WO2021019703A1 - 三相交流発電機 - Google Patents

三相交流発電機 Download PDF

Info

Publication number
WO2021019703A1
WO2021019703A1 PCT/JP2019/029918 JP2019029918W WO2021019703A1 WO 2021019703 A1 WO2021019703 A1 WO 2021019703A1 JP 2019029918 W JP2019029918 W JP 2019029918W WO 2021019703 A1 WO2021019703 A1 WO 2021019703A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
phase
magnets
intervals
stator core
Prior art date
Application number
PCT/JP2019/029918
Other languages
English (en)
French (fr)
Inventor
彰比古 田中
嵩 亀澤
Original Assignee
株式会社kaisei
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社kaisei filed Critical 株式会社kaisei
Priority to PCT/JP2019/029918 priority Critical patent/WO2021019703A1/ja
Publication of WO2021019703A1 publication Critical patent/WO2021019703A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos

Definitions

  • the present invention has a rotor (rotor) having a permanent magnet and a stator core (stator) in which a plurality of teeth arranged concentrically with the rotor are arranged, and generates an AC voltage when the rotor is rotated.
  • the present invention relates to an improvement of a three-phase alternator in which the magnetic resistance generated between the magnet of the rotor and the teeth of the stator core to prevent the rotation of the rotor is reduced in the three-phase alternator.
  • Patent Document 1 Japanese Patent No. 4524110 (Patent Document 1), a plurality of generators are described with the positions of the magnets. A generator that cancels out the attractive force of the magnet by shifting the magnet at an even angle from the axis has been presented. Further, Japanese Patent Application Laid-Open No. 2015-339270 (Patent Document 4) presents a generator using a coreless coil, and a generator in which the core of the coil is shorter than the coil in the axial direction. Further, in Japanese Patent Application Laid-Open No.
  • Patent Document 5 a cylindrical rotor attached to a rotating shaft rotatably supported by a housing and the rotor inside the rotor fixed to the housing are described. It has a cylindrical inner stator arranged concentrically with the rotor and a cylindrical outer stator arranged concentrically with the rotor on the outside of the rotor, and the rotor has a plurality of permanents in the rotation direction.
  • the magnets are arranged in a cylindrical shape with alternating magnetic poles, and the inner and outer stators are located on the side facing the rotor and at positions facing the permanent magnets placed on the rotor.
  • a plurality of coils that generate an AC voltage when the rotor is rotated are arranged side by side, and at least one of the coils arranged on the inner stator and the outer stator is a high inductance coil.
  • a generator with reduced magnetic resistance has been proposed.
  • An object of the present invention is to provide a three-phase alternator that reduces loss and has excellent power generation efficiency by changing the number and angles of magnets and stator cores.
  • the present invention In the invention of claim 1, in a rotor in which a plurality of magnets are fixed at equal intervals with respect to the center of rotation, and a three-phase alternator in which a stator core is arranged so as to face the surface of the magnets.
  • the rotor magnets are alternately provided with 6 magnets having different polarities at 60 ° intervals with respect to the rotor rotation center or 12 magnets having different polarities at 30 ° intervals with respect to the rotor rotation center.
  • the stator core is characterized in that 36 teeth are arranged at 10 ° intervals with respect to the center of rotation of the rotor, and a coil having the same performance is mounted on the teeth to receive magnetic flux from the magnet of the rotor.
  • the teeth are made of a straight plate-shaped member.
  • a yoke having a cylindrical stator core and 36 teeth radially provided at 10 ° intervals at equal intervals with respect to the rotation center of the rotor along the outer peripheral surface of the yoke.
  • the rotor consists of an annular shape fitted to the stator core, and 6 or 12 magnets on at least the inner peripheral surface of the rotor, which have different polarities at equal intervals of 60 ° or 30 ° with respect to the center of rotation of the rotor.
  • the magnets are alternately provided.
  • a yoke having a cylindrical shape of the stator core and 36 teeth at equal intervals of 10 ° in a direction in which the stator core is absorbed toward the center of rotation of the rotor along the inner peripheral surface of the yoke are provided.
  • the rotor consists of a cylinder or cylinder fitted to the stator core, and has six different polarities on at least the inner peripheral surface of the rotor at intervals of 60 ° or 30 ° at equal intervals with respect to the center of rotation of the rotor. Alternatively, 12 magnets are alternately provided.
  • the U-phase coil, V-phase coil, and W-phase coil are displaced in the north and south poles of the magnet. Since it fits without occurring, the waveform of the interlinkage magnetic flux of each coil becomes a waveform close to a sinusoidal wave, and the coils have the same number of turns and the same performance and the same voltage for all three phases.
  • the induced electromotive force has a phase waveform delayed by about 90 ° with respect to the interlinkage magnetic flux, and the induced current has a phase waveform delayed by 90 ° with respect to the induced electromotive force, reducing cogging torque and efficient power generation. It can be performed.
  • FIG. It is a schematic diagram which shows the cross section of the three-phase alternating current generator of Example 1.
  • FIG. It is explanatory drawing which also shows the phase relationship of voltage, current, and interlinkage magnetic flux. It is a perspective view of one tooth of a stator core. It is explanatory drawing which also shows the relationship of the phase of the voltage, the current, and the interlinkage magnetic flux of the three-phase AC generator of Example 2.
  • (A) is a schematic view showing a cross section of the three-phase AC generator of Example 3
  • (b) is a side view.
