WO2014157346A1 - 塩素化塩化ビニル系樹脂の製造方法及び製造装置 - Google Patents

塩素化塩化ビニル系樹脂の製造方法及び製造装置 Download PDF

Info

Publication number
WO2014157346A1
WO2014157346A1 PCT/JP2014/058560 JP2014058560W WO2014157346A1 WO 2014157346 A1 WO2014157346 A1 WO 2014157346A1 JP 2014058560 W JP2014058560 W JP 2014058560W WO 2014157346 A1 WO2014157346 A1 WO 2014157346A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl chloride
tank
chloride resin
chlorinated vinyl
suspension
Prior art date
Application number
PCT/JP2014/058560
Other languages
English (en)
French (fr)
Inventor
大知 小原
正 田所
哲男 稲岡
清史 堀内
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to KR1020157000843A priority Critical patent/KR101581890B1/ko
Priority to CN201480001706.8A priority patent/CN104395359B/zh
Priority to JP2014540679A priority patent/JP5690027B1/ja
Priority to US14/411,818 priority patent/US9399687B2/en
Priority to EP14774645.7A priority patent/EP2980106B1/en
Publication of WO2014157346A1 publication Critical patent/WO2014157346A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/121Coherent waves, e.g. laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultraviolet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/127Sunlight; Visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/02Monomers containing chlorine
    • C08F14/04Monomers containing two carbon atoms
    • C08F14/06Vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/18Suspension polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/18Introducing halogen atoms or halogen-containing groups
    • C08F8/20Halogenation
    • C08F8/22Halogenation by reaction with free halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/22Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L27/24Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers modified by chemical after-treatment halogenated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • C08L91/06Waxes
    • C08L91/08Mineral waxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0881Two or more materials
    • B01J2219/0884Gas-liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/12Processes employing electromagnetic waves
    • B01J2219/1203Incoherent waves

