WO2013033860A1 - 第三类吸收-发生系统与第三类吸收式热泵 - Google Patents

第三类吸收-发生系统与第三类吸收式热泵 Download PDF

Info

Publication number
WO2013033860A1
WO2013033860A1 PCT/CN2011/001467 CN2011001467W WO2013033860A1 WO 2013033860 A1 WO2013033860 A1 WO 2013033860A1 CN 2011001467 W CN2011001467 W CN 2011001467W WO 2013033860 A1 WO2013033860 A1 WO 2013033860A1
Authority
WO
WIPO (PCT)
Prior art keywords
generator
solution
absorber
heat exchanger
condenser
Prior art date
Application number
PCT/CN2011/001467
Other languages
English (en)
French (fr)
Inventor
李华玉
Original Assignee
Li Huayu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Li Huayu filed Critical Li Huayu
Priority to PCT/CN2011/001467 priority Critical patent/WO2013033860A1/zh
Publication of WO2013033860A1 publication Critical patent/WO2013033860A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/008Sorption machines, plants or systems, operating continuously, e.g. absorption type with multi-stage operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/04Heat pumps of the sorption type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • the third type of absorption-generation system and the third type of absorption heat pump are the third type of absorption-generation system and the third type of absorption heat pump
  • the invention belongs to the technical field of low temperature waste heat utilization heat pump.
  • the first type of absorption heat pump drives the temperature difference between the heat medium and the heated medium at a high temperature, and the temperature of the residual heat is increased, and the energy saving benefit is relatively low;
  • the second type of absorption heat pump is the waste heat resource and
  • the temperature difference between the environments is the driving force of natural existence, and the increase of the residual heat temperature is relatively low, and the energy saving benefit is high when the residual heat resources are abundant; combining the two driving forces can not only improve the utilization rate of the heat resource, At the same time, it can also reduce the requirements on the quantity and grade of high-temperature driving heat.
  • the utility model can simultaneously use the temperature difference between the heat medium and the heated medium and the temperature difference between the residual heat resource and the environment as a driving force, so as to realize the heat pump having a higher book energy index and higher heat recovery temperature.
  • the third type of occurrence-absorption system with simple structure and process, and then add other components to obtain a series of third-type absorption heat pumps, which will provide strong support for improving the utilization of waste heat resources.
  • the main object of the present invention is to provide a third type of absorption generating system and a third type of absorption heat pump, and the specific contents of the invention are as follows:
  • a third type of absorption-generation system mainly comprising a first generator, a second generator, a first absorber, a second absorber, a first solution pump, a second solution pump, a first solution heat exchanger, and a a two-solution heat exchanger;
  • the first absorber has a dilute solution line connected to the second absorber via the second solution heat exchanger, and the second absorber has a dilute solution line through the first solution pump and the first solution
  • the heat exchanger is in communication with the first generator, the first generator further has a concentrated solution line connected to the second generator via the first solution heat exchanger, and the second generator further has a concentrated solution line through the second solution pump and
  • the second solution heat exchanger is in communication with the first absorber, the first generator further has a refrigerant vapor passage communicating with the outside, and the second generator and the refrigerant vapor passage are in communication with the second absorber, the first absorber further The refrigerant vapor passage communicates with the outside, the first generator also drives the heat medium
  • the third type of absorption heat pump is a third type of absorption-generation system according to item 1, adding a condenser, an evaporator and a throttle valve, and connecting the first generator with a refrigerant vapor passage to the outside. It is determined that the first generator has a refrigerant vapor passage communicating with the condenser, and the first absorber has a refrigerant vapor passage communicating with the outside to determine that the evaporator has a refrigerant vapor passage communicating with the first absorber, and the condenser is also cold
  • the agent liquid pipeline is connected to the evaporator through the throttling, the condenser is also connected to the outside by the heating medium pipeline, and the evaporator and the residual heat medium pipeline communicate with the outside to form a third type of absorption heat pump.
  • the third type of absorption heat pump in the third type of absorption heat pump described in item 2, adds a third generator, a third solution heat exchanger and a second throttle valve, and the first solution pump is added with a thinner
  • the solution line is in communication with the third generator via the third solution heat exchanger
  • the third generator and the concentrated solution line are in communication with the second generator via the third solution heat exchanger
  • the first generator has refrigerant vapor
  • the passage is connected to the condenser to be adjusted so that the first generator has a refrigerant vapor passage communicating with the third generator, and the third generator is further connected to the condenser via the second throttle valve - the first generator
  • the generated refrigerant vapor acts as a driving heat medium for the third generator
  • the third generator also has a refrigerant vapor passage communicating with the condenser to form a parallel double-effect third-type absorption heat pump.
  • the third type of absorption heat pump in the third type of absorption heat pump described in item 2, adds a third generator, a third solution heat exchanger and a second throttle valve, and the second absorber has The dilute solution pipeline is connected to the first solution through the first solution pump and the first solution.
  • the heat exchanger is connected to the first generator to adjust the second absorber to have a dilute solution pipeline through the first solution pump, the first solution heat exchanger and the third solution
  • the heat exchanger is in communication with the first generator, and the first generator has a concentrated solution pipeline connected to the second generator via the first solution heat exchanger to adjust the first generator to have a concentrated solution pipeline through the third solution for heat exchange
  • the third generator is connected to the third generator, and the third generator further has a concentrated solution pipeline communicating with the second generator via the first solution heat exchanger, and the first generator has a refrigerant vapor passage connected to the condenser to be adjusted to the first
  • the generator has a refrigerant vapor passage connected to the third generator, and the third generator has a refrigerant liquid pipeline connected to the condenser via the second throttle valve - the refrigerant vapor generated by the first generator is generated as a third Drive the heat medium, the third generator is cold A steam passage communicating with a condenser, forming a third series of double-
  • the third type of absorption heat pump is a third type of absorption heat pump according to item 2, adding a third generator, a third solution heat exchanger, a second throttle valve and a third solution pump,
  • the second absorber has a dilute solution line connected to the first generator via the first solution pump and the first solution heat exchanger to adjust the second absorber to have a dilute solution line through the first solution pump and the first solution heat exchanger Communicating with the third generator, the third generator further has a concentrated solution line connected to the first generator via the third solution pump and the third solution heat exchanger, and the first generator has a concentrated solution line through the first solution
  • the heat exchanger is connected to the second generator to be adjusted to have a first solution having a concentrated solution line connected to the second generator via the third solution heat exchanger and the first solution heat exchanger, and the first generator has a refrigerant vapor
  • the passage is connected to the condenser to be adjusted so that the first generator has a refrigerant vapor passage communicating with the third generator, and the third generator is
  • the third type of absorption heat pump is a third type of absorption heat pump according to item 3, which increases the fourth generator, the fourth solution heat exchanger and the third section, and the first solution pump is added with a thinner
  • the solution line is connected to the fourth generator via the fourth solution heat exchanger, and the fourth generator and the concentrated solution line are connected to the second generator via the fourth solution heat exchanger, and the third generator has refrigerant vapor
  • the passage is connected to the condenser to be adjusted to be a third generator having a refrigerant vapor passage connected to the fourth generator, and then the fourth generator is further connected to the condenser via the third throttle valve - the third generator
  • the generated refrigerant vapor is used as the driving heat medium of the fourth generator, and the fourth generator also has a refrigerant vapor passage communicating with the condenser to form a parallel three-effect third type absorption heat pump.
  • the third type of absorption heat pump is a third type of absorption heat pump according to item 4, wherein the fourth generator, the fourth solution heat exchanger and the third throttle valve are added, and the second absorber has The dilute solution pipeline is connected to the third solution heat exchanger via the first solution pump and the first solution heat exchanger to adjust the second absorber to have a dilute solution pipeline through the first solution pump, the first solution heat exchanger and the fourth
  • the solution heat exchanger is in communication with the third solution heat exchanger
  • the third generator has a concentrated solution pipeline connected to the second generator via the first solution heat exchanger to be adjusted to a third generator having a concentrated solution pipeline through the fourth
  • the solution heat exchanger is in communication with the fourth generator, and the fourth generator further has a concentrated solution line connected to the second generator via the first solution heat exchanger, and the third generator has a refrigerant vapor passage connected to the condenser.
  • the fourth generator After the third generator has a refrigerant vapor passage and communicates with the fourth generator, the fourth generator has a refrigerant liquid pipeline connected to the condenser via the third throttle valve - the refrigerant vapor generated by the third generator is used as The fourth generator drives the heat medium, the fourth The burner also has a refrigerant vapor passage communicating with the condenser to form a series three-effect third type absorption heat pump.
  • the third type of absorption heat pump in the third type of absorption heat pump described in item 5, adding a fourth generator, a fourth solution heat exchanger, a third throttle valve and a fourth solution pump,
  • the second absorber has a dilute solution line through the first solution pump and
  • the specification-solution heat exchanger is connected to the third generator to be adjusted to have a second solution having a dilute solution line connected to the fourth generator via the first solution pump and the first solution heat exchanger, and the fourth generator has a concentrated solution
  • the pipeline is connected to the third generator via the fourth solution pump and the fourth solution heat exchanger, and the first generator has a concentrated solution pipeline through the third solution heat exchanger and the first solution heat exchanger and the second generator
  • the communication is adjusted to be that the first generator has a concentrated solution pipeline connected to the second generator via the third solution heat exchanger, the fourth solution heat exchanger and the first solution heat exchanger, and the third generator has a refrigerant vapor passage Connected to the condenser, the third generator has a refrigerant
  • the third type of absorption heat pump is the third type of absorption heat pump described in item 2, adding a refrigerant liquid pump or a second section of the flow, absorption-evaporator and third solution heat exchanger
  • the second generator has a concentrated solution pipeline connected to the first absorber via the second solution pump and the second solution heat exchanger to adjust the second generator to have a concentrated solution pipeline through the second solution pump and the second solution heat exchanger
  • the third solution heat exchanger is in communication with the first absorber, and the first absorber has a dilute solution line connected to the second absorber through the second solution heat exchanger to adjust the first absorber to have a dilute solution line through the first
  • the three-solution heat exchanger is in communication with the absorption-evaporator, and the absorption-evaporator and the dilute solution line are in communication with the second absorber via the second solution heat exchanger, and the evaporator has a refrigerant vapor passage connected to the first absorber.
  • the refrigerant vapor channel is connected with the absorption-evaporator, the evaporator is added with the refrigerant liquid pipeline, the refrigerant liquid pump is connected with the absorption-evaporator, the absorption-evaporator is further provided with the refrigerant vapor channel and the first absorption.
  • the condenser or the coolant is added to the condenser
  • a second flow path width and absorption - after evaporator communication absorber - evaporator, then the refrigerant vapor channel communicating with the first absorber, 1.5 is formed of the third type absorption heat pump.
  • the third type of absorption heat pump is a third type of absorption heat pump according to item 2, adding a refrigerant liquid pump or a second throttle valve, an absorption-evaporator, a third solution heat exchanger and a a three-solution pump, wherein the second generator has a concentrated solution line connected to the first absorber through the second solution pump and the second solution heat exchanger to adjust the second generator to have a concentrated solution line through the second solution pump and
  • the two solution heat exchanger is in communication with the absorption-evaporator, and the absorption-evaporator and the dilute solution line are in communication with the first absorber via the third solution pump and the third solution heat exchanger, and the first absorber has a dilute solution tube Passing through the second solution heat exchanger and the second absorber to adjust to the first absorber having a dilute solution line communicating with the second absorber via the third solution heat exchanger and the second solution heat exchanger, the evaporator having The refrigerant vapor passage is connected to the first absorber to be adjusted so that the
  • the third type of absorption heat pump is a third type of absorption heat pump according to item 2, which cancels the heated medium line in which the first absorber communicates with the outside, and increases the third generator and the third absorption.
  • the third generator and the concentrated solution pipeline are connected to the third absorber via the third solution heat exchanger, and the third generator has a refrigerant vapor passage communicating with the second condenser, and the second condenser has After the refrigerant liquid pipeline communicates with the first absorber through the second throttle valve, the first absorber further has a refrigerant vapor passage communicating with the third absorber, and the third generator further has a driving heat medium pipeline connected to the outside.
  • the third type of absorption heat pump is formed by a fifth-stage absorption type heat pump.
  • the third type of absorption heat pump is the third type of absorption heat pump according to Item 1, wherein the first absorber has a dilute solution line and is connected to the second absorber through the second solution heat exchanger. For the first absorber, there is a dilute solution line through the third solution The pump and the third solution heat exchanger are in communication with the third generator, and the third absorber has a dilute solution line connected to the third generator through the third solution pump and the third solution heat exchanger to adjust the third absorber to have The third type absorption heat pump is formed by the second solution heat exchanger and the second absorber.
  • the third type of absorption heat pump is a third type of absorption heat pump according to item 2, wherein the third generator, the third absorber, the third solution heat exchanger and the third solution pump are added,
  • a generator has a refrigerant vapor passage connected to the condenser to adjust the first generator to have a refrigerant vapor passage communicating with the third absorber, and the third absorber has a dilute solution pipeline through the third solution pump and the third solution heat
  • the exchanger is in communication with the third generator, the third generator has a concentrated solution line connected to the third absorber via the third solution heat exchanger, and the third generator has a refrigerant vapor passage communicating with the condenser, the third
  • the generator also has a driving heat medium pipe connected to the outside, and the third absorber and the heated medium pipe are connected to the outside to form a class 1.
  • the third type of absorption heat pump is the third type of absorption heat pump according to item 13, wherein the first absorber has a dilute solution line connected to the second absorber through the second solution heat exchanger to be adjusted to The first absorber has a dilute solution line through the third solution book
  • the pump and the third solution heat exchanger are in communication with the third generator, and the third absorber has a dilute solution line connected to the third generator through the third solution pump and the third solution heat exchanger to adjust the third absorber to have
  • the third type absorption heat pump is formed by the second solution heat exchanger and the second absorber.
  • a third type of absorption heat pump in any of the third type of absorption heat pumps described in items 13-14, adding a second condenser and a second throttle valve, the first generator adding a refrigerant vapor channel Communicating with the second condenser, the second condenser and the refrigerant liquid pipeline are connected to the evaporator via the second throttle valve, and the second condenser and the heated medium pipeline are connected to the outside to form a single-stage foundation.
  • Compound grade third type absorption heat pump in any of the third type of absorption heat pumps described in items 13-14, adding a second condenser and a second throttle valve, the first generator adding a refrigerant vapor channel Communicating with the second condenser, the second condenser and the refrigerant liquid pipeline are connected to the evaporator via the second throttle valve, and the second condenser and the heated medium pipeline are connected to the outside to form a single-stage foundation.
  • a third type of absorption heat pump wherein in any of the third type of absorption heat pumps described in item 13-, the second condenser and the second throttle valve are added, and the first generator is provided with a refrigerant vapor passage and The second condenser is connected, the second condenser and the refrigerant liquid pipeline are connected to the evaporator through the second section, and the refrigerant liquid pipeline of the first condenser is connected to the evaporator through the first throttle valve.
  • the first condenser has a refrigerant liquid pipeline connected to the second condenser through the first throttle valve, and the second condenser has a heated medium pipeline connected to the outside to form a composite grade third class on a single-stage basis.
  • Absorption heat pump in any of the third type of absorption heat pumps described in item 13-, the second condenser and the second throttle valve are added, and the first generator is provided with a refrigerant vapor passage and The second condenser is connected, the second conden
  • the third type of absorption heat pump in any of the third type of absorption heat pumps according to Item 13-14, canceling the heated medium line in which the first absorber communicates with the outside, and adding the second throttle valve
  • the condenser adds a refrigerant liquid pipeline to communicate with the first absorber through the second throttle valve, and then the first absorber further has a refrigerant vapor passage communicating with the third absorber to form a second-stage third type absorption heat pump.
  • the third type of absorption heat pump in any of the third type of absorption heat pumps described in Item 13-14, cancels the heated medium line in which the first absorber is connected to the outside, and adds the refrigerant liquid pump,
  • the evaporator adds a refrigerant liquid pipeline through the refrigerant liquid pump to communicate with the first absorber, and then the first absorber further has a refrigerant vapor passage communicating with the third absorber to form a second-stage third type absorption heat pump.
  • the third type of absorption heat pump in any of the third type of absorption heat pumps described in item 3-5, adding a second condenser and a third throttle valve, the first generator is provided with a refrigerant vapor channel Communicating with the second condenser, the second condenser and the refrigerant liquid pipeline are connected to the first condenser or the evaporator via the third throttle valve, and the second condenser and the heated medium pipeline are connected to the outside to form A composite third type absorption heat pump based on double effect.
  • the third type of absorption heat pump is characterized in that in any of the third type of absorption heat pumps described in items 6-8, the second condenser and the fourth throttle valve are added, and the third generator is provided with a refrigerant vapor passage. Connected to the second condenser, the second condenser also has a refrigerant liquid The pipeline is connected to the first condenser or the evaporator via the fourth throttle valve, and the second condenser is also connected to the outside by the heated medium pipeline to form a composite third-type absorption heat pump on a three-effect basis.