  • the three-phase alternator 10 of the first embodiment shown in FIGS. 1 to 3 has a cylindrical rotor 3 attached to a rotating shaft 2 rotatably supported by the housing 1, and the rotor fixed to the housing 1. It is composed of a cylindrical stator core 4 arranged concentrically with the rotor 3 inside the 3, and the stator core 4 is integrally formed with a cylindrical yoke (joint iron) and is projected along the outer peripheral surface. It is composed of a tooth 5, and a coil 8 is wound around the tooth 5 along its outer circumference (see FIG. 3).
  • six permanent magnets 6 are arranged in a cylindrical shape with magnetic poles S and N alternately different in the rotation direction, and are arranged at equal intervals of 60 ° from the center of rotation of the rotor 3. A constant force is applied to the rotating shaft 2 to rotate the rotor 3 in a counterclockwise direction at a constant speed.
  • the teeth 5 of the stator core 4 face the permanent magnet 6 so that all of the coils 8 have the same number of turns and the same performance, and the magnetic flux generated from the permanent magnet 6 of the rotor 3 can flow in.
  • Thirty-six magnets are arranged at equal intervals at equal intervals, and are arranged radially at equal intervals of 10 ° from the center of rotation of the rotor 3. Therefore, six teeth 5 face each other for each of the north or south poles of one permanent magnet 6, and the magnets 6 of the six teeth 5 receive the magnetic flux of the same permanent magnet 6. Further, each permanent magnet 6 is in a state in which the center in the circumferential direction is located in the middle of two teeth 5 out of the six teeth 5.
  • the coil 8 is preferably a high inductance coil, but is not particularly limited.
  • the tooth 5 is preferably formed in a plate shape having a width of about 1 to 3 mm and has at least 20 turns or more, but is not particularly limited. ..
  • the stator core 4 has a known configuration capable of collecting three-phase alternating current from the output units of the coils (U phase, V phase, W phase) 8 of each tooth 5.
  • the three-phase AC voltage is the same for all three phases.
  • FIG. 2 shows the relationship between the interlinkage magnetic flux, the induced electromotive force (voltage), and the induced current (current) in the generator of the embodiment shown in FIG. 1, and shows the U-phase, V-phase, and W of each coil 8.
  • the waveform of the interlinkage magnetic flux of each phase is almost the same as that of the sinusoidal wave.
  • the waveform of the induced electromotive force becomes a phase waveform delayed by about 90 ° with respect to the waveform of the interlinkage magnetic flux.
  • the induced current has a phase waveform delayed by 90 ° with respect to the induced electromotive force.
  • each waveform is composed of 360 ° in 3 cycles.
  • the U-phase, V-phase, and W-phase coils are arranged with respect to the north and south poles. Only one phase comes to the center, but the remaining two phases do not come to the center of the north and south poles, so the waveform of the interlinkage magnetic flux is not close to that of a sinusoid, and the induced electromotive force is applied to the waveform of the interlinkage magnetic flux.
  • the waveform of is not a phase waveform delayed by about 90 °.
  • the stator core 4 has a known configuration capable of collecting three-phase alternating current from the output units of the coils (U phase, V phase, W phase) 8 of each tooth 5.
  • the three-phase AC voltage is the same for all three phases, and the loss due to cogging torque can be reduced, so that power can be generated efficiently.
  • the three-phase AC generator 10 of the second embodiment shown in FIG. 4 has a different number of permanent magnets 6 provided in the cylindrical rotor 3, and the other configurations are the same as those of the first embodiment.
  • the same reference numerals are given to, and the description thereof will be omitted.
  • the rotor 3 has permanent magnets 6 arranged in six S poles and six N poles in a state where the magnetic poles S and N are alternately different in the rotation direction, and is 30 ° at equal intervals from the rotation center of the rotor 3. Arranged at intervals. Further, as described above, all the teeth 5 of the stator core 4 have the same number of turns of the coil 8 and the same performance, and are permanent so that the magnetic flux generated from the permanent magnet 6 of the rotor 3 can flow in. Thirty-six magnets are arranged at equal intervals at positions facing the magnets 6, and are arranged radially at equal intervals of 10 ° from the center of rotation of the rotor 3.
  • stator core 4 has a known configuration capable of collecting three-phase alternating current from the output units of the coils (U phase, V phase, W phase) 8 of each tooth 5. Therefore, the three-phase AC voltage is the same for all three phases.
  • the relationship between the interlinkage magnetic flux, the induced electromotive force (voltage), and the induced current (current) in the generator is such that the waveforms of the interlinkage magnetic fluxes of the U phase, V phase, and W phase of each coil 8 are used.
  • the waveform is almost the same as that of the sinusoidal wave, but the length is half of the waveform in the first embodiment, and 360 ° is composed of 6 cycles.
  • the three-phase AC voltage becomes the same voltage for all three phases, and as in the first embodiment, the loss due to the cogging torque can be reduced, and power can be generated efficiently.
  • the rotor 3 of the present invention may be composed of a cylindrical stator core 4 fixed to the housing 1 and arranged concentrically with the rotor 3 on the outer peripheral side of the rotor 3.
  • the three-phase alternator 10 of the third embodiment shown in FIG. 6 has the same number of six permanent magnets 6 having different polarities as the three-phase alternator 10 of the first embodiment, and 36 teeth 5 It is composed of the above.
  • the configuration may be such that 12 permanent magnets 6 having different polarities are alternately provided and 36 teeth 5 are provided as in the second embodiment.