Definitions

  • the present invention relates to a method and an apparatus for producing a chlorinated vinyl chloride resin, and more particularly to a method and an apparatus for producing a chlorinated vinyl chloride resin using a photochlorination method.
  • the heat resistance temperature of the chlorinated vinyl chloride resin becomes higher than the heat resistance temperature of the vinyl chloride resin due to chlorination. Therefore, chlorinated vinyl chloride resins are used in various fields such as heat resistant pipes, heat resistant industrial plates, heat resistant films and heat resistant sheets.
  • a chlorinated vinyl chloride resin is produced by chlorinating a vinyl chloride resin while supplying chlorine to an aqueous suspension obtained by suspending vinyl chloride resin particles in an aqueous medium. It is common. Usually, when chlorination is performed by a photochlorination method, ultraviolet irradiation with a mercury lamp is performed to generate chlorine radicals (Patent Document 1).
  • chlorine is infiltrated into the granular material by a step of dissolving chlorine in an aqueous suspension of the polyolefin granular material under conditions where radicals are not generated, and then chlorinated by heating or / and light irradiation.
  • Patent Document 2 A method of obtaining chlorinated polyolefin particles in the same reaction tank by repeating these two steps alternately has been reported.
  • a chlorination reaction is performed by inserting a mercury lamp 102 protected by a glass tube 101 into an aqueous suspension 105 of vinyl chloride resin.
  • the present inventors diligently studied. As a result, after separating a chlorine introduction tank for introducing chlorine and a tank for performing photochlorination reaction by ultraviolet irradiation, the chlorine introduction tank By increasing the internal pressure, the amount of chlorine dissolved in the suspension can be increased, and as a result, the production efficiency of the chlorinated vinyl chloride resin can be improved, and the present invention is completed. It came. That is, the present invention includes the following inventions.
  • a step of introducing chlorine into the suspension of the vinyl chloride resin, the suspension into which the chlorine has been introduced is transferred from the first tank to the second tank, and the second tank And irradiating the suspension with ultraviolet light.
  • the tank 2 is an apparatus for producing a chlorinated vinyl chloride resin, which includes a light source for irradiating the suspension with ultraviolet rays.
  • the amount of dissolved chlorine in the suspension of the vinyl chloride resin is improved.
  • the reaction efficiency at the time of producing a vinyl-based resin is improved.
  • a to B representing a numerical range is “A or more (including A and greater than A) and B or less (including B and less than B)”, “%”. Means “% by mass”, and “part” means “part by mass”.
  • the method for producing a chlorinated vinyl chloride resin according to the present invention includes (i) introducing chlorine into a suspension of the vinyl chloride resin in the first tank. And (ii) transferring the suspension into which the chlorine has been introduced from the first tank to the second tank, and irradiating the suspension with ultraviolet rays in the second tank; Other specific processes, conditions, materials, facilities, etc. are not particularly limited.
  • the production method according to the present invention includes a tank for supplying chlorine to a suspension of vinyl chloride resin, and a photochlorination reaction by irradiating ultraviolet light to the suspension of vinyl chloride resin containing chlorine. It is characterized in that it is separated from the tank that performs. With this configuration, the internal pressure of the first tank for introducing chlorine can be increased. For this reason, the amount of chlorine dissolved in the suspension of the vinyl chloride resin is improved, and for example, the reaction efficiency when producing a chlorinated chlorine vinyl resin is improved.
  • the manufacturing method according to the present invention since heat is generated during the photochlorination reaction, it was necessary to remove heat from the tank in the conventional manufacturing method in which chlorine introduction and light irradiation were simultaneously performed.
  • the first tank for introducing chlorine and the second tank for photochlorination reaction are separated from each other. It is not necessary to remove heat from the tank, and the equipment cost related to heat removal can be reduced.
  • a heat removal method of the suspension other than removing the heat from the first tank a method of removing heat or cooling with a pipe can be mentioned.
  • the heat removal or cooling method in the pipe is not particularly limited, but for example, a method using a pipe provided with a cooling jacket or “cooling” of the pipe can be used.
  • an ultraviolet light source can be used, and is not particularly limited.
  • at least one light source selected from the group consisting of mercury lamp, ultraviolet LED, organic EL, inorganic EL, and ultraviolet laser More preferably, at least one light source selected from the group consisting of an ultraviolet LED, an organic EL, an inorganic EL, and an ultraviolet laser is preferably used.
  • the present invention also includes a first tank for introducing chlorine into the suspension of the vinyl chloride resin and a second tank for introducing the suspension from the first tank and chlorinating. And the second tank has at least one light source selected from the group consisting of an ultraviolet LED, an organic EL, an inorganic EL, and an ultraviolet laser for irradiating the suspension with ultraviolet rays.
  • An apparatus for manufacturing a chlorinated vinyl chloride resin provided is also included (hereinafter simply referred to as a manufacturing apparatus according to the present invention).
  • the manufacturing apparatus according to the present invention can implement the manufacturing method according to the present invention.
  • an example in which an ultraviolet LED is used as a light source is given as an example.
  • the light source is not limited to this.
  • a chlorinated vinyl chloride resin production apparatus 11 that can be used in the production method according to the present invention includes a chlorine introduction part 1 for introducing chlorine gas, and a suspension 12 of vinyl chloride resin. From the first tank 2 for introducing chlorine into the slurry, the slurry extraction part 3 for transferring the suspension into which chlorine has been introduced from the first tank 2 to the second tank 6, and from the first tank 2 The pressure reducing valve 4 for reducing the pressure of the taken-out suspension, the second tank 6 for irradiating the suspension with ultraviolet rays and performing the photochlorination reaction, the first from the second tank 6.
  • a slurry circulation line 7 for circulating the suspension to the tank 2 for circulating the suspension to the tank 2
  • a chlorine introduction part 8 for introducing chlorine gas to the suspension taken out from the second tank 6, and the suspension into the second
  • a slurry circulation pump 5 for transferring from the tank 6 to the first tank 2 and a stirrer for stirring the suspension 12 in the first tank 2.
  • the first tank 2 may be any pressure-resistant container that can be sealed, and various reaction containers can be used without any particular limitation, and the specific configuration is not limited.
  • a tank for producing a known chlorinated vinyl chloride resin can be suitably used.
  • a suspension 12 in which a vinyl chloride resin is dispersed is placed in the first tank 2, and is stirred by the stirring unit 9 disposed in the first tank 2.
  • Chlorine gas is supplied from the chlorine inlet 1 to the stirred suspension 12.
  • the stirring unit 9 disposed in the first tank 2 is not particularly limited, and a stirring blade or the like can be used.
  • the stirring blade may be an axial flow type such as a propeller blade, or a wide flow type such as a paddle blade or a turbine blade.
  • the manufacturing apparatus 11 includes a pressurizing unit (pressurizing means) for pressurizing the first tank 2.
  • a pressurizing unit pressurizing means
  • the inside of the 1st tank 2 can be pressurized.
  • the chlorine introduction part 1 functions as a pressurizing part. That is, when the chlorine introduction part 1 introduces chlorine gas into the first tank 2, the pressure inside the first tank 2 increases.
  • the pressure in the first tank 2 is not particularly limited, and examples thereof include 0.02 to 2.00 MPa. Further, it is preferably 0.04 to 2.00 MPa, preferably 0.05 to 2.00 MPa, more preferably 0.06 to 1.50 MPa, and 0.08 to 1.20 MPa. More preferably it is. In addition, it is more preferably 0.10 to 1.00 MPa, and particularly preferably 0.12 to 0.50 MPa. If it is in the said range, the reaction efficiency of chlorination can be improved.
  • the suspension 12 supplied with chlorine is taken out from the slurry extraction section 3 provided at the bottom of the first tank 2 and passes through the pressure reducing valve 4 for reducing the pressure of the suspension 12. , Transferred to the second tank 6.
  • the pressure reducing valve 4 various general pressure reducing valves can be used and are not particularly limited.
  • the suspension 12 introduced into the second tank 6 is irradiated with ultraviolet rays and chlorinated by a photochlorination reaction. Thereafter, the suspension 12 derived from the second tank 6 is returned to the first tank 2 via the slurry circulation line 7 and the slurry circulation pump 5. At this time, chlorine in the suspension is consumed in the second tank 6 by the photochlorination reaction. For this reason, it is preferable to supply chlorine gas from the chlorine introduction part 8 (2nd chlorine introduction means) with respect to the suspension taken out from the 2nd tank 6.
  • the chlorine introduction part 8 introduces chlorine gas into the suspension before the suspension taken out from the second tank 6 is returned to the first tank 2.
  • the chlorine introduction unit 8 prevents the inside of the slurry circulation line 7 from becoming negative pressure with respect to the suspension taken out from the second tank 6, in other words, the inside of the slurry circulation line 7 exceeds the negative pressure. It is preferable to supply chlorine gas so that
  • this manufacturing apparatus 11 is provided with the circulation part (circulation means) which circulates the suspension irradiated with the ultraviolet-ray in the 2nd tank 6 to the 1st tank 2, and manufacture which concerns on this invention
  • the circulation portion (circulation means) include the slurry circulation pump 5 and the slurry circulation line 7. According to this configuration, since supply of chlorine and chlorination by ultraviolet irradiation can be repeated, production can be easily performed.
  • the slurry circulation pump 5 is not particularly limited as long as it can circulate a stable and constant amount of the suspension to the first tank 2, and is preferably a gear pump or a snake pump, for example.
  • the pump material for example, ceramic, titanium palladium, or the like can be used.
  • the pump material is preferably a material that satisfies wet chlorine and hydrogen chloride.
  • the manufacturing apparatus 11 may include a jacket portion 10 that covers the first tank 2.
  • the jacket portion 10 that covers the first tank 2 has a function of controlling the internal temperature of the first tank 2.
  • a jacket for cooling the internal temperature of the reactor can be exemplified.
  • the internal temperature of the first tank 2 can be controlled by balancing the amount of heat removal and the amount of heat generated by the cooling jacket.
  • second tank 6 although only one second tank 6 is shown in FIG. 1, the number of installation is not particularly limited, and a plurality of second tanks 6 may be provided. When a plurality of second tanks 6 are provided, they may be installed in series or in parallel. However, in consideration of reaction efficiency, it is preferable to install them in parallel.
  • the circulation part preferably introduces the suspension 12 to the gas phase part of the first tank 2 or the vicinity of the gas-liquid interface.
  • the suspension 12 may be circulated to any location within the range of the purpose.
  • the second tank 6 includes a transparent pipe for circulating the suspension 12 and a light source for irradiating the transparent pipe with ultraviolet rays.
  • the number of transparent pipes may be one or more, and the number is not particularly limited.
  • Various transparent pipes can also be used for the size and shape of the diameter.
  • any transparent pipe can be used as long as it transmits ultraviolet light and can withstand the manufacturing conditions (chlorine resistance, acid resistance, etc.) of the chlorinated vinyl chloride resin.
  • glass piping is preferable.
  • the light source is not particularly limited as long as the light source is disposed so as to be able to irradiate ultraviolet rays with respect to the suspension of the vinyl chloride resin circulating in the transparent pipe.
  • the suspension of the vinyl chloride resin circulating in the transparent pipe is irradiated with ultraviolet rays for chlorination. It can be carried out.
  • the second tank 6 includes an ultraviolet irradiation panel 20 including a plurality of ultraviolet LED elements 21 and a transparent pipe 22 through which the vinyl chloride resin suspension 12 is circulated.
  • an ultraviolet irradiation panel 20 including a plurality of ultraviolet LED elements 21 and a transparent pipe 22 through which the vinyl chloride resin suspension 12 is circulated.
  • FIG. 4 Although only one ultraviolet irradiation panel 20 is shown in FIG. 4, it is preferable to install another ultraviolet irradiation panel 20 so as to face the transparent pipe 22.
  • FIG. 4 the illustration of the ultraviolet irradiation panel 20 on the front side is omitted for convenience of explanation (the same applies to FIGS. 5 and 6).
  • the transparent pipe 22 has an S shape with two bent portions in order to achieve longer-time ultraviolet irradiation.
  • the suspension 12 flows from the slurry inlet 23 of the transparent pipe 22 and is irradiated with ultraviolet rays from the ultraviolet irradiation panel 20 while flowing through the transparent pipe 22. Thereafter, it exits from the second tank 6 through the slurry outlet 24.
  • the transparent pipe provided in the second tank 6 there may be mentioned one provided with a static mixer inside the pipe.
  • a static mixer By providing a static mixer inside the transparent pipe, it is possible to chlorinate by irradiating ultraviolet rays while mixing a suspension of the vinyl chloride resin circulating inside the pipe, so that the reaction efficiency can be further increased.
  • the specific configuration of the static mixer is not particularly limited, and those installed in various pipes can be used.
  • the second tank 6 ′ includes an ultraviolet irradiation panel 20 including a plurality of ultraviolet LED elements 21 and a transparent pipe 25 through which a suspension of vinyl chloride resin is circulated.
  • the transparent pipe 25 is provided with a static mixer inside. As shown in FIG. 5, according to the transparent pipe 25 provided with the static mixer, the suspension 12 flowing from the slurry inlet 23 can be irradiated with ultraviolet rays while being stirred, so that the chlorination reaction can be performed efficiently.
  • interposed in FIG. 5 may be sufficient.
  • a metal pipe that circulates a suspension of vinyl chloride resin and further has a transparent window, a light source that irradiates the transparent window with ultraviolet light May be provided.
  • the number of metal pipes may be one or more, and the number is not particularly limited. Also, various metal pipes can be used for the material, the size and shape of the diameter, and the like.
  • the size and shape of the transparent window are not particularly limited as long as they can be irradiated with ultraviolet rays.
  • the material of the transparent window is not limited, but any material can be used as long as it transmits ultraviolet light and can withstand the manufacturing conditions (chlorine resistance, acid resistance, etc.) of the chlorinated vinyl chloride resin. Although it can do and is not specifically limited, For example, what is formed with glass is preferable.
  • the light source is not particularly limited as long as the light source is disposed so as to be able to irradiate ultraviolet rays through a transparent window with respect to the suspension of the vinyl chloride resin circulating in the metal pipe. .
  • UV light is passed through the transparent window to the suspension of the vinyl chloride resin flowing through the metal pipe. Chlorination can be performed by irradiation.
  • the second tank 6 has an ultraviolet irradiation panel 20 including a plurality of ultraviolet LED elements 21, and a suspension of vinyl chloride resin.
  • the metal piping 26 which distribute
  • the metal pipe 26 includes a transparent window 27 for ultraviolet irradiation. As shown in FIG. 6, according to the metal pipe 26 having the transparent window 27, the suspension 12 flowing from the slurry inlet 23 can be irradiated with ultraviolet rays through the transparent window 27. The reaction can be performed.
  • FIG. 6 according to the metal pipe 26 having the transparent window 27, the suspension 12 flowing from the slurry inlet 23 can be irradiated with ultraviolet rays through the transparent window 27. The reaction can be performed.
  • the transparent window 27 of the metal pipe 26 and the ultraviolet irradiation panel 20 are not opposed to each other, but this is for convenience of explanation, and in fact, the transparent window 27 of the metal pipe 26 and the ultraviolet irradiation panel. 20 is installed facing. Further, a plurality of ultraviolet irradiation panels 20 may be installed so that the transparent window 27 can be irradiated with ultraviolet rays effectively.
  • a static mixer may be provided inside the metal pipe 26.
  • the ultraviolet rays can be irradiated while stirring the suspension in the metal pipe 26, the chlorination reaction can be performed efficiently.
  • a light source for irradiating ultraviolet rays is externally installed (outside the tank).
  • the ultraviolet LED can be easily cooled. Become. Furthermore, it is easy to perform maintenance such as maintenance and inspection of the ultraviolet LED, and the equipment can be used for a long time.
  • the light source is not particularly limited as long as it can irradiate ultraviolet rays, but the present inventors use at least one light source selected from the group consisting of ultraviolet LED, organic EL, inorganic EL, and ultraviolet laser, Preferably, by using ultraviolet LEDs to irradiate the vinyl chloride resin and chlorine with ultraviolet rays, and chlorinating the vinyl chloride resin, the initial coloration of the obtained chlorinated vinyl chloride resin during thermoforming can be suppressed and / or Alternatively, the inventors have found that an improvement in thermal stability is achieved, and have completed a preferred embodiment of the present invention.
  • At least one light source selected from the group consisting of ultraviolet LED, organic EL, inorganic EL and ultraviolet laser is used.
  • the total power consumption in the step of chlorinating the vinyl chloride resin is reduced, and the production cost is reduced, which is preferable.
  • at least one light source selected from the group consisting of an ultraviolet LED, an organic EL, an inorganic EL, and an ultraviolet laser in particular, an ultraviolet LED suppresses a decrease in luminous intensity due to long-term use compared to a mercury lamp.
  • At least one light source selected from the group consisting of an ultraviolet LED, an organic EL, an inorganic EL, and an ultraviolet laser is preferable because the reaction time is shorter than that of a mercury lamp when the total power consumption is the same.
  • the total power consumption is calculated by the following formula 1 when the current value of the light source is I (A), the voltage value of the light source is V (V), and the chlorination reaction time is t (h). To do.
  • the ultraviolet LED is not particularly limited as long as the LED can irradiate ultraviolet rays.
  • a semiconductor light emitting element using a nitride semiconductor material such as AlN, AlGaN, or AlInGaN for a light emitting layer or a semiconductor light emitting element using a diamond thin film for a light emitting layer is used.
  • an ultraviolet LED having a single peak wavelength is used.
  • the peak wavelength of the ultraviolet rays irradiated by the ultraviolet LED can be adjusted by the ratio of each composition of the light emitting layer.
  • the peak wavelength of the ultraviolet light becomes shorter as the Al content increases.
  • a light source such as an organic EL, an inorganic EL, an ultraviolet laser, or the like that can irradiate the ultraviolet light can be used for the ultraviolet irradiation.
  • ultraviolet LED it is preferable to use ultraviolet LED as a light source.
  • Light sources such as organic EL, inorganic EL, and ultraviolet laser are also preferably irradiated with ultraviolet rays having the same peak wavelength and / or wavelength range as the ultraviolet rays emitted by the ultraviolet LED.
  • the peak wavelength and wavelength range of the ultraviolet rays irradiated by the ultraviolet LED are as described later.
  • the peak wavelength of the ultraviolet light emitted by the ultraviolet LED is preferably 290 nm to 400 nm from the viewpoint of suppressing initial coloring during heat molding and improving the thermal stability.
  • the wavelength range of the ultraviolet rays irradiated by the ultraviolet LED is preferably 260 nm to 430 nm.
  • an ultraviolet LED that emits ultraviolet rays having a wavelength range of 300 nm to 430 nm and a peak wavelength of 350 nm to 400 nm.
  • the chlorination reaction efficiency is determined by the total amount of light and / or the reaction time required. Can be evaluated. The smaller the total amount of light required, the higher the chlorination reaction efficiency. Moreover, the shorter the reaction time, the higher the chlorination reaction efficiency. In the present invention, the “total light amount” is measured and calculated as follows. A vinyl chloride resin that is present in the reactor when a chlorination reaction is carried out by attaching a sensor (TOPCON, product number “UD-36”) to the light intensity meter (TOPCON, product number “UVR-2”).
  • the number of ultraviolet LEDs used for chlorination of vinyl chloride resin may be one or more.
  • ultraviolet LEDs having the same peak wavelength of irradiated ultraviolet light may be used in combination, or ultraviolet LEDs having different peak wavelengths of irradiated ultraviolet light may be used in combination. May be.
  • ultraviolet LED refers to both an ultraviolet LED element and an ultraviolet LED light source device having a plurality of ultraviolet LED elements.
  • the suspension of the vinyl chloride resin can be obtained by suspending the vinyl chloride resin in an aqueous medium.
  • aqueous medium water can be used as an aqueous medium, and a vinyl chloride resin and water can be mixed to obtain an aqueous suspension of the vinyl chloride resin.
  • the vinyl chloride resin used as a raw material for the chlorinated vinyl chloride resin is a vinyl chloride monomer homopolymer or a copolymer of a vinyl chloride monomer and another copolymerizable monomer. Can be used.
  • Other copolymerizable monomers are not particularly limited, and examples thereof include ethylene, propylene, vinyl acetate, allyl chloride, allyl glycidyl ether, acrylic acid ester, vinyl ether and the like.
  • a dispersant and an oil-soluble polymerization initiator are used.
  • a polymerization regulator, a chain transfer agent, a pH regulator, an antistatic agent, a crosslinking agent, a stabilizer, a filler, an antioxidant, a scale inhibitor, and the like may be further used.
  • the dispersing agent for example, partially saponified polyvinyl acetate, methylcellulose, hydroxypropylmethylcellulose and the like are used.
  • the oil-soluble polymerization initiator include lauroyl peroxide, di-2-ethylhexyl peroxyneodecanoate, t-butylperoxyneodecanoate, ⁇ , ⁇ ′-azobis-2,4-dimethylvaleronitrile. Etc. are used.
  • the vinyl chloride resin is not particularly limited, but the average particle size is preferably 0.1 to 350 ⁇ m, more preferably 80 to 200 ⁇ m. In the present invention, the average particle size of the vinyl chloride resin is measured according to JIS K0069.
  • the ultraviolet light is irradiated by the light source provided in the second tank, and the start of the ultraviolet irradiation starts the chlorination reaction of the vinyl chloride resin.
  • the vinyl chloride resin in the aqueous suspension is chlorinated until the desired chlorine content is reached.
  • the chlorination reaction is stopped by terminating the irradiation with ultraviolet rays.
  • unreacted chlorine in the chlorinated vinyl chloride resin is purged with nitrogen, etc., and chlorinated chloride is used with warm water at a temperature lower than Tg (glass transition temperature) of the chlorinated vinyl chloride resin. Residual hydrochloric acid in the vinyl resin is removed. Thereafter, a chlorinated vinyl chloride resin is obtained through dehydration and drying processes.
  • the concentration of the vinyl chloride resin in the aqueous suspension is preferably 10% by weight to 40% by weight. More preferably, it is from 35% by weight to 35% by weight.
  • chlorine When supplying chlorine to the first tank, chlorine may be gaseous or liquid, but is preferably gaseous from the viewpoint of ease of handling.
  • the chlorine supply method is not particularly limited as long as it can supply chlorine into the aqueous suspension.
  • the chlorine supply method includes a method of charging chlorine in an initial batch before the start of the chlorination reaction, a method of intermittently supplying chlorine during the chlorination reaction, a method of supplying chlorine continuously during the chlorination reaction, etc. is there.
  • the chlorination reaction is started by starting ultraviolet irradiation, and is ended by ending ultraviolet irradiation.
  • the maximum reaction temperature during the chlorination reaction is not particularly limited, but is preferably 90 ° C. or lower, more preferably 88 ° C. or lower, and further preferably 86 ° C. or lower.
  • the minimum reaction temperature during the chlorination reaction is preferably more than 0 ° C. from the viewpoint of facilitating the flow of the aqueous suspension with the stirring blade.
  • the minimum reaction temperature is preferably 30 ° C. or higher, more preferably 50 ° C. or higher, from the viewpoint of shortening the reaction time.
  • At least one light source selected from the group consisting of an ultraviolet LED, an organic EL, an inorganic EL, and an ultraviolet laser is applied to the suspension of the vinyl chloride resin into which chlorine is introduced in the second tank.
  • the chlorinated vinyl chloride resin obtained by irradiating with ultraviolet rays and chlorinating the vinyl chloride resin achieves at least one of suppression of initial coloring during heat molding and improvement of thermal stability.
  • the chlorinated vinyl chloride resin has suppressed initial coloring during heat molding and improved thermal stability.
  • initial coloring during thermoforming of a chlorinated vinyl chloride resin is evaluated by measuring a yellow index according to JIS K7373 using a sample prepared by thermoforming a chlorinated vinyl chloride resin. To do. It means that the lower the yellow index value, the more the initial coloration at the time of heat forming is suppressed, that is, the better the initial colorability at the time of heat forming.
  • the thermal stability of the chlorinated vinyl chloride resin is determined by using a sample (sheet) prepared using the chlorinated vinyl chloride resin and heating it in an oven at 200 ° C., that is, the sheet becomes black. Evaluation is made by measuring the time until the L value (lightness) is 20 or less. The longer the time until blackening, the higher the thermal stability.
  • the heat resistance of the chlorinated vinyl chloride resin is evaluated by measuring the Vicat softening point by the B50 method according to JIS K7206. Higher Vicat softening point means higher heat resistance.
  • the present invention includes the following inventions.
  • a step of introducing chlorine into the suspension of the vinyl chloride resin, and the suspension into which the chlorine has been introduced is transferred from the first tank to the second tank. And a step of irradiating the suspension with ultraviolet rays in the tank of No. 2, and a method for producing a chlorinated vinyl chloride resin.
  • the step of irradiating the suspension with ultraviolet rays is performed using at least one light source selected from the group consisting of ultraviolet LEDs, organic EL, inorganic EL, and ultraviolet lasers.
  • the second tank is an apparatus for producing a chlorinated vinyl chloride resin comprising a light source for irradiating the suspension with ultraviolet rays.
  • the circulating means introduces the suspension to the gas phase portion of the first tank or the vicinity of the gas-liquid interface of the chlorinated vinyl chloride resin according to (11) or (12) Manufacturing equipment.
  • the chlorinated vinyl chloride system according to any one of (8) to (13), wherein the light source is at least one light source selected from the group consisting of an ultraviolet LED, an organic EL, an inorganic EL, and an ultraviolet laser. Resin manufacturing equipment.
  • UV-LED light source unit manufactured by Sentec Co., Ltd., model number “OX223”
  • the ultraviolet LED light source device 100 has three ultraviolet LED elements 110 (manufactured by Nichia Corporation, product number “NC4U133”, forward current 500 mA, forward voltage 14.9 V) having a peak wavelength of 365 nm.
  • the emission spectrum of the ultraviolet LED element used in Reference Example 1 is as shown in FIG.
  • the ultraviolet light emitted from the ultraviolet LED element 110 has a wavelength range of 350 nm to 392 nm, one peak, and a peak wavelength of 365 nm.