  • a third type of absorption heat pump wherein in any of the third type of absorption heat pumps according to items 6-8, a second condenser and a fourth throttle valve are added, and the first generator is provided with a refrigerant vapor passage. Communicating with the second condenser, the second condenser and the refrigerant liquid pipeline are connected to the first condenser or the evaporator via the fourth throttle valve, and the second condenser and the heated medium pipeline are connected to the outside to form A composite third-class absorption heat pump based on three effects.
  • the third type of absorption heat pump is to add a second condenser, a third throttle valve, a new generator, and a new absorber in any of the third type of absorption heat pumps described in items 3-5. Adding a solution heat exchanger and a new solution pump, the third generator adds a refrigerant vapor channel to the newly added absorber, and the new absorber and the dilute solution pipeline are added by the new solution pump and the new solution.
  • the heat exchanger is connected to the newly added generator, and the new generator and the concentrated solution pipeline are connected to the newly added absorber through the new solution heat exchanger, and the new generator and the refrigerant vapor passage are connected to the second condenser.
  • the second condenser and the refrigerant liquid pipeline are connected to the first condenser or the evaporator via the third throttle valve, and the newly added generator also has a driving heat medium pipeline connected to the outside, adding the absorber and the first
  • the second condenser also has a medium to be heated and communicated with the outside to form a composite third type absorption heat pump on a double effect basis.
  • the third type of absorption heat pump is a third type of absorption heat pump according to item 22, which cancels the driving heat medium pipeline connecting the new generator to the outside, and adds a new throttle valve.
  • a generator adds a refrigerant vapor channel to communicate with the newly added generator, and a new generator is added, and the refrigerant liquid pipeline is connected to the second condenser via a new throttle section - the first generator provides the new generator
  • the refrigerant vapor acts as a driving heat medium to form a composite third type absorption heat pump based on double effect.
  • a third type of absorption heat pump in any of the third type of absorption heat pumps of any of the items 22-23, wherein the first absorber has a dilute solution line through the second solution heat exchanger and the second absorption
  • the communication is adjusted to be that the first absorber has a dilute solution pipeline connected to the newly added generator through the new solution pump and the new solution heat exchanger, and the new absorber has a dilute solution pipeline through the newly added solution pump and newly added
  • the solution heat exchanger is connected with the newly added generator to adjust the new absorber to have a dilute solution line connected to the second absorber through the second solution heat exchanger to form a composite third type absorption heat pump on a double effect basis.
  • the third type of absorption heat pump is any of the third type of absorption heat pumps described in items 6-8, adding a second condenser, a fourth throttle valve, a new generator, and a new absorber.
  • the new solution heat exchanger and the new solution pump are added.
  • the fourth generator adds a refrigerant vapor channel to the newly added absorber, and the new absorber and the dilute solution pipeline are added with a new sputum pump and a new solution heat.
  • the exchanger is connected to the newly added generator, and the new generator and the concentrated solution pipeline are connected to the newly added absorber through the new solution heat exchanger, and the new generator and the refrigerant vapor passage are connected to the second condenser.
  • the second condenser further has a refrigerant liquid pipeline connected to the first condenser or the evaporator via the fourth throttle valve, and the newly added generator also drives the heat medium pipeline to communicate with the outside, adding the absorber and the second condensation.
  • the device also has a medium to be heated and communicated with the outside to form a composite third type absorption heat pump based on three effects.
  • the third type of absorption heat pump in any of the third type of absorption heat pumps described in item 25, cancels the drive heat medium line connecting the generator to the outside, and adds a new throttle valve.
  • the third generator adds a refrigerant vapor channel to the newly added generator to connect with the new generator, and then the refrigerant liquid pipeline is connected to the second condenser via the new throttle valve - the third generator provides the newly added absorber
  • the refrigerant vapor is used as a driving heat medium to form a composite third type absorption heat pump based on three effects.
  • the third type of absorption heat pump is a third type of absorption heat pump according to item 25, which cancels the addition of the generator to the externally connected driving heat medium line, and adds a new throttle valve,
  • a generator adds a refrigerant vapor channel to connect with the newly added generator, and then adds a new generator and then a refrigerant liquid pipeline is connected to the second condenser via a new throttle valve.
  • the generator increases the refrigerant vapor to drive the heat medium to form a composite third type absorption heat pump based on three effects.
  • a third type of absorption heat pump in any of the third type of absorption heat pumps of the items 25-27, wherein the first absorber has a dilute solution line through the second solution heat exchanger and the second absorption
  • the communication is adjusted to be that the first absorber has a dilute solution pipeline connected to the newly added generator through the new solution pump and the new solution heat exchanger, and the new absorber has a dilute solution pipeline through the newly added solution pump and newly added
  • the solution heat exchanger is connected with the newly added generator to adjust the newly added absorber to have a dilute solution line connected to the second absorber through the second solution heat exchanger to form a composite third type absorption heat pump on a three-effect basis.
  • the third type of absorption heat pump is a third type of absorption heat pump according to any of the 15th, 22-28th items, wherein the first flow regulating width and the second flow regulating valve are added, and the first condenser is And the second condenser respectively has a medium to be heated and communicated with the outside to determine that the externally heated medium line is in communication with the second condenser, and then the second condenser is further heated by the medium line.
  • the first flow regulating valve is respectively connected to the outside and communicates with the first condenser via the second flow regulating valve, and the first condenser is further connected to the externally heated medium line to form a composite third type absorption heat pump.
  • Figure 1 is a schematic illustration of the structure and flow of a third type of absorption-generation system provided in accordance with the present invention.
  • Fig. 2 is a first schematic view showing the structure and flow of a third type of absorption heat pump according to the present invention.
  • Figure 3 is a schematic view showing the second structure and flow of a third type of absorption heat pump according to the present invention.
  • Figure 4 is a schematic view showing the third structure and flow of the third type of absorption heat pump according to the present invention.
  • Figure 5 is a fourth structural and flow diagram of a third type of absorption heat pump according to the present invention.
  • Figure 6 is a schematic view showing the fifth structure and flow of the third type of absorption heat pump according to the present invention.
  • Figure 7 is a sixth schematic view showing the structure and flow of a third type of absorption heat pump according to the present invention.
  • Figure 8 is a schematic view showing the seventh structure and flow of the third type of absorption heat pump according to the present invention.
  • Figure 9 is a schematic view showing the eighth structure and flow of the third type of absorption heat pump according to the present invention.
  • Figure 10 is a schematic view showing the structure and flow of a ninth type of absorption heat pump of the third type according to the present invention.
  • Figure 11 is a schematic view showing the tenth structure and flow of a third type of absorption heat pump according to the present invention.
  • Figure 12 is a perspective view showing the eleventh structure and flow of a third type of absorption heat pump according to the present invention.
  • Figure 13 is a schematic view showing the structure and flow of the twelfth type of the third type of absorption heat pump according to the present invention.
  • Figure 14 is a schematic view showing the structure and flow of the thirteenth type of the third type of absorption heat pump according to the present invention.
  • Figure 15 is a schematic view showing the structure and flow of the fourth type of absorption heat pump of the third type according to the present invention.
  • Figure 16 is a schematic view showing the structure and flow of the fifteenth type of absorption heat pump according to the present invention.
  • Figure 17 is a perspective view showing the structure and flow of a 16th type of absorption heat pump according to the present invention.
  • Figure 18 is a schematic view showing the structure and flow of the seventh type of absorption heat pump of the third type according to the present invention.
  • Figure 19 is a schematic view showing the structure and flow of the 18th type of absorption heat pump according to the present invention.
  • Figure 20 is a schematic view showing the structure and flow of the 19th type of the absorption heat pump of the third type according to the present invention.
  • Figure 21 is a schematic view showing the 20th structure and flow of a third type of absorption heat pump according to the present invention.
  • the third type of absorption-generation system shown in Figure 1 is implemented as follows:
  • the first absorber 3 has a dilute solution line connected to the second absorber 4 via the second solution heat exchanger 8, and the second absorber 4 has a dilute solution line through the first solution pump 5 and the first solution.
  • the heat exchanger 7 is in communication with the first generator 1, the first generator 1 and the concentrated solution line are in communication with the second generator 2 via the first solution heat exchanger 7, and the second generator 2 has a concentrated solution line
  • the second solution pump 6 and the second solution heat exchanger 8 are in communication with the first absorber 3, the first generator 1 also has a refrigerant vapor passage communicating with the outside, and the second generator 2 also has a refrigerant vapor passage and a second
  • the second absorber 4 is in communication, the first absorber 3 also has a refrigerant vapor passage communicating with the outside, the first generator 1 also drives the heat medium pipeline to communicate with the outside, and the second generator 2 also has a heat medium conduit and an outer portion. Connected, the first absorber 3 also has a heated medium line and Communication unit, the absorber 4 as well as the second conduit communicates with an external cooling medium.
  • the refrigerant vapor from the outside enters the first absorber 3, is absorbed by the concentrated solution from the second generator 2, and radiates heat to the heated medium
  • the dilute solution of the absorber 3 is depressurized by the second solution heat exchanger 8 and then enters the second absorber 4, absorbs the refrigerant vapor from the second generator 2, and releases the heat to the cooling medium, and the second absorber 4
  • the dilute solution enters the first generator 1 through the first solution pump 5 and the first solution heat exchanger 7, drives the heat medium to flow through the first generator 1, and the solution heated into the solution is released and externally supplies the refrigerant vapor
  • a concentrated solution of a generator 1 enters the second generator 2 via the first solution heat exchanger 7, and the residual heat medium flows through the second generator 2, and the solution heated therein is released and supplies the refrigerant vapor to the second absorber 4.
  • the concentrated solution of the second generator 2 enters the first absorber 3 via the second solution pump
  • the third type of absorption heat pump shown in Figure 2 is implemented as follows:
  • the refrigerant vapor generated by the first generator 1 enters the condenser 9, and is heated to the heated medium to form a refrigerant liquid, and the refrigerant liquid of the condenser 9 is throttled and depressurized by the throttle valve 1 to enter
  • the evaporator 10 absorbs residual heat into refrigerant vapor and supplies it to the first absorber 3 to form a third type of absorption heat pump.
  • the third type of absorption heat pump shown in Figure 3 is implemented as follows:
  • the third generator, the third solution heat exchanger and the second throttle valve are added, and the first solution pump 5 adds a dilute solution line through the third solution
  • the heat exchanger 13 is in communication with the third generator 12, and the third generator 12 and the concentrated solution line are in communication with the second generator 2 via the third solution heat exchanger 13, and the first generator 1 has a refrigerant vapor passage.
  • the communication with the condenser 9 is adjusted so that the first generator 1 has a refrigerant vapor passage communicating with the third generator 12, and then the third generator 12 is further connected to the condenser 9 via the second throttle valve 14 .
  • the third generator 12 also has a refrigerant vapor passage in communication with the condenser 9.
  • the dilute solution of the second absorber 4 passes through the first solution pump 5 and then passes through the first solution heat exchanger 7 respectively.
  • the first generator 1 and the third solution heat exchanger 13 enter the third generator 12, and the refrigerant vapor generated by the first generator 1 is supplied to the third generator 12 for driving the heat medium, and the refrigerant vapor flows through
  • the third generator 12 the solution heated into it is released and supplies the refrigerant vapor to the condenser 9, and the concentrated solution of the third generator 12 enters the second generator 2 through the third solution heat exchanger 13 and flows through the third
  • the refrigerant vapor of the generator 12 is released into a refrigerant liquid and then throttled into the condenser 9 via the second throttle valve 14 to form a parallel double-effect third type absorption heat pump.
  • the third type of absorption heat pump shown in Figure 4 is implemented as follows:
  • the third generator, the third solution heat exchanger and the second throttle valve are added, and the second absorber 4 has a dilute solution pipeline through the first
  • the solution pump 5 and the first solution heat exchanger 7 are connected to the first generator 1 to be adjusted so that the second absorber 4 has a dilute solution line through the first solution pump 5, the first solution heat exchanger 7 and the third solution heat exchange
  • the device 13 is in communication with the first generator 1, and the first generator 1 has a concentrated solution line connected to the second generator 2 via the first solution heat exchanger 7 to be adjusted to have a concentrated solution line through the first generator 1
  • the third solution heat exchanger 13 is in communication with the third generator 12, and the third generator 12 has a concentrated solution line connected to the second generator 2 via the first solution heat exchanger 7, and the first generator 1 is cooled.
  • the vapor passage of the agent is connected to the condenser 9 to adjust to the book.
  • the first generator 1 has a refrigerant vapor passage communicating with the third generator 12, and the third generator 12 has a refrigerant liquid pipeline passing through the second throttle valve 14 and condensing.
  • the device 9 is in communication, and the third generator 12 also has a refrigerant vapor passage communicating with the condenser 9.
  • the dilute solution of the second absorber 4 enters the first generator 1 through the first solution pump 5, the first solution heat exchanger 7, and the third solution heat exchanger 13, and the refrigerant generated by the first generator 1
  • the steam is supplied to the third generator 12 for driving the heat medium
  • the concentrated solution of the first generator 1 passes through the third solution heat exchanger 13 into the third generator 12, and the refrigerant vapor flows through the third generator 12, and is heated into the same
  • the solution inside releases and supplies refrigerant vapor to the condenser 9, and the concentrated solution of the third generator 12 enters the second generator 2 via the first solution heat exchanger 7, and the refrigerant vapor flowing through the third generator 12 releases heat.
  • the liquid is then throttled into the condenser 9 through the second throttle valve 14 to form a series double-effect third-type absorption heat pump.
  • the third type of absorption heat pump shown in Figure 5 is implemented as follows:
  • the third generator, the third solution heat exchanger, the second throttle and the third solution pump are added, and the second absorber 4 has a dilute solution.
  • the pipeline is connected to the first generator 1 via the first solution pump 5 and the first solution heat exchanger 7 to be adjusted to have a second solution 4 having a dilute solution line passing through the first solution pump 5 and the first solution heat exchanger 7
  • the third generator 12 is in communication, and the third generator 12 has a concentrated solution line connected to the first generator 1 via the third solution pump 15 and the third solution heat exchanger 13, and the first generator 1 has a concentrated solution tube.
  • the first solution heat exchanger 7 is connected to the second generator 2 to be adjusted to have a first solution 1 having a concentrated solution line passing through the third solution heat exchanger 13 and the first solution heat exchanger 7 and the second generator 2
  • the first generator 1 has a refrigerant vapor passage connected to the condenser 9 and is adjusted to be the first generator 1.
  • the refrigerant vapor passage is in communication with the third generator 12, and the third generator 12 has a refrigerant liquid pipeline.
  • the third generator 12 Connected to the condenser 9 via the second throttle valve 14, the third generator 12 also has a refrigerant vapor pass The channel is connected to the condenser 9.
  • the dilute solution of the second absorber 4 enters the third generator 12 via the first solution pump 5 and the first solution heat exchanger 7, and the refrigerant vapor generated by the first generator 1 is supplied to the third generator 12.
  • the refrigerant vapor flows through the third generator 12, the solution heated into it is released and supplies the refrigerant vapor to the condenser 9, and the concentrated solution of the third generator 12 passes through the third solution pump 15 and the third
  • the solution heat exchanger 13 enters the first generator 1, and the refrigerant vapor flowing through the third generator 12 is released into a refrigerant liquid, and then throttled through the second throttle valve 14 into the condenser 9, the first generator 1
  • the concentrated solution enters the second generator 2 via the third solution heat exchanger 13 and the first solution heat exchanger 7, forming a series double effect third type absorption heat pump.
  • the third type of absorption heat pump shown in Figure 6 is implemented as follows:
  • the first solution pump 5 is provided with a dilute solution line connected to the fourth generator 16 via the fourth solution heat exchanger 17, and the fourth generator 16 has a concentrated solution line through the fourth solution heat exchanger 17 and
  • the second generator 2 is connected, and the third generator 12 has a refrigerant vapor passage communicating with the condenser 9 to be adjusted to a third generator 12 having a refrigerant vapor passage communicating with the fourth generator 16 and then the fourth generator 16 is further
  • the refrigerant liquid line is connected to the condenser 9 via a third throttle valve 8 and the fourth generator 16 has a refrigerant vapor passage communicating with the condenser 9.
  • a portion of the dilute solution of the second absorber 4 enters the fourth generator 16 via the first solution pump 5 and the fourth solution heat exchanger 17, and the refrigerant vapor generated by the third generator 12 is supplied to the fourth generator.
  • 16 is used to drive the heat medium, the refrigerant vapor flows through the fourth generator 16, the solution heated therein is released and the refrigerant vapor is supplied to the condenser 9, and the concentrated solution of the fourth generator 16 passes through the fourth solution heat exchanger 17
  • the refrigerant vapor flowing through the fourth generator 16 is released into a refrigerant liquid, and then throttled through the third throttle valve 18 into the condensing detector 9, forming a parallel three-effect third-class absorption type. Heat pump.
  • the third type of absorption heat pump shown in Figure 7 is implemented like this -
  • the fourth generator, the fourth solution heat exchanger and the third throttle valve are added, and the second absorber 4 has a dilute solution pipeline through the first
  • the solution liquid pump 5 and the first solution heat exchanger 7 and the third solution heat exchanger 3 are connected to each other to adjust the second absorber 4 to have a dilute solution line through the first solution pump 5, the first solution heat exchanger 7 and
  • the fourth solution heat exchanger 17 is in communication with the third solution heat exchanger 13
  • the third generator 12 has a concentrated solution line connected to the second generator 2 via the first solution heat exchanger 7 to be adjusted to the third generator 12 .
  • the concentrated solution line is connected to the fourth generator 16 via the fourth solution heat exchanger 17, and the fourth generator 16 has a concentrated solution line connected to the second generator 2 via the first solution heat exchanger 7
