WO2014157509A1 - 黒鉛の製造方法及び黒鉛製造用粒子 - Google Patents

黒鉛の製造方法及び黒鉛製造用粒子 Download PDF

Info

Publication number
WO2014157509A1
WO2014157509A1 PCT/JP2014/058836 JP2014058836W WO2014157509A1 WO 2014157509 A1 WO2014157509 A1 WO 2014157509A1 JP 2014058836 W JP2014058836 W JP 2014058836W WO 2014157509 A1 WO2014157509 A1 WO 2014157509A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
graphitized
furnace
mass
particles
Prior art date
Application number
PCT/JP2014/058836
Other languages
English (en)
French (fr)
Inventor
崇志 前田
邦彦 佐藤
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to US14/781,167 priority Critical patent/US9725323B2/en
Priority to KR1020157026507A priority patent/KR102223726B1/ko
Priority to CN201480018863.XA priority patent/CN105073637B/zh
Priority to EP14772787.9A priority patent/EP2980017B1/en
Publication of WO2014157509A1 publication Critical patent/WO2014157509A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B55/00Coking mineral oils, bitumen, tar, and the like or mixtures thereof with solid carbonaceous material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/005After-treatment of coke, e.g. calcination desulfurization
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • C10B57/045Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition containing mineral oils, bitumen, tar or the like or mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/46Graphite