  • the wavelength range means a range of wavelengths having a relative emission intensity of 2% or more with respect to the relative emission intensity of the peak wavelength in the emission spectrum.
  • the ultraviolet LED light source device 100 is placed on an aluminum support 200 having a length of 20 mm, a width of 20 mm, and a height of 300 mm, and then a transparent glass cylindrical container 300 having an inner diameter of 75 mm, a height of 400 mm, and a thickness of 2.5 mm. (PYREX (registered trademark)).
  • an ultraviolet LED light source device 100 placed in a cylindrical container 300 and a reactor 600 (capacity 3 L, capacity 3.6 mm) made of a transparent glass container having a thickness of 3.6 mm. PYREX (registered trademark)).
  • the ultraviolet LED light source device 100 disposed in the water bath 500 is opposed to the reactor 600, and three ultraviolet LED elements 110 are arranged in a row in the height direction at equal intervals of 15 mm. Is arranged in. At this time, the distance A between the reactor 600 and the ultraviolet LED element 110 was 80 mm.
  • the water bath 500 is provided with a heat source (not shown) for maintaining the hot water 400 at a predetermined temperature.
  • the inside of the reactor 600 was vacuum degassed and purged with nitrogen. Thereafter, chlorine gas was blown into the aqueous suspension 700 of the vinyl chloride resin. At the same time, while stirring the aqueous suspension 700 of the vinyl chloride resin with the turbine blade 610, the ultraviolet LED element 110 was irradiated with ultraviolet rays to the aqueous suspension 700 of the vinyl chloride resin to start the chlorination reaction. . When chlorine gas was blown in, care was taken not to depressurize the reactor 600. During the chlorination reaction, the temperature of the hot water 400 in the water bath 500 was maintained at 60 ° C.
  • the chlorine content of the chlorinated vinyl chloride resin was calculated from the neutralization titration value of hydrochloric acid by-produced in the chlorination reaction (the same applies to the following values).
  • the reaction time of the chlorination reaction which is the time required for the chlorine content of the chlorinated vinyl chloride resin to reach 66.3%, that is, the time from the start of ultraviolet irradiation to the end of irradiation was 96 minutes.
  • Comparative Example 1 Reference example except that one UV LED light source device 100 supported by the support 200 was used instead of one 100 W high-pressure mercury lamp (manufactured by Toshiba Lighting & Technology Corp., current value 1.3 A, voltage value 100 V). In the same manner as in Example 1, a chlorinated vinyl chloride resin was obtained.
  • the reaction time of the chlorination reaction which is the time required for the chlorine content of the chlorinated vinyl chloride resin to reach 66.3%, that is, the time from the start of ultraviolet irradiation to the end of irradiation is 120 For minutes.
  • the initial coloration, thermal stability measurement and evaluation at the time of thermoforming the chlorinated vinyl chloride resins obtained in Reference Example 1 and Comparative Example 1 were performed as follows. Moreover, the heat resistance was measured and evaluated by measuring and evaluating the Vicat softening point as follows.
  • the pressure is adjusted in the range of 3 MPa to 5 MPa at 200 ° C. for 10 minutes.
  • a plate having a thickness of 5 mm was produced by pressing.
  • the yellow index (hereinafter also referred to as “YI”) of the obtained plate was measured in accordance with JIS-K7373 using a color difference meter (manufactured by Nippon Denshoku Industries Co., Ltd., product number “ZE-2000”).
  • ⁇ Thermal stability 10 parts by weight of methyl methacrylate / butadiene / styrene (MBS) resin (manufactured by Kaneka Corporation, product number “Kane Ace (registered trademark) B31”), 100 parts by weight of chlorinated vinyl chloride resin, liquid tin stabilizer 1 part by weight (manufactured by Nitto Kasei Co., Ltd., product number “TVS # 8831”), 1 part by weight of powdered tin stabilizer (manufactured by Nitto Kasei Co., Ltd., product number “TVS # 8813”), stearic acid as a lubricant 1 part by weight (product number “Lunac (registered trademark) S-90V” manufactured by Kao Corporation) and 0.3 part by weight of polyethylene wax (part number “Hiwax220MP” manufactured by Mitsui Chemicals, Inc.) are mixed, and 8 inches.
  • a roll was kneaded at
  • the obtained sheet was cut into a length of 3 cm and a width of 5 cm, heated in an oven at 200 ° C., and the time until the sheet turned black was measured.
  • Blackening means that the L value of the sheet is 20 or less.
  • the L value was measured using a color difference meter (manufactured by Nippon Denshoku Industries Co., Ltd., product number “ZE-2000”).
  • the pressure is adjusted in the range of 3 MPa to 5 MPa at 200 ° C. for 10 minutes.
  • a plate having a thickness of 5 mm was produced by pressing.
  • the Vicat softening point (Vicat softening point) of the chlorinated vinyl chloride resin was measured according to JIS-K7206. However, the load was 5 kg, and the temperature elevation rate was 50 ° C./h (B50 method).
  • the chlorinated vinyl chloride resin obtained in Reference Example 1 has a lower YI than the chlorinated vinyl chloride resin obtained in Comparative Example 1, so that it can be measured at the time of heat molding. The initial colorability was good, and the time required for blackening was long, so the thermal stability was also good.
  • the chlorinated vinyl chloride resin obtained in Reference Example 1 had a higher Vicat softening point than the chlorinated vinyl chloride resin obtained in Comparative Example 1, and therefore had good heat resistance.
  • the reference example 1 in which the ultraviolet ray was irradiated using the ultraviolet LED was used in comparison with the comparative example 1 in which the ultraviolet ray was irradiated using the mercury lamp.
  • the total power consumption required for the chlorination reaction is remarkably small, which has an energy saving effect and the cost is reduced.
  • a UV-LED light source unit manufactured by Sentec Co., Ltd., model number “OX224” was prepared as the ultraviolet LED light source device 100a.
  • the ultraviolet LED light source device 100a has 12 ultraviolet LED elements 110a (manufactured by Nichia Corporation, product number “NC4U133”, forward current 500 mA, forward voltage 14.9 V) that irradiates ultraviolet rays having a peak wavelength of 365 nm. ing.
  • the emission spectrum of the ultraviolet LED element used in Reference Example 2 is as shown in FIG.
  • a transparent glass cylindrical container 300a (PYREX (registered trademark) having an inner diameter of 74 mm, a height of 600 mm, and a thickness of 7 mm is provided. )) Inserted in.
  • one UV LED light source device 100a placed in a cylindrical container 300a was placed in a jacketed reactor 600a (capacity 100L).
  • the ultraviolet LED light source device 100a has a distance between the center of the cylindrical reactor 600a and the center of the cylindrical container 300a in the top view, that is, the length of B represented by a one-dot chain line in FIG. It arrange
  • the 12 ultraviolet LED elements 110a are arranged in a line in the height direction at equal intervals of 15 mm.
  • the ultraviolet LED element 110a disposed at the lowest position was at a position where the distance from the bottom surface of the reactor 600a was 132 mm.
  • the ultraviolet LED element 110a was arrange
  • the reactor 600a is charged with 45 kg of pure water, a K value of 57.1, an average particle size of 125 ⁇ m, and an apparent density of 0.496 g / ml, a vinyl chloride resin (manufactured by Kaneka Corporation). 5 kg was charged and the reactor 600a was sealed with a lid 620a. Then, an aqueous suspension 700a of vinyl chloride resin, which is a mixed liquid of pure water and vinyl chloride resin, was stirred at a rotational speed of 590 rpm using a turbine blade 610a (diameter 180 mm) of the reactor 600a.
  • the inside of the reactor 600a was vacuum degassed and purged with nitrogen, and then vacuum degassed again. Next, chlorine gas was blown into the aqueous suspension 700a of the vinyl chloride resin.
  • the UV suspension from the ultraviolet LED element 110a was applied to the aqueous suspension 700a of the vinyl chloride resin to start the chlorination reaction.
  • the temperature in the reactor 600a is raised to 50 ° C. in 25 minutes after the start of nitrogen substitution, cooled to 40 ° C. in 15 minutes from the start of the chlorination reaction (start of ultraviolet irradiation), and during the subsequent chlorination reaction ( During UV irradiation, the temperature was maintained at 40 ° C.
  • the reaction time of the chlorination reaction which is the time required for the chlorine content of the chlorinated vinyl chloride resin to reach 64.4%, that is, the time from the start of ultraviolet irradiation to the end of irradiation, 234 minutes.
  • MVS methyl methacrylate / butadiene / styrene
  • the pressure was adjusted to a range of 3 MPa to 5 MPa at 190 ° C.
  • the plate was pressed for 5 minutes to produce a 5 mm thick plate.
  • the obtained plate was measured for YI according to JIS-K7373 using a color difference meter (manufactured by Nippon Denshoku Industries Co., Ltd., product number “ZE-2000”).
  • MVS methyl methacrylate / butadiene / styrene
  • ⁇ Vicat softening point> 5 parts by weight of methyl methacrylate / butadiene / styrene (MBS) resin manufactured by Kaneka Corporation, product number “Kane Ace (registered trademark) B11A”), 100 parts by weight of chlorinated vinyl chloride resin, liquid tin stabilizer 3 parts by weight (manufactured by Nitto Kasei Co., Ltd., product number “N2000C”), 1 part by weight of PMMA resin (manufactured by Kaneka Corp., product number “Kane Ace (registered trademark) PA-20”), composite lubricant (Kawaken Fine Chemical Co., Ltd.) 1 part by weight of a product number “VLTN-4”) was blended and kneaded for 3 minutes at 180 ° C.
  • MVS methyl methacrylate / butadiene / styrene
  • the pressure was adjusted to a range of 3 MPa to 5 MPa at 200 ° C.
  • the plate was pressed for 5 minutes to produce a 5 mm thick plate.
  • the Vicat softening point of the chlorinated vinyl chloride resin was measured in accordance with JIS-K7206. However, the load was 5 kg, and the temperature elevation rate was 50 ° C./h (B50 method).
  • YI of the chlorinated vinyl chloride resin obtained in Reference Example 2 is 77.6, the time required for blackening is 80 minutes, and the Vicat softening point is 98.6 ° C. Met.
  • the YI of the chlorinated vinyl chloride resin obtained in Comparative Example 2 was 87.1, the time required for blackening was 70 minutes, and the Vicat softening point was 97.2 ° C.
  • the chlorinated vinyl chloride resin obtained in Reference Example 2 has a lower YI than the chlorinated vinyl chloride resin obtained in Comparative Example 2, so that the initial value during thermoforming The colorability was good, and the heat stability was also good because the time required for blackening was long. Further, the chlorinated vinyl chloride resin obtained in Reference Example 2 had a higher Vicat softening point than the chlorinated vinyl chloride resin obtained in Comparative Example 2, and therefore had good heat resistance.
  • the reference example 2 in which ultraviolet rays were irradiated using an ultraviolet LED was compared with the comparative example 2 in which ultraviolet rays were irradiated using a mercury lamp. The total power consumption required for this is significantly less, which has the effect of energy saving and reduced costs.
  • a UV-LED light source unit (manufactured by Sentec Co., Ltd., model number “OX558”) was prepared as the ultraviolet LED light source device 100b.
  • the ultraviolet LED light source device 100b has three ultraviolet LED elements 110b (manufactured by Nichia Corporation, product number “NC4U133A”, forward current 500 mA, forward voltage 14.9 V) having a peak wavelength of 365 nm.
  • the emission spectrum of the ultraviolet LED element used in Reference Example 3 is as shown in FIG. As shown in FIG. 9, the ultraviolet light irradiated by the ultraviolet LED element 110b has a wavelength range of 350 nm to 392 nm, one peak, and a peak wavelength of 365 nm.
  • the ultraviolet LED light source device 100b was inserted into a transparent glass cylindrical container 300b (PYREX (registered trademark)) having an inner diameter of 25 mm, a height of 360 mm, and a thickness of 2.5 mm.
  • a transparent glass cylindrical container 300b PYREX (registered trademark) having an inner diameter of 25 mm, a height of 360 mm, and a thickness of 2.5 mm.
  • a reactor 600b (capacity 10L, PYREX (registered trademark)), which is a transparent glass container, is placed in a water bath 500a containing warm water 400a of 25 ° C., and a cylindrical container 300b.
  • One UV LED light source device 100b placed in the reactor was placed in the reactor 600b.
  • the three ultraviolet LED elements 110b were arranged in a line in the height direction at equal intervals of 15 mm.
  • the ultraviolet LED element 110b disposed at the lowest position was at a position 90 mm from the bottom surface of the reactor 600b.
  • the ultraviolet LED element 110b was arrange
  • the water bath 500a is provided with a heat source (not shown) for maintaining the hot water 400a at a predetermined temperature.
  • the chlorine content of the chlorinated vinyl chloride resin reached 67.1%
  • the ultraviolet irradiation by the ultraviolet LED element 110b was terminated, and the chlorination reaction was terminated.
  • the reaction time of the chlorination reaction that is, the time required for the chlorine content of the chlorinated vinyl chloride resin to reach 67.1%, that is, the time from the start of irradiation to the end of irradiation was 120 minutes. .
  • the remaining hydrochloric acid was removed by washing with water, and then the chlorinated vinyl chloride resin was dried. Thereby, a chlorinated vinyl chloride resin was obtained.
  • Reference Example 4 Chlorinated vinyl chloride in the same manner as in Reference Example 3 except that one UV-LED light source unit (manufactured by Sentec Co., Ltd., model number “OX559”) was used instead of the ultraviolet LED light source device 100b. A system resin was obtained.
  • the ultraviolet LED light source device has three ultraviolet LED elements (manufactured by Nichia Corporation, product number “NC4U134A”, forward current 500 mA, forward voltage 14.8 V) having a peak wavelength of 385 nm.
  • the emission spectrum of the ultraviolet LED used in Reference Example 4 is as shown in FIG.
  • the ultraviolet light emitted from the ultraviolet LED element has a wavelength range of 355 nm to 415 nm, one peak, and a peak wavelength of 385 nm.
  • the wavelength range means a range of wavelengths having a relative emission intensity of 2% or more with respect to the relative emission intensity of the peak wavelength in the emission spectrum.
  • reaction time of the chlorination reaction which is the time required for the chlorine content of the chlorinated vinyl chloride resin to reach 67.2%, that is, the time from the start of ultraviolet irradiation to the end of irradiation, It was 135 minutes.
  • the reaction time of the chlorination reaction which is the time required for the chlorine content of the chlorinated vinyl chloride resin to reach 67.1%, that is, the time from the start of ultraviolet irradiation to the end of irradiation, 93 minutes.
  • the YI of the chlorinated vinyl chloride resin obtained in Reference Example 3 was 91.1, the time required for blackening was 60 minutes, and the Vicat softening point was 117.8 ° C.
  • the YI of the chlorinated vinyl chloride resin obtained in Reference Example 4 was 93.3, the time required for blackening was 50 minutes, and the Vicat softening point was 115.2 ° C.
  • the YI of the chlorinated vinyl chloride resin obtained in Comparative Example 3 was 132.3, the time required for blackening was 20 minutes, and the Vicat softening point was 114.3 ° C.
  • the total light amount in Reference Example 3, Reference Example 4 and Comparative Example 3 was measured and calculated as follows.
  • the light quantity per unit area of the ultraviolet rays emitted from the light source was measured at the position where the distance between the light source and the light source was closest.
  • the irradiation area where the ultraviolet rays irradiated from the light source hit the chlorinated vinyl resin was measured at the position where the distance between the vinyl chloride resin present in the reactor and the light source was the shortest when the chlorination reaction was performed.
  • a value obtained by multiplying the value of the irradiation area obtained by the above measurement with the value of the light amount per unit area was defined as the total light amount.
  • the amount of light per unit area and the irradiation area were measured in an air atmosphere and with the reactor inside empty. The results are shown in Table 3 below.
  • the chlorinated vinyl chloride resin obtained in Reference Example 3 and Reference Example 4 has a lower YI value than the chlorinated vinyl chloride resin obtained in Comparative Example 3.
  • the initial colorability at the time of heat molding was good, and since the time required for blackening was long, the thermal stability was also good.
  • the chlorinated vinyl chloride resins obtained in Reference Example 3 and Reference Example 4 had a higher Vicat softening point than the chlorinated vinyl chloride resins obtained in Comparative Example 3, and thus had good heat resistance. .
  • Reference Example 3 using an ultraviolet LED that irradiates ultraviolet light with a peak wavelength of 365 nm is used in Reference Example 4 that uses an ultraviolet LED that irradiates ultraviolet light with a peak wavelength of 385 nm.
  • a chlorinated vinyl chloride resin with improved initial colorability and thermal stability during heat molding was obtained.
  • UV light having a peak wavelength of 365 nm is applied to Reference Example 4 using an UV LED that emits UV light having a peak wavelength of 385 nm. It was found that Reference Example 3 using an ultraviolet LED requires less total light, has a shorter reaction time, and has a higher reaction efficiency.
  • the ultraviolet LED light source device 100b was inserted into a transparent glass cylindrical container 300 (PYREX (registered trademark)) having an inner diameter of 75 mm, a height of 400 mm, and a thickness of 2.5 mm.
  • the LED light source device 100b is surrounded by aluminum foil for the purpose of collecting light, and the front surface of the ultraviolet LED element 110b is cut out to 50 mm in length and 50 mm in width so that light does not leak from other than that portion.
  • an ultraviolet LED light source device 100b placed in a cylindrical container 300, and a reactor 600b (capacity 10L, which is a transparent glass container). , PYREX (registered trademark)).
  • the ultraviolet LED light source device 100b disposed in the water bath 500a is opposed to the reactor 600b, and three ultraviolet LED elements 110b are arranged in a row in the height direction at equal intervals of 15 mm. Arranged. At this time, the distance A between the reactor 600b and the ultraviolet LED element 110b was 60 mm.
  • the water bath 500a is provided with a heat source (not shown) for maintaining the hot water 400a at a predetermined temperature.
  • the reaction time of the chlorination reaction which is the time required for the chlorine content of the chlorinated vinyl chloride resin to reach 67.2%, that is, the time from the start of irradiation to the end of irradiation was 309 minutes. .
  • the remaining hydrochloric acid was removed by washing with water, and then the chlorinated vinyl chloride resin was dried. Thereby, a chlorinated vinyl chloride resin was obtained.
  • reaction time of the chlorination reaction which is the time required for the chlorine content of the chlorinated vinyl chloride resin to reach 67.2%, that is, the time from the start of ultraviolet irradiation to the end of irradiation, It was 300 minutes.
  • Reference Example 5 using an ultraviolet LED that emits ultraviolet light having a peak wavelength of 365 nm is used in Reference Example 5 that uses an ultraviolet LED that emits ultraviolet light having a peak wavelength of 385 nm.
  • a chlorinated vinyl chloride resin having better initial colorability during thermoforming was obtained.
  • ultraviolet light having a peak wavelength of 365 nm is applied to Reference Example 6 using an ultraviolet LED that emits ultraviolet light having a peak wavelength of 385 nm. It was found that the reaction time of Reference Example 5 using an ultraviolet LED was almost the same, but the required total light amount was almost half and the reaction efficiency was high.
  • Example 1 ⁇ Production of chlorinated vinyl chloride resin> (Example 1) As shown in FIG. 17, a PVC pipe 800a for circulating an aqueous suspension was connected to an aqueous suspension outlet provided at the bottom of a jacketed reactor 600c, and a transparent glass tube 810 was disposed at the tip of 800a. Further, a pressure reducing valve 4 is provided in front of the transparent glass tube 810, and the slurry is decompressed before entering the transparent glass tube 810.
  • a PVC pipe 800b for circulating an aqueous suspension, a pump 900 for circulating an aqueous suspension, and a PVC pipe 800c for circulating an aqueous suspension are further connected in this order.
  • the outlet part of the pipe 800c was connected to the gas phase part of the jacketed reactor 600c.
  • the jacketed reactor 600c is provided with a lid 620c.
  • FIG. 18 shows an enlarged view of the transparent glass tube 810 and the light source for irradiating ultraviolet rays in the apparatus of FIG.
  • a UV-LED light source unit manufactured by Sentec Co., Ltd.
  • 100c is disposed as a light source for irradiating ultraviolet rays at a position 15 mm from the surface of the transparent glass tube 810 (hereinafter referred to as “ultraviolet LED light source device”). 100c ").
  • the ultraviolet LED light source device 100c includes twelve ultraviolet LED elements 110c (manufactured by Nichia Corporation, product number “NC4U133A”, forward current 500 mA, forward voltage 14.9 V) with a peak wavelength of 365 nm at 15 mm intervals in the vertical direction. As shown in FIG. 18, the ultraviolet light is disposed so as to be applied to the aqueous suspension flowing in the transparent glass pipe 810. In FIG. 18, only three ultraviolet LED elements 110c of the ultraviolet LED light source device 100c are shown because of space.
  • the emission spectrum of the ultraviolet LED element 110c used in Example 1 is as shown in FIG.
  • the ultraviolet light emitted from the ultraviolet LED element 110c has a wavelength range of 350 nm to 392 nm, one peak, and a peak wavelength of 365 nm.
  • the wavelength range means a range of wavelengths having a relative emission intensity of 2% or more with respect to the relative emission intensity of the peak wavelength in the emission spectrum.
  • a vinyl chloride resin (Kaneka Co., Ltd.) having 35 kg of pure water, a K value of 66.4, an average particle size of 200 ⁇ m, and an apparent density of 0.557 g / ml. 15 kg), a lid 620c was installed, and the jacketed reactor 600c was sealed.
  • An aqueous suspension 700c of vinyl chloride resin which is a mixed liquid of pure water and vinyl chloride resin, was stirred at a rotational speed of 590 rpm using a turbine blade 610c (diameter 180 mm) of the reactor 600c.
  • the aqueous suspension 700c was circulated in the apparatus using the aqueous suspension circulation pump 900.
  • the inside of the reactor 600c with jacket was vacuum degassed and purged with nitrogen, and then vacuum degassed again.
  • chlorine gas was blown into an aqueous suspension 700c of the vinyl chloride resin through a chlorine introduction portion (not shown).
  • ultraviolet light was irradiated from the ultraviolet LED element 110c while stirring the aqueous suspension 700c of the vinyl chloride resin with the turbine blade 610c.
  • the ultraviolet ray is irradiated to the aqueous suspension 700c of the vinyl chloride resin through the transparent glass pipe 810, and the chlorination reaction is started.
  • the inside of the jacketed reactor 600c was pressurized to 0.02 MPa by introduction of chlorine gas from the start of chlorination reaction (start of UV irradiation), and thereafter maintained at 0.06 MPa during the chlorination reaction (during UV irradiation).
  • the temperature in the reactor 600c is raised to 50 ° C. in 25 minutes after the start of nitrogen substitution, and is heated up to 85 ° C. in 100 minutes from the start of chlorination reaction (start of ultraviolet irradiation). (During UV irradiation) was maintained at 85 ° C.
  • the time required for the chlorine content of the chlorinated vinyl chloride resin to reach 67.1% was defined as the reaction time of the chlorination reaction. This time, that is, the time from the start of irradiation with ultraviolet rays to the end of irradiation, was 137 minutes. Then, after unreacted chlorine in the chlorinated vinyl chloride resin was purged with nitrogen gas, the remaining hydrochloric acid was removed by washing with water to dry the chlorinated vinyl chloride resin. Thereby, a chlorinated vinyl chloride resin was obtained.
  • Example 2 A chlorinated vinyl chloride resin was obtained in the same manner as in Example 1 except that the pressure inside the jacketed reactor 600c during the chlorination reaction was 0.1 MPa.
  • the time required for the chlorine content of the chlorinated vinyl chloride resin to reach 67.1% (the reaction time of the chlorination reaction, that is, the time from the start of irradiation to the end of irradiation) is the same hereinafter. ) For 128 minutes.
  • Example 3 A chlorinated vinyl chloride resin was obtained in the same manner as in Example 1 except that the pressure inside the jacketed reactor 600c during the chlorination reaction was changed to 0.12 MPa. In this example, the time required for the chlorine content of the chlorinated vinyl chloride resin to reach 67.1% was 123 minutes.
  • Example 4 A chlorinated vinyl chloride resin was obtained in the same manner as in Example 1 except that the pressure inside the jacketed reactor 600c during the chlorination reaction was 0.14 MPa. In this example, the time required for the chlorine content of the chlorinated vinyl chloride resin to reach 67.1% was 125 minutes.
  • Example 5 A chlorinated vinyl chloride resin was obtained in the same manner as in Example 1 except that the pressure inside the jacketed reactor 600c during the chlorination reaction was changed to 0.02 MPa. In this example, the time required for the chlorine content of the chlorinated vinyl chloride resin to reach 67.1% was 144 minutes.
  • Comparative Example 4 As a comparative example, one glass cylindrical container was placed in a reactor with a jacket, and an attempt was made to produce a chlorinated vinyl chloride resin. An ultraviolet light source similar to the ultraviolet LED light source device 100c was provided in the glass cylindrical container. In the same manner as in Example 1, water and vinyl chloride resin were charged into this reactor, and the reactor was sealed with a lid. Then, an aqueous suspension of vinyl chloride resin, which is a mixed liquid of pure water and vinyl chloride resin, was stirred at a rotational speed of 590 rpm using a turbine blade (diameter: 180 mm) of the reactor.
  • Comparative Example 4 when the ultraviolet LED light source device was put into a glass cylindrical container and inserted into the reactor, the cylindrical container of the light source could not withstand the pressure inside the reactor and was damaged. have done. As shown in Comparative Example 5, when the pressure inside the reactor (0.01 MPa) that can withstand the cylindrical container of the light source was used, the reaction time for chlorination was long.
  • Example 6 The raw material vinyl chloride resin used was changed to a vinyl chloride resin (manufactured by Kaneka Corporation) having a K value of 58.4, an average particle diameter of 150 ⁇ m, and an apparent density of 0.574 g / ml, A chlorinated vinyl chloride resin was obtained in the same manner as in Example 1 except that the pressure inside the jacketed reactor 600c during the chlorination reaction was 0.04 MPa. In this example, the time required for the chlorine content of the chlorinated vinyl chloride resin to reach 67.1% was 140 minutes.
  • Example 7 A chlorinated vinyl chloride resin was obtained in the same manner as in Example 6 except that the pressure inside the jacketed reactor 600c during the chlorination reaction was changed to 0.06 MPa. In this example, the time required for the chlorine content of the chlorinated vinyl chloride resin to reach 67.1% was 135 minutes.
  • Example 8 A chlorinated vinyl chloride resin was obtained in the same manner as in Example 6 except that the pressure inside the jacketed reactor 600c during the chlorination reaction was 0.08 MPa. In this example, the time required for the chlorine content of the chlorinated vinyl chloride resin to reach 67.1% was 128 minutes.
  • Example 9 A chlorinated vinyl chloride resin was obtained in the same manner as in Example 6 except that the pressure inside the jacketed reactor 600c during the chlorination reaction was set to 0.02 MPa. In this example, the time required for the chlorine content of the chlorinated vinyl chloride resin to reach 67.1% was 153 minutes.
  • reaction time of the reference example and the reaction time of the example of the present application are different in the vinyl chloride resin of the material used, and in addition, the reach of the chlorination content is different (in the reference example, the reach of the chlorine content is different) Therefore, it is not possible to make a general comparison. For this reason, the effect of the present invention can be understood by comparing Examples 1 to 5 and Comparative Examples 4 and 5 that have the same conditions such as the material and the degree of achievement of chlorination content.
  • the chlorinated vinyl chloride resin obtained by the present invention has excellent characteristics such as high mechanical strength, weather resistance, chemical resistance and the like of vinyl chloride resin, and is further superior in heat resistance than vinyl chloride resin. It can be used in various industrial fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 第1の槽において、塩化ビニル系樹脂の懸濁液に塩素を導入する工程と、前記塩素が導入された懸濁液を第1の槽から第2の槽へ移送し、当該第2の槽において、前記懸濁液に対して紫外線を照射する工程と、を有する塩素化塩化ビニル系樹脂の製造方法によれば、塩化ビニル系樹脂の懸濁液中への塩素溶解量が向上し、塩素化塩素系ビニル系樹脂の製造効率が向上する。

