WO2014157049A1 - 磁石式発電機 - Google Patents

磁石式発電機 Download PDF

Info

Publication number
WO2014157049A1
WO2014157049A1 PCT/JP2014/058008 JP2014058008W WO2014157049A1 WO 2014157049 A1 WO2014157049 A1 WO 2014157049A1 JP 2014058008 W JP2014058008 W JP 2014058008W WO 2014157049 A1 WO2014157049 A1 WO 2014157049A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic path
salient
pole
phase
angle
Prior art date
Application number
PCT/JP2014/058008
Other languages
English (en)
French (fr)
Inventor
雅和 川岸
剛志 福地
道男 神部
Original Assignee
株式会社ミツバ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミツバ filed Critical 株式会社ミツバ
Priority to CN201480016110.5A priority Critical patent/CN105191088B/zh
Priority to EP14775319.8A priority patent/EP2980970B1/en
Priority to JP2014537197A priority patent/JP5668181B1/ja
Publication of WO2014157049A1 publication Critical patent/WO2014157049A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems

Definitions

  • the present invention relates to a magnet generator using a permanent magnet, and more particularly to a three-phase magnet generator connected to an engine or the like of a motorcycle.
  • the magnet generator is composed of a stator wound with a coil and a rotor provided with a permanent magnet.
  • a magnet generator when a rotor is driven to rotate by an engine or the like, a rotating magnetic field formed by a permanent magnet crosses a coil and an electromotive force is generated on the stator side.
  • Patent Document 1 discloses a generator that employs a magnetic circuit with higher output and higher efficiency.
  • the magnet generator of Patent Document 1 has the following problems, and improvements are required.
  • the number of salient poles is 2p-2 with respect to the number of magnetic poles 2p, so the number of salient poles is reduced. For this reason, the magnet generator of patent document 1 may reduce electric power generation amount.
  • the magnet generator disclosed in Patent Document 1 requires an FET type voltage regulator that can handle high frequencies. The FET type regulator is more expensive than the one using a thyristor, which increases the system cost and increases the product price.
  • Patent Document 2 discloses a power generation in which the arrangement angle between adjacent in-phase salient poles is made to coincide with the pole arc angle of a permanent magnet, while the arrangement angle between adjacent different-phase salient poles is set narrower than the pole arc angle of a permanent magnet.
  • a machine is disclosed.
  • the magnet generator of Patent Document 2 can improve the amount of power generation while maintaining the same physique.
  • the magnet generator of Patent Document 2 can also suppress the number of magnetic poles to 16 or less while securing the amount of power generation. For this reason, an increase in system cost can be suppressed by using an inexpensive thyristor type voltage regulator.
  • the magnetic generator of Patent Document 2 can evenly arrange salient poles of each phase. As a result, it is possible to prevent a decrease in power generation efficiency due to a loss of power generation balance between phases.
  • the magnetic generator of patent document 2 can improve the electric power generation amount, there exists a possibility of causing the fall of manufacturing efficiency.
  • the interval between adjacent different-phase salient poles is set narrower than the interval between adjacent in-phase salient poles. Since the spacing between adjacent salient poles is not uniform, when winding a coil around the salient poles, it is necessary to take measures such as varying the winding speed for each salient pole. For this reason, manufacturing efficiency may be reduced.
  • the present invention provides a magnet generator capable of preventing a decrease in manufacturing efficiency while achieving high output and high efficiency of power generation.
  • the magnet generator includes a plurality of salient poles each including a magnetic path portion around which a coil is wound and a protruding portion protruding to both sides from the tip of the magnetic path portion. And a rotor that is rotatably disposed on the outer periphery or inner periphery of the stator and has a plurality of permanent magnets attached along the circumferential direction so as to face the salient poles.
  • the salient poles that are in the same phase are arranged adjacent to each other in the circumferential direction, and the coils that are in the same phase are wound in series on the salient poles that are arranged adjacent to each other in the same phase. Yes.
  • the tip part composed of the tip part of the magnetic path part and the projecting part has an arrangement angle between the in-phase tip parts that is equal to or less than the polar arc angle of the permanent magnet, and from the arrangement angle of the tip part between adjacent different phases. Is also getting bigger.
  • the magnetic path portion of the salient pole adjacent to the salient pole of the different polarity is disposed on the same phase side as the center line of the tip portion of the salient pole adjacent to the salient pole of the different polarity.
  • the magnetic path portion is set so that an arrangement angle between the in-phase magnetic path portions matches a polar arc angle of the permanent magnet.
  • the arrangement angles of the magnetic path portions are equal.
  • the length in the circumferential direction of the tip is set uniformly.
  • the plurality of salient poles arranged adjacent to each other in the circumferential direction form an in-phase and have the same electrical angle. Placed in.
  • the magnet generator described above since the arrangement angle of the tip end portion of the salient pole is set to the polar arc angle of the permanent magnet, it is possible to suppress a decrease in power generation efficiency due to a loss of power generation balance between phases. Therefore, high output and high efficiency of the generator can be realized.
  • the magnetic path part adjacent to the salient pole of the different phase is arranged at a position close to the magnetic path part of the same phase, the coil can be efficiently wound around the magnetic path part, and the production efficiency can be improved. Decline can be prevented.
  • FIG. 1 is a cross-sectional view showing the configuration of the generator according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing the shape and arrangement of salient poles in the generator according to the first embodiment of the present invention.
  • FIG. 3 is a view showing a tip portion according to the first embodiment of the present invention.
  • FIG. 4 is a diagram illustrating the arrangement of salient poles according to the first embodiment of the present invention.
  • the generator 1 is a so-called outer rotor type magnet generator.
  • the generator 1 is used, for example, as an ACG (alternating current generator) for a motorcycle.
  • the generator 1 includes a rotor 2 and a stator 3.
  • M represents the number of salient poles of the stator 3.
  • N indicates the number of magnetic poles of the permanent magnet 6 (rotor 2).
  • ⁇ p indicates the polar arc angle of the permanent magnet 6.
  • ⁇ 1 indicates an arrangement angle of the magnetic path portion 15 of the salient pole 14.
  • ⁇ 2 indicates an arrangement angle of the tip 17 of the salient pole 14 in the same phase.
  • ⁇ p, ⁇ 1, and ⁇ 2 are all mechanical angles.
  • O represents the center of rotation of the rotor 2.
  • T represents the intersection (arrangement center) of the center lines of the magnetic path portions 15.
  • the rotor 2 is attached to the crankshaft 4 of the engine and functions as a field element.
  • the stator 3 is attached to the engine housing 5 and functions as an armature.
  • a permanent magnet 6 is attached to the rotor 2.
  • a coil 7 is attached to the stator 3. When the rotor 2 rotates outside the coil 7, the rotating magnetic field formed by the permanent magnet 6 crosses the coil 7, so that an electromotive force is generated in the coil 7 to generate power.
  • the rotor 2 is rotatably arranged outside the stator 3.
  • the rotor 2 includes a rotor yoke 11 and a boss rotor 12 made of a magnetic material such as iron.
  • the rotor yoke 11 is a bottomed cylindrical member having a bottom portion 11a and a cylindrical portion 11b.
  • a plurality of permanent magnets 6 are arranged along the circumferential direction on the inner peripheral surface of the cylindrical portion 11b.
  • the permanent magnets 6 are arranged in 16 equal parts with a polar arc angle ⁇ p of 22.5 ° so that the polarities on the inner surface side are alternately N and S poles.
  • the boss rotor 12 includes a disc-shaped flange portion 12a and a substantially cylindrical boss portion 12b.
  • the flange portion 12 a is attached so as to be concentric with the rotor yoke 11 at the center of the bottom portion 11 a of the rotor yoke 11.
  • a boss portion 12b protrudes from the center of the flange portion 12a.
  • the boss portion 12 b extends along the center line of the flange portion 12 a and is taper-coupled to the end portion of the crankshaft 4. When the crankshaft 4 rotates, the boss rotor 12 also rotates together with the crankshaft 4, and the rotor 2 rotates outside the coil 7.
  • the stator 3 includes a stator core 13 formed by stacking a plurality of steel plates.
  • a plurality of salient poles 14 are formed on the stator core 13.
  • the salient pole 14 includes a columnar magnetic path portion 15 around which the coil 7 is wound, and a protruding portion 16 protruding in the circumferential direction from the tip of the magnetic path portion 15.
  • a portion of the salient pole 14 that faces the permanent magnet 6 is a tip portion 17.