Definitions

  • the present invention relates to a method for producing artificial graphite and a particulate material used therefor. Specifically, the present invention relates to a production method for efficiently and not damaging the graphitization furnace when producing graphite in a vertical continuous graphite furnace, and particles used for the production method.
  • Graphite is excellent in lubricity, conductivity, heat resistance, acid resistance and alkali resistance, and is used for electrode pastes, casting paints, dry batteries, pencils, refractories, heat insulating materials for steel ropes, rubber resins, solid lubricants, crucibles. , Packing, heat-resistant, heat-resistant products, conductive paint, pencil, electric brush, grease, powder metallurgy, brake pads, linings, clutches, mechanical seals, rubber resin additives, etc. Its application range is extremely wide. In recent years, it is sometimes used as an electrode material of a lithium ion battery by utilizing a phenomenon that Li ions enter a laminated structure portion of graphite crystals. Thus, graphite is used in various fields, and it can be said that establishment of an efficient manufacturing method is extremely important.
  • a graphitizing raw material made of a carbon material such as coke must be pulverized and heated at about 2200 ° C. or more for a long time.
  • Graphite is generally used as a material that can withstand such heating at 2200 ° C. or higher, and a graphite furnace or member is generally used for producing artificial graphite.
  • a furnace is installed in a horizontal direction, and a tray on which a graphitized raw material is placed is moved in a horizontal direction by a conveyor and heated in a graphite furnace.
  • Patent Document 1 a vertical continuous graphite furnace is used in which the furnace is placed vertically, heated inside while dropping the graphitized raw material from the upper part, and the graphite is taken out from the lower part.
  • Patent Document 1 inside the furnace, the raw materials are piled up from the lower part to the upper part and heated, and the raw material corresponding to the amount taken out while the graphite is taken out from the lower part is charged from the upper part. It is present in and is graphitized.
  • the structure is relatively simple, and there is no need for equipment or power for movement. Operation is also simple because no extra wiring is required.
  • the raw material being graphitized contacts the wall surface of the graphite furnace, and the wall surface is damaged depending on the state of the raw material due to friction.
  • impurities present in the raw material particularly sulfur compounds, are gasified and deteriorate the side surface of the furnace.
  • the passage of the inert gas cannot be secured, the distribution becomes uneven, and the gas derived from impurities locally hits the wall of the furnace at a high concentration. Deterioration may occur significantly.
  • the uniformity of heat of the graphitized material is a problem.
  • the present invention relates to a manufacturing method and a manufacturing method that do not damage the furnace, which facilitates the circulation of an inert gas when the artificial graphite is manufactured using a vertical graphitization furnace, can be uniformly heated.
  • the particles to be used are provided.
  • graphitized material particles having an average particle diameter of 3 to 30 mm are charged into the vertical graphitization furnace from the top and heated to 2200 to 3200 ° C. while flowing an inert gas from the bottom to the top.
  • a method for producing graphite comprising at least a step of graphitizing and taking out the graphite obtained from the lower part.
  • the present invention also includes 100 parts by mass of graphitized raw carbon powder having an average particle size of 10 to 20 ⁇ m, 3 to 20 parts by mass of a binder that decomposes at less than 1000 ° C., and 5 to 30 parts by mass of a liquid that dissolves the binder.
  • a particle for producing graphite by a vertical graphitization furnace which is obtained by granulating at least a raw coal mixture containing at least an average particle size of 3 to 30 mm.
  • graphitized raw coal is graphitized using a vertical continuous graphitization furnace.
  • the graphitized raw coal may be put into a vertical continuous graphitization furnace alone, but is preferably added as a graphitized material obtained by adding a binder or the like to the graphitized raw coal as described later.
  • the graphitized material includes graphitized raw coal alone.
  • the vertical continuous graphitization furnace is a tubular heating device installed so that the length direction of the tube is vertical, and the graphitized raw coal that has fallen naturally from the top port is retained in the tube from the bottom. At the same time, it is heated and graphitized.
  • a cylindrical inner tube having an inner wall surface made of graphite and heating means are provided outside the inner tube, and graphitization is performed by the heating unit.
  • the heating means is generally heating using a heating wire, but high frequency or the like may be used. If necessary, the outside of the heating wire is insulated by a heat insulating material or the like. Since the heating means advances graphitization, the graphitized material is heated to 2200 ° C. to 3200 ° C., generally 2400 to 3000 ° C., for example.
  • the inside of the tube is preferably divided into a heating zone and a cooling zone from the top to the bottom, and the graphitized material is introduced into the tube from the top of the heating zone.
  • a preheating zone may be provided above the heating zone. Generally, it is introduced into the inside from a hopper or the like installed at the inlet at the top of the pipe.
  • the heating zone is a part for obtaining graphite by heating the graphitized material to, for example, 2200 ° C. to 3200 ° C.
  • the cooling zone is a part for cooling the obtained graphite to, for example, 30 to 200 ° C.
  • the ratio of the length of the heating zone and the cooling zone is preferably 1: (0.2 to 0.5).
  • the charged graphitized material is graphitized in the heating zone and reaches the cooling zone.
  • the graphitized material introduced later accumulates on the graphitized material introduced earlier, is held in the tube, and is graphitized when the accumulated height exists in the heating zone.
  • an inert gas for example, nitrogen, argon, helium, etc.
  • the flow rate of the inert gas is, for example, 2 to 40 L / min, preferably 4 to 30 L / min.
  • the obtained graphite is taken out from the bottom of the furnace. This extraction method may be taken out without any separation, or may be taken out by a certain amount.
  • FIG. 1 shows an example of a vertical graphitization furnace.
  • the graphitized material M is introduced from the upper part into the pipe 3 from the hopper 2, and in the heating zone 5 while flowing the inert gas IG from the inert gas introduction pipe 4 from the lower part to the upper part. It is heated and graphitized, cooled in the cooling zone 6, and the resulting graphite 7 is taken out from the bottom.
  • Graphitized raw coal is a substance mainly composed of hydrocarbons and graphitizes when heated. Specific examples include petroleum coke, coal coke, and pitch.
  • it is a raw material oil obtained from vacuum distillation oil or bottom oil of a residue fluidized fluid contact device (RFCC) during the processing of crude oil, and particularly has an initial boiling point of 300 ° C. or higher and a total content of asphaltene component and resin component of 25 Petroleum coke obtained by delay coking a mixture of heavy oil having a mass content of 40% by mass or less and an aromatic index fa of 0.3 or more and an initial boiling point of 150 ° C. or more, A scaly graphite powder is obtained. This material is preferable because a hard powder is formed after graphitization.
  • the vacuum distilled oil is obtained by subjecting crude oil to an atmospheric distillation apparatus to obtain gas, light oil, and atmospheric residual oil. Then, the atmospheric residual oil is heated at a furnace outlet temperature of 320 to 360 under a reduced pressure of 10 to 30 Torr, for example. It is a distilled oil of a vacuum distillation apparatus obtained by changing in the range of ° C.
  • the residual oil fluid catalytic cracking unit uses residual oil (normal pressure residual oil, etc.) as a raw material oil and selectively performs a cracking reaction using a catalyst to obtain a high-octane FCC gasoline. Is a fluid catalytic cracking device of the type.
  • the residual oil such as atmospheric residual oil is changed in the reactor reaction temperature (ROT) range of 510 to 540 ° C, and the catalyst / oil mass ratio is changed in the range of 6 to 8.
  • the bottom oil manufactured by letting it be mentioned is mentioned.
  • an operating condition of the residual oil fluid contact device for example, an atmospheric distillation residual oil having a density of 0.9293 g / cm 3 and a residual carbon of 5.5% by mass is reacted at 530 ° C.
  • Fluid catalytic cracking can be achieved at a total pressure of 0.21 MPa and a catalyst / oil ratio of 6.
  • the initial boiling point is a thermometer reading (° C.) when the first drop of distilled oil falls from the lower end of the condensing tube according to JIS K 2254.
  • the contents of the saturated component, the resin component and the asphaltene component can be measured by the TLC-FID method.
  • TLC-FID method a sample is divided into four components by a thin layer chromatography (TLC) into a saturated component, an aroma component, a resin component, and an asphaltene component, and then each sample is detected with a flame ionization detector (FID). The component is detected, and the percentage of each component amount with respect to the total component amount is used as the composition component value.
  • TLC thin layer chromatography
  • FID flame ionization detector
  • microsyringe to spot 1 ⁇ l at the lower end (0.5 cm position of the rod holder) of a silica gel rod-like thin layer (chroma rod) that has been baked in advance, and dry it with a dryer or the like.
  • 10 microrods are taken as one set, and the sample is developed with a developing solvent.
  • the developing solvent hexane is used for the first developing tank, hexane / toluene (volume ratio 20:80) is used for the second developing tank, and dichloromethane / methanol (volume ratio 95: 5) is used for the third developing tank.
  • the saturated component is eluted and developed in the first developing tank using hexane as a solvent.
  • Asphaltene components are developed by elution in a third development tank using dichloromethane / methanol as a solvent after the first development and the second development.
  • the developed chroma rod is set in a measuring instrument (for example, “Iatroscan MK-5” (trade name) manufactured by Diatron (currently Mitsubishi Chemical Yatron)), and each flame ionization detector (FID). Measure the amount of ingredients.
  • the total amount of each component is obtained by summing the amounts of each component.
  • the fragrance index fa can be determined by the Knight method.
  • the distribution of carbon is divided into three components (A 1 , A 2 , A 3 ) as an aromatic carbon spectrum by 13 C-NMR method.
  • a 1 is the number of carbon atoms inside the aromatic ring, half of the substituted aromatic carbon and half of the unsubstituted aromatic carbon (corresponding to a peak of about 40-60 ppm in 13 C-NMR), and A 2 is substituted
  • the remaining half of the aromatic carbon corresponding to about 60-80 ppm peak of 13 C-NMR
  • a 3 is the number of aliphatic carbon (corresponding to about 130-190 ppm peak of 13 C-NMR)
  • the 13 C-NMR method is the best method for quantitatively determining fa, which is the most basic amount of chemical structural parameters of pitches, as described in the literature ("Pitch Characterization II. Chemical Structure” Yokono, Sanada, (Carbon, 1981 (No. 105), p73-81).
  • the delayed coking method is a method of obtaining raw coke by heat treating heavy oil with a delayed coker under pressurized conditions.
  • the conditions for the delayed coker are preferably a pressure of 0.5 to 0.7 MPa and a temperature of 500 to 530 ° C.
  • the raw coke of this delayed coker process contains a large amount of moisture, so it is dried and then crushed and classified.
  • the graphitized raw coal is pulverized as necessary before being introduced into the graphitization furnace.
  • the average particle size of the graphitized raw coal powder is preferably 10 to 20 ⁇ m.
  • the average particle diameter can be measured using a laser diffraction / scattering method.
  • the method of pulverization is optional, but when petroleum coke is used, the petroleum coke is preferably made to about 1 mm to 5 mm with a vibrating sieve or the like and then dried.
  • petroleum coke contains volatile oil components for recovery and moisture when used, and therefore needs to be dried, and the moisture is preferably dried to 1% by mass or less. If necessary, the volatile oil component may be removed by heating at a temperature of preferably about 600 ° C. for 1 to 2 hours.
  • the graphitized material is petroleum coke, coal coke, etc., it may be graphitized as it is.
  • the temperature is preferably about 900 to 1500 ° C. once. It is better to bake. Such calcination is generally performed using a rotary kiln.
  • the obtained powder of graphitized raw coal is granulated.
  • particles having an average particle diameter of 3 to 30 mm are obtained.
  • the shape of the particles is not limited to a spherical shape, an elliptical spherical shape, a barrel shape, or the like, but in general, the particles are preferably processed into a barrel or cylindrical shape of a so-called resin pellet.
  • the average particle diameter is measured by a sieving method using a punching metal sieve described in JIS Z8801-2.
  • the gas flow in the graphitization furnace is poor, and if it exceeds 30 mm, not only is it difficult to produce the particles, but also the operability and the degree of progress of graphitization vary depending on the location. Or it becomes easy to break.
  • the method of pulverizing the graphitized raw coal once and then granulating it is optional, but at least when it is put into the graphitization furnace, it does not collapse, and when graphitization is completed, it can be easily crushed. It must be possible.
  • the extrusion granulation method is a method in which a plastic material is extruded from a die by a screw, piston or roll type extruder to form a cylindrical granulated product.
  • the binder is preferably less than 1000 ° C., more preferably 150 ° C. or more and less than 1000 ° C., and further preferably 200 ° C. to 500 ° C., and evaporates by decomposition or decomposition.
  • the binder is present in the particles before being charged into the graphite furnace, but does not remain in the graphite taken out from the graphite furnace.
  • water-soluble polymers such as polyvinyl alcohol and cellulose, acrylic polymers, and the like.
  • the binder is preferably used in the range of 3 to 20 parts by mass with respect to 100 parts by mass of graphitized raw coal. If the amount of the binder is too much, carbon derived from the binder remains, which may affect the product using graphite.
  • the binder is preferably used by being dissolved or dispersed in a solvent or a dispersion medium.
  • a solvent or a dispersion medium of the binder water, ethanol, polyoxyethylene, polyoxypropylene, alkyl ether, and a mixture thereof can be used.
  • a water-soluble polymer As a binder, it is preferably dissolved in water.
  • a water-soluble polymer When a water-soluble polymer is used, it takes time to absorb water and swell and disperse uniformly in the dispersion medium. It is preferable to disperse the functional polymer in the dispersion medium.
  • the solvent or dispersion medium is preferably used in the range of 5 to 30 parts by mass with respect to 100 parts by mass of graphitized raw coal.
  • the method of blending the graphitized raw material charcoal and the binder is arbitrary, but generally, the prepared powdered graphitized raw material charcoal is charged into a kneader (kneader) together with a solvent or dispersion medium in which the binder is dissolved or dispersed. Then, stirring, mixing, and kneading are performed so that the raw material powder is uniformly dispersed in the liquid to prepare a kneaded product.
  • a blend of graphitized raw coal and a solvent or dispersion medium in which a binder is dissolved or dispersed is charged into a kneading apparatus.
  • the kneading apparatus there is a device in which a stirring blade is rotated to give a disturbing flow motion to the liquid and the graphitized raw material powder to uniformly knead the raw material powder in the liquid, such as a rotor kneader.
  • a surfactant is preferably added to the dispersion medium.
  • the surfactant is preferably 0 to 5 parts by mass with respect to 100 parts by mass of graphitized raw coal.
  • the surfactant preferably used are nonionic or amphoteric surfactants such as trade names: Emulgen, Amphital and the like.
  • a plasticizer, a water-soluble wax, a water-dispersible wax, or the like may be used to facilitate particle formation.
  • the plasticizer include glycols such as glycerin, diglycerin, ethylene glycol, and triethylene glycol, sorbitol, ethanolamine, ethanolacetamide, urea, and the like.
  • the water-soluble or water-dispersible wax is preferably polyethylene glycol having an average molecular weight of 1000 or more, stearic acid or a salt thereof.
  • the amount of the plasticizer, water-soluble wax or water-dispersible wax added is preferably in the range of 0 to 5 parts by mass with respect to 100 parts by mass of the graphitized raw coal.
  • the obtained kneaded product is extruded through an extrusion process to form particles (pellets).
  • particles particles
  • a pre-extrusion type screw granulator as an extrusion device, pressurizing and compressing the kneaded product with the thrust of the screw, and extruding the kneaded product with a die attached to the tip, this process is The most common.
  • the diameter of the die is preferably about 3 to 30 mm.
  • the extruded particles need to be dried after that and are reduced in the drying process, a large diameter die is appropriately used. Also good.
  • the kneaded product When the kneaded product is extruded into a string shape for a long time, it is cut into an appropriate length.
  • a rotating cutter or the like is provided on the front surface of the die, and the cutter can be cut to an appropriate length by rotating the cutter at an appropriate rotational speed.
  • the aspect ratio (diameter / length) of the diameter and length (height) of the cross section is 1.0 to 1.3.
  • the die diameter is approximated to the average particle diameter by the sieving method as the volume equivalent diameter.
  • the extruded particles are dried.
  • hot air is applied to remove the dispersion medium.
  • it is preferably dried at 80 to 150 ° C. for about 1 to 12 hours, but at this time, breakage of the particles must be avoided. If necessary, drying may be accelerated by reducing the pressure to a vacuum.
  • the particles of the graphitized material thus obtained are put into the vertical continuous graphitization furnace described above and heated.
  • the heating method any method can be used as long as the target product can be obtained, but generally, the graphitized material is stacked in the graphitization furnace, and after heating up more than a certain level, the heating is started and the heat is steady. After reaching the state, the graphitized material is charged from the top and recovered from the bottom.
  • the amount to be charged varies depending on the size of the graphitization furnace, but it is preferable to set the heating in the firing section so that the maximum temperature is 2200 to 3000 ° C. and the time is 1 hour to 10 hours.
  • the graphitized raw coal gradually grows crystals depending on the thermal history, but the extent to which the crystals grow depends on the raw materials used, so the maximum heating temperature and time should be limited accordingly.
  • the obtained graphite aggregate is crushed and returned to a powder.
  • Examples of the crushing method include a rotor mill and a jet mill.
  • the recovered graphite can be used for various purposes.
  • Examples 1 to 5 and Comparative Examples 1 to 3 (1) Preparation of graphitized raw coal
  • the graphitized raw coal used is as follows. ⁇ Raw coke 1> (used in Example 1, Comparative Example 1 and Comparative Example 3) A mixture of heavy oil having an initial boiling point of 332 ° C., an asphaltene + resin content of 23% by mass and a saturated content of 47% by mass with an aromatic index of 0.4 or more and an initial boiling point of 160 ° C.
  • the raw coke that was delayed coked at °C was sieved to 3 mm or less with a vibrating sieve, dried at 150 to 200 °C using a hot air circulating furnace until the water content became 1 mass% or less, and then averaged with a rotor mill.
  • the powder was 12 ⁇ m in diameter.
  • ⁇ Raw coke 2> (used in Example 2)
  • a mixture of heavy oil having an initial boiling point of 335 ° C., an asphaltene + resin content of 27% by mass and a saturated content of 43% by mass and a heavy oil having an aromatic index of 0.4 or more and an initial boiling point of 168 ° C. has an average temperature of 450
  • the raw coke that was delayed coked at °C was sieved to 3 mm or less with a vibrating sieve, dried at 150 to 200 °C using a hot air circulating furnace until the water content became 1 mass% or less, and then averaged with a rotor mill.
  • the powder was 12 ⁇ m in diameter.
  • ⁇ Raw coke 3> (used in Example 3 and Comparative Example 2) Commercially available raw coke was sieved to 3 mm or less with a vibrating sieve, dried at 150 to 200 ° C. using a hot air circulating furnace until the water content became 1% by mass or less, and then a rotor mill having an average particle size of 12 ⁇ m. Powdered.
  • ⁇ Calcined coke 1> (used in Example 4) After calcining coke obtained by calcining raw coke 1 at about 1500 ° C. using a rotary kiln to a size of 3 mm or less with a vibrating sieve or the like, a powder having an average particle size of 12 ⁇ m was obtained using a rotor mill.
  • ⁇ Calcined coke 2> (used in Example 5) After calcining the coke 2 obtained by calcining the raw coke 2 at about 1500 ° C. using a rotor kiln to a size of 3 mm or less with a vibrating sieve or the like, a powder having an average particle size of 12 ⁇ m was obtained with a rotor mill.
  • a binder aqueous solution in which a binder (PVA) and a water-soluble wax (polyethylene glycol) are diluted with a solvent (water) is prepared.
  • the aqueous solution is added so that the binder becomes 1 to 20 parts by mass, and an appropriate amount of water is further added and mixed for 30 minutes to form a low-humidity powder or slurry.
  • the low-humidity powder or the slurry coke powder was heated and mixed with a kneader or the like at 50 to 150 ° C., and a die having 5 to 20 mm ⁇ holes was set.
  • pellets were obtained by cutting with an extrusion length of about 5 to 30 mm which is the same as the size of the die. Thereafter, it was dried at about 100 to 150 ° C. for 2 to 10 hours to remove moisture.
  • the hole diameter of the die was used as the particle diameter of the pellet cross section. Since the pellet has this cross section and becomes a cylinder whose height is the cut length, the aspect ratio, which is the ratio of the diameter of the cross section to the length of the cylinder (diameter / length), is 1.0 to 1. Cut to a length of 3.
  • Table 1 shows the composition of each graphitized material to be pelletized and the average particle size of the pellets. In Comparative Examples 1 and 2, the raw coke 1 and 3 powders were graphitized without pelletization. In Comparative Example 3, raw coke 1 was used, and pellets having an average particle diameter of 35 mm ⁇ were used.
  • the lower 1 m is a cooling part by a water cooling jacket, which is discharged to the lower hopper after sufficient cooling so that the substantial graphitization time is 7 to 10 hours.
  • the reaction temperature was set so that the maximum temperature of the sample was 2500-2600 ° C.
  • the graphite powders obtained in Examples 1 and 2 and Examples 4 to 5 had a uniform particle size, and the sulfur content was 1.3 ppm or less.
  • the concentration of carbon disulfide in the furnace exhaust gas was 50 ppm.
  • the graphite powder obtained in Example 3 had irregular particle sizes, but there was no problem in using it as a graphite material, and the sulfur content was 2.0 ppm when measured.
  • the concentration of carbon disulfide in the furnace exhaust gas was 90 ppm, and when the inside of the graphitization furnace was confirmed, no problem was found.
  • the graphite powders obtained in Comparative Examples 1 and 2 were 3.0 ppm when the sulfur content was measured.
  • Comparative Examples 1 and 2 the concentration of carbon disulfide in the furnace exhaust gas was 4600 ppm, and when the inside of the graphitization furnace was confirmed, the top of the first zone was lost. In Comparative Example 3, it was necessary to increase the amount of the binder in order to maintain the shape.
  • Comparative Example 3 it was necessary to increase the amount of the binder in order to maintain the shape.
  • the present invention is a technique for producing artificial graphite using a graphitized material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)