Description

塩素化塩化ビニル系樹脂の製造方法及び製造装置
 本発明は、塩素化塩化ビニル系樹脂の製造方法及び製造装置に関し、より詳細には、光塩素化法を用いた塩素化塩化ビニル系樹脂の製造方法及び製造装置に関する。
 塩素化塩化ビニル系樹脂の耐熱温度は、塩素化によって塩化ビニル系樹脂の耐熱温度よりも高くなる。そのため、塩素化塩化ビニル系樹脂は、耐熱パイプ、耐熱工業板、耐熱フィルム及び耐熱シートなどの種々の分野で使用されている。
 塩素化塩化ビニル系樹脂は、塩化ビニル系樹脂粒子を水性媒体中に懸濁させて得られた水性懸濁液に、塩素を供給しつつ、塩化ビニル系樹脂を塩素化することによって製造されることが一般的である。通常、塩素化を光塩素化法で行う場合、塩素ラジカルを生成させるために、水銀灯による紫外線照射が行われている(特許文献1)。
 また、ポリオレフィン粉粒体の水性懸濁液に、ラジカルが発生しない条件で塩素を溶解させる工程により、塩素を粉粒体内部に浸透させ、次いで加熱又は/及び光照射により塩素化する。この二つの工程を交互に繰り返し行うことにより、同一反応槽内において、塩素化ポリオレフィン粉粒体を得る方法が報告されている(特許文献2)。
 上記製造方法では、図7に示すように、塩化ビニル系樹脂の水性懸濁液105中にガラス管101で保護した水銀灯102を挿入することにより塩素化反応を行う。
日本国公開特許公報「特開平10-279627号公報」 日本国公開特許公報「特開平6-100618号公報」
 上述した塩素化塩化ビニル系樹脂の製造方法では、塩化ビニル系樹脂を分散させた懸濁液へ塩素を供給するに際して、当該懸濁液中への塩素溶解量を向上させるために、反応器中を加圧することが一般的である。このとき、反応器中の内部圧力を高くし過ぎると、水銀灯を覆うガラス管が破損してしまうという課題がある。一方、ガラス管を厚くすれば耐圧性能は向上するが、ガラス管の厚みが増すと水銀灯から照射される紫外線がガラスに吸収され、反応効率が低下するという問題がある。
 上記の課題を解決するために、本発明者らは鋭意検討した結果、塩素を導入する塩素導入槽と紫外線照射による光塩素化反応を行うための槽とを分離したうえで、塩素導入槽の内圧を高くすることにより、懸濁液中への塩素溶解量を増加させることができ、その結果、塩素化塩化ビニル系樹脂の製造効率等を向上させ得ることを見出し、本発明を完成させるに至った。すなわち、本発明は、以下の発明を包含する。
 第1の槽において、塩化ビニル系樹脂の懸濁液に塩素を導入する工程と、前記塩素が導入された懸濁液を第1の槽から第2の槽へ移送し、当該第2の槽において、前記懸濁液に対して紫外線を照射する工程と、を有する塩素化塩化ビニル系樹脂の製造方法。
 塩化ビニル系樹脂の懸濁液に塩素を導入するための第1の槽と、前記第1の槽から懸濁液を導入し、塩素化するための第2の槽と、を備え、前記第2の槽は、前記懸濁液に対して、紫外線を照射するための光源を備える塩素化塩化ビニル系樹脂の製造装置。
 本発明に係る塩素化塩化ビニル系樹脂の製造方法又は塩素化塩化ビニル系樹脂の製造装置によれば、塩化ビニル系樹脂の懸濁液中への塩素溶解量が向上し、例えば、塩素化塩素系ビニル系樹脂を製造する際の反応効率が向上するという効果を奏する。
本発明の一実施形態に係る塩素化塩化ビニル系樹脂の製造装置を模式的に示す図である。 本発明の他の一実施形態に係る塩素化塩化ビニル系樹脂の製造装置を模式的に示す図である。 本発明の一実施形態に係る塩素化塩化ビニル系樹脂の製造装置における循環方式を模式的に示す図である。 本発明の一実施形態に係る塩素化塩化ビニル系樹脂の製造装置における紫外線照射のための第2の槽の一例を模式的に示す図である。 本発明の一実施形態に係る塩素化塩化ビニル系樹脂の製造装置における紫外線照射のための第2の槽の他の一例を模式的に示す図である。 本発明の一実施形態に係る塩素化塩化ビニル系樹脂の製造装置における紫外線照射のための第2の槽の他の一例を模式的に示す図である。 従来の塩素化塩化ビニル系樹脂の製造装置を模式的に示す図である。 参考例1で用いた紫外線LED光源装置及び反応器を含む塩素化塩化ビニル系樹脂の製造装置の模式的側断面図である。 参考例で用いる一例の紫外線LEDの発光スペクトルを示す図である。 参考例2で用いた紫外線LED光源装置の模式的側断面図である。 参考例2で用いた紫外線LED光源装置及び反応器を含む塩素化塩化ビニル系樹脂の製造装置の模式的側断面図である。 参考例2で用いた紫外線LED光源装置及び反応器を含む塩素化塩化ビニル系樹脂の製造装置の模式的上面図である。 参考例3で用いた紫外線LED光源装置の模式的側断面図である。 参考例3で用いた紫外線LED光源装置及び反応器を含む塩素化塩化ビニル系樹脂の製造装置の模式的側断面図である。 参考例で用いた一例の紫外線LEDの発光スペクトルを示す図である。 参考例5で用いた紫外線LED光源装置及び反応器を含む塩素化塩化ビニル系樹脂の製造装置の模式的側断面図である。 実施例で用いた紫外線LED光源装置及び反応器を含む塩素化塩化ビニル系樹脂の製造装置を模式的に示す図である。 図17の装置の一部分を拡大した図である。
 本発明の実施の一形態について、以下に詳細に説明する。なお、本明細書中に記載された学術文献及び特許文献の全てが、本明細書中において参考として援用される。なお、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上(Aを含みかつAより大きい)B以下(Bを含みかつBより小さい)」を、「%」は「質量%」を、「部」は「質量部」を、それぞれ意味する。
 本発明に係る塩素化塩化ビニル系樹脂の製造方法(以下、単に本発明に係る製造方法と称する。)は、(i)第1の槽において、塩化ビニル系樹脂の懸濁液に塩素を導入する工程と、(ii)前記塩素が導入された懸濁液を第1の槽から第2の槽へ移送し、当該第2の槽において、前記懸濁液に対して紫外線を照射する工程と、を有するものであればよく、その他の具体的な工程、条件、材料、設備等は特に限定されない。
 すなわち、本発明に係る製造方法は、塩化ビニル系樹脂の懸濁液に塩素を供給する槽と、塩素を含有する塩化ビニル系樹脂の懸濁液に対して紫外線を照射して光塩素化反応を行う槽とを分離したことに特徴がある。前記構成により、塩素を導入するための第1の槽の内圧を上げることができる。このため、塩化ビニル系樹脂の懸濁液中への塩素溶解量が向上し、例えば、塩素化塩素系ビニル系樹脂を製造する際の反応効率が向上する。
 さらに、光塩素化反応の際に熱が発生することから、塩素導入と光照射を同時に実施していた従来の製造法では槽を除熱する必要があった。しかし、本発明に係る製造方法では、塩素導入のための第1の槽と光塩素化反応のための第2の槽とが分離されている構成であるため、塩素導入のための第1の槽を除熱する必要がなくなり、除熱に関する設備費を低減させることができる。例えば、第1の槽を除熱する以外の懸濁液の除熱方法としては、配管で除熱又は冷却を行う方法を挙げることができる。配管での除熱又は冷却方法についても特に限定されないが、例えば、冷却ジャケットを備える配管を用いる方法、あるいは配管の「放冷」にて実施できる。
 また、紫外線を照射するための光源としては、紫外線光源が使用でき、特に限定されないが、特に、単一波長の紫外線を照射できるものであることが好ましい。例えば、水銀灯、紫外線LED、有機EL、無機EL及び紫外線レーザーからなる群より選択される少なくとも1種の光源を用いることが好ましい。より好ましくは、紫外線LED、有機EL、無機EL及び紫外線レーザーからなる群より選択される少なくとも1種の光源を用いることが好ましい。
 また、本発明には、塩化ビニル系樹脂の懸濁液に塩素を導入するための第1の槽と、前記第1の槽から懸濁液を導入し、塩素化するための第2の槽と、を備え、前記第2の槽は、前記懸濁液に対して、紫外線を照射するための紫外線LED、有機EL、無機EL及び紫外線レーザーからなる群より選択される少なくとも1種の光源を備える塩素化塩化ビニル系樹脂の製造装置も含まれる(以下、単に本発明に係る製造装置と称する。)。本発明に係る製造装置によれば、本発明に係る製造方法を実施できる。なお、以下の実施形態では、光源として紫外線LEDを用いたものを一例として挙げるが、光源はこれに限定されないことは上述の通りである。
 以下、図面に基づき、本発明に係る製造方法及び製造装置について詳説する。図1に示すように、本発明に係る製造方法に利用可能な塩素化塩化ビニル系樹脂の製造装置11は、塩素ガスを導入するための塩素導入部1、塩化ビニル系樹脂の懸濁液12に塩素を導入するための第1の槽2、塩素が導入された懸濁液を第1の槽2から第2の槽6へ移送するためのスラリー抜出部3、第1の槽2から取り出された懸濁液の圧力を減圧するための減圧弁4、懸濁液に対して紫外線を照射し光塩素化反応を行うための第2の槽6、第2の槽6から第1の槽2へ懸濁液を循環させるためのスラリー循環ライン7、第2の槽6から取り出された懸濁液に対して塩素ガスを導入するための塩素導入部8、懸濁液を第2の槽6から第1の槽2へ移送するためのスラリー循環ポンプ5、第1の槽2において懸濁液12を撹拌するための撹拌部9を備えるものである。
 第1の槽2は、密閉可能な耐圧容器であればよく、特に制限なく種々の反応容器を利用でき、具体的な構成については限定されない。例えば、公知の塩素化塩化ビニル系樹脂を製造するための槽を好適に利用できる。第1の槽2には、塩化ビニル系樹脂を分散させた懸濁液12が入れられており、第1の槽2内に配置された撹拌部9によって撹拌される。撹拌されている懸濁液12には、塩素導入部1から塩素ガスが供給される。第1の槽2に配置された撹拌部9は、特に制限されず、撹拌翼等を利用できる。例えば、撹拌翼としては、プロペラ翼などの軸流型であってもよいし、パドル翼、タービン翼などの幅流型であってもよい。
 さらに、本製造装置11は、第1の槽2を加圧するための加圧部(加圧手段)を備えることが好ましい。これにより、第1の槽2内を加圧することができる。本製造装置11では、塩素導入部1が加圧部として機能する。つまり、塩素導入部1が塩素ガスを第1の槽2へ導入することにより、第1の槽2内部の圧力が高まる。
 加圧により、懸濁液12中への塩素溶解量が向上し、例えば、塩素化塩素系ビニル系樹脂を製造する際の反応効率を向上させ得る。第1の槽2における圧力は、特に限定されないが、例えば、0.02~2.00MPaを挙げることができる。また、0.04~2.00MPaであることが好ましく、0.05~2.00MPaであることが好ましく、0.06~1.50MPaであることがより好ましく、0.08~1.20MPaであることがさらに好ましい。加えて0.10~1.00MPaであることがより好ましく、0.12~0.50MPaであることが特に好ましい。前記の範囲内であれば、塩素化の反応効率を向上させ得る。
 塩素が供給された懸濁液12は、第1の槽2の槽底部に設けられたスラリー抜出部3より取り出され、懸濁液12の圧力を減圧するための減圧弁4を経由して、第2の槽6へ移送される。減圧弁4は、種々の一般的な減圧弁を用いることができ、特に限定されない。
 第2の槽6へ導入された懸濁液12は、紫外線が照射され光塩素化反応により塩素化される。その後、第2の槽6から導出された懸濁液12は、スラリー循環ライン7、スラリー循環ポンプ5を経由して、第1の槽2へ戻される。このとき、第2の槽6では、光塩素化反応により懸濁液中の塩素が消費されている。このため、第2の槽6から取り出された懸濁液に対して、塩素導入部8(第2の塩素導入手段)から塩素ガスを供給することが好ましい。塩素導入部8は、第2の槽6から取り出された懸濁液が第1の槽2へ戻される前に、当該懸濁液に対して塩素ガスを導入するものであることが好ましい。また、塩素導入部8は、第2の槽6から取り出された懸濁液に対して、スラリー循環ライン7内が負圧とならないように、換言すれば、スラリー循環ライン7内が負圧以上となるように、塩素ガスを供給するものであることが好ましい。
 このように、本製造装置11は、第2の槽6において紫外線照射された懸濁液を、第1の槽2へ循環させる循環部(循環手段)を備えることが好ましく、本発明に係る製造方法でいえば、第2の槽6において紫外線照射された懸濁液を、第1の槽2へ循環させることが好ましい。なお、本実施形態では、循環部(循環手段)として、スラリー循環ポンプ5、スラリー循環ライン7等を挙げることができる。本構成により、塩素の供給と紫外線照射による塩素化とを繰り返し行うことができるため、容易に生産できる。
 スラリー循環ポンプ5は、安定した一定量の懸濁液を第1の槽2へ循環させることができるものであればよく、特に限定されないが、例えば、ギアポンプ又はスネークポンプであることが好ましい。ポンプ材質としては、例えば、セラミック、チタンパラジウム等を用いることができる。なお、ポンプ材質は、対湿潤塩素、対塩化水素を満たす材質であることが好ましい。
 また、図2に示すように、本製造装置11において、第1の槽2を覆うジャケット部10を備える構成であってもよい。第1の槽2を覆うジャケット部10は、第1の槽2の内温を制御する機能を有するものである。例えば、反応器の内温を冷却するためのジャケットを例示できる。冷却用ジャケットにより、除熱量と発熱量とのバランスを取ることで、第1の槽2の内温をコントロールできる。
 また、第2の槽6は、図1では1つのみ図示しているが、設置数は特に限定されず、複数の第2の槽6を設けてもよい。第2の槽6を複数設ける場合、直列に設置してもよく、又は並列して設置してもよいが、反応効率を考慮すると、並列に設置することが好ましい。
 第2の槽6から第1の槽2へ循環させるとき、懸濁液12を、第1の槽2内部で効率よく混合させるように、循環させることが好ましい。例えば、第2の槽6から第1の槽2へ循環させるとき、懸濁液12を、第1の槽2の気相部又は液面近傍へ導入する方法を挙げることができる。換言すれば、循環部は、懸濁液12を第1の槽2の気相部又は気液界面近傍へ導入するものであることが好ましい。この構成の一例について図3を用いて説明する。なお、以下の例示に限定されるものではなく、第2の槽6から第1の槽2へ循環させるとき、懸濁液12を、第1の槽内部で効率よく混合させることが目的であり、当該目的の範囲内であれば、どのような箇所に懸濁液12を循環させてもよいことを念のため付言しておく。
 図3に示すように、第2の槽6から第1の槽2へ懸濁液12を戻す流路として、(1)第1の槽2の槽底部に戻すルート71、(2)第1の槽2の槽中央部に戻すルート72、(3)第1の槽2の気液界面13近傍に戻すルート73、及び(4)第1の槽2の気相部14に戻すルート74、の大きく4つの流路が考えられる。これら4つの流路のうち、懸濁液12を気相部14に戻す場合、第2の槽6から循環した懸濁液12が、第1の槽2内において最もよく混合されることになることから特に好ましく、次いで気液界面13近傍に懸濁液12を戻すことが好ましい。塩素が供給された懸濁液12を第2の槽6へ再度移送するとき、第1の槽2の槽底部に設けられたスラリー抜出部3より取り出される構造上、第2の槽6から循環する懸濁液12を、第1の槽2の気相部14又は気液界面13近傍へ導入することにより、塩化ビニル系樹脂の内部へ十分に塩素を供給することができる。
 第2の槽6は、懸濁液12を流通させる透明配管と、当該透明配管に対して紫外線を照射する光源と、を備えるものであることが好ましい。透明配管は1本であっても、複数であってよく、本数については特に限定されない。また、径の大きさや形状等についても種々の透明配管を用いることができる。透明配管の材料についても、紫外線を透過させ、塩素化塩化ビニル系樹脂の製造条件(耐塩素性、耐酸性等)に耐え得るものであればよく、種々の透明配管を用いることができ、特に限定されないが、例えばガラス配管が好ましい。
 前記光源は、透明配管内を流通する塩化ビニル系樹脂の懸濁液に対して紫外線を照射可能に配置されていればよく、具体的な構成や設置位置については特に限定されない。例えば、透明配管の上部、下部、側方部、又はこれらを組み合わせた位置に光源を配置することにより、透明配管内を流通する塩化ビニル系樹脂の懸濁液に紫外線を照射して塩素化を行うことができる。
 図4に基づき、さらに第2の槽6の具体的な構成の一例を説明する。第2の槽6は、紫外線LED素子21を複数備える紫外線照射パネル20、塩化ビニル系樹脂の懸濁液12を流通させる透明配管22、を備えるものである。ここで、図4中、紫外線照射パネル20を1つのみ図示しているが、透明配管22を挟むように、もう1つの紫外線照射パネル20を対向させて設置させることが好ましい。図4では、説明の便宜のため、手前側の紫外線照射パネル20の記載を省略している(図5、図6も同様である)。
 透明配管22は、より長時間の紫外線照射を達成するために、2つの屈曲部を備えたS字形状である。懸濁液12は、透明配管22のスラリー入口23から流入し、透明配管内22を流通する間、紫外線照射パネル20から紫外線を照射される。その後、スラリー出口24を介して第2の槽6より出る。
 第2の槽6が備える透明配管の他の実施形態の一例として、配管内部にスタティックミキサーを備えるものを挙げることができる。透明配管内部にスタティックミキサーを設けることにより、配管内部を流通する塩化ビニル系樹脂の懸濁液を混合しながら、紫外線を照射し塩素化を行うことができるため、より反応効率を高めることができる。スタティックミキサーの具体的な構成については特に限定されず、種々の配管に設置されるものを利用できる。
 かかる実施態様の第2の槽の一例について、図5に基づき具体的に説明する。第2の槽6’は、紫外線LED素子21を複数備える紫外線照射パネル20、塩化ビニル系樹脂の懸濁液を流通させる透明配管25、を備えるものである。透明配管25は内部にスタティックミキサーを備えるものである。図5に示すように、スタティックミキサーを備える透明配管25によれば、スラリー入口23から流入した懸濁液12を撹拌しながら紫外線を照射できることから、塩素化反応を効率よく行うことができる。なお、上述したように、図5中、透明配管25を挟むように、もう1つの紫外線照射パネル20を対向させて設置させる構成であってもよい。
