WO2012119264A1 - 双发生-双吸收系统与回热式第二类吸收式热泵 - Google Patents
双发生-双吸收系统与回热式第二类吸收式热泵 Download PDFInfo
- Publication number
- WO2012119264A1 WO2012119264A1 PCT/CN2011/000354 CN2011000354W WO2012119264A1 WO 2012119264 A1 WO2012119264 A1 WO 2012119264A1 CN 2011000354 W CN2011000354 W CN 2011000354W WO 2012119264 A1 WO2012119264 A1 WO 2012119264A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- generator
- solution
- pump
- heat exchanger
- absorption
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B15/00—Sorption machines, plants or systems, operating continuously, e.g. absorption type
- F25B15/008—Sorption machines, plants or systems, operating continuously, e.g. absorption type with multi-stage operation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/52—Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/62—Absorption based systems
Definitions
- the invention belongs to the technical field of low temperature waste heat utilization heat pump.
- the key is to improve the entry into the absorber.
- the concentration of the solution in order to be able to utilize the lower temperature waste heat resources, the key is to reduce the concentration of the dilute solution at the outlet of the generator. It is very important to take reasonable technical measures to increase the concentration of the solution entering the absorber and reduce the concentration of the solution entering the generator, and to select the solution concentration increase and the book reduction range according to the demand within a certain range.
- the present invention applies the regenerative principle to the occurrence-absorption of the solution.
- a regenerative second-type absorption heat pump with different effects and different stages is obtained, so that each working parameter interval has a corresponding second type of absorption heat pump, and the second type of absorption heat pump is realized.
- the continuation of the working parameter interval realizes the continuity of the performance index of the second type of absorption heat pump.
- a primary object of the present invention is to provide a dual occurrence-double absorption system and a regenerative second type absorption heat pump, the specific contents of which are as follows:
- a double-generation-double absorption system which is mainly composed of a first generator, a second generator, a first absorber, a second absorber, a first solution pump, a second solution pump, a first solution heat exchanger, and a
- the two-solution heat exchanger is composed of: the first generator has a concentrated solution pipeline connected to the second generator via the first solution heat exchanger, and the second generator has a concentrated solution pipeline through the second solution pump and the second solution
- the heat exchanger is in communication with the first absorber, the first absorber and the dilute solution line are in communication with the second absorber via the second solution heat exchanger, and the second absorber and the dilute solution line are passed through the first solution pump and
- the first solution heat exchanger is in communication with the first generator, and the first generator further has a residual heat medium pipeline communicating with the outside and a refrigerant vapor passage communicating with the outside, and the second generator further has a residual heat medium pipeline and the outside
- the communicating and refrigerant vapor passages are in communication with the
- a regenerative type II absorption heat pump in the double occurrence-double absorption system described in item 1, adding a condenser, an evaporator and a refrigerant liquid pump, and the first generator has a refrigerant vapor passage
- the communication with the outside is determined to be that the first generator has a refrigerant vapor passage communicating with the condenser, and the condenser and the refrigerant liquid pipeline are connected to the evaporator via the refrigerant liquid pump, and the first absorber has a refrigerant vapor passage and an external portion.
- connection is determined to be that the evaporator has a refrigerant vapor passage communicating with the first absorber, the condenser and the cooling medium conduit are in communication with the outside, and the evaporator and the waste heat medium conduit are connected to the outside to form a regenerative second type absorption type. Heat pump.
- the regenerative second type absorption heat pump is a third type generator, a third solution heat exchanger and a throttle valve added in the regenerative second type absorption heat pump according to item 2, second
- the absorber is connected to the third generator via the third solution heat exchanger via the first solution pump, and the third generator has a concentrated solution pipeline through the third solution heat exchanger and the second generation Description
- the device is connected, and the first generator has a refrigerant vapor channel connected to the condenser to be adjusted to be the first generator.
- the refrigerant vapor channel is connected with the third generator, and the third generator has a refrigerant liquid pipeline through the throttle valve.
- Connected to the condenser - the refrigerant vapor generated by the first generator acts as the driving heat medium for the third generator, and the third generator also has the refrigerant vapor passage communicating with the condenser to form a regenerative parallel double effect type II Absorption heat pump.
- a regenerative type II absorption heat pump in the regenerative second type absorption heat pump described in item 2, adding a third generator, a third solution heat exchanger and a throttle valve,
- the second absorber has a dilute solution line connected to the first generator via the first solution pump and the first solution heat exchanger to adjust the second absorber to have a dilute solution line through the first solution pump, the third solution heat exchanger and
- the first solution heat exchanger is in communication with the first generator, and the first generator has a concentrated solution pipeline connected to the second generator via the first solution heat exchanger to adjust the first generator to have a concentrated solution pipeline through the first
- the solution heat exchanger is in communication with the third generator, the third generator and the concentrated solution pipeline are connected to the second generator via the third solution heat exchanger, and the first generator has a refrigerant vapor passage connected to the condenser.
- the third generator and the refrigerant liquid pipeline are connected to the condenser via the throttling-flow-cooling agent steam generated by the first generator as the third
- the generator drives the heat medium
- the third generator has The refrigerant vapor passage communicates with the condenser to form a regenerative series double effect second type absorption heat pump.
- the regenerative type II absorption heat pump is a third type generator, a third solution heat exchanger, a throttle valve and a third type in the regenerative second type absorption heat pump according to item 2.
- a solution pump the second absorber has a dilute solution line connected to the first generator through the first solution pump and the first solution heat exchanger to adjust the second absorber to have a dilute solution line through the first solution pump and the first
- the solution heat exchanger is in communication with the third generator, and the third generator and the concentrated solution line are in communication with the first generator via the third solution pump and the third solution heat exchanger, and the first generator has a concentrated solution line
- the first solution heat exchanger is connected to the second generator to be adjusted to be a first generator having a concentrated solution pipeline connected to the second generator via the third solution heat exchanger and the first solution heat exchanger, and the first generator is
- the refrigerant vapor passage is connected to the condenser to be adjusted to be the first generator having the refrigerant vapor passage communicating with the third generator,
- a regenerative type II absorption heat pump in any of the regenerative second type absorption heat pumps described in item 3-5, adding a second throttle valve to cancel the connection between the second generator and the outside The residual heat medium pipeline, the first generator adds a refrigerant vapor passage to communicate with the second generator, and the second generator further has a refrigerant liquid pipeline connected to the condenser via the second throttle valve to form a regenerative double effect The second type of absorption heat pump.
- the regenerative second type absorption heat pump is a third type generator, a fourth generator, a third solution heat exchanger, and the third type of absorption heat pump according to the second item.
- a four-solution heat exchanger, a first throttle valve and a second throttle block wherein the first solution pump is provided with a dilute solution pipeline connected to the third generator via the third solution heat exchanger and via the fourth solution heat exchanger
- the fourth generator is connected, the third generator has a concentrated solution pipeline connected to the second generator via the third solution heat exchanger, and the fourth generator has a concentrated solution pipeline through the fourth solution heat exchanger and the second
- the generator is connected, the first generator has a refrigerant vapor channel connected to the condenser, and the first generator has a refrigerant vapor channel connected to the third generator, and the third generator has a refrigerant liquid pipeline through the first
- the throttle valve is in communication with the condenser - the refrigerant vapor generated by the first generator acts as a driving heat medium for the third
- the regenerative second type absorption heat pump is a third type generator, a fourth generator, a third solution heat exchanger, and the second type of absorption heat pump according to the second item.
- a four-solution heat exchanger, a first throttle valve and a second throttle valve wherein the second absorber has a dilute solution line connected to the first generator through the first solution pump and the first solution heat exchanger to be adjusted to a second
- the absorber has a dilute solution line connected to the first generator via the first solution pump, the fourth solution heat exchanger, the third solution heat exchanger and the first solution heat exchanger, and the first generator has a concentrated solution line
- the first solution heat exchanger is connected to the second generator to be adjusted to be a first generator having a concentrated solution pipeline connected to the third generator via the first solution heat exchanger, and the third generator further having a concentrated solution pipeline
- the three-solution heat exchanger is in communication with the fourth generator, and the fourth generator and the concentrated solution line are in communication with the second generator via the fourth solution heat exchanger, and the
- the refrigerant vapor generated by the first generator is used as the driving heat medium of the third generator, and the third generator And the coolant vapor passage is connected to the fourth generator, and the fourth generator is further connected with the refrigerant liquid pipeline via the second throttle valve to the condenser - the refrigerant vapor generated by the third generator is used as the fourth generator
- the driving heat medium, the fourth generator and the refrigerant vapor channel are connected with the condenser to form a regenerative series three-effect second type absorption heat pump.
- the regenerative second type absorption heat pump is a third type generator, a fourth generator, a third solution heat exchanger, and a third type of absorption heat pump according to the second item.
- the pump and the fourth solution heat exchanger are in communication with the third generator, and the third generator and the concentrated solution line are in communication with the first generator via the third solution pump and the third solution heat exchanger, and the first generator has The concentrated solution pipeline is connected to the second generator via the first solution heat exchanger to adjust the first generator to have a concentrated solution pipeline through the third solution heat exchanger, the fourth solution heat exchanger and the first
- the fourth generator Connected - the refrigerant vapor generated by the third generator acts as the driving heat medium for the fourth generator, and the fourth generator also has the refrigerant vapor passage communicating with the condenser to form a regenerative inverted series three-effect second type absorption type Heat pump.
- a regenerative type II absorption heat pump in any of the regenerative second type absorption heat pumps described in items 7-9, adding a third throttle valve to cancel the connection between the second generator and the outside The residual heat medium pipeline, the first generator adds a refrigerant vapor passage to communicate with the second generator, and the second generator further has a refrigerant liquid pipeline connected to the condenser via the third throttle valve to form a regenerative three-effect The second type of absorption heat pump.
- a regenerative second type absorption heat pump in any of the regenerative second type absorption heat pumps described in items 7-9, adding a third throttle valve, canceling the second generator and the external The connected residual heat medium pipeline, the third generator adds a refrigerant vapor passage to communicate with the second generator, and the second generator has a refrigerant liquid pipeline connected to the condenser through the third throttle valve to form a regenerative three The second type of absorption heat pump.
- the regenerative second type absorption heat pump is a second refrigerant liquid pump or throttle valve, an absorption-evaporator and a third in the regenerative second type absorption heat pump according to item 2.
- a solution heat exchanger wherein the first absorber has a dilute solution line connected to the second absorber through the second solution heat exchanger to adjust the first absorber to have a dilute solution line through the second solution heat exchanger and absorb Description
- the evaporator has a refrigerant
- the steam passage is connected to the first absorber to be adjusted so that the evaporator has a refrigerant vapor passage communicating with the absorption-evaporator, and the condenser is provided with a refrigerant liquid pipeline connected to the absorption-evaporator through the second refrigerant liquid pump, and then the absorption-evaporator Further, the refrigerant vapor passage is connected to the first absorber, or the first refrigerant liquid pump is connected with the absorption liquid evaporator and the absorption-evaporator is connected, and the absorption
- the first refrigerant liquid pump has a refrigerant liquid line and the evaporator is connected to the first refrigerant liquid pump, and the refrigerant liquid line is connected to the evaporator through the throttle valve to form a regenerative type 1.
- the second type of absorption heat pump is the second type of absorption heat pump.
- the regenerative type II absorption heat pump is a third solution heat pump, a third solution pump, a fourth solution pump, and an absorption in the regenerative second type absorption heat pump according to item 2.
- a generator a steam dividing chamber, a second refrigerant liquid pump and a second condenser, wherein the first absorber has a dilute solution line connected to the second absorber through the second solution heat exchanger to adjust the first absorber to have The dilute solution line is connected to the absorption-generator via the second solution heat exchanger and the fourth solution pump, and the absorption-generator and the dilute solution line are connected to the second absorber via the third solution heat exchanger, and the second The generator has a concentrated solution pipeline connected to the first absorber through the second solution pump and the second solution heat exchanger to adjust the second generator to have a concentrated solution pipeline through the second solution pump, the third solution heat exchanger and the absorption - the generator is connected to the steam separation chamber, and the concentrated solution line is connected to the first absorber via the third
- a regenerative second type absorption heat pump which is a regenerative second type absorption heat pump according to item 2, which adds a third solution heat exchanger, a third solution pump, a steam separation chamber, and a second a refrigerant liquid pump, an absorption-generator, a second condenser and a second evaporator, wherein the first absorber has a dilute solution line connected to the second absorber via the second solution heat exchanger to adjust the first absorber to have
- the dilute solution pipeline is connected to the steam separation chamber via the second solution heat exchanger and the absorption generator, and the concentrated solution pipeline is further connected to the first absorber through the third solution pump and the second solution heat exchanger.
- the second generator has a concentrated solution pipeline connected to the first absorber through the second solution pump and the second solution heat exchanger to adjust the second generator to have a concentrated solution pipeline through the second solution pump and the third solution heat exchange
- the absorption-generator is connected, the absorption-generator and the dilute solution pipeline are connected to the second absorber via the third solution heat exchanger, and the steam compartment and the refrigerant vapor passage are connected with the second condenser
- the second The condenser also has a refrigerant liquid pipeline through the second refrigerant liquid pump and the second steaming
- the generator is connected, and the first evaporator has a refrigerant vapor passage connected to the first absorber, and the first evaporator has a refrigerant vapor passage connected to the absorption-generator, and the second evaporator has a refrigerant vapor passage and a first An absorber is connected, the absorption-generator or the heated medium line is in communication with the outside, the second condens
- the second condenser when there is no second evaporator, has a refrigerant liquid pipeline connected to the evaporator via the second refrigerant liquid pump, and the evaporator is provided with a refrigerant.
- the steam passage is in communication with the first absorber.
- a regenerative second type absorption heat pump wherein in the regenerative second type absorption heat pump according to item 13, the fourth solution pump is cancelled, and the first absorber has a dilute solution line through the second solution
- the heat exchanger communicates with the absorption-generator, cancels the refrigerant vapor passage connecting the evaporator with the first absorber, adds a new refrigerant liquid pump, and the first condenser adds a refrigerant liquid pipeline through the newly added refrigerant liquid pump
- the absorption-generator is further connected to the first absorber by a refrigerant vapor passage to form a heat recovery Description
- a regenerative second type absorption heat pump in the regenerative second type absorption heat pump according to item 13, the fourth solution pump is cancelled, the absorption-evaporator and the newly added refrigerant liquid pump are added. Adjusting the first absorber having a dilute solution line through the second solution heat exchanger and the fourth solution pump to the absorption-generator to adjust the first absorber to have a dilute solution line through the second solution heat exchanger and absorbing-evaporating Connected, the absorption-evaporator and the dilute solution line communicate with the absorption-generator, cancel the refrigerant vapor passage connecting the evaporator with the first absorber, and the evaporator adds a refrigerant vapor passage to communicate with the absorption-evaporator, A condenser or evaporator is provided with a refrigerant liquid pipeline connected to the absorption-evaporator through the newly added refrigerant liquid pump, and then the absorption-evaporator and the refrigerant vapor passage are connected with the first
- a regenerative second type absorption heat pump which is a regenerative second type absorption heat pump without a second evaporator according to item 14, wherein the refrigerant vapor that is connected to the first absorber is eliminated.
- the second condenser has a refrigerant liquid pipeline connected to the evaporator through the second refrigerant liquid pump to be adjusted to a second condenser, and the refrigerant liquid pipeline is connected to the absorption-generator through the second coolant liquid pump
- the absorption-generator is further connected to the first absorber by a refrigerant vapor passage to form a regenerative two-stage second type absorption heat pump.
- the regenerative type II absorption heat pump is a regenerative absorption type evaporator in the regenerative second type absorption heat pump without a second evaporator as described in item 14, and the absorption-generator is diluted.