Abstract

 縦型の黒鉛化炉を使用して人造黒鉛を製造するに際して、不活性ガスの流通が容易となり、均一に加熱することが達成でき、炉を傷めない製造方法とかかる製造方法に使用する粒子を提供する。具体的には、平均粒径3~30mmの黒鉛化材料粒子を、縦型黒鉛化炉の内部に上部から投入し、下部から上部に向けて不活性ガスを流しながら2200~3200℃に加熱して黒鉛化させ、下部から得られた黒鉛を取り出す工程を少なくとも含む黒鉛の製造方法を提供する。また、平均粒径10~20μmの黒鉛化原料炭粉末100質量部と、1000℃未満で分解するバインダー3~20質量部と、該バインダーを溶解する液体5~30質量部とを少なくとも含む原料炭配合物を平均粒径3~30mmに粒子化して得られる、縦型黒鉛化炉による黒鉛製造用粒子を提供する。

Description

黒鉛の製造方法及び黒鉛製造用粒子
 本発明は、人造黒鉛の製造方法とそれに使用する粒子化した原料に関する。詳しくは、縦型連続黒鉛炉で黒鉛を製造する際に、効率よく、かつ、黒鉛化炉を傷めないようにする製造方法とそれに使用する粒子に関するものである。
 黒鉛は、潤滑性、導電性、耐熱性、耐酸耐アルカリ性に優れており、電極用ペースト、鋳物塗料剤、乾電池、鉛筆、耐火物、製綱用保温材、ゴム樹脂用、固体潤滑剤、ルツボ、パッキング、耐熱、耐熱品、導電塗料、鉛筆、電気ブラシ、グリース、粉末治金、ブレーキパッド、ライニング、クラッチ、メカニカルシール、ゴム樹脂の添加剤等、従来より様々な用途に使用されており、その応用範囲は極めて広い。
 近年では、黒鉛の結晶の積層構造部分にLiイオンが入り込む現象を利用してリチウムイオン電池の電極材として使用されることもある。
 このように、黒鉛は様々な分野で使用されており、効率的な製造方法の確立は極めて重要といえる。
 一般に、人造黒鉛を製造する際には、コークス等の炭素物質からなる黒鉛化原料を粉末化させて、おおむね2200℃以上で長時間加熱しなくてはならない。こうした2200℃以上の加熱に耐えられる材料は黒鉛が一般的であり、人造黒鉛の製造は黒鉛製の炉や部材を使用するのが一般的である。
 工業的には、アチソン炉を使用し、バッチ式で黒鉛化することも多いが、連続で行うことによって効率的に製造することも取り組まれている。連続的に黒鉛化行うには、炉を横方向に設置し、黒鉛製の炉の中で黒鉛化原料を載せたトレーをコンベアーで横方向に移動して加熱する方法などがある。こうした高温での作業の必要性から、その設備について部品の材料の選択が必要であったり、排ガスの対策や入り口や出口の熱の管理の問題などが生じる。その結果、構造が複雑となり、設置や運用に手間がかかるなどの問題が生じる。
 最近では、炉を縦におき、上部から黒鉛化原料を落下しながら内部で加熱し、下部から黒鉛を取り出す縦型の連続黒鉛炉を使用することもある(特許文献1)。この方法は、炉の内部において、原料を下部から上部にかけて積み上げて加熱し、下方口から黒鉛を取り出しながら取り出した分に相当する原料を上部口から投入することによって、常に一定量の原料が炉の中に存在し、かつ、黒鉛化されていくものである。
 この方法では、加熱される部分が炉の内部のみであり、加熱に耐えるトレーやコンベアーが必要でないので、構造が比較的単純であり、かつ、移動のための設備や動力も必要がないため余分な配線も必要ないため操作も簡単である。
特開平11-209114号公報
 縦型の連続黒鉛化炉においては、黒鉛製の炉の壁面に黒鉛化中の原料が接してしまい、かつ、摩擦を起こすため原料の状態によっては、壁面を傷つけてしまう。また、原料に存在する不純物、特に硫黄化合物がガス化し、炉の側面を劣化させてしまう。特に、粉末で黒鉛化すると、不活性ガスの流通に経路が確保できず、流通が不均一になり局部的に不純物に由来したガスが濃い濃度で炉の壁面にあたることが起こり、炉の内面の劣化が著しく起こることがある。さらには、粉末を使用した方法では、黒鉛化材料の熱の均一化が問題となっている。
 本発明は、縦型の黒鉛化炉を使用して人造黒鉛を製造するに際して、不活性ガスの流通が容易となり、均一に加熱することが達成でき、炉を傷めない製造方法とかかる製造方法に使用する粒子を提供するものである。
 本発明は、平均粒径3~30mmの黒鉛化材料粒子を、縦型黒鉛化炉の内部に上部から投入し、下部から上部に向けて不活性ガスを流しながら2200~3200℃に加熱して黒鉛化させ、下部から得られた黒鉛を取り出す工程を少なくとも含む黒鉛の製造方法を提供する。
 また、本発明は、平均粒径10~20μmの黒鉛化原料炭粉末100質量部と、1000℃未満で分解するバインダー3~20質量部と、該バインダーを溶解する液体5~30質量部とを少なくとも含む原料炭配合物を平均粒径3~30mmに粒子化して得られる、縦型黒鉛化炉による黒鉛製造用粒子を提供する。
 粒状に加工された黒鉛化材料を使用することによって、縦型黒鉛化炉の下部から上部に向けての不活性ガスの流通が容易となり、均一な黒鉛化ができるとともに、不純物に由来するガスが均一に排出されるため、炉を傷めない。
縦型黒鉛化炉の1例を示す断面図である。
 本発明によれば、縦型の連続黒鉛化炉を使用して黒鉛化原料炭が黒鉛化される。黒鉛化原料炭は、単独で縦型の連続黒鉛化炉に投入されてもよいが、好ましくは、後述するように黒鉛化原料炭にバインダーなどを加えた黒鉛化材料として投入する。なお、本明細書では、黒鉛化材料は黒鉛化原料炭単独を含むものとする。
 縦型の連続黒鉛化炉は、管状加熱装置を管の長さ方向が鉛直になるように設置したものであり、その上部口から自然落下された黒鉛化原料炭が、底部から管内に体積保持されるともに、加熱され、黒鉛化されるものである。詳しくは、黒鉛製の内部壁面をもった円筒状の内管と該内管の外部に加熱手段を有し、該加熱手段によって、黒鉛化を行う。
 加熱手段は、電熱線を使用した加熱が一般的であるが、高周波等を使用してもよい。必要に応じて、電熱線の外部は断熱材等によって断熱される。加熱手段は、黒鉛化を進めるということから、黒鉛化材料を、例えば2200℃~3200℃、一般的には2400~3000℃となるように加熱するものである。
 管の内部は、好ましくは、上部から下方に向けて加熱ゾーン及び冷却ゾーンにわかれ、加熱ゾーンの上部から管内へ黒鉛化材料が投入される。必要に応じて、加熱ゾーンの上部に予熱ゾーンを設けることもある。一般的には、管の上部の投入口に設置されたホッパーなどから内部に投入する。
 加熱ゾーンは、黒鉛化材料を、例えば2200℃~3200℃に加熱して黒鉛を得る部分であり、冷却ゾーンは、得られた黒鉛を、例えば30~200℃に冷却する部分である。加熱ゾーンと冷却ゾーンの長さの割合は、好ましくは1:(0.2~0.5)である。
 投入された黒鉛化材料は、加熱ゾーンで黒鉛化され、冷却ゾーンに至る。この際、後に投入された黒鉛化材料は、先に投入された黒鉛化材料の上に積み上がり、管内に保持され、積み上がった高さが加熱ゾーンに存在する時に黒鉛化されていく。この際、安全のために炉の管の底部から不活性ガス(例えば、窒素、アルゴン、ヘリウムなど)を流し、この流れは、上に向かうものである。不活性ガスの流量は、例えば2~40L/分、好ましくは4~30L/分である。
 得られた黒鉛は、炉の底部より取り出される。この取出し方法は区切りなく取り出してもよいし、一定の量づつ取り出してもよい。
 図1は、縦型黒鉛化炉の1例を示す。縦型黒鉛化炉1において、黒鉛化材料Mは、ホッパー2から管3内に上部から投入され、下部から上部に向けて不活性ガス導入管4から不活性ガスIGを流しながら加熱ゾーン5で加熱されて黒鉛化され、冷却ゾーン6で冷却され、得られた黒鉛7が底部から取り出される。
 黒鉛化原料炭は、炭化水素を主とする物質であり、加熱すれば黒鉛化する。具体的には、石油コークス、石炭コークス及びピッチなどが挙げられる。好ましくは、原油の処理の際の減圧蒸留油又は残油流動接触装置(RFCC)のボトム油などから得た原料油で、特に初留点300℃以上、アスファルテン成分及びレジン成分の合計含量が25質量%以下、飽和成分の含量が40質量%以上の重油と芳香族指数fa0.3以上かつ初留点が150℃以上の重油を混合したものをディレードコーキングさせた石油コークスであり、これらは、鱗片状の黒鉛粉が得られるものである。この材料であると黒鉛化後に硬い粉末ができる故、好ましいものである。
 減圧蒸留油は、原油を常圧蒸留装置にかけて、ガス・軽質油・常圧残油を得た後、この常圧残油を、例えば、10~30Torrの減圧下、加熱炉出口温度320~360℃の範囲で変化させて得られる減圧蒸留装置の蒸留油である。
 残油流動接触分解装置(RFCC)は、原料油として残油(常圧残油等)を使用し、触媒を使用して分解反応を選択的に行わせ、高オクタン価のFCCガソリンを得る流動床式の流動接触分解する装置である。残油流動接触分解装置のボトム油としては、例えば、常圧残油等の残油をリアクター反応温度(ROT)510~540℃の範囲で、触媒/油質量比率を6~8の範囲で変化させて製造したボトム油が挙げられる。ここで、残油流動接触装置(RFCC)の運転条件としては、1例を挙げれば、密度0.9293g/cm、残留炭素5.5質量%の常圧蒸留残油を反応温度530℃、全圧0.21MPa、触媒/油比6で流動接触分解し得られる。
 初留点は、JIS K 2254に従って、凝縮管の下端から留出油の最初の1滴が落下したときの温度計の読み(℃)である。
 飽和成分、レジン成分及びアスファルテン成分の含有率は、TLC-FID法により測定できる。TLC-FID法とは、薄層クロマトグラフィー(TLC)により試料を飽和成分、アロマ成分、レジン成分及びアスファルテン成分に4分割し、その後、水素炎イオン化検出器(Flame Ionization Detector:FID)にて各成分を検出し、各成分量の全成分量に対する百分率をもって組成成分値としたものである。
 まず、試料0.2g±0.01gをトルエン10mlに溶解して、試料溶液を調整する。予め空焼きしたシリカゲル棒状薄層(クロマロッド)の下端(ロッドホルダーの0.5cmの位置)にマイクロシリンジを用いて1μlスポットし、ドライヤー等により乾燥させる。次に、このマイクロロッド10本を1セットとして、展開溶媒にて試料の展開を行う。展開溶媒としては、第1展開槽にヘキサン、第2展開槽にヘキサン/トルエン(体積比20:80)、第3展開槽にジクロロメタン/メタノール(体積比95:5)を使用する。飽和成分については、ヘキサンを溶媒とする第1展開槽にて溶出して展開する。アロマ成分については、第1展開の後、第2展開槽にて溶出して展開する。アスファルテン成分については、第1展開、第2展開の後、ジクロロメタン/メタノールを溶媒とする第3展開槽にて溶出して展開する。展開後のクロマロッドを測定器(例えば、ダイアヤトロン社(現三菱化学ヤトロン社)製の「イアトロスキャンMK-5」(商品名))にセットし、水素炎イオン化検出器(FID)で各成分量を測定する。各成分量を合計すると全成分量が得られる。
 芳香指数faは、Knight法により求めることができる。Knight法では、炭素の分布を13C-NMR法による芳香族炭素のスペクトルとして3つの成分(A,A,A)に分割する。ここで、Aは芳香族環内部炭素数、置換されている芳香族炭素と置換されていない芳香族炭素の半分(13C-NMRの約40~60ppmのピークに相当)、Aは置換していない残りの半分の芳香族炭素(13C-NMRの約60~80ppmのピークに相当)Aは脂肪族炭素数(13C-NMRの約130~190ppmのピークに相当)であり、これらから、faは
  fa=(A+A)/(A+A+A
により求められる。13C-NMR法が、ピッチ類の化学構造パラメータの最も基本的な量であるfaを定量的に求められる最良の方法であることは、文献(「ピッチのキャラクタリゼーション II. 化学構造」横野、真田、(炭素、1981(No.105)、p73~81)に示されている。
 ディレードコーキング法は、加圧条件下、ディレードコーカーによって重質油を熱処理して生コークスを得る方法である。ディレードコーカーの条件として、圧力が0.5~0.7MPa、温度が500~530℃の範囲が好ましい。このディレードコーカープロセスの生コークスは、水分を多量に含むため、乾燥した後、粉砕、分級に供する。
 黒鉛化原料炭は、黒鉛化炉に導入される前に必要に応じて粉末化される。
 黒鉛化原料炭の粉末の平均粒径は、好ましくは10~20μmとする。平均粒径は、レーザ回折・散乱法を用いて測定できる。粉末化の方法は任意であるが、石油コークスを使用する場合、好ましくは、石油コークスを振動篩等で1mm~5mm程度にし、その後、乾燥させる。一般的には、石油コークスは回収に揮発性の油成分と使用した際の水分とを含むので乾燥が必要であり、水分を好ましくは1質量%以下まで乾燥させるとよい。必要に応じ、好ましくは600℃程度の温度で1~2時間加熱し、揮発性の油成分を除去させてもよい。
 この後、ジェットミル、ボールミル、ハンマーミルなどを使用して粉末にされる。
 黒鉛化材料が石油コークス、石炭コークス等であれば、このまま黒鉛化することもよいが、そのあとの処理や出来上がる黒鉛粉の性状が良くなるため、一度好ましくは900~1500℃程度の温度でか焼することがよい。かかるか焼はローターリーキルンを用いて行うことが一般的である。
 本発明によれば、得られた黒鉛化原料炭の粉末を粒子化する。粒子化により、平均粒径が3~30mmの粒子を得る。粒子の形状は、球形、楕円球形、樽型等問わないが、一般的には、樽状又は円筒状のいわゆる樹脂ペレットの形状をしているものに加工することがよい。平均粒径は、JIS Z 8801-2に記載したパンチングメタルのふるいを用いたふるい分け法を用い測定する。
 粒子の平均粒径が3mm未満であると黒鉛化炉内の気体の流れが悪く、30mmを超えると粒子の製造が困難であるだけでなく、操作性や黒鉛化の進行の程度が場所によって異なり、あるいは、破損しやすくなる。
 黒鉛化原料炭を一旦粉末化した後、粒子化する方法は、任意であるが、少なくとも黒鉛化炉に投入した際に崩れずに、かつ、黒鉛化が終了した際に、簡単に解砕ができるというものでなくてはならない。
 粒子化方法としては、多種の造粒方法が存在し、基本的な特徴より、転動型造粒法、流動層型造粒法、押出型造粒法、圧縮型造粒法、解砕型造粒法などが挙げられ、特に好ましくは押出型造粒法である。押出型造粒法は、スクリュー、ピストン又はロール式の押出し機によって可塑性材料をダイスより押し出して円筒状の造粒物とする方法である。
 かかる粒子を製造するには、好ましくは、バインダーを混合して粒子化することが良い。バインダーを使用することによって、黒鉛化原料炭の粉末から製造される粒子の形状が安定するが、最終的に黒鉛は粉末として使用され、かつ、黒鉛以外の成分が残留していると不都合であるので黒鉛化炉のなかで分解をしてしまうものが良い。
 バインダーとしては、好ましくは1000℃未満、より好ましくは150℃以上1000℃未満、さらに好ましくは200℃~500℃で、蒸発又は分解して蒸発してしまうものが良い。すなはち、バインダーは、黒鉛炉に投入前の粒子には存在するが、黒鉛炉から取り出される黒鉛には残存しないものがよい。具体的には、ポリビニルアルコール、セルロースなどの水溶性高分子、アクリルポリマー等である。
 バインダーは、黒鉛化原料炭100質量部に対して、好ましくは3~20質量部の範囲で使用する。これ以上バインダーの量が多いとバインダー由来の炭素が残存してしまい、黒鉛をつかった製品に影響を与えてしまうことがあるので好ましくない。
 バインダーは、好ましくは溶媒又は分散媒に溶解又は分散して用いられる。
 バインダーの溶媒又は分散媒としては、水、エタノール、ポリオキシエチレン、ポリオキシプロピレン、アルキルエーテル及びそれらの混合物などを使用できる。バインダーとして水溶性高分子を使用する際には、好ましくは水に溶解して使用する。水溶性高分子を使用する場合は、水分を吸収して膨潤して分散媒中に均一に分散するのに時間がかかるため、粒子化する装置(例えば混練装置)への投入に先立ち、予め水溶性高分子を分散媒中に分散させておくことが好ましい。
 溶媒又は分散媒は、黒鉛化原料炭100質量部に対して好ましくは5~30質量部の範囲で使用する。バインダー又は溶媒もしくは分散媒が少ないと粒子化するのが困難になる場合があり、バインダー又は溶媒もしくは分散媒との量が多すぎれば、粒子の内部に空洞ができ、粒子が弱くなってしまう場合があり、炉の下部で粒子が壊れてしまい、粉末化してしまうという問題が起こる場合がある。粉末化されると、炉下部から不活性ガスの流れが粉の抵抗により妨げられ、コークスに含有する硫黄によって、炉材である炭素と反応するために、黒鉛化炉内の壁面が傷つけられる。
 黒鉛化原料炭とバインダーの配合方法は任意であるが、一般的には用意した粉末化された黒鉛化原料炭を、バインダーを溶解又は分散した溶媒又は分散媒とともに混練装置(ニーダ)に投入し、液体中に原料粉末が均一に分散するよう、撹拌、混合、捏和を行い、混練物を作製する。好ましくは、黒鉛化原料炭と、バインダーを溶解又は分散した溶媒又は分散媒との配合物を、混練装置に投入する。
 混練装置の一例としては、撹拌羽根を回転させることにより液体と黒鉛化原料粉末に撹乱流動運動を与えて液体中に原料粉末を均一に混練するものが挙げられ、ローターニーダーなどが挙げられる。
 混練する際に、好ましくは分散媒中に界面活性剤を添加する。界面活性剤の添加により、分散中に原料粉末がより均一に分散する効果、もしくはより短時間で均一に分散する効果が得られる。界面活性剤は、黒鉛化原料炭100質量部に対して、好ましくは0~5質量部である。
 界面活性剤としては、好ましくは、商品名:エマルゲン、アンヒトールなどの非イオン系又は両性活性剤が用いられる。
 必要に応じて、可塑剤、水溶性ワックス又は水分散性ワックスなどを使用して、粒子化をしやすくしてもよい。
 可塑剤としては、グリセリン、ジグリセリン、エチレングリコール、トリエチレングリコール等のグリコール類、ソルビトール、エタノールアミン、エタノールアセトアミド、尿素等を挙げることができる。
 水溶性又は水分散性ワックスとしては、好ましくは平均分子量1000以上のポリエチレングリコール、ステアリン酸又はその塩等が挙げられる。
 可塑剤、水溶性ワックス又は水分散性ワックスの添加量は、それぞれ、黒鉛化原料炭100質量部に対して好ましくは0~5質量部の範囲である。
 得られた混練物は、押出工程をへて押出成形されて粒子(ペレット)化される。
 例えば、押出装置として前押出式スクリュー造粒機を使用して、スクリューの推力により混練物を加圧、圧縮し、先端部に取り付けたダイスにより混練物を押し出し成形するものであり、かかる工程は最も一般的なものである。この際、溶媒が蒸発して気泡を作らないような温度で押し出しをする必要がある。
 この際、ダイスの直径は、好ましくは3~30mm程度であるが、押し出し成型された粒子はその後、乾燥する必要があり、乾燥工程で縮小するので、適宜、大き目の直径のダイスを使用してもよい。
 混練物が長く紐状に押し出される場合は適当な長さに切断する。この場合は、例えばダイスの前面に回転するカッタ等を設け、適当な回転数でカッタを回転させれば適当な長さに切断できる。このとき、切断長さを高さとする円筒状の粒子となるため、断面の直径と長さ(高さ)の比(直径/長さ)であるアスペクト比が1.0~1.3である場合にはダイス径が体積相当径としてふるい分け法による平均粒子径と近似する。
 押し出された粒子は、乾燥される。
 乾燥は、熱風をかけて分散媒を除去する。この際、好ましくは80~150℃にて1時間~12時間程度乾燥するが、この際、粒子の破損を避けなければならない。必要に応じて、減圧~真空とすることによって乾燥を促進してもよい。
 こうして得られた、黒鉛化材料の粒子は、先に述べた縦型の連続黒鉛化炉に投入され加熱されていく。
 加熱方法については、目的とする製品ができればどのような方法でも良いが、一般的には、黒鉛化炉内に黒鉛化材料を積み上げ、一定以上積み上がったのちに加熱を開始し、熱が定常状態になった後に、黒鉛化材料を上部から投入、かつ、下部からの回収を行う。この投入量は、黒鉛化炉の大きさによって異なるが、焼成部での加熱が最大温度2200~3000℃、時間が1時間~10時間になるように設定するのが良い。
 黒鉛化原料炭は、熱履歴によって、徐々に結晶を成長させていくが、どこまで結晶が成長するのかは使用する原料によって異なるため、それによって最大の加熱の温度、時間を制限するべきである。
 黒鉛化材料の加熱により黒鉛化材料粒子に含まれていたバインダーは完全に分解されているので、縦型の連続黒鉛化炉から取り出されたものには黒鉛だけが残存している。得られた黒鉛凝集物は、解砕されて粉末に戻る。解砕方法としては、ローターミル、ジェットミル等が挙げられる。
 回収した黒鉛は、各種用途に使用することができる。
 以下、実施例及び比較例によって本発明を説明するが、本発明は実施例に限定されるものではない。
実施例1~5及び比較例1~3
(1)黒鉛化原料炭の準備
 使用した黒鉛化原料炭は、以下の通りである。
<生コークス1>(実施例1、比較例1及び比較例3で使用)
 初留点332℃、アスファルテン+レジン分の含量が23質量%、飽和分の含量が47質量%の重油と芳香族指数0.4以上かつ初留点が160℃の重油の混合物を平均温度450℃でディレードコーキングした生コークスを、振動篩で3mm以下に篩ったのち、150~200℃で熱風循環炉を用いて水分が1質量%以下になるまで乾燥させたのち、ローターミルで平均粒径12μmの粉末とした。
<生コークス2>(実施例2で使用)
 初留点335℃、アスファルテン+レジン分の含量が27質量%、飽和分の含量が43質量%の重油と芳香族指数0.4以上かつ初留点が168℃の重油の混合物を平均温度450℃でディレードコーキングした生コークスを、振動篩で3mm以下に篩ったのち、150~200℃で熱風循環炉を用いて水分が1質量%以下になるまで乾燥させたのち、ローターミルで平均粒径12μmの粉末とした。
<生コークス3>(実施例3と比較例2で使用)
 市販の生コークスを、振動篩で3mm以下に篩ったのち、150~200℃で熱風循環炉を用いて水分が1質量%以下になるまで乾燥させたのち、ローターミルで平均粒径12μmの粉末とした。
<か焼コークス1>(実施例4で使用)
 ローターリーキルンを用いて生コークス1を約1500℃でか焼して得られたか焼コークスを振動篩等で3mm以下に篩ったのち、ローターミルで平均粒径12μmの粉末とした。
<か焼コークス2>(実施例5で使用)
 ローターリーキルンを用いて生コークス2を約1500℃でか焼して得られたか焼コークスを振動篩等で3mm以下に篩ったのち、ローターミルで平均粒径12μmの粉末とした。
(2)ペレット化
 バインダー(PVA)と、水溶性ワックス(ポリエチレングリコール)を溶媒(水)で希釈したバインダー水溶液を作製、セメントミキサー(リボンミキサー等)に先の粉末コークス100質量部に対し、バインダー水溶液をバインダーが1~20質量部となるように加え、さらに適量の水を加えて30分間混合し、低湿粉体化又はスラリー化する。
 その後、低湿粉体又はスラリー化したコークス粉体をニーダー等で50~150℃で加熱、撹拌混合し5~20mmφの孔を有したダイスを設置した。押出し成型機を用いて、ダイスの大きさと同じ押出し長さ5~30mm程度でカットしペレットを得た。
 その後、約100~150℃で2~10時間乾燥させて、水分を除去した。ダイスの孔径をもってペレット断面の粒径とした。ペレットは、この断面を有し、カットされた長さを高さとする円筒となるため、断面の直径と円筒の長さの比(直径/長さ)であるアスペクト比を1.0~1.3とする長さでカットした。
 ペレット化の対象となった各黒鉛化材料の組成とペレットの平均粒径を表1に示す。比較例1~2では、ペレット化を行うことなく、それぞれ生コークス1と3の粉末を黒鉛化にした。比較例3は、生コークス1を用い、平均粒径35mmφのペレットを使用した。
Figure JPOXMLDOC01-appb-T000001
(3)黒鉛化
 高さ5メートル、直径20cmの加熱部分をもつ、円筒形の直立黒鉛炉を用いて黒鉛化させた。黒鉛炉の下部から毎分20l程度の窒素ガスを導入し、黒鉛炉の5分の4程度高さまで比較例1、2以外はペレット試料を詰めて反応を行った。比較例1、2はそれぞれペレット化しない粉末状の生コークス1と生コークス3を用いた。焼成方法は炉加熱部1100mm×3ゾーンで上から、1・2ゾーン2500~2600℃の高温部(焼成部)3ゾーンは1900~2100℃(焼鈍部もしくは第1冷却部)となっている。
 さらに下1mは水冷ジャケットによる冷却部となっていて、十分冷却後に下ホッパーに排出、実質上の黒鉛化時間が7~10時間となるようにした。
 反応温度は、試料が最高温度2500~2600℃となるようにした。
(4)黒鉛凝集物の解砕
 ボールミルを用い、黒鉛凝集物を解砕し粉末に戻した。
(5)黒鉛及び黒鉛炉内部の評価
 黒鉛粉末の性状を観察し、その硫黄分を蛍光X線分析装置を用いて測定した。また、黒鉛炉の内部を観察した。
 実施例1~2及び実施例4~5で得られた黒鉛粉末は、粒径がそろっており、硫黄分を測定すると、1.3ppm以下であった。実施例1~2及び実施例4~5において、炉排ガス中の二硫化炭素濃度は50ppmであり、黒鉛化炉の内部を確認したところ、問題は見いだされなかった。
 実施例3で得られた黒鉛粉末は、粒径が不ぞろいであったが、黒鉛材料としての使用は問題がなく、硫黄分を測定すると、2.0ppmであった。実施例3において、炉排ガス中の二硫化炭素濃度は90ppmであり、黒鉛化炉の内部を確認したところ、問題は見いだされなかった。
 比較例1~2で得られた黒鉛粉末は、硫黄分を測定すると、3.0ppmであった。比較例1~2において、炉排ガス中の二硫化炭素濃度は4600ppmであり、黒鉛化炉の内部を確認したところ、第一ゾーンの上がえぐれていた。
 比較例3では、形状を保つために、バインダーの量を多くする必要があった。実施例1と同じ炉、同じ条件で黒鉛化した場合、中心部の黒鉛化が不十分な粒子が存在し、実施例1と同じ炉、2倍の時間となるように黒鉛化した場合、周辺部と中心部の黒鉛化度が違う粒子が多数存在した。どちらの場合においても、黒鉛化時に粒子の崩れが多かった。
 上記結果が示すように、粉末、もしくは粉末に近い状態で黒鉛化した場合、黒鉛化炉内の壁面(黒鉛製)がえぐれているという状況が発生していた。粉末である場合、炉下部から不活性ガス(窒素)の流れが粉の抵抗により、流量が極端に小さい又は流れないためにコークスに含有する硫黄によって、炉材である炭素と反応するために、このような現象がおこると推測された。また、粉末であると、石油由来の硫黄分が除去されにくくなることがわかった。これは、気体が炉内を流れにくくなったり、気体の流れが不均一になり、気体が流れない部分が生じたためと推測された。黒鉛化材料を粒子化して気体をできるだけ均一に流すことは必要であるが、一定以上の大きさの粒子であると、内部と外部に黒鉛化に差が出て好ましくない。
 また、バインダー、溶媒又は分散媒の量によっては、粒子が黒鉛化中で破壊されて粉末に戻り、粒子化の効果を減少させる。
 本発明は、黒鉛化材料を用いて人造黒鉛を製造するための技術である。
1 縦型黒鉛化炉
2 ホッパー
3 管
4 不活性ガス導入管
5 加熱ゾーン
6 冷却ゾーン
M 黒鉛化材料
G 黒鉛
IG 不活性ガス     