 また、第2の槽の他の一例として、塩化ビニル系樹脂の懸濁液を流通させる金属配管であってさらに透明窓を有する金属配管と、当該透明窓に対して紫外線を照射する光源と、を備えるものであってもよい。金属配管は1本であっても、複数であってよく、本数については特に限定されない。また、材質、径の大きさや形状等についても種々の金属配管を用いることができる。透明窓の大きさや形状についても特に限定されず、紫外線を照射し得るものであればよい。透明窓の材料についても限定されないが、紫外線を透過させ、塩素化塩化ビニル系樹脂の製造条件(耐塩素性、耐酸性等)に耐え得るものであればよく、種々の透明窓を用いることができ、特に限定されないが、例えばガラスで形成されるものが好ましい。
 また、前記光源は、金属配管内を流通する塩化ビニル系樹脂の懸濁液に対して、透明窓を介して紫外線を照射可能に配置されていればよく、具体的な構成については特に限定されない。例えば、透明窓の上部、下部、側方部、又はこれらを組み合わせた位置に光源を配置することにより、金属配管内を流通する塩化ビニル系樹脂の懸濁液に、透明窓を介して紫外線を照射して塩素化を行うことができる。
 図6に基づき、かかる態様の第2の槽6”の構成の一例を説明する。第2の槽6”は、紫外線LED素子21を複数備える紫外線照射パネル20、塩化ビニル系樹脂の懸濁液を流通させる金属配管26、を備えるものである。金属配管26は、紫外線照射用の透明窓27を備えるものである。図6に示すように、透明窓27を備える金属配管26によれば、スラリー入口23から流入した懸濁液12に対して、透明窓27を介して紫外線を照射することができるため、塩素化反応を行うことができる。なお、図6中、金属配管26の透明窓27と紫外線照射パネル20とは対向していないが、これは説明の便宜のためであり、実際は、金属配管26の透明窓27と、紫外線照射パネル20とは、対向して設置されている。また、透明窓27に対して効果的に紫外線を照射できるように、複数の紫外線照射パネル20を設置してもよい。
 また、金属配管26の内部に、スタティックミキサーを設けてもよい。この場合、金属配管26内の懸濁液を撹拌しながら紫外線を照射することができることから、塩素化反応を効率よく行うことができる。
 前記の構成のように、第2の槽において、紫外線を照射するための光源を(槽外に)外部設置することによって、例えば、光源として紫外線LEDを用いる場合、当該紫外線LEDの冷却が容易となる。さらに、紫外線LEDの保守点検等のメンテナンスも行い易く、設備の長期間の使用が可能となる。
 光源については、紫外線を照射可能なものであれば特に限定されないが、本発明者らは、紫外線LED、有機EL、無機EL及び紫外線レーザーからなる群から選ばれる少なくとも1種の光源を用いて、好ましくは紫外線LEDを用いて塩化ビニル系樹脂と塩素に紫外線を照射し、塩化ビニル系樹脂を塩素化することによって、得られた塩素化塩化ビニル系樹脂の加熱成形時の初期着色の抑制及び/又は熱安定性の向上が達成されることを見出し、本発明の好ましい一実施形態を完成させるに至った。また、反応器内の撹拌性や、光源から塩化ビニル系樹脂への照射範囲が同様であれば、紫外線LED、有機EL、無機EL及び紫外線レーザーからなる群から選ばれる少なくとも1種の光源を用いて、紫外線照射を行うことで、塩化ビニル系樹脂を塩素化する工程における総消費電力量が小さくなり、生産コストが低減するため、好ましい。あるいは、紫外線LED、有機EL、無機EL及び紫外線レーザーからなる群から選ばれる少なくとも1種の光源は、特に紫外線LEDは、水銀灯に比べて、長期使用による光度の低下が抑制されるため、光源の更新回数が少なくなり、塩素化塩化ビニル系樹脂の生産性が向上するため、好ましい。あるいは、紫外線LED、有機EL、無機EL及び紫外線レーザーからなる群から選ばれる少なくとも1種の光源は、総消費電力量が同様の場合、水銀灯に比べて、反応時間が短くなるため、好ましい。本発明において、総消費電力量は、光源の電流値をI(A)とし、光源の電圧値をV(V)とし、塩素化反応時間をt(h)とした場合、下記数式1によって算出する。
  総消費電力量(W・h)=I×V×t×(光源の個数)  (1)
 紫外線LEDとしては、紫外線を照射することができるLEDであればよく、特に限定されない。例えば、紫外線LEDには、AlN、AlGaN、AlInGaNなどの窒化物半導体材料を発光層に用いた半導体発光素子、又は、ダイヤモンド薄膜を発光層に用いた半導体発光素子などが用いられる。好ましくは、ピーク波長が1つの紫外線LEDを用いる。また、紫外線LEDの照射する紫外線のピーク波長は、発光層の各組成の割合により調整することができる。例えば、紫外線LEDの発光層に窒化物半導体材料が用いられる場合、Alの含有量が増えるにしたがって、紫外線のピーク波長が短くなる。紫外線の照射には、紫外線LEDの他に、紫外線を照射できる有機EL、無機EL、紫外線レーザーなどの光源を用いることができる。中でも、光源としては、紫外線LEDを用いることが好ましい。有機EL、無機EL、紫外線レーザーなどの光源も、紫外線LEDが照射する紫外線と同様のピーク波長及び/又は波長範囲の紫外線を照射することが好ましい。紫外線LEDが照射する紫外線のピーク波長や波長範囲については、後述のとおりである。
 紫外線LEDの照射する紫外線のピーク波長は、加熱成形時の初期着色の抑制及び熱安定性の向上の観点から、290nm~400nmであることが好ましい。
 紫外線LEDの照射する紫外線の波長範囲は、260nm~430nmであることが好ましい。
 また、熱安定性の観点から、波長範囲が300nm~430nmであり、ピーク波長が350nm~400nmである紫外線を照射する紫外線LEDを用いることが好ましい。
 本発明において、塩素化反応効率は、同様の組成の塩化ビニル系樹脂を用いて同様の塩素含有量の塩素化塩化ビニル系樹脂を製造する際には、必要な総光量及び/又は反応時間で評価することができる。必要な総光量が少ないほど、塩素化反応効率が高いことになる。また、反応時間が短いほど、塩素化反応効率が高いことになる。本発明において、「総光量」は、以下のように測定・算出するものである。光量測定器(TOPCON社製、品番「UVR-2」)にセンサー(TOPCON社製、品番「UD-36」)を装着し、塩素化反応を行う際に反応器内に存在する塩化ビニル系樹脂と光源の距離が最も近くなる位置で、光源から照射される紫外線の単位面積あたりの光量を測定する。また、塩素化反応を行う際に反応器内に存在する塩化ビニル系樹脂と光源の距離が最も近くなる位置で、光源から照射される紫外線が塩素化ビニル系樹脂にあたる照射面積を測定する。上記の測定で得られる照射面積の値に単位面積あたりの光量の値を乗じた値を総光量とする。例えば、塩素化塩化ビニル系樹脂の製造に図4~図6に示す第2の槽6を用いる場合、透明配管22、透明配管25、又は金属配管26(透明窓)における任意の内壁の位置で単位面積あたりの光量及び照射面積を測定すればよい。あるいは、透明配管22、透明配管25、又は金属配管26(透明窓)において、紫外線LEDにより紫外線を照射する任意の外壁の位置で単位面積あたりの光量及び照射面積を測定してもよい。なお、前記において、単位面積あたりの光量と照射面積の測定は、空気雰囲気下、かつ透明配管又は金属配管が空の状態で行うこととする。
 塩化ビニル系樹脂の塩素化に用いられる紫外線LEDの個数は、単数でもよいし、複数でもよい。複数の紫外線LEDが用いられる場合、照射する紫外線のピーク波長が同じである紫外線LEDがそれぞれ組み合わされて用いられてもよいし、照射する紫外線のピーク波長が異なる紫外線LEDがそれぞれ組み合わされて用いられてもよい。ここで、「紫外線LED」は、紫外線LED素子、複数の紫外線LED素子を有する紫外線LED光源装置の両方を指す。
 本発明において、塩化ビニル系樹脂の懸濁液は、塩化ビニル系樹脂を水性媒体に懸濁させて得ることができる。例えば、水性媒体として水を用い、塩化ビニル系樹脂と水を混合して塩化ビニル系樹脂の水性懸濁液を得ることができる。
 塩素化塩化ビニル系樹脂の原料として使用される塩化ビニル系樹脂は、塩化ビニル単量体の単独重合体、又は、塩化ビニル単量体と他の共重合可能な単量体との共重合体を用いることができる。他の共重合可能な単量体としては、特に限定されないが、例えば、エチレン、プロピレン、酢酸ビニル、塩化アリル、アリルグリシジルエーテル、アクリル酸エステル、ビニルエーテルなどが挙げられる。
 塩化ビニル単量体の単独重合、又は、塩化ビニル単量体と他の共重合可能な単量体の共重合の際には、分散剤及び油溶性重合開始剤などが用いられる。なお、上記重合には、重合調整剤、連鎖移動剤、pH調整剤、帯電防止剤、架橋剤、安定剤、充填剤、酸化防止剤、スケ-ル防止剤などがさらに用いられてもよい。
 分散剤には、例えば、部分ケン化ポリ酢酸ビニル、メチルセルロース、ヒドロキシプロピルメチルセルロースなどが用いられる。油溶性重合開始剤には、例えば、ラウロイルパーオキサイド、ジ-2-エチルヘキシルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、α,α’-アゾビス-2,4-ジメチルバレロニトリルなどが用いられる。
 塩化ビニル系樹脂は、特に限定されないが、平均粒子径が0.1~350μmであることが好ましく、より好ましくは80~200μmである。本発明において、塩化ビニル系樹脂の平均粒子径はJIS K0069に従って測定する。
 本発明において、第2の槽が備える光源によって紫外線が照射される、この紫外線照射の開始によって、塩化ビニル系樹脂の塩素化反応が開始する。
 水性懸濁液中の塩化ビニル系樹脂は所望の塩素含有量になるまで塩素化される。塩素化反応は、紫外線の照射を終了することによって停止する。塩素化反応が停止した後、窒素などによって塩素化塩化ビニル系樹脂中の未反応塩素を追い出し、塩素化塩化ビニル系樹脂のTg(ガラス転移温度)以下の温度の温水を用いて、塩素化塩化ビニル系樹脂中の残存塩酸を除去する。その後、脱水、乾燥工程を経て、塩素化塩化ビニル系樹脂が得られる。
 生産性、水性懸濁液の粘度安定性及び撹拌時の均一混合性の観点から、水性懸濁液中の塩化ビニル系樹脂の濃度は、10重量%~40重量%であることが好ましく、20重量%~35重量%であることがさらに好ましい。
 第1の槽に塩素を供給する場合、塩素は、気体状及び液体状のどちらであっても良いが、取扱いの容易さの観点から、気体状であることが好ましい。塩素供給方法は、水性懸濁液中に、塩素を供給できる方法であればよく、特に限定されない。例えば、塩素供給方法には、塩素化反応開始前に初期一括で塩素を仕込む方法、塩素化反応中に断続的に塩素を供給する方法、塩素化反応中に連続で塩素を供給する方法などがある。上述したとおり、本発明において、塩素化反応は、紫外線照射を開始することで開始され、紫外線照射を終了することで終了する。
 塩素化反応時の最高反応温度は、特に限定されることはないが、90℃以下であることが好ましく、88℃以下であることがより好ましく、86℃以下であることがさらに好ましい。最高反応温度が90℃以下のとき、塩化ビニル系樹脂の劣化が抑制されるとともに、得られる塩素化塩化ビニル系樹脂の着色が抑制される。塩素化反応時の最低反応温度は、水性懸濁液の撹拌翼による流動を容易にする観点から、0℃を超えることが好ましい。また、最低反応温度は、反応時間を短縮する観点から、30℃以上であることが好ましく、50℃以上であることがより好ましい。
 前記のように、塩素が導入された塩化ビニル系樹脂の懸濁液を、第2の槽内において、紫外線LED、有機EL、無機EL及び紫外線レーザーからなる群から選ばれる少なくとも1種の光源を用いて紫外線を照射し、塩化ビニル系樹脂を塩素化させて得られた塩素化塩化ビニル系樹脂は、加熱成形時の初期着色の抑制及び熱安定性の向上の少なくとも一方が達成される。好ましくは、上記塩素化塩化ビニル系樹脂は、加熱成形時の初期着色が抑制され、かつ熱安定性も向上している。
 本発明において、塩素化塩化ビニル系樹脂の加熱成形時の初期着色は、塩素化塩化ビニル系樹脂を加熱成形して作製したサンプルを用い、JIS K7373に準拠してイエローインデックスを測定することで評価する。イエローインデックスの値が低いほど加熱成形時の初期着色が抑制されていること、すなわち加熱成形時の初期着色性が良好であることを意味する。また、塩素化塩化ビニル系樹脂の熱安定性は、塩素化塩化ビニル系樹脂を用いて作製したサンプル(シート)を用い、200℃のオーブンにて加熱し、シートが黒化する、すなわちシートのL値(明度)が20以下になるまでの時間を測定することで評価する。黒化するまでの時間が長いほど熱安定性が高いことを意味する。また、塩素化塩化ビニル系樹脂の耐熱性は、JIS K7206に従って、B50法にて、ビカット軟化点を測定することで評価する。ビカット軟化点の値が高いほど耐熱性が高いことを意味する。
 また、本発明は、以下の発明を包含する。
 (1)第1の槽において、塩化ビニル系樹脂の懸濁液に塩素を導入する工程と、前記塩素が導入された懸濁液を第1の槽から第2の槽へ移送し、当該第2の槽において、前記懸濁液に対して紫外線を照射する工程と、を有する塩素化塩化ビニル系樹脂の製造方法。
 (2)前記第1の槽内は、加圧されている(1)に記載の塩素化塩化ビニル系樹脂の製造方法。
 (3)前記第1の槽内の圧力は、0.02~2MPaである(2)に記載の塩素化塩化ビニル系樹脂の製造方法。
 (4)前記第2の槽において紫外線照射された懸濁液を、前記第1の槽へ循環させる(1)~(3)のいずれかに記載の塩素化塩化ビニル系樹脂の製造方法。
 (5)さらに、前記第2の槽から取り出された懸濁液に塩素を導入する工程を含む(4)に記載の塩素化塩化ビニル系樹脂の製造方法。
 (6)前記第2の槽から第1の槽へ循環させるとき、前記懸濁液を、前記第1の槽の気相部又は気液界面近傍へ導入する(4)又は(5)に記載の塩素化塩化ビニル系樹脂の製造方法。
 (7)前記懸濁液に対して紫外線を照射する工程は、紫外線LED、有機EL、無機EL及び紫外線レーザーからなる群より選択される少なくとも1種の光源を用いて行われる(1)~(6)のいずれかに記載の塩素化塩化ビニル系樹脂の製造方法。
 (8)塩化ビニル系樹脂の懸濁液に塩素を導入するための第1の槽と、前記第1の槽から懸濁液を導入し、塩素化するための第2の槽と、を備え、前記第2の槽は、前記懸濁液に対して紫外線を照射するための光源を備える塩素化塩化ビニル系樹脂の製造装置。
 (9)前記第1の槽を加圧するための加圧手段を備える(8)に記載の塩素化塩化ビニル系樹脂の製造装置。
 (10)前記第1の槽内の圧力は、0.05~2MPaに設定されている(9)に記載の塩素化塩化ビニル系樹脂の製造装置。
 (11)前記第2の槽において紫外線照射された懸濁液を、前記第1の槽へ循環させる循環手段を備える(8)~(10)のいずれかに記載の塩素化塩化ビニル系樹脂の製造装置。
 (12)前記第2の槽から取り出された懸濁液に塩素を導入する第2の塩素導入手段を備える(11)に記載の塩素化塩化ビニル系樹脂の製造装置。
 (13)前記循環手段は、前記懸濁液を前記第1の槽の気相部又は気液界面近傍へ導入するものである(11)又は(12)に記載の塩素化塩化ビニル系樹脂の製造装置。
 (14)前記光源は、紫外線LED、有機EL、無機EL及び紫外線レーザーからなる群より選択される少なくとも1種の光源である(8)~(13)のいずれかに記載の塩素化塩化ビニル系樹脂の製造装置。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。以下、参考例及び実施例を示し、本発明について更に詳細に説明するが、本発明はかかる参考例及び実施例のみに限定されるものではない。
 〔参考例〕
 ここで、水銀灯(水銀ランプ)を光源として用いる替わりに、紫外線LED、有機EL、無機EL及び紫外線レーザーからなる群より選択される少なくとも1種の光源、具体的には紫外線LEDを光源として用いた場合の効果、即ち、光源として紫外線LEDを用いた場合の効果を、参考例として示す。下記参考例及び比較例において、「部」及び「%」は、特に断りが無い限り、重量基準である。
 (参考例1)
 <塩素化塩化ビニル系樹脂の作製>
 図8に示すように、紫外線LED光源装置100として、UV-LED光源ユニット(株式会社センテック製、型番「OX223」)を準備した。紫外線LED光源装置100は、ピーク波長が365nmである紫外線LED素子110(日亜化学工業株式会社製、品番「NC4U133」、順電流500mA、順電圧14.9V)を3個有している。
 参考例1で用いた紫外線LED素子の発光スペクトルは、図9に示す通りである。図9に示すように、紫外線LED素子110が照射する紫外線は、波長範囲が350nmから392nmであり、ピークが一つであり、ピーク波長が365nmであった。ここで、波長範囲は、上述した通り、発光スペクトルにおいて、ピーク波長の相対発光強度に対して2%以上の相対発光強度を有する波長の範囲を意味する。
 紫外線LED光源装置100を、縦20mm、横20mm、高さ300mmのアルミニウム製の支持体200に配置した後、内径75mm、高さ400mm、厚さ2.5mmの透明なガラス製の円筒状容器300(PYREX(登録商標))中に挿入した。
 60℃の温水400が入ったウォーターバス500中に、円筒状容器300に入れられた紫外線LED光源装置100と、厚さ3.6mmの透明なガラス製の容器である反応器600(容量3L、PYREX(登録商標))とを配置した。具体的には、ウォーターバス500に配置された紫外線LED光源装置100は、反応器600と対向し、3個の紫外線LED素子110が15mmの等間隔で高さ方向に1列に並べられた状態で配置されている。このとき、反応器600と紫外線LED素子110との距離Aは80mmとした。尚、ウォーターバス500には、温水400を所定の温度に維持するための熱源(図示せず)を設けた。
 次に、反応器600に、純水1.8kgと、K値が66.7、平均粒子径が170μm、見かけ密度が0.568g/mlである塩化ビニル系樹脂(株式会社カネカ製)0.2kgとを投入し、蓋620で反応器600内を密閉した。尚、塩化ビニル系樹脂のK値はJIS-K7367-2に準拠して求めた値であり、平均粒子径はJIS-K0069に従って求めた値であり、見かけ密度はJIS-K7365に従って求めた値である(以下の値についても同様)。そして、純水と塩化ビニル系樹脂との混合液である塩化ビニル系樹脂の水性懸濁液700を、反応器600のタービン翼610を用いて、回転数340rpmで攪拌した。
