WO2014157490A1 - 回転砥石のツルーイング方法及びそのツルーイング方法を実施するための研削盤 - Google Patents

回転砥石のツルーイング方法及びそのツルーイング方法を実施するための研削盤 Download PDF

Info

Publication number
WO2014157490A1
WO2014157490A1 PCT/JP2014/058791 JP2014058791W WO2014157490A1 WO 2014157490 A1 WO2014157490 A1 WO 2014157490A1 JP 2014058791 W JP2014058791 W JP 2014058791W WO 2014157490 A1 WO2014157490 A1 WO 2014157490A1
Authority
WO
WIPO (PCT)
Prior art keywords
grindstone
truing
conical surface
workpiece
rotating
Prior art date
Application number
PCT/JP2014/058791
Other languages
English (en)
French (fr)
Inventor
大介 三島
久幸 長屋
後藤 慶太
Original Assignee
株式会社ジェイテクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイテクト filed Critical 株式会社ジェイテクト
Priority to US14/781,105 priority Critical patent/US20160059381A1/en
Priority to CN201480019385.4A priority patent/CN105073341B/zh
Priority to DE112014001748.5T priority patent/DE112014001748T5/de
Publication of WO2014157490A1 publication Critical patent/WO2014157490A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/04Devices or means for dressing or conditioning abrasive surfaces of cylindrical or conical surfaces on abrasive tools or wheels
    • B24B53/053Devices or means for dressing or conditioning abrasive surfaces of cylindrical or conical surfaces on abrasive tools or wheels using a rotary dressing tool