  • the third generator 12 has a refrigerant vapor passage communicating with the condenser 9 to adjust the third generator 12 to have a refrigerant vapor passage communicating with the fourth generator 16 and then the fourth generator 16 has a refrigerant liquid pipeline through the third section.
  • the flow valve 18 is in communication with the condenser 9, and the fourth generator 16 has a refrigerant vapor passage and a cold 9 in communication.
  • the dilute solution of the second absorber 4 enters the first generator 1 through the first solution pump 5, the first solution heat exchanger 7, the fourth solution heat exchanger 17, and the third solution heat exchanger 13,
  • the concentrated solution of a generator 1 enters the third generator 12 via the third solution heat exchanger 13, and the concentrated solution of the third generator 12 passes through the fourth solution heat exchanger 17 to enter the fourth generator.
  • the third type of absorption heat pump shown in Figure 8 is implemented as follows:
  • the fourth generator, the fourth solution heat exchanger, the third throttle valve and the fourth solution pump are added, and the second absorber 4 has a dilute solution.
  • the pipeline is connected to the third generator 12 via the first solution pump 5 and the first solution heat exchanger 7 to adjust the second absorber 4 to have a dilute solution pipeline through the first solution pump 5 and the first solution heat exchanger 7
  • the fourth generator 16 is connected, and the fourth generator 16 has a concentrated solution line connected to the third generator 12 via the fourth solution pump 19 and the fourth solution heat exchanger 17, and the first generator 1 has a concentrated solution tube.
  • the third solution heat exchanger 13 and the first solution heat exchanger 7 are connected to the second generator 2 to be adjusted so that the first generator 1 has a concentrated solution line through the third solution heat exchanger 13, and the fourth solution is heat exchanged.
  • the first solution heat exchanger 7 is in communication with the second generator 2, and the third generator 12 has a refrigerant vapor passage communicating with the condenser 9 to adjust the third generator 12 to have a refrigerant vapor passage and a fourth occurrence.
  • the fourth generator 16 has a refrigerant liquid pipeline through the third throttle valve 1 8 is in communication with the condenser 9, and the fourth generator 16 has a refrigerant vapor passage communicating with the condenser 9.
  • the dilute solution of the second absorber 4 is introduced into the ⁇ TO ⁇ via the first solution pump 5 and the first solution heat exchanger 7.
  • the refrigerant 16 generated by the third generator 12 is supplied to the fourth generator 16 to drive the heat medium, and the refrigerant vapor flows through the fourth generator 16, and the solution heated therein is released and supplied to the condenser 9.
  • the refrigerant vapor, the concentrated solution of the fourth generator 16 enters the third generator 12 via the fourth solution pump 19 and the fourth solution heat exchanger 17, and the concentrated solution of the third generator 12 passes through the third solution pump 15 and the third
  • the solution heat exchanger 13 enters the first generator 1, and the concentrated solution of the first generator 1 enters the second generator 2 via the third solution heat exchanger 13, the fourth solution heat exchanger 17, and the first solution heat exchanger 7.
  • the refrigerant vapor flowing through the fourth generator 16 is released into a refrigerant liquid, and then throttled into the condenser 9 through the third throttle valve 18 to form a series three-effect third type absorption heat pump.
  • the third type of absorption heat pump shown in Figure 9 is implemented as follows:
  • the absorption-evaporator, the refrigerant liquid pump and the third solution heat exchanger are added, and the second generator 2 has a concentrated solution line through the second solution.
  • the pump 6 and the second solution heat exchanger 8 are in communication with the first absorber 3 to be adjusted so that the second generator 2 has a concentrated solution line through the second solution pump 6, the second solution heat exchanger 8, and the third solution heat exchanger 13 is in communication with the first absorber 3, and the first absorber 3 has a dilute solution line connected to the second absorber 4 via the second solution heat exchanger 8 to adjust the first absorber 3 to have a dilute solution line through the third
  • the solution heat exchanger 13 is in communication with the absorption-evaporator 20, and the absorption-evaporator 20 and the dilute solution line are in communication with the second absorber 4 via the second solution heat exchanger 8, and the evaporator 10 has a refrigerant vapor passage and
  • the first absorber 3 is connected to be adjusted so that the evaporator
  • the concentrated solution of the second generator 2 enters the first absorber 3 through the second solution pump 6, the second solution heat exchanger 8 and the third solution heat exchanger 13, and absorbs the cold from the absorption-evaporator 20.
  • the agent vapor and exothermic to the heated medium the dilute solution of the first absorber 3 enters the absorption-evaporator 20 through the third solution heat exchanger 13, absorbs the refrigerant vapor from the evaporator 10, and releases the heat through the absorption-
  • the refrigerant liquid of the evaporator 20, the dilute solution of the absorption-evaporator 20 enters the second absorber 4 through the second solution heat exchanger 8; the refrigerant liquid of the evaporator 10 is divided into two paths - the first path absorbs the residual heat into cold
  • the vapor is supplied to the absorption-evaporator 20, and the second passage is pressurized by the refrigerant liquid pump 21, then flows through the absorption-evaporator 20, absorbs the heat into the refrigerant vapor, and supplies it to the
  • the third type of absorption heat pump shown in Figure 10 is implemented as follows:
  • the second throttle valve, the absorption-evaporator, the third solution heat exchanger and the third solution pump are added, and the second generator 2 has a concentrated solution.
  • the pipeline is connected to the first absorber 3 via the second solution pump 6 and the second solution heat exchanger 8 to be adjusted to have a second solution 2 having a concentrated solution line passing through the second solution pump 6 and the second solution heat exchanger 8
  • the absorption-evaporator 20 is connected, and the absorption-evaporator 20 has a dilute solution line communicating with the first absorber 3 via the third solution pump 15 and the third solution heat exchanger 13, and the first absorber 3 has a dilute solution tube.
  • the passage through the second solution heat exchanger 8 and the second absorber 4 is adjusted to be that the first absorber 3 has a dilute solution line through the third solution heat exchanger 13 and the second solution heat exchanger 8 and the second absorber 4 Connected, the evaporator 10 has a refrigerant vapor passage communicating with the first absorber 3 to be adjusted to the evaporator 10.
  • the refrigerant vapor passage is in communication with the absorption-evaporator 20, and the condenser 9 is provided with a refrigerant liquid pipeline through the second throttle.
  • the valve 14 is in communication with the absorption-evaporator 20 and then absorbs - the evaporator 20 has a refrigerant vapor Communication channel with the first absorber 3.
  • the concentrated solution of the second generator 2 enters the absorption evaporator 20 through the second solution pump 6 and the second solution heat exchanger 8, absorbs the refrigerant vapor from the evaporator 10, and radiates heat through the absorption-evaporation.
  • the refrigerant liquid of the device 20, the dilute solution of the absorption-evaporator 20 enters the first absorber 3 via the third solution pump 15 and the third solution heat exchanger 13, absorbs the refrigerant vapor from the absorption-evaporator 20, and releases the heat.
  • the dilute solution of the first absorber 3 enters the second absorber 4 via the third solution heat exchanger 13 and the second solution heat exchanger 8 ;
  • the refrigerant liquid of the condenser 9 is divided into two paths - first Passing the first throttle 1 1 throttle enters the evaporator 10, absorbs residual heat into refrigerant vapor and supplies it to the absorption-evaporator 20, and the second passage flows through the second section 14 throttling and then flows through the absorption-evaporator 20, and absorbs heat to cool
  • the sump is supplied to the first absorber 3 to form a Class 1. Class III absorption heat pump.
  • the third type of absorption heat pump shown in Figure 11 is implemented like this -
  • the heated medium line in which the first absorber 3 communicates with the outside is canceled, and the third generator, the third absorber, the second condenser, and the third a three-solution heat exchanger, a third solution pump and a second throttle valve, wherein the third absorber 22 has a dilute solution line connected to the third generator 12 via the third solution pump 15 and the third solution heat exchanger 13
  • the three generators 12 and the concentrated solution line are in communication with the third absorber 22 via the third solution heat exchanger 13, and the third generator 12 and the refrigerant vapor passage are in communication with the second condenser 23, and the second condenser 23
  • the first absorber 3 has a refrigerant vapor passage communicating with the third absorber 22, and the third generator 12 is also driven.
  • the heat medium conduit is in communication with the outside, and the third absorber 22 and the second condenser 23 are also
  • the dilute solution of the third absorber 22 enters the third generator 12 via the third solution pump 15 and the third solution heat exchanger 13, and drives the heat medium to flow through the third generator 12 and heat therein.
  • the solution releases and supplies refrigerant vapor to the second condenser 23, and the concentrated solution of the third generator 12 enters the third absorber 22 via the third solution heat exchanger 13, absorbs the refrigerant vapor from the first absorber 3, and discharges Heated by the heated medium; the refrigerant vapor of the second condenser 23 is heated to the heated medium to form a refrigerant liquid, and the refrigerant liquid of the second condenser 23 is throttled by the second throttle valve 14 and then flows through the first
  • the third-stage absorption heat pump of the 1.5th stage is formed by the absorption of the refrigerant to the third absorber 22.
  • the third type of absorption heat pump shown in Fig. 12 is realized as follows - in the third type of absorption heat pump shown in Fig. 11, the first absorber 3 has a dilute solution line through the second solution heat exchanger 8 and The second absorber 4 is connected to be adjusted so that the first absorber 3 has a dilute solution line connected to the third generator 12 via the third solution pump 15 and the third solution heat exchanger 13, and the third absorber 22 has a dilute solution line.
  • the third solution pump 15 and the third solution heat exchanger 13 are connected to the third generator 12 to be adjusted so that the third absorber 22 has a dilute solution line connected to the second absorber 4 via the second solution heat exchanger 8 to form 1.
  • the third type of absorption heat pump shown in Figure 13 is implemented like this -
  • the third generator, the third absorber, the third solution heat exchanger and the third solution pump are added, and the first generator 1 has refrigerant vapor
  • the passage is connected to the condenser 9 so that the first generator 1 has a refrigerant vapor passage communicating with the third absorber 22, and the third absorber 22 has a dilute solution line passing through the third solution pump 15 and the third solution heat exchanger.
  • 13 is in communication with the third generator 12, the third generator 12 and the concentrated solution line are in communication with the third absorber 22 via the third solution heat exchanger 13, and the third generator 12 also has a refrigerant vapor passage and a condenser.
  • the third generator 12 also has a driving heat medium line communicating with the outside, and the third absorber 22 is also connected to the outside by the heated medium line.
  • the refrigerant vapor generated by the first generator 1 enters the third absorber 22, is absorbed by the concentrated solution from the third generator 12, and radiates heat to the heated medium, and the diluted solution of the third absorber 22 passes through the first
  • the three solution pump 15 and the third solution heat exchanger 13 enter the third generator 12, drive the heat medium to flow through the third generator 12, and the solution heated therein is released and supplies the refrigerant vapor to the condenser 9, the third occurrence
  • the concentrating solution of the apparatus 12 is passed through the third solution heat exchanger 13 into the third absorber 22 to form a class I third-stage absorption heat pump.
  • the third type of absorption heat pump shown in Figure 14 is implemented as follows:
  • the first absorber 3 has a dilute solution line connected to the second absorber 4 via the second solution heat exchanger 8 to adjust the first absorber 3 to have a dilute solution tube. Passing through the third solution pump 15 and the third solution heat exchanger Description
  • the third-stage absorption heat pump of the 1.5th stage is formed by the second solution heat exchanger 8 and the second absorber 4.
  • the third type of absorption heat pump shown in Figure 15 is implemented as follows:
  • the first generator 1 is provided with a refrigerant vapor passage communicating with the second condenser 23, and the second condenser 23 is further
  • the refrigerant liquid pipeline is connected to the evaporator 10 via the second throttle valve 14
  • the refrigerant liquid pipeline of the first condenser 9 is connected to the evaporator 10 via the first throttle 11 to be adjusted to be the first condenser 9 .
  • the refrigerant liquid pipeline communicates with the second condenser 23 via the first throttle valve 11, and the second condenser 23 is further connected to the outside by the heated medium pipeline; the refrigerant vapor generated by the first generator 1 is respectively directed to the second
  • the condenser 23 and the third absorber 22 provide that the refrigerant liquid of the first condenser 9 is throttled into the second condenser 23 via the first throttle valve 11, and the refrigerant vapor of the second condenser 23 is heated to be heated.
  • the medium is a refrigerant liquid, and the refrigerant liquid of the second condenser 23 is throttled into the evaporator 10 via the second throttle valve 14 to form a composite third type absorption heat pump on a single stage basis.
  • the third type of absorption heat pump shown in Figure 16 is implemented as follows:
  • the first generator 1 is provided with a refrigerant vapor passage communicating with the second condenser 23, and the second condenser 23 is further
  • the refrigerant liquid pipeline communicates with the evaporator 10 via the second throttle valve 14
  • the refrigerant liquid pipeline of the first condenser 9 is connected to the evaporator 10 via the first throttle valve 11 to be adjusted to the first condenser 9 .
  • the refrigerant liquid pipeline is connected to the second condenser 23 via the first section flow, and the second condenser 23 is further connected to the outside by the heating medium pipeline; the first flow regulating valve and the second flow regulating valve are added,
  • the first condenser 9 and the second condenser 23 respectively have a medium to be heated and communicate with the outside to determine that the externally heated medium line communicates with the second condenser 23, and the second condenser 23 has a heated medium tube.
  • the road is respectively connected to the outside through the first flow regulating valve 24 and communicates with the first condenser 9 via the second flow regulating valve 25, and the first condenser 9 is further connected to the outside by the heating medium pipe to form a single-stage foundation. Compounded third type absorption heat pump.
  • the third type of absorption heat pump shown in Figure 17 is implemented as follows:
  • the dilute solution of the third absorber 22 enters the third generator 12 via the third solution pump 15 and the third solution heat exchanger 13, drives the heat medium to flow through the third generator 12, and heats the solution into the solution.
  • the refrigerant vapor is released and supplied to the condenser 9, and the concentrated solution of the third generator 12 enters the third absorber 22 via the third solution heat exchanger 13 to absorb the cold from the first absorber 3 and the first generator 1, respectively.
  • the refrigerant liquid of the condenser 9 is divided into two paths - the first passage is throttled into the evaporator 10 via the first throttle valve 11, and the second passage is passed through the second throttle valve 14 knots After flowing, it flows through the first absorber 3, absorbs heat into the refrigerant vapor, and supplies it to the third absorber 22 to form a second-stage third type absorption heat pump.
  • the third type of absorption heat pump shown in Figure 18 is implemented as follows:
  • the heated medium line in which the first absorber 3 communicates with the outside is canceled, the refrigerant liquid pump is added, and the evaporator 10 is supplied with the refrigerant liquid line through the refrigerant liquid pump 21.
  • the first absorber 3 is further connected to the third absorber 22 by a refrigerant vapor passage to form a two-stage third type absorption heat pump.
  • the third type of absorption heat pump shown in Figure 19 is implemented as follows:
  • the second condenser and the third throttle are increased, the first generator 1 is provided with a refrigerant vapor passage communicating with the second condenser 23, and the second condenser 23 is further
  • the refrigerant liquid pipeline is connected to the first through the third throttle valve 18
  • the condenser 9 is in communication, and the second condenser 23 is further connected to the outside by the heating medium line; the refrigerant vapor generated by the first generator 1 is supplied to the third generator 12 and the second condenser 23, respectively, and the second condenser
  • the refrigerant vapor of 23 is exothermic to the liquid to be heated into a refrigerant liquid, and the refrigerant liquid of the second condenser 23 flows into the first condenser 9 through the third section of the flow, and forms a composite third on a double effect basis.
  • Absorption heat pump is exothermic to the liquid to be heated into a refrigerant liquid, and the refrigerant liquid of the second condenser 23 flows into
  • the third type of absorption heat pump shown in Figure 20 is implemented as follows:
  • the new generator A and the concentrated solution pipeline are connected to the newly added absorber B via the new solution heat exchanger C, and the new generator A and the refrigerant vapor passage are connected to the second condenser 23,
  • the second condenser 23 and the refrigerant liquid pipeline are connected to the first condenser 9 via the third throttle valve 18, and the new generator A and the driving heat medium pipeline are connected to the outside, and the absorber B and the second are added.
  • the condenser 23 also has a heated medium line that communicates with the outside, respectively.
  • the refrigerant vapor generated by the third generator 12 is supplied to the first condenser 9 and the newly added absorber B, respectively, and the diluted solution of the absorber B is newly added through the new solution pump D and the new solution heat exchanger.
  • C enters the new generator A, drives the heat medium to flow through the new generator A, and the solution heated into the solution is released and supplies the refrigerant vapor to the second condenser 23, and the concentrated solution of the generator A is newly added through the new solution.
  • the heat exchanger C enters the newly added absorber B, absorbs the refrigerant vapor from the third generator 12 and radiates heat to the heated medium, and the refrigerant vapor of the second condenser 23 radiates heat to the heated medium to form a refrigerant liquid.
  • the refrigerant liquid of the second condenser 23 is throttled into the first condenser 9 via the third throttle valve 18 to form a composite third type absorption heat pump on a double effect basis.
  • the third type of absorption heat pump shown in Figure 21 is implemented as follows:
  • the newly added generator A is connected to the externally driven driving heat medium pipeline, and the new throttle valve is added, and the first generator 1 adds a refrigerant vapor passage and newly added occurs.
  • the generator A is newly added, and then the refrigerant liquid pipeline is connected to the second condenser 23 via the newly added throttle valve E.
  • the first generator supplies the refrigerant vapor to the newly added generator as the driving heat medium;
  • the refrigerant vapor generated by the first generator 1 is respectively supplied to the third generator 12 and the newly added generator A as a driving heat medium, and the refrigerant vapor flowing through the newly added generator A is radiated into a refrigerant liquid and then passed through a new one.
  • the throttle valve E is throttled into the second condenser 23 to form a composite third type absorption heat pump on a double effect basis.
  • the third type of absorption-generation system proposed, compared with the first type of absorption-generation system consisting of an absorber, a solution pump, a solution heat exchanger and a generator, mainly adding a second generator and a
  • the second absorber the structure and process are simple and reasonable.
  • the proposed third type of absorption heat pump reflects the dual characteristics of the first type of absorption heat pump with high heating temperature and the second type of absorption heat pump with excellent performance index, which can improve the utilization rate of waste heat resources.
  • the proposed third type of absorption heat pump further enriches the type and process of the absorption heat pump, and has good creativity, novelty and practicability, which can better match the heat pump heat supply and user demand. .
  • the residual heat temperature can be further improved or the waste heat utilization resource can be utilized in depth, the temperature working range of the absorption heat pump is expanded, and the application range of the absorption heat pump is expanded and enriched.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