Abstract

【課題】この発明は、三相交流発電機の改良に関する。 【解決手段】 回転中心に対して等間隔の角度に磁石を複数固定したロータと、前記磁石の面に対峙するようにステータコアを配置してなる三相交流発電機において、ロータの磁石は、ロータの回転中心に対して60°間隔で極性が異なる6個の磁石が交互に設けられており、ステータコアは、ローターの回転中心に対して10°間隔に36個のティースが配置されて、前記ロータの磁石からの磁束を受けることを特徴とする。

Description

三相交流発電機
 本発明は、永久磁石を有するロータ(回転子)と、前記ロータと同心に配置された複数のティースを配置したステータコア(固定子)を有し、ロータを回転させたときに交流電圧を発生させる三相交流発電機において、ロータの磁石とステータコアのティースとの間にロータの回転を阻止するように発生する磁気抵抗を減少させた三相交流発電機の改良に関するものである。
 従来、磁石の磁力線内でコイルを移動させるとコイル内に起電力(電圧)が発生し、コイル内を電流が流れるという電磁誘導を利用して磁石のエネルギーを電気エネルギーに変換することで発電する発電機が知られている。
 ところで、前記従来の発電機では、永久磁石を有する円筒状のロータが回転してその外側に配置したステータコアのコイルの横を通過する際に前記コイル内に発生する電流によりコイルの周りに磁力線が生じ、その磁力線がローターの永久磁石から出る磁力線と互いに反対方向にぶつかり合う形で反発力、あるいは同方向に重なり合う形で吸引力を発生させることにより、ローターの動きを止める作用として働いてしまうことになり(磁気抵抗)、発電効率の低下を招くことから磁力抵抗を一定の出力電力を得るのに余分な外部エネルギーが必要になり、発電機のエネルギー効率の低下を招いている。
 そこで、従来、磁力抵抗をゼロ或いは少なくして発電効率の良好な発電機の開発が進められており、例えば特許第4524110号公報(特許文献1)には複数の発電機を各々の磁石の位置を軸から均等な角度にずらすことで磁石の引力を相殺させる発電機が提示されており、また、特許第3047180号公報(特許文献2)、特開2008-187872号公報(特許文献3)にはコアレスのコイルを用いた発電機、更には、特開2015-339270号公報(特許文献4)にはコイルにおけるコアを軸芯方向にコイルよりも短くする発電機などが提示されている。
 また、特開2018-108007号公報(特許文献5)には、ハウジングに回転可能に支持された回転軸に取り付けられた円筒状の回転子と、ハウジングに固定された前記回転子の内側に前記回転子と同心に配置された円筒状の内側固定子および前記回転子の外側に前記回転子と同心に配置された円筒状の外側固定子を有し、前記回転子は回転方向に複数の永久磁石を磁極が交互に異なる状態に円筒状に配置されているとともに前記内側固定子および外側固定子は前記回転子に対峙する側に前記回転子に配置された永久磁石に対向する位置にそれぞれが回転子を回転させたときに交流電圧を発生させる複数のコイルが並設されており、且つ前記内側固定子および外側固定子に配置されているコイルの少なくとも一方が高インダクタンスコイルであることを特徴とする磁力抵抗を減少させた発電機が提案されている。
特許第4524110号公報 特許第3047180号公報 特開2008-187872号公報 特開2015-339270号公報 特開2018-108007号
 しかしながら、前記特許文献1に記載された発電機では、多数、例えば少なくとも4台或いは8台の発電機を軸線方向に並設させる必要があり、このような発電機を設置するには軸線方向に多大な空間を要するばかりか経済的にも負担が大きい。また、特許文献2および特許文献3に記載の発電機では磁力抵抗をゼロにすることができるが反面、発電量が磁束が大きく漏れることからコイルを効率よく縦断する磁束が減少して発電効率が低下して発電機としての機能を発揮できない。また、前記特許文献4に記載されている発明では、磁力抵抗を少なくして発電効率の良好な発電を行うためにコイルにおけるコアの長さを定めることが必要であるとともにコイルを配置した筒状の固定子の外側に永久磁石を配置した回転子を配置したものであり発電効率が十分でない、という問題がある。
 また、前記特許文献5に記載されている発明では、磁石とコイルが共に、回転中心に対して等間隔に30°間隔となるように20個配置されており、三相が同電圧になりにくいという問題がある。
 本発明は、磁石とステータコアの数および角度を変更することで、ロスを減少させ発電効率に優れた三相交流発電機を提供することを課題とする。
 本発明は、上記課題を達成するために、
 請求項1の発明では、
 回転中心に対して等間隔の角度に磁石を複数固定したロータと、前記磁石の面に対峙するようにステータコアを配置してなる三相交流発電機において、
 ロータの磁石は、ロータの回転中心に対して60°間隔で極性が異なる6個の磁石またはロータの回転中心に対して30°間隔で極性が異なる12個の磁石が交互に設けられており、
 ステータコアは、ローターの回転中心に対して10°間隔に36個のティースが配置され、該ティースには同一性能のコイルが装着されて、前記ロータの磁石からの磁束を受けることを特徴とする。
 請求項2の発明では、
 前記ティースが、ストレートな板状部材からなっていることを特徴とする。
 請求項3の発明では、
 前記ステータコアが円筒形状のヨークと、該ヨークの外周面に沿ってローターの回転中心に対して等間隔に10°間隔で放射状に36個のティースが設けられ、
 ロータが、ステータコアに外嵌された円環状からなっており、ロータの少なくとも内周面に、ロータの回転中心に対して等間隔に60°間隔または30°間隔で極性が異なる6個または12個の磁石が交互に設けられていることを特徴とする。
 請求項4の発明では、
 前記ステータコアが円筒形状のヨークと、該ヨークの内周面に沿ってローターの回転中心に向かって吸収される方向に等間隔に10°間隔で36個のティースが設けられ、
 ロータが、ステータコアに嵌合された円柱状または円筒状からなっており、ロータの少なくとも内周面に、ロータの回転中心に対して等間隔に60°間隔または30°間隔で極性が異なる6個または12個の磁石が交互に設けられていることを特徴とする。
 この発明では、上記構成からなるので、ステータコアのティースに巻かれたコイルに三相交流が流されると、U相コイル、V相コイル、W相コイルとして磁石のN極、S極内にずれが生じることなく収まるので、各コイルの鎖交磁束の波形が正弦波に近い波形となり、且つコイルは同一巻数で同一性能として三相とも同電圧としている。
 また、鎖交磁束に対して誘導起電力は、約90°遅れた位相波形となり、また誘導起電力に対して誘導電流は90°遅れた位相波形となり、コギングトルクを低減させ、効率的な発電を行うことができる。
実施例1の三相交流発電機の断面を示す模式図である。 電圧と電流と鎖交磁束の位相の関係を併せて示す説明図である。 ステータコアの1つのティースの斜視図である。 実施例2の三相交流発電機の電圧と電流と鎖交磁束の位相の関係を併せて示す説明図である。 (a)は実施例3の三相交流発電機の断面を示す模式図、(b)は側面図である。
 以下にこの発明の三相交流発電機の好適実施例について図面を参照しながら説明する。
 図1から図3に示す実施例1の三相交流発電機10は、ハウジング1に回転可能に支持された回転軸2に取り付けられた円筒状のローター3と、ハウジング1に固定されて前記ローター3の内側に前記ローター3と同心に配置された円筒状のステータコア4とからなっており、該ステータコア4は円筒状のヨーク(継鉄)に一体に形成されて外周面に沿って突設されたティース5とからなり、該ティース5にはその外周に沿ってコイル8が巻き付けられている(図3参照)。
 前記ローター3は回転方向に6個の永久磁石6を磁極S,Nが交互に異なる状態に円筒状に配置されており、ローター3の回転中心から等間隔に60°間隔に配置されている。
 上記ローター3は、回転軸2に一定の力が加えられて反時計方向に定速で回転する。
 また、前記ステータコア4のティース5は、全てがコイル8の巻き数が同じで性能が等しく、前記ローター3の永久磁石6から生じた磁束を流入することができるように、永久磁石6に対向する位置に等間隔に36個配置されており、ローター3の回転中心から等間隔に10°間隔に放射状に配置されている。
 従って、1つの永久磁石6のN極またはS極毎にそれぞれ6個のティース5が対向しており、6つのティース5の磁石6は、同じ永久磁石6の磁束を受ける。
 また各永久磁石6は、その円周方向の中央が、6つのティース5のうち2つのティース5の中間に位置した状態となる。
 そして、ローター3のN極の3個の永久磁石6と、S極の3個の永久磁石6とは、同時に6個づつのティース5のコイル8に同じ極性の磁束が流入され、順次、反時計回りに次のティース5に変わっていく。
 前記コイル8は、高インダクタンスコイルが好ましいが特に限定されない。
 また、ティース5は、図3に明瞭なように、幅が1から3mm程度の太さを有するプレート状からなっており、且つ少なくとも20turns以上の巻数を有していることが好ましいが特に限定されない。
 そして、1つの永久磁石6の内周面に対して、内側に配置されている6個のティース5が各永久磁石6に均等に割り当てられるように対峙されローター3の回転に伴って、順次隣接する次のティース5が対象となる。
 そして、ステータコア4は、各ティース5のコイル(U相、V相、W相)8の出力部から三相交流電流を集電可能な公知構成となっている。
 上記三相交流電圧は、3相とも同じ電圧となる。
 図2は前記図1に示した実施例の発電機における鎖交磁束、誘導起電力(電圧)、誘導電流(電流)の関係を示すものであり、各コイル8のU相、V相、W相のそれぞれの鎖交磁束の波形が正弦波とほぼ同一の波形となる。
 そして、鎖交磁束の波形に対して誘導起電力の波形は約90°遅れた位相波形になる。同様に誘導起電力に対して誘導電流は90°遅れた位相波形となる。
 そして、各波形は、360°を3サイクルで構成している。
 例えば、従来のように、永久磁石を磁極を交互に30°間隔で並べ、ステータコアのティースを20°間隔にすると、N極、S極に対して、U相、V相、W相のコイルの1相だけが中心にくるが、残りの2相はN極、S極の中心にはこないので、正弦波に近い鎖交磁束の波形にならず、鎖交磁束の波形に対して誘導起電力の波形は約90°遅れた位相波形にならない。
 そして、ステータコア4は、各ティース5のコイル(U相、V相、W相)8の出力部から三相交流電流を集電可能な公知構成となっている。
 上記三相交流電圧は、3相とも同じ電圧となり、また、コギングトルクによるロスを減少させることができ、効率的に発電させることができる。
 図4に示す実施例2の三相交流発電機10は、円筒状のローター3に設けられた永久磁石6の数が異なっており、その他の構成は前記実施例1と同様であるので同一構成には同一符号を付してその説明を省略する。
 前記ローター3は、回転方向に永久磁石6を磁極S,Nが交互に異なる状態にS極が6個、N極が6個に配置されており、ローター3の回転中心から等間隔に30°間隔に配置されている。
 また、前述のように、前記ステータコア4のティース5は、全てがコイル8の巻き数が同じで性能が等しく、前記ローター3の永久磁石6から生じた磁束を流入することができるように、永久磁石6に対向する位置に等間隔に36個配置されており、ローター3の回転中心から等間隔に10°間隔に放射状に配置されている。
 従って、1つの永久磁石6のN極またはS極毎にそれぞれ3個のティース5が対向しており、3個のティース5の磁石6が、同じ永久磁石6の磁束を受ける。
 また各永久磁石6は、その円周方向の中央が、3個のうちの1つのティース5に位置した状態でN極またはS極の磁束が流入され、順次、反時計回りに次のティース5に変わっていく。
 そして、1つの永久磁石6の内周面に対して、内側に配置されている3個のティース5が各永久磁石6に均等に割り当てられるように対峙されている。
 そして、ステータコア4は、各ティース5のコイル(U相、V相、W相)8の出力部から三相交流電流を集電可能な公知構成となっている。
 そこで、上記三相交流電圧は、3相とも同じ電圧となる。
 そして、この場合も、発電機における鎖交磁束、誘導起電力(電圧)、誘導電流(電流)の関係は、各コイル8のU相、V相、W相のそれぞれの鎖交磁束の波形が正弦波とほぼ同一の波形となるが、前記実施例1における波形の半分の長さで360°を6サイクルで構成している。
 上記三相交流電圧は、3相とも同じ電圧となり、前記実施例1と同様に、コギングトルクによるロスを減少させることができ、効率的に発電させることができる。
 この発明のローター3と、ハウジング1に固定されて前記ローター3の外周側に前記ローター3と同心に配置された円筒状のステータコア4とからなっていてもよい。
 図6に示す実施例3の三相交流発電機10は、実施例1の三相交流発電機10と同じ数の交互に極性の異なる6個の永久磁石6を有し、36個のティース5を設けた構成からなっている。
 この実施例はローター3とステータコア4の配置が内外に異なるだけで、その他の構成は同一であり、同様の作用、効果を奏することができる。
 また、図示しないが実施例2と同様に交互に極性の異なる12個の永久磁石6を有し、36個のティース5を設けた構成であってもよい。
 その他、要するにこの発明の要旨を変更しない範囲で種々設計変更しうること勿論である。
 1 ハウジング
 2 回転軸
 3 ローター
 4 ステータコア
 5 ティース
 6 永久磁石
 8 コイル
10 三相交流発電機 

Claims (4)

  1.  回転中心に対して等間隔の角度に磁石を複数固定したロータと、前記磁石の面に対峙するようにステータコアを配置してなる三相交流発電機において、
     ロータの磁石は、ロータの回転中心に対して60°間隔で極性が異なる6個の磁石またはロータの回転中心に対して30°間隔で極性が異なる12個の磁石が交互に設けられており、
     ステータコアは、ローターの回転中心に対して10°間隔に36個のティースが配置され、該ティースには同一性能のコイルが装着されて、前記ロータの磁石からの磁束を受けることを特徴とする三相交流発電機。
  2.  ティースが、ストレートな板状部材からなっていることを特徴とする請求項1に記載の三相交流発電機。
  3.  ステータコアが円筒形状のヨークと、該ヨークの外周面に沿ってローターの回転中心に対して等間隔に10°間隔で放射状に36個のティースが設けられ、
     ロータが、ステータコアに外嵌された円環状からなっており、ロータの少なくとも内周面に、ロータの回転中心に対して等間隔に60°間隔または30°間隔で極性が異なる6個または12個の磁石が交互に設けられていることを特徴とする請求項2に記載の三相交流発電機。
  4.  ステータコアが円筒形状のヨークと、該ヨークの内周面に沿ってローターの回転中心に向かって吸収される方向に等間隔に10°間隔で36個のティースが設けられ、
     ロータが、ステータコアに嵌合された円柱状または円筒状からなっており、ロータの少なくとも内周面に、ロータの回転中心に対して等間隔に60°間隔または30°間隔で極性が異なる6個または12個の磁石が交互に設けられていることを特徴とする請求項2に記載の三相交流発電機。
PCT/JP2019/029918 2019-07-30 2019-07-30 三相交流発電機 WO2021019703A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/029918 WO2021019703A1 (ja) 2019-07-30 2019-07-30 三相交流発電機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/029918 WO2021019703A1 (ja) 2019-07-30 2019-07-30 三相交流発電機