  • the distal end portion 17 is composed of the distal end portion 15 t of the magnetic path portion 15 and the protruding portion 16.
  • a coil 7 is wound around the outer periphery of the magnetic path portion 15 of the salient pole 14.
  • the generator 1 is a generator that generates three-phase alternating current. Six salient poles 14 are provided for each of the U, V, and W phases. The number M of salient poles of the stator 3 is 18. The generator 1 has a 16-pole 18-pole configuration.
  • FIG. 6 shows a conventional generator 90.
  • the generator 90 is a generator having the configuration described in Patent Document 2.
  • the same members as those of the generator 1 are denoted by the same reference numerals.
  • the six salient poles 14 forming the U phase may be referred to as U1 to U6.
  • the six salient poles 14 forming the V phase may be referred to as V1 to V6.
  • the six salient poles 14 forming the W phase may be referred to as W1 to W6.
  • salient poles 14 for example, U phase: U1, U2, U3 that are in the same phase are arranged adjacent to each other in the circumferential direction. Coils (for example, U phase) that are in the same phase are wound in series on adjacent salient poles (for example, U phase: U1, U2, U3) that are in the same phase.
  • the angle ⁇ 1 between the magnetic path portions 15 of the in-phase salient poles 14 is set to coincide with the polar arc angle ⁇ p.
  • the angle ⁇ 1 between the magnetic path portion 15 of the salient pole 14 serving as U2 and the magnetic path portion 15 of the salient pole 14 serving as U1 and U3 is set to 22.5 °.
  • the angle ⁇ 1 between the magnetic path portions 15 of the in-phase salient poles 14 is set to be larger than 20.0 °, which is an angle when the adjacent salient poles 14 (magnetic path portions 15) are arranged uniformly. Is done.
  • the angle ⁇ 1 is set so as to coincide with the polar arc angle ⁇ p of the permanent magnet 6.
  • the salient pole 14 (the salient pole 14 b) adjacent to the out-of-phase salient pole 14 has a magnetic path portion 15 a that approaches the in-phase salient pole 14 (magnetic path portion 15). It is placed at the position (shifted position). For example, since the salient pole 14b that is U1 is adjacent to the magnetic path portion 15 of the salient pole 14b that is W6, the magnetic path portion 15a is located close to the magnetic path portion 15 of the salient pole 14a that is U2. Be placed. Specifically, as shown in FIG.
  • the magnetic path portion 15 of the salient pole 14 (14 b) serving as U ⁇ b> 1 has a rotational center O of the rotor 2 with respect to the magnetic path portion 15 of the salient pole 14 serving as U ⁇ b> 2. Is set to a position where the angle is 22.5 ° with reference to (see the broken line).
  • intersection T of the center line L of the magnetic path portion 15 of the salient pole 14b serving as U1 and the center line L of the magnetic path portion 15 of the salient pole 14a serving as U2 does not coincide with the rotation center O of the rotor 2. .
  • the intersection T is located at a position farther (moved) from the rotation center O in a direction approaching the magnetic path portion 15 of the salient pole 14a serving as U2.
  • the shift amount (parallel movement amount) of the magnetic path portions 15 of the salient poles 14b is set so that the entire space between the adjacent magnetic path portions 15 is a substantially uniform space.
  • the shift amount of the magnetic path portion 15 is set in consideration of the circumferential thickness and the radial length of the magnetic path portion 15.
  • the magnetic path portion 15 of the salient pole 14a serving as U1 has an angle ⁇ 1 of 22.5 ° with respect to the magnetic path portion 15 of the salient pole 14b serving as U2, while the salient pole 14a serving as U2 is maintained.
  • the magnetic path portion 15 is approaching.
  • the magnetic path portion 15 of the salient pole 14b serving as U1 is separated from the magnetic path portion 15 of the salient pole 14b serving as W6. Thereby, the space between adjacent magnetic path parts 15 becomes substantially uniform.
  • the protruding portions 16 of the salient poles 14 are arranged on both sides in the circumferential direction with respect to the magnetic path portion 15.
  • the salient poles 14 having the same protruding amount of the pair of protruding portions 16 and salient poles 14 having different protruding amounts of the pair of protruding portions 16.
  • the salient poles 14 a for example, U 2, V 2, W 2, etc.
  • the amount of protrusion (the length in the circumferential direction) of the pair of protrusions 16 is the same.
  • the salient pole 14 serving as U2 is adjacent to only the salient pole 14 serving as U1 and U3 that are in phase.
  • the salient poles 14 (magnetic path portions 15) serving as U2 are provided with projecting portions 16 having the same projecting amount on both sides in the circumferential direction.
  • the protruding portions 16 are arranged on both sides in the circumferential direction on the salient poles 14 b (for example, U 1, V 1, W 1, etc.) adjacent to the salient poles 14 of different phases.
  • the protrusion amount (length in the circumferential direction) of the pair of protrusions 16 is not uniform.
  • the protruding portion 16 disposed on the side adjacent to the out-of-phase salient pole 14 is long, and the protruding portion 16 disposed on the side adjacent to the in-phase salient pole 14 is set short.
  • the salient pole 14 serving as U1 is adjacent to the salient pole 14 serving as W6 which is a different phase.
  • the salient poles 14 (magnetic path portions 15) serving as U1 are provided with projecting portions 16 on both sides in the circumferential direction.
  • a protruding portion 16 having a long protruding amount is disposed on the side adjacent to the salient pole 14 which is W6 which is a different phase.
  • a projecting portion 16 having a short projecting amount is disposed on the side adjacent to the salient pole 14 that is U2 in phase.
  • tip part 17 is set to 22.5 degrees in the salient pole 14 of the same phase. That is, the arrangement angle ⁇ ⁇ b> 2 between the in-phase tip portions 17 is set to coincide with the polar arc angle ⁇ p of the permanent magnet 6.
  • the angle ⁇ ⁇ b> 2 between the in-phase tip portions 17 is an angle between the circumferential center positions of the respective tip portions 17.
  • the reason why the salient poles 14 of the generator 1 are configured and arranged as described above is to eliminate (relax) the disadvantages of the conventional generator 90 while maintaining (holding) the advantages of the conventional generator 90. .
  • the angle between the magnetic path portions 95 is set to 22.5 ° where the in-phase salient poles 94 are adjacent to each other.
  • the protruding portions 96 of the salient poles 94 are disposed on both sides in the circumferential direction.
  • the three salient poles 94 (tip portions 97) that form the same phase simultaneously face each other so as to be positioned on the magnetic pole center line of the permanent magnet 6.
  • the tip 97 of the salient pole 94 serving as U1 is the N pole of the permanent magnet 6
  • the tip 97 of the salient pole 94 serving as U2 is the S pole of the permanent magnet 6
  • the generator 90 can realize high power generation efficiency.
  • the angle between the magnetic path portions 95 is set to 15.0 °.
  • the protruding portions 96 of the salient poles 94 are disposed on both sides in the circumferential direction. For this reason, the space between the magnetic path portions 95 is small where the salient poles 94 of different phases are adjacent to each other. Accordingly, it is difficult to wind the coil 7 around the magnetic path portion 95 as compared to the place where the in-phase salient poles 94 are adjacent to each other.
  • the generator 90 since the magnetic path portion 95 that the coil 7 is easy to wind and the magnetic path portion 95 that is difficult to wind are mixed, the efficiency of the coil 7 winding work is reduced.
  • the generator 1 is set such that the angle ⁇ 1 between the magnetic path portions 15 of the salient poles 14 in phase matches the polar arc angle ⁇ p.
  • the salient pole 14 (the salient pole 14 b) adjacent to the out-of-phase salient pole 14 has the magnetic path portion 15 approaching the in-phase salient pole 14 a (magnetic path portion 15). Arranged at shifted positions. For this reason, the generator 1 is not mixed in such a manner that the space between the magnetic path portions 15 in the stator 3 is large and the space between the magnetic path portions 15 is small as in the generator 90. .
  • the magnetic path portion 15 of the salient pole U3 adjacent to the salient pole 14 of the different polarity has a salient pole having the same phase as the center line of the tip portion 17 of the salient pole U3 adjacent to the salient pole 14 of the different polarity. It arrange
  • the space between the magnetic path portions 15 is substantially uniform. For this reason, the coil 7 can be efficiently wound around each salient pole 14 of the stator 3 of the generator 1 by a winding machine (not shown).
  • the arrangement angle ⁇ 2 between the tip portions 17 of the salient poles 14 in phase is set to 22.5 °.
  • the generator 1 has the tip 17 of the salient pole 14 serving as U1 as the N pole of the permanent magnet 6, the tip 17 of the salient pole 14 serving as U2 as the S pole of the permanent magnet 6, and the salient as U3.
  • the tip portion 17 of the pole 14 is simultaneously opposed to the N pole of the permanent magnet 6 on the center line of each magnetic pole. Therefore, the generator 1 can achieve high power generation efficiency, similar to the generator 90.