Definitions

  • One aspect of the present invention relates to a truing method for a rotating grindstone and a grinding machine employing the truing method.
  • Such a conical surface WC of the workpiece W is ground by rotating the workpiece W about the axis and bringing the disc-shaped rotary grindstone TA into contact with the conical surface WC.
  • the above-described rotary grindstone TA is a so-called angular grindstone TA whose outer peripheral grinding surface TA1 is inclined with respect to the grindstone rotation axis ZTA and has a length substantially equal to the width of the conical surface WC.
  • the angular grindstone TA is attached to a grinding machine and rotated around the grindstone rotation axis ZTA by a driving force such as a motor. Then, the workpiece W is rotated around the workpiece rotation axis ZW by a separate drive source, and the grinding surface TA1 of the rotating angular grindstone TA is brought into contact with the conical surface WC for grinding.
  • the conical surface WC of the workpiece W is ground, the conical surface WC1 closer to the workpiece rotation axis ZW and the conical surface WC2 farther from the workpiece rotation axis ZW are closer to the workpiece rotation axis ZW.
  • the peripheral speed is fast.
  • the difference in the grinding removal amount is caused by the difference in the diameter of the workpiece W on the conical surface WC, and the finished finished surface roughness is different.
  • the angular grindstone TA has a shape in which the grinding surface TA1 is inclined with respect to the grindstone rotation axis ZTA, and thus has a large diameter portion TA3 having a relatively large outer diameter and a small diameter portion TA2 having a small diameter. Therefore, the grinding surface TA1 of the angular grindstone TA has a tendency that the number of abrasive grains arranged in the circumferential direction of the large diameter portion TA3 is relatively larger than the number of abrasive grains arranged in the circumferential direction of the small diameter portion TA2. .
  • the small-diameter portion TA2 of the grinding surface TA1 of the angular grindstone TA tends to increase the finished surface roughness after processing the workpiece W as the workpiece W is processed with a smaller number of abrasive grains than the large-diameter portion TA3. is there.
  • the large-diameter portion TA3 of the angular grindstone TA abuts on the conical surface WC1 on the side close to the workpiece rotation axis ZW, and the cone on the side far from the workpiece rotation axis ZW.
  • the small diameter portion TA2 of the angular grindstone TA comes into contact with the surface WC2. Therefore, the finished surface roughness of the finished conical surface WC of the workpiece W is combined with the influence caused by the difference in the peripheral speed of the workpiece W and the influence caused by the difference in the number of abrasive grains of the angular grindstone TA.
  • the conical surface WC2 on the far side is rougher.
  • Patent Document 1 uses a rotating grindstone having a grinding surface smaller than the width of the conical surface of the workpiece to move the rotating grindstone abutting on the conical surface along the generatrix of the conical surface. It is to be ground. At the time of grinding, an attempt is made to make the finished surface roughness of the conical surface within a desired intersection by changing the rotation speed of the workpiece.
  • One aspect of the present invention has been devised in view of such points, and the problem to be solved is that when the conical surface of the work is ground, the conical surface on the side close to the work rotation axis; The conical surface far from the workpiece rotation axis can reduce the difference in finished surface roughness and can process the workpiece more efficiently.
  • the present invention includes a truing method for a rotating grindstone and a grinding machine according to the following aspect.
  • the axial length of the rotating grindstone on the outer peripheral surface of the rotating grindstone is substantially equal to the length of the generatrix of the conical surface of the workpiece, whereby the rotating grindstone is placed on the conical surface.
  • the surface state of the rotating grindstone can be changed by changing the relative movement speed of the truer during truing.
  • the grinding surface roughness of the is relatively fine.
  • the outer grindstone of the rotating grindstone is brought into contact with the conical surface for grinding. Since it can grind without moving a rotary grindstone relatively in the generatrix direction of a conical surface, a work can be processed efficiently. Therefore, when the workpiece conical surface is ground, the difference in surface roughness between the conical surface near the workpiece rotation axis and the cone surface far from the workpiece rotation axis can be reduced, and more The workpiece can be processed efficiently.
  • a second aspect of the present invention is the truing method for the rotating grindstone according to the first aspect, wherein the workpiece is measured from the position of the outer peripheral surface of the rotating grindstone for grinding the small diameter portion of the conical surface of the work.
  • Relative movement of the truer toward the position of the outer peripheral surface of the rotating grindstone that grinds the large diameter portion of the conical surface of the rotating wheel and gradually slowing down the relative movement speed of the truer, or the large conical surface of the workpiece Relative movement of the truer and relative movement of the truer from the position of the outer peripheral surface of the rotating grindstone grinding the diameter part toward the position of the outer peripheral surface of the rotary grindstone grinding the small diameter part of the conical surface of the workpiece Includes a truing method for a rotating wheel that gradually increases the speed.
  • the grinding surface roughness of the rotating grindstone is gradually changed, and the conical surface of the workpiece is made a more uniform finished surface. It can be roughness.
  • a third aspect of the present invention is the truing method for a rotating grindstone according to the first aspect or the second aspect, wherein the rotating grindstone is a cylindrical plain grindstone. Including methods.
  • the rotating grindstone by making the rotating grindstone a cylindrical plain grindstone, a difference in the number of abrasive grains arranged in the circumferential direction of the outer peripheral surface is unlikely to occur. Therefore, it is not necessary to consider the difference in the density of the abrasive grains, and by adjusting the grinding surface roughness of the grinding surface of the grindstone, it is possible to adjust the finished surface roughness of the conical surface of the workpiece.
  • the conical surface can have a more uniform finished surface roughness.
  • a fourth aspect of the present invention includes a rotary grindstone, a truer for truing the rotary grindstone, and a control means. Based on a command from the control means, the first to third aspects.
  • the difference in the finished surface roughness is further reduced between the conical surface near the work rotation axis and the conical surface far from the work rotation axis. It is possible to obtain a grinding machine that can process the workpiece more efficiently.
  • the difference in the finished surface roughness between the conical surface near the workpiece rotation axis and the conical surface far from the workpiece rotation axis is further reduced. And the workpiece can be machined more efficiently.
  • FIG. 1 is a plan view of a grinding machine in the present embodiment.
  • FIG. 2 is a cross-sectional view of the workpiece in the present embodiment.
  • FIG. 3 is a plan view showing a position during grinding of the rotary grindstone in the present embodiment.
  • FIG. 4 is a plan view showing a position when the rotating grindstone in this embodiment is truing.
  • FIG. 5 is an enlarged plan view of a portion V in FIG.
  • FIG. 6 is an enlarged cross-sectional view of the rotating grindstone in the VI part of FIG.
  • FIG. 7 is a flowchart showing a processing procedure by the control means in the present embodiment.
  • 8 (a) -8 (c) are graphs showing changes in the relative movement speed of the truer during truing in the present embodiment, and FIG.
  • FIG. 8 (a) shows a change example 1 of the true movement speed of the truer.
  • FIG. 8B shows a second example of change in the relative movement speed of the truer, and
  • FIG. 8C shows a change example 3 of the relative movement speed of the truer.
  • FIG. 9 is a schematic view showing an example of grinding in the background art.
  • the X axis, the Y axis, and the Z axis are orthogonal to each other, the Y axis indicates a vertically upward direction, the Z axis indicates a workpiece rotation axis ZW direction that is a rotation axis of the workpiece W, and X The axis indicates the advancing / retreating direction of the swivel base 12.
  • 1st Embodiment is the grinding machine 1 which has arrange
  • FIG. 1st Embodiment is the grinding machine 1 which has arrange
  • a grinding machine 1 includes a base 10, a spindle table 11 that can reciprocate in the Z-axis direction on the base 10, and a swivel that can reciprocate in the X-axis direction on the base 10. 12, and the swivel base 12 can swivel about a swivel axis ZS parallel to the Y axis.
  • the control means number of control apparatus etc. which controls each movable body etc.
  • the spindle table 11 reciprocates in the Z-axis direction by a Z-axis drive motor 11M and a feed screw, and the control means outputs a control signal to the Z-axis drive motor 11M while detecting a signal from the position detection means 11E such as an encoder.
  • the spindle table 11 is positioned in the Z-axis direction.
  • the swivel 12 is reciprocated in the X-axis direction by the X-axis drive motor 12M and a feed screw, and the control means outputs a control signal to the X-axis drive motor 12M while detecting a signal from the position detection means 12E such as an encoder.
  • the swivel base 12 is positioned in the X-axis direction.
  • a headstock 20 having a center member 21 and a tailstock 30 having a center member 31 are placed on the spindle table 11.
  • the center member 21 and the center member 31 rotate a workpiece parallel to the Z-axis direction. It is arranged on the axis ZW.
  • the tailstock 30 is provided with a truing device 25 for truing the plain grindstone TP.