 反応器600内を真空脱気及び窒素置換した。その後、塩素ガスを塩化ビニル系樹脂の水性懸濁液700中に吹き込んだ。同時に、塩化ビニル系樹脂の水性懸濁液700をタービン翼610で攪拌しつつ、紫外線LED素子110から紫外線を塩化ビニル系樹脂の水性懸濁液700に照射して、塩素化反応を開始させた。尚、塩素ガスを吹き込むときは、反応器600内が減圧しないように注意した。塩素化反応中は、ウォーターバス500中の温水400の温度を60℃に維持した。
 塩素化塩化ビニル系樹脂の塩素含有量が66.3%に達したとき、紫外線LED素子110による紫外線の照射を終了して、塩素化反応を終了させた。塩素化塩化ビニル系樹脂の塩素含有量は、塩素化反応で副生する塩酸の中和滴定値により算出した(以下の値についても同様)。塩素化塩化ビニル系樹脂の塩素含有量が66.3%に達するまでに要する時間である塩素化反応の反応時間、即ち、紫外線の照射開始から照射終了までの時間は、96分間であった。そして、窒素ガスにて塩素化塩化ビニル系樹脂中の未反応の塩素を追い出した後、残存する塩酸を水洗して除去してから塩素化塩化ビニル系樹脂を乾燥させた。これにより、塩素化塩化ビニル系樹脂を得た。
 (比較例1)
 支持体200で支持された1台の紫外線LED光源装置100に替えて、100Wの高圧水銀灯(東芝ライテック株式会社製、電流値1.3A、電圧値100V)を1灯用いた以外は、参考例1と同様にして、塩素化塩化ビニル系樹脂を得た。
 比較例1において、塩素化塩化ビニル系樹脂の塩素含有量が66.3%に達するまでに要する時間である塩素化反応の反応時間、即ち、紫外線の照射開始から照射終了までの時間は、120分間であった。
 参考例1及び比較例1で得られた塩素化塩化ビニル系樹脂の加熱成形時の初期着色、熱安定性測定及び評価は、以下の通りに行った。また、以下の通りにビカット軟化点を測定及び評価することにより、耐熱性の測定及び評価を行った。
 <加熱成形時の初期着色>
 塩素化塩化ビニル系樹脂100重量部に対して、メチルメタクリレート・ブタジエン・スチレン(MBS)樹脂(株式会社カネカ製、品番「カネエース(登録商標)B31」)を10重量部、液状の錫系安定剤(日東化成株式会社製、品番「TVS#8831」)を1重量部、粉末状の錫系安定剤(日東化成株式会社製、品番「TVS#8813」)を1重量部、滑剤であるステアリン酸(花王株式会社製、品番「ルナック(登録商標)S-90V」)を1重量部、及びポリエチレンワックス(三井化学株式会社製、品番「Hiwax220MP」)を0.3重量部配合した後、8インチロールにて、195℃で5分間混練し、厚さ0.6mmのシートを作製した。
 得られたシートを15枚重ね合わせたものを、鋼板にクロームメッキを施して鏡面仕上げしたフェロ板間に挟んだ後、200℃の条件下、圧力を3MPa~5MPaの範囲に調整して10分間プレスし、厚さ5mmの板を作製した。得られた板のイエローインデックス(以下、「YI」ともいう)を、色差計(日本電色工業株式会社製、品番「ZE-2000」)を使用し、JIS-K7373に準拠して測定した。
 <熱安定性>
 塩素化塩化ビニル系樹脂100重量部に対して、メチルメタクリレート・ブタジエン・スチレン(MBS)樹脂(株式会社カネカ製、品番「カネエース(登録商標)B31」)を10重量部、液状の錫系安定剤(日東化成株式会社製、品番「TVS#8831」)を1重量部、粉末状の錫系安定剤(日東化成株式会社製、品番「TVS#8813」)を1重量部、滑剤であるステアリン酸(花王株式会社製、品番「ルナック(登録商標)S-90V」)を1重量部、及びポリエチレンワックス(三井化学株式会社製、品番「Hiwax220MP」)を0.3重量部配合した後、8インチロールにて、195℃で5分間混練し、厚さ0.6mmのシートを作製した。
 得られたシートを縦3cm、横5cmに切り取り、200℃のオーブンにて加熱し、シートが黒化するまでの時間を測定した。黒化とは、シートのL値が20以下であることをいう。L値は色差計(日本電色工業株式会社製、品番「ZE-2000」)を使用して測定した。
 <ビカット軟化点>
 塩素化塩化ビニル系樹脂100重量部に対して、メチルメタクリレート・ブタジエン・スチレン(MBS)樹脂(株式会社カネカ製、品番「カネエース(登録商標)B31」)を10重量部、液状の錫系安定剤(日東化成株式会社製、品番「TVS#8831」)を1重量部、粉末状の錫系安定剤(日東化成株式会社製、品番「TVS#8813」)を1重量部、滑剤であるステアリン酸(花王株式会社製、品番「ルナック(登録商標)S-90V」)を1重量部、及びポリエチレンワックス(三井化学株式会社製、品番「Hiwax220MP」)を0.3重量部配合した後、8インチロールにて、195℃で5分間混練し、厚さ0.6mmのシートを作製した。
 得られたシートを15枚重ね合わせたものを、鋼板にクロームメッキを施して鏡面仕上げしたフェロ板間に挟んだ後、200℃の条件下、圧力を3MPa~5MPaの範囲に調整して10分間プレスし、厚さ5mmの板を作製した。得られた板を用い、JIS-K7206に従って、塩素化塩化ビニル系樹脂のビカット軟化点(Vicat軟化点)の測定を行った。但し、荷重を5kgとし、昇温速度は50℃/h(B50法)とした。
 上記測定を行った結果、参考例1で得られた塩素化塩化ビニル系樹脂のYIは136であり、黒化に要した時間は40分間であり、ビカット軟化点は112.3℃であった。これに対して、比較例1で得られた塩素化塩化ビニル系樹脂のYIは142であり、黒化に要した時間は30分間であり、ビカット軟化点は111.6℃であった。これらの結果を下記表1にまとめて示した。
Figure JPOXMLDOC01-appb-T000001
 上記表1のデータから分かるように、参考例1で得られた塩素化塩化ビニル系樹脂は、比較例1で得られた塩素化塩化ビニル系樹脂に比べて、YIが低いので加熱成形時の初期着色性が良好であり、黒化に要する時間が長いので熱安定性も良好であった。また、参考例1で得られた塩素化塩化ビニル系樹脂は、比較例1で得られた塩素化塩化ビニル系樹脂に比べて、ビカット軟化点が高いので耐熱性も良好であった。塩素含有量が同程度の塩素化塩化ビニル系樹脂を製造する場合に、紫外線LEDを用いて紫外線の照射を行った参考例1では、水銀灯を用いて紫外線の照射を行った比較例1よりも、塩素化反応に必要な総消費電力量が格段に少なく、省エネの効果があり、コストが低減された。
 (参考例2)
 <塩素化塩化ビニル系樹脂の作製>
 図10に示すように、紫外線LED光源装置100aとして、UV-LED光源ユニット(株式会社センテック製、型番「OX224」)を準備した。紫外線LED光源装置100aは、ピーク波長が365nmである紫外線を照射する紫外線LED素子110a(日亜化学工業株式会社製、品番「NC4U133」、順電流500mA、順電圧14.9V)を12個有している。尚、参考例2で用いた紫外線LED素子の発光スペクトルは、図9に示す通りである。
 図10に示すように、紫外線LED光源装置100aを、支持体200aに支持して配置した後、内径74mm、高さ600mm、厚さ7mmの透明なガラス製の円筒状容器300a(PYREX(登録商標))中に挿入した。
 図11,図12に示すように、円筒状容器300aに入れられた紫外線LED光源装置100aをジャケット付き反応器600a(容量100L)中に1台配置した。具体的には、紫外線LED光源装置100aは、上面視において円筒状の反応器600aの中心と円筒状容器300aの中心との距離、即ち、図12において一点鎖線で表されるBの長さが210mmとなるように配置した。このとき、12個の紫外線LED素子110aは、15mmの等間隔で高さ方向に1列に並べられた状態である。また、最も低い位置に配置された紫外線LED素子110aは、反応器600aの底面からの距離が132mmの位置にあった。そして、紫外線LED素子110aを、紫外線の照射方向が攪拌の流れ方向(図12の矢印Cの方向)と対向する向きに配置した。
 次に、反応器600aに、純水45kgと、K値が57.1であり、平均粒子径が125μmであり、見かけ密度が0.496g/mlである塩化ビニル系樹脂(株式会社カネカ製)5kgとを投入し、蓋620aをして反応器600a内を密閉した。そして、純水と塩化ビニル系樹脂との混合液である塩化ビニル系樹脂の水性懸濁液700aを、反応器600aのタービン翼610a(直径180mm)を用いて、回転数590rpmで攪拌した。
 反応器600a内を真空脱気及び窒素置換した後、再度真空脱気した。次いで、塩素ガスを塩化ビニル系樹脂の水性懸濁液700a中に吹き込んだ。同時に、タービン翼610aで塩化ビニル系樹脂の水性懸濁液700aを攪拌しつつ、紫外線LED素子110aから紫外線を塩化ビニル系樹脂の水性懸濁液700aに照射させて塩素化反応を開始した。反応器600a内の温度は、窒素置換の開始後25分間で50℃まで昇温させ、塩素化反応開始(紫外線照射開始)から15分間で40℃まで冷却して、その後の塩素化反応中(紫外線照射中)は40℃に維持した。
 塩素化塩化ビニル系樹脂の塩素含有量が64.4%に達したとき、紫外線LED素子110aによる紫外線の照射を終了して、塩素化反応を終了させた。塩素化塩化ビニル系樹脂の塩素含有量が64.4%に達するまでに要した時間である塩素化反応の反応時間、即ち、紫外線の照射開始から照射終了までの時間は、147分間であった。そして、窒素ガスにて塩素化塩化ビニル系樹脂中の未反応の塩素を追い出した後、残存する塩酸を水洗にて除去して塩素化塩化ビニル系樹脂を乾燥させた。これにより、塩素化塩化ビニル系樹脂を得た。
 (比較例2)
 支持体200aに支持された1台の紫外線LED光源装置100aに代えて、100Wの高圧水銀灯(サンエナジー株式会社製、品番「SEH1002J01」、順電流1.1±0.1A、順電圧110±10V)を1灯用いた以外は、参考例2と同様にして、塩素化塩化ビニル系樹脂を得た。
 比較例2において、塩素化塩化ビニル系樹脂の塩素含有量が64.4%に達するまでに要した時間である塩素化反応の反応時間、即ち、紫外線の照射開始から照射終了までの時間は、234分間であった。
 参考例2及び比較例2で得られた塩素化塩化ビニル系樹脂の加熱成形時の初期着色、熱安定性、耐熱性(ビカット軟化点)の測定及び評価は、以下の通りに行った。
 <加熱成形時の初期着色>
 塩素化塩化ビニル系樹脂100重量部に対して、メチルメタクリレート・ブタジエン・スチレン(MBS)樹脂(株式会社カネカ製、品番「カネエース(登録商標)B11A」)を5重量部、液状の錫系安定剤(日東化成株式会社製、品番「N2000C」)を3重量部、PMMA樹脂(株式会社カネカ製、品番「カネエース(登録商標)PA-20」)を1重量部、複合滑剤(川研ファインケミカル株式会社製、品番「VLTN―4」)を1重量部配合して、8インチロールにて、180℃で3分間混練し、厚さ0.6mmのシートを作製した。
 得られたシートを15枚重ね合わせたものを、鋼板にクロームメッキを施して鏡面仕上げされたフェロ板間に挟んだ後、190℃の条件で、圧力を3MPa~5MPaの範囲に調整して10分間プレスし、厚さ5mmの板を作製した。得られた板を、色差計(日本電色工業株式会社製、品番「ZE-2000」)を使用し、JIS-K7373に準拠して、YIを測定した。
 <熱安定性>
 塩素化塩化ビニル系樹脂100重量部に対して、メチルメタクリレート・ブタジエン・スチレン(MBS)樹脂(株式会社カネカ製、品番「カネエース(登録商標)B11A」)を5重量部、液状の錫系安定剤(日東化成株式会社製、品番「N2000C」)を3重量部、PMMA樹脂(株式会社カネカ製、品番「カネエース(登録商標)PA-20」)を1重量部、複合滑剤(川研ファインケミカル株式会社製、品番「VLTN―4」)を1重量部配合して、8インチロールにて、180℃で3分間混練し、厚さ0.6mmのシートを作製した。得られたシートを縦3cm、横3.5cmに切り取り、200℃のオーブンにて加熱し、シートが黒化するまでの時間を測定した。黒化とは、シートのL値が20以下であることをいう。L値は色差計(日本電色工業株式会社製、品番「ZE-2000」)を使用して測定した。
 <ビカット軟化点>
 塩素化塩化ビニル系樹脂100重量部に対して、メチルメタクリレート・ブタジエン・スチレン(MBS)樹脂(株式会社カネカ製、品番「カネエース(登録商標)B11A」)を5重量部、液状の錫系安定剤(日東化成株式会社製、品番「N2000C」)を3重量部、PMMA樹脂(株式会社カネカ製、品番「カネエース(登録商標)PA-20」)を1重量部、複合滑剤(川研ファインケミカル株式会社製、品番「VLTN―4」)を1重量部配合して、8インチロールにて、180℃で3分間混練し、厚さ0.6mmのシートを作製した。得られたシートを15枚重ね合わせたものを、鋼板にクロームメッキを施して鏡面仕上げされたフェロ板間に挟んだ後、200℃の条件で、圧力を3MPa~5MPaの範囲に調整して10分間プレスし、厚さ5mmの板を作製した。得られた板を用い、JIS-K7206に従って、塩素化塩化ビニル系樹脂のビカット軟化点の測定を行った。但し、荷重を5kgとし、昇温速度は50℃/h(B50法)とした。
 上記の測定を行った結果、参考例2で得られた塩素化塩化ビニル系樹脂のYIは77.6であり、黒化に要した時間は80分間であり、ビカット軟化点は98.6℃であった。比較例2で得られた塩素化塩化ビニル系樹脂のYIは87.1であり、黒化に要した時間は70分間であり、ビカット軟化点は97.2℃であった。これらの結果を下記表2にまとめて示した。
Figure JPOXMLDOC01-appb-T000002
 上記表2のデータから分かるように、参考例2で得られた塩素化塩化ビニル系樹脂は、比較例2で得られた塩素化塩化ビニル系樹脂に比べ、YIが低いので加熱成形時の初期着色性が良好であり、黒化に要した時間が長いので熱安定性も良好であった。また、参考例2で得られた塩素化塩化ビニル系樹脂は、比較例2で得られた塩素化塩化ビニル系樹脂に比べ、ビカット軟化点が高いので耐熱性も良好であった。塩素含有量が同程度の塩素化塩化ビニル系樹脂を製造するに際し、紫外線LEDを用いて紫外線照射を行った参考例2では、水銀灯を用いて紫外線照射を行った比較例2よりも塩素化反応に必要な総消費電力量が格段に少なく、省エネの効果があり、コストが低減された。
 (参考例3)
 <塩素化塩化ビニル系樹脂の作製>
 図13に示すように、紫外線LED光源装置100bとして、UV-LED光源ユニット(株式会社センテック製、型番「OX558」)を準備した。紫外線LED光源装置100bは、ピーク波長が365nmである紫外線LED素子110b(日亜化学工業株式会社製、品番「NC4U133A」、順電流500mA、順電圧14.9V)を3個有している。
 参考例3で用いた紫外線LED素子の発光スペクトルは、図9に示す通りである。図9に示すように、紫外線LED素子110bが照射する紫外線は、波長範囲が350nmから392nmであり、ピークが一つであり、ピーク波長が365nmであった。
 紫外線LED光源装置100bを内径25mm、高さ360mm、厚さ2.5mmの透明なガラス製の円筒状容器300b(PYREX(登録商標))中に挿入した。
 図14に示すように、25℃の温水400aが入ったウォーターバス500a中に、透明なガラス製の容器である反応器600b(容量10L、PYREX(登録商標))を配置し、円筒状容器300bに入れられた紫外線LED光源装置100bを反応器600b中に一台配置した。このとき、3個の紫外線LED素子110bは、15mmの等間隔で高さ方向に1列に並べられた状態であった。また、最も低い位置に配置された紫外線LED素子110bは、反応器600bの底面から90mmの位置にあった。そして、紫外線LED素子110bを、紫外線の照射方向が攪拌の流れ方向と対向する向きに配置した。尚、ウォーターバス500aには、温水400aを所定の温度に維持するための熱源(図示せず)を設けた。
 次に、反応器600bに、純水5.4kgと、K値が66.7、平均粒子径が170μm、見かけ密度が0.568g/mlである塩化ビニル系樹脂(株式会社カネカ製)0.6kgとを投入し、蓋620bをして反応器600b内を密閉した。そして、純水と塩化ビニル系樹脂との混合液である塩化ビニル系樹脂の水性懸濁液700bを、反応器600bのタービン翼610を用いて、回転数800rpmで攪拌した。
 反応器600b内を真空脱気及び窒素置換した後、塩素ガスを塩化ビニル系樹脂の水性懸濁液700b中に吹き込んだ。同時に、塩化ビニル系樹脂の水性懸濁液700bをタービン翼610で攪拌しつつ、紫外線LED素子110bから紫外線を水性懸濁液700bに照射させて、塩素化反応を開始した。尚、塩素ガスを吹き込むときは、反応器600b内が減圧にならないように注意した。塩素化反応中は、ウォーターバス500a中の温水400aを70℃に維持した。
 塩素化塩化ビニル系樹脂の塩素含有量が67.1%に達したとき、紫外線LED素子110bによる紫外線の照射を終了して、塩素化反応を終了させた。塩素化塩化ビニル系樹脂の塩素含有量が67.1%に達するまでに要した時間である塩素化反応の反応時間、即ち、紫外線の照射開始から照射終了までの時間は、120分間であった。そして、窒素ガスにて塩素化塩化ビニル系樹脂中の未反応の塩素を追い出した後、残存する塩酸を水洗にて除去してから塩素化塩化ビニル系樹脂を乾燥させた。これにより、塩素化塩化ビニル系樹脂を得た。
 (参考例4)
 紫外線LED光源装置100bに代えて、紫外線LED光源装置としてUV-LED光源ユニット(株式会社センテック製、型番「OX559」)を1灯用いた以外は、参考例3と同様にして、塩素化塩化ビニル系樹脂を得た。紫外線LED光源装置は、ピーク波長が385nmである紫外線LED素子(日亜化学工業株式会社製、品番「NC4U134A」、順電流500mA、順電圧14.8V)を3個有している。