  • the arrangement angle ⁇ 2 between the in-phase tip portions 17 is 22.5 °, and the arrangement angle between the adjacent different-phase tip portions 17 is 15 °.
  • the electrical angles of the in-phase salient poles 14 can be made the same. Therefore, it is possible to increase efficiency.
  • three salient poles 14 are arranged adjacent to each other in the circumferential direction to form a pole pair 21.
  • the salient pole 14 serving as U1 the salient pole 14 serving as U2, and the salient pole 14 serving as U3 are disposed adjacent to each other in the circumferential direction.
  • These three salient poles 14 form a U-phase pole pair 21Ua.
  • the three salient poles 14 in the same phase are arranged at the same electrical angle.
  • the three salient poles 14 are opposed to the different polarity permanent magnet 6 with the same electrical angle.
  • the tip portions 17 of the three salient poles 14 in the pole pair 21 are set to an angle ⁇ 2 that is substantially the same as the polar arc angle ⁇ p of the permanent magnet 6 so that the adjacent ones face the magnetic poles having different polarities.
  • the winding directions of the coils 7 wound around the adjacent salient poles 14 are set in opposite directions.
  • the winding direction of the coil 7 wound around the salient pole 14 serving as U1 and the coil 7 wound around the salient pole 14 serving as U2 are opposite to each other.
  • the salient poles 14 of V1, V2 and V3 forming the V phase are arranged adjacent to each other to form a pole pair 21Va.
  • the salient poles 14 of W1, W2, and W3 that form the W phase are arranged adjacent to each other to form a pole pair 21Wa.
  • V1 to V3 and W1 to W3 are opposed to the permanent magnet 6 of different polarity at the same electrical angle.
  • the angle ⁇ 2 between the tips 17 of the salient poles 14 of V1 to V3 and W1 to W3 is set to 22.5 °.
  • Coils 7 wound in opposite directions are disposed between the salient poles 14 adjacent in the same phase (V1 and V2, V2 and V3, W1 and W2, W2 and W3).
  • a pair of pole pairs 21 for each phase is provided.
  • the two pole pairs 21 are arranged so as to face each other across the rotation center O of the rotor 2.
  • a pole pair 21Ub is provided at a position facing the pole pair 21Ua across the rotation center O.
  • pole pairs 21Vb and 21Wb are provided for pole pairs 21Va and 21Wa.
  • Three salient poles 14 (U phase: U4, U5, U6, V phase: V4, V5, V6, W phase: W4, W5, W6) are also arranged in the pole pair 21Ub, 21Vb, 21Wb.
  • the generator 1 is set so that the angle ⁇ 2 between the tips 17 of the salient poles 14 in phase matches the polar arc angle ⁇ p of the permanent magnet 6. For this reason, it is possible to suppress a decrease in power generation efficiency due to the disruption of the power generation balance between phases. Therefore, high output and high efficiency of the generator can be realized.
  • the angle ⁇ 1 between the magnetic path portions 15 of the in-phase salient poles 14 is set to coincide with the polar arc angle ⁇ p of the permanent magnet 6, and the magnetic path of the salient poles 14b adjacent to the out-of-phase salient poles 14b.
  • the portion 15 is disposed at a position (shifted position) that is close to the magnetic path portion 15 of the salient pole 14a of the same phase, a sufficient space can be secured between the magnetic path portions 15. For this reason, the coil 7 can be efficiently wound around the magnetic path portion 15, and a reduction in manufacturing efficiency can be prevented. Further, since the number of turns of the coil 7 wound around the magnetic path portion 15 can be increased, high output and high efficiency of the generator 1 can be realized.
  • the generator 1 in order to make the base length L (see FIG. 2) of the salient poles 14 equal, they are offset while maintaining the angle of the magnetic path portion 15. If the angle of the magnetic path portion 14 is changed to make the root distance L substantially equal, the magnetic path portion 15 will deviate from the tip portion 17 when the width of the tip portion 17 is extremely narrow. There is a case. That is, if the angle of the magnetic path portion 15 is changed, the amount of movement of the root of the magnetic path portion 15 and the amount of movement of the tip of the magnetic path portion 15 are different, so the base length L of the salient pole 14 is set equal. Then, the tip of the salient pole 14 may deviate from the tip portion 17.
  • the amount of movement of the root cannot be made equal intervals only by changing the angle of the magnetic path portion 15. Therefore, in order to make the length L of the base of the salient pole 14 equal, the offset is performed while maintaining the angle of the magnetic path portion 15 of the salient pole 14. Even if the root distance L cannot be made equal by changing the angle of the magnetic path portion 15, the amount of movement of the base of the salient pole 14 and the amount of movement of the tip of the salient pole 14 can be reduced by offsetting. Sometimes it can be equal.
  • the base length L of the salient poles 14 is almost equal. Therefore, the space between adjacent magnetic path portions 15 is substantially uniform. Since the space becomes substantially uniform, the amount of the coil 7 wound around each salient pole 14 becomes substantially equal, and windings of the same specification (for example, windings of the same wire diameter) are provided for each salient pole 14 Can increase efficiency. If the amount of the coil 7 wound around each salient pole 14 is substantially equal, the efficiency can be increased. Therefore, the base length L of each salient pole 14 is slightly shifted. Also good. For example, there is no problem as long as it is within a range of ⁇ 10%.
  • a generator having a 16-pole 18-pole configuration is shown.
  • a generator 51 having a 16 pole 12 pole configuration as shown in FIG. 5 is also possible.
  • the case where the generator of the present invention is used as a generator has been shown, but it is also possible to use this as a motor.
  • a generator / motor combined such as a motorcycle ACG starter.
  • a generator / motor such as a motorcycle ACG starter.
  • the generator of the present invention is applied to a generator for a motorcycle is shown.
  • the generator can be applied to a generator or a motor for other purposes.
  • the present invention may be applied to a so-called inner rotor type generator in which the rotor is disposed inside the stator. Is possible.
  • the generator having three phases has been described, but the present invention can also be applied to other multiphase generators such as five phases.
  • the angle ⁇ 1 between the magnetic path portions 15 of the salient poles 14 is not limited to the case where the angle ⁇ 1 matches the polar arc angle ⁇ p of the permanent magnet 6.
  • the angle ⁇ 1 may be set to be larger than an angle (20.0 ° in the case of 18 poles) at which the magnetic path portions 15 adjacent to each other are evenly arranged.
  • the angle ⁇ 2 between the tip portions 17 of the same phase is not limited to the case where the angle ⁇ 2 matches the polar arc angle ⁇ p of the permanent magnet 6.
  • the angle may be set smaller than the polar arc angle ⁇ p. If the disposition angle ⁇ 2 between the in-phase tip portions 17 is equal to or less than the polar arc angle ⁇ p of the permanent magnet 6, the gap between the tip portions 17 that are out of phase increases, so that leakage of magnetic flux is reduced and high efficiency is achieved. It becomes. For this reason, for example, even if the polar arc angle of the permanent magnet 6 is 22.5 ° and the arrangement angle ⁇ 2 between the in-phase tip portions 17 is 21.5 °, the same effect can be obtained.
  • the arrangement angle ⁇ 2 between the in-phase tip portions 17 is 22.5 °, and the arrangement angle between the adjacent different-phase tip portions 17 is not limited to 15 °.
  • the arrangement angle ⁇ 2 between the in-phase tip portions 17 only needs to be larger than the arrangement angle between the adjacent different-phase tip portions 17. For example, even when the arrangement angle ⁇ 2 between the in-phase tip portions 17 is 21.5 ° and the arrangement angle between the adjacent different-phase tip portions 17 is 17 °, the same effect can be obtained.
  • the embodiment of the present invention is not limited to this configuration. That is, as shown in FIG. 7, when the number of teeth is 18, the arrangement angle of the in-phase magnetic path portions is set to 20 ° and the arrangement angle of the adjacent different-phase magnetic path portions is set to 20 °. good. With this configuration, the intervals between the magnetic path portions are all uniform, and the space between the adjacent magnetic path portions 15 is uniform. Since the space becomes uniform, the amount of the coil 7 wound around each salient pole 14 becomes equal, and windings of the same specification (for example, windings of the same wire diameter) are made on each salient pole 14. Can improve efficiency.
  • the magnet generator described above since the arrangement angle of the tip end portion of the salient pole is set to the polar arc angle of the permanent magnet, it is possible to suppress a decrease in power generation efficiency due to a loss of power generation balance between phases. Therefore, high output and high efficiency of the generator can be realized.
  • the magnetic path part adjacent to the salient pole of the different phase is arranged at a position close to the magnetic path part of the same phase, the coil can be efficiently wound around the magnetic path part, and the production efficiency can be improved. Decline can be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