  • the center member 21 is provided on the main shaft 22, and a drive motor (not shown) is provided on the main shaft 22, and the control means arbitrarily moves the main shaft 22 around the workpiece rotation axis ZW passing through the tip of the center member 21 at an arbitrary angular velocity. Can be rotated up to an angle of.
  • the center member 31 is provided on a tailstock shaft 32, and the tailstock shaft 32 is supported so as to be rotatable or non-rotatable.
  • the swivel base 12 is plate-shaped to make it smaller, and a swivel motor 13 is provided in the vicinity of the center of the swivel base 12 so as to protrude in the Y-axis direction.
  • the control means outputs a control signal to the turning motor 13 while detecting a signal from the angle detecting means such as an encoder, and controls the turning angle of the turntable 12.
  • a plain grindstone device 50 having a plain grindstone TP (corresponding to a rotating grindstone) is arranged so as to sandwich the swivel motor 13.
  • the grindstone rotation axis ZTP which is the rotation axis of the plain grindstone TP, is located in a plane orthogonal to the turning axis ZS.
  • the plain grindstone TP is attached to an end portion in one direction in the direction of the grindstone rotation axis ZTP (in FIG. 1, the plain grindstone TP is attached to the right end portion).
  • the plain grindstone TP is rotationally driven from the grindstone drive motor 50M via the belt 50B.
  • the grinding machine 1 is provided with a coolant nozzle for supplying coolant in the vicinity of a contact point (grinding point) between the workpiece W and the plain grindstone TP, which is not shown.
  • the plain grindstone TP has a grinding surface TP1 (corresponding to the outer peripheral surface of the rotating grindstone) parallel to the grindstone rotation axis ZTP and is formed in a cylindrical shape.
  • the length in the axial direction of the grinding surface TP1 which is the outer peripheral surface thereof is substantially equal to the length of the generatrix WL (see FIG. 2) of the conical surface WC of the workpiece W.
  • the grinding machine 1 is configured such that the position of the grinding surface TP1 of the plain grinding stone TP grinds the conical surface WC of the workpiece W.
  • the conical surface WC of the work W can be ground by turning the swivel base 12 so that the swivel base 12 is brought close to the work W so that the conical surface WC comes into contact with the WC.
  • the workpiece rotation axis ZW, the grindstone rotation axis ZTP, and the truer rotation axis ZTR of the truing device 25 are arranged on a relative movement plane orthogonal to the turning axis ZS.
  • the workpiece W is supported at both ends (or near both ends) by the center member 21 and the center member 31 (a chuck may be used instead of the center member).
  • the workpiece W includes a shaft portion WA, a disc portion WB that protrudes in a bowl shape substantially at the center of the shaft portion WA, and has at least one surface in the axial direction formed on a conical surface WC.
  • the small diameter part WBi is formed with a diameter Di continuously from the shaft part WA
  • the large diameter part WBo is formed with a diameter Do by projecting continuously from the small diameter part WBi in a bowl shape.
  • the conical surface WC is formed at an angle W ⁇ when viewed in cross section.
  • the bus bar WL is formed on the conical surface WC of the workpiece W.
  • the truing device 25 is for truing the plain grindstone TP as shown in FIG.
  • the truing device 25 includes a truer TR that is rotationally driven around a truer rotational axis ZTR parallel to the workpiece rotational axis ZW, and a drive motor (not shown) that rotationally drives the truer TR.
  • FIG. 4 shows a state in which the position of the truer TR relative to the plain grindstone TP is turned and moved relatively to the truing start position A (see FIG. 5). That is, as shown in FIG.
  • FIG. 5 is an enlarged view showing a state in which the plain grindstone TP is trued by the truer TR of the truing device 25.
  • the truer TR is generally formed in a disc shape, and its outer peripheral surface is configured as a truer surface TR1.
  • step S10 the control means relatively turns and moves (the position shown in FIG. 4) the truer TR with respect to the plain grindstone TP so that the position of the truer TR with respect to the plain grindstone TP becomes the truing start position A. Proceed to step S20.
  • step S20 the control means sets an initial movement speed at a relative movement speed F of the truer TR with respect to the plain grindstone TP, and proceeds to step S30.
  • the initial moving speed is the side for grinding the large diameter portion WBo of the conical surface WC.
  • the moving speed is set relatively higher than the moving speed (see FIG. 2) and is on the side where the large diameter portion WBo of the conical surface WC of the workpiece W is ground (see FIG. 2)
  • the initial moving speed is the conical surface WC. Is set to a relatively low speed compared to the moving speed on the side (see FIG. 2) for grinding the small-diameter portion WBi.
  • step S30 the control means moves the relative position of the truer TR with respect to the plain grindstone TP at the set relative movement speed F to perform truing (the state shown in FIG. 5), and proceeds to step S40.
  • step S40 the control means detects the relative position of the current truer TR with respect to the plain grindstone TP, and proceeds to step S50.
  • step S50 the control means determines whether or not the relative position of the truer TR with respect to the plain grindstone TP has reached the truing end position B (see FIG. 5). When the truing end position B has been reached (Yes), the process proceeds to step S70, and when the truing end position B has not yet been reached (No), the process proceeds to step S60.
  • a control means sets the moving speed according to a position, returns to step S30, and repeats step S30 and subsequent steps. For example, in the case where the small diameter portion WBi of the conical surface WC of the workpiece W is moved from the grinding side to the grinding side of the large diameter portion WBo, the moving speed is gradually or stepwise decreased depending on the position. (See FIGS. 8 (a) to 8 (c)), in the case where the large diameter portion WBo of the conical surface WC of the workpiece W is moved from the grinding side to the grinding side of the small diameter portion WBi, depending on the position. Increase the moving speed gradually or step by step.
  • the control means turns and moves the plain grindstone TP to the initial position (position shown in FIG. 1) (returns to the initial position), and ends the truing process.
  • the change in the relative speed of the plain grindstone TP and the truing device 25 is changed gradually or stepwise.
  • the relative speed F of the plain grindstone TP and the truing device 25 is sequentially changed according to the relative position of the truer TR with respect to the plain grindstone TP as shown in FIG.
  • the relative position of the truer TR with respect to the plain grindstone TP may be changed stepwise every time it moves a certain distance. Also, it changes in two steps as shown in FIG. 8 (c). It may be allowed.
  • the grinding surface TP1 of the plain grindstone TP becomes a surface state in which the protruding amount of the abrasive grains gradually changes as shown in FIG.
  • the protrusion amount H of the abrasive grains TP2 on the grinding surface TP1 is large, and the protrusion amount HA on the side of grinding the small diameter portion WBi of the conical surface WC of the workpiece W is large, and the protrusion on the side of grinding the large diameter portion WBo.
  • Truing is performed so that the amount HB becomes small. In this way, the grinding surface roughness is adjusted.
  • the plane can be changed by changing the relative movement speed of the true TR during truing.
  • the surface state of the grindstone TP can be changed.
  • the workpiece rotation axis ZW has a higher peripheral speed than the grinding surface roughness of the grinding surface TP1 of the plain grindstone TP that grinds the conical surface WC on the side closer to the workpiece rotation axis ZW (the small diameter portion WBi side).
  • the grinding surface roughness of the grinding surface TP1 of the plain grindstone TP that grinds the conical surface WC at the far side (large diameter portion WBo side) is made relatively fine.
  • the difference in the finished surface roughness can be further reduced at the position (large diameter portion WBo side).
  • the length of the plain grindstone TP in the axial direction on the grinding surface TP1 (corresponding to the outer peripheral surface of the rotating grindstone) of the plain grindstone TP is made substantially equal to the length of the generatrix WL of the conical surface WC of the workpiece W.
  • the finished surface roughness of the conical surface WC of the workpiece W can be adjusted by adjusting the grinding surface roughness of the grinding surface TP1 of the plain grindstone TP. This is possible, and the conical surface WC of the workpiece W can be made to have a more uniform finished surface roughness. Further, when the conical surface WC of the workpiece W is ground, the position on the conical surface WC closer to the work rotation axis ZW (small diameter portion WBi side) and the position on the conical surface WC farther from the work rotation axis ZW. On the (large diameter portion WBo side), it is possible to obtain a grinding machine 1 that can further reduce the difference in finished surface roughness and that can process the workpiece W more efficiently.
  • the grinding machine for implementing the truing method of the rotary grindstone of this invention and its truing method is not limited to this embodiment, The range which does not deviate from the summary of this invention It can also be implemented in various forms.
  • the truing method of the rotating grindstone has been described by exemplifying the plain grindstone TP.
  • an angular grindstone is applicable.
  • an example is shown in which the plain grindstone TP is movable with respect to the workpiece W in the X-axis direction and the workpiece W is movable with respect to the plain grindstone TP in the Z-axis direction.
  • the plain grindstone TP may be moved relative to the workpiece W in the X-axis direction and the Z-axis direction (movable on the XZ plane (corresponding to the relative movement plane)).
  • the example provided with the plain grindstone TP on the turntable 12 was shown, it is not limited to this, A plain grindstone and an angular grindstone are put on an appropriate position on a turntable. It may be a combined grinding machine. According to this, it can grind also about various site