Publications (1)

Publication Number Publication Date
WO2021019703A1 true WO2021019703A1 (ja) 2021-02-04

Family

ID=74229426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029918 WO2021019703A1 (ja) 2019-07-30 2019-07-30 三相交流発電機

Country Status (1)

Country Link
WO (1) WO2021019703A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002369422A (ja) * 2001-06-11 2002-12-20 Hitachi Ltd 永久磁石式回転電機
JP2003259572A (ja) * 2002-02-27 2003-09-12 Minebea Co Ltd 回転電機
JP2004328944A (ja) * 2003-04-28 2004-11-18 Fuji Seratekku Kk 磁束制御型発電機
JP2012147547A (ja) * 2011-01-11 2012-08-02 Honda Motor Co Ltd アウターロータ型回転電機のステータ
JP2012244726A (ja) * 2011-05-18 2012-12-10 Yaskawa Electric Corp 回転電機の電機子および回転電機
JP2016220290A (ja) * 2015-05-14 2016-12-22 株式会社豊田自動織機 回転電機
JP2019502358A (ja) * 2016-01-14 2019-01-24 ノ、スンチャンROH, Soon Chang コギングトルクを最小化する永久磁石回転装置とこれを用いた永久磁石発電機及び永久磁石電動機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002369422A (ja) * 2001-06-11 2002-12-20 Hitachi Ltd 永久磁石式回転電機
JP2003259572A (ja) * 2002-02-27 2003-09-12 Minebea Co Ltd 回転電機
JP2004328944A (ja) * 2003-04-28 2004-11-18 Fuji Seratekku Kk 磁束制御型発電機
JP2012147547A (ja) * 2011-01-11 2012-08-02 Honda Motor Co Ltd アウターロータ型回転電機のステータ
JP2012244726A (ja) * 2011-05-18 2012-12-10 Yaskawa Electric Corp 回転電機の電機子および回転電機
JP2016220290A (ja) * 2015-05-14 2016-12-22 株式会社豊田自動織機 回転電機
JP2019502358A (ja) * 2016-01-14 2019-01-24 ノ、スンチャンROH, Soon Chang コギングトルクを最小化する永久磁石回転装置とこれを用いた永久磁石発電機及び永久磁石電動機

Similar Documents

Publication Publication Date Title
JP4926107B2 (ja) 回転電機
JP5682600B2 (ja) 回転電機のロータ
US7781931B2 (en) Switched reluctance motor
JP5272831B2 (ja) 回転電機
CN101964571B (zh) 内外双转子混合励磁双凸极电机
JP2016174521A (ja) 単相ブラシレスモータ
JP2016538817A (ja) 横磁束形電気機械
WO2016004823A1 (zh) 一种定子及无刷直流电机、三相开关磁阻和罩极电机
JP2020080607A (ja) 回転電機
JP6138075B2 (ja) 2相同期電動機
JP6561693B2 (ja) 回転電機
JP2017204961A (ja) 回転電機
JP2005020885A (ja) ロータリ・リニア直流モータ
JP5619522B2 (ja) 3相交流回転機
JP6589703B2 (ja) 回転電機
WO2018123128A1 (ja) 磁力抵抗を減少させた発電機
WO2021019703A1 (ja) 三相交流発電機
JP5460807B1 (ja) 同期電動機
JP5795170B2 (ja) 発電システム
JP2021064997A (ja) 三相交流発電機
JP2019216531A (ja) 円筒型永久磁石発電機
WO2011036723A1 (ja) 同期発電機
JP5619084B2 (ja) 同期電動機
JP2012191758A (ja) 回転電機
KR102465362B1 (ko) 모터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

NENP Non-entry into the national phase

Ref country code: JP

NENP Non-entry into the national phase

Ref country code: JP

NENP Non-entry into the national phase

Ref country code: JP

NENP Non-entry into the national phase

Ref country code: JP