 参考例4で用いた紫外線LEDの発光スペクトルは、図15に示す通りである。図15に示すように、紫外線LED素子が照射する紫外線は、波長範囲が355nmから415nmであり、ピークが一つであり、ピーク波長が385nmであった。ここで、波長範囲は、上述した通り、発光スペクトルにおいて、ピーク波長の相対発光強度に対して2%以上の相対発光強度を有する波長の範囲を意味する。
 参考例4において、塩素化塩化ビニル系樹脂の塩素含有量が67.2%に達するまでに要した時間である塩素化反応の反応時間、即ち、紫外線の照射開始から照射終了までの時間は、135分間であった。
 (比較例3)
 紫外線LED光源装置100bに代えて、100Wの高圧水銀灯(東芝ライテック株式会社製、順電流1.3A、順電圧100V)を1灯用いた以外は、参考例3と同様にして、塩素化塩化ビニル系樹脂を得た。
 比較例3において、塩素化塩化ビニル系樹脂の塩素含有量が67.1%に達するまでに要した時間である塩素化反応の反応時間、即ち、紫外線の照射開始から照射終了までの時間は、93分間であった。
 参考例3、参考例4及び比較例3で得られた塩素化塩化ビニル系樹脂について、参考例1と同様にして、塩素化塩化ビニル系樹脂の加熱成形時の初期着色、熱安定性、ビカット軟化点の測定及び評価を行った。
 その結果、参考例3で得られた塩素化塩化ビニル系樹脂のYIは91.1であり、黒化に要した時間は60分間であり、ビカット軟化点は117.8℃であった。参考例4で得られた塩素化塩化ビニル系樹脂のYIは93.3であり、黒化に要した時間は50分間であり、ビカット軟化点は115.2℃であった。比較例3で得られた塩素化塩化ビニル系樹脂のYIは132.3であり、黒化に要した時間は20分間であり、ビカット軟化点は114.3℃であった。これらの結果を下記表3にまとめて示した。
 また、参考例3、参考例4及び比較例3における総光量を、以下のように測定・算出した。光量測定器(TOPCON社製、品番「UVR-2」)にセンサー(TOPCON社製、品番「UD-36」)を装着し、塩素化反応を行うときに反応器内に存在する塩化ビニル系樹脂と光源との距離が最も近くなる位置で、光源から照射された紫外線の単位面積当たりの光量を測定した。また、塩素化反応を行うときに反応器内に存在する塩化ビニル系樹脂と光源との距離が最も近くなる位置で、光源から照射された紫外線が塩素化ビニル系樹脂に当たる照射面積を測定した。上記測定で得られる照射面積の値に単位面積当たりの光量の値を乗じた値を総光量とした。尚、上記測定において、単位面積当たりの光量と照射面積の測定は、空気雰囲気下、かつ反応器内が空の状態で行った。その結果を下記表3に示した。
Figure JPOXMLDOC01-appb-T000003
 上記表3のデータから分かるように、参考例3、参考例4で得られた塩素化塩化ビニル系樹脂は、比較例3で得られた塩素化塩化ビニル系樹脂に比べ、YI値が低いので加熱成形時の初期着色性が良好であり、黒化に要した時間が長いので熱安定性も良好であった。また、参考例3、参考例4で得られた塩素化塩化ビニル系樹脂は、比較例3で得られた塩素化塩化ビニル系樹脂に比べ、ビカット軟化点が高いので耐熱性も良好であった。塩素含有量が同程度の塩素化塩化ビニル系樹脂を製造するに際し、紫外線LEDを用いて紫外線照射を行った参考例3、参考例4では、水銀灯を用いて紫外線照射を行った比較例3よりも塩素化反応に必要な総消費電力量が格段に少なく、省エネの効果があり、コストが低減された。
 表3のデータから分かるように、ピーク波長が385nmの紫外線を照射する紫外線LEDを用いた参考例4に対し、ピーク波長が365nmの紫外線を照射する紫外線LEDを用いた参考例3の方が、加熱成形時の初期着色性及び熱安定性がより向上した塩素化塩化ビニル系樹脂が得られた。また、塩素含有量が同程度の塩素化塩化ビニル系樹脂を製造する際に、ピーク波長が385nmの紫外線を照射する紫外線LEDを用いた参考例4に対し、ピーク波長が365nmの紫外線を照射する紫外線LEDを用いた参考例3の方が、必要な総光量が少ない上、反応時間も短く、反応効率が高いことが分かった。
 (参考例5)
 <塩素化塩化ビニル系樹脂の作製>
 参考例3と同様に、紫外線LED光源装置100bを用いた。
 図16に示すように、紫外線LED光源装置100bを内径75mm、高さ400mm、厚さ2.5mmの透明なガラス製の円筒状容器300(PYREX(登録商標))中に挿入した。図示しないが、集光を目的としてLED光源装置100bの周りをアルミホイルで囲み、紫外線LED素子110bの正面を縦50mm、横50mmに切り抜き、その部分以外からは光が漏れないようにした。
 図16に示すように、25℃の温水400aが入ったウォーターバス500a中に、円筒状容器300に入れられた紫外線LED光源装置100bと、透明なガラス製の容器である反応器600b(容量10L、PYREX(登録商標))とを配置した。具体的に、ウォーターバス500aに配置された紫外線LED光源装置100bは、反応器600bと対向し、3個の紫外線LED素子110bが15mmの等間隔で高さ方向に1列に並べられた状態で配置された。このとき、反応器600bと紫外線LED素子110bとの距離Aは60mmとした。尚、ウォーターバス500aには、温水400aを所定の温度に維持するための熱源(図示せず)を設けた。
 次に、反応器600bに、純水5.4kgと、K値が66.7、平均粒子径が170μm、見かけ密度が0.568g/mlである塩化ビニル系樹脂(株式会社カネカ製)0.6kgとを投入し、蓋620bをして反応器600b内を密閉した。そして、純水と塩化ビニル系樹脂との混合液である塩化ビニル系樹脂の水性懸濁液700bを、反応器600bのタービン翼610を用いて、回転数800rpmで攪拌した。
 反応器600b内を真空脱気及び窒素置換した後、塩素ガスを塩化ビニル系樹脂の水性懸濁液700b中に吹き込んだ。同時に、塩化ビニル系樹脂の水性懸濁液700bをタービン翼610で攪拌しつつ、紫外線LED素子110bから紫外線を水性懸濁液700bに照射して、塩素化反応を開始した。尚、塩素ガスを吹き込むときは、反応器600b内が減圧にならないように注意した。塩素化反応中は、ウォーターバス500a中の温水400aを70℃に維持した。
 塩素化塩化ビニル系樹脂の塩素含有量が67.2%に達したとき、紫外線LED素子110bによる紫外線の照射を終了して、塩素化反応を終了させた。塩素化塩化ビニル系樹脂の塩素含有量が67.2%に達するまでに要した時間である塩素化反応の反応時間、即ち、紫外線の照射開始から照射終了までの時間は、309分間であった。そして、窒素ガスにて塩素化塩化ビニル系樹脂中の未反応の塩素を追い出した後、残存する塩酸を水洗にて除去してから塩素化塩化ビニル系樹脂を乾燥させた。これにより、塩素化塩化ビニル系樹脂を得た。
 (参考例6)
 紫外線LED光源装置として、参考例4と同様の紫外線LED光源装置を1灯用いた以外は、参考例5と同様にして、塩素化塩化ビニル系樹脂を得た。
 参考例6において、塩素化塩化ビニル系樹脂の塩素含有量が67.2%に達するまでに要した時間である塩素化反応の反応時間、即ち、紫外線の照射開始から照射終了までの時間は、300分間であった。
 参考例5及び参考例6で得られた塩素化塩化ビニル系樹脂について、参考例1と同様にして、塩素化塩化ビニル系樹脂の加熱成形時の初期着色、熱安定性、ビカット軟化点の測定及び評価を行った。
 その結果、参考例5で得られた塩素化塩化ビニル系樹脂のYIは91.9であり、黒化に要した時間は90分間であり、ビカット軟化点は117.1℃であった。参考例6で得られた塩素化塩化ビニル系樹脂のYIは93.8であり、黒化に要した時間は90分間であり、ビカット軟化点は117.1℃であった。これらの結果を下記表4にまとめて示した。
 また、参考例3と同様にして、参考例5及び参考例6における総光量を測定・算出した。その結果を下記表4に示した。
Figure JPOXMLDOC01-appb-T000004
 表4のデータから分かるように、ピーク波長が385nmの紫外線を照射する紫外線LEDを用いた参考例6に対し、ピーク波長が365nmの紫外線を照射する紫外線LEDを用いた参考例5の方が、加熱成形時の初期着色性がより良好な塩素化塩化ビニル系樹脂が得られた。また、塩素含有量が同程度の塩素化塩化ビニル系樹脂を製造する際に、ピーク波長が385nmの紫外線を照射する紫外線LEDを用いた参考例6に対し、ピーク波長が365nmの紫外線を照射する紫外線LEDを用いた参考例5の方が、反応時間はほぼ同様であるが、必要な総光量がほぼ半分であり、反応効率が高いことが分かった。総消費電力量では参考例5と参考例6とに差異はなかった。
<塩素化塩化ビニル系樹脂の作製>
 (実施例1)
 図17に示すように、ジャケット付き反応器600cの底部に設けた水性懸濁液出口に水性懸濁液循環用PVC製配管800aを接続し、800aの先には透明ガラス管810を配置した。また、透明ガラス管810の前には、減圧弁4が設けられており、透明ガラス管810に入る前に、スラリーが減圧される。さらにその先には水性懸濁液循環用PVC製配管800b、水性懸濁液循環用ポンプ900、さらに水性懸濁液循環用PVC製配管800cの順で接続し、水性懸濁液循環用PVC製配管800cの出口部分を、ジャケット付き反応器600c気相部へ接続した。なお、ジャケット付き反応器600cには、蓋620cが設けられている。
 図18に、図17の装置のうち、透明ガラス管810及び紫外線を照射するための光源の部分を拡大した図を示す。図18に示すように、透明ガラス管810の表面から15mmの位置に、紫外線を照射するための光源としてUV-LED光源ユニット(株式会社センテック製)100cを配置した(以下、「紫外線LED光源装置100c」と称する)。紫外線LED光源装置100cは、ピーク波長が365nmである紫外線LED素子110c(日亜化学工業株式会社製、品番「NC4U133A」、順電流500mA、順電圧14.9V)を縦方向に15mm間隔で12個備えており、図18に示すように、紫外光が透明ガラス配管810中を流れる水性懸濁液に対して照射されるよう配置した。なお、図18中、紫外線LED光源装置100cの紫外線LED素子110cは、スペースの関係上、3つのみ記載した。
 実施例1で用いた紫外線LED素子110cの発光スペクトルは、図9に示す通りである。図9に示すように、紫外線LED素子110cが照射する紫外線は、波長範囲が350nmから392nmであり、ピークが一つであり、ピーク波長が365nmであった。ここで、波長範囲は、上述した通り、発光スペクトルにおいて、ピーク波長の相対発光強度に対して2%以上の相対発光強度を有する波長の範囲を意味する。
 次に、ジャケット付き反応器600cに、純水35kgと、K値が66.4であり、平均粒子径が200μmであり、見かけ密度が0.557g/mlである塩化ビニル系樹脂(株式会社カネカ製)15kgとを投入した後、蓋620cを設置して、ジャケット付き反応器600c内を密閉した。純水と塩化ビニル系樹脂との混合液である塩化ビニル系樹脂の水性懸濁液700cを、反応器600cのタービン翼610c(直径180mm)を用いて、回転数590rpmで攪拌した。同時に水性懸濁液循環用ポンプ900を用いて、水性懸濁液700cを装置内に循環させた。
 ジャケット付き反応器600c内を真空脱気及び窒素置換した後、再度真空脱気した。次いで、不図示の塩素導入部により、塩素ガスを塩化ビニル系樹脂の水性懸濁液700c中に吹き込んだ。同時に、タービン翼610cで塩化ビニル系樹脂の水性懸濁液700cを攪拌しつつ、紫外線LED素子110cから紫外線を照射した。紫外線は、透明ガラス配管810越しに塩化ビニル系樹脂の水性懸濁液700cに照射され、塩素化反応が開始される。塩素化反応開始(紫外線照射開始)からジャケット付き反応器600c内部を塩素ガスの導入によって0.02MPaまで加圧し、その後、塩素化反応中(紫外線照射中)は0.06MPaに維持した。反応器600c内の温度は、窒素置換の開始後25分間で50℃まで昇温させ、塩素化反応開始(紫外線照射開始)から100分間で85℃まで加温して、その後の塩素化反応中(紫外線照射中)は85℃に維持した。
 塩素化塩化ビニル系樹脂の塩素含有量が67.1%に達したとき、紫外線LED素子110cによる紫外線の照射を終了して、塩素化反応を終了させた。塩素化塩化ビニル系樹脂の塩素含有量が67.1%に達するまでに要した時間を塩素化反応の反応時間とした。この時間は、すなわち紫外線の照射開始から照射終了までの時間であり、137分間であった。そして、窒素ガスにて塩素化塩化ビニル系樹脂中の未反応の塩素を追い出した後、残存する塩酸を水洗にて除去して塩素化塩化ビニル系樹脂を乾燥させた。これにより、塩素化塩化ビニル系樹脂を得た。
 (実施例2)
 塩素化反応中のジャケット付き反応器600c内部の圧力を0.1MPaとした以外は、実施例1と同様にして、塩素化塩化ビニル系樹脂を得た。本実施例において、塩素化塩化ビニル系樹脂の塩素含有量が67.1%に達するまでに要した時間(塩素化反応の反応時間、すなわち紫外線の照射開始から照射終了までの時間、以下同じ。)は、128分間であった。
 (実施例3)
 塩素化反応中のジャケット付き反応器600c内部の圧力を0.12MPaとした以外は、実施例1と同様にして、塩素化塩化ビニル系樹脂を得た。本実施例において、塩素化塩化ビニル系樹脂の塩素含有量が67.1%に達するまでに要した時間は、123分間であった。
 (実施例4)
 塩素化反応中のジャケット付き反応器600c内部の圧力を0.14MPaとした以外は、実施例1と同様にして、塩素化塩化ビニル系樹脂を得た。本実施例において、塩素化塩化ビニル系樹脂の塩素含有量が67.1%に達するまでに要した時間は、125分間であった。
 (実施例5)
 塩素化反応中のジャケット付き反応器600c内部の圧力を0.02MPaとした以外は、実施例1と同様にして、塩素化塩化ビニル系樹脂を得た。本実施例において、塩素化塩化ビニル系樹脂の塩素含有量が67.1%に達するまでに要した時間は、144分間であった。
 (比較例4)
 比較例として、ガラス製の円筒状容器をジャケット付き反応器中に1台配置し、塩素化塩化ビニル系樹脂の製造を試みた。ガラス製の円筒状容器内には、紫外線LED光源装置100cと同様の紫外線光源を設けた。この反応器へ実施例1と同様に水、塩化ビニル系樹脂を仕込み、蓋をして反応器内を密閉した。そして、純水と塩化ビニル系樹脂との混合液である塩化ビニル系樹脂の水性懸濁液を、反応器のタービン翼(直径180mm)を用いて、回転数590rpmで攪拌した。
 反応器内を塩素にて0.02MPaまで加圧したところ円筒状容器が破損したため、塩素化塩化ビニル系樹脂の製造を行うことができなかった。
 (比較例5)
 塩素化反応中のジャケット付き反応器600c内部の圧力を0.01MPaとした以外は、比較例4と同様にして、塩素化塩化ビニル系樹脂を得た。本比較例において、塩素化塩化ビニル系樹脂の塩素含有量が67.1%に達するまでに要した時間は、155分間であった。
Figure JPOXMLDOC01-appb-T000005
 実施例1~5に示すように、反応器内部の圧力を高くする(0.02MPa~0.14MPa)ことにより、塩素化の反応時間が短くなる効果が確認できた。
 また、比較例4に示すように、紫外線LED光源装置をガラス製の円筒状容器に入れ、反応器に挿入した場合は、光源の円筒状容器が反応器内部の加圧に耐えられず、破損してしまった。また、比較例5に示すように、光源の円筒状容器が耐えられる反応器内部の圧力(0.01MPa)とした場合、塩素化の反応時間が長かった。
 (実施例6)
 用いた原料塩化ビニル系樹脂をK値が58.4であり、平均粒子径が150μmであり、見かけ密度が0.574g/mlである塩化ビニル系樹脂(株式会社カネカ製)に変更したこと、及び塩素化反応中のジャケット付き反応器600c内部の圧力を0.04MPaとしたこと以外は、実施例1と同様にして、塩素化塩化ビニル系樹脂を得た。本実施例において、塩素化塩化ビニル系樹脂の塩素含有量が67.1%に達するまでに要した時間は、140分間であった。
 (実施例7)
 塩素化反応中のジャケット付き反応器600c内部の圧力を0.06MPaとした以外は、実施例6と同様にして、塩素化塩化ビニル系樹脂を得た。本実施例において、塩素化塩化ビニル系樹脂の塩素含有量が67.1%に達するまでに要した時間は、135分間であった。
 (実施例8)
 塩素化反応中のジャケット付き反応器600c内部の圧力を0.08MPaとした以外は、実施例6と同様にして、塩素化塩化ビニル系樹脂を得た。本実施例において、塩素化塩化ビニル系樹脂の塩素含有量が67.1%に達するまでに要した時間は、128分間であった。
 (実施例9)
 塩素化反応中のジャケット付き反応器600c内部の圧力を0.02MPaとした以外は、実施例6と同様にして、塩素化塩化ビニル系樹脂を得た。本実施例において、塩素化塩化ビニル系樹脂の塩素含有量が67.1%に達するまでに要した時間は、153分間であった。
Figure JPOXMLDOC01-appb-T000006
 実施例6~9に示すように、K値が異なる塩化ビニル系樹脂を用いた場合でも同様に、反応器内部の圧力を高くする(0.02MPa~0.08MPa)ことにより、塩素化の反応時間が短くなる効果が確認できた。
 なお、参考例の反応時間と本願実施例の反応時間とは、使用した材料の塩化ビニル系樹脂が異なり、加えて塩素化含有量の到達度が異なる(参考例では塩素含有量の到達度が低い)ため、一概には比較できない。このため、本願発明の効果は、材料及び塩素化含有量の到達度といった条件をそろえた実施例1~5と比較例4,5とを比較することにより理解できることを念のため付言する。
 本発明により得られる塩素化塩化ビニル系樹脂は、塩化ビニル系樹脂の高い機械的強度、耐候性、耐薬品性などの優れた特徴を有するうえ、さらに塩化ビニル系樹脂より耐熱性に優れることから、種々の産業分野で利用可能である。
 1:塩素導入部(加圧部)
 2:第1の槽
 6,6’,6”:第2の槽
 7:スラリー循環ライン7
11:塩素化塩化ビニル系樹脂の製造装置
12:塩化ビニル系樹脂の懸濁液
20:紫外線照射パネル
21:紫外線LED素子
22:透明配管
25:スタティックミキサーを備える透明配管
26:金属配管
27:透明窓
 