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

 本発明の一態様の回転砥石のツルーイング方法は、回転砥石の軸方向の一端側から他端側に向けて、回転砥石に対するツルアの位置を移動させながら回転砥石の外周面をツルーイングする。このツルーイングの際に、ワークの円錐面の小径部を研削する回転砥石の外周面の位置をツルーイングする際のツルアの相対移動速度よりも、ワークの円錐面の大径部を研削する回転砥石の外周面の位置をツルーイングする際のツルアの相対移動速度を遅くする。

Description

回転砥石のツルーイング方法及びそのツルーイング方法を実施するための研削盤
 本発明の一態様は、回転砥石のツルーイング方法及びそのツルーイング方法を採用した研削盤に関する。
 従来、研削盤では、種々の形状のワークを加工する。例えば、図9に示すように軸部WAと、その軸部WAの略中央に鍔状に突出するとともに軸方向の少なくとも一方側の面が円錐面WCに形成された円板部WBと、を有するワークWがある。このようなワークWの円錐面WCは、ワークWを軸周りに回転させつつ、円板状の回転砥石TAを円錐面WCに当接させて研削する。
 上述した回転砥石TAは、同図に示すように、その外周の研削面TA1が砥石回転軸ZTAに対し傾斜して円錐面WCの幅と略等しい長さを有する所謂アンギュラ砥石TAである。このアンギュラ砥石TAは、研削盤に取付けてモータ等の駆動力によって砥石回転軸ZTA周りに回転される。そして、ワークWを別途の駆動源によってワーク回転軸ZW周りに回転させ、回転するアンギュラ砥石TAの研削面TA1を円錐面WCに当接させて研削する。
 ここで、ワークWの円錐面WCを研削した場合、ワーク回転軸ZWに近い側の円錐面WC1と、ワーク回転軸ZWに遠い側の円錐面WC2とでは、ワーク回転軸ZWに遠い側のほうが周速度が速い。これにより、ワークWの円錐面WCにおける径の差によって研削除去量の差を生じ、仕上がりの仕上げ面粗さに差が生じている。
 また、アンギュラ砥石TAは、研削面TA1が砥石回転軸ZTAに対し傾斜している形状であることから外周の径が相対的に大径の大径部位TA3と小径の小径部位TA2を有する。そのため、アンギュラ砥石TAの研削面TA1は、大径部位TA3の周方向に配設される砥粒数が、小径部位TA2の周方向に配設される砥粒数より相対的に多い傾向となる。そのため、アンギュラ砥石TAの研削面TA1の小径部位TA2は、大径部位TA3に比べて少ない砥粒数でワークWを加工することに伴いワークWの加工後の仕上げ面粗さが大きくなる傾向にある。
 ここで、アンギュラ砥石TAによるワークWの円錐面WCの研削は、ワーク回転軸ZWに近い側の円錐面WC1にアンギュラ砥石TAの大径部位TA3が当接し、ワーク回転軸ZWに遠い側の円錐面WC2にアンギュラ砥石TAの小径部位TA2が当接する関係となる。そのため、ワークWの円錐面WCの仕上がりの仕上げ面粗さは、ワークWの周速度の差に伴う影響と、アンギュラ砥石TAの砥粒数の差に伴う影響が相俟ってワーク回転軸ZWに遠い側の円錐面WC2の方が粗くなる。
 ここで、特許文献1に記載された技術は、ワークの円錐面の幅より小さい研削面を有する回転砥石を用いて円錐面上に当接した回転砥石を円錐面の母線に沿って移動させて研削するものである。この研削の際、ワークの回転速度を変化させることで円錐面の仕上がりの仕上げ面粗さを所望の交差内とすることを試みている。
日本国特開2004-345054号公報
 しかしながら、特許文献1における技術では、円錐面の加工に時間がかかってしまい効率よく加工することができない。そこで本願発明者は回転砥石の整形や目立てを行うツルアによる回転砥石のツルーイング方法に着目した。
 本発明の一態様は、このような点に鑑みて創案されたものであり、その解決しようとする課題は、ワークの円錐面を研削した場合において、ワーク回転軸に近い側の円錐面と、ワーク回転軸に遠い側の円錐面で、仕上げ面粗さの差をより小さくすることができ、且つより効率よくワークを加工できることにある。
 上記課題を解決するため、本発明は、次の態様に係る回転砥石のツルーイング方法及び研削盤を含む。
 まず、本発明の第1の態様は、回転砥石の外周面における当該回転砥石の軸方向の長さを、ワークの円錐面の母線の長さと略等しくすることで、前記円錐面に前記回転砥石の外周面を当接させて研削する際は、前記円錐面の母線方向に前記回転砥石を相対的に移動させることなく研削する研削盤において、ワーク回転軸に対して前記円錐面を有するワークを前記ワーク回転軸回りに回転させながら、前記ワークの円錐面に、研削盤の回転砥石の外周面を当接させて前記円錐面を研削するための前記回転砥石をツルアを用いてツルーイングする、回転砥石のツルーイング方法であって、前記回転砥石の外周面における当該回転砥石の軸方向の一端側から他端側に向けて、前記回転砥石に対する前記ツルアの位置を、前記回転砥石の外周面に沿って相対的に移動させながら前記回転砥石の外周面をツルーイングする際に、前記ワークの円錐面の小径部を研削する前記回転砥石の外周面の位置をツルーイングする際の前記ツルアの相対移動速度よりも、前記ワークの円錐面の大径部を研削する前記回転砥石の外周面の位置をツルーイングする際の前記ツルアの相対移動速度を遅くする、回転砥石のツルーイング方法を含む。
 この第1の態様によれば、ツルーイングする際のツルアの相対移動速度を変化させることで回転砥石の表面状態を変化させることができる。即ち、周速度が遅いワーク回転軸に近い側の円錐面を研削する回転砥石の研削面の研削面粗さより、周速度が速いワーク回転軸に遠い側の円錐面を研削する回転砥石の研削面の研削面粗さを相対的に細かくする。これにより、ワークの円錐面を研削した場合において、ワーク回転軸に近い側の円錐面と、ワーク回転軸に遠い側の円錐面で、仕上げ面粗さの差をより小さくすることができる。また、回転砥石の外周面における当該回転砥石の軸方向の長さを、ワークの円錐面の母線の長さと略等しくすることで、円錐面に回転砥石の外周面を当接させて研削する際は、円錐面の母線方向に回転砥石を相対的に移動させることなく研削することができるので効率よくワークを加工できる。もって、ワークの円錐面を研削した場合において、ワーク回転軸に近い側の円錐面と、ワーク回転軸に遠い側の円錐面で、仕上げ面粗さの差をより小さくすることができ、且つより効率よくワークを加工できる。
 また、本発明の第2の態様は、上記第1の態様に係る回転砥石のツルーイング方法であって、前記ワークの円錐面の小径部を研削する前記回転砥石の外周面の位置から、前記ワークの円錐面の大径部を研削する前記回転砥石の外周面の位置に向かって、前記ツルアを相対移動させるとともに前記ツルアの相対移動速度を徐々に遅くする、あるいは、前記ワークの円錐面の大径部を研削する前記回転砥石の外周面の位置から、前記ワークの円錐面の小径部を研削する前記回転砥石の外周面の位置に向かって、前記ツルアを相対移動させるとともに前記ツルアの相対移動速度を徐々に速くする、回転砥石のツルーイング方法を含む。
 この第2の態様によれば、ツルーイングする際のツルアの相対移動速度を徐々に変化させることで、回転砥石の研削面粗さを徐々に変化させ、ワークの円錐面をより一層均一な仕上げ面粗さとすることができる。
 次に、本発明の第3の態様は、上記第1の態様または第2の態様に係る回転砥石のツルーイング方法であって、前記回転砥石は、円筒形状のプレーン砥石である、回転砥石のツルーイング方法を含む。
 この第3の態様によれば、回転砥石を円筒形状のプレーン砥石とすることで、外周面の周方向に配置される砥粒数の差が生じにくい。そのため、砥粒の密度の差を考慮する必要がなく、砥石の研削面の研削面粗さを調整することで、ワークの円錐面の仕上げ面粗さを調整することが可能であり、ワークの円錐面をより一層均一な仕上げ面粗さとすることができる。
 次に、本発明の第4の態様は、回転砥石と、前記回転砥石をツルーイングするツルアと、制御手段とを有し、前記制御手段の指令に基づき、上記第1の態様から第3の態様のいずれか1つの回転砥石のツルーイング方法を実行する研削盤を含む。