- the solution pipeline is connected to the second absorber through the third solution heat exchanger to adjust to absorption-the generator has a dilute solution line connected to the absorption-evaporator, and the absorption-evaporator and the dilute solution line are exchanged by the third solution.
- the second refrigerant liquid pump is connected to the evaporator to be adjusted to be the second condenser.
- the refrigerant liquid pipeline is connected to the absorption-evaporator through the second refrigerant liquid pump, and then the absorption-evaporator has a refrigerant vapor passage and a first absorber. Connected to form a regenerative two-stage second type absorption heat pump.
- Figure 1 is a schematic illustration of the structure and flow of a dual absorption-double generation system in accordance with the present invention.
- FIG. 2 is a schematic view showing the structure and flow of a regenerative second type absorption heat pump according to the present invention.
- FIG. 3 is a schematic view showing the structure and flow of a regenerative parallel double-effect second-class absorption heat pump according to the present invention.
- Fig. 4 is a schematic view showing the first structure and flow of a regenerative series double effect second type absorption heat pump according to the present invention.
- Figure 5 is a schematic view showing the second structure and flow of a regenerative series double effect second type absorption heat pump according to the present invention.
- 6 is a schematic view showing the structure and flow of a regenerative inverted series double-effect second type absorption heat pump according to the present invention.
- 7 is a schematic view showing the structure and flow of a regenerative parallel three-effect second-class absorption heat pump according to the present invention.
- FIG. 8 is a schematic view showing the structure and flow of a regenerative series three-effect second type absorption heat pump according to the present invention.
- FIG. 9 is a schematic view showing the structure and flow of a regenerative inverted series double-effect second type absorption heat pump according to the present invention.
- Figure 10 is a schematic view showing the first structure and flow of a regenerative class 1.5 second type absorption heat pump according to the present invention.
- Figure 11 is a schematic view showing the second structure and flow of a regenerative class 1.5 second type absorption heat pump according to the present invention.
- Figure 12 is a schematic view showing the third structure and flow of a regenerative class 1.5 second type absorption heat pump according to the present invention.
- Figure 13 is a schematic view showing the fourth structure and flow of a regenerative class 1.5 second type absorption heat pump according to the present invention.
- Figure M is a schematic view showing the first structure and flow of a regenerative two-stage second type absorption heat pump according to the present invention.
- Figure 15 is a schematic view showing the second structure and flow of a regenerative two-stage second type absorption heat pump according to the present invention.
- Figure 16 is a schematic view showing the third structure and flow of a regenerative two-stage second type absorption heat pump according to the present invention.
- Figure 17 is a schematic view showing the fourth structure and flow of a regenerative two-stage second type absorption heat pump according to the present invention.
- the second generator 2 and the second absorber 4 achieve regenerative heat.
- the generator When a working medium typified by an aqueous ammonia solution is used, the generator is referred to as a rectification column, and the first rectification column 1 is further increased.
- the heated medium line is connected to the outside, and the steam dividing chamber involved in the aqueous ammonia solution 24 increases the communication between the cooling medium line and the outside when necessary.
- the fourth solution pump 20 is mainly used to overcome the resistance of the solution flowing through the second solution heat exchanger 8; the second solution pump 6 is required The resistance of the solution flowing through the third solution heat exchanger 13 is overcome, and the pressure difference between the second generator 2 and the steam dividing chamber 24 is overcome.
- the first generator 1 structurally, it mainly consists of a first generator, a second generator, a first absorber, a second absorber, a first solution pump, a second solution pump, a first solution heat exchanger and a second solution heat exchanger
- the first generator 1 has a concentrated solution line connected to the second generator 2 via the first solution heat exchanger 7, and the second generator 2 has a concentrated solution line through the second solution pump 6 and the second solution.
- the heat exchanger 8 is in communication with the first absorber 3, the first absorber 3 and the dilute solution line are in communication with the second absorber 4 via the second solution heat exchanger 8, and the second absorber 4 has a dilute solution line
- the first solution pump 5 and the first solution heat exchanger 7 are in communication with the first generator 1, and the first generator 1 further has a residual heat medium pipe connected to the outside and a refrigerant vapor channel communicating with the outside, the second occurrence occurs.
- the device 2 further has a waste heat medium pipeline connected to the outside and a refrigerant vapor passage communicating with the second absorber 4.
- the first absorber 3 also has a heated medium pipeline connected to the outside and a refrigerant vapor passage and the outside. Connected, the second absorber 4 also has a cooling medium line that communicates with the outside.
- the external refrigerant vapor enters the first absorber 3, is absorbed by the concentrated solution from the second generator 2, and radiates heat to the heated medium, and the diluted solution of the first absorber 3 passes through the second solution heat exchanger 8 Entering the second absorber 4, absorbing the refrigerant vapor from the second generator 2 and radiating heat to the cooling medium, the dilute solution of the second absorber 4 entering the first through the first solution pump 5 and the first solution heat exchanger 7
- the generator 1 the residual heat medium flows through the first generator 1, and the solution heated into the solution is released and externally supplies the refrigerant vapor, and the concentrated solution of the first generator 1 enters the second generator 2 through the first solution heat exchanger 7.
- the residual heat medium flows through the second generator 2, and the solution heated therein is released and supplies the refrigerant vapor to the second absorber 4.
- the concentrated solution of the second generator 2 is exchanged with the second solution pump 6 and the second solution.
- the device 8 enters the first absorber 3 to form a dual generation-double absorption system.
- the regenerative second type absorption heat pump shown in Figure 2 is realized in this way: 1Structurally, in the double occurrence-double absorption system shown in FIG. 1, the condenser, the evaporator and the refrigerant liquid pump are added, and the first generator 1 has a refrigerant vapor passage and the external communication is determined as the first generator.
- the evaporator 10 has a refrigerant vapor passage communicating with the first absorber 3, and the condenser 9 and the cooling medium conduit are in communication with the outside, and the evaporator 10 and the heat remaining medium conduit are in communication with the outside.
- the refrigerant vapor generated by the first generator 1 enters the condenser 9, and is cooled by the cooling medium to form a refrigerant liquid, and the refrigerant liquid of the condenser 9 is pressurized by the refrigerant liquid pump 11 and then enters the evaporator 10
- the residual heat is absorbed into the refrigerant vapor and supplied to the first absorber 3 to form a regenerative second type absorption heat pump.
- a third generator, a third solution heat exchanger and a throttle valve are added, and the second absorber 4 is added via the first solution pump 5.
- the dilute solution line is in communication with the third generator 12 via the third solution heat exchanger 13, and the third generator 12 and the concentrated solution line are connected to the second generator 2 via the third solution heat exchanger 13 and will be first
- the generator 1 has a refrigerant vapor passage communicating with the condenser 9 to adjust the first generator 1 to have a refrigerant vapor passage communicating with the third generator 12, and then the third generator 12 is further provided with a refrigerant liquid conduit through the throttle valve 14 It is in communication with the condenser 9 - the refrigerant vapor generated by the first generator acts as a driving heat medium for the third generator, and the third generator 12 also has a refrigerant vapor passage communicating with the condenser 9.
- a part of the dilute solution of the second absorber 4 enters the third generator 12 via the first solution pump 5 and the third solution heat exchanger 13, and the refrigerant vapor from the first generator 1 flows through the third generator 12.
- the solution entering the solution releases the refrigerant vapor
- the refrigerant vapor generated by the third generator 12 is supplied to the condenser 9, and the concentrated solution of the third generator 12 passes through the third solution heat exchanger 13 to enter the second generator.
- the refrigerant vapor flowing through the third generator 12 is released into a refrigerant liquid, and then throttled into the condenser 9 through the throttle valve 14 to form a regenerative parallel double-effect second-type absorption heat pump.
- the third generator, the third solution heat exchanger and the throttle valve are added, and the second absorber 4 has a dilute solution line.
- the first solution pump 5 and the first solution heat exchanger 7 are in communication with the first generator 1 to adjust the second absorber 4 to have a dilute solution line through the first solution pump 5, the third solution heat exchanger 13 and the first solution
- the heat exchanger 7 is in communication with the first generator 1, and the concentrated solution line of the first generator 1 is connected to the second generator 2 via the first solution heat exchanger 7 to be adjusted to have a concentrated solution line of the first generator 1
- the first solution heat exchanger 7 is in communication with the third generator 12, and the third generator 12 and the concentrated solution line are connected to the second generator 2 via the third solution heat exchanger 13 to have the first generator 1
- the refrigerant vapor passage is connected to the condenser 9 to be adjusted so that the first generator 1 has a refrigerant vapor passage communicating with the third generator 12, and then the third generator 12 has
- the dilute solution of the second absorber 4 enters the first generator 1 through the first solution pump 5, the third solution heat exchanger 13 and the first solution heat exchanger 7, and the refrigerant generated by the first generator 1
- the steam is supplied to the third generator 12 as its driving heat medium, and the concentrated solution of the first generator 1 enters the third generator 12 via the first solution heat exchanger 7; the refrigerant vapor flows through the third generator 12, and is heated
- the solution entering therein is released and supplies refrigerant vapor to the condenser 9, and the concentrated solution of the third generator 12 enters the second generator 2 via the third solution heat exchanger 13 and flows through the refrigerant vapor of the third generator 12.
- the heat is formed into a refrigerant liquid, and then throttled into the condenser 9 through the throttle valve 14 to form a regenerative series double-effect second type absorption heat pump.
- the regenerative series double effect second type absorption heat pump shown in Figure 5 is realized as follows:
- the waste heat medium line of the second generator 2 connected to the outside is cancelled, the second throttle valve is added, and the first generator 1 is provided with a refrigerant vapor passage and After the second generator 2 is connected, the second generator 2 is further connected to the condenser 9 via the second throttle valve 15 to form a regenerative series double-effect second type absorption heat pump.
- the exchanger 7 is in communication with the second generator 2, and the first generator 1 has a refrigerant vapor passage connected to the condenser 9 to be adjusted to the first book.
- the third generator 12 is further connected with the coolant liquid line via the first throttle valve 14 to the condenser 9 - the refrigerant generated by the first generator
- the steam acts as a driving heat medium for the third generator
- the third generator 12 also has a refrigerant vapor passage communicating with the condenser 9; canceling the waste heat medium line of the second generator 2 connected to the outside, adding the second throttle valve,
- the second generator 2 is further connected to the condenser 9 via the second throttle valve 15.
- the refrigerant vapor generated by the first generator 1 is supplied to the second generator 2 and the third generator 12, respectively, and the concentrated solution of the first generator 1 passes through the third solution heat exchanger 13 and the first solution heat.
- the exchanger 7 enters the second generator 2; the dilute solution of the second absorber 4 enters the third generator 12 via the first solution pump 5 and the first solution heat exchanger 7, and the refrigerant vapor flow from the first generator 1
- the solution heated into it is released and the refrigerant vapor is supplied to the condenser 9, and the concentrated solution of the third generator 12 enters the first occurrence through the third solution pump 16 and the third solution heat exchanger 13
- the refrigerant vapor flowing through the third generator 12 is exothermic to form a refrigerant liquid, and then throttled through the first throttle valve 14 into the condenser 9; the refrigerant vapor from the first generator 1 flows through the second The generator 2, the solution heated into the solution is released and supplies the refrigerant vapor to the second absorber
- valve and the second section are wide, and the first solution pump 5 adds a dilute solution line to communicate with the third generator 12 via the third solution heat exchanger 13 and the fourth generator 17 via the fourth solution heat exchanger 18, respectively.
- the third generator 12 further has a concentrated solution line connected to the second generator 2 via the third solution heat exchanger 13, and the fourth generator 17 has a concentrated solution line through the fourth solution heat exchanger 18 and the second
- the generator 2 is connected, and the first generator 1 has a refrigerant vapor passage communicating with the condenser 9 to adjust the first generator 1 to have a refrigerant vapor passage communicating with the third generator 12, and then the third generator 12 has a refrigerant.
- the liquid line communicates with the condenser 9 via the first throttle valve 14 - the refrigerant vapor generated by the first generator acts as a driving heat medium for the third generator, and the third generator 12 also has a refrigerant vapor passage and a fourth After the generator 17 is connected, the fourth generator 17 has a refrigerant liquid pipeline
- the throttle valve 15 communicates with the condenser 9 - third refrigerant vapor generator as the driving medium of the fourth heat generator, the generator communicating with the fourth passage 17, the refrigerant vapor with the condenser 9.
- the concentrated solution of the third generator 12 enters the second generator 2 through the third solution heat exchanger 13, and the refrigerant vapor flowing through the third generator 12 is released into a refrigerant liquid, and then passes through the first throttle valve 14
- the throttle enters the condenser 9; another dilute solution of the second absorber 4 enters the fourth generator 17 via the first solution pump 5 and the fourth solution heat exchanger 18, and the refrigerant vapor from the third generator 12 flows through
- the second generator 2 the refrigerant vapor flowing through the fourth generator 17 is radiated into a refrigerant liquid, and then throttled into the condenser 9 through the second throttle valve 15, forming a regenerative parallel three-effect second type absorption. Heat pump.
- the second absorber 4 has a dilute solution pipeline connected to the first generator 1 via the first solution pump 5 and the first solution heat exchanger 7 to be adjusted to the second absorber 4
- the second absorber 4 has a dilute solution pipeline connected to the first generator 1 via the first solution pump 5 and the first solution heat exchanger 7 to be adjusted to the second absorber 4
- the solution line is in communication with the first generator 1 via the first solution pump 5, the fourth solution heat exchanger 18, the third solution heat exchanger 13 and the first solution heat exchanger 7, and the first generator 1 has a concentrated solution
- the pipeline is connected to the second generator 2 via the first solution heat exchanger 7 to be adjusted to be the first generator 1 having a concentrated solution pipeline connected to the third generator 12 via the first solution heat exchanger 7 and the third generator 12
- the concentrated solution line is connected to the fourth generator 17 via the third solution heat exchanger 13, and the fourth generator 17 and the concentrated solution line are connected to the second generator 2 via the fourth solution heat exchanger 18,
- the first generator 1 has a refrigerant vapor passage communicating with the condenser 9 to adjust the first generator 1 to have a refrigerant vapor passage communicating with the third generator 12, and then the third generator 12 has a refrigerant liquid pipeline through the first
- the throttle valve 14 is in communication with the condenser 9 - the refrigerant vapor generated by the first generator acts as a driving heat medium for the third generator
- the dilute solution of the second absorber 4 enters the first generator 1 through the first solution pump 5, the fourth solution heat exchanger 18, the third solution heat exchanger 13, and the first solution heat exchanger 7,
- the refrigerant vapor generated by a generator 1 is supplied to the third generator 12 as its driving heat medium, and the concentrated solution of the first generator 1 enters the third generator 12 via the first solution heat exchanger 7; the refrigerant vapor flow
- the third generator 12, the solution into which the heat is introduced is released and supplied to the fourth generator 17 and the second generator 2, respectively, and the concentrated solution of the third generator 12 enters the fourth occurrence through the third solution heat exchanger 13
- the refrigerant vapor flowing through the third generator 12 is radiated into a refrigerant liquid, and then throttled through the first throttle valve 14 into the condenser 9 : the refrigerant vapor from the third generator 12 flows through the fourth The generator 17, the solution heated into it is released and supplies the refrigerant vapor to the condenser 9, and the concentrated solution of the fourth generator
- the refrigerant vapor of 17 is exothermic into a refrigerant liquid, and then throttled into the condenser 9 through the second throttle valve 15;
- the refrigerant vapor from the third generator 12 flows through the second generator 2, and the solution heated therein is released and supplies the refrigerant vapor to the second absorber 4, and the refrigerant vapor flowing through the second generator 2 releases heat.
- the refrigerant liquid is throttled into the condenser 9 through the third throttle valve 19 to form a regenerative series three-effect second type absorption heat pump.
- the second absorber 4 has a dilute solution line through the first
- the solution pump 5 and the first solution heat exchanger 7 are connected to the first generator 1 to be adjusted so that the second absorber 4 has a dilute solution line through the first solution pump 5 and the first solution heat exchanger 7 and the fourth generator 17
- the fourth generator 17 further has a concentrated solution line connected to the third generator 12 via the fourth solution pump 20 and the fourth solution heat exchanger 18, and the third generator 12 has a concentrated solution line through the third solution.
- the pump 16 and the third solution heat exchanger 13 are in communication with the first generator 1, and the first generator 1 has a concentrated solution line connected to the second generator 2 via the first solution heat exchanger 7 to be adjusted to the first generator.
- the concentrated solution line is connected to the second generator 2 via the third solution heat exchanger 13, the fourth solution heat exchanger 18 and the first solution heat exchanger 7, and the first generator 1 has a refrigerant vapor channel and
- the condenser 9 is connected and adjusted to have the first generator 1 having a refrigerant vapor passage connected to the third generator 12, and then the third generator 12 has The liquid supply line is connected to the condenser 9 via the first throttle valve 14 - the first generator produces the refrigerant vapor as the driving heat medium of the third generator, and the third generator 12 also has the refrigerant vapor passage
- the fourth generator 17 has a second refrigerant flow through the second throttle
- Width 15 is connected to the condenser 9 - the refrigerant vapor generated by the third generator is used as the driving heat medium for the fourth generator, the fourth book
- the generator 17 also has a refrigerant vapor passage communicating with the condenser 9; canceling the residual heat medium line of the second generator 2 and the outside, adding a third throttle valve, the first generator 1 adding a refrigerant vapor passage and the second After the generator 2 is connected, the second generator 2 is further connected to the condenser 9 via the third throttle valve 19 via the third throttle valve 19.
- the refrigerant vapor generated by the first generator 1 is respectively supplied to the second generator 2 and the third generator 12, and the concentrated solution of the first generator 1 passes through the third solution heat exchanger 13 and the fourth solution heat.
- the exchanger 18 and the first solution heat exchanger 7 enter the second generator 2; the dilute solution of the second absorber 4 enters the fourth generator 17 via the first solution pump 5 and the first solution heat exchanger 7, from the third
- the refrigerant vapor of the generator 12 flows through the fourth generator 17, the solution heated therein to be released and supplies the refrigerant vapor to the condenser 9, and the concentrated solution of the fourth generator 17 passes through the fourth solution pump 20 and the fourth solution.
- the heat exchanger 18 enters the third generator 12, and the refrigerant vapor flowing through the fourth generator 17 is exothermic to form a refrigerant liquid, and then throttled through the second throttle valve 15 into the condenser 9 ; from the first generator 1
- the refrigerant vapor flows through the third generator 12, the solution heated therein to be released and supplies the refrigerant vapor to the fourth generator 17, and the concentrated solution of the third generator 12 passes through the third solution pump 16 and the third solution heat.
- the exchanger 13 enters the first generator 1, and the refrigerant vapor flowing through the third generator 12 radiates heat to form a refrigerant.
- the first throttle valve 14 is throttled into the condenser 9; the refrigerant vapor from the first generator 1 flows through the second generator 2, and the solution heated therein is released and provides cold to the second absorber 4.
- the agent steam, the refrigerant vapor flowing through the second generator 2 is exothermic to form a refrigerant liquid, and is throttled into the condenser 9 through the third throttle valve 19 to form a regenerative inverted series three-effect second type absorption heat pump. .
- the second refrigerant liquid pump, the absorption-evaporator and the third solution heat exchanger are added, and the first absorber 3 has a dilute solution.
- the pipeline is connected to the second absorber 4 via the second solution heat exchanger 8 to be adjusted so that the first absorber 3 has a dilute solution line connected to the absorption-evaporator 21 via the second solution heat exchanger 8, and the absorption-evaporator 21 Further, the dilute solution line is connected to the second absorber 4 via the third solution heat exchanger 13, and the second generator 2 has the concentrated solution line passing through the second solution pump 6 and the second solution heat exchanger 8 and the first The absorber 3 is connected to the second generator 2, and the concentrated solution line is connected to the first absorber 3 via the second solution pump 6, the third solution heat exchanger 13, and the second solution heat exchanger 8, and the evaporator 10 is connected.
- the refrigerant vapor passage is connected to the first absorber 3 to adjust the evaporator 10 to have a refrigerant vapor passage communicating with the absorption-evaporator 21, and the condenser 9 is provided with a refrigerant liquid pipeline through the second refrigerant liquid pump 22 and absorbing - After the evaporator 21 is connected, the absorption-evaporator 21 has a refrigerant vapor passage and a first absorption.
- the device 3 is connected.
- the concentrated solution of the second generator 2 passes through the second solution pump 6, the third solution heat exchanger 13 and the second solution heat
- the exchanger 8 enters the first absorber 1, absorbs the refrigerant vapor from the absorption-evaporator 21 and radiates heat to the heated medium, and the dilute solution of the first absorber 3 enters the absorption-evaporator via the second solution heat exchanger 8. 21. Absorbing refrigerant vapor from the evaporator 10 and exothermic to the refrigerant liquid flowing through the absorption-evaporator 21, and the dilute solution of the absorption-evaporator 21 enters the second absorber 4 via the third solution heat exchanger 13; 5 ⁇ The second type of absorption heat pump.
- the second refrigerant liquid pump is cancelled, the throttle valve is added, and the condenser 9 has a refrigerant liquid line through the second refrigerant liquid pump 22 and absorbed.
- the absorption-evaporator 21 is further connected to the first absorber 3 by the refrigerant vapor passage.
- the first refrigerant liquid pump 11 is connected with the refrigerant liquid line to communicate with the absorption-evaporator 21, and then absorb-evaporate.
- the refrigerant 21 has a refrigerant vapor passage communicating with the first suction receiver 3, and the first refrigerant liquid pump 11 has a refrigerant liquid pipeline connected to the evaporator 10 to be adjusted to be the first refrigerant liquid pump 11 having a refrigerant liquid.
- the steam dividing chamber 24 also has a refrigerant vapor passage communicating with the second condenser 25, and the second condenser 25 is further
- the refrigerant liquid line is connected to the evaporator 10 via the second refrigerant liquid pump 22, and the evaporator 10 is provided with a refrigerant vapor passage communicating with the absorption-generator 23, and the second condenser 25 and the cooling medium line are in communication with the outside.
- the concentrated solution of the second generator 2 passes through the second solution pump 6 and the third solution heat exchanger 13 and then flows through the absorption-generator 23, and the endothermic portion is vaporized into the steam dividing chamber 24, and the steam dividing chamber 24
- the generated refrigerant vapor enters the second condenser 25, radiates heat to the cooling medium to form a refrigerant liquid, and the refrigerant liquid of the second condenser 25 is pressurized into the evaporator 10 via the second refrigerant liquid pump 22, and the steam separation chamber 24
- the concentrated solution enters the first absorber 3 through the third solution pump 16 and the second solution heat exchanger 8, absorbs the refrigerant vapor from the evaporator 10, and radiates heat to the heated medium; the diluted solution of the first absorber 3 passes through
- the second solution heat exchanger 8 and the fourth solution pump 20 enter the absorption-generator 23, absorb the refrigerant vapor from the evaporator 10, and radiate heat to the solution flowing through the absorption-
- the regenerative type 1.5 absorption type heat pump shown in Figure 13 is realized as follows:
- the first absorber 3 has a dilute solution line connected to the second absorber 4 via the second solution heat exchanger 8 to adjust the first absorber 3 to have a dilute solution line through the first
- the two-solution heat exchanger 8 and the absorption-generator 23 are in communication with the steam dividing chamber 24, and the steam dividing chamber 24 and the concentrated solution line are connected to the first absorber 3 via the third solution pump 16 and the second solution heat exchanger 8.
- the second generator 2 has a concentrated solution pipeline through the second Description
- the solution pump 6 and the second solution heat exchanger 8 are in communication with the first absorber 3 to be adjusted so that the second generator 2 has a concentrated solution line through the second solution pump 6 and the third solution heat exchanger 13 and the absorption-generator 23 Connected, the absorption-generator 23 and the dilute solution line are in communication with the second absorber 4 via the third solution heat exchanger 13, and the steam distribution chamber 24 and the refrigerant vapor passage are in communication with the second condenser 25, the second condensation
- the refrigerant 25 is further connected to the second evaporator 26 via the second refrigerant liquid pump 22, and the first evaporator 10 has a refrigerant vapor passage connected to the first absorber 3 to be adjusted to the first evaporator 10.
- the refrigerant vapor passage is in communication with the absorption-generator 23, the second evaporator 26 has a refrigerant vapor passage communicating with the first absorber 3, and the second condenser 25 has a cooling medium conduit communicating with the outside, the second evaporation
- the unit 26 also has a residual heat medium line that communicates with the outside.
- the concentrated solution of the second generator 2 enters the absorption-generator 23 via the second solution pump 6 and the third solution heat exchanger 13, absorbs the refrigerant vapor from the first evaporator 10, and releases the heat through the flow.
- the solution of the absorption-generator 23, the dilute solution of the absorption-generator 23 enters the second absorber 4 via the third solution heat exchanger 13; the dilute solution of the first absorber 3 flows through the second solution heat exchanger 8
- the absorption-generator 23 and the heat-absorbing portion are vaporized into the steam dividing chamber 24, and the refrigerant vapor generated by the steam dividing chamber 24 enters the second condenser 25, radiates heat to the cooling medium to form a refrigerant liquid, and the second condenser 25 is cooled.
- the agent liquid is pressurized into the second evaporator 26 via the second coolant liquid pump 22, absorbing waste heat into the refrigerant vapor and supplied to the first absorber 3, and the concentrated solution of the steam separation chamber 24 is passed through the third solution pump 16 and the second
- the solution heat exchanger 8 enters the first absorber 3, absorbs the refrigerant vapor from the second evaporator 26, and releases the heat to the heated medium to form a regenerative type 1.5 second type absorption heat pump.
- the fourth solution pump is eliminated, and the first absorber 3 has a dilute solution line connected to the absorption-generator 23 via the second solution heat exchanger 8; a second condenser 25 and a second refrigerant liquid pump 22, the steam distribution chamber 24 has a refrigerant vapor passage communicating with the first condenser 9; canceling the refrigerant vapor passage of the evaporator 10 and the first absorber 3, adding new The refrigerant liquid pump, the first condenser 9 is provided with a refrigerant liquid pipeline, the new refrigerant liquid pump A is connected with the absorption-generator 23, and the absorption-generator 23 has a refrigerant vapor passage and a first absorber 3. Connected to form a regenerative two-stage second type absorption heat pump.
- the fourth solution pump is cancelled, the absorption-evaporator and the newly added refrigerant liquid pump are added, and the first absorber 3 has a dilute solution line through the second
- the solution heat exchanger 8 and the fourth solution pump 20 are connected to the absorption-generator 23 to be adjusted so that the first absorber 3 has a dilute solution line connected to the absorption-evaporator 21 via the second solution heat exchanger 8, and the absorption-evaporator 21, wherein the dilute solution line is in communication with the absorption-generator 23; the second condenser 25 and the second refrigerant liquid pump 22 are eliminated, and the steam distribution chamber 24 has a refrigerant vapor passage communicating with the first condenser 9; 10 a refrigerant vapor passage communicating with the first absorber 3, the evaporator 10 is provided with a refrigerant vapor passage communicating with the absorption-evaporator 21; the first condenser 9 is provided with a refrigerant liquid
- the refrigerant vapor passage of the second evaporator 26 and the second evaporator 26 in communication with the first absorber 3 is eliminated, and the second condenser 25 is cooled.
- the agent liquid pipeline is connected to the second evaporator 26 through the second refrigerant liquid pump 22 to be adjusted to be the second condenser 25.
- the refrigerant liquid pipeline is absorbed by the second refrigerant liquid pump 22 and the absorption-generator 23, and then absorbed.
- the generator 23 is further connected to the first absorber 3 by a refrigerant vapor passage to form a regenerative two-stage second type absorption heat pump.
- the absorption-evaporator is increased, and the absorption-generator 23 is diluted.
- the solution line is connected to the second absorber 4 via the third solution heat exchanger 13 to be adjusted to be absorbed.
- the generator 23 has a dilute solution line connected to the absorption-evaporator 21, and the absorption-evaporator 21 has a dilute solution line.
- the third solution heat exchanger 13 is in communication with the second absorber 4; the refrigerant vapor passage of the second evaporator 26 and the second evaporator 26 in communication with the first absorber 3 is eliminated, and the first evaporator 10 is provided with a refrigerant vapor passage Communicating with the absorption-evaporator 21; canceling the second evaporator 26, and connecting the refrigerant liquid line of the second condenser 25 to the second evaporator 26 via the second refrigerant liquid pump 22 to be adjusted to the second condenser 25
- the refrigerant liquid pipeline is connected to the absorption-evaporator 21 via the second refrigerant liquid pump 22, and then the absorption-evaporator 21 is further connected to the first absorber 3 by the refrigerant vapor passage to form a regenerative two-stage second type absorption. Heat pump.
- the proposed double-generation-double absorption system has a reasonable structure and adjustable heat recovery amplitude, which lays a foundation for the regenerative second-type absorption heat pump with adjustable heat recovery amplitude.
- the proposed series of regenerative second-class absorption heat pumps can select the heat recovery range according to the residual heat parameters and the heating temperature, which is beneficial to the heat pump unit to obtain a higher performance index and improve energy utilization efficiency.
- the proposed series of regenerative second-class absorption heat pumps can utilize the lower temperature waste heat resources to improve the utilization of waste heat resources.
- the working parameters and performance indexes of the single heat pump unit can be continuously matched, and the working parameters and performance indexes between adjacent heat pump units can be realized. Continuous connection.