 この磁石式発電機(1)は、コイルが巻装される磁路部(15)とその先端両側方に突出する突出部(16)とからなる突極(14)を複数有する固定子と、複数個の永久磁石(6)が突極(14)と対向するように取り付けられた回転子と、を備える。同一相の突極(14)を周方向に隣接配置すると共に、隣接配置された同一相の突極(14)には、同一相のコイルが直列で巻装されている。磁路部(15)の先端部位と突出部(16)とからなる先端部(17)は、同相の先端部(17)同士の配置角度(θ2)が永久磁石(6)の極弧角(θp)以下であって、隣接する異相間の先端部(17)の配置角度よりも大きい。異極の突極(14)に隣接する突極(14)の磁路部(15)は、異極の突極(14)に隣接する突極(14)の先端部(17)の中心線よりも同相側に配置される。

Description

磁石式発電機
 本発明は、永久磁石を用いた磁石式発電機に関し、特に、自動二輪車のエンジン等に接続される3相の磁石式発電機に関する。
 本願は、2013年3月26日に、日本に出願された特願2013-063832号に基づき優先権を主張し、その内容をここに援用する。
 自動二輪車に搭載される発電機には、構造が簡単でありながら高出力を得ることができる磁石式発電機が多く用いられている。磁石式発電機は、コイルを巻装した固定子と、永久磁石を備えた回転子とから構成されている。磁石式発電機は、回転子をエンジン等によって回転駆動させることにより、永久磁石が形成する回転磁界がコイルを横切って、固定子側に起電力が生じる。
 一方、近年の自動二輪車では、装備の高級化(ETCやカーナビゲーションシステム等の搭載)や、環境負荷低減のためのデバイス追加(エンジン制御用マイクロコンピュータ等の搭載)に伴い、車両内の電気的負荷が増大し続けている。このため、自動二輪車用の発電機には、より高出力・高効率化が求められている。
 自動二輪車用の発電機では、その要求を満足するため、磁気回路や構成部品について日々改善が為されている。
 例えば、特許文献1には、より高出力・高効率な磁気回路を採用した発電機が開示されている。特許文献1の磁石式発電機では、次のような課題があり、その改善が求められている。
 特許文献1の磁石式発電機は、磁極数2pに対し突極数が2p-2となっているため、突極数が少なくなる。このため、特許文献1の磁石式発電機は、発電量が少なくなる場合がある。
 特許文献1の磁石式発電機は、発電量を確保するために磁極数を増加させると(例えば20極)、高周波数に対応できるFETタイプの電圧レギュレータが必要となる。FETタイプのレギュレータは、サイリスタを用いたものよりも高価であり、システムコストが増大して製品価格の上昇を招く。
 特許文献1の磁石式発電機は、各相の突極数が異なる場合があるため、突極数のアンバランスにより発電効率が低下する可能性がある。特に、安価な電圧レギュレータを使用できる磁極構成(例えば、N=12,16)では、突極数のアンバランスにより、相間の発電バランスが崩れ易くなって、発電効率が低下する可能性がある。
 そこで、多くの突極を発電機内に配置した発電機が提案されている。特許文献2には、隣接する同相の突極の配置角度を永久磁石の極弧角に一致させる一方で、隣接する異相の突極の配置角度を永久磁石の極弧角よりも狭く設定した発電機が開示されている。
 特許文献2の磁石式発電機は、同じ体格を維持しつつ、発電量を向上させることができる。特許文献2の磁石式発電機は、発電量を確保しつつ、磁極数を16個以下に抑えることも可能となる。このため、安価なサイリスタタイプの電圧レギュレータを使用することにより、システムコストの増大を抑えることができる。特許文献2の磁石式発電機は、各相の突極を均等に配置することができる。これにより、相間の発電バランスの崩れによる発電効率の低下を防止できる。
国際公開第2003/098781号 特開2011-120429号公報
 特許文献2の磁石式発電機は、発電量を向上させることができるものの、製造効率の低下を招く可能性がある。
 特許文献2の磁石式発電機は、隣接する同相の突極同士の間隔に対して、隣接する異相の突極同士の間隔が狭く設定される。隣接する突極同士の間隔が均等でないため、突極にコイルを巻きつける際に、例えば突極毎に巻き付け速度を異ならせる等の措置が必要となる。このため、製造効率を低下させてしまう場合がある。
 本発明は、発電の高出力・高効率化を図りつつ、製造効率の低下を防止できる磁石式発電機を提供する。
 本発明の第1の態様によれば、磁石式発電機は、コイルが巻装される磁路部と前記磁路部の先端から両側方に突出する突出部とからなる突極を複数有する固定子と、前記固定子の外周又は内周に回転自在に配設され、複数個の永久磁石が前記突極と対向するように周方向に沿って取り付けられた回転子と、を備える。この磁石式発電機では、同一相となる前記突極を周方向に隣接配置すると共に、隣接配置された前記同一相となる前記突極には、同一相となるコイルが直列で巻装されている。前記磁路部の先端部位と前記突出部とからなる先端部は、同相の先端部同士の配置角度が前記永久磁石の極弧角以下であって、隣接する異相間の先端部の配置角度よりも大きくなっている。異極の突極に隣接する突極の前記磁路部は、前記異極の突極に隣接する突極の先端部の中心線よりも同相側に配置されている。
 本発明の第2の態様によれば、本発明の第1の態様において、前記磁路部は、同相の磁路部同士の配置角度が前記永久磁石の極弧角に一致するように設定される。
 本発明の第3の態様によれば、本発明の第1の態様において、前記磁路部の配置角度は均等となっている。
 本発明の第4の態様によれば、本発明の第1から第3の態様のいずれかの態様において、前記先端部の周方向の長さが均一に設定される。
 本発明の第5の態様によれば、本発明の第1から第4の態様のいずれかの態様において、前記周方向において隣接配置される複数の突極が同相を形成すると共に、同一電気角に配置される。
 上記した磁石式発電機によれば、突極の先端部の配置角度を永久磁石の極弧角に設定しているので、相間の発電バランスの崩れによる発電効率の低下を抑えることができる。したがって、発電機の高出力・高効率化を実現できる。
 その一方で、異相の突極に隣接する磁路部を同相の磁路部に近接するようにした位置に配置したので、磁路部に対するコイルの巻き付けを効率よく行うことができ、製造効率の低下を防止できる。
本発明の第一実施形態に係る発電機の構成を示す断面図である。 本発明の第一実施形態に係る発電機における突極の形状及び配置を示す図である。 本発明の第一実施形態に係る先端部を示す図である。 本発明の第一実施形態に係る突極の配置を説明する図である。 本発明の第二実施形態に係る発電機を示す図である。 従来の発電機を示す図である。 本発明の実施形態の変形例に係るステータコアの磁路部の構成を示す図である。
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。