 この第4の態様によれば、ワークの円錐面を研削した場合において、ワーク回転軸に近い側の円錐面と、ワーク回転軸に遠い側の円錐面で、仕上げ面粗さの差をより小さくすることができ、且つより効率よくワークを加工できる研削盤を得ることができる。
 本発明の一態様によれば、ワークの円錐面を研削した場合において、ワーク回転軸に近い側の円錐面と、ワーク回転軸に遠い側の円錐面で、仕上げ面粗さの差をより小さくすることができ、且つより効率よくワークを加工できる。
図1は、本実施形態における研削盤の平面図である。 図2は、本実施形態におけるワークの断面図である。 図3は、本実施形態における回転砥石の研削時の位置を示した平面図である。 図4は、本実施形態における回転砥石がツルーイングする際の位置を示した平面図である。 図5は、図4のV部の拡大平面図である。 図6は、図5のVI部における回転砥石の拡大断面図である。 図7は、本実施形態における制御手段による処理手順を示したフローチャートである。 図8(a)-8(c)は、本実施形態におけるツルーイングする際のツルアの相対移動速度の変化を示したグラフであり、図8(a)は、ツルアの相対移動速度の変化例1、図8(b)は、ツルアの相対移動速度の変化例2、図8(c)は、ツルアの相対移動速度の変化例3である。 図9は、背景技術における研削の例を示した概略図である。
 以下に本発明を実施するための形態を図面を用いて説明する。なお、各図において、X軸とY軸とZ軸は互いに直交しており、Y軸は鉛直上向きの方向を示し、Z軸はワークWの回転軸であるワーク回転軸ZW方向を示し、X軸は旋回台12の進退方向を示している。
 次に図1~図8(c)を用いて、本実施の形態における研削盤1について説明する。第1の実施の形態は、旋回台12上にプレーン砥石TP(回転砥石に相当)を適切な位置に配置した研削盤1である。
 [研削盤1の全体構成(図1)]
 図1に示すように、研削盤1は、基台10と、基台10上でZ軸方向に往復移動可能な主軸テーブル11と、基台10上でX軸方向に往復移動可能な旋回台12と、を備えており、旋回台12はY軸と平行な旋回軸ZS回りに旋回可能である。なお、各可動体等を制御する制御手段(数値制御装置等)については、図示省略する。
 主軸テーブル11は、Z軸駆動モータ11Mと送りねじにてZ軸方向に往復移動し、制御手段はエンコーダ等の位置検出手段11Eからの信号を検出しながらZ軸駆動モータ11Mに制御信号を出力して主軸テーブル11のZ軸方向の位置決めを行う。
 旋回台12は、X軸駆動モータ12Mと送りねじにてX軸方向に往復移動し、制御手段はエンコーダ等の位置検出手段12Eからの信号を検出しながらX軸駆動モータ12Mに制御信号を出力して旋回台12のX軸方向の位置決めを行う。
 主軸テーブル11には、センタ部材21を備えた主軸台20と、センタ部材31を備えた心押台30が載置されており、センタ部材21とセンタ部材31はZ軸方向に平行なワーク回転軸ZW上に配置されている。また心押台30には、プレーン砥石TPをツルーイングするためのツルーイング装置25が設置されている。(なお、プレーン砥石TPの配置位置関係によってはツルーイング装置25が主軸台20に設けられる態様であってもよい。)
 センタ部材21は主軸22に設けられ、主軸22には図示しない駆動モータが設けられており、制御手段は、センタ部材21の先端をとおるワーク回転軸ZW回りに主軸22を、任意の角速度で任意の角度まで回転させることができる。
 センタ部材31は心押軸32に設けられ、心押軸32は回転可能または回転不能に支持されている。
 旋回台12は、より小さくするために板状であり、旋回台12の中央近傍には、旋回モータ13がY軸方向に突出するように設けられている。制御手段はエンコーダ等の角度検出手段からの信号を検出しながら旋回モータ13に制御信号を出力して旋回台12の旋回角度を制御する。
 そして旋回台12上には、プレーン砥石TP(回転砥石に相当)を備えたプレーン砥石装置50が旋回モータ13を挟むように配置されている。
 なお、プレーン砥石TPの回転軸である砥石回転軸ZTPは旋回軸ZSに直交する面内に位置する。
 プレーン砥石TPは、砥石回転軸ZTP方向における一方の方向の端部に取り付けられている(図1では、プレーン砥石TPは、右側の端部に取り付けられている)。
 また、プレーン砥石TPは砥石駆動モータ50Mからベルト50Bを介して回転駆動される。
 また、研削盤1には、ワークWとプレーン砥石TPとの接触個所(研削点)の近傍にクーラントを供給するクーラントノズルが設けられているが図示省略する。
 プレーン砥石TPは、図1に示すように砥石回転軸ZTPに対して平行な研削面TP1(回転砥石の外周面に相当)を有して円筒形状に形成されている。
 プレーン砥石TPは、その外周面である研削面TP1の軸方向の長さがワークWの円錐面WCの母線WL(図2参照)の長さと略等しい。
 研削盤1は、図3に示すようにプレーン砥石TPの研削面TP1の位置がワークWの円錐面WCを研削するプレーン砥石TPの加工位置(プレーン砥石TPの研削面TP1をワークWの円錐面WCに当接する位置)となるように旋回台12を旋回させてワークWに対して相対的に旋回台12を近接させた状態とすることでワークWの円錐面WCを研削可能としている。
 なお図示は省略するが、ワーク回転軸ZWと砥石回転軸ZTPとツルーイング装置25のツルア回転軸ZTRは、旋回軸ZSに直交する相対移動平面上に配置されている。
 [ワークWの全体構成(図2)]
 ワークWは、図1に示すようにセンタ部材21とセンタ部材31に両端(または両端近傍)が支持されている(センタ部材の代わりにチャックであってもよい)。
 ワークWは、図2に示すように軸部WAと、その軸部WAの略中央に鍔状に突出するとともに軸方向の少なくとも一方側の面が円錐面WCに形成された円板部WBと、を有する。円板部WBは、軸部WAから連続して小径部WBiが直径Diで形成され、小径部WBiから連続して鍔状に突出して大径部WBoが直径Doで形成されている。円錐面WCは、断面形状で見て角度Wθで形成されている。こうしてワークWの円錐面WCは母線WLが形成される。
 [ツルーイング装置25の構成(図1、4、5)]
 ツルーイング装置25は、図1に示すようにプレーン砥石TPをツルーイングするためのものであり心押台30に設置されている。
 ツルーイング装置25には、ワーク回転軸ZWと平行なツルア回転軸ZTR回りに回転駆動されるツルアTRと、このツルアTRを回転駆動する図示しない駆動モータとを有する。
 図4は、プレーン砥石TPに対するツルアTRの位置を相対的に旋回及び移動させツルーイング開始位置A(図5参照)とした状態を示している。即ち、研削盤1は、図5に示すようにプレーン砥石TPの研削面TP1とツルーイング装置25のツルアTRのツルア面TR1とが、略同一直線上に位置するように旋回台12によってプレーン砥石TPを旋回させる。
 図5は、プレーン砥石TPをツルーイング装置25のツルアTRでツルーイングする状態を示した拡大図である。ツルアTRは、概略、円板状に形成されておりその外周面がツルア面TR1として構成されている。
 ここで、研削盤における砥石の知見として、研削代断面積と、工作物(本実施形態でいえばワークW)の研削された加工面の仕上げ面粗さとの間には相関関係がある。すなわち、研削代断面積が大きくなるにつれて、工作物における加工面の仕上げ面粗さが大きく(粗く)なる関係にある。
 また、研削盤における砥石のツルーイングについての知見として、砥石に対するツルアの移動速度が速くなるほど、当該ツルアでツルーイングした砥石によって加工した工作物における加工面の仕上げ面粗さが大きくなる関係にある。
 これらの知見に基づいてプレーン砥石TPのツルーイングでは、ツルアTRの速度変化をさせることに着目している。
 [プレーン砥石TPのツルーイング方法の処理手順(図7)]
 次に、図7に示すフローチャートを用いて、制御手段によるプレーン砥石TPのツルーイング方法の処理手順の例を説明する。制御手段は、ツルーイングの実行が指示された場合や、予め設定されたツルーイングタイミングとなった場合等に、図7に示す処理を実行する。
 ステップS10にて制御手段は、プレーン砥石TPに対するツルアTRの位置がツルーイング開始位置Aとなるように、プレーン砥石TPに対するツルアTRの位置を相対的に旋回及び移動(図4に示す位置)させ、ステップS20に進む。
 ステップS20にて制御手段は、プレーン砥石TPに対するツルアTRの相対移動速度Fにおける初期移動速度を設定し、ステップS30に進む。例えば図5に示すツルーイング開始位置Aが、ワークWの円錐面WCの小径部WBiを研削する側(図2参照)である場合、初期移動速度は円錐面WCの大径部WBoを研削する側(図2参照)の移動速度に比べ相対的に高い速度に設定され、ワークWの円錐面WCの大径部WBoを研削する側(図2参照)である場合、初期移動速度は円錐面WCの小径部WBiを研削する側(図2参照)の移動速度に比べ相対的に低い速度に設定される。
 ステップS30にて制御手段は、設定されている相対移動速度Fで、プレーン砥石TPに対するツルアTRの相対的な位置を移動させてツルーイング(図5に示す状態)し、ステップS40に進む。
 ステップS40にて制御手段は、プレーン砥石TPに対する現在のツルアTRの相対的な位置を検出し、ステップS50に進む。
 ステップS50にて制御手段は、プレーン砥石TPに対するツルアTRの相対的な位置がツルーイング終了位置B(図5参照)に達しているか否かを判定する。ツルーイング終了位置Bに達している場合(Yes)はステップS70に進み、まだツルーイング終了位置Bまで達していない場合(No)はステップS60に進む。
 ステップS60に進んだ場合、制御手段は、位置に応じた移動速度を設定し、ステップS30に戻り、ステップS30以降を繰り返す。例えばワークWの円錐面WCの小径部WBiを研削する側から大径部WBoを研削する側へと移動させている場合では、位置に応じて移動速度を徐々にあるいは段階的に遅くしていき(図8(a)~8(c)参照)、ワークWの円錐面WCの大径部WBoを研削する側から小径部WBiを研削する側へと移動させている場合では、位置に応じて移動速度を徐々にあるいは段階的に速くしていく。
 ステップS70に進んだ場合、制御手段は、プレーン砥石TPの位置を初期位置(図1に示す位置)に旋回及び移動させ(初期位置に戻し)、ツルーイング処理を終了する。
 プレーン砥石TPとツルーイング装置25の相対速度の変化は徐々あるいは段階的に変化させるものである。ここで、プレーン砥石TPとツルーイング装置25の相対速度Fの変化は、図8(a)のようにプレーン砥石TPに対するツルアTRの相対的な位置に応じて逐次変化させるものがより好ましいが、図8(b)のようにプレーン砥石TPに対するツルアTRの相対的な位置が一定距離を移動する毎に段階的に変化させるものでもよい、また、図8(c)のように、二段階に変化させるものであってもよい。
 上記ツルーイングを施すことで、プレーン砥石TPの研削面TP1は図6に示すように砥粒の突出量が徐々に変化する表面状態となる。
 研削面TP1における砥粒TP2の突き出し量Hは、図6に示すようにワークWの円錐面WCの小径部WBiを研削する側の突き出し量HAが大きく、大径部WBoを研削する側の突き出し量HBが小さくなるようにツルーイングされる。こうして研削面粗さを調整する。
 このように、本実施形態によるプレーン砥石TP(回転砥石)のツルーイング方法及びそのツルーイング方法を実施するための研削盤1によれば、ツルーイングする際のツルアTRの相対移動速度を変化させることでプレーン砥石TPの表面状態を変化させることができる。即ち、周速度が遅いワーク回転軸ZWに近い側の位置(小径部WBi側)の円錐面WCを研削するプレーン砥石TPの研削面TP1の研削面粗さより、周速度が速いワーク回転軸ZWに遠い側の位置(大径部WBo側)の円錐面WCを研削するプレーン砥石TPの研削面TP1の研削面粗さを相対的に細かくする。これにより、ワークWの円錐面WCを研削した場合において、円錐面WCのうちワーク回転軸ZWに近い側の位置(小径部WBi側)と、円錐面WCのうちワーク回転軸ZWに遠い側の位置(大径部WBo側)で、仕上げ面粗さの差をより小さくすることができる。また、プレーン砥石TPの研削面TP1(回転砥石の外周面に相当)におけるプレーン砥石TPの軸方向の長さを、ワークWの円錐面WCの母線WLの長さと略等しくすることで、円錐面WCにプレーン砥石TPの外周面を当接させて研削する際は、円錐面WCの母線WL方向にプレーン砥石TPを相対的に移動させることなく研削することができるので効率よくワークWを加工できる。
 また、ツルーイングする際のツルアTRの相対移動速度を徐々に変化させることで、プレーン砥石TPの研削面粗さを徐々に変化させ、ワークWの円錐面WCをより一層均一な仕上げ面粗さとすることができる。
 また、砥石を円筒形状のプレーン砥石TPとすることで、研削面TP1の周方向に配置される砥粒数の差が生じにくい。そのため、砥粒TP2の密度の差を考慮する必要がなく、プレーン砥石TPの研削面TP1の研削面粗さを調整することで、ワークWの円錐面WCの仕上げ面粗さを調整することが可能であり、ワークWの円錐面WCをより一層均一な仕上げ面粗さとすることができる。
 また、ワークWの円錐面WCを研削した場合において、円錐面WCのうちワーク回転軸ZWに近い側の位置(小径部WBi側)と、円錐面WCのうちワーク回転軸ZWに遠い側の位置(大径部WBo側)で、仕上げ面粗さの差をより小さくすることができ、且つより効率よくワークWを加工できる研削盤1を得ることができる。
 以上、本発明の実施形態を説明したが、本発明の回転砥石のツルーイング方法及びそのツルーイング方法を実施するための研削盤は、本実施の形態に限定されず、この発明の要旨を逸脱しない範囲内において、種々なる形態で実施することもできる。
 例えば、本実施形態では、回転砥石のツルーイング方法は、プレーン砥石TPを例示して説明したが、アンギュラ砥石であっても適用可能である。
 また、本実施形態では、X軸方向においてはワークWに対してプレーン砥石TPを移動可能な構成として、Z軸方向においてはプレーン砥石TPに対してワークWを移動可能な構成とした例を示しているが、ワークWに対してプレーン砥石TPを相対的にX軸方向及びZ軸方向に移動可能(XZ平面(相対移動平面に相当)上を移動可能)な構成であればよい。
 また、本実施形態にて説明した研削盤1では、旋回台12上にプレーン砥石TPを備えた例を示したがこれに限定されず、旋回台上にプレーン砥石とアンギュラ砥石を適切な位置に配置した複合研削盤であってもよい。これによれば、ワークの円錐面以外の種々の部位についても研削を施すことができる。
 本実施形態にて説明した研削盤1では、各砥石の支持方法が片持ち式の例を示しているが、両持ち式で砥石を支持してもよい。
 なお、砥石の形状や構成、及びワークWの形状は、本実施の形態にて説明したものに限定されるものではない。
 本出願は、2013年3月29日出願の日本特許出願(特願2013-073593)に基づくものであり、その内容はここに参照として取り込まれる。
 1  研削盤
 10  基台
 11  主軸テーブル
 12  旋回台
 13  旋回モータ
 11M Z軸駆動モータ
 11E 位置検出手段
 12M X軸駆動モータ
 12E 位置検出手段
 20  主軸台
 21  センタ部材
 22  主軸
 25  ツルーイング装置
 30  心押台
 31  センタ部材
 32  心押軸
 50  プレーン砥石装置
 50B ベルト
 TP  プレーン砥石(回転砥石)
 TP1 研削面(回転砥石の外周面)
 TP2 砥粒
 H  突き出し量
 HA  突き出し量
 HB  突き出し量
 W  ワーク
 WC  円錐面
 WA  軸部
 WB  円板部
 WBi 小径部
 WBo 大径部
 WC  円錐面
 Di  直径
 Do  直径
 WL  母線
 Wθ  角度
 ZS  旋回軸
 ZW  ワーク回転軸
 ZTP 砥石回転軸
 ZTR ツルア回転軸
 TR  ツルア
 TR1 ツルア面
 F  相対移動速度
 A  ツルーイング開始位置
 B  ツルーイング終了位置