- the proposed series of regenerative second-type absorption heat pumps enrich the absorption heat pump, which can better match the heat pump heat supply and the user heat.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Sorption Type Refrigeration Machines (AREA)
Description
双发生 -双吸收系统与回热式第二类吸收式热泵 技术领域:
本发明属于低温余热利用热泵技术领域。
背景技术:
不同效数间或不同级数间的第二类吸收式热泵, 它们的工作参数区间是不相连的, 在性 能指数上更是有着较大的差别。
从工作流程来看, 为提高第二类吸收式热泵的最高供热温度, 关键在于提高进入吸收器 说
的溶液浓度; 为了能够利用更低温度的余热资源, 关键在于降低发生器出口的稀溶液浓度。 采取合理的技术措施, 同时提高进入吸收器的溶液浓度和降低进入发生器的溶液浓度, 并且 能够在一定范围内根据需求来选择溶液浓度提高和书降低的幅度, 这将有着非常重要的意义。
为了提升第二类吸收式热泵的供热温度、 使其具有较高的性能指数和实现工作参数之间 和性能指数之间的无间断衔接, 本发明将回热原理应用于溶液的发生 -吸收过程, 以第二发生 器和第二吸收器构成回热流程, 建立起双发生-双发生系统; 并以双发生-双发生系统为基础, 增加包括冷凝器、 蒸发器和冷剂液泵在内的相关部件, 得到不同效数、 不同级数的回热式第 二类吸收式热泵, 使每一工作参数区间都有相对应的第二类吸收式热泵, 实现第二类吸收式 热泵在工作参数区间上的连续化, 实现第二类吸收式热泵在性能指数上的连续化。
发明内容- 本发明的主要目的是提供双发生-双吸收系统与回热式第二类吸收式热泵,具体发明内容 分项阐述如下:
1. 双发生-双吸收系统, 它主要由第一发生器、第二发生器、第一吸收器、第二吸收器、 第一溶液泵、 第二溶液泵、 第一溶液热交换器和第二溶液热交换器所组成: 第一发生器有浓 溶液管路经第一溶液热交换器与第二发生器连通, 第二发生器还有浓溶液管路经第二溶液泵 和第二溶液热交换器与第一吸收器连通, 第一吸收器还有稀溶液管路经第二溶液热交换器与 第二吸收器连通, 第二吸收器还有稀溶液管路经第一溶液泵和第一溶液热交换器与第一发生 器连通, 第一发生器还分别有余热介质管路与外部连通和有冷剂蒸汽通道与外部连通, 第二 发生器还分别有余热介质管路与外部连通和有冷剂蒸汽通道与第二吸收器连通, 第一吸收器 还分别有被加热介质管路与外部连通和有冷剂蒸汽通道与外部连通, 第二吸收器还有冷却介 质管路与外部连通, 形成双发生-双吸收系统。
2. 回热式第二类吸收式热泵, 是在第 1项所述的双发生-双吸收系统中, 增加冷凝器、 蒸发器和冷剂液泵, 将第一发生器有冷剂蒸汽通道与外部连通确定为第一发生器有冷剂蒸汽 通道与冷凝器连通, 冷凝器还有冷剂液管路经冷剂液泵与蒸发器连通, 将第一吸收器有冷剂 蒸汽通道与外部连通确定为蒸发器有冷剂蒸汽通道与第一吸收器连通, 冷凝器还有冷却介质 管路与外部连通, 蒸发器还有余热介质管路与外部连通, 形成回热式第二类吸收式热泵。
3. 回热式第二类吸收式热泵, 是在第 2项所述的回热式第二类吸收式热泵中, 增加第 三发生器、 第三溶液热交换器和节流阀, 第二吸收器经第一溶液泵增设稀溶液管路经第三溶 液热交换器与第三发生器连通, 第三发生器还有浓溶液管路经第三溶液热交换器与第二发生
说 明 书
器连通, 将第一发生器有冷剂蒸汽通道与冷凝器连通调整为第一发生器有冷剂蒸汽通道与第 三发生器连通后第三发生器再有冷剂液管路经节流阀与冷凝器连通——第一发生器产生的冷 剂蒸汽作为第三发生器的驱动热介质, 第三发生器还有冷剂蒸汽通道与冷凝器连通, 形成回 热式并联双效第二类吸收式热泵。
4. 回热式第二类吸收式热泵, 是在第 2项所述的回热式第二类吸收式热泵中, 增加第 三发生器、 第三溶液热交换器和节流阀, 将第二吸收器有稀溶液管路经第一溶液泵和第一溶 液热交换器与第一发生器连通调整为第二吸收器有稀溶液管路经第一溶液泵、 第三溶液热交 换器和第一溶液热交换器与第一发生器连通, 将第一发生器有浓溶液管路经第一溶液热交换 器与第二发生器连通调整为第一发生器有浓溶液管路经第一溶液热交换器与第三发生器连 通, 第三发生器还有浓溶液管路经第三溶液热交换器与第二发生器连通, 将第一发生器有冷 剂蒸汽通道与冷凝器连通调整为第一发生器有冷剂蒸汽通道与第三发生器连通后第三发生器 再有冷剂液管路经节流阔与冷凝器连通——第一发生器产生的冷剂蒸汽作为第三发生器的驱 动热介质, 第三发生器还有冷剂蒸汽通道与冷凝器连通, 形成回热式串联双效第二类吸收式 热泵。
5. 回热式第二类吸收式热泵, 是在第 2项所述的回热式第二类吸收式热泵中, 增加第 三发生器、 第三溶液热交换器、 节流阀和第三溶液泵, 将第二吸收器有稀溶液管路经第一溶 液泵和第一溶液热交换器与第一发生器连通调整为第二吸收器有稀溶液管路经第一溶液泵和 第一溶液热交换器与第三发生器连通, 第三发生器还有浓溶液管路经第三溶液泵和第三溶液 热交换器与第一发生器连通, 将第一发生器有浓溶液管路经第一溶液热交换器与第二发生器 连通调整为第一发生器有浓溶液管路经第三溶液热交换器和第一溶液热交换器与第二发生器 连通, 将第一发生器有冷剂蒸汽通道与冷凝器连通调整为第一发生器有冷剂蒸汽通道与第三 发生器连通后第三发生器再有冷剂液管路经节流阀与冷凝器连通——第一发生器产生的冷剂 蒸汽作为第三发生器的驱动热介质, 第三发生器还有冷剂蒸汽通道与冷凝器连通, 形成回热 式倒串联双效第二类吸收式热泵。
6. 回热式第二类吸收式热泵, 是在第 3-5项所述的任一回热式第二类吸收式热泵中, 增加第二节流阀, 取消第二发生器与外部连通的余热介质管路, 第一发生器增设冷剂蒸汽通 道与第二发生器连通后第二发生器再有冷剂液管路经第二节流阀与冷凝器连通, 形成回热式 双效第二类吸收式热泵。
7. 回热式第二类吸收式热泵, 是在第 2项所述的回热式第二类吸收式热泵中, 增加第 三发生器、第四发生器、 第三溶液热交换器、 第四溶液热交换器、 第一节流阀和第二节流阁, 第一溶液泵增设稀溶液管路分别经第三溶液热交换器与第三发生器连通和经第四溶液热交换 器与第四发生器连通, 第三发生器还有浓溶液管路经第三溶液热交换器与第二发生器连通, 第四发生器还有浓溶液管路经第四溶液热交换器与第二发生器连通, 将第一发生器有冷剂蒸 汽通道与冷凝器连通调整为第一发生器有冷剂蒸汽通道与第三发生器连通后第三发生器再有 冷剂液管路经第一节流阀与冷凝器连通——第一发生器产生的冷剂蒸汽作为第三发生器的驱 动热介质, 第三发生器还有冷剂蒸汽通道与第四发生器连通后第四发生器再有冷剂液管路经 第二节流阀与冷凝器连通一~ "第三发生器产生的冷剂蒸汽作为第四发生器的驱动热介质, 第 四发生器还有冷剂蒸汽通道与冷凝器连通, 形成回热式并联三效第二类吸收式热泵。
书
8. 回热式第二类吸收式热泵, 是在第 2项所述的回热式第二类吸收式热泵中, 增加第 三发生器、 第四发生器、 第三溶液热交换器、 第四溶液热交换器、 第一节流阀和第二节流阀, 将第二吸收器有稀溶液管路经第一溶液泵和第一溶液热交换器与第一发生器连通调整为第二 吸收器有稀溶液管路经第一溶液泵、 第四溶液热交换器、 第三溶液热交换器和第一溶液热交 换器与第一发生器连通, 将第一发生器有浓溶液管路经第一溶液热交换器与第二发生器连通 调整为第一发生器有浓溶液管路经第一溶液热交换器与第三发生器连通, 第三发生器还有浓 溶液管路经第三溶液热交换器与第四发生器连通, 第四发生器还有浓溶液管路经第四溶液热 交换器与第二发生器连通, 将第一发生器有冷剂蒸汽通道与冷凝器连通调整为第一发生器有 冷剂蒸汽通道与第三发生器连通后第三发生器再有冷剂液管路经第一节流阀与冷凝器连通一 一第一发生器产生的冷剂蒸汽作为第三发生器的驱动热介质, 第三发生器还有冷剂蒸汽通道 与第四发生器连通后第四发生器再有冷剂液管路经第二节流阀与冷凝器连通——第三发生器 产生的冷剂蒸汽作为第四发生器的驱动热介质,第四发生器还有冷剂蒸汽通道与冷凝器连通, 形成回热式串联三效第二类吸收式热泵。
9. 回热式第二类吸收式热泵, 是在第 2项所述的回热式第二类吸收式热泵中, 增加第 三发生器、 第四发生器、 第三溶液热交换器、 第四溶液热交换器、 第一节流阀、 第二节流阔、 第三溶液泵和第四溶液泵, 将第二吸收器有稀溶液管路经第一溶液泵和第一溶液热交换器与 第一发生器连通调整为第二吸收器有稀溶液管路经第一溶液泵和第一溶液热交换器与第四发 生器连通,第四发生器还有浓溶液管路经第四溶液泵和第四溶液热交换器与第三发生器连通, 第三发生器还有浓溶液管路经第三溶液泵和第三溶液热交换器与第一发生器连通, 将第一发 生器有浓溶液管路经第一溶液热交换器与第二发生器连通调整为第一发生器有浓溶液管路经 第三溶液热交换器、 第四溶液热交换器和第一溶液热交换器与第二发生器连通, 将第一发生 器有冷剂蒸汽通道与冷凝器连通调整为第一发生器有冷剂蒸汽通道与第三发生器连通后第三 发生器再有冷剂液管路经第一节流阀与冷凝器连通——第一发生器产生的冷剂蒸汽作为第三 发生器的驱动热介质, 第三发生器还有冷剂蒸汽通道与第四发生器连通后第四发生器再有冷 剂液管路经第二节流阀与冷凝器连通——第三发生器产生的冷剂蒸汽作为第四发生器的驱动 热介质, 第四发生器还有冷剂蒸汽通道与冷凝器连通, 形成回热式倒串联三效第二类吸收式 热泵。
10. 回热式第二类吸收式热泵, 是在第 7- 9项所述的任一回热式第二类吸收式热泵中, 增加第三节流阀, 取消第二发生器与外部连通的余热介质管路, 第一发生器增设冷剂蒸汽通 道与第二发生器连通后第二发生器再有冷剂液管路经第三节流阀与冷凝器连通, 形成回热式 三效第二类吸收式热泵。
1 1 . 回热式第二类吸收式热泵, 是在第 7- 9项所述的任一回热式第二类吸收式热泵中, 增加第三节流阀, 取消第二发生器与外部连通的余热介质管路, 第三发生器增设冷剂蒸汽通 道与第二发生器连通后第二发生器再有冷剂液管路经第三节流阀与冷凝器连通, 形成回热式 三效第二类吸收式热泵。
12. 回热式第二类吸收式热泵, 是在第 2项所述的回热式第二类吸收式热泵中,增加第 二冷剂液泵或节流阀、吸收-蒸发器和第三溶液热交换器, 将第一吸收器有稀溶液管路经第二 溶液热交换器与第二吸收器连通调整为第一吸收器有稀溶液管路经第二溶液热交换器与吸收
说 明 书
-蒸发器连通, 吸收-蒸发器还有稀溶液管路经第三溶液热交换器与第二吸收器连通, 将第二 发生器有浓溶液管路经第二溶液泵和第二溶液热交换器与第一吸收器连通调整为第二发生器 有浓溶液管路经第二溶液泵、 第三溶液热交换器和第二溶液热交换器与第一吸收器连通, 将 蒸发器有冷剂蒸汽通道与第一吸收器连通调整为蒸发器有冷剂蒸汽通道与吸收-蒸发器连通, 冷凝器增设冷剂液管路经第二冷剂液泵与吸收-蒸发器连通后吸收-蒸发器再有冷剂蒸汽通道 与第一吸收器连通、 或第一冷剂液泵增设冷剂液管路与吸收 -蒸发器连通后吸收 -蒸发器再有 冷剂蒸汽通道与第一吸收器连通并同时将第一冷剂液泵有冷剂液管路与蒸发器连通调整为第 一冷剂液泵有冷剂液管路经节流阀与蒸发器连通, 形成回热式 1. 5级第二类吸收式热泵。
13. 回热式第二类吸收式热泵, 是在第 2项所述的回热式第二类吸收式热泵中,增加第 三溶液热交换器、 第三溶液泵、 第四溶液泵、 吸收-发生器、 分汽室、 第二冷剂液泵和第二冷 凝器, 将第一吸收器有稀溶液管路经第二溶液热交换器与第二吸收器连通调整为第一吸收器 有稀溶液管路经第二溶液热交换器和第四溶液泵与吸收-发生器连通, 吸收-发生器还有稀溶 液管路经第三溶液热交换器与第二吸收器连通, 将第二发生器有浓溶液管路经第二溶液泵和 第二溶液热交换器与第一吸收器连通调整为第二发生器有浓溶液管路经第二溶液泵、 第三溶 液热交换器和吸收-发生器与分汽室连通,分汽室还有浓溶液管路经第三溶液泵和第二溶液热 交换器与第一吸收器连通, 分汽室还有冷剂蒸汽通道与第二冷凝器连通, 第二冷凝器还有冷 剂液管路经第二冷剂液泵与蒸发器连通, 蒸发器增设冷剂蒸汽通道与吸收-发生器连通, 吸收 -发生器或还有被加热介质管路与外部连通, 第二冷凝器还有冷却介质管路与外部连通, 形成 回热式 1. 5级第二类吸收式热泵; 其中, 无第二冷凝器和第二冷剂液泵时, 分汽室有冷剂蒸 汽通道与第一冷凝器连通。
14. 回热式第二类吸收式热泵, 是在第 2项所述的回热式第二类吸收式热泵中, 增加第 三溶液热交换器、 第三溶液泵、 分汽室、 第二冷剂液泵、 吸收-发生器、 第二冷凝器和第二蒸 发器, 将第一吸收器有稀溶液管路经第二溶液热交换器与第二吸收器连通调整为第一吸收器 有稀溶液管路经第二溶液热交换器和吸收 -发生器与分汽室连通,分汽室还有浓溶液管路经第 三溶液泵和第二溶液热交换器与第一吸收器连通, 将第二发生器有浓溶液管路经第二溶液泵 和第二溶液热交换器与第一吸收器连通调整为第二发生器有浓溶液管路经第二溶液泵和第三 溶液热交换器与吸收-发生器连通, 吸收-发生器还有稀溶液管路经第三溶液热交换器与第二 吸收器连通, 分汽室还有冷剂蒸汽通道与第二冷凝器连通, 第二冷凝器还有冷剂液管路经第 二冷剂液泵与第二蒸发器连通, 将第一蒸发器有冷剂蒸汽通道与第一吸收器连通调整为第一 蒸发器有冷剂蒸汽通道与吸收-发生器连通, 第二蒸发器还有冷剂蒸汽通道与第一吸收器连 通, 吸收-发生器或还有被加热介质管路与外部连通,第二冷凝器还有冷却介质管路与外部连 通, 第二蒸发器还有余热介质管路与外部连通, 形成回热式 1. 5级第二类吸收式热泵; 其中, 无第二蒸发器时, 第二冷凝器有冷剂液管路经第二冷剂液泵与蒸发器连通, 蒸发器增设冷剂 蒸汽通道与第一吸收器连通。
15. 回热式第二类吸收式热泵, 是在第 13项所述的回热式第二类吸收式热泵中, 取消 第四溶液泵,第一吸收器有稀溶液管路经第二溶液热交换器与吸收-发生器连通, 取消蒸发器 与第一吸收器连通的冷剂蒸汽通道, 增加新增冷剂液泵, 第一冷凝器增设冷剂液管路经新增 冷剂液泵与吸收 -发生器连通后吸收 -发生器再有冷剂蒸汽通道与第一吸收器连通, 形成回热
说 明 书
式两级第二类吸收式热泵。
16. 回热式第二类吸收式热泵, 是在第 13项所述的回热式第二类吸收式热泵中, 取消 第四溶液泵,增加吸收 -蒸发器和新增冷剂液泵, 将第一吸收器有稀溶液管路经第二溶液热交 换器和第四溶液泵与吸收-发生器连通调整为第一吸收器有稀溶液管路经第二溶液热交换器 与吸收-蒸发器连通,吸收 -蒸发器还有稀溶液管路与吸收-发生器连通, 取消蒸发器与第一吸 收器连通的冷剂蒸汽通道, 蒸发器增设冷剂蒸汽通道与吸收-蒸发器连通,第一冷凝器或蒸发 器增设冷剂液管路经新增冷剂液泵与吸收 -蒸发器连通后吸收-蒸发器再有冷剂蒸汽通道与第 一吸收器连通, 形成回热式两级第二类吸收式热泵。
17. 回热式第二类吸收式热泵, 是在第 14项所述、 无第二蒸发器的回热式第二类吸收 式热泵中, 取消蒸发器与第一吸收器连通的冷剂蒸汽通道, 将第二冷凝器有冷剂液管路经第 二冷剂液泵与蒸发器连通调整为第二冷凝器有冷剂液管路经第二冷剂液泵与吸收-发生器连 通后吸收 -发生器再有冷剂蒸汽通道与第一吸收器连通, 形成回热式两级第二类吸收式热泵。
18. 回热式第二类吸收式热泵, 是在第 14项所述、 无第二蒸发器的回热式第二类吸收 式热泵中, 增加吸收-蒸发器, 将吸收 -发生器有稀溶液管路经第三溶液热交换器与第二吸收 器连通调整为吸收-发生器有稀溶液管路与吸收-蒸发器连通,吸收 -蒸发器还有稀溶液管路经 第三溶液热交换器与第二吸收器连通, 取消蒸发器与第一吸收器连通的冷剂蒸汽通道, 蒸发 器增设冷剂蒸汽通道与吸收 -蒸发器连通,将第二冷凝器有冷剂液管路经第二冷剂液泵与蒸发 器连通调整为第二冷凝器有冷剂液管路经第二冷剂液泵与吸收-蒸发器连通后吸收-蒸发器再 有冷剂蒸汽通道与第一吸收器连通, 形成回热式两级第二类吸收式热泵。
附图说明- 图 1是依据本发明所提供的双吸收 -双发生系统结构和流程示意图。
图 2是依据本发明所提供的回热式第二类吸收式热泵结构和流程示意图。
图 3是依据本发明所提供的回热式并联双效第二类吸收式热泵结构和流程示意图。
图 4是依据本发明所提供的回热式串联双效第二类吸收式热泵第 1种结构和流程示意图。 图 5是依据本发明所提供的回热式串联双效第二类吸收式热泵第 2种结构和流程示意图。 图 6是依据本发明所提供的回热式倒串联双效第二类吸收式热泵结构和流程示意图。 图 7是依据本发明所提供的回热式并联三效第二类吸收式热泵结构和流程示意图。
图 8是依据本发明所提供的回热式串联三效第二类吸收式热泵结构和流程示意图。
图 9是依据本发明所提供的回热式倒串联双效第二类吸收式热泵结构和流程示意图。 图 10是依据本发明所提供的回热式 1. 5级第二类吸收式热泵第 1种结构和流程示意图。 图 11是依据本发明所提供的回热式 1. 5级第二类吸收式热泵第 2种结构和流程示意图。 图 12是依据本发明所提供的回热式 1. 5级第二类吸收式热泵第 3种结构和流程示意图。 图 13是依据本发明所提供的回热式 1. 5级第二类吸收式热泵第 4种结构和流程示意图。 图 M是依据本发明所提供的回热式两级第二类吸收式热泵第 1种结构和流程示意图。 图 15是依据本发明所提供的回热式两级第二类吸收式热泵第 2种结构和流程示意图。 图 16是依据本发明所提供的回热式两级第二类吸收式热泵第 3种结构和流程示意图。 图 17是依据本发明所提供的回热式两级第二类吸收式热泵第 4种结构和流程示意图。 图中, 1一第一发生器, 2—第二发生器, 3—第一吸收器, 4一第二吸收器, 5—第一溶液
泵, 6—第二溶液泵, 7—第一溶液热交换器, 8—第二溶液热交换器, 9一冷凝器 /第一冷凝器, 10—蒸发器 /第一蒸发器, 11一冷剂液泵 /第一冷剂液泵, 12—第三发生器, 13—第三溶液热 交换器, 14一节流阀 /第一节流阀, 15—第二节流阀, 16—第三溶液泵, 17—第四发生器, 18 一第四溶液热交换器, 19一第三节流阔, 20—第四溶液泵, 21—吸收-蒸发器, 22—第二冷剂 液泵, 23—吸收 -发生器, 24—分汽室, 25—第二冷凝器, 26—第二蒸发器, A—新增冷剂液 泵。
这里还要指明的是:
(1)第二发生器 2和第二吸收器 4实现回热。
(2)采用以氨水溶液为代表的工作介质时, 此时发生器称作精馏塔, 第一精馏塔 1还要增 说
加被加热介质管路与外部连通,氨水溶液所涉及到的分汽室 24必要时增加冷却介质管路与外 部连通。
(3)关于溶液泵的作用——以图 12的溶液泵为书例, 第四溶液泵 20主要用于克服溶液流经 第二溶液热交换器 8的阻力;第二溶液泵 6则既要克服溶液流经第三溶液热交换器 13的阻力, 还有克服第二发生器 2与分汽室 24间的压差。
(4)在图 13、 16-17所示的回热式第二类吸收式热泵中, 溶液分两路各自独立循环, 故可 根据需要采用不同溶液作为工质。
具体实施方式: - 下面结合附图和实例来详细描述本发明。 具体实例表述中, 非必要情况下不重复表述结 构和流程, 对于显而易见和有其它实施方式可供参考时也不作流程表述。
图 1所示的双发生-双吸收系统是这样实现的:
①结构上, 它主要由第一发生器、 第二发生器、 第一吸收器、 第二吸收器、 第一溶液泵、 第二溶液泵、 第一溶液热交换器和第二溶液热交换器所组成; 第一发生器 1有浓溶液管路经 第一溶液热交换器 7与第二发生器 2连通, 第二发生器 2还有浓溶液管路经第二溶液泵 6和 第二溶液热交换器 8与第一吸收器 3连通, 第一吸收器 3还有稀溶液管路经第二溶液热交换 器 8与第二吸收器 4连通, 第二吸收器 4还有稀溶液管路经第一溶液泵 5和第一溶液热交换 器 7与第一发生器 1连通, 第一发生器 1还分别有余热介质管路与外部连通和有冷剂蒸汽通 道与外部连通, 第二发生器 2还分别有余热介质管路与外部连通和有冷剂蒸汽通道与第二吸 收器 4连通, 第一吸收器 3还分别有被加热介质管路与外部连通和有冷剂蒸汽通道与外部连 通, 第二吸收器 4还有冷却介质管路与外部连通。
②流程上, 外部冷剂蒸汽进入第一吸收器 3、 被来自第二发生器 2的浓溶液吸收并放热 于被加热介质, 第一吸收器 3的稀溶液经第二溶液热交换器 8进入第二吸收器 4、 吸收来自 第二发生器 2的冷剂蒸汽并放热于冷却介质, 第二吸收器 4的稀溶液经第一溶液泵 5和第一 溶液热交换器 7进入第一发生器 1,余热介质流经第一发生器 1、加热进入其内的溶液释放并 对外提供冷剂蒸汽, 第一发生器 1的浓溶液经第一溶液热交换器 7进入第二发生器 2, 余热 介质流经第二发生器 2、 加热进入其内的溶液释放并向第二吸收器 4提供冷剂蒸汽, 第二发 生器 2的浓溶液经第二溶液泵 6和第二溶液热交换器 8进入第一吸收器 3, 形成双发生 -双吸 收系统。
图 2所示的回热式第二类吸收式热泵是这样实现的:
①结构上, 在图 1所示的双发生 -双吸收系统中, 增加冷凝器、 蒸发器和冷剂液泵, 将第 一发生器 1有冷剂蒸汽通道与外部连通确定为第一发生器 1有冷剂蒸汽通道与冷凝器 9连通, 冷凝器 9还有冷剂液管路经冷剂液泵 11与蒸发器 10连通, 将第一吸收器 3有冷剂蒸汽通道 与外部连通确定为蒸发器 10有冷剂蒸汽通道与第一吸收器 3连通,冷凝器 9还有冷却介质管 路与外部连通, 蒸发器 10还有余热介质管路与外部连通。
②流程上, 第一发生器 1产生的冷剂蒸汽进入冷凝器 9、 放热于冷却介质后成冷剂液, 冷凝器 9的冷剂液经冷剂液泵 11加压后进入蒸发器 10、 吸收余热成冷剂蒸汽并向第一吸收 器 3提供, 形成回热式第二类吸收式热泵。
图 3所示的回热式并联双效第二类吸收式热泵是这样实现的:
①结构上, 在图 2所示的回热式第二类吸收式热泵中, 增加第三发生器、 第三溶液热交 换器和节流阀,第二吸收器 4经第一溶液泵 5增设稀溶液管路经第三溶液热交换器 13与第三 发生器 12连通,第三发生器 12还有浓溶液管路经第三溶液热交换器 13与第二发生器 2连通, 将第一发生器 1有冷剂蒸汽通道与冷凝器 9连通调整为第一发生器 1有冷剂蒸汽通道与第三 发生器 12连通后第三发生器 12再有冷剂液管路经节流阀 14与冷凝器 9连通——第一发生器 产生的冷剂蒸汽作为第三发生器的驱动热介质, 第三发生器 12还有冷剂蒸汽通道与冷凝器 9 连通。
②流程上,第二吸收器 4的部分稀溶液经第一溶液泵 5和第三溶液热交换器 13进入第三 发生器 12, 来自第一发生器 1的冷剂蒸汽流经第三发生器 12、加热进入其内的溶液释放冷剂 蒸汽, 第三发生器 12产生的冷剂蒸汽向冷凝器 9提供, 第三发生器 12的浓溶液经第三溶液 热交换器 13进入第二发生器 2, 流经第三发生器 12的冷剂蒸汽放热成冷剂液、 再经节流阀 14节流进入冷凝器 9, 形成回热式并联双效第二类吸收式热泵。
图 4所示的回热式串联双效第二类吸收式热泵是这样实现的:
①结构上, 在图 2所示的回热式第二类吸收式热泵中, 增加第三发生器、 第三溶液热交 换器和节流阀, 将第二吸收器 4有稀溶液管路经第一溶液泵 5和第一溶液热交换器 7与第一 发生器 1连通调整为第二吸收器 4有稀溶液管路经第一溶液泵 5、 第三溶液热交换器 13和第 一溶液热交换器 7与第一发生器 1连通, 将第一发生器 1有浓溶液管路经第一溶液热交换器 7与第二发生器 2连通调整为第一发生器 1有浓溶液管路经第一溶液热交换器 7与第三发生 器 12连通,第三发生器 12还有浓溶液管路经第三溶液热交换器 13与第二发生器 2连通,将 第一发生器 1有冷剂蒸汽通道与冷凝器 9连通调整为第一发生器 1有冷剂蒸汽通道与第三发 生器 12连通后第三发生器 12再有冷剂液管路经节流阀 14与冷凝器 9连通——第一发生器产 生的冷剂蒸汽作为第三发生器的驱动热介质,第三发生器 12还有冷剂蒸汽通道与冷凝器 9连 通。
②流程上, 第二吸收器 4的稀溶液经第一溶液泵 5、 第三溶液热交换器 13和第一溶液热 交换器 7进入第一发生器 1 , 第一发生器 1产生的冷剂蒸汽向第三发生器 12提供以作为其驱 动热介质, 第一发生器 1的浓溶液经第一溶液热交换器 7进入第三发生器 12; 冷剂蒸汽流经 第三发生器 12、 加热进入其内的溶液释放并向冷凝器 9提供冷剂蒸汽, 第三发生器 12的浓 溶液经第三溶液热交换器 13进入第二发生器 2, 流经第三发生器 12的冷剂蒸汽放热形成冷 剂液后再经节流阀 14节流进入冷凝器 9, 形成回热式串联双效第二类吸收式热泵。
图 5所示的回热式串联双效第二类吸收式热泵是这样实现的:
在图 4所示的回热式第二类吸收式热泵中, 取消第二发生器 2与外部连通的余热介质管 路, 增加第二节流阀, 第一发生器 1增设冷剂蒸汽通道与第二发生器 2连通后第二发生器 2 再有冷剂液管路经第二节流阀 15与冷凝器 9连通, 形成回热式串联双效第二类吸收式热泵。
图 6所示的回热式倒串联双效第二类吸收式热泵是这样实现的:
①结构上, 在图 2所示的回热式第二类吸收式热泵中, 增加第三发生器、 第三溶液热交 换器、 第一节流阀和第三溶液泵, 将第二吸收器 4有稀溶液管路经第一溶液泵 5和第一溶液 热交换器 7与第一发生器 1连通调整为第二吸收器 4有稀溶液管路经第一溶液泵 5和第一溶 液热交换器 7与第三发生器 12连通,第三发生器 12还有浓溶液管路经第三溶液泵 16和第三 溶液热交换器 13与第一发生器 1连通,说将第一发生器 1有浓溶液管路经第一溶液热交换器 7 与第二发生器 2连通调整为第一发生器 1有浓溶液管路经第三溶液热交换器 13和第一溶液热 明 8
交换器 7与第二发生器 2连通, 将第一发生器 1有冷剂蒸汽通道与冷凝器 9连通调整为第一 书
发生器 1有冷剂蒸汽通道与第三发生器 12连通后第三发生器 12再有冷剂液管路经第一节流 阀 14与冷凝器 9连通——第一发生器产生的冷剂蒸汽作为第三发生器的驱动热介质,第三发 生器 12还有冷剂蒸汽通道与冷凝器 9连通; 取消第二发生器 2与外部连通的余热介质管路, 增加第二节流阀, 第一发生器 1增设冷剂蒸汽通道与第二发生器 2连通后第二发生器 2再有 冷剂液管路经第二节流阀 15与冷凝器 9连通。
②流程上,第一发生器 1产生的冷剂蒸汽分别向第二发生器 2和第三发生器 12提供,第 一发生器 1的浓溶液经第三溶液热交换器 13和第一溶液热交换器 7进入第二发生器 2; 第二 吸收器 4的稀溶液经第一溶液泵 5和第一溶液热交换器 7进入第三发生器 12, 来自第一发生 器 1的冷剂蒸汽流经第三发生器 12、 加热进入其内的溶液释放并向冷凝器 9提供冷剂蒸汽, 第三发生器 12的浓溶液经第三溶液泵 16和第三溶液热交换器 13进入第一发生器 1, 流经第 三发生器 12的冷剂蒸汽放热形成冷剂液后再经第一节流阀 14节流进入冷凝器 9; 来自第一 发生器 1的冷剂蒸汽流经第二发生器 2、 加热进入其内的溶液释放并向第二吸收器 4提供冷 剂蒸汽,流经第二发生器 2的冷剂蒸汽放热形成冷剂液后再经第二节流阀 15节流进入冷凝器 9, 形成回热式倒串联双效第二类吸收式热泵。
图 7所示的回热式并联三效第二类吸收式热泵是这样实现的:
①结构上, 在图 2所示的回热式第二类吸收式热泵中, 增加第三发生器、 第四发生器、 第三溶液热交换器、 第四溶液热交换器、 第一节流阀和第二节流阔, 第一溶液泵 5增设稀溶 液管路分别经第三溶液热交换器 13与第三发生器 12连通和经第四溶液热交换器 18与第四发 生器 17连通, 第三发生器 12还有浓溶液管路经第三溶液热交换器 13与第二发生器 2连通, 第四发生器 17还有浓溶液管路经第四溶液热交换器 18与第二发生器 2连通, 将第一发生器 1有冷剂蒸汽通道与冷凝器 9连通调整为第一发生器 1有冷剂蒸汽通道与第三发生器 12连通 后第三发生器 12再有冷剂液管路经第一节流阀 14与冷凝器 9连通——第一发生器产生的冷 剂蒸汽作为第三发生器的驱动热介质, 第三发生器 12还有冷剂蒸汽通道与第四发生器 17连 通后第四发生器 17再有冷剂液管路经第二节流阀 15与冷凝器 9连通——第三发生器产生的 冷剂蒸汽作为第四发生器的驱动热介质, 第四发生器 17还有冷剂蒸汽通道与冷凝器 9连通。
②流程上,第二吸收器 4的部分稀溶液经第一溶液泵 5和第三溶液热交换器 13进入第三