 図1は、本発明の第一実施形態に係る発電機の構成を示す断面図である。
 図2は、本発明の第一実施形態に係る発電機における突極の形状及び配置を示す図である。
 図3は、本発明の第一実施形態に係る先端部を示す図である。
 図4は、本発明の第一実施形態に係る突極の配置を説明する図である。
 発電機1は、いわゆるアウタロータ型の磁石式発電機である。発電機1は、例えば自動二輪車のACG(交流発電機)として使用される。発電機1は、回転子2と、固定子3とを備える。
 以下の説明において、Mは、固定子3の突極数を示す。Nは、永久磁石6(回転子2)の磁極数を示す。θpは、永久磁石6の極弧角を示す。θ1は、突極14の磁路部15の配置角度を示す。θ2は、同相における突極14の先端部17の配置角度を示す。Xは、相数(3相の場合はX=3)を示す。θp、θ1、θ2は、全て機械角である。
 Oは、回転子2の回転中心を示す。Tは、磁路部15同士の中心線の交点(配置中心)を示す。
 回転子2は、エンジンのクランクシャフト4に取り付けられ、界磁子として機能する。
 固定子3は、エンジンのハウジング5に取り付けられ、電機子として機能する。
 回転子2には永久磁石6が取り付けられる。固定子3にはコイル7が取り付けられる。
 回転子2がコイル7の外側で回転すると、永久磁石6が形成する回転磁界がコイル7を横切るので、コイル7に起電力が生じて発電が行われる。
 回転子2は、固定子3の外側に回転自在に配置される。回転子2は、鉄等の磁性材料にて形成されたロータヨーク11とボスロータ12とを備える。
 ロータヨーク11は、底部11aと円筒部11bを備えた有底円筒形状の部材である。
 円筒部11bの内周面には、永久磁石6が周方向に沿って複数個配設される。
 永久磁石6は、内面側の極性が交互にN極とS極になるように、極弧角θpが22.5°で、16個等分に配置されている。永久磁石6の磁極数N(=2p:pは整数)は16(p=8)である。
 ボスロータ12は、円盤状のフランジ部12aと略円筒形状のボス部12bとから構成される。
 フランジ部12aは、ロータヨーク11の底部11a中央において、ロータヨーク11と同心となるように取り付けられる。
 フランジ部12aの中央には、ボス部12bが突設される。ボス部12bは、フランジ部12aの中心線に沿って延びて、クランクシャフト4の端部にテーパ結合される。クランクシャフト4が回転すると、ボスロータ12もクランクシャフト4と共に回転し、回転子2がコイル7の外側にて回転する。
 固定子3は、複数枚の鋼板を重ねて形成したステータコア13を備える。ステータコア13には、複数個の突極14が形成される。
 突極14は、コイル7が巻装される柱形の磁路部15と、磁路部15の先端から周方向に突出する突出部16とから構成される。突極14のうち、永久磁石6に対向する部位が先端部17である。先端部17は、磁路部15の先端部位15tと突出部16とから構成される。
 突極14の磁路部15の外周には、コイル7が巻装される。
 発電機1は、三相の交流を発電する発電機である。突極14は、U,V,W相の各相それぞれ6本ずつ設けられる。固定子3の突極数Mは、18個である。発電機1は、16極18ポール構成である。
 次に、発電機1の突極14の配置を、従来の発電機の突極の配置と比較して説明する。
 図6に、従来の発電機90を示す。発電機90は、特許文献2に記載の構成を有する発電機である。発電機90において、発電機1と同一の部材には、同一の符号を付す。
 以下の説明では、U相を形成する6本の突極14をU1~U6と呼ぶ場合がある。V相を形成する6本の突極14をV1~V6と呼ぶ場合がある。W相を形成する6本の突極14をW1~W6と呼ぶ場合がある。
 図2に示すように、発電機1では、同一相となる突極14(例えばU相:U1、U2、U3)は、周方向に隣接して配置される。隣接された同一相となる突極(例えばU相:U1、U2、U3)には、同一相となるコイル(例えばU相)が、直列で巻装される。
 発電機1では、18本の突極14のうち、同相の突極14の磁路部15同士の角度θ1が、極弧角θpに一致するように設定される。例えば、U2となる突極14の磁路部15とU1,U3となる突極14の磁路部15との角度θ1は、22.5°に設定される。発電機1では、同相の突極14の磁路部15同士の角度θ1が、隣接する突極14(磁路部15)同士を均等配置する場合の角度である20.0°よりも大きく設定される。角度θ1が、永久磁石6の極弧角θpに一致するように設定される。
 さらに、同相の3つの突極14のうち、異相の突極14に隣接する突極14(突極14b)は、その磁路部15aが同相の突極14(磁路部15)に近づくようにした位置(ずらした位置)に配置される。例えば、U1となる突極14bは、W6となる突極14bの磁路部15に隣接するので、その磁路部15aがU2となる突極14aの磁路部15に対して近づけた位置に配置される。
 具体的には、図4に示すように、U1となる突極14(14b)の磁路部15は、U2となる突極14の磁路部15に対して、回転子2の回転中心Oを基準にして22.5°の角度となる位置に仮想設定される(破線参照)。そして、U1となる突極14の磁路部15は、この仮想設定された位置から、U2となる突極14の磁路部15に対する姿勢(角度θ1=22.5°)を維持しつつ、U2となる突極14の磁路部15に向けてずらした位置(平行移動した位置)に配置される(実線参照)。
 このため、U1となる突極14bの磁路部15の中心線LとU2となる突極14aの磁路部15の中心線Lの交点Tは、回転子2の回転中心Oとは一致しない。交点Tは、回転中心Oよりも、U2となる突極14aの磁路部15に近づく方向に離れた(移動した)位置にある。
 同様に、W6となる突極14(14b)の磁路部15は、W5となる突極14の磁路部15に対して、回転子2の回転中心Oを基準にして22.5°の角度となる位置に仮想設定される(破線参照)。そして、W6となる突極14の磁路部15は、この仮想設定された位置から、W5となる突極14の磁路部15に対する姿勢(角度θ1=22.5°)を維持しつつ、W5となる突極14の磁路部15に向けてずらした位置(平行移動した位置)に配置される(実線参照)。
 W6となる突極14の磁路部15は、U1となる突極14の磁路部15とは反対の方向に向けてずらした位置(平行移動した位置)に配置される。
 突極14bの磁路部15のずれ量(平行移動量)は、隣接する磁路部15同士の間の全が、ほぼ均一のスペースとなるように設定される。磁路部15の周方向の厚みや径方向の長さを考慮して、磁路部15のずれ量を設定する。
 このように、U1となる突極14aの磁路部15は、U2となる突極14bの磁路部15に対して角度θ1が22.5°に維持されつつ、U2となる突極14aの磁路部15に近づいている。言い換えれば、U1となる突極14bの磁路部15は、W6となる突極14bの磁路部15から離れている。
 これにより、隣接する磁路部15同士の間のスペースは、ほぼ均一になる。
 図2に示すように、発電機1では、突極14の突出部16が、磁路部15に対して周方向の両側に配置される。一対の突出部16の突出量が同一の突極14と、一対の突出部16の突出量が異なる突極14が存在する。
 発電機1では、同相の突極14のみに隣接する突極14a(例えばU2、V2、W2等)には、周方向の両側に突出部16が配置される。この一対の突出部16の突出量(周方向の長さ)は、同一である。
 例えばU2となる突極14は、同相であるU1,U3となる突極14のみに隣接する。
 このU2となる突極14(磁路部15)には、周方向の両側に、同一突出量の突出部16が配置される。
 また、発電機1では、異相の突極14に隣接する突極14b(例えばU1、V1、W1等)には、周方向の両側に突出部16が配置される。この一対の突出部16の突出量(周方向の長さ)は、不均一である。異相の突極14に隣接する側方に配置された突出部16は長く、同相の突極14に隣接する側方に配置された突出部16は短く設定される。
 例えばU1となる突極14は、異相であるW6となる突極14に隣接する。このU1となる突極14(磁路部15)には、周方向の両側に突出部16が配置される。異相であるW6となる突極14に隣接する側方には突出量が長い突出部16が配置される。同相であるU2となる突極14に隣接する側方には突出量が短い突出部16が配置される。
 これにより、先端部17は、同相の突極14において、配置角度θ2が22.5°に設定される。つまり、同相の先端部17同士の配置角度θ2が、永久磁石6の極弧角θpに一致するように設定される。
 同相の先端部17同士の角度θ2は、それぞれの先端部17における周方向の中心位置の間の角度である。
 発電機1の突極14を、上述した形状及び配置としたのは、従来の発電機90における長所を維持(保持)しつつ、従来の発電機90における短所を解消(緩和)するためである。
 図6に示すように、発電機90では、同相の突極94同士が隣接しているところでは、磁路部95同士の角度が22.5°に設定される。突極94の突出部96は、周方向の両側に配置される。
 このため、発電機90では、同相を形成する3本の突極94(先端部97)は、同時に、永久磁石6の磁極の中心線に位置するように対向する。例えば、U1となる突極94の先端部97が永久磁石6のN極に、U2となる突極94の先端部97が永久磁石6のS極に、U3となる突極94の先端部97が永久磁石6のN極に対して、同時に各磁極の中心線上において対向する。このため、発電機90は、高い発電効率を実現できる。
 その一方で、異相の突極94同士が隣接するところでは、磁路部95同士の角度が15.0°に設定される。突極94の突出部96は、周方向の両側に配置される。
 このため、異相の突極94同士が隣接するところでは、磁路部95同士の間のスペースが小さくなる。したがって、同相の突極94同士が隣接するところに比べて、磁路部95へのコイル7の巻き付けがしにくくなる。
 発電機90では、コイル7が巻き付けがしやすい磁路部95と巻き付けがしにくい磁路部95が混在するので、コイル7の巻き付け作業の効率が低下してしまう。
 これに対して、本発明の第一実施形態に係る発電機1は、同相の突極14の磁路部15同士の角度θ1が、極弧角θpに一致するように設定される。また、同相の3つの突極14のうち、異相の突極14に隣接する突極14(突極14b)は、磁路部15が同相の突極14a(磁路部15)に近づくようにずらした位置に配置される。
 このため、発電機1は、発電機90のように、固定子3において磁路部15同士の間のスペースが大ききところと、磁路部15同士の間のスペースが小さいとことが混在しない。具体的には、異極の突極14に隣接する突極U3の磁路部15は、異極の突極14に隣接する突極U3の先端部17の中心線よりも、同相の突極U2に近づいた位置に配置される。このため、例えば、U3の磁路部15とU2の磁路部15の間に形成されるスロットの面積と、U3の磁路部15とV1の磁路部15の間に形成されるスロットの面積とをほぼ等しくさせることができる。
 このように、発電機1は、磁路部15同士の間のスペースがほぼ均一である。このため、発電機1の固定子3のそれぞれの突極14に対して、巻線機(不図示)により効率的にコイル7を巻き付けることができる。
 また、発電機1では、同相の突極14の先端部17同士の配置角度θ2が22.5°に設定される。
 このため、発電機1は、U1となる突極14の先端部17が永久磁石6のN極に、U2となる突極14の先端部17が永久磁石6のS極に、U3となる突極14の先端部17が永久磁石6のN極に対して、同時に各磁極の中心線上において対向する。したがって、発電機1は、発電機90と同様に、高い発電効率を実現できる。
 発電機1では、同相の先端部17同士の配置角度θ2は22.5°であり、隣接する異相の先端部17同士の配置角度は15°である。このように、同相の先端部17同士の配置角度θ2が、隣接する異相の先端部17同士の配置角度よりも大きくなっていれば、同相の突極14同士の電気角を同一にすることができるため、高効率化できる。
 図2に示すように、発電機1では、3つの突極14が周方向に隣接配置されて、極対21を形成する。例えば、U1となる突極14、U2となる突極14,U3となる突極14は、周方向において隣接して配置される。これら3つの突極14により、U相の極対21Uaを形成する。
 また、同相における3つの突極14は、同一の電気角に配置される。それぞれの極対21においては、3つの突極14は、異極性の永久磁石6と同一電気角を有して対向する。
 極対21における3つの突極14の先端部17は、隣接するもの同士が異なる極性の磁極に対向するように、永久磁石6の極弧角θpとほぼ同じ角度θ2に設定される。
 極対21における3つの突極14では、隣接する突極14に巻かれたコイル7の巻方向が互いに逆方向に設定される。例えば、U1となる突極14に巻かれたコイル7と、U2となる突極14に巻かれたコイル7とは、巻方向が互いに逆方向である。
 同様に、V相を形成するV1,V2,V3の突極14は、隣接配置されて、極対21Vaを形成する。W相を形成するW1,W2,W3の突極14は、隣接配置されて、極対21Waを形成する。
 極対21Va,21Waでは、V1~V3、W1~W3が異極性の永久磁石6と同一電気角にて対向する。V1~V3、W1~W3の突極14の先端部17同士の角度θ2は22.5°に設定される。
 同相において隣接する突極14同士(V1とV2、V2とV3、W1とW2、W2とW3)には、逆方向に巻かれたコイル7が配置される。
 各相の極対21は一対設けられる。2つの極対21は、回転子2の回転中心Oを挟んで対向するように配置される。極対21Uaに対しては、回転中心Oを挟んで対向する位置に、極対21Ubが設けられる。同様に、極対21Va,21Waに対しては、極対21Vb,21Wbが設けられる。
 極対21Ub,21Vb,21Wbにも、3本の突極14(U相:U4,U5,U6、V相:V4,V5,V6、W相:W4,W5,W6)が配置される。
 発電機1では、各相の突極14が6個ずつ均等に配置される。このため、サイリスタタイプの電圧レギュレータが使用可能な磁極構成(磁極数N=16)においても、相間の発電バランスが崩れることがなく、発電効率の低下を招くこともない。
 このように、本実施形態に係る発電機1は、同相の突極14の先端部17同士の角度θ2を永久磁石6の極弧角θpに一致するように設定されている。このため、相間の発電バランスの崩れによる発電効率の低下を抑えることができる。したがって、発電機の高出力・高効率化を実現できる。
 その一方で、同相の突極14の磁路部15同士の角度θ1を永久磁石6の極弧角θpに一致するように設定すると共に、異相の突極14に隣接する突極14bの磁路部15を同相の突極14aの磁路部15に近接するようにした位置(ずらした位置)に配置したので、磁路部15同士の間に十分なスペースを確保できる。このため、磁路部15に対するコイル7の巻き付けを効率よく行うことができ、製造効率の低下を防止できる。また、磁路部15に巻装されるコイル7の巻き数を増加させることができるので、発電機1の高出力・高効率化を実現できる。
 本実施形態に係る発電機1では、突極14の根本の長さL(図2参照)を等しくするため、磁路部15の角度を維持したままオフセットさせている。根元の距離Lを略等間隔にするため、磁路部14の角度を変更してしまうと、先端部17の幅が極端に狭い場合において、先端部17から磁路部15が逸脱してしまう場合がある。すなわち、磁路部15の角度を変更すると、磁路部15の根本の移動量と磁路部15の先端の移動量とが異なってしまうため、突極14の根本の長さLを等しく設定すると、突極14の先端が先端部17から逸脱してしまう場合がある。つまり、磁路部15の角度を変更するだけでは、根元の移動量を等間隔にすることができない場合がある。
 そこで、突極14の根本の長さLを等しくするために、突極14の磁路部15の角度を維持した状態でオフセットさせている。磁路部15の角度を変更することで根本の距離Lを等間隔にできない場合であっても、オフセットさせることによって、突極14の根本の移動量と、突極14の先端の移動量が等しくすることができる場合がある。
 本実施形態に係る発電機1では、突極14の根本の長さLは、いずれもほぼ等しい。そのため、隣接する磁路部15同士の間のスペースはほぼ均一になる。スペースがほぼ均一になるので、各突極14に巻装されるコイル7の量が略等しくなり、各突極14に対して同一仕様の巻線(例えば、同一の線径の巻線)をすることができ、効率を高めることができる。各突極14に巻装されるコイル7の量が略等しくなっていれば、効率を高めることができるため、各突極14の根本の長さLが各々僅かにずれている場合であってもよい。たとえば、±10パーセントの範囲内であれば問題ない。
 本発明は前記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
 例えば、前述の実施形態では、16極18ポール構成の発電機を示した。しかしながら、本発明の第二実施形態として、図5に示すような16極12ポール構成の発電機51も可能である。
 前述の実施形態では本発明の発電機を発電機として使用した場合を示したが、これをモータとして使用することも可能である。
 自動二輪車のACGスタータのように、発電機とモータを兼用したものにも適用可能である。前述の実施形態では本発明の発電機を自動二輪車用発電機に適用した例を示したが、他の用途の発電機やモータに適用することも可能である。
 前述の実施形態では、アウタロータ型の発電機に本発明を適用した例を示したが、回転子が固定子の内側に配設されるいわゆるインナーロータ型の発電機に本発明を適用することも可能である。
 前述の実施の形態では、相数が3相の発電機について説明したが、5相等の他の多相発電機にも本発明は適用可能である。
 突極14の磁路部15同士の角度θ1は、永久磁石6の極弧角θpに一致させる場合に限らない。角度θ1は、互いに隣接する磁路部15同士を均等配置する角度(18極の場合は20.0°)よりも大きく設定されていればよい。
 同相の先端部17同士の角度θ2は、永久磁石6の極弧角θpに一致させる場合に限らない。例えば、磁路部15に対するコイル7の巻き付け作業等を考慮して、極弧角θpよりも小さい角度に設定する場合であってもよい。
 同相の先端部17同士の配置角度θ2が、永久磁石6の極弧角θp以下であれば、異相となる先端部17同士の間隔が広がることになるため、磁束の漏れが減少し、高効率化される。このため、例えば永久磁石6の極弧角が22.5°であり、同相の先端部17同士の配置角度θ2が21.5°であっても、同様の効果が得られる。
 同相の先端部17同士の配置角度θ2が22.5°であり、隣接する異相の先端部17同士の配置角度が15°の場合に限らない。同相の先端部17同士の配置角度θ2が、隣接する異相の先端部17同士の配置角度よりも大きくなっていればよい。例えば、同相の先端部17同士の配置角度θ2が21.5°であり、隣接する異相の先端部17同士の配置角度が17°であっても、同様の効果が得られる。
 さらに、本実施形態では、同相の磁路部の配置角度と、隣接する異相の磁路部の配置角度が異なる場合について示したが、本発明の実施形態はこの構成に限られない。
 すなわち、図7に示すように、ティース数が18の場合において、同相の磁路部の配置角度を20°と設定し、隣接する異相の磁路部の配置角度を20°と設定しても良い。
 このように構成することで、磁路部の間隔が全て均等となり、隣接する磁路部15同士の間のスペースは均一になる。スペースが均一になるので、各突極14に巻装されるコイル7の量が等しくなり、各突極14に対して同一仕様の巻線(例えば、同一の線径の巻線)をすることができ、効率を高めることができる。
 上記した磁石式発電機によれば、突極の先端部の配置角度を永久磁石の極弧角に設定しているので、相間の発電バランスの崩れによる発電効率の低下を抑えることができる。したがって、発電機の高出力・高効率化を実現できる。
 その一方で、異相の突極に隣接する磁路部を同相の磁路部に近接するようにした位置に配置したので、磁路部に対するコイルの巻き付けを効率よく行うことができ、製造効率の低下を防止できる。
 1,51  発電機(磁石式発電機)
 2  回転子
 3  固定子
 6  永久磁石
 7  コイル
 14  突極
 15  磁路部
 15t  先端部位
 16  突出部
 17  先端部
 θp  極弧角
 θ1  磁路部の配置角度
 θ2  先端部の配置角度
 O  回転子の回転中心
 T  同相の磁路部同士の中心線の交点