本发明提供第三类吸收-发生系统与第三类吸收式热泵,属热泵技术领域。第一吸收器经第二溶液热交换器与第二吸收器连通,第二吸收器经第一溶液泵和第一溶液热交换器与第一发生器连通,第一发生器经第一溶液热交换器与第二发生器连通,第二发生器经第二溶液泵和第二溶液热交换器与第一吸收器连通,第一发生器有冷剂蒸汽通道与冷凝器连通,第二发生器有冷剂蒸汽通道与第二吸收器连通,第一吸收器有冷剂蒸汽通道与蒸发器连通,第一发生器有驱动热介质管路与外部连通,第二发生器、蒸发器有余热介质管路与外部连通,第一吸收器、冷凝器有被加热介质管路与外部连通,第二吸收器有冷却介质管路与外部连通,形成第三类吸收-发生系统和第三类吸收式热泵。

Description

第三类吸收-发生系统与第三类吸收式热泵 技术领域:
本发明属于低温余热利用热泵技术领域。
背景技术:
第一类吸收式热泵是以高温驱动热介质与被加热介质之间温度差为驱动力的, 其提升余 热温度的幅度大, 节能效益相对较低; 第二类吸收式热泵是以余热资源和环境之间的温度差 是天然存在的驱动力的, 其提升余热温度的幅度相对较低, 余热资源丰富时节能效益高; 将 两种驱动力合并使用, 不仅能够提高余说热资源利用率, 同时也能降低对高温驱动热在数量和 品位两方面的要求。
以能够同时运用高温驱动热介质与被加热介质之间温度差和余热资源和环境之间的温度 差作为驱动力为技术手段, 以实现热泵具有较高性书能指数和更高地提升余热温度为目的, 同 时考虑尽可能深度利用余热资源, 找到结构和流程简单合理的第三类发生-吸收系统, 再增加 相应其它部件, 得到系列第三类吸收式热泵, 对提高余热资源利用率将提供有力支持。
发明内容:
本发明的主要目的是提供第三类吸收 发生系统与第三类吸收式热泵,具体发明内容分项 阐述如下:
1. 第三类吸收 -发生系统, 主要由第一发生器、 第二发生器、 第一吸收器、 第二吸收器、 第一溶液泵、 第二溶液泵、 第一溶液热交换器和第二溶液热交换器所组成; 第一吸收器有稀 溶液管路经第二溶液热交换器与第二吸收器连通, 第二吸收器还有稀溶液管路经第一溶液泵 和第一溶液热交换器与第一发生器连通, 第一发生器还有浓溶液管路经第一溶液热交换器与 第二发生器连通, 第二发生器还有浓溶液管路经第二溶液泵和第二溶液热交换器与第一吸收 器连通, 第一发生器还有冷剂蒸汽通道与外部连通, 第二发生器还有冷剂蒸汽通道与第二吸 收器连通, 第一吸收器还有冷剂蒸汽通道与外部连通, 第一发生器还有驱动热介质管路与外 部连通, 第二发生器还有余热介质管路与外部连通, 第一吸收器还有被加热介质管路与外部 连通, 第二吸收器还有冷却介质管路与外部连通, 形成第三类吸收-发生系统。
2. 第三类吸收式热泵, 是在第 1项所述的第三类吸收-发生系统中, 增加冷凝器、 蒸发 器和节流阀, 将第一发生器有冷剂蒸汽通道与外部连通确定为第一发生器有冷剂蒸汽通道与 冷凝器连通, 将第一吸收器有冷剂蒸汽通道与外部连通确定为蒸发器有冷剂蒸汽通道与第一 吸收器连通, 冷凝器还有冷剂液管路经节流阔与蒸发器连通, 冷凝器还有被加热介质管路与 外部连通, 蒸发器还有余热介质管路与外部连通, 形成第三类吸收式热泵。
3. 第三类吸收式热泵, 是在第 2 项所述的第三类吸收式热泵中, 增加第三发生器、 第 三溶液热交换器和第二节流阀, 第一溶液泵增设稀溶液管路经第三溶液热交换器与第三发生 器连通, 第三发生器还有浓溶液管路经第三溶液热交换器与第二发生器连通, 将第一发生器 有冷剂蒸汽通道与冷凝器连通调整为第一发生器有冷剂蒸汽通道与第三发生器连通后第三发 生器再有冷剂液管路经第二节流阀与冷凝器连通——第一发生器产生的冷剂蒸汽作为第三发 生器的驱动热介质, 第三发生器还有冷剂蒸汽通道与冷凝器连通, 形成并联双效第三类吸收 式热泵。 说 明 书
4. 第三类吸收式热泵, 是在第 2项所述的第三类吸收式热泵中, 增加第三发生器、 第 三溶液热交换器和第二节流阀, 将第二吸收器有稀溶液管路经第一溶液泵和第一溶液.热交换 器与第一发生器连通调整为第二吸收器有稀溶液管路经第一溶液泵、 第一溶液热交换器和第 三溶液热交换器与第一发生器连通, 将第一发生器有浓溶液管路经第一溶液热交换器与第二 发生器连通调整为第一发生器有浓溶液管路经第三溶液热交换器与第三发生器连通, 第三发 生器再有浓溶液管路经第一溶液热交换器与第二发生器连通, 将第一发生器有冷剂蒸汽通道 与冷凝器连通调整为第一发生器有冷剂蒸汽通道与第三发生器连通后第三发生器再有冷剂液 管路经第二节流阀与冷凝器连通——第一发生器产生的冷剂蒸汽作为第三发生器的驱动热介 质, 第三发生器还有冷剂蒸汽通道与冷凝器连通, 形成串联双效第三类吸收式热泵。
5. 第三类吸收式热泵, 是在第 2项所述的第三类吸收式热泵中, 增加第三发生器、 第 三溶液热交换器、 第二节流阀和第三溶液泵, 将第二吸收器有稀溶液管路经第一溶液泵和第 一溶液热交换器与第一发生器连通调整为第二吸收器有稀溶液管路经第一溶液泵和第一溶液 热交换器与第三发生器连通, 第三发生器再有浓溶液管路经第三溶液泵和第三溶液热交换器 与第一发生器连通, 将第一发生器有浓溶液管路经第一溶液热交换器与第二发生器连通调整 为第一发生器有浓溶液管路经第三溶液热交换器和第一溶液热交换器与第二发生器连通, 将 第一发生器有冷剂蒸汽通道与冷凝器连通调整为第一发生器有冷剂蒸汽通道与第三发生器连 通后第三发生器再有冷剂液管路经第二节流阀与冷凝器连通——第一发生器产生的冷剂蒸汽 作为第三发生器的驱动热介质, 第三发生器还有冷剂蒸汽通道与冷凝器连通, 形成串联双效 第三类吸收式热泵。
6. 第三类吸收式热泵, 是在第 3项所述的第三类吸收式热泵中, 增加第四发生器、 第 四溶液热交换器和第三节流阔, 第一溶液泵增设稀溶液管路经第四溶液热交换器与第四发生 器连通, 第四发生器还有浓溶液管路经第四溶液热交换器与第二发生器连通, 将第三发生器 有冷剂蒸汽通道与冷凝器连通调整为第三发生器有冷剂蒸汽通道与第四发生器连通后第四发 生器再有冷剂液管路经第三节流阀与冷凝器连通——第三发生器产生的冷剂蒸汽作为第四发 生器的驱动热介质, 第四发生器还有冷剂蒸汽通道与冷凝器连通, 形成并联三效第三类吸收 式热泵。
7. 第三类吸收式热泵, 是在第 4项所述的第三类吸收式热泵中, 增加第四发生器、 第 四溶液热交换器和第三节流阀, 将第二吸收器有稀溶液管路经第一溶液泵和第一溶液热交换 器与第三溶液热交换器连通调整为第二吸收器有稀溶液管路经第一溶液泵、 第一溶液热交换 器和第四溶液热交换器与第三溶液热交换器连通, 将第三发生器有浓溶液管路经第一溶液热 交换器与第二发生器连通调整为第三发生器有浓溶液管路经第四溶液热交换器与第四发生器 连通, 第四发生器再有浓溶液管路经第一溶液热交换器与第二发生器连通, 将第三发生器有 冷剂蒸汽通道与冷凝器连通调整为第三发生器有冷剂蒸汽通道与第四发生器连通后第四发生 器再有冷剂液管路经第三节流阀与冷凝器连通——第三发生器产生的冷剂蒸汽作为第四发生 器的驱动热介质, 第四发生器还有冷剂蒸汽通道与冷凝器连通, 形成串联三效第三类吸收式 热泵。
8. 第三类吸收式热泵, 是在第 5项所述的第三类吸收式热泵中, 增加第四发生器、 第 四溶液热交换器、 第三节流阀和第四溶液泵, 将第二吸收器有稀溶液管路经第一溶液泵和第 说 明 书 一溶液热交换器与第三发生器连通调整为第二吸收器有稀溶液管路经第一溶液泵和第一溶液 热交换器与第四发生器连通, 第四发生器再有浓溶液管路经第四溶液泵和第四溶液热交换器 与第三发生器连通, 将第一发生器有浓溶液管路经第三溶液热交换器和第一溶液热交换器与 第二发生器连通调整为第一发生器有浓溶液管路经第三溶液热交换器、 第四溶液热交换器和 第一溶液热交换器与第二发生器连通, 将第三发生器有冷剂蒸汽通道与冷凝器连通调整为第 三发生器有冷剂蒸汽通道与第四发生器连通后第四发生器再有冷剂液管路经第三节流阀与冷 凝器连通——第三发生器产生的冷剂蒸汽作为第四发生器的驱动热介质, 第四发生器还有冷 剂蒸汽通道与冷凝器连通, 形成串联三效第三类吸收式热泵。
9. 第三类吸收式热泵, 是在第 2 项所述的第三类吸收式热泵中, 增加冷剂液泵或第二 节流阔、 吸收-蒸发器和第三溶液热交换器, 将第二发生器有浓溶液管路经第二溶液泵和第二 溶液热交换器与第一吸收器连通调整为第二发生器有浓溶液管路经第二溶液泵、 第二溶液热 交换器和第三溶液热交换器与第一吸收器连通, 将第一吸收器有稀溶液管路经第二溶液热交 换器与第二吸收器连通调整为第一吸收器有稀溶液管路经第三溶液热交换器与吸收-蒸发器 连通, 吸收-蒸发器再有稀溶液管路经第二溶液热交换器与第二吸收器连通, 将蒸发器有冷剂 蒸汽通道与第一吸收器连通调整为蒸发器有冷剂蒸汽通道与吸收-蒸发器连通,蒸发器增设冷 剂液管路经冷剂液泵与吸收-蒸发器连通后吸收-蒸发器再有冷剂蒸汽通道与第一吸收器连 通、 或冷凝器增设冷剂液管路经第二节流阔与吸收-蒸发器连通后吸收-蒸发器再有冷剂蒸汽 通道与第一吸收器连通, 形成 1. 5级第三类吸收式热泵。
10. 第三类吸收式热泵, 是在第 2项所述的第三类吸收式热泵中, 增加冷剂液泵或第二 节流阀、 吸收-蒸发器、 第三溶液热交换器和第三溶液泵, 将第二发生器有浓溶液管路经第二 溶液泵和第二溶液热交换器与第一吸收器连通调整为第二发生器有浓溶液管路经第二溶液泵 和第二溶液热交换器与吸收-蒸发器连通, 吸收-蒸发器再有稀溶液管路经第三溶液泵和第三 溶液热交换器与第一吸收器连通, 将第一吸收器有稀溶液管路经第二溶液热交换器与第二吸 收器连通调整为第一吸收器有稀溶液管路经第三溶液热交换器和第二溶液热交换器与第二吸 收器连通,将蒸发器有冷剂蒸汽通道与第一吸收器连通调整为蒸发器有冷剂蒸汽通道与吸收- 蒸发器连通, 蒸发器增设冷剂液管路经冷剂液泵与吸收 -蒸发器连通后吸收 -蒸发器再有冷剂 蒸汽通道与第一吸收器连通、或冷凝器增设冷剂液管路经第二节流阀与吸收 -蒸发器连通后吸 收 -蒸发器再有冷剂蒸汽通道与第一吸收器连通, 形成 1. 5级第三类吸收式热泵。
1 1 . 第三类吸收式热泵, 是在第 2项所述的第三类吸收式热泵中, 取消第一吸收器与外 部连通的被加热介质管路, 增加第三发生器、 第三吸收器、 第二冷凝器、 第三溶液热交换器、 第三溶液泵和第二节流阀, 第三吸收器有稀溶液管路经第三溶液泵和第三溶液热交换器与第 三发生器连通, 第三发生器还有浓溶液管路经第三溶液热交换器与第三吸收器连通, 第三发 生器还有冷剂蒸汽通道与第二冷凝器连通, 第二冷凝器还有冷剂液管路经第二节流阀与第一 吸收器连通后第一吸收器再有冷剂蒸汽通道与第三吸收器连通, 第三发生器还有驱动热介质 管路与外部连通, 第三吸收器和第二冷凝器还分别有被加热介质管路与外部连通, 形成 1. 5 级第三类吸收式热泵。
12. 第三类吸收式热泵, 是在第 1 1 项所述的第三类吸收式热泵中, 将第一吸收器有稀 溶液管路经第二溶液热交换器与第二吸收器连通调整为第一吸收器有稀溶液管路经第三溶液 泵和第三溶液热交换器与第三发生器连通, 将第三吸收器有稀溶液管路经第三溶液泵和第三 溶液热交换器与第三发生器连通调整为第三吸收器有稀溶液管路经第二溶液热交换器与第二 吸收器连通, 形成 1. 5级第三类吸收式热泵。
13. 第三类吸收式热泵, 是在第 2项所述的第三类吸收式热泵中, 增加第三发生器、 第 三吸收器、 第三溶液热交换器和第三溶液泵, 将第一发生器有冷剂蒸汽通道与冷凝器连通调 整为第一发生器有冷剂蒸汽通道与第三吸收器连通, 第三吸收器还有稀溶液管路经第三溶液 泵和第三溶液热交换器与第三发生器连通, 第三发生器还有浓溶液管路经第三溶液热交换器 与第三吸收器连通, 第三发生器还有冷剂蒸汽通道与冷凝器连通, 第三发生器还有驱动热介 质管路与外部连通, 第三吸收器还有被加热介质管路与外部连通, 形成 1. 5级第三类吸收式 说
热泵。
14. 第三类吸收式热泵, 是在第 13项所述的第三类吸收式热泵中, 将第一吸收器有稀 溶液管路经第二溶液热交换器与第二吸收器连通调整为第一吸收器有稀溶液管路经第三溶液 书
泵和第三溶液热交换器与第三发生器连通, 将第三吸收器有稀溶液管路经第三溶液泵和第三 溶液热交换器与第三发生器连通调整为第三吸收器有稀溶液管路经第二溶液热交换器与第二 吸收器连通, 形成 1. 5级第三类吸收式热泵。
15. 第三类吸收式热泵, 是在第 13-14项所述的任一第三类吸收式热泵中, 增加第二冷 凝器和第二节流阀, 第一发生器增设冷剂蒸汽通道与第二冷凝器连通, 第二冷凝器还有冷剂 液管路经第二节流阀与蒸发器连通, 第二冷凝器还有被加热介质管路与外部连通, 形成单级 基础上的复合级第三类吸收式热泵。
16. 第三类吸收式热泵, 是在第 13- 项所述的任一第三类吸收式热泵中, 增加第二冷 凝器和第二节流阀, 第一发生器增设冷剂蒸汽通道与第二冷凝器连通, 第二冷凝器还有冷剂 液管路经第二节流阔与蒸发器连通, 将第一冷凝器有冷剂液管路经第一节流阀与蒸发器连通 调整为第一冷凝器有冷剂液管路经第一节流阀与第二冷凝器连通, 第二冷凝器还有被加热介 质管路与外部连通, 形成单级基础上的复合级第三类吸收式热泵。
17. 第三类吸收式热泵, 是在第 13- 14项所述的任一第三类吸收式热泵中, 取消第一吸 收器与外部连通的被加热介质管路, 增加第二节流阀, 冷凝器增设冷剂液管路经第二节流阀 与第一吸收器连通后第一吸收器再有冷剂蒸汽通道与第三吸收器连通, 形成 2级第三类吸收 式热泵。
18. 第三类吸收式热泵, 是在第 13-14项所述的任一第三类吸收式热泵中, 取消第一吸 收器与外部连通的被加热介质管路, 增加冷剂液泵, 蒸发器增设冷剂液管路经冷剂液泵与第 一吸收器连通后第一吸收器再有冷剂蒸汽通道与第三吸收器连通, 形成 2级第三类吸收式热 泵。
19. 第三类吸收式热泵, 是在第 3-5项所述的任一第三类吸收式热泵中, 增加第二冷凝 器和第三节流阀, 第一发生器增设冷剂蒸汽通道与第二冷凝器连通, 第二冷凝器还有冷剂液 管路经第三节流阀与第一冷凝器或蒸发器连通,第二冷凝器还有被加热介质管路与外部连通, 形成双效基础上的复合第三类吸收式热泵。
20. 第三类吸收式热泵, 是在第 6-8项所述的任一第三类吸收式热泵中, 增加第二冷凝 器和第四节流阀, 第三发生器增设冷剂蒸汽通道与第二冷凝器连通, 第二冷凝器还有冷剂液 管路经第四节流阀与第一冷凝器或蒸发器连通,第二冷凝器还有被加热介质管路与外部连通, 形成三效基础上的复合第三类吸收式热泵。
21 . 第三类吸收式热泵, 是在第 6-8项所述的任一第三类吸收式热泵中, 增加第二冷凝 器和第四节流阀, 第一发生器增设冷剂蒸汽通道与第二冷凝器连通, 第二冷凝器还有冷剂液 管路经第四节流阀与第一冷凝器或蒸发器连通,第二冷凝器还有被加热介质管路与外部连通, 形成三效基础上的复合第三类吸收式热泵。
22. 第三类吸收式热泵, 是在第 3-5项所述的任一第三类吸收式热泵中, 增加第二冷凝 器、 第三节流阀、 新增发生器、 新增吸收器、 新增溶液热交换器和新增溶液泵, 第三发生器 增设冷剂蒸汽通道与新增吸收器连通, 新增吸收器还有稀溶液管路经新增溶液泵和新增溶液 说
热交换器与新增发生器连通, 新增发生器还有浓溶液管路经新增溶液热交换器与新增吸收器 连通, 新增发生器还有冷剂蒸汽通道与第二冷凝器连通, 第二冷凝器还有冷剂液管路经第三 节流阀与第一冷凝器或蒸发器连通, 新增发生器还书有驱动热介质管路与外部连通, 新增吸收 器和第二冷凝器还分别有被加热介质管路与外部连通, 形成双效基础上的复合第三类吸收式 热泵。
23. 第三类吸收式热泵, 是在第 22项所述的任一第三类吸收式热泵中, 取消新增发生 器与外部连通的驱动热介质管路, 增加新增节流阀, 第一发生器增设冷剂蒸汽通道与新增发 生器连通后新增发生器再有冷剂液管路经新增节流阔与第二冷凝器连通——第一发生器向新 增发生器提供冷剂蒸汽作驱动热介质, 形成双效基础上的复合第三类吸收式热泵。
24. 第三类吸收式热泵, 是在第 22-23项所述的任一第三类吸收式热泵中, 将第一吸收 器有稀溶液管路经第二溶液热交换器与第二吸收器连通调整为第一吸收器有稀溶液管路经新 增溶液泵和新增溶液热交换器与新增发生器连通, 将新增吸收器有稀溶液管路经新增溶液泵 和新增溶液热交换器与新增发生器连通调整为新增吸收器有稀溶液管路经第二溶液热交换器 与第二吸收器连通, 形成双效基础上的复合第三类吸收式热泵。
25. 第三类吸收式热泵, 是在第 6-8项所述的任一第三类吸收式热泵中, 增加第二冷凝 器、 第四节流阀、 新增发生器、 新增吸收器、 新增溶液热交换器和新增溶液泵, 第四发生器 增设冷剂蒸汽通道与新增吸收器连通, 新增吸收器还有稀溶液管路经新增獰液泵和新增溶液 热交换器与新增发生器连通, 新增发生器还有浓溶液管路经新增溶液热交换器与新增吸收器 连通, 新增发生器还有冷剂蒸汽通道与第二冷凝器连通, 第二冷凝器还有冷剂液管路经第四 节流阀与第一冷凝器或蒸发器连通, 新增发生器还有驱动热介质管路与外部连通, 新增吸收 器和第二冷凝器还分别有被加热介质管路与外部连通, 形成三效基础上的复合第三类吸收式 热泵。
26. 第三类吸收式热泵, 是在第 25项所述的任一第三类吸收式热泵中, 取消新增发生 器与外部连通的驱动热介质管路, 增加新增节流阀, 第三发生器增设冷剂蒸汽通道与新增发 生器连通后新增发生器再有冷剂液管路经新增节流阀与第二冷凝器连通——第三发生器向新 增吸收器提供冷剂蒸汽作驱动热介质, 形成三效基础上的复合第三类吸收式热泵。
27. 第三类吸收式热泵, 是在第 25项所述的任一第三类吸收式热泵中, 取消新增发生 器与外部连通的驱动热介质管路, 增加新增节流阀, 第一发生器增设冷剂蒸汽通道与新增发 生器连通后新增发生器再有冷剂液管路经新增节流阀与第二冷凝器连通一~:第一发生器向新 增发生器提供冷剂蒸汽作驱动热介质, 形成三效基础上的复合第三类吸收式热泵。
28. 第三类吸收式热泵, 是在第 25-27项所述的任一第三类吸收式热泵中, 将第一吸收 器有稀溶液管路经第二溶液热交换器与第二吸收器连通调整为第一吸收器有稀溶液管路经新 增溶液泵和新增溶液热交换器与新增发生器连通, 将新增吸收器有稀溶液管路经新增溶液泵 和新增溶液热交换器与新增发生器连通调整为新增吸收器有稀溶液管路经第二溶液热交换器 与第二吸收器连通, 形成三效基础上的复合第三类吸收式热泵。
29. 第三类吸收式热泵, 是在第 15 16、 22-28项所述的任一第三类吸收式热泵中, 增 加第一流量调节阔和第二流量调节阀, 将第一冷凝器和第二冷凝器分别有被加热介质管路与 外部连通确定为外部有被加热介质管路与第二冷凝器连通后第二冷凝器再有被加热介质管路 说
分别经第一流量调节阀与外部连通和经第二流量调节阀与第一冷凝器连通, 第一冷凝器再有 被加热介质管路与外部连通, 形成复合第三类吸收式热泵。
附图说明:
图 1是依据本发明所提供的第三类吸收 -发生系统结构和流程示意图。
图 2是依据本发明所提供的第三类吸收式热泵第 1种结构和流程示意图。
图 3是依据本发明所提供的第三类吸收式热泵第 2种结构和流程示意图。
图 4是依据本发明所提供的第三类吸收式热泵第 3种结构和流程示意图。
图 5是依据本发明所提供的第三类吸收式热泵第 4种结构和流程示意图。
图 6是依据本发明所提供的第三类吸收式热泵第 5种结构和流程示意图。
图 7是依据本发明所提供的第三类吸收式热泵第 6种结构和流程示意图。
图 8是依据本发明所提供的第三类吸收式热泵第 7种结构和流程示意图。
图 9是依据本发明所提供的第三类吸收式热泵第 8种结构和流程示意图。
图 10是依据本发明所提供的第三类吸收式热泵第 9种结构和流程示意图。
图 11是依据本发明所提供的第三类吸收式热泵第 10种结构和流程示意图。
图 12是依据本发明所提供的第三类吸收式热泵第 11种结构和流程示意图。
图 13是依据本发明所提供的第三类吸收式热泵第 12种结构和流程示意图。
图 14是依据本发明所提供的第三类吸收式热泵第.13种结构和流程示意图。
图 15是依据本发明所提供的第三类吸收式热泵第 14种结构和流程示意图。
图 16是依据本发明所提供的第三类吸收式热泵第 15种结构和流程示意图。
图 17是依据本发明所提供的第三类吸收式热泵第 16种结构和流程示意图。
图 18是依据本发明所提供的第三类吸收式热泵第 17种结构和流程示意图。
图 19是依据本发明所提供的第三类吸收式热泵第 18种结构和流程示意图。
图 20是依据本发明所提供的第三类吸收式热泵第 19种结构和流程示意图。
图 21是依据本发明所提供的第三类吸收式热泵第 20种结构和流程示意图。
图中, 1一第一发生器, 2—第二发生器, 3—第一吸收器, 4一第二吸收器, 5—第一溶液 泵, 6—第二溶液泵, 7—第一溶液热交换器, 8—第二溶液热交换器, 9一冷凝器 /第一冷凝器, 10—蒸发器, 11一节流阀 /第一节流阀, 12—第三发生器, 13—第三溶液热交换器, 14一第二 节流阀, 15—第三溶液泵, 16—第四发生器, 17—第四溶液热交换器, 18—第三节流阀, 19 一第四溶液泵, 20—吸收-蒸发器, 21—冷剂液泵, 22—第三吸收器, 23—第二冷凝器, 24 一第一流量调节阀, 25—第二流量调节阀; A—新增发生器, B—新增吸收器, C一新增溶液热 说 明 书 交换器, D—新增溶液泵, E—新增节流阀。
具体实施方式:
首先要说明的是, 在结构和流程的表述上, 非必要情况下不重复进行; 对显而易见的流 程不作表述。 下面结合附图和实例来详细描述本发明。
图 1所示的第三类吸收-发生系统是这样实现的:
①结构上, 它主要由第一发生器、 第二发生器、 第一吸收器、 第二吸收器、 第一溶液泵、 第二溶液泵、 第一溶液热交换器和第二溶液热交换器所组成; 第一吸收器 3有稀溶液管路经 第二溶液热交换器 8与第二吸收器 4连通, 第二吸收器 4还有稀溶液管路经第一溶液泵 5和 第一溶液热交换器 7与第一发生器 1连通, 第一发生器 1还有浓溶液管路经第一溶液热交换 器 7与第二发生器 2连通, 第二发生器 2还有浓溶液管路经第二溶液泵 6和第二溶液热交换 器 8与第一吸收器 3连通, 第一发生器 1还有冷剂蒸汽通道与外部连通, 第二发生器 2还有 冷剂蒸汽通道与第二吸收器 4连通, 第一吸收器 3还有冷剂蒸汽通道与外部连通, 第一发生 器 1还有驱动热介质管路与外部连通, 第二发生器 2还有余热介质管路与外部连通, 第一吸 收器 3还有被加热介质管路与外部连通, 第二吸收器 4还有冷却介质管路与外部连通。
②流程上, 来自外部的冷剂蒸汽 (冷剂液吸收余热产生的蒸汽或余热蒸汽) 进入第一吸 收器 3、 被来自第二发生器 2的浓溶液吸收并放热于被加热介质, 第一吸收器 3的稀溶液经 第二溶液热交换器 8降压降温后进入第二吸收器 4、 吸热来自第二发生器 2的冷剂蒸汽并放 热于冷却介质, 第二吸收器 4的稀溶液经第一溶液泵 5和第一溶液热交换器 7进入第一发生 器 1, 驱动热介质流经第一发生器 1、加热进入其内的溶液释放并对外提供冷剂蒸汽, 第一发 生器 1的浓溶液经第一溶液热交换器 7进入第二发生器 2, 余热介质流经第二发生器 2、加热 进入其内的溶液释放并向第二吸收器 4提供冷剂蒸汽, 第二发生器 2的浓溶液经第二溶液泵 6和第二溶液热交换器 8进入第一吸收器 3, 形成第三类吸收 -发生系统。
图 2所示的第三类吸收式热泵是这样实现的:
①结构上, 在图 1所示的第三类吸收-发生系统中, 增加冷凝器、 蒸发器和节流阀, 将第 一发生器 1有冷剂蒸汽通道与外部连通确定为第一发生器 1有冷剂蒸汽通道与冷凝器 9连通, 将第一吸收器 3有冷剂蒸汽通道与外部连通确定为蒸发器 10有冷剂蒸汽通道与第一吸收器 3 连通, 冷凝器 9还有冷剂液管路经节流阀 11与蒸发器 10连通, 冷凝器 9还有被加热介质管 路与外部连通, 蒸发器 9还有余热介质管路与外部连通。
②流程上, 第一发生器 1产生的冷剂蒸汽进入冷凝器 9、 放热于被加热介质后成冷剂液, 冷凝器 9的冷剂液经节流阀 1 1节流降压后进入蒸发器 10、 吸收余热成冷剂蒸汽并向第一吸 收器 3提供, 形成第三类吸收式热泵。
图 3所示的第三类吸收式热泵是这样实现的:
①结构上, 在图 2所示第三类吸收式热泵中, 增加第三发生器、 第三溶液热交换器和第 二节流阀, 第一溶液泵 5增设稀溶液管路经第三溶液热交换器 13与第三发生器 12连通, 第 三发生器 12还有浓溶液管路经第三溶液热交换器 13与第二发生器 2连通, 将第一发生器 1 有冷剂蒸汽通道与冷凝器 9连通调整为第一发生器 1有冷剂蒸汽通道与第三发生器 12连通后 第三发生器 12再有冷剂液管路经第二节流阀 14与冷凝器 9连通,第三发生器 12还有冷剂蒸 汽通道与冷凝器 9连通。
②流程上, 第二吸收器 4的稀溶液经第一溶液泵 5之后分别再经第一溶液热交换器 7进 入第一发生器 1和再经第三溶液热交换器 13进入第三发生器 12, 第一发生器 1产生的冷剂 蒸汽提供给第三发生器 12作驱动热介质, 冷剂蒸汽流经第三发生器 12、 加热进入其内的溶 液释放并向冷凝器 9提供冷剂蒸汽, 第三发生器 12的浓溶液经第三溶液热交换器 13进入第 二发生器 2, 流经第三发生器 12的冷剂蒸汽放热成冷剂液后再经第二节流阀 14节流进入冷 凝器 9, 形成并联双效第三类吸收式热泵。
图 4所示的第三类吸收式热泵是这样实现的:
①结构上, 在图 2所示第三类吸收式热泵中, 增加第三发生器、 第三溶液热交换器和第 二节流阀, 将第二吸收器 4有稀溶液管路经第一溶液泵 5和第一溶液热交换器 7与第一发生 器 1连通调整为第二吸收器 4有稀溶液管路经第一溶液泵 5、 第一溶液热交换器 7和第三溶 液热交换器 13与第一发生器 1连通,将说第一发生器 1有浓溶液管路经第一溶液热交换器 7与 第二发生器 2连通调整为第一发生器 1有浓溶液管路经第三溶液热交换器 13与第三发生器 12连通, 第三发生器 12再有浓溶液管路经第一溶液热交换器 7与第二发生器 2连通, 将第 一发生器 1有冷剂蒸汽通道与冷凝器 9连通调整为书第一发生器 1有冷剂蒸汽通道与第三发生 器 12连通后第三发生器 12再有冷剂液管路经第二节流阀 14与冷凝器 9连通, 第三发生器 12还有冷剂蒸汽通道与冷凝器 9连通。
②流程上, 第二吸收器 4的稀溶液经第一溶液泵 5、 第一溶液热交换器 7和第三溶液热 交换器 13进入第一发生器 1, 第一发生器 1产生的冷剂蒸汽提供给第三发生器 12作驱动热 介质, 第一发生器 1 的浓溶液经第三溶液热交换器 13进入第三发生器 12 , 冷剂蒸汽流经第 三发生器 12、 加热进入其内的溶液释放并向冷凝器 9提供冷剂蒸汽, 第三发生器 12的浓溶 液经第一溶液热交换器 7进入第二发生器 2, 流经第三发生器 12的冷剂蒸汽放热成冷剂液后 再经第二节流阀 14节流进入冷凝器 9, 形成串联双效第三类吸收式热泵。
图 5所示的第三类吸收式热泵是这样实现的:
①结构上, 在图 2所示第三类吸收式热泵中, 增加第三发生器、 第三溶液热交换器、 第 二节流闽和第三溶液泵, 将第二吸收器 4有稀溶液管路经第一溶液泵 5和第一溶液热交换器 7与第一发生器 1连通调整为第二吸收器 4有稀溶液管路经第一溶液泵 5和第一溶液热交换 器 7与第三发生器 12连通,第三发生器 12再有浓溶液管路经第三溶液泵 15和第三溶液热交 换器 13与第一发生器 1连通,将第一发生器 1有浓溶液管路经第一溶液热交换器 7与第二发 生器 2连通调整为第一发生器 1有浓溶液管路经第三溶液热交换器 13和第一溶液热交换器 7 与第二发生器 2连通, 将第一发生器 1有冷剂蒸汽通道与冷凝器 9连通调整为第一发生器 1 有冷剂蒸汽通道与第三发生器 12连通后第三发生器 12再有冷剂液管路经第二节流阀 14与冷 凝器 9连通, 第三发生器 12还有冷剂蒸汽通道与冷凝器 9连通。
②流程上, 第二吸收器 4的稀溶液经第一溶液泵 5和第一溶液热交换器 7进入第三发生 器 12, 第一发生器 1产生的冷剂蒸汽提供给第三发生器 12作驱动热介质, 冷剂蒸汽流经第 三发生器 12、 加热进入其内的溶液释放并向冷凝器 9提供冷剂蒸汽, 第三发生器 12的浓溶 液经第三溶液泵 15和第三溶液热交换器 13进入第一发生器 1, 流经第三发生器 12的冷剂蒸 汽放热成冷剂液后再经第二节流阀 14节流进入冷凝器 9, 第一发生器 1的浓溶液经第三溶液 热交换器 13和第一溶液热交换器 7进入第二发生器 2, 形成串联双效第三类吸收式热泵。
图 6所示的第三类吸收式热泵是这样实现的:
①结构上, 在图 3所示第三类吸收式热泵中, 增加第四发生器、 第四溶液热交换器和第 三节流阀, 第一溶液泵 5增设稀溶液管路经第四溶液热交换器 17与第四发生器 16连通, 第 四发生器 16还有浓溶液管路经第四溶液热交换器 17与第二发生器 2连通, 将第三发生器 12 有冷剂蒸汽通道与冷凝器 9连通调整为第三发生器 12有冷剂蒸汽通道与第四发生器 16连通 后第四发生器 16再有冷剂液管路经第三节流阀】8与冷凝器 9连通,第四发生器 16还有冷剂 蒸汽通道与冷凝器 9连通。
②流程上,第二吸收器 4的部分稀溶液经第一溶液泵 5和第四溶液热交换器 17进入第四 发生器 16, 第三发生器 12产生的冷剂蒸汽提供给第四发生器 16作驱动热介质, 冷剂蒸汽流 经第四发生器 16、 加热进入其内的溶液释放并向冷凝器 9提供冷剂蒸汽, 第四发生器 16的 浓溶液经第四溶液热交换器 17进入第二发生器 2, 流经第四发生器 16的冷剂蒸汽放热成冷 剂液后再经第三节流阀 18节流进入冷凝说器 9, 形成并联三效第三类吸收式热泵。
图 7所示的第三类吸收式热泵是这样实现的-
①结构上, 在图 4所示第三类吸收式热泵中, 增加第四发生器、 第四溶液热交换器和第 三节流阀, 将第二吸收器 4有稀溶液管路经第一溶书液泵 5和第一溶液热交换器 7与第三溶液 热交换器】3连通调整为第二吸收器 4有稀溶液管路经第一溶液泵 5、第一溶液热交换器 7和 第四溶液热交换器 17与第三溶液热交换器 13连通,将第三发生器 12有浓溶液管路经第一溶 液热交换器 7与第二发生器 2连通调整为第三发生器 12有浓溶液管路经第四溶液热交换器 17与第四发生器 16连通, 第四发生器 16再有浓溶液管路经第一溶液热交换器 7与第二发生 器 2连通, 将第三发生器 12有冷剂蒸汽通道与冷凝器 9连通调整为第三发生器 12有冷剂蒸 汽通道与第四发生器 16连通后第四发生器 16再有冷剂液管路经第三节流阀 18与冷凝器 9连 通, 第四发生器 16还有冷剂蒸汽通道与冷凝器 9连通。
②流程上, 第二吸收器 4的稀溶液经第一溶液泵 5、第一溶液热交换器 7、第四溶液热交 换器 17和第三溶液热交换器 13进入第一发生器 1 , 第一发生器 1的浓溶液经第三溶液热交 换器 13进入第三发生器 12, 第三发生器 12的浓溶液经第四溶液热交换器 17进入第四发生 器】 6, 第三发生器 12产生的冷剂蒸汽提供给第四发生器 16作驱动热介质, 冷剂蒸汽流经第 四发生器 16、 加热进入其内的溶液释放并向冷凝器 9提供冷剂蒸汽, 第四发生器 16的浓溶 液经第一溶液热交换器 7进入第二发生器 2 , 流经第四发生器 16的冷剂蒸汽放热成冷剂液后 再经第三节流阀 18节流进入冷凝器 9, 形成串联三效第三类吸收式热泵。
图 8所示的第三类吸收式热泵是这样实现的:
①结构上, 在图 5所示的第三类吸收热泵中, 增加第四发生器、 第四溶液热交换器、 第 三节流阀和第四溶液泵, 将第二吸收器 4有稀溶液管路经第一溶液泵 5和第一溶液热交换器 7与第三发生器 12连通调整为第二吸收器 4有稀溶液管路经第一溶液泵 5和第一溶液热交换 器 7与第四发生器 16连通,第四发生器 16再有浓溶液管路经第四溶液泵 19和第四溶液热交 换器 17与第三发生器 12连通,将第一发生器 1有浓溶液管路经第三溶液热交换器 13和第一 溶液热交换器 7与第二发生器 2连通调整为第一发生器 1有浓溶液管路经第三溶液热交换器 13、 第四溶液热交换器 17和第一溶液热交换器 7与第二发生器 2连通, 将第三发生器 12有 冷剂蒸汽通道与冷凝器 9连通调整为第三发生器 12有冷剂蒸汽通道与第四发生器 16连通后 第四发生器 16再有冷剂液管路经第三节流阀 18与冷凝器 9连通,第四发生器 16还有冷剂蒸 汽通道与冷凝器 9连通。
②流程上, 第二吸收器 4的稀溶液经第一溶液泵 5和第一溶液热 換器 7讲入笙 TO Φ 说 明 书 器 16, 第三发生器 12产生的冷剂蒸汽提供给第四发生器 16作驱动热介质, 冷剂蒸汽流经第 四发生器 16、 加热进入其内的溶液释放并向冷凝器 9提供冷剂蒸汽, 第四发生器 16的浓溶 液经第四溶液泵 19和第四溶液热交换器 17进入第三发生器 12 , 第三发生器 12的浓溶液经 第三溶液泵 15和第三溶液热交换器 13进入第一发生器 1, 第一发生器 1的浓溶液经第三溶 液热交换器 13、第四溶液热交换器 17和第一溶液热交换器 7进入第二发生器 2, 流经第四发 生器 16的冷剂蒸汽放热成冷剂液后再经第三节流阀 18节流进入冷凝器 9, 形成串联三效第 三类吸收式热泵。
图 9所示的第三类吸收式热泵是这样实现的:
①结构上, 在图 2所示的第三类吸收热泵中, 增加吸收-蒸发器、冷剂液泵和第三溶液热 交换器, 将第二发生器 2有浓溶液管路经第二溶液泵 6和第二溶液热交换器 8与第一吸收器 3连通调整为第二发生器 2有浓溶液管路经第二溶液泵 6、第二溶液热交换器 8和第三溶液热 交换器 13与第一吸收器 3连通,将第一吸收器 3有稀溶液管路经第二溶液热交换器 8与第二 吸收器 4连通调整为第一吸收器 3有稀溶液管路经第三溶液热交换器 13与吸收-蒸发器 20连 通, 吸收-蒸发器 20再有稀溶液管路经第二溶液热交换器 8与第二吸收器 4连通, 将蒸发器 10有冷剂蒸汽通道与第一吸收器 3连通调整为蒸发器 10有冷剂蒸汽通道与吸收-蒸发器 20 连通, 蒸发器 10增设冷剂液管路经冷剂液泵 21与吸收-蒸发器 20连通后吸收-蒸发器 20再 有冷剂蒸汽通道与第一吸收器 3连通。
②流程上, 第二发生器 2的浓溶液经第二溶液泵 6、 第二溶液热交换器 8和第三溶液热 交换器 13进入第一吸收器 3、 吸收来自吸收-蒸发器 20的冷剂蒸汽并放热于被加热介质, 第 一吸收器 3的稀溶液经第三溶液热交换器 13进入吸收-蒸发器 20、 吸收来自蒸发器 10的冷 剂蒸汽并放热于流经吸收-蒸发器 20的冷剂液, 吸收-蒸发器 20的稀溶液经第二溶液热交换 器 8进入第二吸收器 4 ; 蒸发器 10的冷剂液分成两路——第一路吸收余热成冷剂蒸汽并向吸 收-蒸发器 20提供, 第二路经冷剂液泵 21加压后再流经吸收-蒸发器 20、 吸热成冷剂蒸汽并 向第一吸收器 3提供, 形成 1. 5级第三类吸收式热泵。
图 10所示的第三类吸收式热泵是这样实现的:
①结构上, 在图 2所示的第三类吸收热泵中, 增加第二节流阀、 吸收-蒸发器、 第三溶液 热交换器和第三溶液泵, 将第二发生器 2有浓溶液管路经第二溶液泵 6和第二溶液热交换器 8与第一吸收器 3连通调整为第二发生器 2有浓溶液管路经第二溶液泵 6和第二溶液热交换 器 8与吸收-蒸发器 20连通,吸收-蒸发器 20再有稀溶液管路经第三溶液泵 15和第三溶液热 交换器 13与第一吸收器 3连通,将第一吸收器 3有稀溶液管路经第二溶液热交换器 8与第二 吸收器 4连通调整为第一吸收器 3有稀溶液管路经第三溶液热交换器 13和第二溶液热交换器 8与第二吸收器 4连通, 将蒸发器 10有冷剂蒸汽通道与第一吸收器 3连通调整为蒸发器 10 有冷剂蒸汽通道与吸收-蒸发器 20连通, 冷凝器 9增设冷剂液管路经第二节流阀 14与吸收- 蒸发器 20连通后吸收-蒸发器 20再有冷剂蒸汽通道与第一吸收器 3连通。
②流程上,第二发生器 2的浓溶液经第二溶液泵 6和第二溶液热交换器 8进入吸收 蒸发 器 20、 吸收来自蒸发器 10的冷剂蒸汽并放热于流经吸收-蒸发器 20的冷剂液, 吸收-蒸发器 20的稀溶液经第三溶液泵 15和第三溶液热交换器 13进入第一吸收器 3、吸收来自吸收 -蒸发 器 20的冷剂蒸汽并放热于被加热介质, 第一吸收器 3的稀溶液经第三溶液热交换器 13和第 二溶液热交换器 8进入第二吸收器 4 ; 冷凝器 9的冷剂液分成两路——第一路经第一节流阀 1 1节流进入蒸发器 10、吸收余热成冷剂蒸汽并向吸收-蒸发器 20提供, 第二路经第二节流阔 14节流后再流经吸收-蒸发器 20、 吸热成冷剂蒸汽并向第一吸收器 3提供, 形成 1. 5级第三 类吸收式热泵。
图 11所示的第三类吸收式热泵是这样实现的-
①结构上, 在图 2所示的第三类吸收热泵中, 取消第一吸收器 3与外部连通的被加热介 质管路, 增加第三发生器、 第三吸收器、 第二冷凝器、 第三溶液热交换器、 第三溶液泵和第 二节流阀,第三吸收器 22有稀溶液管路经第三溶液泵 15和第三溶液热交换器 13与第三发生 器 12连通, 第三发生器 12还有浓溶液管路经第三溶液热交换器 13与第三吸收器 22连通, 第三发生器 12还有冷剂蒸汽通道与第二冷凝器 23连通,第二冷凝器 23还有冷剂液管路经第 二节流阀 14与第一吸收器 3连通后第一说吸收器 3再有冷剂蒸汽通道与第三吸收器 22连通, 第三发生器 12还有驱动热介质管路与外部连通,第三吸收器 22和第二冷凝器 23还分别有被 加热介质管路与外部连通。
②流程上,第三吸收器 22的稀溶液经第三溶液书泵 15和第三溶液热交换器 13进入第三发 生器 12, 驱动热介质流经第三发生器 12、 加热进入其内的溶液释放并向第二冷凝器 23提供 冷剂蒸汽, 第三发生器 12的浓溶液经第三溶液热交换器 13进入第三吸收器 22、 吸收来自第 一吸收器 3的冷剂蒸汽并放热于被加热介质;第二冷凝器 23的冷剂蒸汽放热于被加热介质成 冷剂液, 第二冷凝器 23的冷剂液经第二节流阀 14节流后再流经第一吸收器 3、 吸热成冷剂 蒸汽并向第三吸收器 22提供, 形成 1. 5级第三类吸收式热泵。
图 12所示的第三类吸收式热泵是这样实现的- 在图 11所示的第三类吸收热泵中, 将第一吸收器 3有稀溶液管路经第二溶液热交换器 8 与第二吸收器 4连通调整为第一吸收器 3有稀溶液管路经第三溶液泵 15和第三溶液热交换器 13与第三发生器 12连通, 将第三吸收器 22有稀溶液管路经第三溶液泵 15和第三溶液热交 换器 13与第三发生器 12连通调整为第三吸收器 22有稀溶液管路经第二溶液热交换器 8与第 二吸收器 4连通, 形成 1. 5级第三类吸收式热泵。
图 13所示的第三类吸收式热泵是这样实现的-
①结构上, 在图 2所示的第三类吸收热泵中, 增加第三发生器、 第三吸收器、 第三溶液 热交换器和第三溶液泵, 将第一发生器 1有冷剂蒸汽通道与冷凝器 9连通调整为第一发生器 1有冷剂蒸汽通道与第三吸收器 22连通, 第三吸收器 22还有稀溶液管路经第三溶液泵 15和 第三溶液热交换器 13与第三发生器 12连通,第三发生器 12还有浓溶液管路经第三溶液热交 换器 13与第三吸收器 22连通, 第三发生器 12还有冷剂蒸汽通道与冷凝器 9连通, 第三发生 器 12还有驱动热介质管路与外部连通, 第三吸收器 22还有被加热介质管路与外部连通。
②流程上, 第一发生器 1产生的冷剂蒸汽进入第三吸收器 22、 被来自第三发生器 12的 浓溶液吸收并放热于被加热介质, 第三吸收器 22的稀溶液经第三溶液泵 15和第三溶液热交 换器 13进入第三发生器 12, 驱动热介质流经第三发生器 12、 加热进入其内的溶液释放并向 冷凝器 9提供冷剂蒸汽,第三发生器 12的浓溶液经第三溶液热交换器 13进入第三吸收器 22, 形成 1. 5级第三类吸收式热泵。
图 14所示的第三类吸收式热泵是这样实现的:
在图 13所示的第三类吸收热泵中, 将第一吸收器 3有稀溶液管路经第二溶液热交换器 8 与第二吸收器 4连通调整为第一吸收器 3有稀溶液管路经第三溶液泵 15和第三溶液热交换器 说 明 书
13与第三发生器 12连通, 将第三吸收器 22有稀溶液管路经第三溶液泵 15和第三溶液热交 换器 13与第三发生器 12连通调整为第三吸收器 22有稀溶液管路经第二溶液热交换器 8与第 二吸收器 4连通, 形成 1. 5级第三类吸收式热泵。
图 15所示的第三类吸收式热泵是这样实现的:
在图 13所示的第三类吸收热泵中, 增加第二冷凝器和第二节流阀, 第一发生器 1增设冷 剂蒸汽通道与第二冷凝器 23连通,第二冷凝器 23还有冷剂液管路经第二节流阀 14与蒸发器 10连通, 将第一冷凝器 9有冷剂液管路经第一节流闽 11与蒸发器 10连通调整为第一冷凝器 9有冷剂液管路经第一节流阀 11与第二冷凝器 23连通, 第二冷凝器 23还有被加热介质管路 与外部连通; 第一发生器 1产生的冷剂蒸汽分别向第二冷凝器 23和第三吸收器 22提供, 第 一冷凝器 9的冷剂液经第一节流阀 11节流进入第二冷凝器 23, 第二冷凝器 23的冷剂蒸汽放 热于被加热介质成冷剂液, 第二冷凝器 23的冷剂液经第二节流阀 14节流进入蒸发器 10, 形 成单级基础上的复合第三类吸收式热泵。
图 16所示的第三类吸收式热泵是这样实现的:
在图 14所示的第三类吸收热泵中,增加第二冷凝器和第二节流阀, 第一发生器 1增设冷 剂蒸汽通道与第二冷凝器 23连通,第二冷凝器 23还有冷剂液管路经第二节流阀 14与蒸发器 10连通, 将第一冷凝器 9有冷剂液管路经第一节流阀 1 1与蒸发器 10连通调整为第一冷凝器 9有冷剂液管路经第一节流阅 11与第二冷凝器 23连通, 第二冷凝器 23还有被加热介质管路 与外部连通; 增加第一流量调节阀和第二流量调节阀, 将第一冷凝器 9和第二冷凝器 23分别 有被加热介质管路与外部连通确定为外部有被加热介质管路与第二冷凝器 23 连通后第二冷 凝器 23再有被加热介质管路分别经第一流量调节阀 24与外部连通和经第二流量调节阀 25与 第一冷凝器 9连通, 第一冷凝器 9再有被加热介质管路与外部连通, 形成单级基础上的复合 第三类吸收式热泵。
图 17所示的第三类吸收式热泵是这样实现的:
①结构上, 在图 13所示的第三类吸收热泵中, 取消第一吸收器 3与外部连通的被加热介 质管路,增加第二节流阀, 冷凝器 9增设冷剂液管路经第二节流阀 14与第一吸收器 3连通后 第一吸收器 3再有冷剂蒸汽通道与第三吸收器 22连通。
②流程上,第三吸收器 22的稀溶液经第三溶液泵 15和第三溶液热交换器 13进入第三发 生器 12, 驱动热介质流经第三发生器 12、加热进入其内的溶液释放并向冷凝器 9提供冷剂蒸 汽, 第三发生器 12的浓溶液经第三溶液热交换器 13进入第三吸收器 22、 吸收分别来自第一 吸收器 3和第一发生器 1的冷剂蒸汽并放热于被加热介质; 冷凝器 9的冷剂液分成两路—— 第一路经第一节流阀 11节流进入蒸发器 10, 第二路经第二节流阀 14节流后再流经第一吸收 器 3、 吸热成冷剂蒸汽并向第三吸收器 22提供, 形成 2级第三类吸收式热泵。
图 18所示的第三类吸收式热泵是这样实现的:
在图 14所示的第三类吸收热泵中, 取消第一吸收器 3与外部连通的被加热介质管路, 增 加冷剂液泵, 蒸发器 10增设冷剂液管路经冷剂液泵 21与第一吸收器 3连通后第一吸收器 3 再有冷剂蒸汽通道与第三吸收器 22连通, 形成 2级第三类吸收式热泵。
图 19所示的第三类吸收式热泵是这样实现的:
在图 4所示的第三类吸收热泵中, 增加第二冷凝器和第三节流阔, 第一发生器 1增设冷 剂蒸汽通道与第二冷凝器 23连通,第二冷凝器 23还有冷剂液管路经第三节流阀 18与第一合 凝器 9连通, 第二冷凝器 23还有被加热介质管路与外部连通; 第一发生器 1产生的冷剂蒸汽 分别向第三发生器 12和第二冷凝器 23提供,第二冷凝器 23的冷剂蒸汽放热于被加热介质成 冷剂液, 第二冷凝器 23的冷剂液经第三节流阔 18节流进入第一冷凝器 9, 形成双效基础上 的复合第三类吸收式热泵。
图 20所示的第三类吸收式热泵是这样实现的:
①结构上, 在图 4所示的第三类吸收热泵中, 增加第二冷凝器、 第三节流阀、 新增发生 器、新增吸收器、 新增溶液热交换器和新增溶液泵, 第三发生器 12增设冷剂蒸汽通道与新增 吸收器 B连通, 新增吸收器 B还有稀溶液管路经新增溶液泵 D和新增溶液热交换器 C与新增 发生器 A连通, 新增发生器 A还有浓溶液管路经新增溶液热交换器 C与新增吸收器 B连通, 新增发生器 A还有冷剂蒸汽通道与第二说冷凝器 23连通, 第二冷凝器 23还有冷剂液管路经第 三节流阀 18与第一冷凝器 9连通, 新增发生器 A还有驱动热介质管路与外部连通, 新增吸收 器 B和第二冷凝器 23还分别有被加热介质管路与外部连通。
②流程上, 第三发生器 12产生的冷剂蒸汽分别向第一冷凝器 9和新增吸收器 B提供, 新增吸收器 B的稀溶液经新增溶液泵 D和新增溶液热交换器 C进入新增发生器 A,驱动热介 质流经新增发生器 A、加热进入其内的溶液释放并向第二冷凝器 23提供冷剂蒸汽, 新增发生 器 A的浓溶液经新增溶液热交换器 C进入新增吸收器 B、 吸收来自第三发生器 12的冷剂蒸 汽并放热于被加热介质, 第二冷凝器 23的冷剂蒸汽放热于被加热介质成冷剂液, 第二冷凝器 23的冷剂液经第三节流阀 18节流进入第一冷凝器 9,形成双效基础上的复合第三类吸收式热 泵。
图 21所示的第三类吸收式热泵是这样实现的:
在图 20所示的第三类吸收热泵中, 取消新增发生器 A与外部连通的驱动热介质管路,增 加新增节流阀, 第一发生器 1增设冷剂蒸汽通道与新增发生器 A连通后新增发生器 A再有冷 剂液管路经新增节流阀 E与第二冷凝器 23连通——第一发生器向新增发生器提供冷剂蒸汽作 驱动热介质;第一发生器 1产生的冷剂蒸汽分别提供给第三发生器 12和新增发生器 A作驱动 热介质, 流经新增发生器 A的冷剂蒸汽放热成冷剂液后再经新增节流阀 E节流进入第二冷凝 器 23, 形成双效基础上的复合第三类吸收式热泵。
本发明技术可以实现的效果——本发明所提出的第三类吸收 -发生系统与第三类吸收式 热泵, 具有如下的效果和优势:
(1)提出的第三类吸收-发生系统, 与由吸收器、 溶液泵、 溶液热交换器和发生器所组成的 第一类吸收-发生系统相比较, 主要增加了第二发生器和第二吸收器, 结构和流程简单合理。
(2)提出的第三类吸收-发生系统,同时将两种驱动力——高温驱动热介质与被加热介质之 间的温差和余热介质与冷却介质之间的温差——用于同一吸收-发生系统中,为第三类吸收式 热泵的产生提供了基础。
(3)提出的第三类吸收式热泵, 体现出第一类吸收式热泵供热温度高和第二类吸收式热泵 性能指数优的双重特性, 能够提高余热资源利用率。
(4)提出的第三类吸收式热泵, 进一步丰富了吸收式热泵种类和流程, 具有很好的创造性、 新颖性和实用性, 可更好地实现热泵供热与用户需求之间的相互匹配。
(5)利用本发明的第三类吸收式热泵, 能够实现余热温度的进一步提升或深度利用余热资 源, 扩大了吸收式热泵的温度工作区间, 扩展和丰富了吸收式热泵的应用范围。

Claims

权 利 要 求 书
1. 第三类吸收-发生系统, 主要由第一发生器、第二发生器、第一吸收器、第二吸收器、 第一溶液泵、 第二溶液泵、 第一溶液热交换器和第二溶液热交换器所组成; 第一吸收器 (3) 有稀溶液管路经第二溶液热交换器(8)与第二吸收器(4)连通, 第二吸收器 (4)还有稀溶 液管路经第一溶液泵(5)和第一溶液热交换器(7)与第一发生器(1)连通,第一发生器(1) 还有浓溶液管路经第一溶液热交换器(7) 与第二发生器 (2)连通, 第二发生器(2)还有浓 溶液管路经第二溶液泵 (6)和第二溶液热交换器 (8) 与第一吸收器(3)连通, 第一发生器
(I)还有冷剂蒸汽通道与外部连通, 第二发生器 (2) 还有冷剂蒸汽通道与第二吸收器 (4) 连通, 第一吸收器 (3) 还有冷剂蒸汽通道与外部连通, 第一发生器 (1) 还有驱动热介质管 路与外部连通, 第二发生器 (2)还有余热介质管路与外部连通, 第一吸收器 (1) 还有被加 热介质管路与外部连通, 第二吸收器 (2) 还有冷却介质管路与外部连通, 形成第三类吸收- 发生系统。
2. 第三类吸收式热泵, 是在权利要求 1所述的第三类吸收-发生系统中, 增加冷凝器、 蒸发器和节流阀, 将第一发生器 (1) 有冷剂蒸汽通道与外部连通确定为第一发生器 (1) 有 冷剂蒸汽通道与冷凝器 (9) 连通, 将第一吸收器 (3) 有冷剂蒸汽通道与外部连通确定为蒸 发器 (10) 有冷剂蒸汽通道与第一吸收器 (3) 连通, 冷凝器 (9) 还有冷剂液管路经节流阀
(II) 与蒸发器 (10) 连通, 冷凝器 (9) 还有被加热介质管路与外部连通, 蒸发器 (9) 还 有余热介质管路与外部连通, 形成第三类吸收式热泵。
3. 第三类吸收式热泵, 是在权利要求 2所述的第三类吸收式热泵中, 增加第三发生器、 第三溶液热交换器和第二节流阀,第一溶液泵(5)增设稀溶液管路经第三溶液热交换器(13) 与第三发生器 (12) 连通, 第三发生器 (12) 还有浓溶液管路经第三溶液热交换器 (13) 与 第二发生器(2)连通, 将第一发生器(1)有冷剂蒸汽通道与冷凝器(9)连通调整为第一发 生器(1)有冷剂蒸汽通道与第三发生器(12)连通后第三发生器 (12)再有冷剂液管路经第 二节流阀(14)与冷凝器(9)连通——第一发生器产生的冷剂蒸汽作为第三发生器的驱动热 介质, 第三发生器(12)还有冷剂蒸汽通道与冷凝器(9)连通, 形成并联双效第三类吸收式 热泵。
4. 第三类吸收式热泵, 是在权利要求 2所述的第三类吸收式热泵中, 增加第三发生器、 第三溶液热交换器和第二节流阀, 将第二吸收器 (4) 有稀溶液管路经第一溶液泵 (5) 和第 一溶液热交换器(7) 与第一发生器(1)连通调整为第二吸收器(4)有稀溶液管路经第一溶 液泵 (5)、 第一溶液热交换器 (7) 和第三溶液热交换器 (13) 与第一发生器 (1) 连通, 将 第一发生器(1)有浓溶液管路经第一溶液热交换器(7)与第二发生器(2)连通调整为第一 发生器(1)有浓溶液管路经第三溶液热交换器(13) 与第三发生器 (12)连通, 第三发生器
(12)再有浓溶液管路经第一溶液热交换器(7)与第二发生器(2)连通, 将第一发生器(1) 有冷剂蒸汽通道与冷凝器(9)连通调整为第一发生器(1 )有冷剂蒸汽通道与第三发生器( 12) 连通后第三发生器(12)再有冷剂液管路经第二节流阀 (14) 与冷凝器(9)连通——第一发 生器产生的冷剂蒸汽作为第三发生器的驱动热介质, 第三发生器 (12) 还有冷剂蒸汽通道与 冷凝器 (9) 连通, 形成串联双效第三类吸收式热泵。
5. 第三类吸收式热泵, 是在权利要求 2所述的第三类吸收式热泵中, 增加第三发生器、 第三溶液热交换器、第二节流阀和第三溶液泵, 将第二吸收器(4)有稀溶液管路经第一溶液 权 利 要 求 书 泵 (5) 和第一溶液热交换器 (7) 与第一发生器 (1) 连通调整为第二吸收器 (4) 有稀溶液 管路经第一溶液泵(5)和第一溶液热交换器(7)与第三发生器(12)连通, 第三发生器(12) 再有浓溶液管路经第三溶液泵(15)和第三溶液热交换器(13)与第一发生器(1)连通, 将 第一发生器(1)有浓溶液管路经第一溶液热交换器(7)与第二发生器 (2)连通调整为第一 发生器 (1) 有浓溶液管路经第三溶液热交换器 (13) 和第一溶液热交换器 (7) 与第二发生 器(2)连通, 将第一发生器(1)有冷剂蒸汽通道与冷凝器 (9)连通调整为第一发生器 (1) 有冷剂蒸汽通道与第三发生器 (12) 连通后第三发生器 (12) 再有冷剂液管路经第二节流阀 (14)与冷凝器(9)连通——第一发生器产生的冷剂蒸汽作为第三发生器的驱动热介质, 第 三发生器 (12) 还有冷剂蒸汽通道与冷凝器 (9) 连通, 形成串联双效第三类吸收式热泵。
6. 第三类吸收式热泵, 是在权利要求 3所述的第三类吸收式热泵中, 增加第四发生器、 第四溶液热交换器和第三节流阀,第一溶液泵(5)增设稀溶液管路经第四溶液热交换器(17) 与第四发生器 (16) 连通, 第四发生器 (16) 还有浓溶液管路经第四溶液热交换器 (17) 与 第二发生器 (2) 连通, 将第三发生器 (12) 有冷剂蒸汽通道与冷凝器 (9) 连通调整为第三 发生器 (12) 有冷剂蒸汽通道与第四发生器 (16) 连通后第四发生器 (16) 再有冷剂液管路 经第三节流阔 (18)与冷凝器(9)连通——第三发生器产生的冷剂蒸汽作为第四发生器的驱 动热介质, 第四发生器(16)还有冷剂蒸汽通道与冷凝器(9)连通, 形成并联三效第三类吸 收式热泵。
7. 第三类吸收式热泵, 是在权利要求 4所述的第三类吸收式热泵中, 增加第四发生器、 第四溶液热交换器和第三节流阔, 将第二吸收器 (4) 有稀溶液管路经第一溶液泵 (5) 和第 一溶液热交换器 (7) 与第三溶液热交换器 (13) 连通调整为第二吸收器 (4) 有稀溶液管路 经第一溶液泵 (5)、 第一溶液热交换器(7)和第四溶液热交换器(17)与第三溶液热交换器
(13)连通, 将第三发生器 (12)有浓溶液管路经第一溶液热交换器(7) 与第二发生器(2) 连通调整为第三发生器 (12) 有浓溶液管路经第四溶液热交换器 (17) 与第四发生器 (16) 连通, 第四发生器 (16)再有浓溶液管路经第一溶液热交换器(7)与第二发生器(2)连通, 将第三发生器(12)有冷剂蒸汽通道与冷凝器(9)连通调整为第三发生器(12)有冷剂蒸汽 通道与第四发生器 (16) 连通后第四发生器 (16) 再有冷剂液管路经第三节流阀 (18) 与冷 凝器 (9)连通——第三发生器产生的冷剂蒸汽作为第四发生器的驱动热介质,第四发生器(16) 还有冷剂蒸汽通道与冷凝器 (9) 连通, 形成串联三效第三类吸收式热泵。
8. 第三类吸收式热泵, 是在权利要求 5所述的第三类吸收式热泵中, 增加第四发生器、 第四溶液热交换器、 第三节流阀和第四溶液泵, 将第二吸收器(4)有稀溶液管路经第一溶液 泵(5)和第一溶液热交换器(7)与第三发生器(12)连通调整为第二吸收器(4)有稀溶液 管路经第一溶液泵(5)和第一溶液热交换器(7)与第四发生器(16)连通, 第四发生器(16) 再有浓溶液管路经第四溶液泵 (19) 和第四溶液热交换器 (17) 与第三发生器 (12)连通, 将第一发生器 (1) 有浓溶液管路经第三溶液热交换器 (13) 和第一溶液热交换器 (7) 与第 二发生器(2)连通调整为第一发生器(1)有浓溶液管路经第三溶液热交换器(13)、 第四溶 液热交换器 (17) 和第一溶液热交换器 (7) 与第二发生器 (2) 连通, 将第三发生器 (12) 有冷剂蒸汽通道与冷凝器(9)连通调整为第三发生器(12)有冷剂蒸汽通道与第四发生器(16) 连通后第四发生器(16)再有冷剂液管路经第三节流阔 (18)与冷凝器(9)连通——第三发 权 利 要 求 书 生器产生的冷剂蒸汽作为第四发生器的驱动热介质, 第四发生器 (16) 还有冷剂蒸汽通道与 冷凝器 (9) 连通, 形成串联三效第三类吸收式热泵。
9. 第三类吸收式热泵, 是在权利要求 2 所述的第三类吸收式热泵中, 增加冷剂液泵或 第二节流阀、 吸收-蒸发器和第三溶液热交换器, 将第二发生器 (2) 有浓溶液管路经第二溶 液泵 (6) 和第二溶液热交换器 (8) 与第一吸收器 (3) 连通调整为第二发生器 (2) 有浓溶 液管路经第二溶液泵 (6)、 第二溶液热交换器 (8) 和第三溶液热交换器 (13) 与第一吸收器
(3) 连通, 将第一吸收器 (3) 有稀溶液管路经第二溶液热交换器 (8) 与第二吸收器 (4) 连通调整为第一吸收器 (3) 有稀溶液管路经第三溶液热交换器 (13) 与吸收-蒸发器 (20) 连通, 吸收-蒸发器(20)再有稀溶液管路经第二溶液热交换器(8)与第二吸收器(4)连通, 将蒸发器 (10) 有冷剂蒸汽通道与第一吸收器 (3) 连通调整为蒸发器 (10) 有冷剂蒸汽通道 与吸收-蒸发器 (20) 连通, 蒸发器 (10) 增设冷剂液管路经冷剂液泵 (21) 与吸收-蒸发器
(20) 连通后吸收-蒸发器 (20) 再有冷剂蒸汽通道与第一吸收器 (3) 连通、 或冷凝器 (9) 增设冷剂液管路经第二节流阀 (14) 与吸收-蒸发器 (20) 连通后吸收-蒸发器 (20) 再有冷 剂蒸汽通道与第一吸收器 (3) 连通, 形成 1.5级第三类吸收式热泵。
10. 第三类吸收式热泵, 是在权利要求 2所述的第三类吸收式热泵中, 增加冷剂液泵或 第二节流阀、 吸收-蒸发器、 第三溶液热交换器和第三溶液泵, 将第二发生器 (2) 有浓溶液 管路经第二溶液泵 (6) 和第二溶液热交换器 (8) 与第一吸收器 (3)连通调整为第二发生器
(2) 有浓溶液管路经第二溶液泵 (6) 和第二溶液热交换器 (8) 与吸收-蒸发器 (20) 连通, 吸收-蒸发器 (20) 再有稀溶液管路经第三溶液泵 (15) 和第三溶液热交换器 (13) 与第一吸 收器(3)连通, 将第一吸收器(3)有稀溶液管路经第二溶液热交换器(8)与第二吸收器(4) 连通调整为第一吸收器(3)有稀溶液管路经第三溶液热交换器( 13)和第二溶液热交换器(8) 与第二吸收器 (4) 连通, 将蒸发器 (10) 有冷剂蒸汽通道与第一吸收器 (3) 连通调整为蒸 发器 (10) 有冷剂蒸汽通道与吸收-蒸发器 (20) 连通, 蒸发器 (10) 增设冷剂液管路经冷剂 液泵 (21) 与吸收 蒸发器 (20) 连通后吸收-蒸发器 (20) 再有冷剂蒸汽通道与第一吸收器
(3) 连通、 或冷凝器 (9) 增设冷剂液管路经第二节流阀 (14) 与吸收-蒸发器 (20) 连通后 吸收-蒸发器 (20) 再有冷剂蒸汽通道与第一吸收器 (3) 连通, 形成 1.5级第三类吸收式热 泵。
11. 第三类吸收式热泵, 是在权利要求 2所述的第三类吸收式热泵中, 取消第一吸收器 (3) 与外部连通的被加热介质管路, 增加第三发生器、 第三吸收器、 第二冷凝器、 第三溶液 热交换器、 第三溶液泵和第二节流阀, 第三吸收器 (22) 有稀溶液管路经第三溶液泵 (15) 和第三溶液热交换器 (13) 与第三发生器 (12) 连通, 第三发生器 (12) 还有浓溶液管路经 第三溶液热交换器 (13) 与第三吸收器 (22) 连通, 第三发生器 (12) 还有冷剂蒸汽通道与 第二冷凝器 (23) 连通, 第二冷凝器 (23) 还有冷剂液管路经第二节流阀 (14) 与第一吸收 器(3)连通后第一吸收器(3)再有冷剂蒸汽通道与第三吸收器(22)连通, 第三发生器(12) 还有驱动热介质管路与外部连通, 第三吸收器 (22) 和第二冷凝器 (23) 还分别有被加热介 质管路与外部连通, 形成 1.5级第三类吸收式热泵。
12. 第三类吸收式热泵, 是在权利要求 11 所述的第三类吸收式热泵中, 将第一吸收器 (3) 有稀溶液管路经第二溶液热交换器 (8) 与第二吸收器 (4) 连通调整为第一吸收器 (3) 权 利 要 求 书 有稀溶液管路经第三溶液泵 (15) 和第三溶液热交换器 (13) 与第三发生器 (12) 连通, 将 第三吸收器 (22) 有稀溶液管路经第三溶液泵 (15) 和第三溶液热交换器 (13) 与第三发生 器(12)连通调整为第三吸收器(22)有稀溶液管路经第二溶液热交换器(8)与第二吸收器 (4)连通, 形成 1.5级第三类吸收式热泵。
13. 第三类吸收式热泵,是在权利要求 2所述的第三类吸收式热泵中,增加第三发生器、 第三吸收器、 第三溶液热交换器和第三溶液泵, 将第一发生器(1)有冷剂蒸汽通道与冷凝器
(9)连通调整为第一发生器(1)有冷剂蒸汽通道与第三吸收器(22)连通,第三吸收器(22) 还有稀溶液管路经第三溶液泵 (15) 和第三溶液热交换器 (13) 与第三发生器 (12) 连通, 第三发生器 (12) 还有浓溶液管路经第三溶液热交换器 (13) 与第三吸收器 (22) 连通, 第 三发生器(12)还有冷剂蒸汽通道与冷凝器(9)连通, 第三发生器(12)还有驱动热介质管 路与外部连通, 第三吸收器 (22) 还有被加热介质管路与外部连通, 形成 1.5级第三类吸收 式热泵。
14. 第三类吸收式热泵, 是在权利要求 13所述的第三类吸收式热泵中, 将第一吸收器
(3)有稀溶液管路经第二溶液热交换器(8)与第二吸收器(4)连通调整为第一吸收器 (3) 有稀溶液管路经第三溶液泵 (15) 和第三溶液热交换器 (13) 与第三发生器 (12) 连通, 将 第三吸收器 (22) 有稀溶液管路经第三溶液泵 (15) 和第三溶液热交换器 (13) 与第三发生 器(12)连通调整为第三吸收器(22)有稀溶液管路经第二溶液热交换器(8)与第二吸收器
(4)连通, 形成 1.5级第三类吸收式热泵。
15. 第三类吸收式热泵, 是在权利要求 13- 14所述的任一第三类吸收式热泵中, 增加第 二冷凝器和第二节流阀, 第一发生器(1)增设冷剂蒸汽通道与第二冷凝器(23)连通, 第二 冷凝器 (23) 还有冷剂液管路经第二节流阀 (14) 与蒸发器 (10) 连通, 第二冷凝器 (23) 还有被加热介质管路与外部连通, 形成单级基础上的复合级第三类吸收式热泵。
16. 第三类吸收式热泵, 是在权利要求 13- 14所述的任一第三类吸收式热泵中, 增加第 二冷凝器和第二节流阀, 第一发生器(Π增设冷剂蒸汽通道与第二冷凝器(23)连通, 第二 冷凝器 (23) 还有冷剂液管路经第二节流阀 (14) 与蒸发器 (10)连通, 将第一冷凝器 (9) 有冷剂液管路经第一节流阀 (11) 与蒸发器(10)连通调整为第一冷凝器(9)有冷剂液管路 经第一节流阔 (11) 与第二冷凝器 (23) 连通, 第二冷凝器 (23) 还有被加热介质管路与外 部连通, 形成单级基础上的复合级第三类吸收式热泵。
17. 第三类吸收式热泵, 是在权利要求 13- 14所述的任一第三类吸收式热泵中, 取消第 一吸收器(3) 与外部连通的被加热介质管路, 增加第二节流阔, 冷凝器 (9) 增设冷剂液管 路经第二节流阀 (14) 与第一吸收器 (3) 连通后第一吸收器 (3) 再有冷剂蒸汽通道与第三 吸收器 (22) 连通, 形成 2级第三类吸收式热泵。
18. 第三类吸收式热泵, 是在权利要求 13 14所述的任一第三类吸收式热泵中, 取消第 一吸收器(3) 与外部连通的被加热介质管路, 增加冷剂液泵, 蒸发器(10)增设冷剂液管路 经冷剂液泵 (21) 与第一吸收器 (3) 连通后第一吸收器 (3) 再有冷剂蒸汽通道与第三吸收 器 (22) 连通, 形成 2级第三类吸收式热泵。
19. 第三类吸收式热泵, 是在权利要求 3-5所述的任一第三类吸收式热泵中, 增加第二 冷凝器和第三节流阀, 第一发生器(1)增设冷剂蒸汽通道与第二冷凝器(23)连通, 第二冷 权 利 要 求 书 凝器(23)还有冷剂液管路经第三节流阀 (18) 与第一冷凝器 (9) 或蒸发器(10)连通, 第 二冷凝器(23)还有被加热介质管路与外部连通, 形成双效基础上的复合第三类吸收式热泵。
20. 第三类吸收式热泵, 是在权利要求 6- 8所述的任一第三类吸收式热泵中, 增加第二 冷凝器和第四节流闽, 第三发生器 (12) 增设冷剂蒸汽通道与第二冷凝器 (23) 连通, 第二 冷凝器(23)还有冷剂液管路经第四节流阀与第一冷凝器 (9)或蒸发器(10)连通, 第二冷 凝器 (23) 还有被加热介质管路与外部连通, 形成三效基础上的复合第三类吸收式热泵。
21. 第三类吸收式热泵, 是在权利要求 6-8所述的任一第三类吸收式热泵中, 增加第二 冷凝器和第四节流阀, 第一发生器(1)增设冷剂蒸汽通道与第二冷凝器(23)连通, 第二冷 凝器(23)还有冷剂液管路经第四节流阔与第一冷凝器(9)或蒸发器(10)连通, 第二冷凝 器 (23) 还有被加热介质管路与外部连通, 形成三效基础上的复合第三类吸收式热泵。
22. 第三类吸收式热泵, 是在权利要求 3- 5所述的任一第三类吸收式热泵中, 增加第二 冷凝器、 第三节流阀、 新增发生器、 新增吸收器、 新增溶液热交换器和新增溶液泵, 第三发 生器 (12)增设冷剂蒸汽通道与新增吸收器 (B) 连通, 新增吸收器 (B) 还有稀溶液管路经 新增溶液泵 (D) 和新增溶液热交换器 (C) 与新增发生器 (A) 连通, 新增发生器 (A) 还有 浓溶液管路经新增溶液热交换器(C) 与新增吸收器(B)连通, 新增发生器(A)还有冷剂蒸 汽通道与第二冷凝器 (23) 连通, 第二冷凝器 (23) 还有冷剂液管路经第三节流阀 (18) 与 第一冷凝器 (9) 或蒸发器 (10) 连通, 新增发生器 (A) 还有驱动热介质管路与外部连通, 新增吸收器(B)和第二冷凝器(23)还分别有被加热介质管路与外部连通, 形成双效基础上 的复合第三类吸收式热泵。
23. 第三类吸收式热泵, 是在权利要求 22所述的任一第三类吸收式热泵中, 取消新增 发生器 (A) 与外部连通的驱动热介质管路, 增加新增节流阀, 第一发生器 (1) 增设冷剂蒸 汽通道与新增发生器(A)连通后新增发生器 (A)再有冷剂液管路经新增节流 H (E) 与第二 冷凝器 (23)连通——第一发生器向新增发生器提供冷剂蒸汽作驱动热介质, 形成双效基础 上的复合第三类吸收式热泵。
24. 第三类吸收式热泵, 是在权利要求 22-23所述的任一第三类吸收式热泵中, 将第一 吸收器(3)有稀溶液管路经第二溶液热交换器(8)与第二吸收器(4)连通调整为第一吸收 器(3)有稀溶液管路经新增溶液泵 (D)和新增溶液热交换器 (C) 与新增发生器 (A)连通, 将新增吸收器(B)有稀溶液管路经新增溶液泵(D)和新增溶液热交换器(C) 与新增发生器
(A)连通调整为新增吸收器(B)有稀溶液管路经第二溶液热交换器(8) 与第二吸收器(4) 连通, 形成双效基础上的复合第三类吸收式热泵。
25. 第三类吸收式热泵, 是在权利要求 6-8所述的任一第三类吸收式热泵中, 增加第二 冷凝器、 第四节流阀、 新增发生器、 新增吸收器、 新增溶液热交换器和新增溶液泵, 第四发 生器 (16) 增设冷剂蒸汽通道与新增吸收器 (B) 连通, 新增吸收器 (B) 还有稀溶液管路经 新增溶液泵 (D) 和新增溶液热交换器 (C) 与新增发生器 (A) 连通, 新增发生器 (A) 还有 浓溶液管路经新增溶液热交换器(C) 与新增吸收器 (B)连通, 新增发生器(A)还有冷剂蒸 汽通道与第二冷凝器 (23) 连通, 第二冷凝器 (23) 还有冷剂液管路经第四节流阔与第一冷 凝器 (9) 或蒸发器 (10) 连通, 新增发生器 (A) 还有驱动热介质管路与外部连通, 新增吸 收器(B)和第二冷凝器(23)还分别有被加热介质管路与外部连通, 形成三效基础上的复合 权 利 要 求 书 第三类吸收式热泵。
26. 第三类吸收式热泵, 是在权利要求 25所述的任一第三类吸收式热泵中, 取消新增 发生器(A)与外部连通的驱动热介质管路, 增加新增节流阀, 第三发生器 Π2)增设冷剂蒸 汽通道与新增发生器(A)连通后新增发生器(A)再有冷剂液管路经新增节流阀 (E)与第二 冷凝器(23)连通——第三发生器(12) 向新增吸收器(A)提供冷剂蒸汽作驱动热介质, 形 成三效基础上的复合第三类吸收式热泵。
27. 第三类吸收式热泵, 是在权利要求 25所述的任一第三类吸收式热泵中, 取消新增 发生器 (A) 与外部连通的驱动热介质管路, 增加新增节流阀, 第一发生器 (1) 增设冷剂蒸 汽通道与新增发生器(A)连通后新增发生器(A)再有冷剂液管路经新增节流阀 (E)与第二 冷凝器 (23) 连通——第一发生器向新增发生器提供冷剂蒸汽作驱动热介质, 形成三效基础 上的复合第三类吸收式热泵。
28. 第三类吸收式热泵, 是在权利要求 25-27所述的任一第三类吸收式热泵中, 将第一 吸收器(3)有稀溶液管路经第二溶液热交换器(8)与第二吸收器(4)连通调整为第一吸收 器(3)有稀溶液管路经新增溶液泵 (D)和新增溶液热交换器 (C) 与新增发生器 (A)连通, 将新增吸收器(B)有稀溶液管路经新增溶液泵(D)和新增溶液热交换器(C) 与新增发生器
(A)连通调整为新增吸收器(B)有稀溶液管路经第二溶液热交换器 (8) 与第二吸收器(4) 连通, 形成三效基础上的复合第三类吸收式热泵。
29. 第三类吸收式热泵, 是在权利要求 15-16、 22- 28所述的任一第三类吸收式热泵中, 增加第一流量调节阀和第二流量调节阀, 将第一冷凝器(9)和第二冷凝器(23)分别有被加 热介质管路与外部连通确定为外部有被加热介质管路与第二冷凝器 (23) 连通后第二冷凝器
(23)再有被加热介质管路分别经第一流量调节阀(24)与外部连通和经第二流量调节阔(25) 与第一冷凝器 (9) 连通, 第一冷凝器 (9) 再有被加热介质管路与外部连通, 形成复合第三 类吸收式热泵。
PCT/CN2011/001467 2011-09-07 2011-09-07 第三类吸收-发生系统与第三类吸收式热泵 WO2013033860A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/001467 WO2013033860A1 (zh) 2011-09-07 2011-09-07 第三类吸收-发生系统与第三类吸收式热泵

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/001467 WO2013033860A1 (zh) 2011-09-07 2011-09-07 第三类吸收-发生系统与第三类吸收式热泵

Publications (1)

Publication Number Publication Date
WO2013033860A1 true WO2013033860A1 (zh) 2013-03-14

Family

ID=47831411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001467 WO2013033860A1 (zh) 2011-09-07 2011-09-07 第三类吸收-发生系统与第三类吸收式热泵

Country Status (1)

Country Link
WO (1) WO2013033860A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104006567A (zh) * 2013-05-08 2014-08-27 李华玉 分路循环第一类吸收式热泵
CN104833128A (zh) * 2014-04-07 2015-08-12 李华玉 第四类吸收式热泵

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04268170A (ja) * 1991-02-21 1992-09-24 Hitachi Zosen Corp 吸収式ヒートポンプ装置
JP2001174093A (ja) * 1999-12-20 2001-06-29 Tokyo Gas Co Ltd 吸収冷温水機
CN2525442Y (zh) * 2001-12-04 2002-12-11 江苏双良空调设备股份有限公司 两用式第一类溴化锂吸收式热泵
CN101545693A (zh) * 2007-08-27 2009-09-30 李华玉 异类复合吸收式热泵
CN101825369A (zh) * 2010-04-02 2010-09-08 清华大学 一种高效紧凑型高温吸收式热泵机组
CN102042712A (zh) * 2010-12-18 2011-05-04 李华玉 回热式吸收-发生系统与多端供热第三类吸收式热泵
CN102095273A (zh) * 2011-03-01 2011-06-15 李华玉 双发生-双吸收系统与回热式第二类吸收式热泵
CN102095272A (zh) * 2011-02-22 2011-06-15 李华玉 两端供热第二类吸收式热泵
CN102116538A (zh) * 2011-03-06 2011-07-06 李华玉 带有回热供热端的双效与三效第一类吸收式热泵
CN102331107A (zh) * 2011-09-05 2012-01-25 李华玉 第三类吸收-发生系统与第三类吸收式热泵

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04268170A (ja) * 1991-02-21 1992-09-24 Hitachi Zosen Corp 吸収式ヒートポンプ装置
JP2001174093A (ja) * 1999-12-20 2001-06-29 Tokyo Gas Co Ltd 吸収冷温水機
CN2525442Y (zh) * 2001-12-04 2002-12-11 江苏双良空调设备股份有限公司 两用式第一类溴化锂吸收式热泵
CN101545693A (zh) * 2007-08-27 2009-09-30 李华玉 异类复合吸收式热泵
CN101825369A (zh) * 2010-04-02 2010-09-08 清华大学 一种高效紧凑型高温吸收式热泵机组
CN102042712A (zh) * 2010-12-18 2011-05-04 李华玉 回热式吸收-发生系统与多端供热第三类吸收式热泵
CN102095272A (zh) * 2011-02-22 2011-06-15 李华玉 两端供热第二类吸收式热泵
CN102095273A (zh) * 2011-03-01 2011-06-15 李华玉 双发生-双吸收系统与回热式第二类吸收式热泵
CN102116538A (zh) * 2011-03-06 2011-07-06 李华玉 带有回热供热端的双效与三效第一类吸收式热泵
CN102331107A (zh) * 2011-09-05 2012-01-25 李华玉 第三类吸收-发生系统与第三类吸收式热泵

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104006567A (zh) * 2013-05-08 2014-08-27 李华玉 分路循环第一类吸收式热泵
CN104833128A (zh) * 2014-04-07 2015-08-12 李华玉 第四类吸收式热泵
CN104833128B (zh) * 2014-04-07 2017-07-21 李华玉 第四类吸收式热泵

Similar Documents

Publication Publication Date Title
WO2013159261A1 (zh) 多端供热第一类吸收式热泵
CN102116538B (zh) 带有回热供热端的双效与三效第一类吸收式热泵
CN102095273B (zh) 双发生-双吸收系统与回热式第二类吸收式热泵
WO2011091567A1 (zh) 吸收-发生系统和吸收式热泵
WO2014127681A1 (zh) 复合发生第一类吸收式热泵
WO2015143927A1 (zh) 第五类吸收式热泵
WO2012019329A1 (zh) 吸收-再吸收-发生系统与第一类吸收式热泵
WO2012129743A1 (zh) 第三类发生-吸收系统与回热式第三类吸收式热泵
CN101957091A (zh) 回热式三效第一类吸收式热泵
WO2012145869A1 (zh) 三发生-三吸收系统与第三类吸收式热泵
WO2012159228A1 (zh) 第三类吸收-发生系统与第三类吸收式热泵
WO2015149564A1 (zh) 第四类吸收式热泵与第五类吸收式热泵
CN101476798A (zh) 双效与多效及其基础上的第二类吸收式热泵
CN101504216A (zh) 复合吸收-发生体系与高效吸收式机组
CN103148631B (zh) 复合发生第一类吸收式热泵
WO2013033860A1 (zh) 第三类吸收-发生系统与第三类吸收式热泵
WO2014161369A1 (zh) 分路循环第一类吸收式热泵
WO2013138963A1 (zh) 双效回热吸收-发生系统与回热式第一类吸收式热泵
WO2015143924A1 (zh) 第四类吸收式热泵与第五类吸收式热泵
WO2012122683A1 (zh) 第三类发生-吸收系统与第三类吸收式热泵
WO2014161367A1 (zh) 分路循环第一类吸收式热泵
WO2013170406A1 (zh) 分级冷凝第三类吸收式热泵
WO2014180163A1 (zh) 分路循环第一类吸收式热泵
WO2013152463A1 (zh) 分级冷凝第三类吸收式热泵
WO2013075260A1 (zh) 分级冷凝第二类吸收式热泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11872057

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 11872057

Country of ref document: EP

Kind code of ref document: A1