Claims (4)

  1.  回転砥石の外周面における当該回転砥石の軸方向の長さを、ワークの円錐面の母線の長さと略等しくすることで、前記円錐面に前記回転砥石の外周面を当接させて研削する際は、前記円錐面の母線方向に前記回転砥石を相対的に移動させることなく研削する研削盤において、
     ワーク回転軸に対して前記円錐面を有するワークを前記ワーク回転軸回りに回転させながら、前記ワークの円錐面に、研削盤の回転砥石の外周面を当接させて前記円錐面を研削するための前記回転砥石をツルアを用いてツルーイングする、回転砥石のツルーイング方法であって、
     前記回転砥石の外周面における当該回転砥石の軸方向の一端側から他端側に向けて、前記回転砥石に対する前記ツルアの位置を、前記回転砥石の外周面に沿って相対的に移動させながら前記回転砥石の外周面をツルーイングする際に、
     前記ワークの円錐面の小径部を研削する前記回転砥石の外周面の位置をツルーイングする際の前記ツルアの相対移動速度よりも、前記ワークの円錐面の大径部を研削する前記回転砥石の外周面の位置をツルーイングする際の前記ツルアの相対移動速度を遅くする、
     回転砥石のツルーイング方法。
  2.  請求項1に記載の回転砥石のツルーイング方法であって、
     前記ワークの円錐面の小径部を研削する前記回転砥石の外周面の位置から、前記ワークの円錐面の大径部を研削する前記回転砥石の外周面の位置に向かって、前記ツルアを相対移動させるとともに前記ツルアの相対移動速度を徐々に遅くする、
     あるいは、前記ワークの円錐面の大径部を研削する前記回転砥石の外周面の位置から、前記ワークの円錐面の小径部を研削する前記回転砥石の外周面の位置に向かって、前記ツルアを相対移動させるとともに前記ツルアの相対移動速度を徐々に速くする、
     回転砥石のツルーイング方法。
  3.  請求項1または請求項2に記載の回転砥石のツルーイング方法であって、
     前記回転砥石は、円筒形状のプレーン砥石である、
     回転砥石のツルーイング方法。
  4.  回転砥石と、前記回転砥石をツルーイングするツルアと、制御手段とを有し、前記制御手段の指令に基づき、請求項1~3のいずれかに記載の回転砥石のツルーイング方法を実行する研削盤。
PCT/JP2014/058791 2013-03-29 2014-03-27 回転砥石のツルーイング方法及びそのツルーイング方法を実施するための研削盤 WO2014157490A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/781,105 US20160059381A1 (en) 2013-03-29 2014-03-27 Grinding wheel truing method and grinding machine for carrying out truing method
CN201480019385.4A CN105073341B (zh) 2013-03-29 2014-03-27 用于修整旋转磨轮的方法及用于实施修整方法的研磨机
DE112014001748.5T DE112014001748T5 (de) 2013-03-29 2014-03-27 Schleifscheibenabrichtverfahren und Schleifmaschine zum Ausführen eines Abrichtverfahrens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-073593 2013-03-29
JP2013073593A JP6127657B2 (ja) 2013-03-29 2013-03-29 回転砥石のツルーイング方法及びそのツルーイング方法を実施するための研削盤