Claims (14)

  1.  第1の槽において、塩化ビニル系樹脂の懸濁液に塩素を導入する工程と、
     前記塩素が導入された懸濁液を第1の槽から第2の槽へ移送し、当該第2の槽において、前記懸濁液に対して紫外線を照射する工程と、を有することを特徴とする塩素化塩化ビニル系樹脂の製造方法。
  2.  前記第1の槽内は、加圧されていることを特徴とする請求項1に記載の塩素化塩化ビニル系樹脂の製造方法。
  3.  前記第1の槽内の圧力は、0.02~2MPaであることを特徴とする請求項2に記載の塩素化塩化ビニル系樹脂の製造方法。
  4.  前記第2の槽において紫外線照射された懸濁液を、前記第1の槽へ循環させることを特徴とする請求項1~3のいずれか1項に記載の塩素化塩化ビニル系樹脂の製造方法。
  5.  さらに、前記第2の槽から取り出された懸濁液に塩素を導入する工程を含むことを特徴とする請求項4に記載の塩素化塩化ビニル系樹脂の製造方法。
  6.  前記第2の槽から第1の槽へ循環させるとき、前記懸濁液を、前記第1の槽の気相部又は気液界面近傍へ導入することを特徴とする請求項4又は5に記載の塩素化塩化ビニル系樹脂の製造方法。
  7.  前記懸濁液に対して紫外線を照射する工程は、紫外線LED、有機EL、無機EL及び紫外線レーザーからなる群より選択される少なくとも1種の光源を用いて行われることを特徴とする請求項1~6のいずれか1項に記載の塩素化塩化ビニル系樹脂の製造方法。
  8.  塩化ビニル系樹脂の懸濁液に塩素を導入するための第1の槽と、
     前記第1の槽から懸濁液を導入し、塩素化するための第2の槽と、を備え、
     前記第2の槽は、前記懸濁液に対して紫外線を照射するための光源を備えることを特徴とする塩素化塩化ビニル系樹脂の製造装置。
  9.  前記第1の槽を加圧するための加圧手段を備えることを特徴とする請求項8に記載の塩素化塩化ビニル系樹脂の製造装置。
  10.  前記第1の槽内の圧力は、0.02~2MPaに設定されていることを特徴とする請求項9に記載の塩素化塩化ビニル系樹脂の製造装置。
  11.  前記第2の槽において紫外線照射された懸濁液を、前記第1の槽へ循環させる循環手段を備えることを特徴とする請求項8~10のいずれか1項に記載の塩素化塩化ビニル系樹脂の製造装置。
  12.  前記第2の槽から取り出された懸濁液に塩素を導入する第2の塩素導入手段を備えることを特徴とする請求項11に記載の塩素化塩化ビニル系樹脂の製造装置。
  13.  前記循環手段は、前記懸濁液を前記第1の槽の気相部又は気液界面近傍へ導入するものであることを特徴とする請求項11又は12に記載の塩素化塩化ビニル系樹脂の製造装置。
  14.  前記光源は、紫外線LED、有機EL、無機EL及び紫外線レーザーからなる群より選択される少なくとも1種の光源であることを特徴とする請求項8~13のいずれか1項に記載の塩素化塩化ビニル系樹脂の製造装置。
PCT/JP2014/058560 2013-03-29 2014-03-26 塩素化塩化ビニル系樹脂の製造方法及び製造装置 WO2014157346A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020157000843A KR101581890B1 (ko) 2013-03-29 2014-03-26 염소화 염화비닐계 수지의 제조 방법 및 제조 장치
CN201480001706.8A CN104395359B (zh) 2013-03-29 2014-03-26 氯化氯乙烯系树脂的制造方法及制造装置
JP2014540679A JP5690027B1 (ja) 2013-03-29 2014-03-26 塩素化塩化ビニル系樹脂の製造方法及び製造装置
US14/411,818 US9399687B2 (en) 2013-03-29 2014-03-26 Method and apparatus for producing chlorinated vinyl chloride-based resin
EP14774645.7A EP2980106B1 (en) 2013-03-29 2014-03-26 Production method and production device for chlorinated vinyl chloride-based resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013074470 2013-03-29
JP2013-074470 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014157346A1 true WO2014157346A1 (ja) 2014-10-02

Family

ID=51624310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058560 WO2014157346A1 (ja) 2013-03-29 2014-03-26 塩素化塩化ビニル系樹脂の製造方法及び製造装置

Country Status (7)

Country Link
US (1) US9399687B2 (ja)
EP (1) EP2980106B1 (ja)
JP (1) JP5690027B1 (ja)
KR (1) KR101581890B1 (ja)
CN (1) CN104395359B (ja)
TW (1) TWI490245B (ja)
WO (1) WO2014157346A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016075591A1 (en) * 2014-11-11 2016-05-19 Reliance Industries Limited Apparatus and process for chlorination of polyvinyl chloride
WO2016075567A1 (en) * 2014-11-11 2016-05-19 Reliance Industries Limited Preparation of chlorinated polyvinyl chloride
JP2017075298A (ja) * 2015-07-29 2017-04-20 リライアンス、インダストリーズ、リミテッドReliance Industries Limited ポリマーの塩化プロセス
CN111939864A (zh) * 2020-10-16 2020-11-17 山东颐工化学有限公司 一种mbs树脂的制备装置及工艺

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3172245A4 (en) * 2014-07-22 2018-02-14 Reliance Industries Limited A process for manufacturing chlorinated polyvinylchloride
US10180248B2 (en) 2015-09-02 2019-01-15 ProPhotonix Limited LED lamp with sensing capabilities
CN106749784B (zh) * 2016-12-14 2020-05-22 新疆兵团现代绿色氯碱化工工程研究中心(有限公司) 一种耦合氯碱化工的氯化高聚物生产工艺及装置
US11267915B2 (en) 2017-01-25 2022-03-08 Reliance Industries Limited Process for the preparation of dry chlorinated polyvinyl chloride
CN106925190A (zh) * 2017-05-03 2017-07-07 北京清诚华宇科技有限公司 一种气固流化床反应系统及其应用方法
CN107115829B (zh) * 2017-05-16 2019-10-25 北京清诚华宇科技有限公司 激光引发的循环流化床生产氯化聚乙烯的装置及方法
CN109364847A (zh) * 2018-11-28 2019-02-22 内蒙古三爱富万豪氟化工有限公司 光氯化反应器及制备二氟一氯乙烷的方法
KR20200076419A (ko) * 2018-12-19 2020-06-29 한화솔루션 주식회사 염소화 폴리염화비닐 수지의 제조 방법
KR20210086152A (ko) * 2019-12-31 2021-07-08 한화솔루션 주식회사 염소화 폴리염화비닐의 제조 방법
CN112029137A (zh) * 2020-09-09 2020-12-04 金川集团股份有限公司 一种氯化专用pvc树脂的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215638B1 (ja) * 1965-01-15 1977-05-02
JPS63145305A (ja) * 1986-12-08 1988-06-17 Tokuyama Sekisui Kogyo Kk 塩素化塩化ビニル系樹脂の製造方法
JPH06100618A (ja) 1992-09-18 1994-04-12 Sekisui Chem Co Ltd 塩素化ポリオレフィンの製造方法
JPH10279627A (ja) 1997-04-09 1998-10-20 Tokuyama Sekisui Ind Corp 塩素化塩化ビニル系樹脂の製造方法
JP2002275213A (ja) * 2001-01-15 2002-09-25 Kanegafuchi Chem Ind Co Ltd 塩素化塩化ビニル系樹脂の製造方法および装置
JP2003183320A (ja) * 2001-12-18 2003-07-03 Kanegafuchi Chem Ind Co Ltd 塩素化塩化ビニル系樹脂の製造方法および装置
JP2003277436A (ja) * 2002-03-26 2003-10-02 Kanegafuchi Chem Ind Co Ltd 塩素化塩化ビニル系樹脂の製造方法および装置
JP2008038129A (ja) * 2006-01-26 2008-02-21 Kaneka Corp 塩素化塩化ビニル系樹脂の製造方法
WO2013069542A1 (ja) * 2011-11-07 2013-05-16 株式会社カネカ 塩素化塩化ビニル系樹脂の製造方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2291574A (en) * 1938-08-12 1942-07-28 Jasco Inc Method for the chlorination of polymeric compounds
NL276666A (ja) * 1958-01-08
DE1544752B2 (de) * 1964-01-10 1974-05-30 Dynamit Nobel Ag, 5210 Troisdorf Verfahren zur Herstellung von geformten Gebilden aus thermoplastischen Massen auf der Basis von nachchloriertem Polyvinylchlorid
GB1131318A (en) * 1965-11-20 1968-10-23 Shinetsu Chem Ind Co Heat stabilized polyvinyl chloride compositions
US4006126A (en) * 1966-02-16 1977-02-01 Montecatini Edison S.P.A. Process for the chlorination of vinyl polymers
US3862264A (en) * 1969-08-30 1975-01-21 Yosuhiro Nojima Chlorinated polyvinyl chloride composition
US3725359A (en) * 1970-12-23 1973-04-03 Stauffer Chemical Co Fire retardant resin compositions of post-chlorinated vinyl halide-bis(hydrocarbyl) vinylphosphonate copolymers
US3862066A (en) * 1971-05-26 1975-01-21 Universal Pvc Resins Method for making rigid vinyl chloride polymer compounds
JPS5148795B2 (ja) * 1974-05-18 1976-12-22
JPS5215638A (en) 1975-07-23 1977-02-05 Hitachi Cable Tension controller
AU543448B2 (en) * 1980-08-26 1985-04-18 B.F. Goodrich Company, The Process for chlorination of pvc in water without use of swelling agents
US4412898A (en) * 1980-08-26 1983-11-01 The B.F. Goodrich Company Process for chlorination of PVC in water without use of swelling agents
US4350798A (en) * 1981-01-26 1982-09-21 The B. F. Goodrich Company Chlorination of poly(vinyl chloride) in liquid chlorine, and chlorinated poly(vinyl chloride) composition
US4459387A (en) * 1981-01-26 1984-07-10 The B. F. Goodrich Company Chlorination of poly(vinyl chloride) in liquid chlorine, and chlorinated poly(vinyl chloride) composition
JPS58145704A (ja) * 1982-02-25 1983-08-30 Toyo Ink Mfg Co Ltd 塩素化樹脂の製造方法
US4448658A (en) * 1982-08-25 1984-05-15 The B. F. Goodrich Company Use of high-intensity rapidly-pulsating actinic radiation in the chlorination of polyvinyl chloride resin
JP3176504B2 (ja) * 1994-03-29 2001-06-18 徳山積水工業株式会社 塩素化塩化ビニル系樹脂の製造方法
JP2000344830A (ja) * 1999-06-01 2000-12-12 Tokuyama Sekisui Ind Corp 塩素化塩化ビニル系樹脂の製造方法
CA2434919A1 (en) 2001-01-15 2002-07-18 Kaneka Corporation Process for preparing chlorinated vinyl chloride resin and apparatus for the same
CN1401672A (zh) * 2002-09-05 2003-03-12 刘旭思 氯化聚氯乙烯的水相悬浮紫外光制备方法
US7345114B2 (en) 2006-01-26 2008-03-18 Kaneka Corporation Method for producing chlorinated vinyl chloride resin
US20100122224A1 (en) * 2007-05-03 2010-05-13 Freescale Semiconductor, Inc. Method and apparatus for designing an integrated circuit
CN101981007A (zh) * 2008-03-31 2011-02-23 住友精化株式会社 纯化吡啶的方法和制造氯化吡啶的方法
DE102009020527A1 (de) * 2009-05-08 2010-11-11 Ehrfeld Mikrotechnik Bts Gmbh Vorrichtung zur Durchführung photochemischer Prozesse
CN101831021B (zh) * 2010-05-10 2011-08-31 河北科技大学 一种气固相法制备氯化聚氯乙烯的装置及其方法
CN102936302A (zh) * 2011-08-15 2013-02-20 沈阳欧陆科技发展有限公司 一种氯化聚氯乙烯树脂的制备方法
CN102786610A (zh) * 2012-07-10 2012-11-21 苏州宝津塑业有限公司 一种气固相法合成氯化聚氯乙烯树脂的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215638B1 (ja) * 1965-01-15 1977-05-02
JPS63145305A (ja) * 1986-12-08 1988-06-17 Tokuyama Sekisui Kogyo Kk 塩素化塩化ビニル系樹脂の製造方法
JPH06100618A (ja) 1992-09-18 1994-04-12 Sekisui Chem Co Ltd 塩素化ポリオレフィンの製造方法
JPH10279627A (ja) 1997-04-09 1998-10-20 Tokuyama Sekisui Ind Corp 塩素化塩化ビニル系樹脂の製造方法
JP2002275213A (ja) * 2001-01-15 2002-09-25 Kanegafuchi Chem Ind Co Ltd 塩素化塩化ビニル系樹脂の製造方法および装置
JP2003183320A (ja) * 2001-12-18 2003-07-03 Kanegafuchi Chem Ind Co Ltd 塩素化塩化ビニル系樹脂の製造方法および装置
JP2003277436A (ja) * 2002-03-26 2003-10-02 Kanegafuchi Chem Ind Co Ltd 塩素化塩化ビニル系樹脂の製造方法および装置
JP2008038129A (ja) * 2006-01-26 2008-02-21 Kaneka Corp 塩素化塩化ビニル系樹脂の製造方法
WO2013069542A1 (ja) * 2011-11-07 2013-05-16 株式会社カネカ 塩素化塩化ビニル系樹脂の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016075591A1 (en) * 2014-11-11 2016-05-19 Reliance Industries Limited Apparatus and process for chlorination of polyvinyl chloride
WO2016075567A1 (en) * 2014-11-11 2016-05-19 Reliance Industries Limited Preparation of chlorinated polyvinyl chloride
JP2017075298A (ja) * 2015-07-29 2017-04-20 リライアンス、インダストリーズ、リミテッドReliance Industries Limited ポリマーの塩化プロセス
CN111939864A (zh) * 2020-10-16 2020-11-17 山东颐工化学有限公司 一种mbs树脂的制备装置及工艺

Also Published As

Publication number Publication date
TW201446821A (zh) 2014-12-16
TWI490245B (zh) 2015-07-01
EP2980106B1 (en) 2018-11-14
EP2980106A1 (en) 2016-02-03
EP2980106A4 (en) 2017-01-11
CN104395359A (zh) 2015-03-04
JPWO2014157346A1 (ja) 2017-02-16
KR20150046000A (ko) 2015-04-29
CN104395359B (zh) 2016-03-16
JP5690027B1 (ja) 2015-03-25
US20150148445A1 (en) 2015-05-28
US9399687B2 (en) 2016-07-26
KR101581890B1 (ko) 2015-12-31

Similar Documents

Publication Publication Date Title
JP5690027B1 (ja) 塩素化塩化ビニル系樹脂の製造方法及び製造装置
JP5433112B2 (ja) 塩素化塩化ビニル系樹脂の製造方法
JP5668183B1 (ja) 塩素化塩化ビニル系樹脂の製造方法
WO2014178362A1 (ja) 塩素化塩化ビニル系樹脂の製造装置および製造方法
WO2014157617A1 (ja) 塩素化塩化ビニル系樹脂の製造装置および製造方法
JP7041264B2 (ja) 塩素化塩化ビニル系樹脂
JP2015147914A (ja) 塩素化塩化ビニル系樹脂の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014540679

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774645

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14411818

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014774645

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020157000843

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE