrigerant vapor passage and two
  • the condenser of the stage is connected and has a driving heat medium pipeline connected to the outside, and the secondary condenser and the refrigerant liquid pipeline are connected to the first condenser through the secondary throttle valve, the secondary absorber and the second
  • the condensing benefit is not connected to the outside by the heating medium pipeline, forming a two
  • Figure 1 is a schematic view showing the first structure and flow of a recuperative absorption-generation system according to the present invention.
  • FIG. 2 is a schematic diagram showing the principle, structure and flow of a recuperative absorption-generation system according to the present invention.
  • Figure 3 is a schematic view showing the second structure and flow of a recuperative absorption-generation system according to the present invention.
  • Figure 4 is a schematic view showing the third structure and flow of the recuperative absorption-generation system according to the present invention.
  • Fig. 5 is a first schematic view showing the structure and flow of a single-stage single-effect regenerative first-stage absorption heat pump according to the present invention.
  • Figure 6 is a second schematic diagram of the second structure and flow of a single-stage single-effect regenerative first-class absorption heat pump according to the present invention.
  • Figure 7 is a schematic view showing the third structure and flow of a single-stage single-effect regenerative first-class absorption heat pump according to the present invention.
  • Figure 8 is a fourth structural and flow diagram of a single-stage single-effect regenerative first-class absorption heat pump according to the present invention.
  • Figure 9 is a schematic view showing the fifth structure and flow of a single-stage single-effect regenerative first-class absorption heat pump according to the present invention.
  • Figure 10 is a first structural and schematic illustration of a single stage parallel double effect regenerative first type absorption heat pump in accordance with the present invention.
  • FIG. 11 is a second structure and flow diagram of a single-stage parallel double-effect regenerative first-class absorption heat pump according to the present invention.
  • FIG. 12 is a first-stage series double-effect regenerative first class according to the present invention. The first structure and flow diagram of the absorption heat pump.
  • FIG. 13 is a second structure and flow diagram of a single-stage series double-effect regenerative first-class absorption heat pump according to the present invention.
  • FIG. 14 is a first-stage series double-effect regenerative first class according to the present invention. The third structure and flow diagram of the absorption heat pump.
  • Figure 15 is a schematic view showing the structure and flow of a single-stage series-parallel double-effect regenerative first-class absorption heat pump according to the present invention.
  • FIG. 16 is a first structure and flow diagram of a single-stage parallel three-effect regenerative first-class absorption heat pump according to the present invention.
  • FIG. 17 is a first-stage parallel three-effect regenerative first class according to the present invention.
  • the second structure and flow diagram of the absorption heat pump FIG. 18 is a first stage structure and flow diagram of a single-stage series three-effect regenerative first type absorption heat pump provided in accordance with the present invention.
  • FIG. 19 is a single sheet according to the present invention.
  • the second structure and flow diagram of the series three-effect regenerative first type absorption heat pump is a third structure and flow diagram of the single-stage series three-effect regenerative first type absorption heat pump provided according to the present invention. .
  • Figure 21 is a first structural and schematic illustration of a single generator two-stage regenerative first type absorption heat pump in accordance with the present invention.
  • Figure 22 is a second structural and schematic illustration of a single generator two-stage regenerative first type absorption heat pump in accordance with the present invention.
  • Figure 23 is a third structural and schematic illustration of a single generator two-stage regenerative first type absorption heat pump in accordance with the present invention.
  • FIG. 24 is a fourth structure and flow diagram of a single-generator two-stage regenerative first-type absorption heat pump provided in accordance with the present invention.
  • FIG. 25 is a first-stage two-stage regenerative first class provided in accordance with the present invention.
  • the fifth structure and flow of the absorption heat pump The single generator two-stage IEJ thermal first-class absorption flow provided by the invention is not intended.
  • Figure 27 is a first structural and schematic illustration of a two-generator two-stage regenerative first type absorption heat pump provided in accordance with the present invention.
  • Figure 28 is a second structural and schematic illustration of a two-generator two-stage regenerative first type absorption heat pump provided in accordance with the present invention.
  • Figure 29 is a third structural and schematic illustration of a two-generator two-stage regenerative first type absorption heat pump provided in accordance with the present invention.
  • Figure 30 is a fourth structural and schematic illustration of a two-generator two-stage regenerative first type absorption heat pump provided in accordance with the present invention.
  • Figure 31 is a fifth structural and schematic illustration of a two-generator two-stage regenerative first type absorption heat pump provided in accordance with the present invention.
  • Figure 32 is a sixth structural and schematic illustration of a two-generator two-stage regenerative first type absorption heat pump provided in accordance with the present invention.
  • FIG. 33 is a second generator two-stage regenerative first type absorption heat pump according to the present invention.
  • the seventh structure and the flow diagram shown in FIGS. 27-33 are two-stage two-stage regenerative first type absorption type.
  • the heat pump supplies refrigerant vapor to the second stage heat pump process from the first generator or the second generator.
  • Figure 34 is a diagram showing the eighth structure and flow of a two-stage two-stage regenerative first type absorption heat pump according to the present invention.
  • Figure 35 is a ninth structural and schematic illustration of a two-generator two-stage regenerative first type absorption heat pump provided in accordance with the present invention.
  • Figure 36 is a schematic view showing the tenth structure and flow of a two-stage two-stage regenerative first type absorption heat pump according to the present invention.
  • Figure 37 is a perspective view showing the eleventh structure and flow of a two-stage two-stage regenerative first type absorption heat pump according to the present invention.
  • Figure 38 is a schematic view showing the twelfth structure and flow of a two-stage two-stage regenerative first type absorption heat pump according to the present invention.
  • Figure 34-38 shows a dual generator two-stage regenerative first type absorption heat pump, either by a first absorber and a first generator, or by an absorption-evaporator and a second generator, or by a new absorption
  • the second generator and the second generator together provide refrigerant vapor to the second stage heat pump process.
  • 39 is a schematic view showing the structure and flow of a single-stage parallel double-effect regenerative first-class absorption heat pump with a high-temperature condenser as an additional high-temperature heating end according to the present invention.
  • FIG. 40 is a schematic view showing the structure and flow of a single-stage parallel three-effect regenerative first-class absorption heat pump with a high-temperature condenser as an additional high-temperature heating end according to the present invention.
  • Figure 41 is a first schematic diagram showing the first structure and flow of a two-stage regenerative first-class absorption heat pump with a single-stage parallel double-effect as the first stage according to the present invention.
  • Figure 42 is a second schematic diagram showing the second structure and flow of a two-stage regenerative first-class absorption heat pump with a single-stage parallel double-effect as the first stage according to the present invention.
  • L-third generator M-third solution heat exchanger, N-new second throttle valve, 0-new second solution pump, P-second refrigerant pump, Q-absorption-evaporator , R - new absorber, S_ second condenser.
  • al high temperature condenser
  • bl high temperature throttle valve
  • a2 secondary absorber
  • b2 secondary generator
  • c2 secondary solution pump
  • d2 secondary solution heat exchanger
  • e2 secondary Condenser
  • the concentrated solution of the generator 3 is depressurized by the solution heat exchanger 6 and then passed through the second absorber 2 to absorb heat, wherein the solution heat exchanger 6 not only has the function of heat exchange, but also acts as a solution section.
  • the flow valve is throttled and depressurized; if necessary, the solution throttle valve can be added to the concentrated solution line.
  • the first generator 3 and the second generator H are also referred to as a high-voltage generator and a low-voltage generator; similarly, in a single-stage three-effect heat recovery
  • the first generator 3, the second generator H, and the third generator L are also referred to as a high voltage generator, a medium voltage generator, and a low voltage generator.
  • Single-stage in terms such as “single-stage double-effect” refers to the name in the first type of absorption heat pump, and “double-effect” also follows the action of the high-temperature driving heat medium in the first type of absorption heat pump. The angle is called.
  • the recuperative absorption-generation system shown in Figure 1 is implemented as follows:
  • the first absorber 1 structurally, it is mainly composed of a first absorber, a second absorber, a generator, a first solution pump, a second solution pump and a solution heat exchanger; the first absorber 1 has a dilute solution line through the second solution
  • the pump 5 is in communication with the second absorber 2, and the second absorber 2 and the dilute solution line are connected to the generator 3 via the first solution pump 4 and the solution heat exchanger 6, and the generator 3 has a concentrated solution line through the solution.
  • the heat exchanger 6 and the second absorber 2 are in communication with the first absorber 1; the first absorber 1 is also respectively connected to the outside by the heated medium line and has a refrigerant vapor passage communicating with the outside, and the external refrigerant liquid pipe After the road is in communication with the first absorber 1, the first absorber 1 is further connected with the second absorber 2, and the generator 3 also has a driving heat medium pipe connected to the outside and a refrigerant vapor channel and the outside. Connected.
  • the cryogenic refrigerant vapor from the outside enters the first absorber 1, is absorbed by the concentrated solution from the generator 3, and radiates heat to the heated medium and heats
  • the refrigerant liquid flowing through the first absorber 1 is a refrigerant vapor;
  • the dilute solution of the first absorber 1 enters the second absorber 2 via the second solution pump 5, absorbs the refrigerant vapor from the first absorber 1, and is discharged Hot to the solution flowing through the second absorber 2,
  • the dilute solution of the second absorber 2 enters the generator 3 through the first solution pump 4 and the solution heat exchanger 6; the heat medium is heated to enter the solution of the generator 3 and is released to the outside.
  • the refrigerant vapor, the concentrated solution of the generator 3 is exothermic and depressurized by the solution heat exchanger 6, and then flows through the second absorber 2 to absorb heat and vaporize, and the vaporized solution enters the first absorber 1 to form a regenerative absorption. - The system occurs.
  • the recuperative absorption-generation system shown in Figure 2 is implemented as follows:
  • the first absorber 1 structurally, it mainly consists of a first absorber, a second absorber, a rectification column, a first solution pump, a second solution pump, a solution heat exchanger and a steam separation chamber;
  • the first absorber 1 has a dilute solution tube
  • the second solution pump 5 is in communication with the second absorber 2
  • the second absorber 2 and the dilute solution line are connected to the rectification column 3 via the first solution pump 4 and the solution heat exchanger 6, and the rectification column 3 is further
  • the concentrated solution line is connected to the steam dividing chamber 7 via the solution heat exchanger 6 and the second absorber 2, and the steam dividing chamber 7 and the concentrated solution line are in communication with the first absorber 1;
  • the first absorber 1 also has
  • the heated medium pipeline communicates with the outside and has a refrigerant vapor passage communicating with the outside, and the external refrigerant liquid pipeline communicates with the first absorber 1 and the first absorber 1 has a refrigerant vapor passage and a
  • the channel is connected to the outside.
  • the low-temperature cold-steaming steam outside the ig and the cold-cutting steam from the eye-catching steam to 7 are absorbed by the concentrated solution from the steam dividing chamber 7 and radiated to the heated medium and the refrigerant liquid flowing through the first absorber 1
  • the refrigerant vapor; the dilute solution of the first absorber 1 enters the second absorber 2 via the second solution pump 5, absorbs the refrigerant vapor from the first absorber 1, and releases the solution flowing through the second absorber 2,
  • the dilute solution of the second absorber 2 enters the rectification column 3 via the first solution pump 4 and the solution heat exchanger 6; drives the heat medium to heat the solution entering the rectification column 3 and releases the refrigerant vapor to the outside and exotherms to the heated medium.
  • the concentrated solution of the rectification column 3 is exothermic after the solution heat exchanger 6, is depressurized, and then flows through the second absorber 2 to absorb and vaporize, and the vaporized solution enters the steam separation chamber 7 for vapor and liquid separation, and the steam separation chamber
  • the released refrigerant vapor and concentrated solution both enter the first absorber 1 to form a recuperative absorption-generation system.
  • the second absorber 2 functions to: 1 absorb the refrigerant vapor from the first absorber 1 and heat another solution flowing therethrough to achieve a low pressure
  • the lower portion is vaporized so that the dilute solution concentration of the second absorber 2 can be lower than the dilute solution of the first absorber 1, so that the solution entering the generator 3 can release the higher temperature refrigerant vapor;
  • the external heat load of the absorber 1 is lowered, and the steam dividing chamber 7 increases the concentration of the solution from the generator 3 and then enters the first absorber 1, which is advantageous for increasing the concentration of the solution working in the first absorber 1, thereby making the first absorption
  • the vessel 1 can absorb lower temperature refrigerant vapor or residual heat steam to provide a higher temperature thermal load to the heated medium; 3 the greater the thermal load of the first absorber 1 for heating the coolant liquid flowing therethrough The greater the amount of refrigerant vapor supplied to the second absorber 2 by the first absorber 1, the more refrigerant vapor is vaporized
  • the recuperative absorption-generation system shown in Figure 3 is implemented as follows:
  • the first absorber 1 structurally, mainly composed of a first absorber, a second absorber, a generator, a first solution pump, a second solution pump, a solution heat exchanger, a steam dividing chamber and a third absorber;
  • the first absorber 1 has The dilute solution line is in communication with the third absorber 8, the third absorber 8 and the dilute solution line are connected to the second absorber 2 via the second solution pump 5, and the second absorber 2 has a dilute solution line
  • a solution pump 4 and a solution heat exchanger 6 are in communication with the generator 3, and the generator 3 and the concentrated solution line are connected to the steam dividing chamber 7 via the solution heat exchanger 6 and the second absorber 2, and the steam dividing chamber 7 is further
  • the concentrated solution pipeline is in communication with the first absorber 1, and the first absorber 1 is further connected to the outside by the heated medium pipeline and has a refrigerant vapor passage communicating with the outside, the steam dividing chamber 7 and the refrigerant vapor passage and the first
  • the third absorber 8
  • the cryogenic refrigerant vapor from the outside enters the first absorber 1, is absorbed by the concentrated solution from the steam dividing chamber 7 and radiates heat to the heated medium;
  • the diluted solution of the first absorber 1 enters the third absorber 8 Absorbing the refrigerant vapor from the steam dividing chamber 7 and heating the refrigerant liquid flowing through the third absorber 8 into a refrigerant vapor, and the refrigerant vapor generated by the third absorber 8 is supplied to the second absorber 2;
  • the dilute solution of the device 8 enters the second absorber 2 via the second solution pump 5, absorbs the refrigerant vapor from the third absorber 8, and releases the solution flowing through the second absorber 2, and the second absorber 2 is diluted.
  • the solution enters the generator 3 through the first solution pump 4 and the solution heat exchanger 6; the heat medium is heated to enter the solution of the generator 3 and the refrigerant vapor is released externally, and the concentrated solution of the generator 3 is heated by the solution heat exchanger 6, After the pressure is reduced, it flows through the second absorber 2 to absorb heat and vaporize, and the vaporized solution enters the steam dividing chamber 7; the solution entering the steam dividing chamber 7 releases the refrigerant vapor to the third absorber 8, and the concentrated solution enters the third absorption.
  • Device 8 forming a regenerative absorption-generating system .
  • the first absorber 1 and the third absorber 8 of Figure 3 are the result of the splitting of the first absorber 1 of Figures 1-2, which improves the effect of heat recovery -
  • the ability to raise the low temperature heat of the first absorber 1 is improved; they have the same essence.
  • the refrigerant vapor passage of the third absorber 8 in communication with the outside is mainly used for the heat recovery process in the startup phase of the system.
  • the recuperative absorption-generation system shown in Figure 4 is implemented as follows: 1Structurally, in the regenerative absorption-generation system shown in FIG. 3, the third absorber 8 is connected to the external heat exchanger, and the third solution pump and the solution throttle valve are added, and the steam separation chamber 7 is thick.
  • the solution line is connected to the first absorber 1 to be adjusted to the steam separation chamber 7 and the concentrated solution line is connected to the first absorber 1 via the third solution pump 9, and the first absorber 1 has a dilute solution line and a third absorption.
  • the device 8 is connected to be adjusted such that the first absorber 1 has a dilute solution line communicating with the third absorber 8 via the solution throttle valve 10.
  • the cryogenic refrigerant vapor from the outside enters the first absorber 1, is absorbed by the concentrated solution from the steam splitting chamber 7 and radiates heat to the heated medium; the diluted solution of the first absorber 1 passes through the solution throttle valve 10 Entering the third absorber 8, absorbing refrigerant vapor from the steam dividing chamber 7 and the outside, and respectively radiating heat to the heated medium and heating the refrigerant liquid flowing through the third absorber 8 into a refrigerant vapor, the third absorber 8
  • the generated refrigerant vapor is supplied to the second absorber 2; the dilute solution of the third absorber 8 enters the second absorber 2 via the second solution pump 5, absorbs the refrigerant vapor from the third absorber 8, and radiates heat to the flow
  • the dilute solution of the second absorber 2 enters the generator 3 through the first solution pump 4 and the solution heat exchanger 6; the heat medium is driven to heat the solution entering the generator 3 and release the refrigerant vapor to the outside
  • the concentrated solution of the generator 3 is exothermic after the solution heat exchanger 6, is depressurized, and then flows through the second absorber 2 to absorb and vaporize, and the vaporized solution enters the steam dividing chamber 7; the solution entering the steam dividing chamber 7 releases cold.
  • the agent vapor is supplied to the third absorber 8, Solution pump 9 via the third fluid enters the third absorber 8, a recuperative absorption - generation system.
  • the heat load provided by the third absorber 8 in Fig. 4 can be regarded as taking part of the heat load of the first absorber 1, which is advantageous for improving the utilization of waste heat resources.
  • the external absorber is supplied with refrigerant vapor to the third absorber 8 under normal conditions.
  • the third absorber 8 of Fig. 3 can also assume a partial thermal load of the first absorber 1.
  • the single-stage single-effect regenerative absorption-generation heat pump shown in Figure 5 is implemented as follows:
  • the refrigerant 3 has a refrigerant vapor passage communicating with the condenser A, and the condenser A and the refrigerant liquid pipeline are connected to the evaporator B via the throttle valve C, and the refrigerant passage of the first absorber 1 is communicated with the outside to be determined as
  • the evaporator B has a refrigerant vapor passage communicating with the first absorber 1, and the external absorber liquid line is in communication with the first absorber 1, and the first absorber 1 is further connected to the second absorber 2 by a refrigerant vapor passage.
  • the refrigerant liquid line of the evaporator B is connected to the first absorber 1 through the refrigerant liquid pump D, and then the first absorber 1 has a refrigerant vapor passage communicating with the second absorber 2, and the condenser A is further
  • the heating medium line communicates with the outside, and the evaporator B and the residual heat medium line communicate with the outside.
  • the refrigerant vapor generated by the generator 3 enters the condenser A, and is heated to the heated medium to form a refrigerant liquid, and the refrigerant liquid of the condenser A is throttled by the throttle valve C and then enters the evaporator B;
  • the refrigerant liquid of the evaporator B is divided into two paths - the first path absorbs the residual heat into the refrigerant vapor and is supplied to the first absorber 1, and the second path is boosted by the refrigerant liquid pump D and flows through the first absorber 1.
  • the heat is absorbed into the refrigerant vapor and supplied to the second absorber 2 to form a single-stage single-effect regenerative first type absorption heat pump.
  • the single-stage single-effect regenerative first-class absorption heat pump shown in Figure 6 is implemented as follows:
  • the solution heat exchanger 6 and the second absorber 2 are in communication with the first absorber 1; the condenser, the evaporator, the first throttle valve and the second throttle valve are added, and the rectification column 3 has a refrigerant vapor channel and
  • the external connection is determined to be that the fine tower 3 has a refrigerant vapor passage communicating with the condenser A, and the condenser A and the refrigerant liquid pipeline are connected to the evaporator B via the first throttle valve C, and the first absorber 1 is cooled.
  • the agent steam passage is connected to the outside to determine that the evaporator B has a refrigerant vapor passage communicating with the first absorber 1, and the external absorber liquid line is in communication with the first absorber 1 and the first absorber 1 has a refrigerant vapor.
  • the passage of the passage and the second absorber 2 is determined to be that the condenser A has a refrigerant liquid line connected to the first absorber 1 via the second throttle valve E, and then the first absorber 1 has a refrigerant vapor passage and a second absorber. 2 connected, condenser A also has a medium to be heated to communicate with the outside, evaporator B Residual heat medium line communicates with the outside.
  • the refrigerant vapor generated by the rectification column 3 enters the condenser A, and is heated to the heated medium to form a refrigerant liquid, and the refrigerant liquid of the condenser A is divided into two paths - the first passage is subjected to the first throttling
  • the valve C After the valve C is throttled, it enters the evaporator B, absorbs the residual heat into the refrigerant vapor and supplies it to the first absorber 1, and the second coolant liquid is throttled by the second throttle valve E and flows through the first absorber 1, sucking
  • the hot refrigerant vapor is supplied to the second absorber 2 to form a single-stage single-effect regenerative first type absorption heat pump.
  • the third absorber 8 increases the communication medium line to communicate with the outside, and increases the condenser, the evaporator, the first throttle valve, and the second section.
  • the flow valve, the generator 3 has a refrigerant vapor passage communicating with the outside to determine that the generator 3 has a refrigerant vapor passage communicating with the condenser A, and the condenser A has a refrigerant liquid pipeline passing through the first throttle valve C and evaporating
  • the B is connected, and the first absorber 1 has a refrigerant vapor passage communicating with the outside to determine that the evaporator B has a refrigerant vapor passage communicating with the first absorber 1, and the third absorber 8 has a refrigerant vapor passage communicating with the outside.
  • the evaporator B has a refrigerant vapor passage communicating with the third absorber 8, and the external refrigerant liquid conduit is in communication with the third absorber 8 and the third absorber 8 has a refrigerant vapor passage and a second absorber.
  • the connection is determined as the condenser A has a refrigerant liquid pipeline connected to the third absorber 8 through the second throttle valve E, and then the third absorber 8 has a refrigerant vapor passage communicating with the second absorber 2, the condenser A
  • the condenser A There is also a medium to be heated to communicate with the outside, evaporator B
  • the refrigerant vapor generated by the generator 3 enters the condenser A, and the refrigerant liquid is discharged into the heated medium, and the refrigerant liquid of the condenser A is divided into two paths - the first passage through the first throttle valve
  • the evaporator B is introduced, the residual heat is absorbed into the refrigerant vapor and supplied to the first absorber 1 and the third absorber 8, respectively, and the second passage is throttled by the second throttle valve E and then flows through the third absorber.
  • the heat is absorbed into the refrigerant vapor and supplied to the second absorber 2 to form a single-stage single-effect regenerative first type absorption heat pump.
  • the single-stage single-effect regenerative first-class absorption heat pump shown in Figure 8 is implemented as follows:
  • the refrigerant vapor generated by the generator 3 enters the condenser A, and is heated to the heated medium to form a refrigerant liquid, and the refrigerant liquid of the condenser A is throttled by the throttle valve C and then enters the evaporator B;
  • the refrigerant liquid of the evaporator B is divided into two paths - the first path absorbs the residual heat into the refrigerant vapor and is supplied to the first absorber 1, and the second path is pressurized by the coolant liquid pump D and then flows through the third absorber 8
  • the heat is absorbed into the refrigerant vapor and supplied to the second absorber 2 to form a single-stage single-effect regenerative first type absorption heat pump.
  • the generator 3 has a refrigerant vapor passage communicating with the outside to determine that the generator 3 has a refrigerant vapor passage communicating with the condenser A, and the condenser A and the refrigerant liquid pipeline passing through the first throttle valve C and the first evaporator B is connected, the first evaporator B and the refrigerant liquid pipeline communicate with the second evaporator F via the second throttle valve E, and the first absorber 1 has a refrigerant vapor passage connected to the outside to be determined as the first evaporator.
  • the third absorber 8 has a refrigerant vapor passage communicating with the outside to determine that the second evaporator F has a refrigerant vapor passage communicating with the third absorber 8, and the external After the refrigerant liquid line is in communication with the third absorber 8, the third absorber 8 is further connected with the second absorber 2 to determine that the second evaporator F has a refrigerant liquid line through the refrigerant liquid pump.
  • the third absorber 8 After the D is in communication with the third absorber 8, the third absorber 8 has a refrigerant vapor passage and a second Communication receiver 2, there is a condenser A heating medium conduit in communication with the outside, a first evaporator and a second evaporator F B further heat medium line respectively communicating with the outside.
  • the first evaporator B may have a coolant liquid pipeline connected to the third absorber 8 through the refrigerant liquid pump D, and then the third absorber 8 has a refrigerant vapor passage connected to the second absorber 2. .
  • the refrigerant vapor generated by the generator 3 enters the condenser A, and is heated to the heated medium to form a refrigerant liquid, and the refrigerant liquid of the condenser A is throttled by the first throttle valve C and then enters the first evaporation.
  • the refrigerant liquid entering the first evaporator B is divided into two paths - the first passage absorbs the residual heat into the refrigerant vapor and supplies it to the first absorber 1, and the second passage through the second throttle valve E throttles into the first The second evaporator F; the refrigerant liquid entering the second evaporator F is divided into two paths - the first passage absorbs the residual heat into the refrigerant vapor and supplies it to the third absorber 8, and the second passage is pressurized by the coolant pump D. Flowing through the third absorber 8, absorbing heat into refrigerant vapor and supplying it to the second absorber 2, forming a single-stage single-effect regenerative first-type absorption heat pump.
  • the second generator and the second solution are heated.
  • the converter and the new ⁇ i flow valve, the first bath ⁇ 4 ⁇ is provided with a dilute solution line through the second bath, the second generator ⁇ and the concentrated solution line is passed through the second solution heat exchanger After I is merged with the first generator 3 through the concentrated solution line after the first solution heat exchanger 6, and then communicated with the first absorber 1 via the second absorber 2, the first generator 3 has a refrigerant vapor channel.
  • connection with the condenser ⁇ is adjusted so that the first generator 3 has a refrigerant vapor passage and the second generator H communicates, and then the second generator H and the refrigerant liquid pipeline are connected to the condenser A via the newly added throttle valve J— -
  • the refrigerant vapor generated by the first generator acts as a driving heat medium for the second generator, and the second generator H and the refrigerant vapor passage are in communication with the condenser A.
  • a part of the dilute solution of the second absorber 2 enters the second generator H through the first solution pump 4 and the second solution heat exchanger I, and the refrigerant vapor generated by the first generator 3 flows through the second generator H.
  • the solution heated into the solution releases the refrigerant vapor
  • the refrigerant vapor released by the second generator H enters the condenser A
  • the refrigerant vapor flowing through the second generator H releases the heat to form a refrigerant liquid, and then passes through a new
  • the throttle valve J enters the condenser A
  • the concentrated solution of the second generator H enters the first absorber 1 through the second solution heat exchanger I and the second absorber 2, forming a single-stage parallel double-effect regenerative type first Absorption heat pump.
  • the second generator, the second solution heat exchanger and the new throttle valve are added, and the first solution pump 4 is provided with a dilute solution pipeline. Passing through the second solution heat exchanger I and the second generator H, the second generator H and the concentrated solution line passing through the second solution heat exchanger I and the first generator 3 passing through the first solution heat exchanger 6 After the concentrated solution pipeline merges, and then communicates with the steam distribution chamber 7 through the second absorber 2, the first generator 3 has a refrigerant vapor passage communicating with the condenser A to adjust the first generator 3 to have a refrigerant vapor passage.
  • the second generator H and the refrigerant liquid line are connected to the condenser A via the new throttle valve J.
  • the refrigerant vapor generated by the first generator is used as the drive of the second generator.
  • the heat medium, the second generator H and the refrigerant vapor passage are in communication with the condenser A.
  • the refrigerant vapor generated by the first generator 3 flows through the second generator H, and the solution heated by the second absorber 2 through the first solution pump 4 and the second solution heat exchanger I is released.
  • the vapor of the agent, the refrigerant vapor released by the second generator H enters the condenser A, and the refrigerant vapor flowing through the second generator H is released into a refrigerant liquid, and then enters the condenser A through the addition of the throttle valve J.
  • the concentrated solution of the second generator H enters the steam dividing chamber 7 through the second solution heat exchanger I and the second absorber 2 to form a single-stage parallel double-effect regenerative first type absorption heat pump.
  • the first absorber 1 is connected after the refrigerant liquid line of the evaporator B is connected to the first absorber 1 through the refrigerant liquid pump D. Then, the refrigerant vapor passage is connected to the second absorber 2 to be adjusted to be the condenser A.
  • the refrigerant liquid pipeline is connected to the first absorber 1 through the second throttle valve E, and the first absorber 1 has a refrigerant vapor passage.
  • the device 6 is connected to the first generator 3 to be adjusted so that the second absorber 2 has a dilute solution line connected to the first generator 3 via the first solution pump 4, the first solution heat exchanger 6, and the second solution heat exchanger I.
  • the first generator 3 has a concentrated solution pipeline connected to the first absorber 1 through the first solution heat exchanger 6 and the second absorber 2 to adjust the first generator 3 to have a concentrated solution pipeline through the second solution heat
  • the exchanger I is in communication with the second generator H
  • the second generator H has a concentrated solution line exchanged with the first solution 6 and the second absorber 2 is in communication with the first absorber 1
  • the first generator 3 has a refrigerant vapor passage communicating with the condenser A to adjust the first generator 3 to have a refrigerant vapor passage communicating with the second generator H.
  • the refrigerant liquid pipeline is connected to the condenser A via the newly added throttle valve J.
  • the refrigerant vapor generated by the first generator is used as the driving heat medium of the second generator, and the second generator H also has a refrigerant vapor passage that communicates with the condenser A.
  • the dilute solution of the second absorber 2 enters the first generator 3 through the first solution pump 4, the first solution heat exchanger 6, and the second solution heat exchanger I, and the refrigerant released by the first generator 3
  • the steam is supplied to the second generator H as its driving heat medium, and the concentrated solution of the first generator 3 enters the second generator H through the second solution heat exchanger I; the refrigerant vapor flows through the second generator H, and is heated
  • the solution entering the solution releases the refrigerant vapor and supplies it to the condenser A.
  • the refrigerant vapor flowing through the second generator H is released into a refrigerant liquid, and then enters the condenser A through the addition of the throttle valve J.
  • the concentrated solution of the generator H enters the first absorber 1 via the first solution heat exchanger 6 and the second absorber 2 to form a single-stage series double-effect regenerative first type absorption heat pump.
  • Single-stage series double-effect regenerative first-end absorption 3 ⁇ 4 ⁇ is a ⁇ '
  • the second generator, the second solution heat exchanger and the new throttle valve are added, and the second absorber 2 has a dilute solution tube.
  • the first solution pump 4 and the first solution heat exchanger 6 communicate with the first generator 3 to adjust the second absorber 2 to have a dilute solution line through the first solution pump 4, the first solution heat exchanger 6 and the first
  • the two-solution heat exchanger I is in communication with the first generator 3, and the first generator 3 has a concentrated solution line that is connected to the steam dividing chamber 7 via the first solution heat exchanger 6 and the second absorber 2 to be firstly generated.
  • the third solution has a concentrated solution line connected to the second generator through the second solution heat exchanger I, and the second generator has a concentrated solution line through the first solution heat exchanger 6 and the second absorber 2 and
  • the steam chamber 7 is connected, and the first generator 3 has a refrigerant vapor passage connected to the condenser, and is adjusted to be the first generator 3.
  • the refrigerant vapor passage is connected with the second generator H, and the second generator H is further cooled.
  • the liquid line is connected to the condenser A via a new throttle valve J - the refrigerant vapor generated by the first generator A second heat medium to drive the generator, a second steam generator H, the refrigerant passage in communication with the condenser A.
  • the dilute solution of the second absorber 2 enters the first generator 3 through the first solution pump 4, the first solution heat exchanger 6, and the second solution heat exchanger I, and the refrigerant released by the first generator 3
  • the steam is supplied to the second generator H as its driving heat medium, and the concentrated solution of the first generator 3 enters the second generator H through the second solution heat exchanger I; the refrigerant vapor flows through the second generator H, and is heated
  • the solution entering the solution releases the refrigerant vapor and supplies it to the condenser A.
  • the refrigerant vapor flowing through the second generator H is released into a refrigerant liquid, and then enters the condenser A through the addition of the throttle valve J.
  • the concentrated solution of the generator H enters the steam separation chamber 7 through the first solution heat exchanger 6 and the second absorber 2 to form a single-stage series double-effect regenerative first type absorption heat pump.
  • the second generator H After the H is connected, the second generator H has a refrigerant liquid pipeline through the newly added throttle valve J and the condenser A. Pass - a first refrigerant vapor generator as the driving medium of the second heat generator, the second generator H, the refrigerant vapor passage in communication with the condenser A.
  • the dilute solution of the second absorber 2 enters the second generator H via the first solution pump 4 and the first solution heat exchanger 6, and the refrigerant vapor released by the first generator 3 is supplied to the second generator H.
  • the refrigerant vapor flows through the second generator H, and the solution heated into it releases the refrigerant vapor and supplies it to the condenser A, and the refrigerant vapor flowing through the second generator H is released.
  • the refrigerant liquid enters the condenser A through the addition of the new throttle valve J, and the concentrated solution of the second generator H enters the first generator 3 via the new solution pump K and the second solution heat exchanger I, the first generator
  • the concentrated solution of 3 enters the first absorber 1 through the second solution heat exchanger 1, the first solution heat exchanger 6, and the second absorber 2, forming a single-stage series double-effect regenerative first type absorption heat pump.
  • the second evaporator F has a refrigerant liquid pipeline connected to the third absorber 8 through the refrigerant liquid pump D and the third absorption
  • the device 8 further has a refrigerant vapor passage communicating with the second absorber 2 to adjust the condenser A to have a refrigerant liquid pipeline connected to the third absorber 8 via the third throttle valve G, and then the third absorber 8 has a refrigerant.
  • the steam passage is in communication with the second absorber 2; the second generator, the second solution heat exchanger, the new throttle valve and the new solution pump are added, and the second absorber 2 has a dilute solution line through the first solution pump 4 and the first solution heat exchanger 6 is connected to the first generator 3 to be adjusted so that the second absorber 2 has a dilute solution line passing through the first solution pump 4 and the first solution heat exchanger 6, respectively, and the second generator H Communicating and communicating with the first generator 3, the second generator H and the concentrated solution pipeline are connected to the first generator 3 via the new solution pump K and the second solution heat exchanger I, and the first generator 3 is Concentrated solution line through first solution heat exchanger 6 and The second suction chamber 7 is connected and adjusted to have a concentrated solution line.
  • the concentrated solution line is connected to the steam distribution chamber 7 via the ⁇ , the first solution heat exchanger 6 and the second absorber 2, and the first generator 3 has a refrigerant vapor.
  • the passage is connected to the condenser A to be adjusted so that the first generator 3 has a refrigerant vapor passage and the second generator H communicates, and the second generator H and the refrigerant liquid pipeline are connected to the condenser A via the newly added throttle valve J.
  • the refrigerant vapor generated by the first generator acts as a driving heat medium for the second generator, and the second generator H and the refrigerant vapor passage are in communication with the condenser A.
  • the dilute solution of the second absorber 2 enters the second generator H and the first generator 3 through the first solution pump 4 and the first solution heat exchanger 6, respectively, and the refrigerant released by the first generator 3
  • the steam is supplied to the second generator H as its driving heat medium, and the refrigerant vapor flows through the second generator H, and the solution heated into it releases the refrigerant vapor and supplies it to the condenser A, flowing through the second generator H.
  • the refrigerant vapor is exothermic, it becomes a refrigerant liquid, and then enters the condenser A through the addition of the new throttle valve J, and the concentrated solution of the second generator H enters the first through the new solution pump K and the second solution heat exchanger I.
  • the generator 3 the concentrated solution of the first generator 3 enters the steam dividing chamber 7 through the second solution heat exchanger 1, the first solution heat exchanger 6, and the second absorber 2, forming a single-stage series-parallel double-effect regenerative type
  • the first type of absorption heat pump The first type of absorption heat pump.
  • the first solution pump 4 adds the dilute solution pipeline to the second generator H via the second solution heat exchanger I and the third solution heat exchanger M and the third The generator L is connected, the second generator H has a concentrated solution line after passing through the second solution heat exchanger I and the third generator L has a concentrated solution line passing through the third solution heat exchanger M and the first generator 3, the concentrated solution line after the first solution heat exchanger 6 merges, and then communicates with the first absorber 1 via the second absorber 2, and the first generator 3 has a refrigerant vapor passage connected to the condenser A to be adjusted to The first generator 3 has a refrigerant vapor passage communicating with the second generator H, and the second generator H and the refrigerant liquid pipeline are connected to the condenser A via the newly added
  • the third generator L and the refrigerant vapor passage are in communication with the condenser A.
  • the refrigerant vapor generated by the first generator 3 flows through the second generator H, and the solution heated by the second absorber 2 through the first solution pump 4 and the second solution heat exchanger I is released.
  • the vapor of the refrigerant, the refrigerant vapor released by the second generator H is supplied to the third generator L as its driving heat medium, and the concentrated solution of the second generator H enters through the second solution heat exchanger 1 and the second absorber 2
  • the first absorber 1; the refrigerant vapor flowing through the third generator L heats the solution into which the second absorber 2 passes through the first solution pump 4 and the third solution heat exchanger M to release the refrigerant vapor
  • the third The refrigerant vapor released by the generator L enters the condenser A, and the concentrated solution of the third generator L enters the first absorber 1 through the third solution heat exchanger M and the second absorber 2; flows through the second generator H After the refrigerant vapor is exothermic, it becomes a refrigerant liquid, and then enter
  • the first solution pump 4 adds the dilute solution pipeline to the second generator H via the second solution heat exchanger I and the third solution heat exchanger M and the third The generator L is connected, the second generator H has a concentrated solution line after passing through the second solution heat exchanger I and the third generator L has a concentrated solution line passing through the third solution heat exchanger M and the first generator 3, the concentrated solution pipeline after the first solution heat exchanger 6 merges, and then communicates with the steam distribution chamber 7 through the second absorber 2, and the first generator 3 has a refrigerant vapor passage connected to the condenser A to be adjusted to the first A generator 3 has a refrigerant vapor passage communicating with the second generator H, and the second generator H and the refrigerant liquid pipeline are connected to the condenser A via the addition
  • the refrigerant vapor generated by the first generator 3 flows through the second generator H, and the solution heated by the second absorber 2 through the first solution pump 4 and the second solution heat exchanger I is released.
  • the vapor of the refrigerant, the refrigerant vapor released by the second generator H is supplied to the third generator L as its driving heat medium, and the concentrated solution of the second generator H enters through the second solution heat exchanger 1 and the second absorber 2
  • the steam dividing chamber 7; the refrigerant vapor flowing through the third generator L heats the solution into which the second absorber 2 passes through the first solution pump 4 and the third solution heat exchanger M to release the refrigerant vapor, and the third occurs
  • the refrigerant vapor released by the device L enters the condenser A, and the concentrated solution of the third generator L enters the steam separation chamber 7 through the third solution heat exchanger M and the second absorber 2; the refrigerant flowing through the second generator H After the steam is exothermic, it becomes a refrigerant liquid
  • the third evaporator B is selected to have a coolant liquid pipeline connected to the third absorber 8 through the coolant liquid pump D and the third absorption
  • the device 8 further has a refrigerant vapor passage communicating with the second absorber 2, adding a second generator, a third generator, a second solution heat exchanger, a third solution heat exchanger, a new first throttle valve and a new one.
  • the second throttle valve is added, and the second absorber 2 has a dilute solution pipeline connected to the first generator 3 through the first solution pump 4 and the first solution heat exchanger 6 to be adjusted to a second absorber 2 having a dilute solution tube
  • the first solution pump 4, the first solution heat exchanger 6, the second solution heat exchanger I and the third solution heat exchanger M are in communication with the first generator 3, and the first generator 3 has a concentrated solution line
  • the first solution heat exchanger 6 and the second absorber 2 are connected to the steam separation chamber 7 to be adjusted so that the first generator 3 has a concentrated solution pipeline connected to the second generator H via the third solution heat exchanger M, and second The generator H and the concentrated solution line are connected to the third generator L via the second solution heat exchanger I, and the third occurrence occurs.
  • the L and the concentrated solution line communicate with the steam dividing chamber 7 via the first solution heat exchanger 6 and the second absorber 2, and the first generator 3 has a refrigerant vapor passage connected to the condenser A to be adjusted to be the first occurrence.
  • the second generator H and the refrigerant liquid pipeline are connected to the condenser A via the addition of the first throttle valve J - the cold generated by the first generator.
  • the agent steam is used as the driving heat medium of the second generator, the second generator H and the refrigerant vapor channel are in communication with the third generator L, and the third generator L is further provided with the second throttle by the refrigerant liquid line.
  • the valve N is in communication with the condenser A - the refrigerant vapor generated by the second generator acts as a driving heat medium for the third generator, and the third generator L and the refrigerant vapor passage are in communication with the condenser A.
  • the dilute solution of the second absorber 2 enters the first generator 3 through the first solution pump 4, the first solution heat exchanger 6, the second solution heat exchanger I and the third solution heat exchanger M,
  • the refrigerant vapor released by a generator 3 is supplied to the second generator H as its driving heat medium;
  • the concentrated solution of the first generator 3 passes through the third solution heat exchanger M into the second generator H, the refrigerant vapor flow
  • the second generator H the solution heated into it releases the refrigerant vapor and is supplied to the third generator L as its driving heat medium;
  • the concentrated solution of the second generator H enters the second solution heat exchanger I a third generator L, the refrigerant vapor flows through the third generator L, the solution heated therein releases the refrigerant vapor and is supplied to the condenser A, and the concentrated solution of the third generator L passes through the first solution heat exchanger 6 and
  • the second absorber 2 enters the steam dividing chamber 7; the refrigerant vapor flowing through the second generator H releases heat to form
  • the refrigerant vapor of the device L is released into a refrigerant liquid after being released from the heat, and then added a second N enters the condenser valve A, to form a single-stage series a first three-way recuperative type absorption heat pump.
  • the single-stage series three-effect regenerative first-type absorption heat pump shown in Fig. 19 is realized by the structure of the first type, in the regenerative first type absorption heat pump shown in Fig. 5, the second generator is added. a third generator, a second solution heat exchanger, a third solution heat exchanger, a first throttle valve, a second throttle valve, a first solution pump, and a second solution pump.
  • the second absorber 2 has a dilute solution line connected to the first generator 3 via the first solution pump 4 and the first solution heat exchanger 6 to be adjusted to a second absorber 2 having a dilute solution line through the first solution pump 4
  • the first solution heat exchanger 6 is in communication with the third generator L
  • the third generator L and the concentrated solution line are connected to the second generator H via the newly added first solution pump K and the second solution heat exchanger I
  • the second generator H and the concentrated solution pipeline are connected to the first generator 3 via the newly added second solution pump 0 and the third solution heat exchanger M
  • the first generator 3 has a concentrated solution pipeline through the first Solution heat exchanger 6 and
  • the second absorber 2 is connected to the first absorber 1 to be adjusted so that the first generator 3 has a concentrated solution line ⁇ , the second solution heat exchanger 1, the first solution heat exchanger 6 and the second absorber 2 and the first
  • the absorber 1 is connected, and the first generator 3 has a refrigerant vapor passage communicating with the condenser ⁇ to adjust the
  • the liquid pipeline is connected to the condenser A by adding a first throttle valve J - the refrigerant vapor generated by the first generator acts as a driving heat medium for the second generator, and the second generator H also has a refrigerant vapor passage and Third generator
  • the third generator L and the refrigerant liquid pipeline are connected to the condenser A via the addition of the second throttle valve N.
  • the refrigerant vapor generated by the second generator is used as the driving heat medium of the third generator.
  • the third generator L also has a refrigerant vapor passage in communication with the condenser A.
  • the dilute solution of the second absorber 2 enters the third generator L via the first solution pump 4 and the first solution heat exchanger 6, and the refrigerant vapor generated by the second generator H serves as the third generator L.
  • the refrigerant vapor flows through the third generator L, and the solution heated into the solution releases the refrigerant vapor and supplies it to the condenser A.
  • the concentrated solution of the third generator L is added by the first solution pump K and the first The two solution heat exchanger I enters the second generator H; the refrigerant vapor released by the first generator 3 is supplied to the second generator H as its driving heat medium, and the refrigerant vapor flows through the second generator H, and is heated into The solution therein releases the refrigerant vapor and supplies it to the third generator L, and the concentrated solution of the second generator H enters the first generator 3 via the addition of the second solution pump 0 and the third solution heat exchanger M, first The concentrated solution of the generator 3 enters the first absorber 1 via the third solution heat exchanger 3 ⁇ 44, the second solution heat exchanger 1, the first solution heat exchanger 6, and the second absorber 2; flows through the second generator H The refrigerant vapor is exothermic and becomes a refrigerant liquid, and then added the first The flow valve J enters the condenser A, and the refrigerant vapor flowing through the third generator L is released into a refrigerant liquid, and then the second
  • the heat exchanger M is in communication with the first generator 3, and the concentrated solution line of the first generator 3 is connected to the steam dividing chamber 7 via the first solution heat exchanger 6 and the second absorber 2 to be adjusted to the first generator 3.
  • the concentrated solution line passes through the third solution heat exchanger M, the second solution heat exchanger I, and the first solution heat exchanger 6
  • the second absorber 2 is in communication with the steam dividing chamber 7, and the first generator 3 has a refrigerant vapor passage communicating with the condenser A to be adjusted to be the first generator 3 having the refrigerant vapor passage communicating with the second generator H.
  • the second generator H and the refrigerant liquid pipeline are connected to the condenser A via the addition of the first throttle valve J - the refrigerant vapor generated by the first generator is used as the driving heat medium of the second generator, and the second generator H and the refrigerant vapor passage are connected to the third generator L, and then the third generator L and the refrigerant liquid pipeline are connected to the condenser A via the addition of the second throttle valve N - the cold generated by the second generator
  • the agent vapor serves as a driving heat medium for the third generator, and the third generator L and the refrigerant vapor passage are in communication with the condenser A.
  • the dilute solution of the second absorber 2 enters the third generator L via the first solution pump 4 and the first solution heat exchanger 6, and the refrigerant vapor generated by the second generator H serves as the third generator L.
  • the refrigerant vapor flows through the third generator L, and the solution heated into the solution releases the refrigerant vapor and supplies it to the condenser A.
  • the concentrated solution of the third generator L is added by the first solution pump K and the first The two solution heat exchanger I enters the second generator H; the refrigerant vapor released by the first generator 3 is supplied to the second generator H as its driving heat medium, and the refrigerant vapor flows through the second generator H, and is heated into The solution therein releases the refrigerant vapor and supplies it to the third generator L, and the concentrated solution of the second generator H enters the first generator 3 via the addition of the second solution pump 0 and the third solution heat exchanger M, first The concentrated solution of the generator 3 enters the steam separation chamber 7 through the third solution heat exchanger 2, the second solution heat exchanger 1, the first solution heat exchanger 6, and the second absorber 2; the cold flowing through the second generator H After the agent vapor is exothermic, it becomes a refrigerant liquid, and then enters the condenser A through the addition of the first throttle valve J, and flows through the third hair.
  • L is the refrigerant vapor into a refrigerant liquid heat, and
  • the single-generator two-stage regenerative first-stage absorption heat pump shown in Fig. 21 is realized as follows:
  • the first absorber 1 structurally, in the regenerative first type absorption heat pump shown in FIG. 5, adding a second solution heat exchanger, an absorption-evaporator and a second refrigerant liquid pump, the first absorber 1 has a dilute solution tube
  • the passage of the second solution pump 5 and the second absorber 2 is adjusted to be that the first absorber 1 has a dilute solution line connected to the absorption-evaporator Q via the second solution heat exchanger I, and the absorption-evaporator Q is also thin.
  • the solution line is connected to the second absorber 2 via the second solution pump 5 and the second solution heat exchanger I, and the evaporator B has a refrigerant vapor channel connected to the first absorber 1 to adjust the evaporator B to have a refrigerant vapor.
  • the passage is connected to the absorption-evaporator Q, and the evaporator B adds a refrigerant liquid pipeline through the second refrigerant liquid pump P to communicate with the absorption-evaporator Q, the absorption-evaporator Q and then the refrigerant vapor passage and the first absorber 1 connected.
  • the dilute solution of the first absorber 1 enters the absorption-evaporator Q through the second solution heat exchanger I, absorbs the refrigerant vapor from the evaporator B, and releases the refrigerant flowing through the absorption-evaporator Q.
  • the dilute solution of the absorption-evaporator Q enters the second absorber 2 through the second solution pump 5 and the second solution heat exchanger I; the refrigerant liquid of the evaporator B is pressurized by the second refrigerant liquid pump P
  • the heat is absorbed into the refrigerant vapor and supplied to the first absorber 1, forming a single-generator two-stage regenerative first type absorption heat pump.
  • the single-generator two-stage regenerative first-stage absorption heat pump shown in Fig. 22 is realized as follows:
  • the solution line is connected to the second absorber 2 via the second solution pump 5 and the second solution heat exchanger I, and the evaporator B has a refrigerant vapor passage connected to the first absorber 1 and the third absorber 8 respectively to be adjusted to
  • the evaporator B has a refrigerant vapor passage communicating with the absorption-evaporator Q, and the condenser A adds a refrigerant liquid pipeline through the new throttle valve J to communicate with the absorption-evaporator Q to absorb - the evaporator Q and then the refrigerant vapor
  • the passages are in communication with the first absorber 1 and the third absorber 8, respectively.
  • the dilute solution of the third absorber 8 enters the absorption-evaporator Q through the second solution heat exchanger I, absorbs the refrigerant vapor from the evaporator B, and releases the refrigerant flowing through the absorption-evaporator Q.
  • the dilute solution of the liquid, absorption-evaporator Q enters the second absorber 2 via the second solution pump 5 and the second solution heat exchanger I; the coolant liquid of the condenser A flows through the throttle valve J to throttle
  • the absorption-evaporator Q and the heat-absorbing refrigerant vapor are supplied to the first absorber 1 and the third absorber 8, respectively, to form a single-generator two-stage regenerative first type absorption heat pump.
  • the single-generator two-stage regenerative first-stage absorption heat pump shown in Figure 23 is implemented as follows:
  • the third solution pump, the second solution heat exchanger, the absorption-evaporator and the second refrigerant liquid pump are added, and the steam distribution chamber is 7 has a concentrated solution pipeline connected to the first absorber 1 and is adjusted to be a vaporization chamber 7 having a concentrated solution pipeline connected to the first absorber 1 via the third solution pump 9 and the second solution heat exchanger I, the first absorption
  • the device 1 has a dilute solution line connected to the third absorber 8 and is adjusted to be a first absorber 1 having a dilute solution line connected to the absorption-evaporator Q via the second solution heat exchanger I, and the absorption-evaporator Q is also thin
  • the solution line is in communication with the third absorber 8, and the evaporator B has a refrigerant vapor passage connected to the first absorber 1 to be adjusted so that the evaporator B has a refrigerant vapor passage communicating with the absorption-evaporator Q, and the
  • the concentrated solution of the steam separation chamber 7 enters the first absorber 1 through the third solution pump 9 and the second solution heat exchanger I, absorbs the refrigerant vapor from the absorption-evaporator Q, and releases the heat to the heated medium.
  • the dilute solution of the first absorber 1 enters the absorption-evaporator Q through the second solution heat exchanger I, absorbs the refrigerant vapor from the evaporator B, and releases the refrigerant liquid flowing through the absorption-evaporator Q, absorbing - the dilute solution of the evaporator Q enters the third absorber 8; the refrigerant liquid of the evaporator B is pressurized by the second refrigerant liquid pump P, flows through the absorption-evaporator Q, absorbs heat into the refrigerant vapor and is directed to the first
  • the absorber 1 provides a single generator two-stage regenerative first type absorption heat pump.
  • the single-generator two-stage regenerative first-stage absorption heat pump shown in Fig. 24 is realized as follows:
  • the third solution pump and the second solution are heated.
  • the converter, the concentrated solution line of the steam distribution chamber 7 is connected to the first absorber 1 to be adjusted to the steam separation chamber 7 having a concentrated solution pipeline through the third solution pump 9 and the second solution heat exchanger I and the first absorber 1 communicating, connecting the first absorber 1 having a dilute solution line and the third absorber 8 to be adjusted to be the first absorber 1 having a dilute solution line communicating with the third absorber 8 via the second solution heat exchanger I, canceling
  • the refrigerant vapor passage of the evaporator B and the first absorber 1 connects the refrigerant liquid line of the evaporator B to the third absorber 8 through the coolant liquid pump D, and the third absorber 8 has the refrigerant vapor again.
  • the passage is connected to the second absorber 2 to be adjusted to the evaporator B.
  • the refrigerant liquid pipeline is connected to the third absorber 8 through the coolant liquid pump D, and then the third absorber 8 has a refrigerant vapor passage and the first absorber respectively. 1 is in communication with the second absorber 2.
  • the concentrated solution of the steam separation chamber 7 enters the first absorber 1 through the third solution pump 9 and the second solution heat exchanger I, absorbs the refrigerant vapor from the third absorber 8, and radiates heat to the heated medium.
  • the dilute solution of the first absorber 1 enters the third absorber 8 via the second solution heat exchanger I, absorbs the refrigerant vapor from the evaporator B, and releases the refrigerant liquid flowing therethrough into the refrigerant vapor;
  • the refrigerant liquid of the evaporator B is pressurized by the refrigerant liquid pump D, flows through the third absorber 8, absorbs heat into the refrigerant vapor, and is supplied to the first absorber 1 and the second absorber 2, respectively, to form a single generator.
  • Two-stage regenerative first-class absorption heat pump is used to form a single generator.
  • the single-generator two-stage regenerative first-stage absorption heat pump shown in Figure 25 is implemented as follows:
  • the new absorber R and the dilute solution line are connected to the first absorber 1 via the first solution heat exchanger 6 and the second absorber 2,
  • the first absorber 1 has a heating medium line connected to the outside to adjust to the condenser A.
  • the refrigerant liquid line is connected to the first absorber 1 through the new throttle valve J.
  • the first absorber 1 has a refrigerant vapor channel. Connected to the new absorber R, the new absorber R and the heated medium line are connected to the outside. .
  • the dilute solution of the second absorber 2 enters the generator 3 through the first solution pump 4, the first solution heat exchanger 6 and the second solution heat exchanger I, and the concentrated solution of the generator 3 is heated by the second solution
  • the exchanger I enters the new absorber R, absorbs the refrigerant vapor from the first absorber 1 and radiates heat to the heated medium, and adds the diluted solution of the absorber R through the first solution heat exchanger 6 and the second absorber 2 entering the first absorber 1;
  • the coolant liquid of the condenser A is throttled by the new throttle valve J, flows through the first absorber 1, absorbs heat into the refrigerant vapor and is supplied to the newly added absorber R, forming a single Generator two-stage regenerative first-class absorption heat pump.
  • the single-generator two-stage regenerative first-stage absorption heat pump shown in Fig. 26 is realized as follows:
  • the first absorber 1 After the second refrigerant liquid pump P communicates with the first absorber 1, the first absorber 1 has a refrigerant vapor.
  • the channel is connected to the newly added absorber R, and the new absorber R and the heated medium pipe are connected to the outside. .
  • the dilute solution of the second absorber 2 enters the generator 3 through the first solution pump 4, the first solution heat exchanger 6 and the second solution heat exchanger I, and the concentrated solution of the generator 3 is heated by the second solution
  • the exchanger I enters the new absorber R, absorbs the refrigerant vapor from the first absorber 1 and radiates heat to the heated medium, and adds the diluted solution of the absorber R through the first solution heat exchanger 6 and the second absorber 2 enters the steam separation chamber 7;
  • the refrigerant liquid of the evaporator B is pressurized by the second refrigerant liquid pump P, flows through the first absorber 1, absorbs heat into the refrigerant vapor, and is supplied to the newly added absorber R to form a single Generator two-stage regenerative first-class absorption heat pump.
  • the single-generator two-stage regenerative first-class absorption heat pump of m 7 is S-like realization:
  • the refrigerant vapor passage is connected to the condenser A to be adjusted so that the first generator 3 has a refrigerant vapor passage communicating with the newly added absorber R, and the new absorber R and the dilute solution pipeline are added by the new solution pump K and the second
  • the solution heat exchanger I is in communication with the second generator H, the second generator H and the concentrated solution line are in communication with the new absorber R via the second solution heat exchanger I, and the second generator H also has a refrigerant respectively
  • the steam passage communicates with the condenser A and has a driving heat medium pipe connected to the outside, and the newly added absorber R and the heated medium pipe communicate with the outside.
  • the refrigerant vapor released by the first generator 3 enters the newly added absorber R, is absorbed by the solution from the second generator H, and radiates heat to the heated medium, and the diluted solution of the newly added absorber R is newly added.
  • the solution pump K and the second solution heat exchanger I enter the second generator H; the solution that drives the heat medium to heat into the second generator H releases the refrigerant vapor and supplies it to the condenser A, and the concentrated solution of the second generator H
  • the second solution heat exchanger I enters the new absorber R to form a two-stage two-stage regenerative first type absorption heat pump that supplies refrigerant vapor to the newly added absorber from the first generator.
  • the dual generator two-stage regenerative first type absorption heat pump shown in FIG. 28 is a second generator, a new absorber, and a new one added to the regenerative first type absorption heat pump shown in FIG. a solution pump and a second solution heat exchanger form a double generator two-stage regenerative first type absorption heat pump that supplies refrigerant vapor from the first generator to the newly added absorber; the formation process is the same as that shown in FIG. Consistent.
  • the concentrated solution line of the device 3 is connected to the first absorber 1 via the first solution heat exchanger 6 and the second absorber 2 to be adjusted to be the first generator 3 having a concentrated solution line through the third solution heat exchanger M, a solution heat exchanger 6 and a second absorber 2 are in communication with the first absorber 1, the first generator 3
  • the refrigerant vapor passage is connected to the newly added absorber R, and the second generator H further has a refrigerant vapor passage communicating with the second condenser S and a driving heat medium conduit communicating with the outside, and the second condenser S is further
  • the refrigerant liquid pipeline is connected to the first condenser A via a new throttle valve J, and the newly added absorber R and the second condenser S are also respectively connected to the outside by the medium to be heated.
  • the dilute solution of the second absorber 2 enters the second generator H through the first solution pump 4, the first solution heat exchanger 6 and the second solution heat exchanger I, and drives the heat medium to heat into the second generator.
  • the solution of H releases the refrigerant vapor and is supplied to the second condenser S, and the concentrated solution of the second generator H enters the new absorber R through the second solution heat exchanger H, absorbing the refrigerant vapor from the first generator 3.
  • the diluted solution of the newly added absorber R enters the first generator 3 through the new solution pump K and the third solution heat exchanger M, and the concentrated solution of the first generator 3 is heated by the third solution
  • the exchanger 1 first solution heat exchanger 6 and the second absorber 2 enter the first absorber 1 ;
  • the refrigerant vapor entering the second condenser S radiates heat to the heated medium to form a refrigerant liquid, and the refrigerant liquid passes through the new
  • the throttle valve J is throttled into the first condenser A to form a double generator two-stage regenerative first type absorption heat pump which supplies the refrigerant vapor to the first condenser and the newly added absorber by the first generator respectively.
  • the dual-generator two-stage regenerative first-stage absorption heat pump shown in Fig. 30 is realized as follows:
  • the second condenser and the newly added throttle valve are added, and the second generator H has a refrigerant vapor passage connected to the first condenser A to be adjusted to the first
  • the second generator H has a refrigerant vapor passage communicating with the second condenser S, and the second condenser S and the refrigerant liquid pipeline are connected to the first condenser A via the newly added throttle valve J, and the first generator 3 is additionally provided.
  • the refrigerant vapor passage is in communication with the first condenser A, and the second condenser S is further connected to the outside by the heated medium conduit to form a refrigerant vapor supplied by the first generator to the first condenser and the newly added absorber, respectively.
  • Double generator two-stage regenerative first-class absorption heat pump The dual generator two-stage regenerative first type absorption heat pump shown in Fig. 31 is realized as follows:
  • the second generator, the new absorber, the new solution pump and the second solution heat exchanger are added, and the evaporator B has a refrigerant vapor.
  • the passage is connected to the first absorber 1 to adjust to the generator B.
  • the refrigerant vapor passage is connected with the newly added absorber R, and the new absorber R and the dilute solution pipeline are added through the new solution pump K and the second solution heat exchanger.
  • the second generator H is in communication with the second generator H, the second generator H and the concentrated solution line are connected to the new absorber R via the second solution heat exchanger I, and the second generator H also has a refrigerant vapor channel and a first An absorber 1 is connected and a driving heat medium pipe is connected to the outside, and the newly added absorber R and the heated medium pipe are connected to the outside.
  • the refrigerant vapor of the evaporator B enters the newly added absorber R, is absorbed by the solution from the second generator H and radiates heat to the heated medium, and the diluted solution of the new absorber R is added to the new solution pump K.
  • the second solution heat exchanger I enters the second generator H; the solution that drives the heat medium to heat into the second generator H releases the refrigerant vapor and supplies it to the first absorber 1, and the concentrated solution of the second generator H passes through
  • the two solution heat exchanger I enters the new absorber R to form a two-stage two-stage regenerative first type absorption heat pump that supplies refrigerant vapor to the first absorber from the second generator.
  • the dual-generator two-stage regenerative first-stage absorption heat pump shown in Figure 32 is implemented as follows:
  • the third absorber 8 increases the communication medium line to communicate with the outside, adds a second generator, adds a new absorber, adds a new solution pump, and a second solution heat exchanger, wherein the refrigerant B has a refrigerant vapor passage connected to the first absorber 1 and the third absorber 8 respectively, and the evaporator B has a refrigerant vapor passage connected with the newly added absorber R,
  • the absorber R and the dilute solution line are connected to the second generator H via the new solution pump K and the second solution heat exchanger I, and the second generator H and the concentrated solution line are passed through the second solution heat exchanger I.
  • the second generator H and the refrigerant vapor passage are respectively connected to the first absorber 1 and the third absorber 8, and the second generator H also drives the heat medium pipeline to communicate with the outside.
  • the newly added absorber R also has a heated medium line that communicates with the outside.
  • the refrigerant vapor of the evaporator B enters the newly added absorber R, is absorbed by the solution from the second generator H and radiates heat to the heated medium, and the diluted solution of the new absorber R is added to the new solution pump K.
  • the second solution heat exchanger I enters the second generator H; the solution that drives the heat medium to heat into the second generator H releases the refrigerant vapor and supplies it to the first absorber 1 and the third absorber 8, respectively, the second occurrence
  • the concentrated solution of the device H enters the new absorber R through the second solution heat exchanger I, forming a two-stage two-stage regenerative type in which the second generator supplies the refrigerant vapor to the first absorber and the third absorber, respectively.
  • the first type of absorption heat pump is absorbed by the solution from the second generator H and radiates heat to the heated medium, and the diluted solution of the new absorber R is added to the new solution pump K.
  • the second solution heat exchanger I enters the second generator H
  • a second condenser and a new throttle valve are added, and the second generator H is provided with a refrigerant vapor passage communicating with the second condenser S, and the second condenser S
  • the refrigerant liquid pipeline is connected to the evaporator B via the re-throttle valve J, and the second condenser S is further connected to the outside by the heating medium pipeline, and is formed by the second generator to the second condenser, respectively.
  • the absorber and the third absorber provide a dual generator two-stage regenerative first type absorption heat pump for refrigerant vapor.
  • the dual generator two-stage regenerative first type absorption heat pump shown in Fig. 34 is realized as follows:
  • the generator replaces the rectification column, adding a second generator, a new absorber, a new solution pump and a second solution heat exchanger,
  • the first generator 3 has a refrigerant vapor passage communicating with the condenser A.
  • the first generator 3 has a refrigerant vapor passage communicating with the newly added absorber R, and the new absorber R and the dilute solution pipeline are added with the new solution.
  • the pump K and the second solution heat exchanger I are in communication with the second generator H, and the second generator H and the concentrated solution line are in communication with the new absorber R via the second solution heat exchanger I, the second generator H
  • the concentrated solution of the second generator H enters the new absorber R through the second solution heat exchanger I, absorbs the refrigerant vapor from the first absorber 1 and the first generator 3, and radiates heat to be heated.
  • Medium, new diluted solution of absorber R The solubilizing solution pump K and the second solution heat exchanger I enter the second generator H, drive the heat medium to heat into the second generator FTM solution to release the refrigerant vapor and supply it to the condenser A; the coolant liquid of the condenser A
  • the second throttle valve E is throttled and flows through the first absorber 1, and absorbs heat into the refrigerant vapor and is supplied to the second absorber 2 and the newly added absorber R, respectively, to form the first absorber and the first generator.
  • a dual-generator two-stage regenerative first-stage absorption heat pump that supplies refrigerant vapor to the newly added absorber.
  • the refrigerant vapor passage is connected to the condenser A to be adjusted so that the first generator 3 has a refrigerant vapor passage communicating with the newly added absorber R, and the new absorber R and the dilute solution pipeline are added by the new solution pump K and the second
  • the solution heat exchanger I is in communication with the second generator H, the second generator H and the concentrated solution line are in communication with the new absorber R via the second solution heat exchanger I, and the second generator H also has a refrigerant respectively
  • the steam passage communicates with the condenser A and has a driving heat medium pipeline communicating with the outside, and the newly added absorber R and the heated medium pipeline communicate with the outside; canceling the heated medium pipeline in which the first absorber 1 communicates with the outside,
  • the new throttle valve is added, and the condenser A is added with a ref
  • the concentrated solution of the second generator H enters the new absorber R through the second solution heat exchanger I, absorbs the refrigerant vapor from the first absorber 1 and the first generator 3, and radiates heat to be heated.
  • the medium, the dilute solution of the new absorber R is added to the second generator H via the new solution pump K and the second solution heat exchanger I, and the solution that drives the heat medium to enter the second generator H releases the refrigerant vapor and condenses
  • the coolant A of the condenser A is throttled by the new throttle valve J, flows through the first absorber 1, absorbs heat into the refrigerant vapor, and is supplied to the newly added absorber R to form the first absorber.
  • a dual-generator two-stage regenerative first-stage absorption heat pump that supplies refrigerant vapor to the newly added absorber together with the first generator.
  • the dual generator two-stage regenerative first type absorption heat pump shown in Fig. 36 is realized as follows:
  • the refrigerant vapor passage is connected to the condenser A to be adjusted so that the first generator 3 has a refrigerant vapor passage communicating with the newly added absorber R, and the new absorber R and the dilute solution pipeline are added by the new solution pump K and the second
  • the solution heat exchanger I is in communication with the second generator H, the second generator H and the concentrated solution line are in communication with the new absorber R via the second solution heat exchanger I, and the second generator H also has a refrigerant respectively
  • the steam passage communicates with the condenser A and has a driving heat medium pipeline communicating with the outside, and the newly added absorber R and the heated medium pipeline communicate with the outside; canceling the heated medium pipeline in which the first absorber 1 communicates with the outside,
  • the second refrigerant liquid pump is added, and the refrigerant liquid line of
  • the concentrated solution of the second generator H enters the new absorber R through the second solution heat exchanger I, absorbs the refrigerant vapor from the first absorber 1 and the first generator 3, and radiates heat to be heated.
  • the medium, the dilute solution of the new absorber R is added to the second generator H via the new solution pump K and the second solution heat exchanger I, and the solution that drives the heat medium to enter the second generator H releases the refrigerant vapor and condenses
  • the refrigerant liquid of the evaporator B is pressurized by the second refrigerant liquid pump P, flows through the first absorber 1, absorbs heat into the refrigerant vapor, and is supplied to the newly added absorber R to form a first absorption.
  • the dual generator two-stage regenerative first type absorption heat pump that supplies the refrigerant vapor to the newly added absorber together with the first generator.
  • the evaporator B has a refrigerant vapor channel connected to the first absorber 1 to adjust to the evaporator B has a refrigerant vapor channel and the absorption-evaporator Q is connected, the absorption-evaporator Q and the dilute solution pipeline through the new solution
  • the pump K and the second solution heat exchanger I are in communication with the second generator H, and the second generator H and the concentrated solution line are in communication with the absorption-evaporator Q via the second solution heat exchanger I, the second generator H
  • the concentrated solution of the second generator H enters the absorption-evaporator Q through the second solution heat exchanger I, absorbs the refrigerant vapor from the evaporator B, and releases the refrigerant flowing through the absorption-evaporator Q.
  • Liquid, absorption-evaporator Q dilute solution added
  • the solution pump K and the second solution heat exchanger I enter the second generator H, and the solution that drives the heat medium and enters the second friend H releases the refrigerant vapor and supplies it to the first absorber 1; the refrigerant of the evaporator B
  • the liquid is pressurized by the second refrigerant liquid pump P, flows through the absorption-evaporator Q, absorbs heat into the refrigerant vapor and is supplied to the first absorber 1, and is formed by the absorption-evaporator and the second generator together.
  • the absorber provides a dual generator two-stage regenerative first type absorption heat pump with refrigerant vapor.
  • the dual generator two-stage regenerative first-stage absorption heat pump shown in Figure 38 is implemented as follows:
  • the heated medium line in which the new absorber R is connected to the outside is eliminated, the second refrigerant liquid pump is added, and the refrigerant B is added to the evaporator liquid line.
  • the absorber R is newly added, and the refrigerant vapor passage is communicated with the first absorber 1 and the third absorber 8, respectively, to form a new absorber and a A dual generator two-stage regenerative first type absorption heat pump in which two generators collectively supply refrigerant vapor to the first absorber and the third absorber.
  • Figure 39 shows a single-stage parallel double-effect regenerative first-stage absorption heat pump with a high-temperature condenser as an additional high-temperature heating end. This is achieved in the regenerative first-type absorption heat pump shown in Figure 11. , adding a high temperature condenser and a high temperature throttle valve, the high pressure generator is provided with a refrigerant vapor passage and the high temperature condenser a.
  • the high temperature condenser a and the refrigerant liquid pipeline are connected to the condenser A through the high temperature throttle valve bl, and the high temperature
  • the condenser a1 is also connected to the outside by the heating medium pipeline; the high pressure generator 3 supplies the refrigerant vapor to the high temperature condenser a1, and releases the heat to the heated medium to form the refrigerant liquid, and the refrigerant liquid of the high temperature condenser a1 passes through the high temperature section.
  • the flow valve bl is throttled into the condenser A to form a regenerative first type absorption heat pump with a high temperature condenser as an additional high temperature heating end.
  • the single-stage parallel three-effect regenerative first-stage absorption heat pump with the high-temperature condenser as the additional high-temperature heating end shown in Fig. 40 is realized in the regenerative first type absorption heat pump shown in Fig. 16.
  • the medium pressure generator is provided with a refrigerant vapor channel and the high temperature condenser a.
  • the high temperature condenser a and the refrigerant liquid pipeline are connected to the condenser A via the high temperature throttle valve bl.
  • the high temperature condenser a1 is also connected to the outside by the heating medium pipeline; the medium pressure generator H supplies the refrigerant vapor to the high temperature condenser a1, and releases the heat to the heated medium to form the refrigerant liquid, and the refrigerant liquid of the high temperature condenser a1
  • the high temperature throttling bl throttles into the condenser A to form a regenerative first type absorption heat pump with a high temperature condenser as an additional high temperature heating end.
  • the two-stage regenerative first-class absorption heat pump with single-stage parallel double-effect as the first stage shown in Fig. 41 is realized as follows:
  • the refrigerant liquid pipeline is connected to the first evaporator B via the newly added throttle valve J, and the low pressure generator H is
  • the refrigerant vapor passage is connected to the condenser A to be adjusted to be a low pressure generator H having a refrigerant vapor passage communicating with the secondary absorber a2, the secondary absorber a2 and the dilute solution pipeline passing through the secondary solution pump c2 and the secondary solution heat
  • the exchanger d2 is connected to the secondary generator b2, the secondary generator b2 and the concentrated solution pipeline are connected to the secondary absorber a2 via the secondary solution heat exchanger d2, and the secondary generator b2 also has a refrigerant vapor passage It is in communication with the condenser A and has a driving heat medium line communicating with the outside, and the secondary absorber a2 is also connected to the outside by the heated medium line.
  • the second-stage process for raising the residual heat temperature is carried out as follows: the refrigerant vapor generated by the low-pressure generator H enters the secondary absorber a2, is absorbed by the concentrated solution from the secondary generator b2, and is heated to be heated.
  • the medium, the dilute solution of the secondary absorber a2 enters the secondary generator b2 via the secondary solution pump c2 and the secondary solution heat exchanger d2, and the solution that drives the heat medium to enter the secondary generator b2 releases the refrigerant vapor and condenses
  • the A solution of the secondary generator b2 enters the secondary absorber a2 through the secondary solution heat exchanger d2, forming a refrigerant vapor from the low pressure generator to the secondary absorber, and adopting single-stage double effect as the first Two-stage regenerative first-class absorption heat pump.
  • the two-stage regenerative first-type absorption heat pump with single-stage parallel three-effect as the first stage shown in Fig. 42 is realized by the structure of the first type of absorption type shown in Fig.
  • a secondary absorber, a secondary generator, a secondary solution pump, a secondary solution heat exchanger, a secondary condenser and a secondary throttle valve are added, and a low pressure generator is provided with a refrigerant vapor passage and a secondary absorber.
  • the secondary absorber a2 and the dilute solution pipeline are connected to the secondary generator b2 via the secondary solution pump c2 and the secondary solution heat exchanger d2, and the secondary generator b2 has a concentrated solution pipeline through the secondary Solution heat exchanger d2 and secondary suction
  • the generator b2 also has a refrigerant vapor passage and a secondary condenser, and the medium pipeline communicates with the outside, and the secondary condenser e2 and the refrigerant liquid pipeline are connected to the first condenser via the secondary throttle valve f2.
  • the secondary absorber a2 and the secondary condenser e2 are also respectively connected to the outside by the medium to be heated.
  • the second-stage process for raising the residual heat temperature is carried out as follows: a part of the refrigerant vapor generated by the low-pressure generator H enters the secondary absorber a2, is absorbed by the concentrated solution from the secondary generator b2, and is radiated to the Heating medium, the dilute solution of the secondary absorber a2 enters the secondary generator b2 through the secondary solution pump c2 and the secondary solution heat exchanger d2, and the solution that drives the heat medium to enter the secondary generator b2 releases the refrigerant vapor to the second
  • the stage condenser e2 provides that the concentrated solution of the secondary generator b2 enters the secondary absorber a2 through the secondary solution heat exchanger d2; the refrigerant vapor entering the secondary condenser e2 radiates heat to the heated medium to form the refrigerant liquid
  • the refrigerant liquid is throttled by the secondary throttle valve f2 and then enters the condenser A, and the refrigerant is supplied to the first condens
  • Regenerative absorption - The generation system, structure and process are simple and reasonable. Compared with the conventional absorption-generation system consisting of an absorber, a solution pump, a solution heat exchanger and a generator, the regenerative absorption-generation system proposed by the present invention mainly adds a second absorber and a solution pump or a plus The three absorbers are cleverly designed, and the structure and process are simple and reasonable.
  • the regenerative type I absorption heat pump can select the degree of heat recovery according to the needs, and realize the continuous correspondence between the unit operating parameters and the performance index.
  • the proposed series of regenerative first-class absorption heat pumps can achieve uninterrupted connection between the first type of absorption heat pump units in terms of operating parameters and performance index.
  • the proposed series of regenerative first-class absorption heat pumps enrich the first type of absorption heat pumps, which can better match the first type of heat pump heating/cooling and user requirements.
  • the regenerative first type absorption heat pump provided by the invention can select the degree of heat recovery according to the residual heat parameter and the heating temperature, and achieve a reasonable correspondence between the heating temperature and the performance index. It is beneficial to obtain a higher performance index and can improve the efficiency of waste heat utilization.
  • the regenerative first type absorption heat pump provided by the present invention can select a corresponding type of regenerative first type absorption heat pump according to the temperature of the driving heat medium, the cooling medium and the temperature of the refrigerating medium.
  • the unit and choose the appropriate degree of heat recovery to rationalize the refrigeration coefficient of the unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

回热式吸收-发生系统与回热式第一类吸收式热泵 技术领域:
本发明属于制冷和低温余热利用热泵技术领域。
背景技术:
采用吸收式热泵技术进行余热利用的前提是热泵能够将热量自余热温度提升到用户需求 的温度以上, 同时还要使吸收式热泵机组的性能指数尽可能地高; 同理, 制冷时在满足用户 的需求前提下也要尽可能高地发挥驱动热介质的制冷效益。 这要求所采用的相应机组有着合 理的结构和工作流程,更要求在不同的工作参数区间都有相对应的高性能指数的吸收式热泵。
为使第一类吸收式热泵的供热温度和性能指数得到提高, 人们先是通过研究得到了不同 效数和不同级数的机组, 进而采用增加供热端、 增加供热流程等方法进行不同热泵流程的复 合得到更为细致的效数和级数, 它们对应着相应的性能指数。 但是, 不同效数的第一类吸收 式热泵的工作参数区间是不相连的, 在性能指数上更是有着较大的差别; 不同级数的第一类 吸收式热泵在工作参数和性能指数两方面同样存在较大的差别。
从机组内部流程来看, 为提高第一类吸收式热泵的供热温度, 关键在于降低进入发生器 的溶液浓度; 为了能够利用更低温度的余热, 关键在于提高进入吸收器的溶液浓度。 如果能 够采取合理的技术措施, 同时提高进入吸收器的溶液浓度和降低进入发生器的溶液浓度, 并 且能够在一定范围内根据需求来选择溶液浓度提高和降低的幅度,这将有着非常重要的意义。
为了提升第一类吸收式热泵的供热温度、 使其具有较高的性能指数和实现工作参数之间 和性能指数之间的无间断衔接, 本发明采用巧妙的流程, 将回热原理应用于溶液的吸收-发生 过程,建立起回热式吸收-发生系统,并得到不同效数、不同级数的回热式第一类吸收式热泵; 再结合已有的技术措施, 实现不同工作参数区间对应相应的第一类吸收式热泵, 实现第一类 吸收式热泵在工作参数区间和性能指数上的连续衔接。
发明内容:
本发明的主要目的是提供回热式吸收-发生系统和回热式第一类吸收式热泵——首先提 出回热式吸收 -发生系统, 然后在回热式吸收-发生系统中增加不同的构件, 得到一系列回热 式第一类吸收式热泵。 具体发明内容分项阐述如下:
1. 回热式吸收 -发生系统, 主要由第一吸收器、 第二吸收器、 发生器、 第一溶液泵、 第 二溶液泵和溶液热交换器组成; 第一吸收器有稀溶液管路经第二溶液泵与第二吸收器连通, 第二吸收器还有稀溶液管路经第一溶液泵和溶液热交换器与发生器连通, 发生器还有浓溶液 管路经溶液热交换器和第二吸收器与第一吸收器连通, 第一吸收器还分别有被加热介质管路 与外部连通和有冷剂蒸汽通道与外部连通, 外部有冷剂液管路与第一吸收器连通后第一吸收 器再有冷剂蒸汽通道与第二吸收器连通, 发生器还分别有驱动热介质管路与外部连通和有冷 剂蒸汽通道与外部连通, 形成回热式吸收 -发生系统; 其中, 发生器变为精馏塔时, 第二吸收 器有稀溶液管路经第一溶液泵和溶液热交换器与精馏塔连通, 精馏塔还有浓溶液管路经溶液 热交换器和第二吸收器与第一吸收器连通, 精馏塔还分别有驱动热介质管路与外部连通、 有 被加热介质管路与外部连通和有冷剂蒸汽通道与外部连通。
2. 回热式吸收-发生系统, 主要由第一吸收器、 第二吸收器、 发生器、 第一溶液泵、 第 二溶液泵、 溶液热交换器、 分汽室和第三吸收器组成; 第一吸收器有稀溶液管路与第三吸收 器连通, 第三吸收器还有稀溶液管路经第二溶液泵与第二吸收器连通, 第二吸收器还有稀溶 液管路经第一溶液泵和溶液热交换器与发生器连通, 发生器还有浓溶液管路经溶液热交换器 和第二吸收器与分汽室连通, 分汽室还有浓溶液管路与第一吸收器连通, 第一吸收器还分别 有被加热介质管路与外部连通和有冷剂蒸汽通道与外部连通, 分汽室还有冷剂蒸汽通道与第 三吸收器连通, 外部有冷剂液管路与第三吸收器连通后第 S吸收'器再有冷剂蒸汽通道与第二 吸收器连通, 第三吸收器还有冷剂蒸汽通道与外部连通或分别有冷剂蒸汽通道与外部连通和 有被加热介质管路与外部连通, 发生器还分别有驱动热介质管路与外部连通和有冷剂蒸汽通 道与外部连通, 形成回热式吸收-发生系统; 其中, 发生器为精馏塔时, 第二吸收器有稀溶液 管路经第一溶液泵和溶液热交换器与精馏塔连通, 精馏塔还有浓溶液管路经溶液热交换器和 第二吸收器与分汽室连通, 精馏塔还分别有驱动热介质管路与外部连通、 有被加热介质管路 与外部连通和有冷剂蒸汽通道与外部连通。
3. 回热式吸收-发生系统, 是在第 2项所述、 第三吸收器有被加热介质管路与外部连通 的回热式吸收-发生系统中, 增加第三溶液泵和溶液节流阀, 将分汽室有浓溶液管路与第一吸 收器连通调整为分汽室有浓溶液管路经第三溶液泵与第一吸收器连通, 将第一吸收器有稀溶 液管路与第三吸收器连通调整为第一吸收器有稀溶液管路经溶液节流阀与第三吸收器连通, 形成回热式吸收-发生系统。
4. 回热式第一类吸收式热泵,是在第 1项所述的回热式吸收-发生系统中,增加冷凝器、 蒸发器、 第一节流阀、 冷剂液泵或第二节流阀, 将发生器有冷剂蒸汽通道与外部连通确定为 发生器有冷剂蒸汽通道与冷凝器连通, 冷凝器还有冷剂液管路经第一节流阀与蒸发器连通, 将第一吸收器有冷剂蒸汽通道与外部连通确定为蒸发器有冷剂蒸汽通道与第一吸收器连通, 将外部有冷剂液管路与第一吸收器连通后第一吸收器再有冷剂蒸汽通道与第二吸收器连通确 定为蒸发器有冷剂液管路经冷剂液泵与第一吸收器连通后第一吸收器再有冷剂蒸汽通道与第 二吸收器连通、 或确定为冷凝器有冷剂液管路经第二节流阀与第一吸收器连通后第一吸收器 再有冷剂蒸汽通道与第二吸收器连通, 冷凝器还有被加热介质管路与外部连通, 蒸发器还有 余热介质管路与外部连通, 形成单级单效回热式第一类吸收式热泵。
5. 回热式第一类吸收式热泵,是在第 2项所述的回热式吸收-发生系统中,增加冷凝器、 蒸发器、 第一节流阀、 冷剂液泵或第二节流阀, 将发生器有冷剂蒸汽通道与外部连通确定为 发生器有冷剂蒸汽通道与冷凝器连通, 冷凝器还有冷剂液管路经第一节流阔与蒸发器连通, 将第一吸收器有冷剂蒸汽通道与外部连通确定为蒸发器有冷剂蒸汽通道与第一吸收器连通, 将第三吸收器有冷剂蒸汽通道与外部连通确定为蒸发器有冷剂蒸汽通道与第三吸收器连通, 将外部有冷剂液管路与第三吸收器连通后第三吸收器再有冷剂蒸汽通道与第二吸收器连通确 定为蒸发器有冷剂液管路经冷剂液泵与第三吸收器连通后第三吸收器再有冷剂蒸汽通道与第 二吸收器连通、 或确定为冷凝器有冷剂液管路经第二节流阀与第三吸收器连通后第三吸收器 再有冷剂蒸汽通道与第二吸收器连通, 冷凝器还有被加热介质管路与外部连通, 蒸发器还有 余热介质管路与外部连通, 形成单级单效回热式第一类吸收式热泵。
6. 回热式第一类吸收式热泵,是在第 3项所述的回热式吸收-发生系统中,增加冷凝器、 第一蒸发器、 第二蒸发器、 第一节流阀、 第二节流阀、 冷剂液泵或第三节流阀, 将发生器有 冷剂蒸汽通道与外部连通确定为发生器有冷剂蒸汽通道与冷凝器连通, 冷凝器还有冷剂液管 路经第一节流阀与第一蒸发器连通, 第一蒸发器连通还有冷剂液管路经第二节流阀与第二蒸 发器连通, 将第一吸收器有冷剂蒸汽通道与外部连通确定为第一蒸发器有冷剂蒸汽通道与第 一吸收器连通, 将第三吸收器有冷剂蒸汽通道与外部连通确定为第二蒸发器有冷剂蒸汽通道 与第三吸收器连通, 将外部有冷剂液管路与第三吸收器连通后第三吸收器再有冷剂蒸汽通道 与第二吸收器连通确定为第一蒸发器或第二蒸发器有冷剂液管路经冷剂液泵与第三吸收器连 通后第三吸收器再有冷剂蒸汽通道与第二吸收器连通、 或确定为冷凝器有冷剂液管路经第三 节流阀与第三吸收器连通后第三吸收器再有冷剂蒸汽通道与第二吸收器连通, 冷凝器还有被 加热介质管路与外部连通, 第一蒸发器和第二蒸发器还分别有余热介质管路与外部连通, 形 成单级单效回热式第一类吸收式热泵。
7. 回热式第一类吸收式热泵, 是在第 4项所述的回热式第一类吸收式热泵中, 增加第 二 液热交换器和新增节流阀, 第一溶液泵增设稀溶 热交換 器与第二发生器连通, 第二发生器还有浓溶液管路经第二溶液热交换器之后与第一发生器经 第一溶液热交换器之后的浓溶液管路汇合、 再经第二吸收器与第一吸收器连通, 将第一发生 器有冷剂蒸汽通道与冷凝器连通调整为第一发生器有冷剂蒸汽通道与第二发生器连通后第二 发生器再有冷剂液管路经新增节流阀与冷凝器连通——第一发生器产生的冷剂蒸汽作为第二 发生器的驱动热介质, 第二发生器还有冷剂蒸汽通道与冷凝器连通, 形成单级并联双效回热 式第一类吸收式热泵。
8. 回热式第一类吸收式热泵, 是在第 5-6项所述的回热式第一类吸收式热泵中, 增加 第二发生器、 第二溶液热交换器和新增节流阀, 第一溶液泵增设稀溶液管路经第二溶液热交 换器与第二发生器连通, 第二发生器还有浓溶液管路经第二溶液热交换器之后与第一发生器 经第一溶液热交换器之后的浓溶液管路汇合、 再经第二吸收器与分汽室连通, 将第一发生器 有冷剂蒸汽通道与冷凝器连通调整为第一发生器有冷剂蒸汽通道与第二发生器连通后第二发 生器再有冷剂液管路经新增节流阀与冷凝器连通——第一发生器产生的冷剂蒸汽作为第二发 生器的驱动热介质, 第二发生器还有冷剂蒸汽通道与冷凝器连通, 形成单级并联双效回热式 第一类吸收式热泵。
9. 回热式第一类吸收式热泵, 是在第 4项所述的回热式第一类吸收式热泵中, 增加第 二发生器、 第二溶液热交换器和新增节流阔, 将第二吸收器有稀溶液管路经第一溶液泵和第 一溶液热交换器与第一发生器连通调整为第二吸收器有稀溶液管路经第一溶液泵、 第一溶液 热交换器和第二溶液热交换器与第一发生器连通, 将第一发生器有浓溶液管路经第一溶液热 交换器和第二吸收器与第一吸收器连通调整为第一发生器有浓溶液管路经第二溶液热交换器 与第二发生器连通, 第二发生器还有浓溶液管路经第一溶液热交换器和第二吸收器与第一吸 收器连通, 将第一发生器有冷剂蒸汽通道与冷凝器连通调整为第一发生器有冷剂蒸汽通道与 第二发生器连通后第二发生器再有冷剂液管路经新增节流阀与冷凝器连通——第一发生器产 生的冷剂蒸汽作为第二发生器的驱动热介质, 第二发生器还有冷剂蒸汽通道与冷凝器连通, 形成单级串联双效回热式第一类吸收式热泵。
10. 回热式第一类吸收式热泵, 是在第 5-6项所述的回热式第一类吸收式热泵中, 增加 第二发生器、 第二溶液热交换器和新增节流阀, 将第二吸收器有稀溶液管路经第一溶液泵和 第一溶液热交换器与第一发生器连通调整为第二吸收器有稀溶液管路经第一溶液泵、 第一溶 液热交换器和第二溶液热交换器与第一发生器连通, 将第一发生器有浓溶液管路经第一溶液 热交换器和第二吸收器与分汽室连通调整为第一发生器有浓溶液管路经第二溶液热交换器与 第二发生器连通, 第二发生器还有浓溶液管路经第一溶液热交换器和第二吸收器与分汽室连 通, 将第一发生器有冷剂蒸汽通道与冷凝器连通调整为第一发生器有冷剂蒸汽通道与第二发 生器连通后第二发生器再有冷剂液管路经新增节流阀与冷凝器连通——第一发生器产生的冷 剂蒸汽作为第二发生器的驱动热介质, 第二发生器还有冷剂蒸汽通道与冷凝器连通, 形成单 级串联双效回热式第一类吸收式热泵。
11. 回热式第一类吸收式热泵, 是在第 9-10项所述的回热式第一类吸收式热泵中, 将 第二吸收器有稀溶液管路经第一溶液泵、 第一溶液热交换器和第二溶液热交换器与第一发生 器连通调整为第二吸收器有稀溶液管路经第一溶液泵、 第一溶液热交换器之后分别直接与第 二发生器连通和再经第二溶液热交换器与第一发生器连通, 形成单级串并联双效回热式第一 类吸收式热泵。
12. 回热式第一类吸收式热泵, 是在第 4项所述的回热式第一类吸收式热泵中, 增加第 二发生器、 第二溶液热交换器、 新增节流阀和新增溶液泵, 将第二吸收器有稀溶液管路经第 一溶液泵和第一溶液热交换器与第一发生器连通调整为第二吸收器有稀溶液管路经第一溶液 泵和第一溶液热交换器与第二发生器连通, 第二发生器还有浓溶液管路经新增溶液泵和第二 溶液热又秧器与第一发生器连通, 将第一发生器有浓溶液管路经第一浴液热交换器和第二吸 收器与第一吸收器连通调整为第一发生器有浓溶液管路经第二溶液热交换器、 第一溶液热交 换器和第二吸收器与第一吸收器连通, 将第一发生器有冷剂蒸汽通道与冷凝器连通调整为第 一发生器有冷剂蒸汽通道与第二发生器连通后第二发生器再有冷剂液管路经新增节流阀与冷 凝器连通——第一发生器产生的冷剂蒸汽作为第二发生器的驱动热介质, 第二发生器还有冷 剂蒸汽通道与冷凝器连通, 形成单级串联双效回热式第一类吸收式热泵。
13. 回热式第一类吸收式热泵, 是在第 5-6项所述的回热式第一类吸收式热泵中, 增加 第二发生器、 第二溶液热交换器、 新增节流阀和新增溶液泵, 将第二吸收器有稀溶液管路经 第一溶液泵和第一溶液热交换器与第一发生器连通调整为第二吸收器有稀溶液管路经第一溶 液泵和第一溶液热交换器与第二发生器连通, 第二发生器还有浓溶液管路经新增溶液泵和第 二溶液热交换器与第一发生器连通, 将第一发生器有浓溶液管路经第一溶液热交换器和第二 吸收器与分汽室连通调整为第一发生器有浓溶液管路经第二溶液热交换器、 第一溶液热交换 器和第二吸收器与分汽室连通, 将第一发生器有冷剂蒸汽通道与冷凝器连通调整为第一发生 器有冷剂蒸汽通道与第二发生器连通后第二发生器再有冷剂液管路经新增节流阀与冷凝器连 通——第一发生器产生的冷剂蒸汽作为第二发生器的驱动热介质, 第二发生器还有冷剂蒸汽 通道与冷凝器连通, 形成单级串联双效回热式第一类吸收式热泵。
14. 回热式第一类吸收式热泵, 是在第 12- 13项所述的回热式第一类吸收式热泵中, 将 第二吸收器有稀溶液管路经第一溶液泵和第一溶液热交换器与第二发生器连通调整为第二吸 收器有稀溶液管路经第一溶液泵、 第一溶液热交换器之后分别与第二发生器连通和与第一发 生器连通, 形成单级串并联双效回热式第一类吸收式热泵。
15. 回热式第一类吸收式热泵, 是在第 4项所述的回热式第一类吸收式热泵中, 增加第 二发生器、 第三发生器、 第二溶液热交换器、 第三溶液热交换器、 新增第一节流阔和新增第 二节流阀, 第一溶液泵增设稀溶液管路分别经第二溶液热交换器与第二发生器连通和经第三 溶液热交换器与第三发生器连通, 第二发生器有浓溶液管路经第二溶液热交换器之后和第三 发生器有浓溶液管路经第三溶液热交换器之后均与第一发生器经第一溶液热交换器之后的浓 溶液管路汇合、 再经第二吸收器与第一吸收器连通, 将第一发生器有冷剂蒸汽通道与冷凝器 连通调整为第一发生器有冷剂蒸汽通道与第二发生器连通后第二发生器再有冷剂液管路经新 增第一节流阀与冷凝器连通——第一发生器产生的冷剂蒸汽作为第二发生器的驱动热介质, 第二发生器还有冷剂蒸汽通道与第三发生器连通后第三发生器再有冷剂液管路经新增第二节 流阀与冷凝器连通——第二发生器产生的冷剂蒸汽作为第三发生器的驱动热介质, 第三发生 器还有冷剂蒸汽通道与冷凝器连通, 形成单级并联三效回热式第一类吸收式热泵。
16. 回热式第一类吸收式热泵, 是在第 5-6项所述的回热式第一类吸收式热泵中, 增加 第二发生器、 第三发生器、 第二溶液热交换器、 第三溶液热交换器、 新增第一节流阀和新增 第二节流阀, 第一溶液泵增设稀溶液管路分别经第二溶液热交换器与第二发生器连通和经第 三溶液热交换器与第三发生器连通, 第二发生器有浓溶液管路经第二溶液热交换器之后和第 三发生器有浓溶液管路经第三溶液热交换器之后均与第一发生器经第一溶液热交换器之后的 浓溶液管路汇合、 再经第二吸收器与分汽室连通, 将第一发生器有冷剂蒸汽通道与冷凝器连 通调整为第一发生器有冷剂蒸汽通道与第二发生器连通后第二发生器再有冷剂液管路经新增 第一节流阀与冷凝器连通——第一发生器产生的冷剂蒸汽作为第二发生器的驱动热介质, 第 二发生器还有冷剂蒸汽通道与第三发生器连通后第三发生器再有冷剂液管路经新增第二节流 阀与冷凝器连通——第二发生器产生的冷剂蒸汽作为第三发生器的驱动热介质, 第三发生器 还有冷剂蒸汽通道与冷凝器连通, 形成单级并联三效回热式第一类吸收式热泵。
17. 回热式第一类吸收式热泵, 是在第 4项所述的回热式第一类吸收式热泵中, 增加第 二发生器、 第三发生器、 第二溶液热交换器、 第三溶液热交换器、 新增第一节流阀和新增第 二 ! , ::吸收器有稀溶液管路经第一溶液荥和第一溶液'热 器垤通 调整为第二吸收器有稀溶液管路经第一溶液泵、 第一溶液热交换器、 第二溶液热交换器和第 三溶液热交换器与第一发生器连通, 将第一发生器有浓溶液管路经第一溶液热交换器和第二 吸收器与第一吸收器连通调整为第一发生器有浓溶液管路经第三溶液热交换器与第二发生器 连通, 第二发生器还有浓溶液管路经第二溶液热交换器与第三发生器连通, 第三发生器还有 浓溶液管路经第一溶液热交换器和第二吸收器与第一吸收器连通, 将第一发生器有冷剂蒸汽 通道与冷凝器连通调整为第一发生器有冷剂蒸汽通道与第二发生器连通后第二发生器再有冷 剂液管路经新增第一节流阀与冷凝器连通——第一发生器产生的冷剂蒸汽作为第二发生器的 驱动热介质, 第二发生器还有冷剂蒸汽通道与第三发生器连通后第三发生器再有冷剂液管路 经新增第二节流阀与冷凝器连通——第二发生器产生的冷剂蒸汽作为第三发生器的驱动热介 质, 第三发生器还有冷剂蒸汽通道与冷凝器连通, 形成单级串联三效回热式第一类吸收式热 泵。
18. 回热式第一类吸收式热泵, 是在第 5-6项所述的回热式第一类吸收式热泵中, 增加 第二发生器、 第三发生器、 第二溶液热交换器、 第三溶液热交换器、 新增第一节流阔和新增 第二节流阀, 将第二吸收器有稀溶液管路经第一溶液泵和第一溶液热交换器与第一发生器连 通调整为第二吸收器有稀溶液管路经第一溶液泵、 第一溶液热交换器、 第二溶液热交换器和 第三溶液热交换器与第一发生器连通, 将第一发生器有浓溶液管路经第一溶液热交换器和第 二吸收器与分汽室连通调整为第一发生器有浓溶液管路经第三溶液热交换器与第二发生器连 通, 第二发生器还有浓溶液管路经第二溶液热交换器与第三发生器连通, 第三发生器还有浓 溶液管路经第一溶液热交换器和第二吸收器与分汽室连通, 将第一发生器有冷剂蒸汽通道与 冷凝器连通调整为第一发生器有冷剂蒸汽通道与第二发生器连通后第二发生器再有冷剂液管 路经新增第一节流阀与冷凝器连通——第一发生器产生的冷剂蒸汽作为第二发生器的驱动热 介质, 第二发生器还有冷剂蒸汽通道与第三发生器连通后第三发生器再有冷剂液管路经新增 第二节流阀与冷凝器连通——第二发生器产生的冷剂蒸汽作为第三发生器的驱动热介质, 第 三发生器还有冷剂蒸汽通道与冷凝器连通, 形成单级串联三效回热式第一类吸收式热泵。
19. 回热式第一类吸收式热泵, 是在第 4项所述的回热式第一类吸收式热泵中, 增加第 二发生器、 第三发生器、 第二溶液热交换器、 第三溶液热交换器、 新增第一节流阀、 新增第 二节流阀、 新增第一溶液泵和新增第二溶液泵, 将第二吸收器有稀溶液管路经第一溶液泵和 第一溶液热交换器与第一发生器连通调整为第二吸收器有稀溶液管路经第一溶液泵和第一溶 液热交换器与第三发生器连通, 第三发生器还有浓溶液管路经新增第一溶液泵和第二溶液热 交换器与第二发生器连通, 第二发生器还有浓溶液管路经新增第二溶液泵和第三溶液热交换 器与第一发生器连通, 将第一发生器有浓溶液管路经第一溶液热交换器和第二吸收器与第一 吸收器连通调整为第一发生器有浓溶液管路经第三溶液热交换器、 第二溶液热交换器、 第一 溶液热交换器和第二吸收器与第一吸收器连通, 将第一发生器有冷剂蒸汽通道与冷凝器连通 调整为第一发生器有冷剂蒸汽通道与第二发生器连通后第二发生器再有冷剂液管路经新增第 一节流阀与冷凝器连通——第一发生器产生的冷剂蒸汽作为第二发生器的驱动热介质, 第二 发生器还有冷剂蒸汽通道与第三发生器连通后第三发生器再有冷剂液管路经新增第二节流阀 与冷凝器连通——第二发生器产生的冷剂蒸汽作为第三发生器的驱动热介质, 第三发生器还 有冷剂蒸汽通道与冷凝器连通, 形成单级串联三效回热式第一类吸收式热泵。
20. 回热式第一类吸收式热泵, 是在第 5-6项所述的回热式第一类吸收式热泵中, 增加 第二发生器、 第三发生器、 第二溶液热交换器、 第三溶液热交换器、 新增第一节流阀、 新增 第二节流阀、 新增第一溶液泵和新增第二溶液泵, 将第二吸收器有稀溶液管路经第一溶液泵 和第一溶液热交换器与第一发生器连通调整为第二吸收器有稀溶液管路经第一溶液泵和第一 溶液热交换器与第三发生器连通, 第三发生器还有浓溶液管路经新增第一溶液泵和第二溶液 热 王器迕通, 弟二及王器^^ 浴淞官¾¾靳堦弟 袱 父 换器与第一发生器连通, 将第一发生器有浓溶液管路经第一溶液热交换器和第二吸收器与分 汽室连通调整为第一发生器有浓溶液管路经第三溶液热交换器、 第二溶液热交换器、 第一溶 液热交换器和第二吸收器与分汽室连通, 将第一发生器有冷剂蒸汽通道与冷凝器连通调整为 第一发生器有冷剂蒸汽通道与第二发生器连通后第二发生器再有冷剂液管路经新增第一节流 阀与冷凝器连通——第一发生器产生的冷剂蒸汽作为第二发生器的驱动热介质, 第二发生器 还有冷剂蒸汽通道与第三发生器连通后第三发生器再有冷剂液管路经新增第二节流阀与冷凝 器连通——第二发生器产生的冷剂蒸汽作为第三发生器的驱动热介质, 第三发生器还有冷剂 蒸汽通道与冷凝器连通, 形成单级串联三效回热式第一类吸收式热泵。
21. 回热式第一类吸收式热泵, 是在第 4项所述的回热式第一类吸收式热泵中, 增加第 二溶液热交换器、 吸收-蒸发器、 第二冷剂液泵或新增节流阔, 将第一吸收器有稀溶液管路经 第二溶液泵与第二吸收器连通调整为第一吸收器有稀溶液管路经第二溶液热交换器与吸收- 蒸发器连通,吸收 -蒸发器还有稀溶液管路经第二溶液泵和第二溶液热交换器与第二吸收器连 通,将蒸发器有冷剂蒸汽通道与第一吸收器连通调整为蒸发器有冷剂蒸汽通道与吸收-蒸发器 连通, 蒸发器增设冷剂液管路经第二冷剂液泵与吸收 -蒸发器连通后吸收 -蒸发器再有冷剂蒸 汽通道与第一吸收器连通、或冷凝器增设冷剂液管路经新增节流阀与吸收-蒸发器连通后吸收 -蒸发器再有冷剂蒸汽通道与第一吸收器连通, 形成单发生器两级回热式第一类吸收式热泵。
22. 回热式第一类吸收式热泵, 是在第 5项所述的回热式第一类吸收式热泵中, 增加第 二溶液热交换器、 吸收-蒸发器、 第二冷剂液泵或新增节流阔, 将第三吸收器有稀溶液管路经 第二溶液泵与第二吸收器连通调整为第三吸收器有稀溶液管路经第二溶液热交换器与吸收- 蒸发器连通,吸收 -蒸发器还有稀溶液管路经第二溶液泵和第二溶液热交换器与第二吸收器连 通, 将蒸发器有冷剂蒸汽通道分别与第一吸收器和第三吸收器连通调整为蒸发器有冷剂蒸汽 通道与吸收-蒸发器连通,蒸发器增设冷剂液管路经第二冷剂液泵与吸收-蒸发器连通后吸收- 蒸发器再有冷剂蒸汽通道分别与第一吸收器和第三吸收器连通、 或冷凝器增设冷剂液管路经 新增节流阀与吸收 -蒸发器连通后吸收 -蒸发器再有冷剂蒸汽通道分别与第一吸收器和第三吸 收器连通, 形成单发生器两级回热式第一类吸收式热泵。
23. 回热式第一类吸收式热泵, 是在第 5项所述、 第三吸收器无被加热介质管路与外部 连通的回热式第一类吸收式热泵中, 增加第三溶液泵、 第二溶液热交换器、 吸收-蒸发器、 第 二冷剂液泵或新增节流阀, 将分汽室有浓溶液管路与第一吸收器连通调整为分汽室有浓溶液 管路经第三溶液泵和第二溶液热交换器与第一吸收器连通, 将第一吸收器有稀溶液管路与第 三吸收器连通调整为第一吸收器有稀溶液管路经第二溶液热交换器与吸收-蒸发器连通,吸收 -蒸发器还有稀溶液管路与第三吸收器连通,将蒸发器有冷剂蒸汽通道与第一吸收器连通调整 为蒸发器有冷剂蒸汽通道与吸收-蒸发器连通,蒸发器增设冷剂液管路经第二冷剂液泵与吸收 -蒸发器连通后吸收 -蒸发器再有冷剂蒸汽通道与第一吸收器连通、 或冷凝器增设冷剂液管路 经新增节流阀与吸收 -蒸发器连通后吸收 -蒸发器再有冷剂蒸汽通道与第一吸收器连通, 形成 单发生器两级回热式第一类吸收式热泵。
24. 回热式第一类吸收式热泵, 是在第 5项所述、第三吸收器无被加热介质管路与外部 连通的回热式第一类吸收式热泵中, 增加第三溶液泵和第二溶液热交换器, 将分汽室有浓溶 液管路与第一吸收器连通调整为分汽室有浓溶液管路经第三溶液泵和第二溶液热交换器与第 一吸收器连通, 将第一吸收器有稀溶液管路与第三吸收器连通调整为第一吸收器有稀溶液管 路经第二溶液热交换器与第三吸收器连通, 取消蒸发器与第一吸收器连通的冷剂蒸汽通道, 将蒸发器有冷剂液管路经冷剂液泵与第三吸收器连通后第三吸收器再有冷剂蒸汽通道与第二 吸收器连通、 或冷凝器有冷剂液管路经第二节流阔与第三吸收器连通后第三吸收器再有冷剂 蒸汽通道与第二吸收器连通相应调整为蒸发器有冷剂液管路经冷剂液泵与第三吸收器连通后 第三吸收器再有冷剂蒸汽通道分别与第一吸收器和第二吸收器连通、 ¾冷凝器 ¾ 刑液管路 经第二节流阀与第三吸收器连通后第三吸收器再有冷剂蒸汽通道分别与第一吸收器和第二吸 收器连通, 形成单发生器两级回热式第一类吸收式热泵。
25. 回热式第一类吸收式热泵, 是在第 4项所述的回热式第一类吸收式热泵中, 增加新 增吸收器、 第二溶液热交换器、 第二冷剂液泵或新增节流阀, 将第二吸收器有稀溶液管路经 第一溶液泵和第一溶液热交换器与发生器连通调整为第二吸收器有稀溶液管路经第一溶液 泵、 第一溶液热交换器和第二溶液热交换器与发生器连通, 将发生器有浓溶液管路经第一溶 液热交换器和第二吸收器与第一吸收器连通调整为发生器有浓溶液管路经第二溶液热交换器 与新增吸收器连通, 新增吸收器还有稀溶液管路经第一溶液热交换器和第二吸收器与第一吸 收器连通, 将第一吸收器有被加热介质管路与外部连通调整为蒸发器增设冷剂液管路经第二 冷剂液泵与第一吸收器连通后第一吸收器再有冷剂蒸汽通道与新增吸收器连通、 或调整为冷 凝器增设冷剂液管路经新增节流阀第一吸收器连通后第一吸收器再有冷剂蒸汽通道与新增吸 收器连通, 新增吸收器还有被加热介质管路与外部连通, 形成单发生器两级回热式第一类吸 收式热泵。
26. 回热式第一类吸收式热泵, 是在第 5项所述、 第三吸收器无被加热介质管路与外部 连通的回热式第一类吸收式热泵中, 增加新增吸收器、 第二溶液热交换器、 第二冷剂液泵或 新增节流阀, 将第二吸收器有稀溶液管路经第一溶液泵和第一溶液热交换器与发生器连通调 整为第二吸收器有稀溶液管路经第一溶液泵、 第一溶液热交换器和第二溶液热交换器与发生 器连通, 将发生器有浓溶液管路经第一溶液热交换器和第二吸收器与分汽室连通调整为发生 器有浓溶液管路经第二溶液热交换器与新增吸收器连通, 新增吸收器还有稀溶液管路经第一 溶液热交换器和第二吸收器与分汽室连通, 将第一吸收器有被加热介质管路与外部连通调整 为蒸发器增设冷剂液管路经第二冷剂液泵与第一吸收器连通后第一吸收器再有冷剂蒸汽通道 与新增吸收器连通、 或调整为冷凝器增设冷剂液管路经新增节流阀与第一吸收器连通后第一 吸收器再有冷剂蒸汽通道与新增吸收器连通, 新增吸收器还有被加热介质管路与外部连通, 形成单发生器两级回热式第一类吸收式热泵。
27. 回热式第一类吸收式热泵, 是在第 4-6项所述的回热式第一类吸收式热泵中, 增加 第二发生器、 新增吸收器、 新增溶液泵和第二溶液热交换器, 将第一发生器有冷剂蒸汽通道 与冷凝器连通调整为第一发生器有冷剂蒸汽通道与新增吸收器连通, 新增吸收器还有稀溶液 管路经新增溶液泵和第二溶液热交换器与第二发生器连通, 第二发生器还有浓溶液管路经第 二溶液热交换器与新增吸收器连通, 第二发生器还分别有冷剂蒸汽通道与冷凝器连通和有驱 动热介质管路与外部连通, 新增吸收器还有被加热介质管路与外部连通, 形成由第一发生器 向新增吸收器提供冷剂蒸汽的双发生器两级回热式第一类吸收式热泵。
28. 回热式第一类吸收式热泵, 是在第 4项所述的回热式第一类吸收式热泵中, 增加第 二发生器、 新增吸收器、 新增溶液泵、 第二溶液热交换器和第三溶液热交换器, 将第二吸收 器有稀溶液管路经第一溶液泵和第一溶液热交换器与第一发生器连通调整为第二吸收器有稀 溶液管路经第一溶液泵、 第一溶液热交换器和第二溶液热交换器与第二发生器连通, 第二发 生器还有浓溶液管路经第二溶液热交换器与新增吸收器连通, 新增吸收器还有稀溶液管路经 新增溶液泵和第三溶液热交换器与第一发生器连通, 将第一发生器有浓溶液管路经第一溶液 热交换器和第二吸收器与第一吸收器连通调整为第一发生器有浓溶液管路经第三溶液热交换 器、 第一溶液热交换器和第二吸收器与第一吸收器连通调, 将第一发生器有冷剂蒸汽通道与 冷凝器连通调整为第一发生器有冷剂蒸汽通道与新增吸收器连通, 第二发生器还分别有冷剂 蒸汽通道与冷凝器连通和有驱动热介质管路与外部连通, 新增吸收器还有被加热介质管路与 外部连通, 形成由第一发生器向新增吸收器提供冷剂蒸汽的双发生器两级回热式第一类吸收 式热泵。 j i第一类吸收式热荥, 是在第 5-6项所还的仕一凹热 , 增加第二发生器、 新增吸收器、 新增溶液泵、 第二溶液热交换器和第三溶液热交换器, 将第 二吸收器有稀溶液管路经第一溶液泵和第一溶液热交换器与第一发生器连通调整为第二吸收 器有稀溶液管路经第一溶液泵、 第一溶液热交换器和第二溶液热交换器与第二发生器连通, 第二发生器还有浓溶液管路经第二溶液热交换器与新增吸收器连通, 新增吸收器还有稀溶液 管路经新增溶液泵和第三溶液热交换器与第一发生器连通, 将第一发生器有浓溶液管路经第 一溶液热交换器和第二吸收器与分汽室连通调整为第一发生器有浓溶液管路经第三溶液热交 换器、 第一溶液热交换器和第二吸收器与分汽室连通调, 将第一发生器有冷剂蒸汽通道与冷 凝器连通调整为第一发生器有冷剂蒸汽通道与新增吸收器连通, 第二发生器还分别有冷剂蒸 汽通道与冷凝器连通和有驱动热介质管路与外部连通, 新增吸收器还有被加热介质管路与外 部连通, 形成由第一发生器向新增吸收器提供冷剂蒸汽的双发生器两级回热式第一类吸收式 热泵。
30. 回热式第一类吸收式热泵,是在第 27-29项所述的任一回热式第一类吸收式热泵中, 增加第二冷凝器和新增节流阀, 将第二发生器有冷剂蒸汽通道与第一冷凝器连通调整为第二 发生器有冷剂蒸汽通道与第二冷凝器连通, 第二冷凝器还有冷剂液管路经新增节流阀与第一 冷凝器连通, 第一发生器增设冷剂蒸汽通道与第一冷凝器连通, 第二冷凝器还有被加热介质 管路与外部连通, 形成由第一发生器分别向第一冷凝器和新增吸收器提供冷剂蒸汽的双发生 器两级回热式第一类吸收式热泵。
31. 回热式第一类吸收式热泵, 是在第 4项所述的任一回热式第一类吸收式热泵中, 增 加第二发生器、 新增吸收器、 新增溶液泵和第二溶液热交换器, 将蒸发器有冷剂蒸汽通道与 第一吸收器连通调整为发器有冷剂蒸汽通道与新增吸收器连通, 新增吸收器还有稀溶液管路 经新增溶液泵和第二溶液热交换器与第二发生器连通, 第二发生器还有浓溶液管路经第二溶 液热交换器与新增吸收器连通, 第二发生器还分别有冷剂蒸汽通道与第一吸收器连通和有驱 动热介质管路与外部连通, 新增吸收器还有被加热介质管路与外部连通, 形成由第二发生器 向第一吸收器提供冷剂蒸汽的双发生器两级回热式第一类吸收式热泵。
32. 回热式第一类吸收式热泵, 是在第 5项所述的任一回热式第一类吸收式热泵中, 增 加第二发生器、 新增吸收器、 新增溶液泵和第二溶液热交换器, 将蒸发器有冷剂蒸汽通道分 别与第一吸收器和第三吸收器连通调整为发器有冷剂蒸汽通道与新增吸收器连通, 新增吸收 器还有稀溶液管路经新增溶液泵和第二溶液热交换器与第二发生器连通, 第二发生器还有浓 溶液管路经第二溶液热交换器与新增吸收器连通, 第二发生器还有冷剂蒸汽通道分别与第一 吸收器和第三吸收器连通, 第二发生器还有驱动热介质管路与外部连通, 新增吸收器还有被 加热介质管路与外部连通, 形成由第二发生器向第一吸收器或分别向第一吸收器和第三吸收 器提供冷剂蒸汽的双发生器两级回热式第一类吸收式热泵。
33. 回热式第一类吸收式热泵,是在第 31- 32项所述的任一回热式第一类吸收式热泵中, 增加第二冷凝器和新增节流阀, 第二发生器增设冷剂蒸汽通道与第二冷凝器连通, 第二冷凝 器还有冷剂液管路经再节流阀与蒸发器连通, 第二冷凝器还有被加热介质管路与外部连通, 形成由第二发生器分别向第二冷凝器、 第一吸收器或再加上第三吸收器提供冷剂蒸汽的双发 生器两级回热式第一类吸收式热泵; 其中, 还可选择将第一冷凝器有冷剂液管路经第一节流 阀与蒸发器连通调整为第一冷凝器有冷剂液管路经第一节流阀与第二冷凝器连通。
34. 回热式第一类吸收式热泵, 是在第 4项所述的任一回热式第一类吸收式热泵中, 增 加第二发生器、 新增吸收器、 新增溶液泵和第二溶液热交换器, 将第一发生器有冷剂蒸汽通 道与冷凝器连通调整为第一发生器有冷剂蒸汽通道与新增吸收器连通, 新增吸收器还有稀溶 液管路经新增溶液泵和第二溶液热交换器与第二发生器连通, 第二发生器还有浓溶液管路经 第二溶液热交换器与新增吸收器连通, 第二发生器还分别有冷剂蒸汽通道与冷凝器连通和有 _
驱动热介质管路与外部连通, 新增吸收器还有被加热介质営路与外 吸叹益 与外部连通的被加热介质管路, 将蒸发器有冷剂液管路经冷剂液泵与第一吸收器连通后第一 吸收器再有冷剂蒸汽通道与第二吸收器连通调整为蒸发器有冷剂液管路经冷剂液泵与第一吸 收器连通后第一吸收器再有冷剂蒸汽通道分别与第二吸收器和新增吸收器连通、 或将冷凝器 有冷剂液管路经第二节流阀与第一吸收器连通后第一吸收器再有冷剂蒸汽通道与第二吸收器 连通调整为冷凝器有冷剂液管路经第二节流阀与第一吸收器连通后第一吸收器再有冷剂蒸汽 通道分别与第二吸收器和新增吸收器连通, 形成由第一吸收器和第一发生器共同向新增吸收 器提供冷剂蒸汽的双发生器两级回热式第一类吸收式热泵。
35. 回热式第一类吸收式热泵, 是在第 4项所述的任一回热式第一类吸收式热泵中, 增 加第二发生器、 新增吸收器、 新增溶液泵和第二溶液热交换器, 将第一发生器有冷剂蒸汽通 道与冷凝器连通调整为第一发生器有冷剂蒸汽通道与新增吸收器连通, 新增吸收器还有稀溶 液管路经新增溶液泵和第二溶液热交换器与第二发生器连通, 第二发生器还有浓溶液管路经 第二溶液热交换器与新增吸收器连通, 第二发生器还分别有冷剂蒸汽通道与冷凝器连通和有 驱动热介质管路与外部连通, 新增吸收器还有被加热介质管路与外部连通; 取消第一吸收器 与外部连通的被加热介质管路, 增加第二冷剂液泵或新增节流阀, 蒸发器增设冷剂液管路经 第二冷剂液泵与第一吸收器连通后第一吸收器再有冷剂蒸汽通道与新增吸收器连通、 或冷凝 器增设冷剂液管路经新增节流阀与第一吸收器连通后第一吸收器再有冷剂蒸汽通道与新增吸 收器连通, 形成由第一吸收器和第一发生器共同向新增吸收器提供冷剂蒸汽的双发生器两级 回热式第一类吸收式热泵。
36. 回热式第一类吸收式热泵, 是在第 5项所述、 第三吸收器无被加热介质管路与外部 连通的回热式第一类吸收式热泵中, 增加第二发生器、 新增吸收器、 新增溶液泵和第二溶液 热交换器, 将第一发生器有冷剂蒸汽通道与冷凝器连通调整为第一发生器有冷剂蒸汽通道与 新增吸收器连通, 新增吸收器还有稀溶液管路经新增溶液泵和第二溶液热交换器与第二发生 器连通, 第二发生器还有浓溶液管路经第二溶液热交换器与新增吸收器连通, 第二发生器还 分别有冷剂蒸汽通道与冷凝器连通和有驱动热介质管路与外部连通, 新增吸收器还有被加热 介质管路与外部连通; 取消第一吸收器与外部连通的被加热介质管路, 增加第二冷剂液泵或 新增节流阀, 蒸发器增设冷剂液管路经第二冷剂液泵与第一吸收器连通后第一吸收器再有冷 剂蒸汽通道与新增吸收器连通、 或冷凝器增设冷剂液管路经新增节流阀与第一吸收器连通后 第一吸收器再有冷剂蒸汽通道与新增吸收器连通, 形成由第一吸收器和第一发生器共同向新 增吸收器提供冷剂蒸汽的双发生器两级回热式第一类吸收式热泵。
37. 回热式第一类吸收式热泵, 是在第 4项所述的回热式第一类吸收式热泵中, 增加第 二发生器、 第二溶液热交换器、 新增溶液泵、 吸收-蒸发器、 第二冷剂液泵或新增节流阔, 将 蒸发器有冷剂蒸汽通道与第一吸收器连通调整为蒸发器有冷剂蒸汽通道与吸收-蒸发器连通, 吸收-蒸发器还有稀溶液管路经新增溶液泵和第二溶液热交换器与第二发生器连通,第二发生 器还有浓溶液管路经第二溶液热交换器与吸收-蒸发器连通,第二发生器还分别有冷剂蒸汽通 道与第一吸收器连通和有驱动热介质管路与外部连通, 蒸发器增设冷剂液管路经第二冷剂液 泵与吸收 -蒸发器连通后吸收 -蒸发器再有冷剂蒸汽通道与第一吸收器连通、 或冷凝器增设冷 剂液管路经新增节流阀与吸收-蒸发器连通后吸收-蒸发器再有冷剂蒸汽通道与第一吸收器连 通,形成由吸收-蒸发器和第二发生器共同向第一吸收器提供冷剂蒸汽的双发生器两级回热式 第一类吸收式热泵。
38. 回热式第一类吸收式热泵, 是在第 32项所述的任一回热式第一类吸收式热泵中, 取消新增吸收器与外部连通的被加热介质管路, 增加第二冷剂液泵或新增节流阀, 蒸发器增 设冷剂液管路经第二冷剂液泵与新增吸收器连通后新增吸收器再有冷剂蒸汽通道分别与第一 吸收器和第三吸收器连通、 或冷凝器增设冷剂液管路经新增节流阀与新增吸收器连通后新增 吸收器冉 冷刑蒸汽通道分别与第一吸收器和第三吸收器连通, 形成由新増吸收器和第二发 生器二者共同向第一吸收器或共同向第一吸收器和第三吸收器提供冷剂蒸汽的双发生器两级 回热式第一类吸收式热泵。
39. 回热式第一类吸收式热泵,是在第 7-20项所述的任一回热式第一类吸收式热泵中, 增加高温冷凝器和高温节流阀, 高压发生器增设冷剂蒸汽通道与高温冷凝器连通, 高温冷凝 器还有冷剂液管路经高温节流阀与冷凝器连通,高温冷凝器还有被加热介质管路与外部连通, 形成以高温冷凝器为附加高温供热端的回热式第一类吸收式热泵。
40. 回热式第一类吸收式热泵,是在第 15-20项所述的任一回热式第一类吸收式热泵中, 增加高温冷凝器和高温节流阀, 中压发生器增设冷剂蒸汽通道与高温冷凝器连通, 高温冷凝 器还有冷剂液管路经高温节流阀与冷凝器连通,高温冷凝器还有被加热介质管路与外部连通, 形成以高温冷凝器为附加高温供热端的回热式第一类吸收式热泵。
41. 回热式第一类吸收式热泵,是在第 7-14项所述的任一回热式第一类吸收式热泵中, 增加二级吸收器、 二级发生器、 二级溶液泵和二级溶液热交换器, 将低压发生器有冷剂液管 路经新增节流阀与冷凝器连通调整为低压发生器有冷剂液管路经新增节流阀与第一蒸发器连 通, 将低压发生器有冷剂蒸汽通道与冷凝器连通调整为低压发生器有冷剂蒸汽通道与二级吸 收器连通,二级吸收器还有稀溶液管路经二级溶液泵和二级溶液热交换器与二级发生器连通, 二级发生器还有浓溶液管路经二级溶液热交换器与二级吸收器连通, 二级发生器还分别有冷 剂蒸汽通道与冷凝器连通和有驱动热介质管路与外部连通, 二级吸收器还有被加热介质管路 与外部连通, 形成由低压发生器向二级吸收器提供冷剂蒸汽、 以单级双效为第一级的两级回 热式第一类吸收式热泵。
42. 回热式第一类吸收式热泵,是在第 7-14项所述的任一回热式第一类吸收式热泵中, 增加二级吸收器、 二级发生器、 二级溶液泵、 二级溶液热交换器、 二级冷凝器和二级节流阀, 低压发生器增设冷剂蒸汽通道与二级吸收器连通, 二级吸收器还有稀溶液管路经二级溶液泵 和二级溶液热交换器与二级发生器连通, 二级发生器还有浓溶液管路经二级溶液热交换器与 二级吸收器连通, 二级发生器还分别有冷剂蒸汽通道与二级冷凝器连通和有驱动热介质管路 与外部连通, 二级冷凝器还有冷剂液管路经二级节流阀与第一冷凝器连通, 二级吸收器和二 级冷凝器还分别有被加热介质管路与外部连通, 形成由低压发生器分别向第一冷凝器和二级 吸收器提供冷剂蒸汽、 以单级双效为第一级的两级回热式第一类吸收式热泵。
43. 回热式第一类吸收式热泵,是在第 15- 20项所述的任一回热式第一类吸收式热泵中, 增加二级吸收器、 二级发生器、 二级溶液泵和二级溶液热交换器, 将中压发生器有冷剂液管 路经新增第一节流阀与冷凝器连通调整为中压发生器有冷剂液管路经新增第一节流阀与第一 蒸发器连通, 将低压发生器有冷剂液管路经新增第二节流阀与冷凝器连通调整为低压发生器 有冷剂液管路经新增第二节流阀与第一蒸发器连通, 将低压发生器有冷剂蒸汽通道与冷凝器 连通调整为低压发生器有冷剂蒸汽通道与二级吸收器连通, 二级吸收器还有稀溶液管路经二 级溶液泵和二级溶液热交换器与二级发生器连通, 二级发生器还有浓溶液管路经二级溶液热 交换器与二级吸收器连通, 二级发生器还分别有冷剂蒸汽通道与冷凝器连通和有驱动热介质 管路与外部连通, 二级吸收器还有被加热介质管路与外部连通, 形成由低压发生器向二级吸 收器提供冷剂蒸汽、 以单级三效为第一级的两级回热式第一类吸收式热泵。
44. 回热式第一类吸收式热泵,是在第 15-20项所述的任一回热式第一类吸收式热泵中, 增加二级吸收器、 二级发生器、 二级溶液泵、 二级溶液热交换器、 二级冷凝器和二级节流阔, 低压发生器增设冷剂蒸汽通道与二级吸收器连通, 二级吸收器还有稀溶液管路经二级溶液泵 和二级溶液热交换器与二级发生器连通, 二级发生器还有浓溶液管路经二级溶液热交换器与 二级吸收器连通, 二级发生器还分别有冷剂蒸汽通道与二级冷凝器连通和有驱动热介质管路 与外部连通, 二级冷凝器还有冷剂液管路经二级节流阀与第一冷凝器连通, 二级吸收器和二 级冷凝益^^別 被加热介质管路与外部连通, 形成由低压发生器分別冋弟一^凝器和二级 吸收器提供冷剂蒸汽、 以单级三效为第一级的两级回热式第一类吸收式热泵。
附图说明:
图 1是依据本发明所提供的回热式吸收 -发生系统第 1种结构和流程示意图。
图 2是依据本发明所提供的回热式吸收 -发生系统原理、 结构和流程示意图。
图 3是依据本发明所提供的回热式吸收 -发生系统第 2种结构和流程示意图。
图 4是依据本发明所提供的回热式吸收 -发生系统第 3种结构和流程示意图。
图 5是依据本发明所提供的单级单效回热式第一类吸收式热泵第 1个结构和流程示意图。 图 6是依据本发明所提供的单级单效回热式第一类吸收式热泵第 2个结构和流程示意图。 图 7是依据本发明所提供的单级单效回热式第一类吸收式热泵第 3个结构和流程示意图。 图 8是依据本发明所提供的单级单效回热式第一类吸收式热泵第 4个结构和流程示意图。 图 9是依据本发明所提供的单级单效回热式第一类吸收式热泵第 5个结构和流程示意图。 图 10是依据本发明所提供的单级并联双效回热式第一类吸收式热泵第 1个结构和流程示 意图。
图 11是依据本发明所提供的单级并联双效回热式第一类吸收式热泵第 2个结构和流程示 图 12是依据本发明所提供的单级串联双效回热式第一类吸收式热泵第 1个结构和流程示 意图。
图 13是依据本发明所提供的单级串联双效回热式第一类吸收式热泵第 2个结构和流程示 图 14是依据本发明所提供的单级串联双效回热式第一类吸收式热泵第 3个结构和流程示 意图。
图 15 是依据本发明所提供的单级串并联双效回热式第一类吸收式热泵结构和流程示意 图。
图 16是依据本发明所提供的单级并联三效回热式第一类吸收式热泵第 1个结构和流程示 图 17是依据本发明所提供的单级并联三效回热式第一类吸收式热泵第 2个结构和流程示 图 18是依据本发明所提供的单级串联三效回热式第一类吸收式热泵第 1个结构和流程示 图 19是依据本发明所提供的单级串联三效回热式第一类吸收式热泵第 2个结构和流程示 图 20是依据本发明所提供的单级串联三效回热式第一类吸收式热泵第 3个结构和流程示 意图。
图 21是依据本发明所提供的单发生器两级回热式第一类吸收式热泵第 1个结构和流程示 意图。
图 22是依据本发明所提供的单发生器两级回热式第一类吸收式热泵第 2个结构和流程示 意图。
图 23是依据本发明所提供的单发生器两级回热式第一类吸收式热泵第 3个结构和流程示 意图。
图 24是依据本发明所提供的单发生器两级回热式第一类吸收式热泵第 4个结构和流程示 图 25是依据本发明所提供的单发生器两级回热式第一类吸收式热泵第 5个结构和流程示 发明所提供的单发生器两级 IEJ热式第一类吸收式 流桎不 意图。
图 27是依据本发明所提供的双发生器两级回热式第一类吸收式热泵第 1个结构和流程示 意图。
图 28是依据本发明所提供的双发生器两级回热式第一类吸收式热泵第 2个结构和流程示 意图。
图 29是依据本发明所提供的双发生器两级回热式第一类吸收式热泵第 3个结构和流程示 意图。
图 30是依据本发明所提供的双发生器两级回热式第一类吸收式热泵第 4个结构和流程示 意图。
图 31是依据本发明所提供的双发生器两级回热式第一类吸收式热泵第 5个结构和流程示 意图。
图 32是依据本发明所提供的双发生器两级回热式第一类吸收式热泵第 6个结构和流程示 意图。
图 33是依据本发明所提供的双发生器两级回热式第一类吸收式热泵第 7个结构和流程示 图 27-33所示的双发生器两级回热式第一类吸收式热泵, 由第一发生器或第二发生器向 第二级热泵流程提供冷剂蒸汽。
图 34是依据本发明所提供的双发生器两级回热式第一类吸收式热泵第 8个结构和流程示 意图。
图 35是依据本发明所提供的双发生器两级回热式第一类吸收式热泵第 9个结构和流程示 意图。
图 36是依据本发明所提供的双发生器两级回热式第一类吸收式热泵第 10个结构和流程 示意图。
图 37是依据本发明所提供的双发生器两级回热式第一类吸收式热泵第 11个结构和流程 示意图。
图 38是依据本发明所提供的双发生器两级回热式第一类吸收式热泵第 12个结构和流程 示意图。
图 34-38所示的双发生器两级回热式第一类吸收式热泵, 由第一吸收器和第一发生器、 或由吸收-蒸发器和第二发生器、或由新增吸收器和第二发生器共同向第二级热泵流程提供冷 剂蒸汽。
图 39是依据本发明所提供、以高温冷凝器为附加高温供热端的单级并联双效回热式第一 类吸收式热泵结构和流程示意图。
图 40是依据本发明所提供、以高温冷凝器为附加高温供热端的单级并联三效回热式第一 类吸收式热泵结构和流程示意图。
图 41是依据本发明所提供、以单级并联双效为第一级的两级回热式第一类吸收式热泵第 1个结构和流程示意图。
图 42是依据本发明所提供、以单级并联双效为第一级的两级回热式第一类吸收式热泵第 2个结构和流程示意图。
图中, 1一第一吸收器, 2—第二吸收器, 3—发生器 (精馏塔) /第一发生器, 4一第一溶液 泵, 5—第二溶液泵, 6—溶液热交换器 /第一溶液热交换器, 7—分汽室, 8—第三吸收器, 9 一第三溶液泵, 10—溶液节流阀。
图中, A—冷凝器 /第一冷凝器, B—蒸发器 /第一蒸发器, C一节流阀 /第一节流阀, D—冷 剂液泵 /第一冷剂液泵, E—第二节流阀, F—第二蒸发器, G—第三节流阀, H—第二发生器, I一 怏器, J一新堦节流阀 /新増第一节流阀, κ一靳堦 r; 浴凇汞,
L一第三发生器, M—第三溶液热交换器, N—新增第二节流阀, 0—新增第二溶液泵, P—第二 冷剂液泵, Q—吸收-蒸发器, R—新增吸收器, S_第二冷凝器。
图中, al—高温冷凝器, bl—高温节流阀; a2—二级吸收器, b2—二级发生器, c2—二 级溶液泵, d2—二级溶液热交换器, e2—二级冷凝器, f2—二级节流阀。
需要指出和说明的是:
①发生器 3的浓溶液经溶液热交换器 6降压后再流经第二吸收器 2吸热而实现部分汽化, 其中溶液热交换器 6不仅具有热交换的作用, 它也起到了溶液节流阀节流降压的作用; 必要 时可在浓溶液管路上增加溶液节流阀。
②在单级双效回热式第一类吸收式热泵中, 第一发生器 3和第二发生器 H也被称为高压 发生器和低压发生器; 同理, 在单级三效回热式第一类吸收式热泵中, 第一发生器 3、 第二 发生器 H和第三发生器 L也被称为高压发生器、 中压发生器和低压发生器。
③ "单级并联双效回热式第一类吸收式热泵" 中的 "并联"是指回热式第一类吸收式热 泵实现双效流程时溶液循环为并联; "单级并联三效"亦如此。
④ "单级串联双效回热式第一类吸收式热泵" 中的 "串联"是指回热式第一类吸收式热 泵实现双效流程时溶液循环为串联; "单级串联三效"亦如此。
⑤诸如 "单级双效"等术语中的 "单级"是引用了第一类吸收式热泵中的称呼, "双效" 也是沿用了第一类吸收式热泵中高温驱动热介质发生作用的角度来称呼的。
具体实施方式:
下面结合附图和实例来详细描述本发明。
图 1所示的回热式吸收 -发生系统是这样实现的:
①结构上, 它主要由第一吸收器、 第二吸收器、 发生器、 第一溶液泵、 第二溶液泵和溶 液热交换器组成; 第一吸收器 1有稀溶液管路经第二溶液泵 5与第二吸收器 2连通, 第二吸 收器 2还有稀溶液管路经第一溶液泵 4和溶液热交换器 6与发生器 3连通, 发生器 3还有浓 溶液管路经溶液热交换器 6和第二吸收器 2与第一吸收器 1连通; 第一吸收器 1还分别有被 加热介质管路与外部连通和有冷剂蒸汽通道与外部连通, 外部有冷剂液管路与第一吸收器 1 连通后第一吸收器 1再有冷剂蒸汽通道与第二吸收器 2连通, 发生器 3还分别有驱动热介质 管路与外部连通和有冷剂蒸汽通道与外部连通。
②流程上, 来自外部的低温冷剂蒸汽 (冷剂液吸收低温热产生的蒸汽或余热蒸汽) 进入 第一吸收器 1、 被来自发生器 3 的浓溶液吸收并放热于被加热介质和加热流经第一吸收器 1 的冷剂液成冷剂蒸汽; 第一吸收器 1的稀溶液经第二溶液泵 5进入第二吸收器 2、 吸收来自 第一吸收器 1的冷剂蒸汽并放热于流经第二吸收器 2的溶液, 第二吸收器 2的稀溶液经第一 溶液泵 4和溶液热交换器 6进入发生器 3; 驱动热介质加热进入发生器 3的溶液并对外释放 冷剂蒸汽, 发生器 3的浓溶液经溶液热交换器 6放热、降压后再流经第二吸收器 2吸热汽化, 汽化后的溶液进入第一吸收器 1, 形成回热式吸收-发生系统。
图 2所示的回热式吸收 -发生系统是这样实现的:
①结构上, 它主要由第一吸收器、 第二吸收器、 精馏塔、 第一溶液泵、 第二溶液泵、 溶 液热交换器和分汽室组成;第一吸收器 1有稀溶液管路经第二溶液泵 5与第二吸收器 2连通, 第二吸收器 2还有稀溶液管路经第一溶液泵 4和溶液热交换器 6与精馏塔 3连通, 精馏塔 3 还有浓溶液管路经溶液热交换器 6和第二吸收器 2与分汽室 7连通, 分汽室 7还有浓溶液管 路与第一吸收器 1连通; 第一吸收器 1还分别有被加热介质管路与外部连通和有冷剂蒸汽通 道与外部连通, 外部有冷剂液管路与第一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道与 第二吸收器 2连通, 分汽室 7还有冷剂蒸汽通道与第一吸收器 1连通, 精馏塔 3还分别有驱 动热介质管路与外部连通、 有被加热介质管路与外部连通和有冷剂蒸汽通道与外部连通。 i g外部的低温冷刑蒸汽和釆目分汽至 7 的冷刑然 i、 来自分汽室 7的浓溶液吸收并放热于被加热介质和加热流经第一吸收器 1的冷剂液成冷剂蒸 汽; 第一吸收器 1的稀溶液经第二溶液泵 5进入第二吸收器 2、 吸收来自第一吸收器 1的冷 剂蒸汽并放热于流经第二吸收器 2的溶液, 第二吸收器 2的稀溶液经第一溶液泵 4和溶液热 交换器 6进入精馏塔 3; 驱动热介质加热进入精馏塔 3的溶液并对外释放冷剂蒸汽和放热于 被加热介质, 精馏塔 3的浓溶液经溶液热交换器 6放热、 降压后再流经第二吸收器 2吸热汽 化, 汽化后的溶液进入分汽室 7进行汽、 液分离, 分汽室 7释放的冷剂蒸汽和浓溶液均进入 第一吸收器 1, 形成回热式吸收-发生系统。
在图 2所示的回热式吸收-发生系统中, 第二吸收器 2的作用在于: ①吸收来自第一吸收 器 1的冷剂蒸汽并加热流经其内的另一路溶液使其实现低压下的部分汽化, 这样第二吸收器 2的稀溶液浓度可以比第一吸收器 1的稀溶液更低, 从而使进入发生器 3的溶液能够释放出 更高温度的冷剂蒸汽; ②第一吸收器 1对外热负荷降低, 分汽室 7使来自发生器 3的溶液提 高浓度后再进入第一吸收器 1, 这有利于提高工作于第一吸收器 1 的溶液浓度, 从而使第一 吸收器 1 可以吸收更低温度的冷剂蒸汽或余热蒸汽从而向被加热介质提供更高温度的热负 荷; ③第一吸收器 1中用于加热流经其内的冷剂液的热负荷越大, 第一吸收器 1提供给第二 吸收器 2的冷剂蒸汽量就越大, 流经第二吸收器 2的溶液汽化产生的冷剂蒸汽就越多, 余热 温度提升则越高, 性能指数相应降低; ④回热负荷多少与热泵提升余热温度的程度成相应的 正对应关系, 采用此回热方法可以使相应机组实现热力学参数的连续变化和对应, 从而实现 第一类吸收式热泵机组在热力学参数和性能指数上的无间断衔接。
图 3所示的回热式吸收 -发生系统是这样实现的:
①结构上, 主要由第一吸收器、 第二吸收器、 发生器、 第一溶液泵、 第二溶液泵、 溶液 热交换器、 分汽室和第三吸收器组成; 第一吸收器 1有稀溶液管路与第三吸收器 8连通, 第 三吸收器 8还有稀溶液管路经第二溶液泵 5与第二吸收器 2连通, 第二吸收器 2还有稀溶液 管路经第一溶液泵 4和溶液热交换器 6与发生器 3连通, 发生器 3还有浓溶液管路经溶液热 交换器 6和第二吸收器 2与分汽室 7连通, 分汽室 7还有浓溶液管路与第一吸收器 1连通, 第一吸收器 1还分别有被加热介质管路与外部连通和有冷剂蒸汽通道与外部连通, 分汽室 7 还有冷剂蒸汽通道与第三吸收器 8连通, 外部有冷剂液管路与第三吸收器 8连通后第三吸收 器 8再有冷剂蒸汽通道与第二吸收器 2连通, 第三吸收器 8还有冷剂蒸汽通道与外部连通, 发生器 3还分别有驱动热介质管路与外部连通和有冷剂蒸汽通道与外部连通。
②流程上, 来自外部的低温冷剂蒸汽进入第一吸收器 1、 被来自分汽室 7的浓溶液吸收 并放热于被加热介质; 第一吸收器 1的稀溶液进入第三吸收器 8、 吸收来自分汽室 7的冷剂 蒸汽并加热流经第三吸收器 8的冷剂液成冷剂蒸汽, 第三吸收器 8产生的冷剂蒸汽向第二吸 收器 2提供; 第三吸收器 8的稀溶液经第二溶液泵 5进入第二吸收器 2、 吸收来自第三吸收 器 8的冷剂蒸汽并放热于流经第二吸收器 2的溶液, 第二吸收器 2的稀溶液经第一溶液泵 4 和溶液热交换器 6进入发生器 3; 驱动热介质加热进入发生器 3的溶液并对外释放冷剂蒸汽, 发生器 3的浓溶液经溶液热交换器 6放热、 降压后再流经第二吸收器 2吸热汽化, 汽化后的 溶液进入分汽室 7; 进入分汽室 7的溶液释放冷剂蒸汽向第三吸收器 8提供, 浓溶液进入第 三吸收器 8, 形成回热式吸收-发生系统。
与图 1-2所示相比, 图 3中的第一吸收器 1和第三吸收器 8是图 1-2中第一吸收器 1拆 分的结果, 这改善了回热的效果——使第一吸收器 1提升低温热的能力得到提高; 它们具有 相同的实质。
还要说明的是, 第三吸收器 8与外部连通的冷剂蒸汽通道主要用于系统启动阶段的回热 过程。
图 4所示的回热式吸收 -发生系统是这样实现的: ①结构上, 在图 3所示的回热式吸收-发生系统中, 第三吸收器 8堦 板 热 官蹐 外部连通, 增加第三溶液泵和溶液节流阀, 将分汽室 7有浓溶液管路与第一吸收器 1连通调 整为分汽室 7有浓溶液管路经第三溶液泵 9与第一吸收器 1连通, 将第一吸收器 1有稀溶液 管路与第三吸收器 8连通调整为第一吸收器 1有稀溶液管路经溶液节流阀 10与第三吸收器 8 连通。
②流程上, 来自外部的低温冷剂蒸汽进入第一吸收器 1、 被来自分汽室 7的浓溶液吸收 并放热于被加热介质; 第一吸收器 1的稀溶液经溶液节流阀 10进入第三吸收器 8、 吸收来自 分汽室 7和外部的冷剂蒸汽并分别放热于被加热介质和加热流经第三吸收器 8的冷剂液成冷 剂蒸汽, 第三吸收器 8产生的冷剂蒸汽向第二吸收器 2提供; 第三吸收器 8的稀溶液经第二 溶液泵 5进入第二吸收器 2、 吸收来自第三吸收器 8的冷剂蒸汽并放热于流经第二吸收器 2 的溶液, 第二吸收器 2的稀溶液经第一溶液泵 4和溶液热交换器 6进入发生器 3; 驱动热介 质加热进入发生器 3的溶液并对外释放冷剂蒸汽,发生器 3的浓溶液经溶液热交换器 6放热、 降压后再流经第二吸收器 2吸热汽化, 汽化后的溶液进入分汽室 7 ; 进入分汽室 7的溶液释 放冷剂蒸汽向第三吸收器 8提供, 浓溶液经第三溶液泵 9进入第三吸收器 8, 形成回热式吸 收 -发生系统。
图 4中第三吸收器 8对外提供的热负荷可看作是承担了第一吸收器 1的部分热负荷, 这 有利于提高余热资源的利用率。 与图 3所示不同, 正常工况下外部需向第三吸收器 8提供冷 剂蒸汽。 同样地, 图 3中的第三吸收器 8也可以承担第一吸收器 1的部分热负荷。
图 5所示的单级单效回热式吸收 -发生热泵是这样实现的:
①结构上, 在图 1所示的回热式吸收-发生系统中, 增加冷凝器、 蒸发器、 节流阀和冷剂 液泵, 将发生器 3有冷剂蒸汽通道与外部连通确定为发生器 3有冷剂蒸汽通道与冷凝器 A连 通, 冷凝器 A还有冷剂液管路经节流阀 C与蒸发器 B连通, 将第一吸收器 1有冷剂蒸汽通道 与外部连通确定为蒸发器 B有冷剂蒸汽通道与第一吸收器 1连通, 将外部有冷剂液管路与第 一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道与第二吸收器 2连通确定为蒸发器 B有冷 剂液管路经冷剂液泵 D与第一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道与第二吸收器 2连通, 冷凝器 A还有被加热介质管路与外部连通, 蒸发器 B还有余热介质管路与外部连通。
②流程上, 发生器 3产生的冷剂蒸汽进入冷凝器 A、 放热于被加热介质后成冷剂液, 冷 凝器 A的冷剂液经节流阀 C节流后进入蒸发器 B; 进入蒸发器 B的冷剂液分成两路——第一 路吸收余热成冷剂蒸汽并向第一吸收器 1提供, 第二路经冷剂液泵 D升压后流经第一吸收器 1、 吸热成冷剂蒸汽并向第二吸收器 2提供, 形成单级单效回热式第一类吸收式热泵。
图 6所示的单级单效回热式第一类吸收式热泵是这样实现的:
①结构上, 在图 2所示的回热式吸收-发生系统中, 取消分汽室, 取消分汽室 7与第一吸 收器 1连通的冷剂蒸汽通道, 精馏塔有浓溶液管路经溶液热交换器 6和第二吸收器 2与第一 吸收器 1连通; 增加冷凝器、 蒸发器、 第一节流阀和第二节流阀, 将精馏塔 3有冷剂蒸汽通 道与外部连通确定为精熘塔 3有冷剂蒸汽通道与冷凝器 A连通, 冷凝器 A还有冷剂液管路经 第一节流阀 C与蒸发器 B连通, 将第一吸收器 1有冷剂蒸汽通道与外部连通确定为蒸发器 B 有冷剂蒸汽通道与第一吸收器 1连通, 将外部有冷剂液管路与第一吸收器 1连通后第一吸收 器 1再有冷剂蒸汽通道与第二吸收器 2连通确定为冷凝器 A有冷剂液管路经第二节流阀 E与 第一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道与第二吸收器 2连通, 冷凝器 A还有被 加热介质管路与外部连通, 蒸发器 B还有余热介质管路与外部连通。
②流程上, 精馏塔 3产生的冷剂蒸汽进入冷凝器 A、 放热于被加热介质后成冷剂液, 冷 凝器 A的冷剂液分成两路——第一路经第一节流阀 C节流后进入蒸发器 B、 吸收余热成冷剂 蒸汽并向第一吸收器 1提供, 第二路冷剂液经第二节流阀 E节流后流经第一吸收器 1、 吸热 成冷剂蒸汽并向第二吸收器 2提供, 形成单级单效回热式第一类吸收式热泵。 , ,,…, ,丄— 、、 ,、一 ,
7 ^不的早级单效回热式第一类吸收式热泵是这样实现的:
①结构上,在图 3所示的回热式吸收-发生系统中, 第三吸收器 8增加被加热介质管路与 外部连通, 增加冷凝器、 蒸发器、 第一节流阀和第二节流阀, 将发生器 3有冷剂蒸汽通道与 外部连通确定为发生器 3有冷剂蒸汽通道与冷凝器 A连通, 冷凝器 A还有冷剂液管路经第一 节流阀 C与蒸发器 B连通, 将第一吸收器 1有冷剂蒸汽通道与外部连通确定为蒸发器 B有冷 剂蒸汽通道与第一吸收器 1连通, 将第三吸收器 8有冷剂蒸汽通道与外部连通确定为蒸发器 B有冷剂蒸汽通道与第三吸收器 8连通, 将外部有冷剂液管路与第三吸收器 8连通后第三吸 收器 8再有冷剂蒸汽通道与第二吸收器 2连通确定为冷凝器 A有冷剂液管路经第二节流阀 E 与第三吸收器 8连通后第三吸收器 8再有冷剂蒸汽通道与第二吸收器 2连通, 冷凝器 A还有 被加热介质管路与外部连通, 蒸发器 B还有余热介质管路与外部连通。
②流程上, 发生器 3产生的冷剂蒸汽进入冷凝器 A、 放热于被加热介质后成冷剂液, 冷 凝器 A的冷剂液分成两路——第一路经第一节流阀 C节流后进入蒸发器 B、 吸收余热成冷剂 蒸汽并分别向第一吸收器 1和第三吸收器 8提供, 第二路经第二节流阀 E节流后流经第三吸 收器 8、 吸热成冷剂蒸汽并向第二吸收器 2提供, 形成单级单效回热式第一类吸收式热泵。
图 8所示的单级单效回热式第一类吸收式热泵是这样实现的:
①结构上, 在图 7所示的回热式第一类吸收式热泵中, 取消第三吸收器 8与外部连通的 被加热介质管路, 将冷凝器 A有冷剂液管路经第二节流阀 E与第三吸收器 8连通后第三吸收 器 8再有冷剂蒸汽通道与第二吸收器 2连通调整为蒸发器 B有冷剂液管路经冷剂液泵 D与第 三吸收器 8连通后第三吸收器 8再有冷剂蒸汽通道与第二吸收器 2连通。
②流程上, 发生器 3产生的冷剂蒸汽进入冷凝器 A、 放热于被加热介质后成冷剂液, 冷 凝器 A的冷剂液经节流阀 C节流后进入蒸发器 B; 进入蒸发器 B的冷剂液分成两路——第一 路吸收余热成冷剂蒸汽并向第一吸收器 1提供, 第二路经冷剂液泵 D加压后再流经第三吸收 器 8、 吸热成冷剂蒸汽并向第二吸收器 2提供, 形成单级单效回热式第一类吸收式热泵。
图 9所示的单级单效回热式第一类吸收式热泵是这样实现的:
①结构上, 在图 4所示的回热式吸收-发生系统中, 增加冷凝器、 第一蒸发器、 第二蒸发 器、 第一节流阀、 第二节流阀和冷剂液泵, 将发生器 3有冷剂蒸汽通道与外部连通确定为发 生器 3有冷剂蒸汽通道与冷凝器 A连通, 冷凝器 A还有冷剂液管路经第一节流阀 C与第一蒸 发器 B连通, 第一蒸发器 B还有冷剂液管路经第二节流阀 E与第二蒸发器 F连通, 将第一吸 收器 1有冷剂蒸汽通道与外部连通确定为第一蒸发器 B有冷剂蒸汽通道与第一吸收器 1连通, 将第三吸收器 8有冷剂蒸汽通道与外部连通确定为第二蒸发器 F有冷剂蒸汽通道与第三吸收 器 8连通, 将外部有冷剂液管路与第三吸收器 8连通后第三吸收器 8再有冷剂蒸汽通道与第 二吸收器 2连通确定为第二蒸发器 F有冷剂液管路经冷剂液泵 D与第三吸收器 8连通后第三 吸收器 8再有冷剂蒸汽通道与第二吸收器 2连通,冷凝器 A还有被加热介质管路与外部连通, 第一蒸发器 B和第二蒸发器 F还分别有余热介质管路与外部连通。
上述结构中, 也可选择第一蒸发器 B有冷剂液管路经冷剂液泵 D与第三吸收器 8连通后 第三吸收器 8再有冷剂蒸汽通道与第二吸收器 2连通。
②流程上, 发生器 3产生的冷剂蒸汽进入冷凝器 A、 放热于被加热介质后成冷剂液, 冷 凝器 A的冷剂液经第一节流阀 C节流后进入第一蒸发器 B; 进入第一蒸发器 B的冷剂液分成 两路——第一路吸收余热成冷剂蒸汽并向第一吸收器 1提供, 第二路经第二节流阀 E节流进 入第二蒸发器 F; 进入第二蒸发器 F的冷剂液分成两路——第一路吸收余热成冷剂蒸汽并向 第三吸收器 8提供, 第二路经冷剂液泵 D加压后流经第三吸收器 8、 吸热成冷剂蒸汽并向第 二吸收器 2提供, 形成单级单效回热式第一类吸收式热泵。
图 10所示的单级并联双效回热式第一类吸收式热泵是这样实现的:
①结构上, 在图 5所示的回热式第一类吸收式热泵中, 增加第二发生器、 第二溶液热交 換器和新堦 i流阀, 第一浴液荥 4増设稀溶液管路经第二浴液热 益 Η迕 通, 第二发生器 Η还有浓溶液管路经第二溶液热交换器 I之后与第一发生器 3经第一溶液热 交换器 6之后的浓溶液管路汇合、 再经第二吸收器 2与第一吸收器 1连通, 将第一发生器 3 有冷剂蒸汽通道与冷凝器 Α连通调整为第一发生器 3有冷剂蒸汽通道与第二发生器 H连通后 第二发生器 H再有冷剂液管路经新增节流阀 J与冷凝器 A连通——第一发生器产生的冷剂蒸 汽作为第二发生器的驱动热介质, 第二发生器 H还有冷剂蒸汽通道与冷凝器 A连通。
②流程上, 第二吸收器 2的一部分稀溶液经第一溶液泵 4和第二溶液热交换器 I进入第 二发生器 H, 第一发生器 3产生的冷剂蒸汽流经第二发生器 H、加热进入其内的溶液释放冷剂 蒸汽, 第二发生器 H释放的冷剂蒸汽进入冷凝器 A, 流经第二发生器 H的冷剂蒸汽放热后成 冷剂液、再经新增节流阀 J进入冷凝器 A,第二发生器 H的浓溶液经第二溶液热交换器 I和第 二吸收器 2进入第一吸收器 1, 形成单级并联双效回热式第一类吸收式热泵。
图 11所示的单级并联双效回热式第一类吸收式热泵是这样实现的-
①结构上, 在图 9所示的回热式第一类吸收式热泵中, 增加第二发生器、 第二溶液热交 换器和新增节流阀, 第一溶液泵 4增设稀溶液管路经第二溶液热交换器 I与第二发生器 H连 通, 第二发生器 H还有浓溶液管路经第二溶液热交换器 I之后与第一发生器 3经第一溶液热 交换器 6之后的浓溶液管路汇合、 再经第二吸收器 2与分汽室 7连通, 将第一发生器 3有冷 剂蒸汽通道与冷凝器 A连通调整为第一发生器 3有冷剂蒸汽通道与第二发生器 H连通后第二 发生器 H再有冷剂液管路经新增节流阀 J与冷凝器 A连通——第一发生器产生的冷剂蒸汽作 为第二发生器的驱动热介质, 第二发生器 H还有冷剂蒸汽通道与冷凝器 A连通。
②流程上, 第一发生器 3产生的冷剂蒸汽流经第二发生器 H、 加热由第二吸收器 2经第 一溶液泵 4和第二溶液热交换器 I进入其内的溶液释放冷剂蒸汽, 第二发生器 H释放的冷剂 蒸汽进入冷凝器 A,流经第二发生器 H的冷剂蒸汽放热后成冷剂液、再经新增节流阀 J进入冷 凝器 A, 第二发生器 H的浓溶液经第二溶液热交换器 I和第二吸收器 2进入分汽室 7, 形成单 级并联双效回热式第一类吸收式热泵。
图 12所示的单级串联双效回热式第一类吸收式热泵是这样实现的:
①结构上, 在图 5所示的回热式第一类吸收式热泵中, 将蒸发器 B有冷剂液管路经冷剂 液泵 D与第一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道与第二吸收器 2连通调整为冷 凝器 A有冷剂液管路经第二节流阀 E与第一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道 与第二吸收器 2连通, 增加第二发生器、 第二溶液热交换器和新增节流阀, 将第二吸收器 2 有稀溶液管路经第一溶液泵 4和第一溶液热交换器 6与第一发生器 3连通调整为第二吸收器 2有稀溶液管路经第一溶液泵 4、 第一溶液热交换器 6和第二溶液热交换器 I与第一发生器 3 连通, 将第一发生器 3有浓溶液管路经第一溶液热交换器 6和第二吸收器 2与第一吸收器 1 连通调整为第一发生器 3有浓溶液管路经第二溶液热交换器 I与第二发生器 H连通, 第二发 生器 H还有浓溶液管路经第一溶液热交换器 6和第二吸收器 2与第一吸收器 1连通, 将第一 发生器 3有冷剂蒸汽通道与冷凝器 A连通调整为第一发生器 3有冷剂蒸汽通道与第二发生器 H连通后第二发生器 H再有冷剂液管路经新增节流阀 J与冷凝器 A连通——第一发生器产生的 冷剂蒸汽作为第二发生器的驱动热介质, 第二发生器 H还有冷剂蒸汽通道与冷凝器 A连通。
②流程上, 第二吸收器 2的稀溶液经第一溶液泵 4、 第一溶液热交换器 6和第二溶液热 交换器 I进入第一发生器 3, 第一发生器 3释放的冷剂蒸汽向第二发生器 H提供以作为其驱 动热介质, 第一发生器 3的浓溶液经第二溶液热交换器 I进入第二发生器 H; 冷剂蒸汽流经 第二发生器 H、 加热进入其内的溶液释放冷剂蒸汽并向冷凝器 A提供, 流经第二发生器 H的 冷剂蒸汽放热后成冷剂液、再经新增节流阀 J进入冷凝器 A,第二发生器 H的浓溶液经第一溶 液热交换器 6和第二吸收器 2进入第一吸收器 1, 形成单级串联双效回热式第一类吸收式热 泵。 单级串联双效回热式第一突吸収 ¾热泶是 a怦头'
①结构上, 在图 9所示的回热式第一类吸收式热泵中, 增加第二发生器、 第二溶液热交 换器和新增节流阀, 将第二吸收器 2有稀溶液管路经第一溶液泵 4和第一溶液热交换器 6与 第一发生器 3连通调整为第二吸收器 2有稀溶液管路经第一溶液泵 4、 第一溶液热交换器 6 和第二溶液热交换器 I与第一发生器 3连通, 将第一发生器 3有浓溶液管路经第一溶液热交 换器 6和第二吸收器 2与分汽室 7连通调整为第一发生器 3有浓溶液管路经第二溶液热交换 器 I与第二发生器 Η连通, 第二发生器 Η还有浓溶液管路经第一溶液热交换器 6和第二吸收 器 2与分汽室 7连通, 将第一发生器 3有冷剂蒸汽通道与冷凝器 Α连通调整为第一发生器 3 有冷剂蒸汽通道与第二发生器 H连通后第二发生器 H再有冷剂液管路经新增节流阀 J与冷凝 器 A连通——第一发生器产生的冷剂蒸汽作为第二发生器的驱动热介质, 第二发生器 H还有 冷剂蒸汽通道与冷凝器 A连通。
②流程上, 第二吸收器 2的稀溶液经第一溶液泵 4、 第一溶液热交换器 6和第二溶液热 交换器 I进入第一发生器 3, 第一发生器 3释放的冷剂蒸汽向第二发生器 H提供以作为其驱 动热介质, 第一发生器 3的浓溶液经第二溶液热交换器 I进入第二发生器 H; 冷剂蒸汽流经 第二发生器 H、 加热进入其内的溶液释放冷剂蒸汽并向冷凝器 A提供, 流经第二发生器 H的 冷剂蒸汽放热后成冷剂液、再经新增节流阀 J进入冷凝器 A,第二发生器 H的浓溶液经第一溶 液热交换器 6和第二吸收器 2进入分汽室 7, 形成单级串联双效回热式第一类吸收式热泵。
图 14所示的单级串联双效回热式第一类吸收式热泵是这样实现的-
①结构上, 在图 5所示的回热式第一类吸收式热泵中, 增加第二发生器、 第二溶液热交 换器、 新增节流阀和新增溶液泵, 将第二吸收器 2有稀溶液管路经第一溶液泵 4和第一溶液 热交换器 6与第一发生器 3连通调整为第二吸收器 2有稀溶液管路经第一溶液泵 4和第一溶 液热交换器 6与第二发生器 H连通, 第二发生器 H还有浓溶液管路经新增溶液泵 K和第二溶 液热交换器 I与第一发生器 3连通, 将第一发生器 3有浓溶液管路经第一溶液热交换器 6和 第二吸收器 2与第一吸收器 1连通调整为第一发生器 3有浓溶液管路经第二溶液热交换器 I、 第一溶液热交换器 6和第二吸收器 2与第一吸收器 1连通, 将第一发生器 3有冷剂蒸汽通道 与冷凝器 A连通调整为第一发生器 3有冷剂蒸汽通道与第二发生器 H连通后第二发生器 H再 有冷剂液管路经新增节流阀 J与冷凝器 A连通——第一发生器产生的冷剂蒸汽作为第二发生 器的驱动热介质, 第二发生器 H还有冷剂蒸汽通道与冷凝器 A连通。
②流程上, 第二吸收器 2的稀溶液经第一溶液泵 4和第一溶液热交换器 6进入第二发生 器 H, 第一发生器 3释放的冷剂蒸汽向第二发生器 H提供以作为其驱动热介质, 冷剂蒸汽流 经第二发生器 H、 加热进入其内的溶液释放冷剂蒸汽并向冷凝器 A提供, 流经第二发生器 H 的冷剂蒸汽放热后成冷剂液、再经新增节流阀 J进入冷凝器 A,第二发生器 H的浓溶液经新增 溶液泵 K和第二溶液热交换器 I进入第一发生器 3, 第一发生器 3的浓溶液经第二溶液热交 换器 I、第一溶液热交换器 6和第二吸收器 2进入第一吸收器 1, 形成单级串联双效回热式第 一类吸收式热泵。
图 15所示的单级串并联双效回热式第一类吸收式热泵是这样实现的:
①结构上, 在图 9所示的回热式第一类吸收式热泵中, 将第二蒸发器 F有冷剂液管路经 冷剂液泵 D与第三吸收器 8连通后第三吸收器 8再有冷剂蒸汽通道与第二吸收器 2连通调整 为冷凝器 A有冷剂液管路经第三节流阀 G与第三吸收器 8连通后第三吸收器 8再有冷剂蒸汽 通道与第二吸收器 2连通; 增加第二发生器、 第二溶液热交换器、 新增节流阀和新增溶液泵, 将第二吸收器 2有稀溶液管路经第一溶液泵 4和第一溶液热交换器 6与第一发生器 3连通调 整为第二吸收器 2有稀溶液管路经第一溶液泵 4和第一溶液热交换器 6之后分别与第二发生 器 H连通和与第一发生器 3连通, 第二发生器 H还有浓溶液管路经新增溶液泵 K和第二溶液 热交换器 I与第一发生器 3连通, 将第一发生器 3有浓溶液管路经第一溶液热交换器 6和第 二吸 室 7连通调整为第一发生器 3有浓溶液管路经 ι、 弟一 溶液热交换器 6和第二吸收器 2与分汽室 7连通, 将第一发生器 3有冷剂蒸汽通道与冷凝器 A连通调整为第一发生器 3有冷剂蒸汽通道与第二发生器 H连通后第二发生器 H再有冷剂液 管路经新增节流阀 J与冷凝器 A连通——第一发生器产生的冷剂蒸汽作为第二发生器的驱动 热介质, 第二发生器 H还有冷剂蒸汽通道与冷凝器 A连通。
②流程上, 第二吸收器 2的稀溶液经第一溶液泵 4和第一溶液热交换器 6分别进入第二 发生器 H和进入第一发生器 3, 第一发生器 3释放的冷剂蒸汽向第二发生器 H提供以作为其 驱动热介质, 冷剂蒸汽流经第二发生器 H、 加热进入其内的溶液释放冷剂蒸汽并向冷凝器 A 提供, 流经第二发生器 H的冷剂蒸汽放热后成冷剂液、 再经新增节流阀 J进入冷凝器 A, 第 二发生器 H的浓溶液经新增溶液泵 K和第二溶液热交换器 I进入第一发生器 3,第一发生器 3 的浓溶液经第二溶液热交换器 I、第一溶液热交换器 6和第二吸收器 2进入分汽室 7, 形成单 级串并联双效回热式第一类吸收式热泵。
图 16所示的单级并联三效回热式第一类吸收式热泵是这样实现的-
①结构上, 在图 5所示的回热式第一类吸收式热泵中, 增加第二发生器、 第三发生器、 第二溶液热交换器、 第三溶液热交换器、 新增第一节流阀和新增第二节流阀, 第一溶液泵 4 增设稀溶液管路分别经第二溶液热交换器 I与第二发生器 H连通和经第三溶液热交换器 M与 第三发生器 L连通, 第二发生器 H有浓溶液管路经第二溶液热交换器 I之后和第三发生器 L 有浓溶液管路经第三溶液热交换器 M之后均与第一发生器 3经第一溶液热交换器 6之后的浓 溶液管路汇合、 再经第二吸收器 2与第一吸收器 1连通, 将第一发生器 3有冷剂蒸汽通道与 冷凝器 A连通调整为第一发生器 3有冷剂蒸汽通道与第二发生器 H连通后第二发生器 H再有 冷剂液管路经新增第一节流阀 J与冷凝器 A连通——第一发生器产生的冷剂蒸汽作为第二发 生器的驱动热介质, 第二发生器 H还有冷剂蒸汽通道与第三发生器 L连通后第三发生器 L.再 有冷剂液管路经新增第二节流阀 N与冷凝器 A连通——第二发生器产生的冷剂蒸汽作为第三 发生器的驱动热介质, 第三发生器 L还有冷剂蒸汽通道与冷凝器 A连通。
②流程上, 第一发生器 3产生的冷剂蒸汽流经第二发生器 H、 加热由第二吸收器 2经第 一溶液泵 4和第二溶液热交换器 I进入其内的溶液释放冷剂蒸汽, 第二发生器 H释放的冷剂 蒸汽向第三发生器 L提供以作为其驱动热介质, 第二发生器 H的浓溶液经第二溶液热交换器 I和第二吸收器 2进入第一吸收器 1 ;流经第三发生器 L的冷剂蒸汽加热由第二吸收器 2经第 一溶液泵 4和第三溶液热交换器 M进入其内的溶液释放冷剂蒸汽, 第三发生器 L释放的冷剂 蒸汽进入冷凝器 A, 第三发生器 L的浓溶液经第三溶液热交换器 M和第二吸收器 2进入第一 吸收器 1 ; 流经第二发生器 H的冷剂蒸汽放热后成冷剂液、 再经新增第一节流阀 J进入冷凝 器八, 流经第三发生器 L的冷剂蒸汽放热后成冷剂液、 再经新增第二节流阀 N进入冷凝器 A, 形成单级并联三效回热式第一类吸收式热泵。
图 17所示的单级并联三效回热式第一类吸收式热泵是这样实现的:
①结构上, 在图 9所示的回热式第一类吸收式热泵中, 增加第二发生器、 第三发生器、 第二溶液热交换器、 第三溶液热交换器、 新增第一节流阀和新增第二节流阀, 第一溶液泵 4 增设稀溶液管路分别经第二溶液热交换器 I与第二发生器 H连通和经第三溶液热交换器 M与 第三发生器 L连通, 第二发生器 H有浓溶液管路经第二溶液热交换器 I之后和第三发生器 L 有浓溶液管路经第三溶液热交换器 M之后均与第一发生器 3经第一溶液热交换器 6之后的浓 溶液管路汇合、 再经第二吸收器 2与分汽室 7连通, 将第一发生器 3有冷剂蒸汽通道与冷凝 器 A连通调整为第一发生器 3有冷剂蒸汽通道与第二发生器 H连通后第二发生器 H再有冷剂 液管路经新增第一节流阀 J与冷凝器 A连通——第一发生器产生的冷剂蒸汽作为第二发生器 的驱动热介质, 第二发生器 H还有冷剂蒸汽通道与第三发生器 L连通后第三发生器 L再有冷 剂液管路经新增第二节流阀 N与冷凝器 A连通——第二发生器产生的冷剂蒸汽作为第三发生 器的驱动热介质, 第三发生器 L还有冷剂蒸汽通道与冷凝器 A连通。
②流程上, 第一发生器 3产生的冷剂蒸汽流经第二发生器 H、 加热由第二吸收器 2经第 一溶液泵 4和第二溶液热交换器 I进入其内的溶液释放冷剂蒸汽, 第二发生器 H释放的冷剂 蒸汽向第三发生器 L提供以作为其驱动热介质, 第二发生器 H的浓溶液经第二溶液热交换器 I和第二吸收器 2进入分汽室 7;流经第三发生器 L的冷剂蒸汽加热由第二吸收器 2经第一溶 液泵 4和第三溶液热交换器 M进入其内的溶液释放冷剂蒸汽, 第三发生器 L释放的冷剂蒸汽 进入冷凝器 A, 第三发生器 L的浓溶液经第三溶液热交换器 M和第二吸收器 2进入分汽室 7; 流经第二发生器 H的冷剂蒸汽放热后成冷剂液、 再经新增第一节流阀 J进入冷凝器 A, 流经 第三发生器 L的冷剂蒸汽放热后成冷剂液、 再经新增第二节流阀 N进入冷凝器 A, 形成单级 并联三效回热式第一类吸收式热泵。
图 18所示的单级串联三效回热式第一类吸收式热泵是这样实现的:
①结构上, 在图 9所示的回热式第一类吸收式热泵中, 选择第一蒸发器 B有冷剂液管路 经冷剂液泵 D与第三吸收器 8连通后第三吸收器 8再有冷剂蒸汽通道与第二吸收器 2连通, 增加第二发生器、 第三发生器、 第二溶液热交换器、 第三溶液热交换器、 新增第一节流阀和 新增第二节流阀, 将第二吸收器 2有稀溶液管路经第一溶液泵 4和第一溶液热交换器 6与第 一发生器 3连通调整为第二吸收器 2有稀溶液管路经第一溶液泵 4、第一溶液热交换器 6、第 二溶液热交换器 I和第三溶液热交换器 M与第一发生器 3连通, 将第一发生器 3有浓溶液管 路经第一溶液热交换器 6和第二吸收器 2与分汽室 7连通调整为第一发生器 3有浓溶液管路 经第三溶液热交换器 M与第二发生器 H连通, 第二发生器 H还有浓溶液管路经第二溶液热交 换器 I与第三发生器 L连通, 第三发生器 L还有浓溶液管路经第一溶液热交换器 6和第二吸 收器 2与分汽室 7连通, 将第一发生器 3有冷剂蒸汽通道与冷凝器 A连通调整为第一发生器 3有冷剂蒸汽通道与第二发生器 H连通后第二发生器 H再有冷剂液管路经新增第一节流阀 J 与冷凝器 A连通——第一发生器产生的冷剂蒸汽作为第二发生器的驱动热介质, 第二发生器 H还有冷剂蒸汽通道与第三发生器 L连通后第三发生器 L再有冷剂液管路经新增第二节流阀 N 与冷凝器 A连通——第二发生器产生的冷剂蒸汽作为第三发生器的驱动热介质, 第三发生器 L还有冷剂蒸汽通道与冷凝器 A连通。
②流程上, 第二吸收器 2的稀溶液经第一溶液泵 4、 第一溶液热交换器 6、第二溶液热交 换器 I和第三溶液热交换器 M进入第一发生器 3, 第一发生器 3释放的冷剂蒸汽向第二发生 器 H提供以作为其驱动热介质; 第一发生器 3的浓溶液经第三溶液热交换器 M进入第二发生 器 H, 冷剂蒸汽流经第二发生器 H、加热进入其内的溶液释放冷剂蒸汽并向第三发生器 L提供 以作为其驱动热介质; 第二发生器 H的浓溶液经第二溶液热交换器 I进入第三发生器 L, 冷 剂蒸汽流经第三发生器 L、 加热进入其内的溶液释放冷剂蒸汽并向冷凝器 A提供, 第三发生 器 L的浓溶液经第一溶液热交换器 6和第二吸收器 2进入分汽室 7; 流经第二发生器 H的冷 剂蒸汽放热后成冷剂液、 再经新增第一节流阀 J进入冷凝器 A, 流经第三发生器 L的冷剂蒸 汽放热后成冷剂液、 再经新增第二节流阀 N进入冷凝器 A, 形成单级串联三效回热式第一类 吸收式热泵。
图 19所示的单级串联三效回热式第一类吸收式热泵是这样实现的- ①结构上, 在图 5所示的回热式第一类吸收式热泵中, 增加第二发生器、 第三发生器、 第二溶液热交换器、 第三溶液热交换器、 新增第一节流阀、 新增第二节流阀、 新增第一溶液 泵和新增第二溶液泵, 将第二吸收器 2有稀溶液管路经第一溶液泵 4和第一溶液热交换器 6 与第一发生器 3连通调整为第二吸收器 2有稀溶液管路经第一溶液泵 4和第一溶液热交换器 6与第三发生器 L连通, 第三发生器 L还有浓溶液管路经新增第一溶液泵 K和第二溶液热交 换器 I与第二发生器 H连通, 第二发生器 H还有浓溶液管路经新增第二溶液泵 0和第三溶液 热交换器 M与第一发生器 3连通, 将第一发生器 3有浓溶液管路经第一溶液热交换器 6和第 二吸收器 2与第一吸收器 1连通调整为第一发生器 3有浓溶液管路 器 Μ、 第二溶液热交换器 I、 第一溶液热交换器 6和第二吸收器 2与第一吸收器 1连通, 将第一发 生器 3有冷剂蒸汽通道与冷凝器 Α连通调整为第一发生器 3有冷剂蒸汽通道与第二发生器 H 连通后第二发生器 H再有冷剂液管路经新增第一节流阀 J与冷凝器 A连通——第一发生器产 生的冷剂蒸汽作为第二发生器的驱动热介质, 第二发生器 H还有冷剂蒸汽通道与第三发生器
L连通后第三发生器 L再有冷剂液管路经新增第二节流阀 N与冷凝器 A连通——第二发生器 产生的冷剂蒸汽作为第三发生器的驱动热介质, 第三发生器 L还有冷剂蒸汽通道与冷凝器 A 连通。
②流程上, 第二吸收器 2的稀溶液经第一溶液泵 4和第一溶液热交换器 6进入第三发生 器 L, 第二发生器 H产生的冷剂蒸汽作为第三发生器 L的驱动热介质, 冷剂蒸汽流经第三发 生器 L、 加热进入其内的溶液释放冷剂蒸汽并向冷凝器 A提供, 第三发生器 L的浓溶液经新 增第一溶液泵 K和第二溶液热交换器 I进入第二发生器 H; 第一发生器 3释放的冷剂蒸汽向 第二发生器 H提供以作为其驱动热介质, 冷剂蒸汽流经第二发生器 H、 加热进入其内的溶液 释放冷剂蒸汽并向第三发生器 L提供, 第二发生器 H的浓溶液经新增第二溶液泵 0和第三溶 液热交换器 M进入第一发生器 3, 第一发生器 3的浓溶液经第三溶液热交换器¾4、第二溶液热 交换器 I、第一溶液热交换器 6和第二吸收器 2进入第一吸收器 1 ; 流经第二发生器 H的冷剂 蒸汽放热后成冷剂液、 再经新增第一节流阀 J进入冷凝器 A, 流经第三发生器 L的冷剂蒸汽 放热后成冷剂液、 再经新增第二节流阀 N进入冷凝器 A, 形成单级串联三效回热式第一类吸 收式热泵。
图 20所示的单级串联三效回热式第一类吸收式热泵是这样实现的-
①结构上, 在图 9所示的回热式第一类吸收式热泵中, 增加第二发生器、 第三发生器、 第二溶液热交换器、 第三溶液热交换器、 新增第一节流阀、 新增第二节流阀、 新增第一溶液 泵和新增第二溶液泵, 将第二吸收器 2有稀溶液管路经第一溶液泵 4和第一溶液热交换器 6 与第一发生器 3连通调整为第二吸收器 2有稀溶液管路经第一溶液泵 4和第一溶液热交换器 6与第三发生器 L连通, 第三发生器 L还有浓溶液管路经新增第一溶液泵 K和第二溶液热交 换器 I与第二发生器 H连通, 第二发生器 H还有浓溶液管路经新增第二溶液泵 0和第三溶液 热交换器 M与第一发生器 3连通, 将第一发生器 3有浓溶液管路经第一溶液热交换器 6和第 二吸收器 2与分汽室 7连通调整为第一发生器 3有浓溶液管路经第三溶液热交换器 M、 第二 溶液热交换器 I、 第一溶液热交换器 6和第二吸收器 2与分汽室 7连通, 将第一发生器 3有 冷剂蒸汽通道与冷凝器 A连通调整为第一发生器 3有冷剂蒸汽通道与第二发生器 H连通后第 二发生器 H再有冷剂液管路经新增第一节流阀 J与冷凝器 A连通——第一发生器产生的冷剂 蒸汽作为第二发生器的驱动热介质, 第二发生器 H还有冷剂蒸汽通道与第三发生器 L连通后 第三发生器 L再有冷剂液管路经新增第二节流阀 N与冷凝器 A连通——第二发生器产生的冷 剂蒸汽作为第三发生器的驱动热介质, 第三发生器 L还有冷剂蒸汽通道与冷凝器 A连通。
②流程上, 第二吸收器 2的稀溶液经第一溶液泵 4和第一溶液热交换器 6进入第三发生 器 L, 第二发生器 H产生的冷剂蒸汽作为第三发生器 L的驱动热介质, 冷剂蒸汽流经第三发 生器 L、 加热进入其内的溶液释放冷剂蒸汽并向冷凝器 A提供, 第三发生器 L的浓溶液经新 增第一溶液泵 K和第二溶液热交换器 I进入第二发生器 H; 第一发生器 3释放的冷剂蒸汽向 第二发生器 H提供以作为其驱动热介质, 冷剂蒸汽流经第二发生器 H、 加热进入其内的溶液 释放冷剂蒸汽并向第三发生器 L提供, 第二发生器 H的浓溶液经新增第二溶液泵 0和第三溶 液热交换器 M进入第一发生器 3, 第一发生器 3的浓溶液经第三溶液热交换器^第二溶液热 交换器 I、第一溶液热交换器 6和第二吸收器 2进入分汽室 7; 流经第二发生器 H的冷剂蒸汽 放热后成冷剂液、 再经新增第一节流阀 J进入冷凝器 A, 流经第三发生器 L的冷剂蒸汽放热 后成冷剂液、 再经新增第二节流阀 N进入冷凝器 A, 形成单级串联三效回热式第一类吸收式 ^
热泵。
图 21所示的单发生器两级回热式第一类吸收式热泵是这样实现的:
①结构上, 在图 5所示回热式第一类吸收式热泵中, 增加第二溶液热交换器、 吸收-蒸发 器和第二冷剂液泵, 将第一吸收器 1有稀溶液管路经第二溶液泵 5与第二吸收器 2连通调整 为第一吸收器 1有稀溶液管路经第二溶液热交换器 I与吸收-蒸发器 Q连通, 吸收-蒸发器 Q 还有稀溶液管路经第二溶液泵 5和第二溶液热交换器 I与第二吸收器 2连通, 将蒸发器 B有 冷剂蒸汽通道与第一吸收器 1连通调整为蒸发器 B有冷剂蒸汽通道与吸收-蒸发器 Q连通,蒸 发器 B增设冷剂液管路经第二冷剂液泵 P与吸收-蒸发器 Q连通后吸收-蒸发器 Q再有冷剂蒸 汽通道与第一吸收器 1连通。
②流程上, 第一吸收器 1的稀溶液经第二溶液热交换器 I进入吸收-蒸发器 Q、 吸收来自 蒸发器 B的冷剂蒸汽并放热于流经吸收-蒸发器 Q的冷剂液, 吸收-蒸发器 Q的稀溶液经第二 溶液泵 5和第二溶液热交换器 I进入第二吸收器 2; 蒸发器 B的冷剂液经第二冷剂液泵 P加 压后流经吸收 -蒸发器0、 吸热成冷剂蒸汽并向第一吸收器 1提供, 形成单发生器两级回热式 第一类吸收式热泵。
图 22所示的单发生器两级回热式第一类吸收式热泵是这样实现的:
①结构上, 在图 7所示的回热式第一类吸收式热泵中, 增加第二溶液热交换器、 新增节 流阀和吸收-蒸发器,将第三吸收器 8有稀溶液管路经第二溶液泵 5与第二吸收器 2连通调整 为第三吸收器 8有稀溶液管路经第二溶液热交换器 I与吸收-蒸发器 Q连通, 吸收-蒸发器 Q 还有稀溶液管路经第二溶液泵 5和第二溶液热交换器 I与第二吸收器 2连通, 将蒸发器 B有 冷剂蒸汽通道分别与第一吸收器 1和第三吸收器 8连通调整为蒸发器 B有冷剂蒸汽通道与吸 收-蒸发器 Q连通, 冷凝器 A增设冷剂液管路经新增节流阀 J与吸收-蒸发器 Q连通后吸收- 蒸发器 Q再有冷剂蒸汽通道分别与第一吸收器 1和第三吸收器 8连通。
②流程上, 第三吸收器 8的稀溶液经第二溶液热交换器 I进入吸收-蒸发器 Q、 吸收来自 蒸发器 B的冷剂蒸汽并放热于流经吸收-蒸发器 Q的冷剂液, 吸收-蒸发器 Q的稀溶液经第二 溶液泵 5和第二溶液热交换器 I进入第二吸收器 2; 冷凝器 A的冷剂液经新增节流阀 J节流 后流经吸收-蒸发器 Q、 吸热成冷剂蒸汽并分别向第一吸收器 1和第三吸收器 8提供, 形成单 发生器两级回热式第一类吸收式热泵。、
图 23所示的单发生器两级回热式第一类吸收式热泵是这样实现的:
①结构上, 在图 8所示的回热式第一类吸收式热泵中, 增加第三溶液泵、 第二溶液热交 换器、吸收 -蒸发器和第二冷剂液泵, 将分汽室 7有浓溶液管路与第一吸收器 1连通调整为分 汽室 7有浓溶液管路经第三溶液泵 9和第二溶液热交换器 I与第一吸收器 1连通, 将第一吸 收器 1有稀溶液管路与第三吸收器 8连通调整为第一吸收器 1有稀溶液管路经第二溶液热交 换器 I与吸收-蒸发器 Q连通, 吸收-蒸发器 Q还有稀溶液管路与第三吸收器 8连通, 将蒸发 器 B有冷剂蒸汽通道与第一吸收器 1连通调整为蒸发器 B有冷剂蒸汽通道与吸收-蒸发器 Q连 通, 蒸发器 B增设冷剂液管路经第二冷剂液泵 P与吸收-蒸发器 Q连通后吸收-蒸发器 Q再有 冷剂蒸汽通道与第一吸收器 1连通。
②流程上, 分汽室 7的浓溶液经第三溶液泵 9和第二溶液热交换器 I进入第一吸收器 1、 吸收来自吸收-蒸发器 Q的冷剂蒸汽并放热于被加热介质,第一吸收器 1的稀溶液经第二溶液 热交换器 I进入吸收-蒸发器 Q、 吸收来自蒸发器 B的冷剂蒸汽并放热于流经吸收-蒸发器 Q 的冷剂液, 吸收-蒸发器 Q的稀溶液进入第三吸收器 8; 蒸发器 B的冷剂液经第二冷剂液泵 P 加压后流经吸收-蒸发器 Q、 吸热成冷剂蒸汽并向第一吸收器 1提供, 形成单发生器两级回热 式第一类吸收式热泵。
图 24所示的单发生器两级回热式第一类吸收式热泵是这样实现的:
①结构上, 在图 8所示的回热式第一类吸收式热泵中, 增加第三溶液泵和第二溶液热交 换器, 将分汽室 7有浓溶液管路与第一吸收器 1连通调整为分汽室 7有浓溶液管路经第三溶 液泵 9和第二溶液热交换器 I与第一吸收器 1连通, 将第一吸收器 1有稀溶液管路与第三吸 收器 8连通调整为第一吸收器 1有稀溶液管路经第二溶液热交换器 I与第三吸收器 8连通, 取消蒸发器 B与第一吸收器 1连通的冷剂蒸汽通道, 将蒸发器 B有冷剂液管路经冷剂液泵 D 与第三吸收器 8连通后第三吸收器 8再有冷剂蒸汽通道与第二吸收器 2连通调整为蒸发器 B 有冷剂液管路经冷剂液泵 D与第三吸收器 8连通后第三吸收器 8再有冷剂蒸汽通道分别与第 一吸收器 1和第二吸收器 2连通。
②流程上, 分汽室 7的浓溶液经第三溶液泵 9和第二溶液热交换器 I进入第一吸收器 1、 吸收来自第三吸收器 8的冷剂蒸汽并放热于被加热介质, 第一吸收器 1的稀溶液经第二溶液 热交换器 I进入第三吸收器 8、 吸收来自蒸发器 B的冷剂蒸汽并放热于流经其内的冷剂液成 冷剂蒸汽; 蒸发器 B的冷剂液经冷剂液泵 D加压后流经第三吸收器 8、 吸热成冷剂蒸汽并分 别向第一吸收器 1和第二吸收器 2提供, 形成单发生器两级回热式第一类吸收式热泵。
图 25所示的单发生器两级回热式第一类吸收式热泵是这样实现的:
①结构上, 在图 5所示的回热式第一类吸收式热泵中, 增加新增吸收器、 第二溶液热交 换器和新增节流阀, 将第二吸收器 2有稀溶液管路经第一溶液泵 4和第一溶液热交换器 6与 发生器 3连通调整为第二吸收器 2有稀溶液管路经第一溶液泵 4、 第一溶液热交换器 6和第 二溶液热交换器 I与发生器 3连通, 将发生器 3有浓溶液管路经第一溶液热交换器 6和第二 吸收器 2与第一吸收器 1连通调整为发生器 3有浓溶液管路经第二溶液热交换器 I与新增吸 收器 R连通, 新增吸收器 R还有稀溶液管路经第一溶液热交换器 6和第二吸收器 2与第一吸 收器 1连通, 将第一吸收器 1有被加热介质管路与外部连通调整为冷凝器 A增设冷剂液管路 经新增节流阀 J第一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道与新增吸收器 R连通, 新增吸收器 R还有被加热介质管路与外部连通。
②流程上, 第二吸收器 2的稀溶液经第一溶液泵 4、 第一溶液热交换器 6和第二溶液热 交换器 I进入发生器 3, 发生器 3的浓溶液经第二溶液热交换器 I进入新增吸收器 R、吸收来 自第一吸收器 1的冷剂蒸汽并放热于被加热介质, 新增吸收器 R的稀溶液经第一溶液热交换 器 6和第二吸收器 2进入第一吸收器 1 ; 冷凝器 A的冷剂液经新增节流阀 J节流后流经第一 吸收器 1、 吸热成冷剂蒸汽并向新增吸收器 R提供, 形成单发生器两级回热式第一类吸收式 热泵。
图 26所示的单发生器两级回热式第一类吸收式热泵是这样实现的:
①结构上, 在图 8所示的回热式第一类吸收式热泵中, 增加新增吸收器、 第二溶液热交 换器和第二冷剂液泵, 将第二吸收器 2有稀溶液管路经第一溶液泵 4和第一溶液热交换器 6 与发生器 3连通调整为第二吸收器 2有稀溶液管路经第一溶液泵 4、 第一溶液热交换器 6和 第二溶液热交换器 I与发生器 3连通, 将发生器 3有浓溶液管路经第一溶液热交换器 6和第 二吸收器 2与分汽室 7连通调整为发生器 3有浓溶液管路经第二溶液热交换器 I与新增吸收 器 R连通, 新增吸收器 R还有稀溶液管路经第一溶液热交换器 6和第二吸收器 2与分汽室 7 连通, 将第一吸收器 1有被加热介质管路与外部连通调整为蒸发器 B增设冷剂液管路经第二 冷剂液泵 P与第一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道与新增吸收器 R连通, 新 增吸收器 R还有被加热介质管路与外部连通。
②流程上, 第二吸收器 2的稀溶液经第一溶液泵 4、 第一溶液热交换器 6和第二溶液热 交换器 I进入发生器 3, 发生器 3的浓溶液经第二溶液热交换器 I进入新增吸收器 R、吸收来 自第一吸收器 1的冷剂蒸汽并放热于被加热介质, 新增吸收器 R的稀溶液经第一溶液热交换 器 6和第二吸收器 2进入分汽室 7; 蒸发器 B的冷剂液经第二冷剂液泵 P加压后流经第一吸 收器 1、 吸热成冷剂蒸汽并向新增吸收器 R提供, 形成单发生器两级回热式第一类吸收式热 泵。 ^ ^ , ,, ,-, - _^ππ ri, =、、 . Tr
m 7所不的单发生器两级回热式第一类吸收式热泵是 S样实现 :
①结构上, 在图 5所示的回热式第一类吸收式热泵中, 增加第二发生器、 新增吸收器、 新增溶液泵和第二溶液热交换器, 将第一发生器 3有冷剂蒸汽通道与冷凝器 A连通调整为第 一发生器 3有冷剂蒸汽通道与新增吸收器 R连通, 新增吸收器 R还有稀溶液管路经新增溶液 泵 K和第二溶液热交换器 I与第二发生器 H连通, 第二发生器 H还有浓溶液管路经第二溶液 热交换器 I与新增吸收器 R连通, 第二发生器 H还分别有冷剂蒸汽通道与冷凝器 A连通和有 驱动热介质管路与外部连通, 新增吸收器 R还有被加热介质管路与外部连通。
②流程上, 第一发生器 3释放的冷剂蒸汽进入新增吸收器 R、 被来自第二发生器 H的溶 液吸收并放热于被加热介质, 新增吸收器 R的稀溶液经新增溶液泵 K和第二溶液热交换器 I 进入第二发生器 H; 驱动热介质加热进入第二发生器 H的溶液释放冷剂蒸汽并向冷凝器 A提 供, 第二发生器 H的浓溶液经第二溶液热交换器 I进入新增吸收器 R, 形成由第一发生器向 新增吸收器提供冷剂蒸汽的双发生器两级回热式第一类吸收式热泵。
图 28所示的双发生器两级回热式第一类吸收式热泵,是在图 9所示的回热式第一类吸收 式热泵中增加第二发生器、 新增吸收器、 新增溶液泵和第二溶液热交换器, 形成由第一发生 器向新增吸收器提供冷剂蒸汽的双发生器两级回热式第一类吸收式热泵; 其形成过程与图 27 所示的一致。
图 29所示的单发生器两级回热式第一类吸收式热泵是这样实现的:
①结构上, 在图 5所示的回热式第一类吸收式热泵中, 增加第二发生器、 新增吸收器、 新增溶液泵、 第二溶液热交换器、 第三溶液热交换器、 第二冷凝器和新增节流阀, 将第二吸 收器 2有稀溶液管路经第一溶液泵 4和第一溶液热交换器 6与第一发生器 3连通调整为第二 吸收器 2有稀溶液管路经第一溶液泵 4、 第一溶液热交换器 6和第二溶液热交换器 I与第二 发生器 H连通, 第二发生器 H还有浓溶液管路经第二溶液热交换器 I与新增吸收器 R连通, 新增吸收器 R还有稀溶液管路经新增溶液泵 K和第三溶液热交换器 M与第一发生器 3连通, 将第一发生器 3有浓溶液管路经第一溶液热交换器 6和第二吸收器 2与第一吸收器 1连通调 整为第一发生器 3有浓溶液管路经第三溶液热交换器 M、第一溶液热交换器 6和第二吸收器 2 与第一吸收器 1连通调, 第一发生器 3增设冷剂蒸汽通道与新增吸收器 R连通, 第二发生器 H还分别有冷剂蒸汽通道与第二冷凝器 S连通和有驱动热介质管路与外部连通,第二冷凝器 S 还有冷剂液管路经新增节流阀 J与第一冷凝器 A连通, 新增吸收器 R和第二冷凝器 S还分别 有被加热介质管路与外部连通。
②流程上, 第二吸收器 2的稀溶液经第一溶液泵 4、 第一溶液热交换器 6和第二溶液热 交换器 I进入第二发生器 H, 驱动热介质加热进入第二发生器 H的溶液释放冷剂蒸汽并向第 二冷凝器 S提供, 第二发生器 H的浓溶液经第二溶液热交换器 H进入新增吸收器 R、 吸收来 自第一发生器 3的冷剂蒸汽并放热于被加热介质, 新增吸收器 R的稀溶液经新增溶液泵 K和 第三溶液热交换器 M进入第一发生器 3, 第一发生器 3的浓溶液经第三溶液热交换器^第一 溶液热交换器 6和第二吸收器 2进入第一吸收器 1 ; 进入第二冷凝器 S的冷剂蒸汽放热于被 加热介质成冷剂液, 该冷剂液经新增节流阀 J节流进入第一冷凝器 A, 形成由第一发生器分 别向第一冷凝器和新增吸收器提供冷剂蒸汽的双发生器两级回热式第一类吸收式热泵。
图 30所示的双发生器两级回热式第一类吸收式热泵是这样实现的:
在图 28所示的回热式第一类吸收式热泵中, 增加第二冷凝器和新增节流阀, 将第二发生 器 H有冷剂蒸汽通道与第一冷凝器 A连通调整为第二发生器 H有冷剂蒸汽通道与第二冷凝器 S连通, 第二冷凝器 S还有冷剂液管路经新增节流阀 J与第一冷凝器 A连通, 第一发生器 3 增设冷剂蒸汽通道与第一冷凝器 A连通, 第二冷凝器 S还有被加热介质管路与外部连通, 形 成由第一发生器分别向第一冷凝器和新增吸收器提供冷剂蒸汽的双发生器两级回热式第一类 吸收式热泵。 图 31所示的双发生器两级回热式第一类吸收式热泵是这样实现的:
①结构上, 在图 5所示的回热式吸收-发生系统中, 增加第二发生器、 新增吸收器、 新增 溶液泵和第二溶液热交换器, 将蒸发器 B有冷剂蒸汽通道与第一吸收器 1连通调整为发器 B 有冷剂蒸汽通道与新增吸收器 R连通, 新增吸收器 R还有稀溶液管路经新增溶液泵 K和第二 溶液热交换器 I与第二发生器 H连通, 第二发生器 H还有浓溶液管路经第二溶液热交换器 I 与新增吸收器 R连通, 第二发生器 H还分别有冷剂蒸汽通道与第一吸收器 1连通和有驱动热 介质管路与外部连通, 新增吸收器 R还有被加热介质管路与外部连通。
②流程上, 蒸发器 B的冷剂蒸汽进入新增吸收器 R、 被来自第二发生器 H的溶液吸收并 放热于被加热介质, 新增吸收器 R的稀溶液经新增溶液泵 K和第二溶液热交换器 I进入第二 发生器 H; 驱动热介质加热进入第二发生器 H的溶液释放冷剂蒸汽并向第一吸收器 1提供, 第二发生器 H的浓溶液经第二溶液热交换器 I进入新增吸收器 R, 形成由第二发生器向第一 吸收器提供冷剂蒸汽的双发生器两级回热式第一类吸收式热泵。
图 32所示的双发生器两级回热式第一类吸收式热泵是这样实现的:
①结构上, 在图 8所示的回热式吸收-发生系统中, 第三吸收器 8增加被加热介质管路与 外部连通, 增加第二发生器、 新增吸收器、 新增溶液泵和第二溶液热交换器, 将蒸发器 B有 冷剂蒸汽通道分别与第一吸收器 1和第三吸收器 8连通调整为发器 B有冷剂蒸汽通道与新增 吸收器 R连通, 新增吸收器 R还有稀溶液管路经新增溶液泵 K和第二溶液热交换器 I与第二 发生器 H连通, 第二发生器 H还有浓溶液管路经第二溶液热交换器 I与新增吸收器 R连通, 第二发生器 H还有冷剂蒸汽通道分别与第一吸收器 1和第三吸收器 8连通, 第二发生器 H还 有驱动热介质管路与外部连通, 新增吸收器 R还有被加热介质管路与外部连通。
②流程上, 蒸发器 B的冷剂蒸汽进入新增吸收器 R、 被来自第二发生器 H的溶液吸收并 放热于被加热介质, 新增吸收器 R的稀溶液经新增溶液泵 K和第二溶液热交换器 I进入第二 发生器 H; 驱动热介质加热进入第二发生器 H的溶液释放冷剂蒸汽并分别向第一吸收器 1和 第三吸收器 8提供, 第二发生器 H的浓溶液经第二溶液热交换器 I进入新增吸收器 R, 形成 由第二发生器分别向第一吸收器和第三吸收器提供冷剂蒸汽的双发生器两级回热式第一类吸 收式热泵。
图 33所示的双发生器两级回热式第一类吸收式热泵是这样实现的:
在图 32所示的回热式吸收-发生系统中, 增加第二冷凝器和新增节流阀, 第二发生器 H 增设冷剂蒸汽通道与第二冷凝器 S连通, 第二冷凝器 S还有冷剂液管路经再节流阀 J与蒸发 器 B连通, 第二冷凝器 S还有被加热介质管路与外部连通, 形成由第二发生器分别向第二冷 凝器、 第一吸收器和第三吸收器提供冷剂蒸汽的双发生器两级回热式第一类吸收式热泵。
图 34所示的双发生器两级回热式第一类吸收式热泵是这样实现的:
①结构上,在图 6所示的回热式吸收-发生系统中,发生器取代精馏塔,增加第二发生器、 新增吸收器、 新增溶液泵和第二溶液热交换器, 将第一发生器 3有冷剂蒸汽通道与冷凝器 A 连通调整为第一发生器 3有冷剂蒸汽通道与新增吸收器 R连通, 新增吸收器 R还有稀溶液管 路经新增溶液泵 K和第二溶液热交换器 I与第二发生器 H连通, 第二发生器 H还有浓溶液管 路经第二溶液热交换器 I与新增吸收器 R连通, 第二发生器 H还分别有冷剂蒸汽通道与冷凝 器 A连通和有驱动热介质管路与外部连通, 新增吸收器 R还有被加热介质管路与外部连通; 取消第一吸收器 1与外部连通的被加热介质管路, 将冷凝器 A有冷剂液管路经第二节流阀 E 与第一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道与第二吸收器 2连通调整为冷凝器 A 有冷剂液管路经第二节流阀 E与第一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道分别与 第二吸收器 2和新增吸收器 R连通。
②流程上, 第二发生器 H的浓溶液经第二溶液热交换器 I进入新增吸收器 R、 吸收来自 第一吸收器 1和第一发生器 3的冷剂蒸汽并放热于被加热介质, 新增吸收器 R的稀溶液经新 增溶液泵 K和第二溶液热交换器 I进入第二发生器 H, 驱动热介质加热进入第二发生一器 FTM 溶液释放冷剂蒸汽并向冷凝器 A提供; 冷凝器 A的冷剂液经第二节流阀 E节流后流经第一吸 收器 1、 吸热成冷剂蒸汽并分别向第二吸收器 2和新增吸收器 R提供, 形成由第一吸收器和 第一发生器共同向新增吸收器提供冷剂蒸汽的双发生器两级回热式第一类吸收式热泵。
图 35所示的双发生器两级回热式第一类吸收式热泵是这样实现的:
①结构上, 在图 5所示的回热式第一类吸收式热泵中, 增加第二发生器、 新增吸收器、 新增溶液泵和第二溶液热交换器, 将第一发生器 3有冷剂蒸汽通道与冷凝器 A连通调整为第 一发生器 3有冷剂蒸汽通道与新增吸收器 R连通, 新增吸收器 R还有稀溶液管路经新增溶液 泵 K和第二溶液热交换器 I与第二发生器 H连通, 第二发生器 H还有浓溶液管路经第二溶液 热交换器 I与新增吸收器 R连通, 第二发生器 H还分别有冷剂蒸汽通道与冷凝器 A连通和有 驱动热介质管路与外部连通, 新增吸收器 R还有被加热介质管路与外部连通; 取消第一吸收 器 1与外部连通的被加热介质管路, 增加新增节流阀, 冷凝器 A增设冷剂液管路经新增节流 阀 J与第一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道与新增吸收器 R连通。
②流程上, 第二发生器 H的浓溶液经第二溶液热交换器 I进入新增吸收器 R、 吸收来自 第一吸收器 1和第一发生器 3的冷剂蒸汽并放热于被加热介质, 新增吸收器 R的稀溶液经新 增溶液泵 K和第二溶液热交换器 I进入第二发生器 H, 驱动热介质加热进入第二发生器 H的 溶液释放冷剂蒸汽并向冷凝器 A提供; 冷凝器 A的冷剂液经新增节流阀 J节流后流经第一吸 收器 1、 吸热成冷剂蒸汽并向新增吸收器 R提供, 形成由第一吸收器和第一发生器共同向新 增吸收器提供冷剂蒸汽的双发生器两级回热式第一类吸收式热泵。
图 36所示的双发生器两级回热式第一类吸收式热泵是这样实现的:
①结构上, 在图 8所示的回热式第一类吸收式热泵中, 增加第二发生器、 新增吸收器、 新增溶液泵和第二溶液热交换器, 将第一发生器 3有冷剂蒸汽通道与冷凝器 A连通调整为第 一发生器 3有冷剂蒸汽通道与新增吸收器 R连通, 新增吸收器 R还有稀溶液管路经新增溶液 泵 K和第二溶液热交换器 I与第二发生器 H连通, 第二发生器 H还有浓溶液管路经第二溶液 热交换器 I与新增吸收器 R连通, 第二发生器 H还分别有冷剂蒸汽通道与冷凝器 A连通和有 驱动热介质管路与外部连通, 新增吸收器 R还有被加热介质管路与外部连通; 取消第一吸收 器 1与外部连通的被加热介质管路, 增加第二冷剂液泵, 蒸发器 B增设冷剂液管路经第二冷 剂液泵 P与第一吸收器 1连通后第一吸收器 1再有冷剂蒸汽通道与新增吸收器 R连通。
②流程上, 第二发生器 H的浓溶液经第二溶液热交换器 I进入新增吸收器 R、 吸收来自 第一吸收器 1和第一发生器 3的冷剂蒸汽并放热于被加热介质, 新增吸收器 R的稀溶液经新 增溶液泵 K和第二溶液热交换器 I进入第二发生器 H, 驱动热介质加热进入第二发生器 H的 溶液释放冷剂蒸汽并向冷凝器 A提供; 蒸发器 B的冷剂液经第二冷剂液泵 P加压后流经第一 吸收器 1、 吸热成冷剂蒸汽并向新增吸收器 R提供, 形成由第一吸收器和第一发生器共同向 新增吸收器提供冷剂蒸汽的双发生器两级回热式第一类吸收式热泵。
图 37所示的双发生器两级回热式第一类吸收式热泵是这样实现的:
①结构上, 在图 5所示的回热式第一类吸收式热泵中, 增加第二发生器、 第二溶液热交 换器、 新增溶液泵、 吸收 -蒸发器和第二冷剂液泵, 将蒸发器 B有冷剂蒸汽通道与第一吸收器 1连通调整为蒸发器 B有冷剂蒸汽通道与吸收-蒸发器 Q连通, 吸收-蒸发器 Q还有稀溶液管 路经新增溶液泵 K和第二溶液热交换器 I与第二发生器 H连通, 第二发生器 H还有浓溶液管 路经第二溶液热交换器 I与吸收-蒸发器 Q连通,第二发生器 H还分别有冷剂蒸汽通道与第一 吸收器 1连通和有驱动热介质管路与外部连通, 蒸发器 B增设冷剂液管路经第二冷剂液泵 P 与吸收-蒸发器 Q连通后吸收-蒸发器 Q再有冷剂蒸汽通道与第一吸收器 1连通。
②流程上, 第二发生器 H的浓溶液经第二溶液热交换器 I进入吸收-蒸发器 Q、 吸收来自 蒸发器 B的冷剂蒸汽并放热于流经吸收-蒸发器 Q的冷剂液, 吸收-蒸发器 Q的稀溶液经新增 溶液泵 K和第二溶液热交换器 I进入第二发生器 H, 驱动热介质加 进入第二友生器 H的溶 液释放冷剂蒸汽并向第一吸收器 1提供; 蒸发器 B的冷剂液经第二冷剂液泵 P加压后流经吸 收-蒸发器 Q、 吸热成冷剂蒸汽并向第一吸收器 1提供, 形成由吸收-蒸发器和第二发生器共 同向第一吸收器提供冷剂蒸汽的双发生器两级回热式第一类吸收式热泵。
图 38所示的双发生器两级回热式第一类吸收式热泵是这样实现的:
在图 32所示的回热式第一类吸收式热泵中,取消新增吸收器 R与外部连通的被加热介质 管路, 增加第二冷剂液泵, 蒸发器 B增设冷剂液管路经第二冷剂液泵 P与新增吸收器 R连通 后新增吸收器 R再有冷剂蒸汽通道分别与第一吸收器 1和第三吸收器 8连通, 形成由新增吸 收器和第二发生器二者共同向第一吸收器和第三吸收器提供冷剂蒸汽的双发生器两级回热式 第一类吸收式热泵。
图 39 所示的以高温冷凝器为附加高温供热端的单级并联双效回热式第一类吸收式热泵 是这样实现的- 在图 11所示的回热式第一类吸收式热泵中, 增加高温冷凝器和高温节流阀, 高压发生器 增设冷剂蒸汽通道与高温冷凝器 al连通,高温冷凝器 al还有冷剂液管路经高温节流阀 bl与 冷凝器 A连通, 高温冷凝器 al还有被加热介质管路与外部连通; 高压发生器 3向高温冷凝器 al提供冷剂蒸汽、 放热于被加热介质成冷剂液, 高温冷凝器 al的冷剂液经高温节流阀 bl节 流进入冷凝器 A, 形成以高温冷凝器为附加高温供热端的回热式第一类吸收式热泵。
图 40所示的以高温冷凝器为附加高温供热端的单级并联三效回热式第一类吸收式热泵 是这样实现的- 在图 16所示的回热式第一类吸收式热泵中, 增加高温冷凝器和高温节流阀, 中压发生器 增设冷剂蒸汽通道与高温冷凝器 al连通,高温冷凝器 al还有冷剂液管路经高温节流阀 bl与 冷凝器 A连通, 高温冷凝器 al还有被加热介质管路与外部连通; 中压发生器 H向高温冷凝器 al提供冷剂蒸汽、 放热于被加热介质成冷剂液, 高温冷凝器 al的冷剂液经高温节流阔 bl节 流进入冷凝器 A, 形成以高温冷凝器为附加高温供热端的回热式第一类吸收式热泵。
图 41所示的以单级并联双效为第一级的两级回热式第一类吸收式热泵是这样实现的:
①结构上, 在图 11所示的回热式第一类吸收式热泵中, 增加二级吸收器、 二级发生器、 二级溶液泵和二级溶液热交换器, 将低压发生器 H有冷剂液管路经新增节流阀 J与冷凝器 A 连通调整为低压发生器 H有冷剂液管路经新增节流阀 J与第一蒸发器 B连通, 将低压发生器 H有冷剂蒸汽通道与冷凝器 A连通调整为低压发生器 H有冷剂蒸汽通道与二级吸收器 a2连通, 二级吸收器 a2还有稀溶液管路经二级溶液泵 c2和二级溶液热交换器 d2与二级发生器 b2连 通, 二级发生器 b2还有浓溶液管路经二级溶液热交换器 d2与二级吸收器 a2连通, 二级发生 器 b2还分别有冷剂蒸汽通道与冷凝器 A连通和有驱动热介质管路与外部连通, 二级吸收器 a2还有被加热介质管路与外部连通。
②流程上, 提升余热温度的第二级流程是这样进行的: 低压发生器 H产生的冷剂蒸汽进 入二级吸收器 a2、 被来自二级发生器 b2的浓溶液吸收并放热于被加热介质, 二级吸收器 a2 的稀溶液经二级溶液泵 c2和二级溶液热交换器 d2进入二级发生器 b2, 驱动热介质加热进入 二级发生器 b2的溶液释放冷剂蒸汽并向冷凝器 A提供, 二级发生器 b2的浓溶液经二级溶液 热交换器 d2进入二级吸收器 a2, 形成由低压发生器向二级吸收器提供冷剂蒸汽、 以单级双 效为第一级的两级回热式第一类吸收式热泵。
图 42所示的以单级并联三效为第一级的两级回热式第一类吸收式热泵是这样实现的- ①结构上, 在图 11所示的回热式第一类吸收式热泵中, 增加二级吸收器、 二级发生器、 二级溶液泵、 二级溶液热交换器、 二级冷凝器和二级节流阀, 低压发生器增设冷剂蒸汽通道 与二级吸收器 a2连通,二级吸收器 a2还有稀溶液管路经二级溶液泵 c2和二级溶液热交换器 d2与二级发生器 b2连通, 二级发生器 b2还有浓溶液管路经二级溶液热交换器 d2与二级吸 收 发生器 b2还分别有冷剂蒸汽通道与二级冷凝器 ^介质管 路与外部连通, 二级冷凝器 e2还有冷剂液管路经二级节流阀 f2与第一冷凝器 Α连通, 二级 吸收器 a2和二级冷凝器 e2还分别有被加热介质管路与外部连通。
②流程上, 提升余热温度的第二级流程是这样进行的: 低压发生器 H产生的一部分冷剂 蒸汽进入二级吸收器 a2、 被来自二级发生器 b2的浓溶液吸收并放热于被加热介质, 二级吸 收器 a2的稀溶液经二级溶液泵 c2和二级溶液热交换器 d2进入二级发生器 b2, 驱动热介质 加热进入二级发生器 b2的溶液释放冷剂蒸汽向二级冷凝器 e2提供,二级发生器 b2的浓溶液 经二级溶液热交换器 d2进入二级吸收器 a2; 进入额二级冷凝器 e2的冷剂蒸汽放热于被加热 介质成冷剂液, 该冷剂液经二级节流阀 f2节流后进入冷凝器 A, 形成由低压发生器分别向第 一冷凝器和二级吸收器提供冷剂蒸汽、以单级双效为第一级的两级回热式第一类吸收式热泵。
本发明技术可以实现的效果——本发明所提出的回热式吸收 -发生系统与回热式第一类 吸收式热泵, 具有如下的效果和优势-
1. 回热式吸收 -发生系统, 结构和流程简单合理。 比较传统的由吸收器、 溶液泵、 溶液 热交换器和发生器所组成的吸收-发生系统, 本发明提出的回热式吸收-发生系统主要增加了 第二吸收器和溶液泵或加上第三吸收器, 构思巧妙, 结构和流程简单合理。
2. 回热式第一类吸收式热泵, 能够根据需要选择回热程度, 实现了机组工作参数和性能 指数之间的连续对应。
3. 提出的系列回热式第一类吸收式热泵, 能够实现第一类吸收式热泵机组之间在工作参 数和性能指数上的无间断衔接。
4. 提出的系列回热式第一类吸收式热泵, 丰富了第一类吸收式热泵, 能够更好地实现第 一类热泵供热 /供冷与用户需求之间的相互匹配。
5. 作为热泵使用时, 本发明提供的回热式第一类吸收式热泵能够根据余热参数和供热温 度的高低来选择回热的程度, 实现供热温度与性能指数之间的合理对应, 有利于得到较高性 能指数, 可提高余热利用效率。
6. 作为制冷机使用时, 本发明提供的回热式第一类吸收式热泵能够根据驱动热介质、冷 却介质和被制冷介质的温度高低来选择相应结构的回热式第一类吸收式热泵机组, 并选择适 当的回热程度来实现机组制冷系数的合理化。

Claims

权 利 要 求 书 WO 2011/134129 PCT/CN2010/001785
1. 回热式吸收 -发生系统, 主要由第一吸收器、 第二吸收器、 发生器、 第一溶液泵、 第 二溶液泵和溶液热交换器组成; 第一吸收器 (1 ) 有稀溶液管路经第二溶液泵 (5) 与第二吸 收器 (2) 连通, 第二吸收器 (2) 还有稀溶液管路经第一溶液泵 (4) 和溶液热交换器 (6) 与发生器 (3) 连通, 发生器 (3) 还有浓溶液管路经溶液热交换器 (6) 和第二吸收器 (2) 与第一吸收器 (1 ) 连通, 第一吸收器 (1 ) 还分别有被加热介质管路与外部连通和有冷剂蒸 汽通道与外部连通, 外部有冷剂液管路与第一吸收器 (1 ) 连通后第一吸收器 (1 ) 再有冷剂 蒸汽通道与第二吸收器 (2) 连通, 发生器 (3 ) 还分别有驱动热介质管路与外部连通和有冷 剂蒸汽通道与外部连通, 形成回热式吸收 -发生系统; 其中, 发生器变为精馏塔时, 第二吸收 器(2 )有稀溶液管路经第一溶液泵(4)和溶液热交换器(6) 与精馏塔连通, 精馏塔还有浓 溶液管路经溶液热交换器 (6)和第二吸收器(2) 与第一吸收器(1 )连通, 精馏塔还分别有 驱动热介质管路与外部连通、 有被加热介质管路与外部连通和有冷剂蒸汽通道与外部连通。
2. 回热式吸收 -发生系统, 主要由第一吸收器、 第二吸收器、 发生器、 第一溶液泵、 第 二溶液泵、 溶液热交换器、 分汽室和第三吸收器组成; 第一吸收器(1 )有稀溶液管路与第三 吸收器 (8) 连通, 第三吸收器 (8) 还有稀溶液管路经第二溶液泵 (5) 与第二吸收器 (2) 连通, 第二吸收器(2)还有稀溶液管路经第一溶液泵(4)和溶液热交换器(6)与发生器(3 ) 连通, 发生器 (3) 还有浓溶液管路经溶液热交换器 (6) 和第二吸收器 (2) 与分汽室 (7 ) 连通, 分汽室 (7) 还有浓溶液管路与第一吸收器(1 )连通, 第一吸收器 (1 )还分别有被加 热介质管路与外部连通和有冷剂蒸汽通道与外部连通, 分汽室(7 )还有冷剂蒸汽通道与第三 吸收器(8 )连通, 外部有冷剂液管路与第三吸收器(8)连通后第三吸收器(8)再有冷剂蒸 汽通道与第二吸收器 (2) 连通, 第三吸收器 (8) 还有冷剂蒸汽通道与外部连通或分别有冷 剂蒸汽通道与外部连通和有被加热介质管路与外部连通, 发生器(3 )还分别有驱动热介质管 路与外部连通和有冷剂蒸汽通道与外部连通, 形成回热式吸收-发生系统; 其中, 发生器为精 馏塔时, 第二吸收器(2 ) 有稀溶液管路经第一溶液泵(4)和溶液热交换器(6)与精馏塔连 通, 精馏塔还有浓溶液管路经溶液热交换器(6)和第二吸收器(2) 与分汽室 (7 )连通, 精 馏塔还分别有驱动热介质管路与外部连通、 有被加热介质管路与外部连通和有冷剂蒸汽通道 与外部连通。
3. 回热式吸收 -发生系统, 是在权利要求 2所述、 第三吸收器 (8) 有被加热介质管路 与外部连通的回热式吸收-发生系统中, 增加第三溶液泵和溶液节流阀, 将分汽室 (7 ) 有浓 溶液管路与第一吸收器(1 )连通调整为分汽室(7 )有浓溶液管路经第三溶液泵(9) 与第一 吸收器(1 )连通, 将第一吸收器(1 )有稀溶液管路与第三吸收器(8)连通调整为第一吸收 器(1 )有稀溶液管路经溶液节流阀 (10) 与第三吸收器(8 )连通, 形成回热式吸收-发生系 统。
4. 回热式第一类吸收式热泵, 是在权利要求 1所述的回热式吸收-发生系统中, 增加冷 凝器、 蒸发器、 第一节流阀、 冷剂液泵或第二节流阀, 将发生器 (3 )有冷剂蒸汽通道与外部 连通确定为发生器 (3)有冷剂蒸汽通道与冷凝器(A)连通, 冷凝器 (A)还有冷剂液管路经 第一节流阀 (C) 与蒸发器(B)连通, 将第一吸收器 (1 )有冷剂蒸汽通道与外部连通确定为 蒸发器(B)有冷剂蒸汽通道与第一吸收器(1 )连通, 将外部有冷剂液管路与第一吸收器(1 ) 连通后第一吸收器(1 ) 再有冷剂蒸汽通道与第二吸收器(2 )连通确定为蒸发器(B)有冷剂 液管路经冷剂液泵(D) 与第一吸收器(1 )连通后第一吸收器(1 ) 再有冷剂蒸汽通道与第二 吸收器(2)连通、 或确定为冷凝器 (A) 有冷剂液管路经第二节流阀 (E) 与第一吸收器(1 ) 连通后第一吸收器(1 ) 再有冷剂蒸汽通道与第二吸收器(2 ) 连通, 冷凝器(A)还有被加热 权 利 要 求 书
WO 2011/134129 PCT/CN2010/0 1785 介质管路与外部连通, 蒸发器(B)还有余热介质管路与外部连通, 形成单级单效回热式第一 类吸收式热泵。
5. 回热式第一类吸收式热泵, 是在权利要求 2所述的回热式吸收-发生系统中, 增加冷 凝器、 蒸发器、 第一节流阀、 冷剂液泵或第二节流阀, 将发生器(3 )有冷剂蒸汽通道与外部 连通确定为发生器 (3)有冷剂蒸汽通道与冷凝器(A)连通, 冷凝器(A)还有冷剂液管路经 第一节流阀 (C) 与蒸发器(B)连通, 将第一吸收器(1 )有冷剂蒸汽通道与外部连通确定为 蒸发器(B)有冷剂蒸汽通道与第一吸收器(1 )连通, 将第三吸收器 (8)有冷剂蒸汽通道与 外部连通确定为蒸发器 (B) 有冷剂蒸汽通道与第三吸收器 (8 ) 连通, 将外部有冷剂液管路 与第三吸收器(8 )连通后第三吸收器(8) 再有冷剂蒸汽通道与第二吸收器(2)连通确定为 蒸发器 (B) 有冷剂液管路经冷剂液泵 (D) 与第三吸收器 (8) 连通后第三吸收器 (8 ) 再有 冷剂蒸汽通道与第二吸收器(2)连通、或确定为冷凝器(A)有冷剂液管路经第二节流阀(E) 与第三吸收器(8) 连通后第三吸收器(8 ) 再有冷剂蒸汽通道与第二吸收器(2 )连通, 冷凝 器 (A) 还有被加热介质管路与外部连通, 蒸发器 (B) 还有余热介质管路与外部连通, 形成 单级单效回热式第一类吸收式热泵。
6. 回热式第一类吸收式热泵, 是在权利要求 3所述的回热式吸收-发生系统中, 增加冷 凝器、 第一蒸发器、 第二蒸发器、 第一节流阀、 第二节流阀、 冷剂液泵或第三节流阀, 将发 生器(3)有冷剂蒸汽通道与外部连通确定为发生器(3 )有冷剂蒸汽通道与冷凝器(A)连通, 冷凝器 (A) 还有冷剂液管路经第一节流阀 (C) 与第一蒸发器 (B) 连通, 第一蒸发器 (B) 连通还有冷剂液管路经第二节流阀 (E) 与第二蒸发器(F)连通, 将第一吸收器(1 ) 有冷剂 蒸汽通道与外部连通确定为第一蒸发器 (B) 有冷剂蒸汽通道与第一吸收器 (1 ) 连通, 将第 三吸收器 (8 ) 有冷剂蒸汽通道与外部连通确定为第二蒸发器 (F) 有冷剂蒸汽通道与第三吸 收器 (8)连通, 将外部有冷剂液管路与第三吸收器 (8 )连通后第三吸收器(8) 再有冷剂蒸 汽通道与第二吸收器(2)连通确定为第一蒸发器(B)或第二蒸发器(F)有冷剂液管路经冷 剂液泵 (D) 与第三吸收器 (8)连通后第三吸收器 (8) 再有冷剂蒸汽通道与第二吸收器(2) 连通、 或确定为冷凝器(A)有冷剂液管路经第三节流阀 (G) 与第三吸收器(8)连通后第三 吸收器(8) 再有冷剂蒸汽通道与第二吸收器 (2)连通, 冷凝器 (A)还有被加热介质管路与 外部连通, 第一蒸发器 (B) 和第二蒸发器 (F) 还分别有余热介质管路与外部连通, 形成单 级单效回热式第一类吸收式热泵。
7. 回热式第一类吸收式热泵, 是在权利要求 4所述的回热式第一类吸收式热泵中, 增 加第二发生器、 第二溶液热交换器和新增节流阔, 第一溶液泵(4)增设稀溶液管路经第二溶 液热交换器(I ) 与第二发生器(H)连通, 第二发生器(H)还有浓溶液管路经第二溶液热交 换器 (I )之后与第一发生器(3)经第一溶液热交换器(6)之后的浓溶液管路汇合、 再经第 二吸收器 (2 ) 与第一吸收器 (1 ) 连通, 将第一发生器 (3) 有冷剂蒸汽通道与冷凝器 (A) 连通调整为第一发生器(3 )有冷剂蒸汽通道与第二发生器(H)连通后第二发生器(H) 再有 冷剂液管路经新增节流阀 (J) 与冷凝器 (A) 连通——第一发生器产生的冷剂蒸汽作为第二 发生器的驱动热介质, 第二发生器 (H) 还有冷剂蒸汽通道与冷凝器 (A) 连通, 形成单级并 联双效回热式第一类吸收式热泵。
8. 回热式第一类吸收式热泵, 是在权利要求 5-6所述的回热式第一类吸收式热泵中, 增加第二发生器、 第二溶液热交换器和新增节流阀, 第一溶液泵(4 )增设稀溶液管路经第二 溶液热交换器(I ) 与第二发生器(H)连通, 第二发生器(H)还有浓溶液管路经第二溶液热 交换器(I )之后与第一发生器(3 ) 经第一溶液热交换器(6)之后的浓溶液管路汇合、 再经 权 利 要 求 书
WO 2011/134129 PCT/CN2010/001785 第二吸收器 (2) 与分汽室 (7) 连通, 将第一发生器 (3 ) 有冷剂蒸汽通道与冷凝器 (A) 连 通调整为第一发生器(3)有冷剂蒸汽通道与第二发生器(H)连通后第二发生器(H)再有冷 剂液管路经新增节流阀 (J) 与冷凝器 (A) 连通——第一发生器产生的冷剂蒸汽作为第二发 生器的驱动热介质, 第二发生器 (H) 还有冷剂蒸汽通道与冷凝器 (A) 连通, 形成单级并联 双效回热式第一类吸收式热泵。
9. 回热式第一类吸收式热泵, 是在权利要求 4所述的回热式第一类吸收式热泵中, 增 加第二发生器、 第二溶液热交换器和新增节流阀, 将第二吸收器(2 )有稀溶液管路经第一溶 液泵 (4) 和第一溶液热交换器 (6) 与第一发生器 (3) 连通调整为第二吸收器 (2) 有稀溶 液管路经第一溶液泵 (4)、 第一溶液热交换器 (6) 和第二溶液热交换器 (I ) 与第一发生器
(3) 连通, 将第一发生器 (3 ) 有浓溶液管路经第一溶液热交换器 (6) 和第二吸收器 (2) 与第一吸收器(1 )连通调整为第一发生器(3)有浓溶液管路经第二溶液热交换器(I ) 与第 二发生器(H)连通, 第二发生器 (H)还有浓溶液管路经第一溶液热交换器(6)和第二吸收 器 (2 ) 与第一吸收器 (1 ) 连通, 将第一发生器 (3) 有冷剂蒸汽通道与冷凝器 (A) 连通调 整为第一发生器(3 )有冷剂蒸汽通道与第二发生器(H)连通后第二发生器(H)再有冷剂液 管路经新增节流阀 (J) 与冷凝器 (A) 连通——第一发生器产生的冷剂蒸汽作为第二发生器 的驱动热介质, 第二发生器 (H) 还有冷剂蒸汽通道与冷凝器 (A) 连通, 形成单级串联双效 回热式第一类吸收式热泵。
10. 回热式第一类吸收式热泵, 是在权利要求 5-6所述的回热式第一类吸收式热泵中, 增加第二发生器、 第二溶液热交换器和新增节流阀, 将第二吸收器(2 )有稀溶液管路经第一 溶液泵 (4) 和第一溶液热交换器 (6) 与第一发生器 (3 ) 连通调整为第二吸收器 (2 ) 有稀 溶液管路经第一溶液泵 (4)、 第一溶液热交换器 (6) 和第二溶液热交换器 (I ) 与第一发生 器 (3)连通, 将第一发生器(3)有浓溶液管路经第一溶液热交换器(6)和第二吸收器 (2) 与分汽室(7 )连通调整为第一发生器(3)有浓溶液管路经第二溶液热交换器(I ) 与第二发 生器(H)连通, 第二发生器(H)还有浓溶液管路经第一溶液热交换器(6)和第二吸收器(2 ) 与分汽室 (7)连通, 将第一发生器 (3)有冷剂蒸汽通道与冷凝器 (A)连通调整为第一发生 器(3)有冷剂蒸汽通道与第二发生器(H)连通后第二发生器 (H) 再有冷剂液管路经新增节 流阀(J)与冷凝器(A)连通——第一发生器产生的冷剂蒸汽作为第二发生器的驱动热介质, 第二发生器 (H) 还有冷剂蒸汽通道与冷凝器 (A) 连通, 形成单级串联双效回热式第一类吸 收式热泵。
11. 回热式第一类吸收式热泵,是在权利要求 9-10所述的回热式第一类吸收式热泵中, 将第二吸收器 (2) 有稀溶液管路经第一溶液泵 (4 )、 第一溶液热交换器 (6) 和第二溶液热 交换器(I )与第一发生器(3)连通调整为第二吸收器(2)有稀溶液管路经第一溶液泵(4)、 第一溶液热交换器 (6) 之后分别直接与第二发生器 (H) 连通和再经第二溶液热交换器 (I ) 与第一发生器 (3 ) 连通, 形成单级串并联双效回热式第一类吸收式热泵。
12. 回热式第一类吸收式热泵, 是在权利要求 4所述的回热式第一类吸收式热泵中, 增 加第二发生器、 第二溶液热交换器、 新增节流阀和新增溶液泵, 将第二吸收器(2)有稀溶液 管路经第一溶液泵(4)和第一溶液热交换器(6) 与第一发生器(3 )连通调整为第二吸收器
(2) 有稀溶液管路经第一溶液泵 (4) 和第一溶液热交换器 (6) 与第二发生器 (H) 连通, 第二发生器(H)还有浓溶液管路经新增溶液泵(K)和第二溶液热交换器(I ) 与第一发生器
(3) 连通, 将第一发生器 (3) 有浓溶液管路经第一溶液热交换器 (6) 和第二吸收器 (2) 与第一吸收器 (1 ) 连通调整为第一发生器 (3) 有浓溶液管路经第二溶液热交换器 (1 )、 第 权 利 要 求 书
WO 2011/134129 PCT/CN2010/001785 一溶液热交换器 (6 ) 和第二吸收器 (2) 与第一吸收器 (1 ) 连通, 将第一发生器 (3 ) 有冷 剂蒸汽通道与冷凝器(A)连通调整为第一发生器(3)有冷剂蒸汽通道与第二发生器(H)连 通后第二发生器(H) 再有冷剂液管路经新增节流阀 (J)与冷凝器(A)连通——第一发生器 产生的冷剂蒸汽作为第二发生器的驱动热介质, 第二发生器(H)还有冷剂蒸汽通道与冷凝器 (A) 连通, 形成单级串联双效回热式第一类吸收式热泵。
13. 回热式第一类吸收式热泵, 是在权利要求 5-6所述的回热式第一类吸收式热泵中, 增加第二发生器、 第二溶液热交换器、 新增节流阀和新增溶液泵, 将第二吸收器(2)有稀溶 液管路经第一溶液泵(4)和第一溶液热交换器(6)与第一发生器(3)连通调整为第二吸收 器(2)有稀溶液管路经第一溶液泵 (4)和第一溶液热交换器(6) 与第二发生器(H)连通, 第二发生器(H)还有浓溶液管路经新增溶液泵 (K)和第二溶液热交换器(I ) 与第一发生器
(3) 连通, 将第一发生器 (3) 有浓溶液管路经第一溶液热交换器 (6) 和第二吸收器 (2 ) 与分汽室 (7 ) 连通调整为第一发生器 (3 ) 有浓溶液管路经第二溶液热交换器 (1 )、 第一溶 液热交换器 (6) 和第二吸收器 (2) 与分汽室 (7 ) 连通, 将第一发生器 (3) 有冷剂蒸汽通 道与冷凝器(A)连通调整为第一发生器(3 )有冷剂蒸汽通道与第二发生器(H)连通后第二 发生器(H)再有冷剂液管路经新增节流阔 (J) 与冷凝器(A)连通——第一发生器产生的冷 剂蒸汽作为第二发生器的驱动热介质, 第二发生器 (H) 还有冷剂蒸汽通道与冷凝器 (A) 连 通, 形成单级串联双效回热式第一类吸收式热泵。
14. 回热式第一类吸收式热泵,是在权利要求 12-13所述的回热式第一类吸收式热泵中, 将第二吸收器(2)有稀溶液管路经第一溶液泵 (4)和第一溶液热交换器(6) 与第二发生器
(H) 连通调整为第二吸收器 (2 ) 有稀溶液管路经第一溶液泵 (4)、 第一溶液热交换器 (6) 之后分别与第二发生器 (H) 连通和与第一发生器 (3 ) 连通, 形成单级串并联双效回热式第 一类吸收式热泵。
15. 回热式第一类吸收式热泵, 是在权利要求 4所述的回热式第一类吸收式热泵中, 增 加第二发生器、 第三发生器、 第二溶液热交换器、 第三溶液热交换器、 新增第一节流阀和新 增第二节流阀, 第一溶液泵 (4) 增设稀溶液管路分别经第二溶液热交换器 (I ) 与第二发生 器 (H) 连通和经第三溶液热交换器 (M) 与第三发生器 (L) 连通, 第二发生器 (Η) 有浓溶 液管路经第二溶液热交换器 (I ) 之后和第三发生器 (L) 有浓溶液管路经第三溶液热交换器
(Μ)之后均与第一发生器(3)经第一溶液热交换器(6)之后的浓溶液管路汇合、 再经第二 吸收器 (2) 与第一吸收器 (1 ) 连通, 将第一发生器 (3 ) 有冷剂蒸汽通道与冷凝器 (Α) 连 通调整为第一发生器(3)有冷剂蒸汽通道与第二发生器(Η)连通后第二发生器(Η)再有冷 剂液管路经新增第一节流阀 (J) 与冷凝器 (Α) 连通——第一发生器产生的冷剂蒸汽作为第 二发生器的驱动热介质, 第二发生器 (Η) 还有冷剂蒸汽通道与第三发生器 (L) 连通后第三 发生器(L)再有冷剂液管路经新增第二节流阀 (Ν) 与冷凝器(Α)连通——第二发生器产生 的冷剂蒸汽作为第三发生器的驱动热介质, 第三发生器(L)还有冷剂蒸汽通道与冷凝器(Α) 连通, 形成单级并联三效回热式第一类吸收式热泵。
16. 回热式第一类吸收式热泵, 是在权利要求 5-6所述的回热式第一类吸收式热泵中, 增加第二发生器、 第三发生器、 第二溶液热交换器、 第三溶液热交换器、 新增第一节流阀和 新增第二节流阀, 第一溶液泵 (4) 增设稀溶液管路分别经第二溶液热交换器 (I ) 与第二发 生器 (Η) 连通和经第三溶液热交换器 (Μ) 与第三发生器 (L) 连通, 第二发生器 (Η) 有浓 溶液管路经第二溶液热交换器 (I ) 之后和第三发生器 (U 有浓溶液管路经第三溶液热交换 器(Μ)之后均与第一发生器(3)经第一溶液热交换器(6)之后的浓溶液管路汇合、 再经第 权 利 要 求 书
WO 2011/134129 PCT/CN2010/001785 二吸收器 (2 ) 与分汽室 (7 ) 连通, 将第一发生器 (3 ) 有冷剂蒸汽通道与冷凝器 (A) 连通 调整为第一发生器(3)有冷剂蒸汽通道与第二发生器(H)连通后第二发生器(H)再有冷剂 液管路经新增第一节流阀 (J) 与冷凝器 (A) 连通——第一发生器产生的冷剂蒸汽作为第二 发生器的驱动热介质, 第二发生器 (H) 还有冷剂蒸汽通道与第三发生器 (L) 连通后第三发 生器(U再有冷剂液管路经新增第二节流阀 (Ν) 与冷凝器(Α)连通——第二发生器产生的 冷剂蒸汽作为第三发生器的驱动热介质, 第三发生器 (L) 还有冷剂蒸汽通道与冷凝器 (Α) 连通, 形成单级并联三效回热式第一类吸收式热泵。
17. 回热式第一类吸收式热泵, 是在权利要求 4所述的回热式第一类吸收式热泵中, 增 加第二发生器、 第三发生器、 第二溶液热交换器、 第三溶液热交换器、 新增第一节流阀和新 增第二节流阀, 将第二吸收器(2 )有稀溶液管路经第一溶液泵(4)和第一溶液热交换器(6) 与第一发生器 (3 ) 连通调整为第二吸收器 (2) 有稀溶液管路经第一溶液泵 (4 )、 第一溶液 热交换器 (6)、 第二溶液热交换器 (I ) 和第三溶液热交换器 (Μ) 与第一发生器 (3) 连通, 将第一发生器(3 )有浓溶液管路经第一溶液热交换器(6 )和第二吸收器(2 ) 与第一吸收器
( 1 )连通调整为第一发生器(3)有浓溶液管路经第三溶液热交换器(Μ) 与第二发生器(Η) 连通, 第二发生器 (Η) 还有浓溶液管路经第二溶液热交换器 (I ) 与第三发生器 (L) 连通, 第三发生器(L)还有浓溶液管路经第一溶液热交换器 (6)和第二吸收器(2 ) 与第一吸收器
( 1 ) 连通, 将第一发生器 (3) 有冷剂蒸汽通道与冷凝器 (Α) 连通调整为第一发生器 (3 ) 有冷剂蒸汽通道与第二发生器 (Η) 连通后第二发生器 (Η) 再有冷剂液管路经新增第一节流 阀 (J) 与冷凝器 (Α) 连通——第一发生器产生的冷剂蒸汽作为第二发生器的驱动热介质, 第二发生器(Η)还有冷剂蒸汽通道与第三发生器(L)连通后第三发生器(L) 再有冷剂液管 路经新增第二节流阀 (Ν) 与冷凝器 (Α) 连通——第二发生器产生的冷剂蒸汽作为第三发生 器的驱动热介质, 第三发生器 (L) 还有冷剂蒸汽通道与冷凝器 (Α) 连通, 形成单级串联三 效回热式第一类吸收式热泵。
18. 回热式第一类吸收式热泵, 是在权利要求 5-6所述的回热式第一类吸收式热泵中, 增加第二发生器、 第三发生器、 第二溶液热交换器、 第三溶液热交换器、 新增第一节流阀和 新增第二节流阀, 将第二吸收器 (2 ) 有稀溶液管路经第一溶液泵 (4) 和第一溶液热交换器
(6) 与第一发生器(3 )连通调整为第二吸收器(2 )有稀溶液管路经第一溶液泵 (4)、 第一 溶液热交换器 (6)、 第二溶液热交换器(I ) 和第三溶液热交换器 (Μ) 与第一发生器 (3)连 通, 将第一发生器 (3)有浓溶液管路经第一溶液热交换器(6)和第二吸收器(2) 与分汽室
(7)连通调整为第一发生器(3)有浓溶液管路经第三溶液热交换器(Μ) 与第二发生器 (Η) 连通, 第二发生器 (Η) 还有浓溶液管路经第二溶液热交换器 (I ) 与第三发生器 (L) 连通, 第三发生器(L) 还有浓溶液管路经第一溶液热交换器 (6)和第二吸收器(2) 与分汽室 (7 ) 连通, 将第一发生器(3 )有冷剂蒸汽通道与冷凝器(Α)连通调整为第一发生器(3 ) 有冷剂 蒸汽通道与第二发生器 (Η) 连通后第二发生器 (Η) 再有冷剂液管路经新增第一节流阀 (J) 与冷凝器(Α)连通——第一发生器产生的冷剂蒸汽作为第二发生器的驱动热介质, 第二发生 器(Η)还有冷剂蒸汽通道与第三发生器(L)连通后第三发生器(L)再有冷剂液管路经新增 第二节流阀 (Ν) 与冷凝器 (Α) 连通——第二发生器产生的冷剂蒸汽作为第三发生器的驱动 热介质, 第三发生器 (L) 还有冷剂蒸汽通道与冷凝器 (Α) 连通, 形成单级串联三效回热式 第一类吸收式热泵。
19. 回热式第一类吸收式热泵, 是在权利要求 4所述的回热式第一类吸收式热泵中, 增 加第二发生器、 第三发生器、 第二溶液热交换器、 第三溶液热交换器、 新增第一节流阀、 新 权 利 要 求 书
WO 2011/134129 PCT/CN2010/001785 增第二节流阀、 新增第一溶液泵和新增第二溶液泵, 将第二吸收器(2)有稀溶液管路经第一 溶液泵 (4) 和第一溶液热交换器 (6) 与第一发生器 (3 ) 连通调整为第二吸收器 (2 ) 有稀 溶液管路经第一溶液泵 (4)和第一溶液热交换器(6) 与第三发生器(L)连通, 第三发生器
(L) 还有浓溶液管路经新增第一溶液泵 (K) 和第二溶液热交换器 (I ) 与第二发生器 (H) 连通, 第二发生器(H)还有浓溶液管路经新增第二溶液泵 (0)和第三溶液热交换器(M) 与 第一发生器(3)连通, 将第一发生器(3)有浓溶液管路经第一溶液热交换器(6)和第二吸 收器(2) 与第一吸收器(1 )连通调整为第一发生器(3)有浓溶液管路经第三溶液热交换器
(M)、第二溶液热交换器(1 )、 第一溶液热交换器(6)和第二吸收器(2)与第一吸收器(1 ) 连通, 将第一发生器(3)有冷剂蒸汽通道与冷凝器(A)连通调整为第一发生器(3)有冷剂 蒸汽通道与第二发生器 (H) 连通后第二发生器 (H) 再有冷剂液管路经新增第一节流阀 (J) 与冷凝器(A)连通——第一发生器产生的冷剂蒸汽作为第二发生器的驱动热介质, 第二发生 器(H)还有冷剂蒸汽通道与第三发生器(L)连通后第三发生器(L)再有冷剂液管路经新增 第二节流阀 (N) 与冷凝器 (A) 连通——第二发生器产生的冷剂蒸汽作为第三发生器的驱动 热介质, 第三发生器 (L) 还有冷剂蒸汽通道与冷凝器 (A) 连通, 形成单级串联三效回热式 第一类吸收式热泵。
20. 回热式第一类吸收式热泵, 是在权利要求 5-6所述的回热式第一类吸收式热泵中, 增加第二发生器、 第三发生器、 第二溶液热交换器、 第三溶液热交换器、 新增第一节流阀、 新增第二节流阀、 新增第一溶液泵和新增第二溶液泵, 将第二吸收器(2)有稀溶液管路经第 一溶液泵 (4 ) 和第一溶液热交换器 (6 ) 与第一发生器 (3 ) 连通调整为第二吸收器 (2 ) 有 稀溶液管路经第一溶液泵(4)和第一溶液热交换器(6) 与第三发生器(L)连通, 第三发生 器(L)还有浓溶液管路经新增第一溶液泵 (K)和第二溶液热交换器 (I ) 与第二发生器(H) 连通, 第二发生器(H)还有浓溶液管路经新增第二溶液泵 (0)和第三溶液热交换器(M) 与 第一发生器 (3)连通, 将第一发生器(3)有浓溶液管路经第一溶液热交换器(6)和第二吸 收器(2)与分汽室(7 )连通调整为第一发生器(3)有浓溶液管路经第三溶液热交换器(M)、 第二溶液热交换器 (1 )、 第一溶液热交换器 (6)和第二吸收器 (2) 与分汽室 (7)连通, 将 第一发生器 (3)有冷剂蒸汽通道与冷凝器(A)连通调整为第一发生器(3)有冷剂蒸汽通道 与第二发生器(H)连通后第二发生器(H)再有冷剂液管路经新增第一节流阀 (J)与冷凝器
(A) 连通——第一发生器产生的冷剂蒸汽作为第二发生器的驱动热介质, 第二发生器 (H) 还有冷剂蒸汽通道与第三发生器 (L) 连通后第三发生器 (L) 再有冷剂液管路经新增第二节 流阀(Ν)与冷凝器(Α)连通——第二发生器产生的冷剂蒸汽作为第三发生器的驱动热介质, 第三发生器 (L) 还有冷剂蒸汽通道与冷凝器 (Α) 连通, 形成单级串联三效回热式第一类吸 收式热泵。
21. 回热式第一类吸收式热泵, 是在权利要求 4所述的回热式第一类吸收式热泵中, 增 加第二溶液热交换器、 吸收-蒸发器、 第二冷剂液泵或新增节流阀, 将第一吸收器 (1 ) 有稀 溶液管路经第二溶液泵 (5)与第二吸收器(2 )连通调整为第一吸收器(1 )有稀溶液管路经 第二溶液热交换器(I ) 与吸收-蒸发器(Q)连通, 吸收-蒸发器(Q)还有稀溶液管路经第二 溶液泵 (5) 和第二溶液热交换器 (I ) 与第二吸收器 (2 ) 连通, 将蒸发器 (Β) 有冷剂蒸汽 通道与第一吸收器 (1 ) 连通调整为蒸发器 (Β) 有冷剂蒸汽通道与吸收-蒸发器 (Q) 连通, 蒸发器(Β)增设冷剂液管路经第二冷剂液泵(Ρ)与吸收-蒸发器(Q)连通后吸收-蒸发器(Q) 再有冷剂蒸汽通道与第一吸收器(1 )连通、或冷凝器(Α)增设冷剂液管路经新增节流阀(J) 与吸收-蒸发器(Q)连通后吸收-蒸发器(Q) 再有冷剂蒸汽通道与第一吸收器(1 )连通, 形 权 利 要 求 书
WO 2011/134129 PCT/CN2010/001785 成单发生器两级回热式第一类吸收式热泵。
22. 回热式第一类吸收式热泵, 是在权利要求 5所述的回热式第一类吸收式热泵中, 增 加第二溶液热交换器、 吸收-蒸发器、 第二冷剂液泵或新增节流阀, 将第三吸收器 (8) 有稀 溶液管路经第二溶液泵(5)与第二吸收器(2)连通调整为第三吸收器(8)有稀溶液管路经 第二溶液热交换器 (I) 与吸收-蒸发器(Q)连通, 吸收-蒸发器(Q)还有稀溶液管路经第二 溶液泵 (5) 和第二溶液热交换器 (I) 与第二吸收器 (2) 连通, 将蒸发器 (B) 有冷剂蒸汽 通道分别与第一吸收器(1)和第三吸收器(8)连通调整为蒸发器(B)有冷剂蒸汽通道与吸 收-蒸发器(Q) 连通, 蒸发器 (B)增设冷剂液管路经第二冷剂液泵 (P) 与吸收-蒸发器(Q) 连通后吸收-蒸发器(Q)再有冷剂蒸汽通道分别与第一吸收器(1)和第三吸收器(8)连通、 或冷凝器(A)增设冷剂液管路经新增节流阀( J)与吸收-蒸发器(Q)连通后吸收-蒸发器(Q) 再有冷剂蒸汽通道分别与第一吸收器 (1) 和第三吸收器 (8) 连通, 形成单发生器两级回热 式第一类吸收式热泵。
23. 回热式第一类吸收式热泵, 是在权利要求 5所述、 第三吸收器无被加热介质管路与 外部连通的回热式第一类吸收式热泵中,增加第三溶液泵、第二溶液热交换器、吸收-蒸发器、 第二冷剂液泵或新增节流阀, 将分汽室 (7) 有浓溶液管路与第一吸收器 (1) 连通调整为分 汽室 (7) 有浓溶液管路经第三溶液泵 (9) 和第二溶液热交换器 (I) 与第一吸收器 (1) 连 通, 将第一吸收器 (1) 有稀溶液管路与第三吸收器(8)连通调整为第一吸收器(1)有稀溶 液管路经第二溶液热交换器(I) 与吸收-蒸发器(Q)连通, 吸收-蒸发器(Q)还有稀溶液管 路与第三吸收器(8)连通, 将蒸发器(B)有冷剂蒸汽通道与第一吸收器(1)连通调整为蒸 发器 (B) 有冷剂蒸汽通道与吸收-蒸发器 (Q) 连通, 蒸发器 (B) 增设冷剂液管路经第二冷 剂液泵(P)与吸收-蒸发器(Q)连通后吸收-蒸发器(Q)再有冷剂蒸汽通道与第一吸收器(1) 连通、 或冷凝器 (A) 增设冷剂液管路经新增节流阀 (J) 与吸收-蒸发器 (Q) 连通后吸收- 蒸发器 (Q) 再有冷剂蒸汽通道与第一吸收器 (1) 连通, 形成单发生器两级回热式第一类吸 收式热泵。
24. 回热式第一类吸收式热泵, 是在权利要求 5所述、第三吸收器无被加热介质管路与 外部连通的回热式第一类吸收式热泵中,增加第三溶液泵和第二溶液热交换器,将分汽室(7) 有浓溶液管路与第一吸收器(1)连通调整为分汽室(7)有浓溶液管路经第三溶液泵(9)和 第二溶液热交换器 (I) 与第一吸收器(1)连通, 将第一吸收器(1)有稀溶液管路与第三吸 收器(8)连通调整为第一吸收器(1)有稀溶液管路经第二溶液热交换器(I) 与第三吸收器
(8) 连通, 取消蒸发器 (B) 与第一吸收器 (1) 连通的冷剂蒸汽通道, 将蒸发器 (B) 有冷 剂液管路经冷剂液泵 (D) 与第三吸收器(8)连通后第三吸收器(8) 再有冷剂蒸汽通道与第 二吸收器 (2) 连通、 或冷凝器 (A) 有冷剂液管路经第二节流阀 (E) 与第三吸收器 (8) 连 通后第三吸收器(8) 再有冷剂蒸汽通道与第二吸收器(2)连通相应调整为蒸发器 (B)有冷 剂液管路经冷剂液泵(D) 与第三吸收器(8)连通后第三吸收器(8)再有冷剂蒸汽通道分别 与第一吸收器 (1) 和第二吸收器 (2)连通、 或冷凝器 (A)有冷剂液管路经第二节流阀 (E) 与第三吸收器(8)连通后第三吸收器(8) 再有冷剂蒸汽通道分别与第一吸收器(1)和第二 吸收器 (2) 连通, 形成单发生器两级回热式第一类吸收式热泵。
25. 回热式第一类吸收式热泵, 是在权利要求 4所述的回热式第一类吸收式热泵中, 增 加新增吸收器、 第二溶液热交换器、 第二冷剂液泵或新增节流阔, 将第二吸收器(2)有稀溶 液管路经第一溶液泵(4)和第一溶液热交换器(6)与发生器(3)连通调整为第二吸收器(2) 有稀溶液管路经第一溶液泵 (4)、 第一溶液热交换器 (6) 和第二溶液热交换器 (I) 与发生 权 利 要 求 书
WO 2011/134129 PCT/CN2010/001785 器 (3) 连通, 将发生器 (3) 有浓溶液管路经第一溶液热交换器 (6) 和第二吸收器 (2 ) 与 第一吸收器(1 )连通调整为发生器(3 )有浓溶液管路经第二溶液热交换器(I )与新增吸收 器(R)连通, 新增吸收器 (R)还有稀溶液管路经第一溶液热交换器 (6)和第二吸收器(2) 与第一吸收器(1 )连通, 将第一吸收器(1 )有被加热介质管路与外部连通调整为蒸发器(B) 增设冷剂液管路经第二冷剂液泵(P) 与第一吸收器(1 )连通后第一吸收器(1 )再有冷剂蒸 汽通道与新增吸收器(R)连通、 或调整为冷凝器(A)增设冷剂液管路经新增节流阀 (J)第 一吸收器(1 )连通后第一吸收器(1 ) 再有冷剂蒸汽通道与新增吸收器(R)连通, 新增吸收 器 (R) 还有被加热介质管路与外部连通, 形成单发生器两级回热式第一类吸收式热泵。
26. 回热式第一类吸收式热泵, 是在权利要求 5所述、 第三吸收器无被加热介质管路与 外部连通的回热式第一类吸收式热泵中, 增加新增吸收器、 第二溶液热交换器、 第二冷剂液 泵或新增节流阀, 将第二吸收器 (2 ) 有稀溶液管路经第一溶液泵 (4) 和第一溶液热交换器
(6)与发生器(3)连通调整为第二吸收器(2)有稀溶液管路经第一溶液泵(4)、 第一溶液 热交换器 (6 ) 和第二溶液热交换器 (I ) 与发生器 (3 ) 连通, 将发生器 (3) 有浓溶液管路 经第一溶液热交换器 (6) 和第二吸收器 (2) 与分汽室 (7 ) 连通调整为发生器 (3) 有浓溶 液管路经第二溶液热交换器(I ) 与新增吸收器(R)连通, 新增吸收器(R)还有稀溶液管路 经第一溶液热交换器 (6) 和第二吸收器 (2) 与分汽室 (7 ) 连通, 将第一吸收器 (1 ) 有被 加热介质管路与外部连通调整为蒸发器 (B) 增设冷剂液管路经第二冷剂液泵 (P) 与第一吸 收器(1 )连通后第一吸收器(1 )再有冷剂蒸汽通道与新增吸收器(R)连通、 或调整为冷凝 器 (A) 增设冷剂液管路经新增节流阀 (J) 与第一吸收器 (1 ) 连通后第一吸收器 (1 ) 再有 冷剂蒸汽通道与新增吸收器 (R) 连通, 新增吸收器 (R) 还有被加热介质管路与外部连通, 形成单发生器两级回热式第一类吸收式热泵。
27. 回热式第一类吸收式热泵, 是在权利要求 4-6所述的回热式第一类吸收式热泵中, 增加第二发生器、 新增吸收器、 新增溶液泵和第二溶液热交换器, 将第一发生器(3 )有冷剂 蒸汽通道与冷凝器(A)连通调整为第一发生器(3)有冷剂蒸汽通道与新增吸收器(R)连通, 新增吸收器(R)还有稀溶液管路经新增溶液泵 (K)和第二溶液热交换器(I ) 与第二发生器
(H) 连通, 第二发生器 (H) 还有浓溶液管路经第二溶液热交换器 (I ) 与新增吸收器 (R) 连通, 第二发生器 (H) 还分别有冷剂蒸汽通道与冷凝器 (A) 连通和有驱动热介质管路与外 部连通, 新增吸收器(R)还有被加热介质管路与外部连通, 形成由第一发生器向新增吸收器 提供冷剂蒸汽的双发生器两级回热式第一类吸收式热泵。
28. 回热式第一类吸收式热泵, 是在权利要求 4所述的回热式第一类吸收式热泵中, 增 加第二发生器、 新增吸收器、 新增溶液泵、 第二溶液热交换器和第三溶液热交换器, 将第二 吸收器 (2) 有稀溶液管路经第一溶液泵 (4) 和第一溶液热交换器 (6) 与第一发生器 (3) 连通调整为第二吸收器 (2) 有稀溶液管路经第一溶液泵 (4 )、 第一溶液热交换器 (6) 和第 二溶液热交换器(I ) 与第二发生器(H)连通, 第二发生器(H)还有浓溶液管路经第二溶液 热交换器(I ) 与新增吸收器 (R) 连通, 新增吸收器 (R) 还有稀溶液管路经新增溶液泵 (K) 和第三溶液热交换器(M) 与第一发生器(3 )连通, 将第一发生器(3)有浓溶液管路经第一 溶液热交换器 (6) 和第二吸收器 (2 ) 与第一吸收器 (1 ) 连通调整为第一发生器 (3 ) 有浓 溶液管路经第三溶液热交换器 (M)、 第一溶液热交换器 (6) 和第二吸收器 (2) 与第一吸收 器(1 )连通调, 将第一发生器(3)有冷剂蒸汽通道与冷凝器(A)连通调整为第一发生器(3) 有冷剂蒸汽通道与新增吸收器 (R) 连通, 第二发生器 (H) 还分别有冷剂蒸汽通道与冷凝器
(A) 连通和有驱动热介质管路与外部连通, 新增吸收器 (R) 还有被加热介质管路与外部连 权 利 要 求 书
WO 2011/134129 PCT/CN2010/001785 通,形成由第一发生器向新增吸收器提供冷剂蒸汽的双发生器两级回热式第一类吸收式热泵。
29. 回热式第一类吸收式热泵,是在权利要求 5- 6所述的任一回热式第一类吸收式热泵 中, 增加第二发生器、 新增吸收器、 新增溶液泵、 第二溶液热交换器和第三溶液热交换器, 将第二吸收器(2)有稀溶液管路经第一溶液泵 (4)和第一溶液热交换器(6) 与第一发生器
(3)连通调整为第二吸收器 (2 ) 有稀溶液管路经第一溶液泵 (4)、 第一溶液热交换器 (6) 和第二溶液热交换器 (I ) 与第二发生器(H)连通, 第二发生器(H)还有浓溶液管路经第二 溶液热交换器(I ) 与新增吸收器(R)连通, 新增吸收器(R)还有稀溶液管路经新增溶液泵
(K) 和第三溶液热交换器 (M) 与第一发生器 (3) 连通, 将第一发生器 (3) 有浓溶液管路 经第一溶液热交换器 (6) 和第二吸收器 (2) 与分汽室 (7 ) 连通调整为第一发生器 (3 ) 有 浓溶液管路经第三溶液热交换器 (M)、 第一溶液热交换器 (6) 和第二吸收器 (2 ) 与分汽室
(7 )连通调, 将第一发生器(3 )有冷剂蒸汽通道与冷凝器 (A)连通调整为第一发生器(3) 有冷剂蒸汽通道与新增吸收器 (R) 连通, 第二发生器 (H) 还分别有冷剂蒸汽通道与冷凝器
(A) 连通和有驱动热介质管路与外部连通, 新增吸收器 (R) 还有被加热介质管路与外部连 通,形成由第一发生器向新增吸收器提供冷剂蒸汽的双发生器两级回热式第一类吸收式热泵。
30. 回热式第一类吸收式热泵,是在权利要求 27-29所述的任一回热式第一类吸收式热 泵中, 增加第二冷凝器和新增节流阀, 将第二发生器(H)有冷剂蒸汽通道与第一冷凝器(A) 连通调整为第二发生器(H)有冷剂蒸汽通道与第二冷凝器(S)连通, 第二冷凝器(S)还有 冷剂液管路经新增节流阀 (J) 与第一冷凝器(A)连通, 第一发生器(3)增设冷剂蒸汽通道 与第一冷凝器 (A) 连通, 第二冷凝器 (S) 还有被加热介质管路与外部连通, 形成由第一发 生器分别向第一冷凝器和新增吸收器提供冷剂蒸汽的双发生器两级回热式第一类吸收式热 泵。
31. 回热式第一类吸收式热泵,是在权利要求 4所述的任一回热式第一类吸收式热泵中, 增加第二发生器、 新增吸收器、 新增溶液泵和第二溶液热交换器, 将蒸发器(B)有冷剂蒸汽 通道与第一吸收器(1 )连通调整为发器 (B)有冷剂蒸汽通道与新增吸收器(R)连通, 新增 吸收器(R)还有稀溶液管路经新增溶液泵 (K)和第二溶液热交换器 (I ) 与第二发生器(H) 连通, 第二发生器 (H) 还有浓溶液管路经第二溶液热交换器 (I ) 与新增吸收器 (R) 连通, 第二发生器 (H) 还分别有冷剂蒸汽通道与第一吸收器 (1 ) 连通和有驱动热介质管路与外部 连通, 新增吸收器(R)还有被加热介质管路与外部连通, 形成由第二发生器向第一吸收器提 供冷剂蒸汽的双发生器两级回热式第一类吸收式热泵。
32. 回热式第一类吸收式热泵,是在权利要求 5所述的任一回热式第一类吸收式热泵中, 增加第二发生器、 新增吸收器、 新增溶液泵和第二溶液热交换器, 将蒸发器(B)有冷剂蒸汽 通道分别与第一吸收器(1 )和第三吸收器(8 )连通调整为发器(B)有冷剂蒸汽通道与新增 吸收器(R)连通, 新增吸收器(R)还有稀溶液管路经新增溶液泵 (K)和第二溶液热交换器
( I ) 与第二发生器 (H) 连通, 第二发生器 (H) 还有浓溶液管路经第二溶液热交换器 (I ) 与新增吸收器(R)连通, 第二发生器(H)还有冷剂蒸汽通道分别与第一吸收器(1 )和第三 吸收器(8) 连通, 第二发生器 (H)还有驱动热介质管路与外部连通, 新增吸收器(R)还有 被加热介质管路与外部连通, 形成由第二发生器向第一吸收器或分别向第一吸收器和第三吸 收器提供冷剂蒸汽的双发生器两级回热式第一类吸收式热泵。
33. 回热式第一类吸收式热泵,是在权利要求 31-32所述的任一回热式第一类吸收式热 泵中, 增加第二冷凝器和新增节流阀, 第二发生器(H)增设冷剂蒸汽通道与第二冷凝器(S ) 连通, 第二冷凝器(S )还有冷剂液管路经再节流阀(J)与蒸发器(B)连通, 第二冷凝器(S) 权 利 要 求 书
WO 2011/134129 PCT/CN2010/001785 还有被加热介质管路与外部连通, 形成由第二发生器分别向第二冷凝器、 第一吸收器或再加 上第三吸收器提供冷剂蒸汽的双发生器两级回热式第一类吸收式热泵; 其中, 还可选择将第 一冷凝器 (A) 有冷剂液管路经第一节流阀 (C) 与蒸发器 (B) 连通调整为第一冷凝器 (A) 有冷剂液管路经第一节流阀 (C) 与第二冷凝器 (S) 连通。
34. 回热式窠一类吸收式热泵,是在权利要求 4所述的任一回热式第一类吸收式热泵中, 增加第二发生器、 新增吸收器、 新增溶液泵和第二溶液热交换器, 将第一发生器(3)有冷剂 蒸汽通道与冷凝器(A)连通调整为第一发生器(3)有冷剂蒸汽通道与新增吸收器(R)连通, 新增吸收器(R)还有稀溶液管路经新增溶液泵(K)和第二溶液热交换器(I ) 与第二发生器
(H) 连通, 第二发生器 (H) 还有浓溶液管路经第二溶液热交换器 (I ) 与新增吸收器 (R) 连通, 第二发生器 (H) 还分别有冷剂蒸汽通道与冷凝器 (A) 连通和有驱动热介质管路与外 部连通, 新增吸收器 (R) 还有被加热介质管路与外部连通; 取消第一吸收器 (1 ) 与外部连 通的被加热介质管路, 将蒸发器(B)有冷剂液管路经冷剂液泵 (D) 与第一吸收器(1 )连通 后第一吸收器(1 )再有冷剂蒸汽通道与第二吸收器(2 )连通调整为蒸发器(B)有冷剂液管 路经冷剂液泵(D) 与第一吸收器(1 )连通后第一吸收器(1 )再有冷剂蒸汽通道分别与第二 吸收器 (2 ) 和新增吸收器 (R) 连通、 或将冷凝器 (A) 有冷剂液管路经第二节流阀 (E) 与 第一吸收器(1 )连通后第一吸收器(1 )再有冷剂蒸汽通道与第二吸收器(2)连通调整为冷 凝器 (A) 有冷剂液管路经第二节流阀 (E) 与第一吸收器 (1 ) 连通后第一吸收器 (1 ) 再有 冷剂蒸汽通道分别与第二吸收器 (2 ) 和新增吸收器 (R) 连通, 形成由第一吸收器和第一发 生器共同向新增吸收器提供冷剂蒸汽的双发生器两级回热式第一类吸收式热泵。
35. 回热式第一类吸收式热泵,是在权利要求 4所述的任一回热式第一类吸收式热泵中, 增加第二发生器、 新增吸收器、 新增溶液泵和第二溶液热交换器, 将第一发生器(3)有冷剂 蒸汽通道与冷凝器(A)连通调整为第一发生器(3 )有冷剂蒸汽通道与新增吸收器(R)连通, 新增吸收器(R)还有稀溶液管路经新增溶液泵(K)和第二溶液热交换器(I ) 与第二发生器
(H) 连通, 第二发生器 (H) 还有浓溶液管路经第二溶液热交换器 (I ) 与新增吸收器 (R) 连通, 第二发生器 (H) 还分别有冷剂蒸汽通道与冷凝器 (A) 连通和有驱动热介质管路与外 部连通, 新增吸收器 (R) 还有被加热介质管路与外部连通; 取消第一吸收器 (1 ) 与外部连 通的被加热介质管路, 增加第二冷剂液泵或新增节流阀, 蒸发器(B)增设冷剂液管路经第二 冷剂液泵(P)与第一吸收器(1 )连通后第一吸收器(1 )再有冷剂蒸汽通道与新增吸收器(R) 连通、 或冷凝器(A) 增设冷剂液管路经新增节流阀 (J) 与第一吸收器(1 )连通后第一吸收 器 (1 ) 再有冷剂蒸汽通道与新增吸收器 (R) 连通, 形成由第一吸收器和第一发生器共同向 新增吸收器提供冷剂蒸汽的双发生器两级回热式第一类吸收式热泵。
36. 回热式第一类吸收式热泵, 是在权利要求 5所述、 第三吸收器 (8) 无被加热介质 管路与外部连通的回热式第一类吸收式热泵中, 增加第二发生器、 新增吸收器、 新增溶液泵 和第二溶液热交换器, 将第一发生器 (3 ) 有冷剂蒸汽通道与冷凝器 (A) 连通调整为第一发 生器(3) 有冷剂蒸汽通道与新增吸收器(R)连通, 新增吸收器(R)还有稀溶液管路经新增 溶液泵 (K) 和第二溶液热交换器 (I ) 与第二发生器 (Η) 连通, 第二发生器 (Η) 还有浓溶 液管路经第二溶液热交换器(I ) 与新增吸收器(R)连通, 第二发生器(Η)还分别有冷剂蒸 汽通道与冷凝器 (Α) 连通和有驱动热介质管路与外部连通, 新增吸收器 (R) 还有被加热介 质管路与外部连通; 取消第一吸收器(1 )与外部连通的被加热介质管路, 增加第二冷剂液泵 或新增节流阀, 蒸发器(Β)增设冷剂液管路经第二冷剂液泵 (Ρ) 与第一吸收器(1 )连通后 第一吸收器(1 ) 再有冷剂蒸汽通道与新增吸收器(R)连通、 或冷凝器(Α)增设冷剂液管路 权 利 要 求 书
WO 2011/134129 PCT/CN2010/001785 经新增节流阀 (J) 与第一吸收器(1 )连通后第一吸收器(1 ) 再有冷剂蒸汽通道与新增吸收 器(R)连通, 形成由第一吸收器和第一发生器共同向新增吸收器提供冷剂蒸汽的双发生器两 级回热式第一类吸收式热泵。
37. 回热式第一类吸收式热泵, 是在权利要求 4所述的回热式第一类吸收式热泵中, 增 加第二发生器、第二溶液热交换器、新增溶液泵、吸收-蒸发器、第二冷剂液泵或新增节流阀, 将蒸发器(B)有冷剂蒸汽通道与第一吸收器(1 )连通调整为蒸发器(B)有冷剂蒸汽通道与 吸收-蒸发器(Q)连通, 吸收-蒸发器(Q)还有稀溶液管路经新增溶液泵(K)和第二溶液热 交换器(I ) 与第二发生器(H)连通, 第二发生器(H)还有浓溶液管路经第二溶液热交换器
( I ) 与吸收-蒸发器 (Q) 连通, 第二发生器 (H) 还分别有冷剂蒸汽通道与第一吸收器 (1 ) 连通和有驱动热介质管路与外部连通, 蒸发器 (B) 增设冷剂液管路经第二冷剂液泵 (P) 与 吸收-蒸发器(Q)连通后吸收-蒸发器(Q) 再有冷剂蒸汽通道与第一吸收器(1 )连通、 或冷 凝器 (A) 增设冷剂液管路经新增节流阀 (J) 与吸收-蒸发器 (Q) 连通后吸收-蒸发器 (Q) 再有冷剂蒸汽通道与第一吸收器 (1 ) 连通, 形成由吸收-蒸发器和第二发生器共同向第一吸 收器提供冷剂蒸汽的双发生器两级回热式第一类吸收式热泵。
38. 回热式第一类吸收式热泵, 是在权利要求 32所述的任一回热式第一类吸收式热泵 中, 取消新增吸收器 (R) 与外部连通的被加热介质管路, 增加第二冷剂液泵或新增节流阀, 蒸发器(B)增设冷剂液管路经第二冷剂液泵 (P) 与新增吸收器 (R)连通后新增吸收器(R) 再有冷剂蒸汽通道分别与第一吸收器 (1 )和第三吸收器(8)连通、 或冷凝器(A)增设冷剂 液管路经新增节流阀 (J) 与新增吸收器(R)连通后新增吸收器(R)再有冷剂蒸汽通道分别 与第一吸收器 (1 ) 和第三吸收器 (8) 连通, 形成由新增吸收器和第二发生器二者共同向第 一吸收器或共同向第一吸收器和第三吸收器提供冷剂蒸汽的双发生器两级回热式第一类吸收 式热泵。
39. 回热式第一类吸收式热泵, 是在权利要求 7-20所述的任一回热式第一类吸收式热 泵中, 增加高温冷凝器和高温节流阀, 高压发生器增设冷剂蒸汽通道与高温冷凝器 (al ) 连 通, 高温冷凝器 (al )还有冷剂液管路经高温节流阀 (bl ) 与冷凝器(A)连通, 高温冷凝器
(al ) 还有被加热介质管路与外部连通, 形成以高温冷凝器为附加高温供热端的回热式第一 类吸收式热泵。
40. 回热式第一类吸收式热泵,是在权利要求 15-20所述的任一回热式第一类吸收式热 泵中, 增加高温冷凝器和高温节流阀, 中压发生器增设冷剂蒸汽通道与高温冷凝器 (al ) 连 通, 高温冷凝器 (al )还有冷剂液管路经高温节流阀 (bl ) 与冷凝器(A)连通, 高温冷凝器
(al ) 还有被加热介质管路与外部连通, 形成以高温冷凝器为附加高温供热端的回热式第一 类吸收式热泵。
41. 回热式第一类吸收式热泵, 是在权利要求 7-14所述的任一回热式第一类吸收式热 泵中, 增加二级吸收器、 二级发生器、 二级溶液泵和二级溶液热交换器, 将低压发生器有冷 剂液管路经新增节流阀与冷凝器连通调整为低压发生器有冷剂液管路经新增节流阔与第一蒸 发器连通, 将低压发生器有冷剂蒸汽通道与冷凝器连通调整为低压发生器有冷剂蒸汽通道与 二级吸收器 (a2 ) 连通, 二级吸收器 2 ) 还有稀溶液管路经二级溶液泵 (c2) 和二级溶液 热交换器 (d2 ) 与二级发生器 (b2) 连通, 二级发生器 (b2 ) 还有浓溶液管路经二级溶液热 交换器 (d2) 与二级吸收器 (a2) 连通, 二级发生器 (b2) 还分别有冷剂蒸汽通道与冷凝器 连通和有驱动热介质管路与外部连通, 二级吸收器 (a2) 还有被加热介质管路与外部连通, 形成由低压发生器向二级吸收器提供冷剂蒸汽、 以单级双效为第一级的两级回热式第一类吸 权 利 要 求 书
WO 2011/134129 PCT/CN2010/001785 收式热泵。
42. 回热式第一类吸收式热泵, 是在权利要求 7-14所述的任一回热式第一类吸收式热 泵中, 增加二级吸收器、 二级发生器、 二级溶液泵、 二级溶液热交换器、 二级冷凝器和二级 节流阀, 低压发生器增设冷剂蒸汽通道与二级吸收器 2) 连通, 二级吸收器 (a2) 还有稀 溶液管路经二级溶液泵 (c2) 和二级溶液热交换器 (d2) 与二级发生器 (b2) 连通, 二级发 生器 (b2) 还有浓溶液管路经二级溶液热交换器 (d2) 与二级吸收器 (a2) 连通, 二级发生 器 (b2) 还分别有冷剂蒸汽通道与二级冷凝器 (e2) 连通和有驱动热介质管路与外部连通, 二级冷凝器(e2)还有冷剂液管路经二级节流阀 (f2) 与第一冷凝器连通, 二级吸收器(a2) 和二级冷凝器 (e2) 还分别有被加热介质管路与外部连通, 形成由低压发生器分别向第一冷 凝器和二级吸收器提供冷剂蒸汽、 以单级双效为第一级的两级回热式第一类吸收式热泵。
43. 回热式第一类吸收式热泵,是在权利要求 15-20所述的任一回热式第一类吸收式热 泵中, 增加二级吸收器、 二级发生器、 二级溶液泵和二级溶液热交换器, 将中压发生器有冷 剂液管路经新增第一节流阀与冷凝器连通调整为中压发生器有冷剂液管路经新增第一节流阀 与第一蒸发器连通, 将低压发生器有冷剂液管路经新增第二节流阀与冷凝器连通调整为低压 发生器有冷剂液管路经新增第二节流阀与第一蒸发器连通, 将低压发生器有冷剂蒸汽通道与 冷凝器连通调整为低压发生器有冷剂蒸汽通道与二级吸收器 (a2) 连通, 二级吸收器 (a2) 还有稀溶液管路经二级溶液泵 (c2) 和二级溶液热交换器 (d2) 与二级发生器 (b2) 连通, 二级发生器 (b2) 还有浓溶液管路经二级溶液热交换器 (d2) 与二级吸收器 (a2) 连通, 二 级发生器 (b2) 还分别有冷剂蒸汽通道与冷凝器连通和有驱动热介质管路与外部连通, 二级 吸收器 (a2) 还有被加热介质管路与外部连通, 形成由低压发生器向二级吸收器提供冷剂蒸 汽、 以单级三效为第一级的两级回热式第一类吸收式热泵。
44. 回热式第一类吸收式热泵,是在权利要求 15-20所述的任一回热式第一类吸收式热 泵中, 增加二级吸收器、 二级发生器、 二级溶液泵、 二级溶液热交换器、 二级冷凝器和二级 节流阀, 低压发生器增设冷剂蒸汽通道与二级吸收器 (a2) 连通, 二级吸收器 (a2) 还有稀 溶液管路经二级溶液泵 (c2) 和二级溶液热交换器 (d2) 与二级发生器 (b2) 连通, 二级发 生器 (b2) 还有浓溶液管路经二级溶液热交换器 (d2) 与二级吸收器 (a2) 连通, 二级发生 器 (b2) 还分别有冷剂蒸汽通道与二级冷凝器 (e2) 连通和有驱动热介质管路与外部连通, 二级冷凝器(e2)还有冷剂液管路经二级节流阀 (f2) 与第一冷凝器连通, 二级吸收器(a2) 和二级冷凝器 (e2) 还分别有被加热介质管路与外部连通, 形成由低压发生器分别向第一冷 凝器和二级吸收器提供冷剂蒸汽、 以单级三效为第一级的两级回热式第一类吸收式热泵。
PCT/CN2010/001785 2010-04-29 2010-11-08 回热式吸收-发生系统与回热式第一类吸收式热泵 WO2011134129A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010169397.9 2010-04-29
CN201010169397A CN101832677A (zh) 2010-04-29 2010-04-29 回热式吸收-发生系统与回热式第一类吸收式热泵

Publications (1)

Publication Number Publication Date
WO2011134129A1 true WO2011134129A1 (zh) 2011-11-03

Family

ID=42716835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001785 WO2011134129A1 (zh) 2010-04-29 2010-11-08 回热式吸收-发生系统与回热式第一类吸收式热泵

Country Status (2)

Country Link
CN (2) CN101832677A (zh)
WO (1) WO2011134129A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2803923A3 (de) * 2013-05-15 2015-04-01 Ago Ag Energie + Anlagen Absorptionsprozess und -maschine

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011091560A1 (zh) * 2010-01-30 2011-08-04 Li Huayu 复合吸收-发生系统与第三类吸收式热泵
CN101832677A (zh) * 2010-04-29 2010-09-15 李华玉 回热式吸收-发生系统与回热式第一类吸收式热泵
WO2012048445A1 (zh) * 2010-10-14 2012-04-19 Li Huayu 双吸收-双发生系统与多端供热第三类吸收式热泵
WO2012083494A1 (zh) * 2010-12-21 2012-06-28 Li Huayu 回热式吸收-发生系统与多端供热第三类吸收式热泵
WO2012088650A1 (zh) * 2010-12-31 2012-07-05 Li Huayu 回热式吸收-发生系統与回热式第三类吸收式热泵
CN102419026B (zh) * 2011-07-27 2013-11-20 李华玉 吸收式热源变温器
CN102706026B (zh) * 2012-03-23 2014-12-03 李华玉 双效回热吸收-发生系统与回热式第一类吸收式热泵
WO2014110694A1 (zh) * 2013-01-18 2014-07-24 Li Huayu 分步发生第一类吸收式热泵
CN104963732B (zh) * 2014-05-28 2019-01-04 李华玉 联合循环供能系统
CN104929706B (zh) * 2014-05-28 2019-01-04 李华玉 联合循环供能系统
CN104948245A (zh) * 2014-06-09 2015-09-30 李华玉 联合循环供能系统
CN105019955A (zh) * 2014-06-09 2015-11-04 李华玉 联合循环供能系统
CN112169364B (zh) * 2020-09-29 2021-12-24 江苏博颂化工科技有限公司 一种采用外部循环工质的分馏塔热泵系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1268652A (zh) * 1999-03-30 2000-10-04 三洋电机株式会社 吸收热泵及其控制方法
CN2558933Y (zh) * 2002-04-22 2003-07-02 刘甫庆 新型溴化锂吸收式制冷机
JP2004257705A (ja) * 2003-02-27 2004-09-16 Sanyo Electric Co Ltd 吸収ヒートポンプ利用濃縮装置
CN101458006A (zh) * 2009-01-01 2009-06-17 李华玉 一种提高第一类吸收式热泵供热温度的方法与高温型热泵
CN101832677A (zh) * 2010-04-29 2010-09-15 李华玉 回热式吸收-发生系统与回热式第一类吸收式热泵

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3393780B2 (ja) * 1997-01-10 2003-04-07 本田技研工業株式会社 吸収式冷暖房装置
JPH10232065A (ja) * 1997-02-20 1998-09-02 Osaka Gas Co Ltd アンモニア吸収冷凍機
JP2000018761A (ja) * 1998-06-30 2000-01-18 Sanyo Electric Co Ltd 吸収式ヒートポンプ装置の運転方法
JP3390672B2 (ja) * 1998-08-03 2003-03-24 本田技研工業株式会社 吸収式冷凍装置
CN100535551C (zh) * 2007-06-15 2009-09-02 李华玉 两端与多端供热的第二类吸收式热泵
CN101101161B (zh) * 2007-07-30 2010-05-19 李华玉 复合第二类吸收式热泵
CN100533004C (zh) * 2007-12-21 2009-08-26 河南科技大学 一种高效低温吸收式制冷机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1268652A (zh) * 1999-03-30 2000-10-04 三洋电机株式会社 吸收热泵及其控制方法
CN2558933Y (zh) * 2002-04-22 2003-07-02 刘甫庆 新型溴化锂吸收式制冷机
JP2004257705A (ja) * 2003-02-27 2004-09-16 Sanyo Electric Co Ltd 吸収ヒートポンプ利用濃縮装置
CN101458006A (zh) * 2009-01-01 2009-06-17 李华玉 一种提高第一类吸收式热泵供热温度的方法与高温型热泵
CN101832677A (zh) * 2010-04-29 2010-09-15 李华玉 回热式吸收-发生系统与回热式第一类吸收式热泵

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2803923A3 (de) * 2013-05-15 2015-04-01 Ago Ag Energie + Anlagen Absorptionsprozess und -maschine

Also Published As

Publication number Publication date
CN101979936A (zh) 2011-02-23
CN101979936B (zh) 2012-10-31
CN101832677A (zh) 2010-09-15

Similar Documents

Publication Publication Date Title
WO2011134129A1 (zh) 回热式吸收-发生系统与回热式第一类吸收式热泵
WO2011091567A1 (zh) 吸收-发生系统和吸收式热泵
US8756946B2 (en) Method to improve heating temperature of heat pump and second-type high temperature absorption heat pump
WO2012019329A1 (zh) 吸收-再吸收-发生系统与第一类吸收式热泵
WO2012129743A1 (zh) 第三类发生-吸收系统与回热式第三类吸收式热泵
WO2014127681A1 (zh) 复合发生第一类吸收式热泵
WO2012145869A1 (zh) 三发生-三吸收系统与第三类吸收式热泵
CN105953459A (zh) 一种单双效复合型吸收式制冷机组
WO2013159261A1 (zh) 多端供热第一类吸收式热泵
CN101832676B (zh) 提高热泵供热温度的方法与高温第二类吸收式热泵
CN105987538B (zh) 中温热源驱动双温热量输出的复合吸收式热泵
CN101476798A (zh) 双效与多效及其基础上的第二类吸收式热泵
WO2013138963A1 (zh) 双效回热吸收-发生系统与回热式第一类吸收式热泵
WO2014161368A1 (zh) 分路循环第一类吸收式热泵
CN206247691U (zh) 复叠式溶液串联双效溴化锂吸收式制冷热泵机组
WO2012122683A1 (zh) 第三类发生-吸收系统与第三类吸收式热泵
WO2014161367A1 (zh) 分路循环第一类吸收式热泵
CN101799221B (zh) 双效与多效及其基础上的第二类吸收式热泵
WO2013075260A1 (zh) 分级冷凝第二类吸收式热泵
WO2013149366A1 (zh) 双效回热吸收-发生系统与回热式第三类吸收式热泵
CN102384640B (zh) 1.5效型溴化锂吸收式制冷/热泵机组
WO2013075259A1 (zh) 带有余热双效驱动的第三类吸收式热泵
WO2013033860A1 (zh) 第三类吸收-发生系统与第三类吸收式热泵
WO2012119264A1 (zh) 双发生-双吸收系统与回热式第二类吸收式热泵
WO2012094775A1 (zh) 回热式两级吸收-发生系统与回热式第三类吸收式热泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10850462

Country of ref document: EP

Kind code of ref document: A1