Publications (1)

Publication Number Publication Date
WO2014157490A1 true WO2014157490A1 (ja) 2014-10-02

Family

ID=51624452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058791 WO2014157490A1 (ja) 2013-03-29 2014-03-27 回転砥石のツルーイング方法及びそのツルーイング方法を実施するための研削盤

Country Status (5)

Country Link
US (1) US20160059381A1 (ja)
JP (1) JP6127657B2 (ja)
CN (1) CN105073341B (ja)
DE (1) DE112014001748T5 (ja)
WO (1) WO2014157490A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017108675A1 (de) * 2016-04-28 2017-11-02 Jtekt Corporation Schleifmaschinensystem
CN110188501B (zh) * 2019-06-06 2022-10-11 厦门理工学院 一种横磨外圆周向表面粗糙度确定方法
CN111716251B (zh) * 2020-06-28 2021-10-26 上海理工大学 精密轴承磨削金刚滚轮修整工艺优化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57163048A (en) * 1981-04-01 1982-10-07 Toshiba Corp Machining method of peripheral surface of electric power element
US4480410A (en) * 1982-09-15 1984-11-06 Cen-T-Lap Corp. Precision center lapping apparatus and method
JPS63306878A (ja) * 1987-06-02 1988-12-14 Koyo Seiko Co Ltd 円錐ころ軸受内輪の加工方法
JP2005534509A (ja) * 2002-07-30 2005-11-17 エルビン・ユンカー・マシーネンファブリーク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 回転対称の機械部品を研削する方法および装置
JP2013240871A (ja) * 2012-05-22 2013-12-05 Honda Motor Co Ltd 回転砥石のドレッシング方法、回転砥石及び研削加工方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2834149C2 (de) * 1978-08-04 1982-08-12 Dieter Dr.-Ing. 7505 Ettlingen Wiener Abrichtvorrichtung für eine mit einer Topfschleifscheibe arbeitende Vorrichtung zum Schleifen bogenverzahnter Kegelräder
CH671912A5 (ja) * 1987-01-25 1989-10-13 Tschudin Werkzeugmasch
DE3811782A1 (de) * 1987-12-23 1989-07-06 Fortuna Werke Maschf Ag Verfahren zum abrichten von schleifscheiben
CN2156983Y (zh) * 1993-04-24 1994-02-23 大连机床厂 修整珩磨轮的装置
JP3598534B2 (ja) * 1994-04-28 2004-12-08 豊田工機株式会社 非球面加工装置
US6123605A (en) * 1997-02-20 2000-09-26 Koyo Machine Industries Company Ltd. Dressing device for centerless grinding machine and dressing method for centerless grinding machine
JP3937148B2 (ja) * 2002-04-03 2007-06-27 日本精工株式会社 センタレス研削装置及びセンタレス研削方法
CN2579603Y (zh) * 2002-12-03 2003-10-15 汕头大学 磨床砂轮修整器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57163048A (en) * 1981-04-01 1982-10-07 Toshiba Corp Machining method of peripheral surface of electric power element
US4480410A (en) * 1982-09-15 1984-11-06 Cen-T-Lap Corp. Precision center lapping apparatus and method
JPS63306878A (ja) * 1987-06-02 1988-12-14 Koyo Seiko Co Ltd 円錐ころ軸受内輪の加工方法
JP2005534509A (ja) * 2002-07-30 2005-11-17 エルビン・ユンカー・マシーネンファブリーク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 回転対称の機械部品を研削する方法および装置
JP2013240871A (ja) * 2012-05-22 2013-12-05 Honda Motor Co Ltd 回転砥石のドレッシング方法、回転砥石及び研削加工方法

Also Published As

Publication number Publication date
CN105073341B (zh) 2017-10-13
DE112014001748T5 (de) 2015-12-17
JP2014195862A (ja) 2014-10-16
CN105073341A (zh) 2015-11-18
US20160059381A1 (en) 2016-03-03
JP6127657B2 (ja) 2017-05-17

Similar Documents

Publication Publication Date Title
JP5034951B2 (ja) 砥石修正装置
KR101442568B1 (ko) 인덱서블 인서트의 연삭 방법 및 이 연삭 방법을 수행하는 연삭휠
KR102542334B1 (ko) 그루브가 있는 워크피스를 연삭하기 위한 방법 및 연삭 머신
WO2014157490A1 (ja) 回転砥石のツルーイング方法及びそのツルーイング方法を実施するための研削盤
JP4140574B2 (ja) 凹面を有するカムを研削する方法および装置
JP2004042199A (ja) 研削方法
JP6005529B2 (ja) テーパ面エッジ部のセンタレス研削方法およびセンタレス研削装置
JP5402546B2 (ja) 筒状ワークの研削方法
WO2015056746A1 (ja) ツルーイング方法及びツルーイング装置
JP6776660B2 (ja) センタ及び研削盤
JP5668486B2 (ja) ツルーイング方法および研削盤
JP5326661B2 (ja) 砥石成形方法
JP5206194B2 (ja) 砥石のツルーイング方法およびツルーイング装置
JP4929790B2 (ja) 砥石車のツルーイング方法
JP2004122251A (ja) 研削盤の砥石ドレッシング方法及び装置
CN106956217B (zh) 整形器、具备该整形器的整形装置、研削装置及整形方法
JP5326662B2 (ja) 砥石成形装置、研削盤及び砥石成形方法
JP2007260880A (ja) 砥石車のツルーイング方法及び研削盤
JP3834493B2 (ja) 複合研削方法及び装置
JP6561596B2 (ja) 切削装置及び切削方法
JP7519212B2 (ja) 研削方法及び研削装置
JP2006263834A (ja) 研削加工方法及び円筒研削盤
JPH06134668A (ja) 研削盤
JP2003181748A (ja) 内径端面を有する工作物の研削方法および研削装置
JP2010064192A (ja) 研削盤

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480019385.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775178

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120140017485

Country of ref document: DE

Ref document number: 112014001748

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14775178

Country of ref document: EP

Kind code of ref document: A1