发生器 12, 来自第一发生器 1的冷剂蒸汽流经第三发生器 12、加热进入其内的溶液释放冷剂 蒸汽,第三发生器 12产生的冷剂蒸汽向第四发生器 17提供, 第三发生器 12的浓溶液经第三 溶液热交换器 13进入第二发生器 2, 流经第三发生器 12的冷剂蒸汽放热成冷剂液、 再经第 一节流阀 14节流进入冷凝器 9; 第二吸收器 4的另部分稀溶液经第一溶液泵 5和第四溶液热 交换器 18进入第四发生器 17, 来自第三发生器 12的冷剂蒸汽流经第四发生器 17、加热进入 其内的溶液释放冷剂蒸汽, 第四发生器 17产生的冷剂蒸汽向冷凝器 9提供, 第四发生器 17 的浓溶液经第四溶液热交换器 18进入第二发生器 2, 流经第四发生器 17的冷剂蒸汽放热成 冷剂液、 再经第二节流阀 15节流进入冷凝器 9, 形成回热式并联三效第二类吸收式热泵。
图 8所示的回热式串联三效第二类吸收式热泵是这样实现的:
①结构上, 在图 2所示的回热式第说二类吸收式热泵中, 增加第三发生器、 第四发生器、 第三溶液热交换器、 第四溶液热交换器、 第一明 9节流阀和第二节流阀, 将第二吸收器 4有稀溶 液管路经第一溶液泵 5和第一溶液热交换器 7与第一发生器 1连通调整为第二吸收器 4有稀 书
溶液管路经第一溶液泵 5、第四溶液热交换器 18、第三溶液热交换器 13和第一溶液热交换器 7与第一发生器 1连通,将第一发生器 1有浓溶液管路经第一溶液热交换器 7与第二发生器 2 连通调整为第一发生器 1有浓溶液管路经第一溶液热交换器 7与第三发生器 12连通,第三发 生器 12还有浓溶液管路经第三溶液热交换器 13与第四发生器 17连通, 第四发生器 17还有 浓溶液管路经第四溶液热交换器 18与第二发生器 2连通,将第一发生器 1有冷剂蒸汽通道与 冷凝器 9连通调整为第一发生器 1有冷剂蒸汽通道与第三发生器 12连通后第三发生器 12再 有冷剂液管路经第一节流阀 14与冷凝器 9连通——第一发生器产生的冷剂蒸汽作为第三发生 器的驱动热介质,第三发生器 12还有冷剂蒸汽通道与第四发生器 17连通后第四发生器 17再 有冷剂液管路经第二节流阀 15与冷凝器 9连通——第三发生器产生的冷剂蒸汽作为第四发生 器的驱动热介质,第四发生器 17还有冷剂蒸汽通道与冷凝器 9连通;取消第二发生器 2与外 部连通的余热介质管路, 增加第三节流阀, 第三发生器 12增设冷剂蒸汽通道与第二发生器 2 连通后第二发生器 2再有冷剂液管路经第三节流阀 19与冷凝器 9连通。
②流程上, 第二吸收器 4的稀溶液经第一溶液泵 5、 第四溶液热交换器 18、 第三溶液热 交换器 13和第一溶液热交换器 7进入第一发生器 1, 第一发生器 1产生的冷剂蒸汽向第三发 生器 12提供以作为其驱动热介质,第一发生器 1的浓溶液经第一溶液热交换器 7进入第三发 生器 12; 冷剂蒸汽流经第三发生器 12、 加热进入其内的溶液释放并分别向第四发生器 17和 第二发生器 2提供, 第三发生器 12的浓溶液经第三溶液热交换器 13进入第四发生器 17 , 流 经第三发生器 12的冷剂蒸汽放热成冷剂液、 再经第一节流阀 14节流进入冷凝器 9: 来自第 三发生器 12的冷剂蒸汽流经第四发生器 17、 加热进入其内的溶液释放并向冷凝器 9提供冷 剂蒸汽, 第四发生器 17的浓溶液经第四溶液热交换器 18进入第二发生器 2, 流经第四发生 器 17的冷剂蒸汽放热成冷剂液、 再经第二节流阀 15节流进入冷凝器 9; 来自第三发生器 12 的冷剂蒸汽流经第二发生器 2、 加热进入其内的溶液释放并向第二吸收器 4提供冷剂蒸汽, 流经第二发生器 2的冷剂蒸汽放热成冷剂液、 再经第三节流阀 19节流进入冷凝器 9, 形成回 热式串联三效第二类吸收式热泵。
图 9所示的回热式倒串联三效第二类吸收式热泵是这样实现的:
①结构上, 在图 2所示的回热式第二类吸收式热泵中, 增加第三发生器、 第四发生器、
第三溶液热交换器、 第四溶液热交换器、 第一节流阀、 第二节流阀、 第三溶液泵和第四溶液 泵, 将第二吸收器 4有稀溶液管路经第一溶液泵 5和第一溶液热交换器 7与第一发生器 1连 通调整为第二吸收器 4有稀溶液管路经第一溶液泵 5和第一溶液热交换器 7与第四发生器 17 连通,第四发生器 17还有浓溶液管路经第四溶液泵 20和第四溶液热交换器 18与第三发生器 12连通, 第三发生器 12还有浓溶液管路经第三溶液泵 16和第三溶液热交换器 13与第一发 生器 1连通, 将第一发生器 1有浓溶液管路经第一溶液热交换器 7与第二发生器 2连通调整 为第一发生器 1有浓溶液管路经第三溶液热交换器 13、 第四溶液热交换器 18和第一溶液热 交换器 7与第二发生器 2连通, 将第一发生器 1有冷剂蒸汽通道与冷凝器 9连通调整为第一 发生器 1有冷剂蒸汽通道与第三发生器 12连通后第三发生器 12再有冷剂液管路经第一节流 阀 14与冷凝器 9连通——第一发生器产说生的冷剂蒸汽作为第三发生器的驱动热介质,第三发 生器 12还有冷剂蒸汽通道与第四发生器 17连明通后第四发生器 17再有冷剂液管路经第二节流
w
阔 15与冷凝器 9连通——第三发生器产生的冷剂蒸汽作为第四发生器的驱动热介质,第四发 书
生器 17还有冷剂蒸汽通道与冷凝器 9连通; 取消第二发生器 2与外部连通的余热介质管路, 增加第三节流阀, 第一发生器 1增设冷剂蒸汽通道与第二发生器 2连通后第二发生器 2再有 冷剂液管路经第三节流阀 19与冷凝器 9连通。
②流程上,第一发生器 1产生的冷剂蒸汽分别向第二发生器 2和第三发生器 12提供,第 一发生器 1的浓溶液经第三溶液热交换器 13、 第四溶液热交换器 18和第一溶液热交换器 7 进入第二发生器 2; 第二吸收器 4的稀溶液经第一溶液泵 5和第一溶液热交换器 7进入第四 发生器 17, 来自第三发生器 12的冷剂蒸汽流经第四发生器 17、 加热进入其内的溶液释放并 向冷凝器 9提供冷剂蒸汽, 第四发生器 17的浓溶液经第四溶液泵 20和第四溶液热交换器 18 进入第三发生器 12, 流经第四发生器 17的冷剂蒸汽放热形成冷剂液后再经第二节流阀 15节 流进入冷凝器 9; 来自第一发生器 1的冷剂蒸汽流经第三发生器 12、 加热进入其内的溶液释 放并向第四发生器 17提供冷剂蒸汽,第三发生器 12的浓溶液经第三溶液泵 16和第三溶液热 交换器 13进入第一发生器 1, 流经第三发生器 12的冷剂蒸汽放热形成冷剂液后再经第一节 流阀 14节流进入冷凝器 9 ; 来自第一发生器 1的冷剂蒸汽流经第二发生器 2、 加热进入其内 的溶液释放并向第二吸收器 4提供冷剂蒸汽,流经第二发生器 2的冷剂蒸汽放热形成冷剂液、 再经第三节流阀 19节流进入冷凝器 9, 形成回热式倒串联三效第二类吸收式热泵。
图 10所示的回热式 1. 5级第二类吸收式热泵是这样实现的:
①结构上, 在图 2所示的回热式第二类吸收式热泵中, 增加第二冷剂液泵、 吸收-蒸发器 和第三溶液热交换器, 将第一吸收器 3有稀溶液管路经第二溶液热交换器 8与第二吸收器 4 连通调整为第一吸收器 3有稀溶液管路经第二溶液热交换器 8与吸收-蒸发器 21连通,吸收- 蒸发器 21还有稀溶液管路经第三溶液热交换器 13与第二吸收器 4连通, 将第二发生器 2有 浓溶液管路经第二溶液泵 6和第二溶液热交换器 8与第一吸收器 3连通调整为第二发生器 2 有浓溶液管路经第二溶液泵 6、 第三溶液热交换器 13和第二溶液热交换器 8与第一吸收器 3 连通, 将蒸发器 10有冷剂蒸汽通道与第一吸收器 3连通调整为蒸发器 10有冷剂蒸汽通道与 吸收-蒸发器 21连通,冷凝器 9增设冷剂液管路经第二冷剂液泵 22与吸收-蒸发器 21连通后 吸收-蒸发器 21再有冷剂蒸汽通道与第一吸收器 3连通。
②流程上, 第二发生器 2的浓溶液经第二溶液泵 6、 第三溶液热交换器 13和第二溶液热
交换器 8进入第一吸收器 1、 吸收来自吸收-蒸发器 21的冷剂蒸汽并放热于被加热介质, 第 一吸收器 3的稀溶液经第二溶液热交换器 8进入吸收-蒸发器 21、 吸收来自蒸发器 10的冷剂 蒸汽并放热于流经吸收-蒸发器 21的冷剂液, 吸收-蒸发器 21的稀溶液经第三溶液热交换器 13进入第二吸收器 4 ; 冷凝器 9的一部分冷剂液经第二冷剂液泵 22加压后流经吸收-蒸发器 21、 吸热成冷剂蒸汽并向第一吸收器 3提供, 形成回热式 1. 5级第二类吸收式热泵。
图 11所示的回热式 1. 5级第二类吸收式热泵是这样实现的:
在图 10所示的回热式第二类吸收式热泵中, 取消第二冷剂液泵, 增加节流阀, 将冷凝器 9有冷剂液管路经第二冷剂液泵 22与吸收-蒸发器 21连通后吸收-蒸发器 21再有冷剂蒸汽通 道与第一吸收器 3连通调整为第一冷剂液泵 11增设冷剂液管路与吸收-蒸发器 21连通后吸收 -蒸发器 21再有冷剂蒸汽通道与第一吸说收器 3连通,将第一冷剂液泵 11有冷剂液管路与蒸发 器 10连通调整为第一冷剂液泵 11有冷剂液明管 14 10
u路经节流阔 与蒸发器 连通, 形成回热式 1. 5级第二类吸收式热泵。
书
图 12所示的回热式 1. 5级第二类吸收式热泵是这样实现的:
①结构上, 在图 2所示的回热式第二类吸收式热泵中, 增加第三溶液热交换器、 第三溶 液泵、 第四溶液泵、 吸收-发生器、 分汽室、 第二冷凝器和第二冷剂液泵, 将第一吸收器 3有 稀溶液管路经第二溶液热交换器 8与第二吸收器 4连通调整为第一吸收器 3有稀溶液管路经 第二溶液热交换器 8和第四溶液泵 20与吸收-发生器 23连通,吸收-发生器 23还有稀溶液管 路经第三溶液热交换器 13与第二吸收器 4连通,将第二发生器 2有浓溶液管路经第二溶液泵 6和第二溶液热交换器 8与第一吸收器 3连通调整为第二发生器 2有浓溶液管路经第二溶液 泵 6、 第三溶液热交换器 13和吸收-发生器 23与分汽室 24连通, 分汽室 24还有浓溶液管路 经第三溶液泵 16和第二溶液热交换器 8与第一吸收器 3连通, 分汽室 24还有冷剂蒸汽通道 与第二冷凝器 25连通,第二冷凝器 25还有冷剂液管路经第二冷剂液泵 22与蒸发器 10连通, 蒸发器 10增设冷剂蒸汽通道与吸收-发生器 23连通, 第二冷凝器 25还有冷却介质管路与外 部连通。
②流程上,第二发生器 2的浓溶液经第二溶液泵 6和第三溶液热交换器 13之后再流经吸 收-发生器 23、 吸热部分汽化进入分汽室 24, 分汽室 24产生的冷剂蒸汽进入第二冷凝器 25、 放热于冷却介质成冷剂液, 第二冷凝器 25的冷剂液经第二冷剂液泵 22加压进入蒸发器 10, 分汽室 24的浓溶液经第三溶液泵 16和第二溶液热交换器 8进入第一吸收器 3、 吸收来自蒸 发器 10的冷剂蒸汽并放热于被加热介质;第一吸收器 3的稀溶液经第二溶液热交换器 8和第 四溶液泵 20进入吸收-发生器 23、 吸收来自蒸发器 10的冷剂蒸汽并放热于流经吸收-发生器 23的溶液, 吸收-发生器 23的稀溶液经第三溶液热交换器 13进入第二吸收器 4 , 形成回热式 1. 5级第二类吸收式热泵。
图 13所示的回热式 1. 5级第二类吸收式热泵是这样实现的:
①结构上, 在图 2所示的回热式第二类吸收式热泵中, 增加第三溶液热交换器、 第三溶 液泵、 吸收-发生器、 分汽室、 第二冷凝器、 第二冷剂液泵和第二蒸发器, 将第一吸收器 3有 稀溶液管路经第二溶液热交换器 8与第二吸收器 4连通调整为第一吸收器 3有稀溶液管路经 第二溶液热交换器 8和吸收-发生器 23与分汽室 24连通, 分汽室 24还有浓溶液管路经第三 溶液泵 16和第二溶液热交换器 8与第一吸收器 3连通,将第二发生器 2有浓溶液管路经第二
说 明 书
溶液泵 6和第二溶液热交换器 8与第一吸收器 3连通调整为第二发生器 2有浓溶液管路经第 二溶液泵 6和第三溶液热交换器 13与吸收-发生器 23连通,吸收-发生器 23还有稀溶液管路 经第三溶液热交换器 13与第二吸收器 4连通, 分汽室 24还有冷剂蒸汽通道与第二冷凝器 25 连通, 第二冷凝器 25还有冷剂液管路经第二冷剂液泵 22与第二蒸发器 26连通, 将第一蒸发 器 10有冷剂蒸汽通道与第一吸收器 3连通调整为第一蒸发器 10有冷剂蒸汽通道与吸收-发生 器 23连通,第二蒸发器 26还有冷剂蒸汽通道与第一吸收器 3连通,第二冷凝器 25还有冷却 介质管路与外部连通, 第二蒸发器 26还有余热介质管路与外部连通。
②流程上, 第二发生器 2的浓溶液经第二溶液泵 6和第三溶液热交换器 13进入吸收-发 生器 23、 吸收来自第一蒸发器 10的冷剂蒸汽并放热于流经吸收-发生器 23的溶液, 吸收-发 生器 23的稀溶液经第三溶液热交换器 13进入第二吸收器 4; 第一吸收器 3的稀溶液经第二 溶液热交换器 8之后再流经吸收-发生器 23、吸热部分汽化进入分汽室 24 , 分汽室 24产生的 冷剂蒸汽进入第二冷凝器 25、 放热于冷却介质成冷剂液, 第二冷凝器 25的冷剂液经第二冷 剂液泵 22加压进入第二蒸发器 26、 吸收余热成冷剂蒸汽并向第一吸收器 3提供, 分汽室 24 的浓溶液经第三溶液泵 16和第二溶液热交换器 8进入第一吸收器 3、吸收来自第二蒸发器 26 的冷剂蒸汽并放热于被加热介质, 形成回热式 1. 5级第二类吸收式热泵。
图 14所示的回热式两级第二类吸收式热泵是这样实现的:
在图 12所示的回热式第二类吸收式热泵中,取消第四溶液泵, 第一吸收器 3有稀溶液管 路经第二溶液热交换器 8与吸收-发生器 23连通; 取消第二冷凝器 25和第二冷剂液泵 22, 分汽室 24有冷剂蒸汽通道与第一冷凝器 9连通; 取消蒸发器 10与第一吸收器 3连通的冷剂 蒸汽通道, 增加新增冷剂液泵, 第一冷凝器 9增设冷剂液管路经新增冷剂液泵 A与吸收 -发生 器 23连通后吸收-发生器 23再有冷剂蒸汽通道与第一吸收器 3连通,形成回热式两级第二类 吸收式热泵。
图 15所示的回热式两级第二类吸收式热泵是这样实现的:
在图 12所示的回热式第二类吸收式热泵中, 取消第四溶液泵, 增加吸收-蒸发器和新增 冷剂液泵, 将第一吸收器 3有稀溶液管路经第二溶液热交换器 8和第四溶液泵 20与吸收-发 生器 23连通调整为第一吸收器 3有稀溶液管路经第二溶液热交换器 8与吸收-蒸发器 21连通, 吸收-蒸发器 21还有稀溶液管路与吸收-发生器 23连通;取消第二冷凝器 25和第二冷剂液泵 22, 分汽室 24有冷剂蒸汽通道与第一冷凝器 9连通; 取消蒸发器 10与第一吸收器 3连通的 冷剂蒸汽通道, 蒸发器 10增设冷剂蒸汽通道与吸收-蒸发器 21连通;第一冷凝器 9增设冷剂 液管路经新增冷剂液泵 A与吸收-蒸发器 21连通后吸收-蒸发器 21再有冷剂蒸汽通道与第一 吸收器 3连通, 形成回热式两级第二类吸收式热泵。
图 16所示的回热式两级第二类吸收式热泵是这样实现的:
在图 13所示的回热式第二类吸收式热泵中,取消第二蒸发器 26和第二蒸发器 26与第一 吸收器 3连通的冷剂蒸汽通道, 将第二冷凝器 25有冷剂液管路经第二冷剂液泵 22与第二蒸 发器 26连通调整为第二冷凝器 25有冷剂液管路经第二冷剂液泵 22与吸收-发生器 23连通后 吸收-发生器 23再有冷剂蒸汽通道与第一吸收器 3连通,形成回热式两级第二类吸收式热泵。
图 17所示的回热式两级第二类吸收式热泵是这样实现的:
在图 13所示的回热式第二类吸收式热泵中, 增加吸收-蒸发器, 将吸收-发生器 23有稀
溶液管路经第三溶液热交换器 13与第二吸收器 4连通调整为吸收-发生器 23有稀溶液管路与 吸收-蒸发器 21连通,吸收-蒸发器 21还有稀溶液管路经第三溶液热交换器 13与第二吸收器 4连通; 取消第二蒸发器 26和第二蒸发器 26与第一吸收器 3连通的冷剂蒸汽通道, 第一蒸 发器 10增设冷剂蒸汽通道与吸收-蒸发器 21连通; 取消第二蒸发器 26, 将第二冷凝器 25有 冷剂液管路经第二冷剂液泵 22与第二蒸发器 26连通调整为第二冷凝器 25有冷剂液管路经第 二冷剂液泵 22与吸收-蒸发器 21连通后吸收-蒸发器 21再有冷剂蒸汽通道与第一吸收器 3连 通, 形成回热式两级第二类吸收式热泵。
本发明技术可以实现的效果——本发明所提出的双发生-双吸收系统与回热式第二类吸 收式热泵, 具有如下的效果和优势: 说
1 . 提出的双发生-双吸收系统, 结构合理, 回热幅度可调节, 为得到回热幅度可调节的 回热式第二类吸收式热泵打下了基础。
2. 提出的系列回热式第二类吸收式热泵, 能够书根据余热参数和供热温度的高低来选择回 热的幅度, 有利于热泵机组得到较高性能指数, 提高能源利用效率。
3. 提出的系列回热式第二类吸收式热泵, 能够利用更低温度的余热资源, 提高余热资源 利用率。
4. 利用本发明提供的系列回热式第二类吸收式热泵,可使单一热泵机组的工作参数和性 能指数之间实现连续对应,能够实现相邻热泵机组之间在工作参数和性能指数上的连续衔接。
5. 提出的系列回热式第二类吸收式热泵, 丰富了吸收式热泵, 可更好地实现热泵供热与 用户用热间的相互匹配。
Claims
1. 双发生 双吸收系统, 它主要由第一发生器、第二发生器、第一吸收器、第二吸收器、 第一溶液泵、 第二溶液泵、 第一溶液热交换器和第二溶液热交换器所组成; 第一发生器 (1) 有浓溶液管路经第一溶液热交换器(7)与第二发生器(2)连通, 第二发生器(2)还有浓溶 液管路经第二溶液泵(6)和第二溶液热交换器(8)与第一吸收器(3)连通,第一吸收器(3) 还有稀溶液管路经第二溶液热交换器(8)与第二吸收器(4)连通, 第二吸收器(4)还有稀 溶液管路经第一溶液泵(5)和第一溶液热交换器(7)与第一发生器(1)连通, 第一发生器
(1)还分别有余热介质管路与外部连通和有冷剂蒸汽通道与外部连通, 第二发生器 (2) 还 分别有余热介质管路与外部连通和有冷剂蒸汽通道与第二吸收器(4)连通, 第一吸收器(3) 还分别有被加热介质管路与外部连通和有冷剂蒸汽通道与外部连通, 第二吸收器(4)还有冷 却介质管路与外部连通, 形成双发生-双吸收系统。
2. 回热式第二类吸收式热泵, 是在权利要求 1所述的双发生-双吸收系统中, 增加冷凝 器、蒸发器和冷剂液泵,将第一发生器(1)有冷剂蒸汽通道与外部连通确定为第一发生器(1) 有冷剂蒸汽通道与冷凝器 (9) 连通, 冷凝器 (9) 还有冷剂液管路经冷剂液泵 (11) 与蒸发 器(10)连通, 将第一吸收器(3)有冷剂蒸汽通道与外部连通确定为蒸发器(10)有冷剂蒸 汽通道与第一吸收器 (3) 连通, 冷凝器 (9) 还有冷却介质管路与外部连通, 蒸发器 (10) 还有余热介质管路与外部连通, 形成回热式第二类吸收式热泵。
3. 回热式第二类吸收式热泵, 是在权利要求 2所述的回热式第二类吸收式热泵中, 增 加第三发生器、 第三溶液热交换器和节流阔, 第二吸收器 (4) 经第一溶液泵 (5) 增设稀溶 液管路经第三溶液热交换器 (13) 与第三发生器 (12) 连通, 第三发生器 (12) 还有浓溶液 管路经第三溶液热交换器 (13) 与第二发生器 (2) 连通, 将第一发生器 (1) 有冷剂蒸汽通 道与冷凝器 (9) 连通调整为第一发生器 (1) 有冷剂蒸汽通道与第三发生器 (12)连通后第 三发生器(12)再有冷剂液管路经节流阀 (14) 与冷凝器(9)连通——第一发生器产生的冷 剂蒸汽作为第三发生器的驱动热介质, 第三发生器(12)还有冷剂蒸汽通道与冷凝器(9)连 通, 形成回热式并联双效第二类吸收式热泵。
4. 回热式第二类吸收式热泵, 是在权利要求 2所述的回热式第二类吸收式热泵中, 增 加第三发生器、 第三溶液热交换器和节流阀, 将第二吸收器(4)有稀溶液管路经第一溶液泵
(5) 和第一溶液热交换器 (7) 与第一发生器 (1) 连通调整为第二吸收器 (4) 有稀溶液管 路经第一溶液泵(5)、 第三溶液热交换器(13)和第一溶液热交换器(7)与第一发生器(1) 连通, 将第一发生器(1)有浓溶液管路经第一溶液热交换器(7) 与第二发生器 (2)连通调 整为第一发生器 (1) 有浓溶液管路经第一溶液热交换器 (7) 与第三发生器 (12) 连通, 第 三发生器(12)还有浓溶液管路经第三溶液热交换器(13)与第二发生器(2)连通, 将第一 发生器(1)有冷剂蒸汽通道与冷凝器(9)连通调整为第一发生器(1)有冷剂蒸汽通道与第 三发生器 (12)连通后第三发生器(12)再有冷剂液管路经节流阀 (14) 与冷凝器(9)连通 ——第一发生器产生的冷剂蒸汽作为第三发生器的驱动热介质, 第三发生器 (12) 还有冷剂 蒸汽通道与冷凝器 (9) 连通, 形成回热式串联双效第二类吸收式热泵。
5. 回热式第二类吸收式热泵, 是在权利要求 2所述的回热式第二类吸收式热泵中, 增 加第三发生器、 第三溶液热交换器、 节流阀和第三溶液泵, 将第二吸收器(4)有稀溶液管路 经第一溶液泵 (5)和第一溶液热交换器(7)与第一发生器(1)连通调整为第二吸收器(4) 权 利 要 求 书 有稀溶液管路经第一溶液泵 (5) 和第一溶液热交换器 (7) 与第三发生器 (12) 连通, 第三 发生器 (12) 还有浓溶液管路经第三溶液泵 (16) 和第三溶液热交换器 (13) 与第一发生器
(1) 连通, 将第一发生器 (1) 有浓溶液管路经第一溶液热交换器 (7) 与第二发生器 (2) 连通调整为第一发生器( 1 )有浓溶液管路经第三溶液热交换器( 13 )和第一溶液热交换器(7) 与第二发生器(2)连通, 将第一发生器(1)有冷剂蒸汽通道与冷凝器(9)连通调整为第一 发生器(1)有冷剂蒸汽通道与第三发生器(12)连通后第三发生器(12)再有冷剂液管路经 节流阀(14)与冷凝器(9)连通——第一发生器产生的冷剂蒸汽作为第三发生器的驱动热介 质, 第三发生器(12)还有冷剂蒸汽通道与冷凝器(9)连通, 形成回热式倒串联双效第二类 吸收式热泵。
6. 回热式第二类吸收式热泵, 是在权利要求 3-5所述的任一回热式第二类吸收式热泵 中, 增加第二节流阀, 取消第二发生器 (2) 与外部连通的余热介质管路, 第一发生器 (1) 增设冷剂蒸汽通道与第二发生器 (2) 连通后第二发生器 (2) 再有冷剂液管路经第二节流阀
(15) 与冷凝器 (9) 连通, 形成回热式双效第二类吸收式热泵。
7. 回热式第二类吸收式热泵, 是在权利要求 2所述的回热式第二类吸收式热泵中, 增 加第三发生器、 第四发生器、 第三溶液热交换器、 第四溶液热交换器、 第一节流阔和第二节 流阀, 第一溶液泵 (5) 增设稀溶液管路分别经第三溶液热交换器 (13) 与第三发生器 (12) 连通和经第四溶液热交换器 (18) 与第四发生器 (17) 连通, 第三发生器 (12) 还有浓溶液 管路经第三溶液热交换器(13)与第二发生器(2)连通, 第四发生器(17)还有浓溶液管路 经第四溶液热交换器 (18) 与第二发生器 (2) 连通, 将第一发生器 (1) 有冷剂蒸汽通道与 冷凝器 (9) 连通调整为第一发生器 (1) 有冷剂蒸汽通道与第三发生器 (12) 连通后第三发 生器(12)再有冷剂液管路经第一节流闺(14)与冷凝器(9)连通" ~第一发生器产生的冷 剂蒸汽作为第三发生器的驱动热介质,第三发生器( 12)还有冷剂蒸汽通道与第四发生器(17) 连通后第四发生器(17)再有冷剂液管路经第二节流阀 (15) 与冷凝器(9)连通——第三发 生器产生的冷剂蒸汽作为第四发生器的驱动热介质, 第四发生器 (17) 还有冷剂蒸汽通道与 冷凝器(9) 连通, 形成回热式并联三效第二类吸收式热泵。
8. 回热式第二类吸收式热泵, 是在权利要求 2所述的回热式第二类吸收式热泵中, 增 加第三发生器、 第四发生器、 第三溶液热交换器、 第四溶液热交换器、 第一节流阀和第二节 流阀, 将第二吸收器(4)有稀溶液管路经第一溶液泵(5)和第一溶液热交换器(7) 与第一 发生器 (1) 连通调整为第二吸收器 (4) 有稀溶液管路经第一溶液泵 (5)、 第四溶液热交换 器(18)、 第三溶液热交换器(13)和第一溶液热交换器(7) 与第一发生器 (1)连通, 将第 一发生器(1)有浓溶液管路经第一溶液热交换器(7)与第二发生器(2)连通调整为第一发 生器(1)有浓溶液管路经第一溶液热交换器(7)与第三发生器(12)连通, 第三发生器(12) 还有浓溶液管路经第三溶液热交换器 (13) 与第四发生器 (17) 连通, 第四发生器 (17) 还 有浓溶液管路经第四溶液热交换器 (18) 与第二发生器 (2) 连通, 将第一发生器 (1) 有冷 剂蒸汽通道与冷凝器 (9) 连通调整为第一发生器 (1) 有冷剂蒸汽通道与第三发生器 (12) 连通后第三发生器(12)再有冷剂液管路经第一节流阀(14) 与冷凝器(9)连通——第一发 生器产生的冷剂蒸汽作为第三发生器的驱动热介质, 第三发生器 (12) 还有冷剂蒸汽通道与 第四发生器(17)连通后第四发生器(17)再有冷剂液管路经第二节流阀(15)与冷凝器(9) 权 利 要 求 书 连通——第三发生器产生的冷剂蒸汽作为第四发生器的驱动热介质, 第四发生器 (17) 还有 冷剂蒸汽通道与冷凝器 (9) 连通, 形成回热式串联三效第二类吸收式热泵。
9. 回热式第二类吸收式热泵, 是在权利要求 2 所述的回热式第二类吸收式热泵中, 增 加第三发生器、 第四发生器、 第三溶液热交换器、 第四溶液热交换器、 第一节流阀、 第二节 流阀、 第三溶液泵和第四溶液泵, 将第二吸收器 (4) 有稀溶液管路经第一溶液泵 (5) 和第 一溶液热交换器 (7) 与第一发生器 (1) 连通调整为第二吸收器 (4) 有稀溶液管路经第一溶 液泵 (5) 和第一溶液热交换器 (7) 与第四发生器 (17) 连通, 第四发生器 (17) 还有浓溶 液管路经第四溶液泵 (20) 和第四溶液热交换器 (18) 与第三发生器 (12) 连通, 第三发生 器 (12) 还有浓溶液管路经第三溶液泵 (16) 和第三溶液热交换器 (13) 与第一发生器 (1) 连通, 将第一发生器 (1) 有浓溶液管路经第一溶液热交换器 (7) 与第二发生器 (2) 连通调 整为第一发生器 (1) 有浓溶液管路经第三溶液热交换器 (13)、 第四溶液热交换器 (18) 和 第一溶液热交换器 (7) 与第二发生器 (2) 连通, 将第一发生器 (1) 有冷剂蒸汽通道与冷凝 器 (9) 连通调整为第一发生器 (1) 有冷剂蒸汽通道与第三发生器 (12) 连通后第三发生器
(12) 再有冷剂液管路经第一节流阀 (14) 与冷凝器 (9)连通——第一发生器产生的冷剂蒸 汽作为第三发生器的驱动热介质, 第三发生器 (12) 还有冷剂蒸汽通道与第四发生器 (17) 连通后第四发生器 (17) 再有冷剂液管路经第二节流阀 (15) 与冷凝器 (9) 连通——第三发 生器产生的冷剂蒸汽作为第四发生器的驱动热介质, 第四发生器 (17) 还有冷剂蒸汽通道与 冷凝器 (9) 连通, 形成回热式倒串联三效第二类吸收式热泵。
10. 回热式第二类吸收式热泵,是在权利要求 7-9所述的任一回热式第二类吸收式热泵 中, 增加第三节流阀, 取消第二发生器 (2) 与外部连通的余热介质管路, 第一发生器 (1) 增设冷剂蒸汽通道与第二发生器 (2) 连通后第二发生器 (2) 再有冷剂液管路经第三节流阀
(19) 与冷凝器 (9) 连通, 形成回热式三效第二类吸收式热泵。
11. 回热式第二类吸收式热泵,是在权利要求 7-9所述的任一回热式第二类吸收式热泵 中, 增加第三节流阀, 取消第二发生器 (2) 与外部连通的余热介质管路, 第三发生器 (12) 增设冷剂蒸汽通道与第二发生器 (2) 连通后第二发生器 (2) 再有冷剂液管路经第三节流阀
(19) 与冷凝器 (9) 连通, 形成回热式三效第二类吸收式热泵。
12. 回热式第二类吸收式热泵, 是在权利要求 2所述的回热式第二类吸收式热泵中, 增 加第二冷剂液泵或节流阀、 吸收-蒸发器和第三溶液热交换器, 将第一吸收器 (3) 有稀溶液 管路经第二溶液热交换器 (8) 与第二吸收器 (4) 连通调整为第一吸收器 (3) 有稀溶液管路 经第二溶液热交换器 (8) 与吸收-蒸发器 (21) 连通, 吸收-蒸发器 (21) 还有稀溶液管路经 第三溶液热交换器 (13) 与第二吸收器 (4) 连通, 将第二发生器 (2) 有浓溶液管路经第二 溶液泵 (6) 和第二溶液热交换器 (8) 与第一吸收器 (3) 连通调整为第二发生器 (2) 有浓 溶液管路经第二溶液泵 (6)、 第三溶液热交换器 (13) 和第二溶液热交换器 (8) 与第一吸收 器 (3) 连通, 将蒸发器 (10) 有冷剂蒸汽通道与第一吸收器 (3) 连通调整为蒸发器 (10) 有冷剂蒸汽通道与吸收-蒸发器(21)连通,冷凝器(9)增设冷剂液管路经第二冷剂液泵(22) 与吸收-蒸发器 (21) 连通后吸收-蒸发器 (21) 再有冷剂蒸汽通道与第一吸收器 (3) 连通、 或第一冷剂液泵 (11) 增设冷剂液管路与吸收-蒸发器 (21) 连通后吸收-蒸发器 (21) 再有 冷剂蒸汽通道与第一吸收器( 3 )连通并同时将第一冷剂液泵(11)有冷剂液管路与蒸发器(10) 权 利 要 求 书 连通调整为第一冷剂液泵 (11) 有冷剂液管路经节流阀 (14) 与蒸发器 (10) 连通, 形成回 热式 1.5级第二类吸收式热泵。
13. 回热式第二类吸收式热泵, 是在权利要求 2所述的回热式第二类吸收式热泵中,增 加第三溶液热交换器、 第三溶液泵、 第四溶液泵、 吸收-发生器、 分汽室、 第二冷剂液泵和第 二冷凝器, 将第一吸收器(3)有稀溶液管路经第二溶液热交换器(8) 与第二吸收器(4)连 通调整为第一吸收器 (3) 有稀溶液管路经第二溶液热交换器 (8) 和第四溶液泵 (20) 与吸 收-发生器 (23) 连通, 吸收-发生器 (23) 还有稀溶液管路经第三溶液热交换器 (13) 与第 二吸收器(4)连通, 将第二发生器(2)有浓溶液管路经第二溶液泵(6)和第二溶液热交换 器(8) 与第一吸收器(3)连通调整为第二发生器(2)有浓溶液管路经第二溶液泵(6)、 第 三溶液热交换器(13)和吸收-发生器(23) 与分汽室(24)连通, 分汽室(24)还有浓溶液 管路经第三溶液泵 (16) 和第二溶液热交换器 (8) 与第一吸收器 (3) 连通, 分汽室 (24) 还有冷剂蒸汽通道与第二冷凝器 (25) 连通, 第二冷凝器 (25) 还有冷剂液管路经第二冷剂 液泵(22)与蒸发器(10)连通, 蒸发器(10)增设冷剂蒸汽通道与吸收-发生器(23)连通, 吸收-发生器(23)或还有被加热介质管路与外部连通, 第二冷凝器(25)还有冷却介质管路 与外部连通, 形成回热式 1.5级第二类吸收式热泵; 其中, 无第二冷凝器和第二冷剂液泵时, 分汽室 (24) 有冷剂蒸汽通道与第一冷凝器 (9) 连通。
14. 回热式第二类吸收式热泵,是在权利要求 2所述的回热式第二类吸收式热泵中, 增 加第三溶液热交换器、 第三溶液泵、 分汽室、 第二冷剂液泵、 吸收-发生器、 第二冷凝器和第 二蒸发器, 将第一吸收器(3)有稀溶液管路经第二溶液热交换器(8)与第二吸收器(4)连 通调整为第一吸收器(3)有稀溶液管路经第二溶液热交换器(8)和吸收-发生器(23)与分 汽室(24)连通, 分汽室(24)还有浓溶液管路经第三溶液泵(16)和第二溶液热交换器(8) 与第一吸收器(3)连通, 将第二发生器(2)有浓溶液管路经第二溶液泵(6)和第二溶液热 交换器(8)与第一吸收器(3)连通调整为第二发生器(2)有浓溶液管路经第二溶液泵(6) 和第三溶液热交换器 (13) 与吸收-发生器 (23) 连通, 吸收-发生器 (23) 还有稀溶液管路 经第三溶液热交换器(13)与第二吸收器(4)连通, 分汽室(24)还有冷剂蒸汽通道与第二 冷凝器 (25) 连通, 第二冷凝器 (25) 还有冷剂液管路经第二冷剂液泵 (22) 与第二蒸发器
(26)连通, 将第一蒸发器(10)有冷剂蒸汽通道与第一吸收器(3)连通调整为第一蒸发器 (10)有冷剂蒸汽通道与吸收-发生器(23)连通, 第二蒸发器(26)还有冷剂蒸汽通道与第 一吸收器(3)连通, 吸收-发生器(23)或还有被加热介质管路与外部连通,第二冷凝器(25) 还有冷却介质管路与外部连通, 第二蒸发器 (26) 还有余热介质管路与外部连通, 形成回热 式 1.5级第二类吸收式热泵; 其中, 无第二蒸发器时, 第二冷凝器 (25) 有冷剂液管路经第 二冷剂液泵 (22) 与蒸发器 (10) 连通, 蒸发器 (10) 增设冷剂蒸汽通道与第一吸收器 (3) 连通。
15. 回热式第二类吸收式热泵, 是在权利要求 13所述的回热式第二类吸收式热泵中, 取消第四溶液泵,第一吸收器(3)有稀溶液管路经第二溶液热交换器(8)与吸收-发生器(23) 连通, 取消蒸发器(10)与第一吸收器(3)连通的冷剂蒸汽通道, 增加新增冷剂液泵, 第一 冷凝器 (9) 增设冷剂液管路经新增冷剂液泵 (A) 与吸收-发生器 (23) 连通后吸收-发生器
(23) 再有冷剂蒸汽通道与第一吸收器 (3) 连通, 形成回热式两级第二类吸收式热泵。 权 利 要 求 书
16. 回热式第二类吸收式热泵, 是在权利要求 13所述的回热式第二类吸收式热泵中, 取消第四溶液泵, 增加吸收 -蒸发器和新增冷剂液泵, 将第一吸收器 (3) 有稀溶液管路经第 二溶液热交换器 (8) 和第四溶液泵 (20) 与吸收 发生器 (23) 连通调整为第一吸收器 (3) 有稀溶液管路经第二溶液热交换器(8)与吸收-蒸发器(21)连通, 吸收-蒸发器(21)还有 稀溶液管路与吸收-发生器 (23) 连通, 取消蒸发器 (10) 与第一吸收器 (3) 连通的冷剂蒸 汽通道, 蒸发器 (10) 增设冷剂蒸汽通道与吸收-蒸发器 (21) 连通, 第一冷凝器 (9) 或蒸 发器(10)增设冷剂液管路经新增冷剂液泵(A)与吸收-蒸发器(21)连通后吸收-蒸发器(21) 再有冷剂蒸汽通道与第一吸收器 (3) 连通, 形成回热式两级第二类吸收式热泵。
17. 回热式第二类吸收式热泵, 是在权利要求 14所述、 无第二蒸发器的回热式第二类 吸收式热泵中,取消蒸发器(10)与第一吸收器(3)连通的冷剂蒸汽通道,将第二冷凝器(25) 有冷剂液管路经第二冷剂液泵 (22) 与蒸发器 (10) 连通调整为第二冷凝器 (25) 有冷剂液 管路经第二冷剂液泵 (22) 与吸收-发生器 (23) 连通后吸收-发生器 (23) 再有冷剂蒸汽通 道与第一吸收器 (3) 连通, 形成回热式两级第二类吸收式热泵。
18. 回热式第二类吸收式热泵, 是在权利要求 14所述、 无第二蒸发器的回热式第二类 吸收式热泵中, 增加吸收-蒸发器, 将吸收-发生器 (23) 有稀溶液管路经第三溶液热交换器
(13) 与第二吸收器 (4) 连通调整为吸收-发生器 (23) 有稀溶液管路与吸收-蒸发器 (21) 连通, 吸收-蒸发器 (21) 还有稀溶液管路经第三溶液热交换器 (13) 与第二吸收器 (4) 连 通, 取消蒸发器(10)与第一吸收器(3)连通的冷剂蒸汽通道, 蒸发器(10)增设冷剂蒸汽 通道与吸收-蒸发器(21)连通, 将第二冷凝器(25)有冷剂液管路经第二冷剂液泵(22)与 蒸发器(10)连通调整为第二冷凝器(25)有冷剂液管路经第二冷剂液泵(22)与吸收 -蒸发 器 (21)连通后吸收-蒸发器 (21) 再有冷剂蒸汽通道与第一吸收器 (3) 连通, 形成回热式 两级第二类吸收式热泵。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2011/000354 WO2012119264A1 (zh) | 2011-03-04 | 2011-03-04 | 双发生-双吸收系统与回热式第二类吸收式热泵 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2011/000354 WO2012119264A1 (zh) | 2011-03-04 | 2011-03-04 | 双发生-双吸收系统与回热式第二类吸收式热泵 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012119264A1 true WO2012119264A1 (zh) | 2012-09-13 |
Family
ID=46797381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/000354 WO2012119264A1 (zh) | 2011-03-04 | 2011-03-04 | 双发生-双吸收系统与回热式第二类吸收式热泵 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012119264A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104807240A (zh) * | 2014-03-27 | 2015-07-29 | 李华玉 | 第五类吸收式热泵 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2525445Y (zh) * | 2001-12-04 | 2002-12-11 | 江苏双良空调设备股份有限公司 | 两用式第二类溴化锂吸收式热泵 |
JP2004257705A (ja) * | 2003-02-27 | 2004-09-16 | Sanyo Electric Co Ltd | 吸収ヒートポンプ利用濃縮装置 |
CN101464068A (zh) * | 2009-01-11 | 2009-06-24 | 李华玉 | 一种提高第二类吸收式热泵供热温度的方法与高温型热泵 |
CN101476798A (zh) * | 2009-01-09 | 2009-07-08 | 李华玉 | 双效与多效及其基础上的第二类吸收式热泵 |
CN102095273A (zh) * | 2011-03-01 | 2011-06-15 | 李华玉 | 双发生-双吸收系统与回热式第二类吸收式热泵 |
-
2011
- 2011-03-04 WO PCT/CN2011/000354 patent/WO2012119264A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2525445Y (zh) * | 2001-12-04 | 2002-12-11 | 江苏双良空调设备股份有限公司 | 两用式第二类溴化锂吸收式热泵 |
JP2004257705A (ja) * | 2003-02-27 | 2004-09-16 | Sanyo Electric Co Ltd | 吸収ヒートポンプ利用濃縮装置 |
CN101476798A (zh) * | 2009-01-09 | 2009-07-08 | 李华玉 | 双效与多效及其基础上的第二类吸收式热泵 |
CN101464068A (zh) * | 2009-01-11 | 2009-06-24 | 李华玉 | 一种提高第二类吸收式热泵供热温度的方法与高温型热泵 |
CN102095273A (zh) * | 2011-03-01 | 2011-06-15 | 李华玉 | 双发生-双吸收系统与回热式第二类吸收式热泵 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104807240A (zh) * | 2014-03-27 | 2015-07-29 | 李华玉 | 第五类吸收式热泵 |
CN104807240B (zh) * | 2014-03-27 | 2017-07-21 | 李华玉 | 第五类吸收式热泵 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101004303B (zh) | 三级第一类吸收式热泵 | |
WO2011134129A1 (zh) | 回热式吸收-发生系统与回热式第一类吸收式热泵 | |
CN102095273B (zh) | 双发生-双吸收系统与回热式第二类吸收式热泵 | |
WO2012129743A1 (zh) | 第三类发生-吸收系统与回热式第三类吸收式热泵 | |
WO2011091567A1 (zh) | 吸收-发生系统和吸收式热泵 | |
WO2012019329A1 (zh) | 吸收-再吸收-发生系统与第一类吸收式热泵 | |
WO2014127681A1 (zh) | 复合发生第一类吸收式热泵 | |
WO2012145869A1 (zh) | 三发生-三吸收系统与第三类吸收式热泵 | |
WO2013159261A1 (zh) | 多端供热第一类吸收式热泵 | |
US20110296854A1 (en) | Method of Adding Adjacent High-Temperature Heating-Side for Absorption Heat | |
WO2012159228A1 (zh) | 第三类吸收-发生系统与第三类吸收式热泵 | |
CN108518888A (zh) | 可变效的溶液并联型溴化锂吸收式制冷热泵机组 | |
WO2014161369A1 (zh) | 分路循环第一类吸收式热泵 | |
CN101476798A (zh) | 双效与多效及其基础上的第二类吸收式热泵 | |
WO2013138963A1 (zh) | 双效回热吸收-发生系统与回热式第一类吸收式热泵 | |
WO2012119264A1 (zh) | 双发生-双吸收系统与回热式第二类吸收式热泵 | |
WO2014180163A1 (zh) | 分路循环第一类吸收式热泵 | |
WO2012122683A1 (zh) | 第三类发生-吸收系统与第三类吸收式热泵 | |
WO2013170406A1 (zh) | 分级冷凝第三类吸收式热泵 | |
WO2014161367A1 (zh) | 分路循环第一类吸收式热泵 | |
WO2013152464A1 (zh) | 双效回热吸收-发生系统与回热式第三类吸收式热泵 | |
WO2013075260A1 (zh) | 分级冷凝第二类吸收式热泵 | |
WO2013152463A1 (zh) | 分级冷凝第三类吸收式热泵 | |
WO2013033860A1 (zh) | 第三类吸收-发生系统与第三类吸收式热泵 | |
WO2013163784A1 (zh) | 分段回热第三类吸收式热泵 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11860428 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11860428 Country of ref document: EP Kind code of ref document: A1 |