Claims (6)

  1.  平均粒径3~30mmの黒鉛化材料粒子を、縦型黒鉛化炉の内部に上部から投入し、下部から上部に向けて不活性ガスを流しながら2200~3200℃に加熱して黒鉛化させ、下部から得られた黒鉛を取り出す工程を少なくとも含む黒鉛の製造方法。
  2.  上記黒鉛化材料粒子が、平均粒径10~20μmの黒鉛化原料炭粉末を粒子化したものを少なくとも含む請求項1に記載の黒鉛の製造方法。
  3.  上記黒鉛化材料粒子が、平均粒径10~20μmの黒鉛化原料炭粉末100質量部と、1000℃未満で蒸発又は分解して蒸発するバインダー3~20質量部と、該バインダーを溶解又は分散する溶媒又は分散媒5~30質量部とを少なくとも含む配合物を粒子化したものである請求項1に記載の黒鉛の製造方法。
  4.  上記バインダーが水溶性高分子であり、上記溶媒が水である請求項3に記載の黒鉛の製造方法。
  5.  上記縦型黒鉛化炉の下部から取り出された黒鉛を解砕して黒鉛粉末を得る工程をさらに含む請求項1~4のいずれかに記載の黒鉛の製造方法。
  6.  平均粒径10~20μmの黒鉛化原料炭粉末100質量部と、1000℃未満で蒸発又は分解して蒸発するバインダー3~20質量部と、該バインダーを溶解又は分散する溶媒又は分散媒5~30質量部とを少なくとも含む配合物を平均粒径3~30mmに粒子化して得られる、縦型黒鉛化炉による黒鉛製造用粒子。                
PCT/JP2014/058836 2013-03-29 2014-03-27 黒鉛の製造方法及び黒鉛製造用粒子 WO2014157509A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/781,167 US9725323B2 (en) 2013-03-29 2014-03-27 Method for producing graphite and particulates for graphite production
KR1020157026507A KR102223726B1 (ko) 2013-03-29 2014-03-27 흑연의 제조 방법 및 흑연 제조용 입자
CN201480018863.XA CN105073637B (zh) 2013-03-29 2014-03-27 生产石墨的方法以及用于石墨生产的颗粒
EP14772787.9A EP2980017B1 (en) 2013-03-29 2014-03-27 Method for producing graphite and particles for graphite production

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013072704A JP5996473B2 (ja) 2013-03-29 2013-03-29 黒鉛の製造方法及び黒鉛製造用粒子
JP2013-072704 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014157509A1 true WO2014157509A1 (ja) 2014-10-02

Family

ID=51624470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058836 WO2014157509A1 (ja) 2013-03-29 2014-03-27 黒鉛の製造方法及び黒鉛製造用粒子

Country Status (6)

Country Link
US (1) US9725323B2 (ja)
EP (1) EP2980017B1 (ja)
JP (1) JP5996473B2 (ja)
KR (1) KR102223726B1 (ja)
CN (1) CN105073637B (ja)
WO (1) WO2014157509A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6320023B2 (ja) * 2013-12-20 2018-05-09 日本電極株式会社 黒鉛粉の製造装置及びその方法
CN106829952B (zh) * 2017-02-27 2019-10-25 陕西六元碳晶股份有限公司 一种提高石墨化提纯推舟炉效果的方法
CN106833704A (zh) * 2017-03-31 2017-06-13 北京神雾电力科技有限公司 一种煤热解产合成气系统及方法
US20210091373A1 (en) * 2018-03-28 2021-03-25 Hitachi Chemical Company, Ltd. Method for manufacturing negative electrode material for lithium-ion secondary battery, and method for manufacturing lithium-ion secondary battery
CN108649406B (zh) * 2018-04-26 2020-01-31 大同新成新材料股份有限公司 一种用于制造电刷的复合材料制备工艺
DE102019126394A1 (de) * 2019-09-30 2021-04-01 Onejoon Gmbh Verfahren zum Herstellen von Graphit und vertikaler Graphitierungsofen
CN111847442A (zh) * 2020-08-24 2020-10-30 江苏润美新材料有限公司 一种可连续生产人造石墨的高温炉窑
KR102315610B1 (ko) 2021-06-10 2021-10-21 에스아이에스 주식회사 수직형 흑연화로 시스템
CN114105132A (zh) * 2021-11-19 2022-03-01 四川金汇能新材料股份有限公司 连续石墨化系统
CN114292106B (zh) * 2021-12-03 2023-05-26 曲阜师范大学 一种煤炭快速转化高质量石墨的制备方法
CN114314580B (zh) * 2021-12-30 2023-04-25 宁波杉杉新材料科技有限公司 一种复合石墨负极材料及其制备方法和应用
CN116481327A (zh) * 2022-08-24 2023-07-25 石门楚晶新材料有限责任公司 一种石墨用多功能生产装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11171519A (ja) * 1997-12-16 1999-06-29 Hitachi Chem Co Ltd 黒鉛粉末、その製造法、リチウム二次電池用負極及びリチウム二次電池
JPH11209114A (ja) 1998-01-22 1999-08-03 Hitachi Chem Co Ltd 黒鉛の製造法、リチウム二次電池及びその負極
JPH11322317A (ja) * 1998-05-18 1999-11-24 Ishikawajima Harima Heavy Ind Co Ltd 黒鉛化電気炉
JPH11322318A (ja) * 1998-05-18 1999-11-24 Ishikawajima Harima Heavy Ind Co Ltd 電気炉
JP2001089118A (ja) * 1999-09-16 2001-04-03 Hitachi Chem Co Ltd 黒鉛粒子、その製造法、リチウム二次電池用負極及びリチウム二次電池
JP2004099438A (ja) * 2003-10-17 2004-04-02 Hitachi Chem Co Ltd 黒鉛粉末、リチウム二次電池用負極及びリチウム二次電池
JP2005289803A (ja) * 1996-12-26 2005-10-20 Hitachi Chem Co Ltd 黒鉛粒子、黒鉛粒子を用いた黒鉛ペースト、リチウム二次電池用負極及びリチウム二次電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1975259A (en) * 1929-04-27 1934-10-02 Peter C Reilly Method of producing graphitic carbon
US4209332A (en) 1978-08-24 1980-06-24 Sakura Color Products Corp. Method for manufacturing pencil leads
DE3876913T2 (de) * 1987-09-18 1993-05-27 Mitsubishi Petrochemical Co Herstellung von kohlenstoffhaltigen pulvern und ihre granulierung.
CN1881664B (zh) 1996-08-08 2010-06-09 日立化成工业株式会社 石墨颗粒
US6344296B1 (en) 1996-08-08 2002-02-05 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
JP2002083595A (ja) 2000-09-06 2002-03-22 Mitsubishi Gas Chem Co Inc コークス、人造黒鉛および非水溶媒二次電池負極用炭素材料の製造法とピッチ組成物
CN201473319U (zh) 2009-07-30 2010-05-19 株洲红亚电热设备有限公司 用于碳粉高温石墨化的立式石墨化炉
CN101798221B (zh) 2010-03-09 2012-10-10 武汉科技大学 一种细结构石墨材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005289803A (ja) * 1996-12-26 2005-10-20 Hitachi Chem Co Ltd 黒鉛粒子、黒鉛粒子を用いた黒鉛ペースト、リチウム二次電池用負極及びリチウム二次電池
JPH11171519A (ja) * 1997-12-16 1999-06-29 Hitachi Chem Co Ltd 黒鉛粉末、その製造法、リチウム二次電池用負極及びリチウム二次電池
JPH11209114A (ja) 1998-01-22 1999-08-03 Hitachi Chem Co Ltd 黒鉛の製造法、リチウム二次電池及びその負極
JPH11322317A (ja) * 1998-05-18 1999-11-24 Ishikawajima Harima Heavy Ind Co Ltd 黒鉛化電気炉
JPH11322318A (ja) * 1998-05-18 1999-11-24 Ishikawajima Harima Heavy Ind Co Ltd 電気炉
JP2001089118A (ja) * 1999-09-16 2001-04-03 Hitachi Chem Co Ltd 黒鉛粒子、その製造法、リチウム二次電池用負極及びリチウム二次電池
JP2004099438A (ja) * 2003-10-17 2004-04-02 Hitachi Chem Co Ltd 黒鉛粉末、リチウム二次電池用負極及びリチウム二次電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2980017A4 *
YOKONO; OSADA: "Characterization of Pitches II. Chemical Structures", CARBON, 1981, pages 73 - 81

Also Published As

Publication number Publication date
EP2980017B1 (en) 2018-12-12
EP2980017A1 (en) 2016-02-03
JP2014196211A (ja) 2014-10-16
CN105073637A (zh) 2015-11-18
EP2980017A4 (en) 2016-12-07
CN105073637B (zh) 2018-02-13
US9725323B2 (en) 2017-08-08
KR20150134351A (ko) 2015-12-01
US20160280549A1 (en) 2016-09-29
KR102223726B1 (ko) 2021-03-05
JP5996473B2 (ja) 2016-09-21

Similar Documents

Publication Publication Date Title
JP5996473B2 (ja) 黒鉛の製造方法及び黒鉛製造用粒子
JP6876874B2 (ja) 非水電解質二次電池負極用炭素質材料の製造方法及び製造装置
CA2034725A1 (fr) Procede d'obtention de corps solides poreux a base de carbure refractaire a l'aide de composes organiques et de metal ou metalloide
KR101901841B1 (ko) 하이브리드 카본 블랙 입자를 생산하기 위한 방법 및 장치
JP6215112B2 (ja) 高周波を使用した二段加熱方式縦型黒鉛化炉および黒鉛の製造方法
EP3309489A1 (en) Heat treatment apparatus for carbonaceous grains and method therefor
JP2007019257A (ja) 電極材料用低温焼成炭素
CN104843699A (zh) 一种利用废弃粉状活性炭制备糖液脱色用成型颗粒活性炭的方法
CA2744889C (en) Sinterable semicoke powder with high bulk density
US20160207777A1 (en) Chemical activation of carbon with at least one additive
WO2018116947A1 (ja) 球状活性炭およびその製造方法
JP2012510417A5 (ja)
KR102176380B1 (ko) 석유 또는 석탄으로부터 유래된 코크스를 위한 촉매 활성 첨가제
KR20180120195A (ko) 알칼리 활성탄의 제조방법
KR102349823B1 (ko) 흡착제 조성물 및 제조 과정
RU2394870C1 (ru) Наноструктурированный каменноугольный пек и способ его получения
CN110536863A (zh) 碳粉末及其制备方法
JP4857540B2 (ja) 成型炭の製造方法およびコークスの製造方法
JP5926136B2 (ja) 等方性黒鉛用の球形原料炭組成物、炭素質球形炭素材、黒鉛質球形炭素材およびこれらの製造方法
JP6877886B2 (ja) 成型炭用バインダーの製造方法
RU2257341C1 (ru) Способ получения тонкозернистого графита
JP2016136451A (ja) 非水電解質二次電池用負極材料の製造方法
SU973509A1 (ru) Способ получени антифрикационных изделий
JP2004124014A (ja) 仮焼コークス及びその製造方法
WO2022243296A1 (en) Pulverulent acetylene black material, process for its production, and compositions, manufactured articles and uses thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480018863.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14772787

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157026507

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14781167

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014772787

Country of ref document: EP