Claims (5)

  1.  コイルが巻装される磁路部と前記磁路部の先端から両側方に突出する突出部とからなる突極を複数有する固定子と、
     前記固定子の外周又は内周に回転自在に配設され、複数個の永久磁石が前記突極と対向するように周方向に沿って取り付けられた回転子と、を備える磁石式発電機であって、
     同一相となる前記突極を周方向に隣接配置すると共に、隣接配置された前記同一相となる前記突極には、同一相となるコイルが直列で巻装されており、
     前記磁路部の先端部位と前記突出部とからなる先端部は、同相の先端部同士の配置角度が前記永久磁石の極弧角以下であって、隣接する異相間の先端部の配置角度よりも大きくなっており、
     異極の突極に隣接する突極の前記磁路部は、前記異極の突極に隣接する突極の先端部の中心線よりも同相側に配置されている
     磁石式発電機。
  2.  前記磁路部は、同相の磁路部同士の配置角度が前記永久磁石の極弧角に一致するように設定される請求項1に記載の磁石式発電機。
  3.  前記磁路部の配置角度は均等となっている請求項1に記載の磁石式発電機。
  4.  前記先端部の周方向の長さは、均一に設定される請求項1から3のうちいずれか一項に記載の磁石式発電機。
  5.  前記周方向において隣接配置される複数の突極が同相を形成すると共に、同一電気角に配置される請求項1から4のうちいずれか一項に記載の磁石式発電機。
PCT/JP2014/058008 2013-03-26 2014-03-24 磁石式発電機 WO2014157049A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480016110.5A CN105191088B (zh) 2013-03-26 2014-03-24 磁铁式发电机
EP14775319.8A EP2980970B1 (en) 2013-03-26 2014-03-24 Magnetic power generator
JP2014537197A JP5668181B1 (ja) 2013-03-26 2014-03-24 磁石式発電機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-063832 2013-03-26
JP2013063832 2013-03-26

Publications (1)

Publication Number Publication Date
WO2014157049A1 true WO2014157049A1 (ja) 2014-10-02

Family

ID=51624024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058008 WO2014157049A1 (ja) 2013-03-26 2014-03-24 磁石式発電機

Country Status (4)

Country Link
EP (1) EP2980970B1 (ja)
JP (1) JP5668181B1 (ja)
CN (1) CN105191088B (ja)
WO (1) WO2014157049A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018038160A (ja) * 2016-08-31 2018-03-08 シナノケンシ株式会社 ブラシレスモータ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6616362B2 (ja) * 2017-09-04 2019-12-04 シナノケンシ株式会社 ブラシレスモータ及び固定子の巻線方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003098781A1 (en) 2002-05-16 2003-11-27 Mitsuba Corporation Dynamo electric machine
JP2006340425A (ja) * 2005-05-31 2006-12-14 Victor Co Of Japan Ltd モータ
JP2010098937A (ja) * 2008-09-16 2010-04-30 Asmo Co Ltd ブラシレスモータ
JP2011120429A (ja) 2009-12-07 2011-06-16 Mitsuba Corp 磁石式発電機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190605602A (en) * 1906-03-08 1907-03-08 John Wesley Burleigh Improvements in the Field Magnets of Dynamo-electric Machines.
JP2004215479A (ja) * 2002-03-29 2004-07-29 Matsushita Electric Ind Co Ltd モータ
DE102010044713A1 (de) * 2010-09-08 2012-03-08 Minebea Co., Ltd. Bürstenloser Gleichstrommotor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003098781A1 (en) 2002-05-16 2003-11-27 Mitsuba Corporation Dynamo electric machine
JP2006340425A (ja) * 2005-05-31 2006-12-14 Victor Co Of Japan Ltd モータ
JP2010098937A (ja) * 2008-09-16 2010-04-30 Asmo Co Ltd ブラシレスモータ
JP2011120429A (ja) 2009-12-07 2011-06-16 Mitsuba Corp 磁石式発電機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018038160A (ja) * 2016-08-31 2018-03-08 シナノケンシ株式会社 ブラシレスモータ

Also Published As

Publication number Publication date
EP2980970A4 (en) 2017-01-11
EP2980970B1 (en) 2018-05-30
EP2980970A1 (en) 2016-02-03
JP5668181B1 (ja) 2015-02-12
JPWO2014157049A1 (ja) 2017-02-16
CN105191088A (zh) 2015-12-23
CN105191088B (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
JP6977556B2 (ja) 回転電機
US7569962B2 (en) Multi-phase brushless motor with reduced number of stator poles
JP4828666B2 (ja) 同期電動機及び同期電動機駆動システム
US9608501B2 (en) Rotary electric machine
JP4852242B2 (ja) 交流発電機
EP3355446B1 (en) Rotary electric machine
WO2011102114A1 (ja) 同期電動機駆動システム
KR20070119055A (ko) 모터
JP2013074743A (ja) 回転電機
JPWO2003098781A6 (ja) 回転電機
JP6227712B2 (ja) 回転電機、およびその回転電機を備えた車両
JP2008306849A (ja) 回転電機
WO2017014062A1 (ja) 回転電機の固定子及び回転電機
JP2008211918A (ja) 回転電機
JP5546224B2 (ja) 磁石式発電機
JP2020080607A (ja) 回転電機
JP2003088078A (ja) ブラシレスdcモータ
JP6154637B2 (ja) 磁石式発電機
JP5668181B1 (ja) 磁石式発電機
JP2017063594A (ja) ブラシレスモータ
JP2010081670A (ja) 交流発電機
WO2021065462A1 (ja) 回転電機
JP2010148267A (ja) モータ
WO2021019703A1 (ja) 三相交流発電機
JP2010273458A (ja) 3相回転電機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480016110.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014537197

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775319

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014775319

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE