WO2014156817A1 - 燃料供給装置 - Google Patents

燃料供給装置 Download PDF

Info

Publication number
WO2014156817A1
WO2014156817A1 PCT/JP2014/057289 JP2014057289W WO2014156817A1 WO 2014156817 A1 WO2014156817 A1 WO 2014156817A1 JP 2014057289 W JP2014057289 W JP 2014057289W WO 2014156817 A1 WO2014156817 A1 WO 2014156817A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
discharge pipe
supply device
fuel supply
discharge
Prior art date
Application number
PCT/JP2014/057289
Other languages
English (en)
French (fr)
Inventor
真輝 下川
孝夫 鵤木
佐藤 浩
太一 中村
勝紀 小室
正樹 上野
加藤 裕一
俊二 赤松
Original Assignee
株式会社ミツバ
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミツバ, 本田技研工業株式会社 filed Critical 株式会社ミツバ
Priority to CN201480016303.0A priority Critical patent/CN105190013B/zh
Priority to BR112015023734-7A priority patent/BR112015023734B1/pt
Publication of WO2014156817A1 publication Critical patent/WO2014156817A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/20Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines characterised by means for preventing vapour lock
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/08Feeding by means of driven pumps electrically driven
    • F02M37/10Feeding by means of driven pumps electrically driven submerged in fuel, e.g. in reservoir
    • F02M37/103Mounting pumps on fuel tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/14Feeding by means of driven pumps the pumps being combined with other apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/22Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines, e.g. arrangements in the feeding system
    • F02M37/32Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines, e.g. arrangements in the feeding system characterised by filters or filter arrangements
    • F02M37/50Filters arranged in or on fuel tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0076Details of the fuel feeding system related to the fuel tank
    • F02M37/0082Devices inside the fuel tank other than fuel pumps or filters

Definitions

  • the present invention relates to a fuel supply apparatus.
  • This application claims priority based on Japanese Patent Application No. 2013-063825 filed in Japan on March 26, 2013, the contents of which are incorporated herein by reference.
  • a fuel pump of this type of fuel supply apparatus includes a pump unit that pumps fuel downward and pumps it to an internal combustion engine (engine).
  • a motor unit for driving the pump unit is provided above the pump unit.
  • Patent Document 1 a motor provided in a housing, a pump unit provided in the housing and boosting fuel by rotating a rotating member by the motor, and provided in the housing, the fuel is sucked into the pump unit. And a suction port provided in the housing for discharging the fuel pressurized by the pump unit to the outside, and a vapor provided in the housing for discharging the vapor generated in the pump unit to the outside.
  • a fuel pump including a discharge hole and a suction filter that filters fuel sucked into the pump unit is described.
  • an inlet / outlet flow adjusting means that is provided corresponding to the vapor discharge hole, allows the vapor to be discharged from the vapor discharge hole, and restricts the entry of foreign matter into the vapor discharge hole.
  • the inlet / outlet flow adjusting means is formed of a filtering member including a porous material that allows passage of vapor discharged from the vapor discharge hole and restricts passage of foreign matter that attempts to enter the vapor discharge hole.
  • a filtration member (filter) is provided in the deaeration hole, and the fuel sucked through the deaeration hole is filtered, thereby sucking in the foreign matter into the fuel pump. It is possible to prevent it.
  • a filter is provided in the deaeration hole, it becomes a resistance when the vapor is discharged during normal operation. Therefore, the vapor cannot be discharged well, which may affect the operation of the fuel pump.
  • the present invention provides a fuel supply device capable of suppressing entry of foreign matter from a deaeration hole when a suction filter is clogged without affecting the operation of the fuel pump during normal operation. .
  • the fuel supply device is disposed in the fuel tank, sucks the fuel in the fuel tank via the suction filter, and pumps it to the internal combustion engine, and the fuel pump And a deaeration hole for discharging the vapor generated inside.
  • the fuel supply device includes a discharge pipe having one end connected to the deaeration hole, allowing the vapor discharged from the deaeration hole to flow and discharging from the discharge port of the other end.
  • the discharge port is disposed above the deaeration hole, and the other end portion of the discharge pipe is provided with a foreign matter intrusion suppression unit so as to cover the outer peripheral surface of the discharge port and the other end portion, Between the outer peripheral surface of the other end portion of the discharge pipe and the foreign matter intrusion suppressing means, a deaeration discharge path communicating with the inside of the discharge pipe through the discharge port is provided.
  • the discharge port of a discharge pipe since the discharge port of a discharge pipe is arrange
  • foreign matter intrusion suppression means is provided so as to cover the discharge port at the other end of the discharge pipe and the outer peripheral surface of the other end, the fuel is temporarily supplied from the discharge port of the discharge pipe due to clogging of the suction filter. Even if it is going to be sucked, the fuel is sucked while bypassing the foreign matter intrusion suppression means.
  • the fuel supply device of the present invention can suppress the intake of fuel mixed with foreign matters from the deaeration holes and can reliably discharge the vapor from the deaeration holes.
  • a fuel supply device includes a flange unit that supports the fuel pump and is fixed to the fuel tank.
  • the flange unit is provided on an upper wall of the fuel tank; an upper cup provided on the flange portion and covering the fuel pump; and provided on a radially outer side of the upper cup.
  • a wall portion provided.
  • the foreign matter intrusion suppression means is the flange unit, and the other end portion of the discharge pipe is disposed between the upper cup and the wall portion, and the flange portion, the upper cup, and the wall portion,
  • the deaeration / discharge passage is provided between the outer peripheral surface of the other end and the upper cup and the wall.
  • the foreign matter intrusion suppression means can be formed easily and at low cost, particularly in the upper-patch type fuel supply apparatus.
  • the fuel in the fuel supply device according to the first aspect or the second aspect of the present invention, can be filtered on the outer peripheral surface of the other end of the discharge pipe.
  • a porous member may be provided.
  • the outer peripheral surface of the other end of the discharge pipe is provided with the porous member capable of filtering the fuel, so that the suction pipe may be sucked into the discharge pipe due to clogging of the suction filter. Can be filtered. Therefore, it is possible to further suppress the entry of foreign matter.
  • the vapor discharge function of the discharge pipe of the discharge pipe is not hindered by the degassing discharge path. Therefore, the fuel supply device according to the aspect of the present invention can reliably suppress the suction of fuel mixed with foreign matters from the deaeration holes and can reliably discharge the vapor from the deaeration holes.
  • the opening area of the exhaust pipe is the opening area of the deaeration hole. It may be formed larger than.
  • the discharge pipe is discharged from the deaeration hole even when the inside of the discharge pipe is filled with fuel. Vapor can easily circulate inside the discharge pipe. Therefore, the vapor discharged from the deaeration hole can be reliably discharged to the outside through the discharge pipe.
  • the foreign matter intrusion suppressing means includes a bottom portion facing the discharge port of the other end portion, and the other end portion.
  • invasion suppression means is formed with a cylindrical member and it is set as the member different from a discharge pipe, a foreign material penetration
  • the amount of overlap between the outer peripheral surface of the other end of the discharge pipe and the peripheral wall portion of the cylindrical member can be adjusted by adjusting the height of the peripheral wall portion of the cylindrical member.
  • the length of the deaeration discharge path between the outer peripheral surface of the other end of the discharge pipe and the peripheral wall of the cylindrical member can be easily adjusted, so that fuel is discharged from the discharge pipe due to clogging of the suction filter.
  • the path ie, the degassing discharge path
  • the fuel in the fuel supply device according to the fifth aspect of the present invention, can be filtered at least in part of the bottom portion and the peripheral wall portion of the cylindrical member.
  • a porous member may be provided.
  • the porous member is provided on at least one part of the bottom portion and the peripheral wall portion of the cylindrical member, so that the fuel sucked from the discharge port of the discharge pipe due to clogging of the suction filter can be obtained. Can be filtered. Therefore, it can suppress reliably that a foreign material penetrate
  • a part of the cylindrical member is formed of a porous member, a deaeration discharge path is provided between the outer peripheral surface of the other end of the discharge pipe and the peripheral wall portion of the cylindrical member, thereby inhibiting vapor discharge. There is nothing. Therefore, the fuel supply device of the present invention can reliably prevent foreign matter from entering even when fuel is sucked into the fuel pump from the deaeration holes, and can reliably discharge the vapor from the deaeration holes.
  • the discharge port of the discharge pipe since the discharge port of the discharge pipe is disposed above the deaeration hole, the discharge port of the discharge pipe can be prevented from being immersed in the fuel in the fuel tank.
  • foreign matter intrusion suppression means is provided so as to cover the discharge port at the other end of the discharge pipe and the outer peripheral surface of the other end, the fuel is temporarily supplied from the discharge port of the discharge pipe due to clogging of the suction filter. Even if it is going to be sucked, the fuel is sucked while bypassing the foreign matter intrusion suppression means. Thereby, since the path
  • the fuel supply device of the present invention can suppress the intake of fuel mixed with foreign matters from the deaeration holes and can reliably discharge the vapor from the deaeration holes.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 3 is a cross-sectional view taken along line BB in FIG. 1.
  • FIG. 2 is a cross-sectional view taken along the line CC in FIG. 1.
  • FIG. 8 is a sectional view taken along the line DD in FIG. 7.
  • FIG. 10 is a cross-sectional view taken along line EE in FIG. 9. It is a perspective view of a cylinder member.
  • FIG. 10 is a sectional view taken along line FF in FIG. 9. It is a perspective view of the fuel supply apparatus which concerns on the modification of 2nd embodiment. It is sectional drawing along the GG line of FIG.
  • the fuel supply apparatus of 1st embodiment is demonstrated with reference to drawings.
  • the upper and lower portions correspond to the upper and lower portions in the vertical direction, and the relative position in the axial direction of the fuel pump may also be referred to as the upper and lower portions.
  • FIG. 1 is a perspective view of a fuel supply device 1 according to the first embodiment.
  • FIG. 2 is a sectional view taken along line AA in FIG.
  • FIG. 3 is a sectional view taken along line BB in FIG.
  • the fuel supply device 1 of the first embodiment is a so-called top-up type fuel supply device 1, and as shown in FIG. 2, an opening 2 a formed in the upper wall 2 b of the fuel tank 2. Is attached to the upper wall 2b of the fuel tank 2 and immersed in the fuel.
  • the fuel supply device 1 includes a fuel pump 3 disposed in the fuel tank 2, a holder portion 4 that is attached to the upper wall 2 b of the fuel tank 2 and supports the fuel pump 3, and a suction side of the fuel pump 3, that is, a lower side.
  • a suction filter 90 disposed on the side and a discharge pipe 60 (see FIG. 3) communicating with the deaeration hole 27 (see FIG. 3) for discharging the vapor in the fuel pump 3 are provided. Below, each component of the fuel supply apparatus 1 is demonstrated.
  • the fuel pump 3 is formed in a substantially cylindrical shape, and includes a motor unit 30 disposed on the upper side of the fuel pump 3 and a pump unit 40 disposed on the lower side of the fuel pump 3.
  • the center axis of the fuel pump 3 will be described as the center axis O.
  • the direction along the central axis O of the fuel pump 3 may be simply referred to as an axial direction
  • the circumferential direction of the fuel pump 3 may be simply referred to as a circumferential direction.
  • a DC motor 30a with a brush (not shown) is used.
  • An output shaft 30b is disposed at the center of the motor unit 30, and is rotatably supported by the upper side of the motor unit 30 and the lower side of the pump unit 40.
  • a pair of motor terminals (not shown) electrically connected to the brush are provided on the upper side of the motor unit 30.
  • a harness 6 is connected to the pair of motor terminals, and an external power source and the motor unit 30 are electrically connected by the harness 6, and power for driving the DC motor 30 a is supplied from the external power source.
  • an outlet cover 8 is provided on the upper side of the motor unit 30.
  • the outlet cover 8 is provided with a discharge port 31 that discharges fuel and a check valve 74 that communicates with the discharge port 31.
  • the discharge port 31 is a part from which fuel pumped up by the fuel pump 3 is discharged.
  • the check valve 74 is for preventing the backflow of the fuel discharged from the discharge port 31.
  • a step portion 30 c for caulking a housing case 20 described later is formed on the outer periphery of the lower portion of the outlet cover 8.
  • the pump unit 40 is a non-volumetric pump having an impeller 47, and includes an impeller 47 and a pump case 45 formed so as to cover the entire impeller 47.
  • the impeller 47 is a member formed in a substantially disk shape made of, for example, resin, and is connected to the output shaft 30b of the motor unit 30 so as not to be relatively rotatable.
  • On the upper and lower surfaces of the impeller 47 a plurality of blade portions (not shown) are formed on the outer peripheral side. A space between the plurality of blade portions is formed so as to penetrate in the thickness direction of the impeller 47.
  • the impeller 47 is formed with a fuel passage hole (not shown) penetrating in the thickness direction.
  • the pump case 45 that covers the entire impeller 47 includes a lower case 42, an upper case 43, and a middle case 44 that is sandwiched between the lower case 42 and the upper case 43.
  • the lower case 42, the upper case 43, and the middle case 44 are all made of a resin having oil resistance, and are formed by, for example, injection molding using a mold.
  • the lower case 42 is formed in a substantially disc shape so as to cover the lower part of the impeller 47.
  • a substantially C-shaped groove (not shown) is formed in an axial plan view.
  • a fuel flow path hole (not shown) penetrating in the thickness direction of the lower case 42 is formed at one end on the radially outer side of the groove portion.
  • a fuel suction pipe 41 is provided at the lower part of the lower case 42.
  • the fuel suction pipe 41 communicates with a fuel passage hole (not shown) formed in the lower case 42, and thereby the fuel is pumped from the fuel suction pipe 41 into the pump unit 40.
  • the fuel suction pipe 41 is formed so as to communicate with a fuel flow path hole (not shown) formed at a portion corresponding to one end of a C-shaped groove (not shown) formed on the impeller 47.
  • the lower case 42 is arranged near the outer periphery. On the outer periphery of the lower portion of the lower case 42, a step 42a to which a rubber square ring 46 can be attached is formed.
  • the lower case 42 is formed with a through hole (not shown) that penetrates in the thickness direction (vertical direction) of the lower case 42.
  • the through hole communicates with a deaeration hole 27 that penetrates a bottom wall 25b of the lower cup 25 described later. Thereby, the vapor generated in the pump unit 40 can be discharged to the outside of the pump unit 40 through the through hole of the lower case 42 and the deaeration hole 27 of the lower cup 25.
  • the upper case 43 is a substantially disk-shaped member having substantially the same outer diameter as the motor unit 30.
  • An insertion hole 43a is formed substantially at the center of the upper case 43, and the output shaft 30b of the DC motor 30a is inserted therethrough.
  • a fuel flow path hole (not shown) that penetrates the lower surface and the upper surface of the upper case 43 is formed on the outer peripheral side of the insertion hole 43a. The fuel passage hole communicates with the motor unit 30 and the fuel pumped from the impeller 47 passes through.
  • the middle case 44 is a substantially ring-shaped member having substantially the same outer diameter as the motor unit 30.
  • the impeller 47 is arranged inside the middle case 44 so that the central axis of the middle case 44 and the central axis of the impeller 47 coincide.
  • the inner diameter of the middle case 44 is formed to be slightly larger than the outer diameter of the impeller 47, and the clearance between the inner surface 44a of the middle case 44 (that is, the inner surface 44a of the pump case 45) and the outer peripheral surface of the impeller 47 is formed. Is formed.
  • the middle case 44 is disposed between the upper case 43 and the lower case 42.
  • the thickness of the middle case 44 in the axial direction is formed to be substantially the same as the impeller 47 described above or slightly thicker than the impeller 47. That is, the middle case 44 serves as a spacer that prevents contact between the upper surface of the impeller 47 and the lower surface of the upper case 43 and between the lower surface of the impeller 47 and the upper surface of the lower case 42.
  • a clearance is formed between the upper surface of the impeller 47 and the lower surface of the upper case 43, and between the lower surface of the impeller 47 and the upper surface of the lower case 42.
  • the efficiency of the fuel pump 3 depends on each clearance formed between the pump case 45 and the impeller 47. Each clearance is set to a predetermined value according to the required efficiency of the fuel pump 3.
  • the motor unit 30 and the pump unit 40 are covered with the housing case 20.
  • the housing case 20 is a substantially cylindrical member made of iron or the like, and is formed by cutting a seamless tube, for example.
  • the upper end portion of the housing case 20 is a crimping portion 22 and is crimped to a step portion 30 c formed in the motor portion 30.
  • a flange portion 21 is bent and extended toward the inside in the radial direction at the lower end portion of the housing case 20.
  • the diameter of the inner peripheral edge of the collar portion 21 is set to be slightly larger than the outer periphery of the step portion 42 a formed in the lower case 42.
  • the square ring 46 is slightly crushed and held between the bottom surface of the stepped portion 42 a and the flange portion 21 of the housing case 20. Thereby, the sealing performance between the housing case 20 and the pump part 40 is ensured.
  • the fuel pump 3 configured as described above is supported by the holder portion 4.
  • the holder part 4 is attached to the upper cup 10, a flange unit 9 fixed to the upper wall 2 b of the fuel tank 2, an upper cup 10 provided inside the fuel tank 2 of the flange unit 9 and containing the fuel pump 3. And a bottomed cylindrical cup 25 that supports the fuel pump 3 while covering the lower portion of the fuel pump 3.
  • the flange unit 9 has a substantially disk-shaped flange portion 11 made of resin.
  • an annular wall portion 13 (corresponding to a “wall portion” in the claims) is erected downward at a portion corresponding to the opening 2 a of the fuel tank 2.
  • the annular wall portion 13 is inserted from the outside (upper side) into the opening 2 a formed in the upper wall 2 b of the fuel tank 2, and the position of the outer peripheral surface of the annular wall portion 13 and the opening 2 a of the fuel tank 2 is determined. It is attached to the upper wall 2b in a combined state. Thereby, the upper surface of the flange unit 9 is exposed to the outside of the fuel tank 2.
  • the flange unit 9 is provided with a fuel extraction pipe 12 communicating with the discharge port 31 of the fuel pump 3. That is, the fuel is pumped from the discharge port 31 to the internal combustion engine via the fuel take-out pipe 12. Further, the flange unit 9 is provided with a pressure regulator 76 communicating with the fuel take-out pipe 12, and a predetermined fuel pressure can be secured for the fuel pressure-fed to the internal combustion engine.
  • a connector 9 a is provided on the upper surface of the flange unit 9. An external connector connected to an external power source is fitted into the connector 9a. Further, the connector 9a is electrically connected to the motor unit 30 of the fuel pump 3, whereby the motor unit 30 is driven. Further, on the inner surface side of the flange portion 11, a recess 14 is formed inside the annular wall portion 13, and the upper cup 10 is fixed to the recess 14. In addition, in the recessed part 14 between the annular wall part 13 and the upper cup 10, the other end part 60b (all refer FIG. 3) of the discharge pipe 60 mentioned later is arrange
  • the upper cup 10 is a cylindrical member formed of, for example, resin, and is provided so as to cover the outer peripheral surface of the fuel pump 3.
  • An opening 10a is provided at the lower end of the upper cup 10, and the fuel pump 3 can be inserted into the opening 10a from below.
  • the peripheral wall 10 b of the upper cup 10 extends from the flange unit 9 to the substantially axial center of the fuel pump 3.
  • the upper cup 10 is formed with engagement pieces 17 extending in the axial direction downward from the periphery of the opening 10a at equal intervals in four circumferential directions.
  • the engagement piece 17 is formed so as to be elastically deformable in the direction in which the tip expands.
  • the engagement piece 17 extends slightly below the pump portion 40 of the fuel pump 3 (both see FIG. 2).
  • the engagement piece 17 is formed with an engagement hole 19 that engages with an engagement protrusion 18 formed in the lower cup 25. And the engagement piece 17 snap-fits to the below-mentioned lower cup 25, and the axial direction and the circumferential direction positioning of the lower cup 25 are performed.
  • the lower cup 25 disposed on the suction side of the fuel pump 3 is formed in a substantially bottomed cylindrical shape.
  • the peripheral wall 25a of the lower cup 25 is set such that the inner diameter can fit the fuel pump 3 and the outer diameter is slightly smaller than the inner diameter of the peripheral wall 10b of the upper cup 10.
  • an engagement convex portion 18 that can be engaged with the engagement hole 19 is formed at a position corresponding to the engagement hole 19 of the engagement piece 17 formed on the upper cup 10.
  • the upper cup 10 and the lower cup 25 are integrated by snap-fitting the engagement piece 17 of the upper cup 10 to the engagement protrusion 18.
  • the fuel cup 3 (see FIG. 2) can be supported by the upper cup 10 and the lower cup 25.
  • a liquid level detector mounting portion 26 (not shown) is formed below the lower cup 25 and radially outside.
  • the attachment portion 26 is formed in a plate shape that extends outward in the radial direction, and is formed by injection at the same time when the lower cup 25 is formed.
  • a suction filter 90 is attached to the lower side of the lower cup 25.
  • the material of the suction filter 90 may be any material as long as the fuel can be filtered to the required cleanliness.
  • a net-like, fiber-like, porous, or granular filter that can filter dust having a size that adversely affects the operation of the fuel injection valve or the like, such as bearing wear powder, can be employed.
  • a mesh-like nylon cloth can be used as a material of the suction filter 90.
  • the suction filter 90 communicates with the fuel suction pipe 41 via the filter discharge pipe 38.
  • the fuel in the fuel tank 2 is introduced into the fuel intake pipe 41 of the pump unit 40 via the suction filter 90 and the filter discharge pipe 38. Then, the fuel passes through the inside of the pump case 45 and is pumped to the upper side of the motor unit 30, and is conveyed to the internal combustion engine (not shown) through the fuel extraction pipe 12.
  • a deaeration hole 27 penetrating the bottom wall 25 b of the lower cup 25 in the thickness direction is formed in the bottom wall 25 b of the lower cup 25.
  • the deaeration holes 27 discharge vapor generated in the fuel pump 3 to the outside of the pump unit 40.
  • the deaeration hole 27 has a substantially circular cross-sectional shape (that is, the opening shape of the deaeration hole 27) perpendicular to the central axis O.
  • the fuel supply device 1 includes a discharge pipe 60.
  • the discharge pipe 60 is connected to the deaeration hole 27 at one end portion 60a disposed below, and is discharged from the discharge port 61 of the other end portion 60b disposed above by allowing the vapor discharged from the deaeration hole 27 to flow therethrough. It is configured to be possible.
  • the discharge pipe 60 is formed by a discharge pipe main body 62 and a cap filter 63.
  • the discharge pipe main body 62 is formed in a substantially L shape in a cross-sectional view including the central axis O over the bottom wall 25b and the peripheral wall 25a of the lower cup 25.
  • the discharge pipe main body 62 is formed integrally with the lower cup 25.
  • a region below the lower end of the peripheral wall 10 b of the upper cup 10 is provided in close contact with the bottom wall 25 b and the peripheral wall 25 a of the lower cup 25.
  • the region corresponding to the peripheral wall 10 b of the upper cup 10 is provided away from the outer peripheral surface of the fuel pump 3 by a distance equal to or greater than the thickness of the peripheral wall 10 b of the upper cup 10. .
  • the peripheral wall 10 b of the upper cup 10 is disposed between the outer peripheral surface of the fuel pump 3 and the discharge pipe main body 62. Therefore, the fuel pump 3 can be held by reliably engaging the upper cup 10 and the lower cup 25 without interference between the peripheral wall 10b of the upper cup 10 and the discharge pipe main body 62.
  • FIG. 4 is a cross-sectional view taken along the line CC of FIG.
  • the discharge pipe main body 62 is formed wide in the circumferential direction.
  • the cross-sectional shape orthogonal to the central axis O of the discharge pipe main body 62 (that is, the opening shape of the discharge pipe main body 62) is formed in a substantially fan shape.
  • the opening area of the discharge pipe main body 62 is set to be sufficiently larger than the opening area of the deaeration hole 27 having a substantially circular opening shape. Thereby, even if the inside of the discharge pipe 60 is filled with fuel, the vapor discharged from the deaeration hole 27 can easily flow through the inside of the discharge pipe 60.
  • a cylindrical portion 62 a is provided above the discharge pipe main body portion 62.
  • a cap filter 63 is fitted on the cylindrical portion 62a.
  • FIG. 5 is a perspective view of the cap filter 63.
  • the cap filter 63 is provided with a window portion 63d by removing a part of the outer peripheral surface 63c of a cylindrical body formed of resin or the like in the radial direction, and a fuel such as a mesh-like nylon cloth is filtered into the window portion 63d. It is formed by providing a possible porous member 63e.
  • the opening area when the cap filter 63 is viewed from the axial direction is set to be sufficiently larger than the opening area of the deaeration hole 27.
  • the upper end portion 63 a of the cap filter 63 corresponds to the other end portion 60 b of the discharge pipe 60. Further, the opening of the upper end portion 63 a of the cap filter 63 corresponds to the discharge port 61 of the discharge pipe 60.
  • the inner diameter of the cap filter 63 is set to be slightly smaller than the outer diameter of the cylindrical portion 62 a of the discharge pipe main body portion 62.
  • the lower end portion 63 b of the cap filter 63 is externally fitted to the cylindrical portion 62 a of the discharge pipe main body portion 62, and the cap filter 63 can be fixed to the cylindrical portion 62 a of the discharge pipe main body portion 62.
  • the other end 60 b of the discharge pipe 60 (in this embodiment, the upper end 63 a of the cap filter 63) is disposed in the recess 14 between the upper cup 10 and the annular wall 13.
  • the other end 60 b of the discharge pipe 60 is covered with the flange portion 11, the upper cup 10, and the annular wall portion 13, and the discharge port 61 is disposed above the deaeration hole 27 and in the vicinity of the flange portion 11.
  • the flange unit 9 covers the discharge port 61 of the discharge pipe 60 with the flange portion 11, the upper cup 10, and the annular wall portion 13, thereby suppressing foreign matter in the fuel from entering the fuel pump 3.
  • Foreign matter intrusion suppression means 65 is formed. The operation of the foreign substance intrusion suppression means 65 will be described later.
  • a gap is formed between the outer peripheral surface of the other end portion 60 b of the discharge pipe 60 and the upper cup 10 and the annular wall portion 13. This gap constitutes a deaeration discharge path 64 that communicates with the inside of the discharge pipe 60 through the discharge port 61 of the discharge pipe 60. Therefore, the vapor discharged from the deaeration hole 27 can be discharged to the outside of the fuel supply device 1 through the discharge pipe 60, the discharge port 61 and the deaeration discharge path 64.
  • FIG. 6 is an explanatory diagram of the deaeration discharge path 64.
  • 6 indicates the fuel level S1 when the fuel is sufficiently filled (or a state close to this), and the two-dot chain line in FIG. 6 indicates that a predetermined amount of fuel is consumed.
  • the liquid level S2 of the fuel when it is below the lower end edge of the annular wall 13 is shown.
  • an arrow V in FIG. 6 indicates the flow of vapor
  • an arrow F indicates the flow of fuel at the time of the fuel level S1.
  • the vapor in the pump unit 40 (see FIG. 3) is discharged from the deaeration hole 27 together with the pressurized fuel. As shown in FIG. 6, the vapor discharged from the deaeration hole 27 (see FIG.
  • the suction filter 90 is clogged during operation of the fuel supply device 1, the fuel supply device 1 is removed from the discharge port 61 of the other end 60 b of the discharge pipe 60. A suction force acts toward the inside of the fuel pump 3 through the pores 27.
  • the deaeration holes are provided on the lower surface of the fuel pump. Therefore, the deaeration hole of the conventional fuel supply apparatus has been long immersed in the fuel in the fuel tank. For this reason, the foreign matter in the fuel may be sucked together with the fuel into the fuel pump through the deaeration hole without being filtered by the suction filter.
  • the discharge port 61 of the discharge pipe 60 is located above the deaeration hole 27 and is disposed in the vicinity of the flange portion 11. Therefore, the outlet 61 of the fuel supply device 1 of the present embodiment is suppressed from being immersed in the fuel in the fuel tank 2.
  • foreign matter in the fuel tends to settle below the fuel tank 2 due to gravity, and there are relatively few foreign matters in the vicinity of the discharge port 61 of the discharge pipe 60. Therefore, the foreign matter in the fuel is prevented from being sucked into the fuel pump 3 through the discharge port 61 of the discharge pipe 60 disposed above.
  • the fuel tank 2 when the fuel tank 2 is sufficiently filled with fuel (the state of the liquid level S1 in FIG. 6) and the suction filter 90 is clogged, the fuel is sucked. Is done. However, since the discharge port 61 of the discharge pipe 60 is covered with the flange portion 11, the upper cup 10, and the annular wall portion 13, the fuel bypasses the flange portion 11, the upper cup 10, and the annular wall portion 13. Then, the air is sucked through the porous member 63e provided in the cap filter 63 (see arrow F in FIG. 6).
  • the path through which the fuel is sucked from the discharge port 61 of the discharge pipe 60 becomes longer, and the fuel is filtered by the porous member 63e, so that intrusion of foreign matter in the fuel is suppressed. That is, the flange unit 9 covers the discharge port 61 of the discharge pipe 60 with the flange portion 11, the upper cup 10, and the annular wall portion 13, thereby suppressing foreign matters in the fuel from entering the fuel pump 3. Intrusion suppression means 65 is formed.
  • the path through which the fuel is sucked from the discharge port 61 of the discharge pipe 60 becomes long, and the fuel is filtered by the porous member 63e, so that intrusion of foreign matter in the fuel can be suppressed.
  • the foreign matter in the fuel in the fuel tank 2 tends to settle downward, and there are relatively few foreign matters in the vicinity of the discharge port 61 of the discharge pipe 60. Therefore, even if the fuel pump 3 tries to suck the fuel from the discharge port 61 of the discharge pipe 60 due to the clogging of the suction filter 90, it is possible to further suppress the entry of foreign matter in the fuel.
  • the deaeration / discharge path 64 communicating with the inside of the discharge pipe 60 is provided between the outer peripheral surface of the other end 60b of the discharge pipe 60 and the foreign matter intrusion suppressing means 65, the suction filter 90 is clogged.
  • the foreign matter intrusion suppressing means 65 can discharge the vapor well without causing resistance, and the fuel pump 3 is not disturbed. Therefore, the fuel supply device 1 of the present embodiment can suppress the intake of fuel mixed with foreign matters from the deaeration holes 27 and can reliably discharge the vapor from the deaeration holes 27.
  • the foreign matter intrusion suppressing means 65 since the flange unit 9 of the so-called top-fitting type fuel supply device 1 attached to the upper wall 2b of the fuel tank 2 is used as the foreign matter intrusion suppressing means 65, it is not necessary to provide the foreign matter intrusion suppressing means 65 as a separate part. Accordingly, the foreign matter intrusion suppression means 65 can be formed easily and at low cost, particularly in the upper-fitting type fuel supply apparatus 1.
  • the porous member 63e is provided on a part of the outer peripheral surface of the other end 60b of the discharge pipe 60, a part of the fuel sucked into the discharge pipe 60 due to clogging of the suction filter 90 is filtered. it can. Therefore, it is possible to further suppress the entry of foreign matter. Moreover, the vapor discharge function of the vapor outlet 61 of the discharge pipe 60 is not hindered by the porous member 63e. Therefore, the fuel supply device 1 according to the present embodiment can reliably prevent foreign matter from entering even when the fuel is sucked into the fuel pump 3 from the deaeration hole 27, and can ensure the vapor from the deaeration hole 27. Can be discharged.
  • the opening area of the discharge pipe 60 is formed larger than the opening area of the deaeration hole 27, the discharge pipe 60 is discharged from the deaeration hole 27 even when the inside of the discharge pipe 60 is filled with fuel.
  • the vapor can easily flow through the inside of the discharge pipe 60. Therefore, the vapor discharged from the deaeration hole 27 can be reliably discharged to the outside through the discharge pipe 60.
  • FIG. 7 is a perspective view of a discharge pipe 60 according to a modification of the first embodiment
  • FIG. 8 is a cross-sectional view taken along the line DD of FIG. 7 and 8, only the discharge pipe 60 is shown for easy understanding, and other components are not shown as appropriate.
  • the deaeration hole 27 is illustrated by a two-dot chain line.
  • the discharge pipe 60 which concerns on 1st embodiment, the discharge pipe main-body part 62 was formed wide in the circumferential direction (refer FIG. 4).
  • the discharge pipe 60 according to the modified example of the first embodiment is different from the first embodiment in that the discharge pipe main body 62 is formed in a cylindrical shape. Yes. Detailed description of the same components as those in the first embodiment will be omitted, and only different portions will be described.
  • the discharge pipe 60 according to the modified example of the first embodiment has an appearance that is substantially L-shaped.
  • the opening area of the one end 60 a of the discharge pipe 60 is set to be larger than the opening area of the deaeration hole 27.
  • the opening area of the discharge pipe main body 62 is set to be sufficiently larger than the opening area of the one end portion 60 a of the discharge pipe 60.
  • FIG. 9 is a perspective view of the fuel supply device 100 of the second embodiment. Then, the fuel supply apparatus 100 of 2nd embodiment is demonstrated.
  • the fuel supply device 1 according to the first embodiment is a so-called upper attachment type fuel supply device 1 attached to the upper wall 2 b of the fuel tank 2, and the foreign substance intrusion suppression means 65 is formed by the flange unit 9.
  • the fuel supply device 100 according to the second embodiment is a so-called underwear type fuel supply device 100 that is attached to the lower wall (not shown) of the fuel tank, and the foreign material intrusion suppression means by the cylindrical member 163. This is different from the first embodiment in that 165 is formed. Detailed description of the same components as those in the first embodiment will be omitted, and only different portions will be described.
  • the fuel supply device 100 shown in FIG. 9 discharges the fuel in the fuel pump 3 disposed in the fuel tank, the holder 4 attached to the lower wall of the fuel tank and supporting the fuel pump 3, and the vapor in the fuel pump 3. And a discharge pipe 160 that communicates with the deaeration hole 27. Below, each component of the fuel supply apparatus 100 is demonstrated.
  • the fuel pump 3 is formed in a substantially cylindrical shape, and includes a motor unit 30 disposed on the upper side of the fuel pump 3 and a pump unit 40 disposed on the lower side of the fuel pump 3.
  • the fuel pump 3 is supported by the holder part 4.
  • the holder part 4 is attached to the lower cup 125, the flange unit 9 fixed to the lower wall of the fuel tank, the lower cup 125 provided inside the fuel tank of the flange unit 9 and supporting the lower part of the fuel pump 3.
  • the upper cup 110 covers the pump 3 from above.
  • annular wall portion 13 is erected upward at a portion corresponding to an opening (not shown) in the lower wall of the fuel tank.
  • the flange portion 11 is a state in which the annular wall portion 13 is inserted from the outside (lower side) into the opening formed in the lower wall of the fuel tank, and the outer peripheral surface of the annular wall portion 13 and the opening of the fuel tank are aligned. It is attached to the lower wall of the fuel tank. Accordingly, the lower surface of the flange unit 9 is exposed to the outside of the fuel tank.
  • the flange unit 9 is provided with a fuel extraction pipe 12 that communicates with a discharge port 31 provided on the upper side of the fuel pump 3, and is pumped to the internal combustion engine via the fuel extraction pipe 12. Further, a pressure regulator 76 communicating with the fuel take-out pipe 12 is provided on the upper side of the discharge port 31 of the fuel pump 3, and a predetermined fuel pressure can be secured for the fuel pressure-fed to the internal combustion engine.
  • a connector 9 a is provided on the lower surface of the flange unit 9 and is electrically connected to the motor unit 30 of the fuel pump 3 to drive the motor unit 30.
  • a suction filter 90 is accommodated in the flange unit 9.
  • a fuel suction pipe 41 of the pump unit 40 is connected to the suction filter 90.
  • the fuel in the fuel tank is filtered through the suction filter 90 and then pumped up by the pump unit 40.
  • the lower cup 125 is a cylindrical member formed of, for example, resin, and is provided so as to cover the outer peripheral surface of the lower portion of the fuel pump 3.
  • An opening 125a is provided at the upper end of the lower cup 125, and the fuel pump 3 can be inserted into the opening 125a from above.
  • the upper cup 110 is disposed so as to cover the fuel pump 3 from above, and is formed in a substantially bottomed cylindrical shape.
  • a mounting portion 26 of a liquid level detector (not shown) is formed on the upper side of the upper cup 110 and outside in the radial direction.
  • a diameter-enlarged portion 111 that is enlarged by a step 111a is formed.
  • an engagement claw (not shown) is provided on the outer peripheral surface of the enlarged diameter portion 111 and can be engaged with the lower cup 125.
  • the step 111a of the enlarged diameter portion 111 is provided with a through hole 111b penetrating in the vertical direction.
  • a later-described discharge pipe 160 is inserted into the through hole 111b.
  • a ring-shaped regulating member 135 is fitted on the outer peripheral side of the enlarged diameter portion 111 of the upper cup 110.
  • the restricting member 135 restricts the radially outward displacement of the engaging portion between the upper cup 110 and the lower cup 125. Thereby, the engagement between the upper cup 110 and the lower cup 125 is suppressed from being released.
  • the fuel supply device 100 includes a discharge pipe 160.
  • the discharge pipe 160 is a pipe-like member formed of, for example, a metal such as iron, and is bent and formed, for example, in a substantially L shape in a side view.
  • the discharge pipe 160 is formed separately from the upper cup 110.
  • the discharge pipe 160 has one end 160a disposed at the lower side connected to the deaeration hole 27 below the pump unit 40, and the other end disposed above by allowing the vapor discharged from the deaeration hole 27 to flow therethrough. It is comprised so that discharge is possible from the discharge port 161 (refer FIG. 10) of the part 160b.
  • the discharge pipe main body 162 extends upward along the central axis O.
  • the cross-sectional shape orthogonal to the central axis O of the discharge pipe main body 162 is formed in a substantially circular shape, for example.
  • the opening area of the discharge pipe main body 162 is set to be sufficiently larger than the opening area of the deaeration hole 27 as in the first embodiment.
  • (Foreign matter intrusion suppression means) 10 is a cross-sectional view taken along line EE of FIG.
  • the arrow V in FIG. 10 has shown distribution
  • the arrow F has shown distribution
  • a cylindrical member 163 that is a foreign matter intrusion suppressing unit 165 is provided at the other end 160 b of the discharge pipe 160 so as to cover the discharge port 161.
  • the cylindrical member 163 is a member having a substantially hat shape in a side cross-sectional view formed of, for example, metal or the like, and has a bottom 163a facing the discharge port 161 of the other end 160b of the discharge pipe 160 and the other end 160b of the discharge pipe 160.
  • FIG. 11 is a perspective view of the tubular member 163.
  • the cylindrical member 163 is provided with a window portion 163d by partially removing the peripheral wall portion 163c in the radial direction, and a porous member 163e such as a mesh-like nylon cloth that closes the window portion 163d.
  • the inner diameter of the cylindrical member 163 is set to be sufficiently larger than the outer diameter of the discharge pipe 160.
  • a gap is formed between the outer peripheral surface of the other end 160 b of the discharge pipe 160 and the peripheral wall 163 c of the cylindrical member 163, and the deaeration discharge path 164 is provided.
  • FIG. 12 is a cross-sectional view taken along line FF in FIG.
  • a fitting portion 163 f that protrudes radially inward is formed in the opening of the lower end portion 163 b of the cylindrical member 163.
  • the fitting portions 163f are formed at, for example, three locations at a pitch of approximately 120 ° in the circumferential direction of the cylindrical member 163.
  • the dimension from the center of the cylindrical member 163 to each fitting portion 163f is set to be smaller than the radius of the outer peripheral surface of the discharge pipe 160.
  • the lower end part 163b of the cylinder member 163 is externally fitted to the outer peripheral surface of the other end part 160b of the discharge pipe 160 by each fitting part 163f.
  • a deaeration / discharge passage 164 is formed between the fitting portions 163f.
  • Each deaeration discharge path 164 communicates directly with the inside of the discharge pipe 160 via a discharge port 161 (see FIG. 10).
  • the height of the peripheral wall portion 163c of the cylindrical member 163 (that is, the length in the vertical direction of the peripheral wall portion 163c in FIG. 10) is appropriately set according to the required degree of foreign substance intrusion suppression. Is done. Specifically, by adjusting the height of the peripheral wall portion 163c, the overlap amount ⁇ between the outer peripheral surface of the other end portion 160b of the discharge pipe 160 and the peripheral wall portion 163c of the cylindrical member 163 is adjusted, and the discharge pipe 160 is adjusted. The length of the deaeration / discharge passage 164 between the outer peripheral surface of the other end 160b and the peripheral wall 163c of the cylindrical member 163 can be adjusted.
  • the length of the deaeration / discharge passage 164 is increased by increasing the height of the peripheral wall portion 163c and increasing the overlap amount ⁇ between the outer peripheral surface of the other end portion 160b of the discharge pipe 160 and the peripheral wall portion 163c of the cylindrical member 163. It is possible to suppress the intrusion of foreign matters by lengthening the length.
  • This overlap amount ⁇ is appropriately set according to the balance of the vapor discharge function and the foreign matter intrusion suppression function by the deaeration discharge path 164.
  • each deaeration / discharge passage 164 communicates directly with the inside of the discharge pipe 160 via the discharge port 161, so that the cylinder member 163, which is the foreign substance intrusion suppressing means 165, and the peripheral wall portion 163 c of the cylinder member 163 are connected.
  • the provided porous member 163e or the like does not become a resistance. Therefore, the vapor is discharged well outside the fuel supply device 100 (see FIG. 9).
  • the fuel supply device 100 will discharge the discharge port 161 (see FIG. 9) of the other end 160 b of the discharge pipe 160. 10), the fuel pump 3 tries to be sucked through the deaeration hole 27.
  • the discharge port 161 of the discharge pipe 160 is disposed above the deaeration hole 27 and above the pressure regulator 76 at the bottom of the upper cup 110. Accordingly, the outlet 161 of the fuel supply device 100 of the second embodiment is suppressed from being immersed in the fuel in the fuel tank, as in the first embodiment. Further, foreign matters in the fuel tend to settle below the fuel tank due to gravity. Therefore, foreign matter in the fuel is suppressed from being sucked into the fuel pump 3 through the discharge port 161 of the discharge pipe 160.
  • the other end 160b of the discharge pipe 160 is immersed in the fuel in a state where the fuel in the fuel tank is sufficiently filled, and the suction filter 90 is clogged. If so, the fuel is sucked from the discharge port 161 of the discharge pipe 160.
  • the discharge port 161 of the discharge pipe 160 is covered with the bottom portion 163 a and the peripheral wall portion 163 c of the cylindrical member 163 that is the foreign matter intrusion suppressing means 165. The air is sucked through the deaeration discharge paths 164 while bypassing the 163a and the peripheral wall part 163c.
  • a porous member 163 e is provided on a part of the peripheral wall portion 163 c of the cylindrical member 163. Therefore, a part of the fuel sucked into the discharge pipe 160 is filtered by the porous member 163e.
  • the foreign substance intrusion suppression means 165 is formed by the cylindrical member 163 and is a separate member from the discharge pipe 160, the foreign substance intrusion suppression means 165 can be easily formed. Further, by adjusting the height of the peripheral wall portion 163c of the cylindrical member 163, the overlap amount ⁇ between the outer peripheral surface of the other end portion 160b of the discharge pipe 160 and the peripheral wall portion 163c of the cylindrical member 163 can be adjusted.
  • the length of the deaeration / discharge passage 164 between the outer peripheral surface of the other end 160b of the discharge pipe 160 and the peripheral wall 163c of the cylindrical member 163 can be easily adjusted, which is caused by clogging of the suction filter 90.
  • the path (that is, the deaeration discharge path 164) when the fuel is sucked from the discharge port 161 of the discharge pipe 160 can be set to a desired length. Therefore, the vapor discharge function and the foreign substance intrusion suppression function by the deaeration discharge path 164 can be set to a desired balance.
  • the porous member 163e is provided on a part of the peripheral wall portion 163c of the cylindrical member 163, the fuel sucked from the discharge port 161 of the discharge pipe 160 due to clogging of the suction filter 90 can be filtered. Therefore, it can suppress reliably that a foreign material penetrate
  • the porous member 163e is provided in a part of the cylindrical member 163 and the deaeration discharge path 164 is provided between the outer peripheral surface of the other end 160b of the discharge pipe 160 and the peripheral wall portion 163c of the cylindrical member 163, the porous member 163e is porous. The member 163e does not hinder the vapor discharging function.
  • the fuel supply device 100 can reliably suppress the intrusion of foreign matter even when the fuel is sucked into the fuel pump 3 from the deaeration hole 27, and can remove the vapor from the deaeration hole 27. Can be discharged reliably.
  • FIG. 13 is a perspective view of a fuel supply device 100 according to a modification of the second embodiment.
  • the fuel supply device 1 according to the first embodiment is a so-called top-up type fuel supply device 1, and foreign matter intrusion suppression means 65 formed by the flange unit 9 is formed outside the upper cup 10 (FIG. 6). reference.
  • the fuel supply device 100 according to the second embodiment is a so-called underpure type fuel supply device 100, and a cylindrical member 163, which is a foreign matter intrusion suppressing means 165, is formed outside the upper cup 110 (see FIG. 9). )
  • FIG. 9 On the other hand, as shown in FIG.
  • the fuel supply apparatus 200 according to the modification of the second embodiment is provided with the discharge pipe 260 and the cap filter 263 in the upper cup 210, and the foreign matter intrusion suppression means 265. Is different from the first and second embodiments in that is formed inside the upper cup 210. Detailed description of the same components as those in the first embodiment and the second embodiment will be omitted, and only different portions will be described.
  • the discharge pipe 260 is connected to the deaeration hole 27 below the pump unit 40 and extends upward along the central axis O.
  • a cap filter 263 is fitted on the tip of the discharge pipe 260. Since the cap filter 263 is the same as the cap filter 63 (see FIG. 5) according to the first embodiment, the description thereof is omitted.
  • FIG. 14 is a cross-sectional view taken along the line GG in FIG. 14 indicates the fuel level S1 when the fuel is sufficiently filled (or a state close to this), and the two-dot chain line in FIG. 14 indicates that a predetermined amount of fuel is consumed.
  • the liquid level S2 of the fuel is shown.
  • an arrow V in FIG. 14 indicates the vapor distribution
  • an arrow F indicates the fuel distribution when the tank is full.
  • the upper cup 210 includes a cylindrical portion 212 that covers the tip of the discharge pipe 260 and the cap filter 263 from the outside.
  • a stepped portion 215 is provided inside the tubular portion 212.
  • the lower end surface 215a of the stepped portion 215 is disposed below the porous member 263e of the cap filter 263, for example.
  • the inner diameter of the cylindrical portion 212 is set to be sufficiently larger than the outer diameters of the discharge pipe 260 and the cap filter 263. Thereby, a gap is formed between the outer peripheral surface of the discharge pipe 260 and the cap filter 263 and the inner peripheral surface of the cylindrical portion 212, and a deaeration discharge path 264 is provided.
  • the cylindrical portion 212 of the upper cup 210 covers the discharge port 261 of the discharge pipe 260 to form a foreign matter intrusion suppressing means 265 that suppresses foreign matters in the fuel from entering the fuel pump 3 (see FIG. 13). is doing.
  • the vapor in the pump unit 40 (see FIG. 13) is discharged from the deaeration hole 27 (see FIG. 13) together with the pressurized fuel.
  • the vapor discharged from the deaeration hole 27 passes through the deaeration discharge path 264 between the outer peripheral surface of the upper end portion of the discharge pipe 260 and the outer peripheral surface of the cap filter 263 and the inner peripheral surface of the cylindrical portion 212. It is discharged to the outside of the fuel supply device 200 through the cup 210.
  • the fuel supply device 200 discharges from the discharge port 261 at the other end of the discharge pipe 260 (FIG. 14).
  • the suction force acts on the inside of the fuel pump 3 through the deaeration hole 27 from the reference).
  • the fuel tank is sufficiently filled with fuel (the state of the liquid level S1 in FIG. 14), and the suction filter 90 (see FIG. 13) is clogged. If so, fuel will be aspirated.
  • the discharge port 261 of the discharge pipe 260 is covered with the cylindrical portion 212.
  • the fuel bypasses the porous member 263e provided in the cap filter 263 while bypassing between the outer peripheral surface of the upper end portion of the discharge pipe 260 and the outer peripheral surface of the cap filter 263 and the inner peripheral surface of the cylindrical portion 212. (See arrow F in FIG. 14).
  • the path when the fuel is sucked from the discharge pipe 260 becomes longer, and the fuel is filtered by the porous member 263e, so that the entry of foreign matters in the fuel is suppressed.
  • the cylindrical portion 212 of the upper cup 210 covers the discharge port 261 of the discharge pipe 260 to thereby prevent the foreign matter intrusion suppression means 265 from suppressing the foreign matter in the fuel from entering the fuel pump 3 (see FIG. 3). Is forming.
  • the cylindrical portion 212 In a state where a predetermined amount of fuel in the fuel tank is consumed and the liquid level of the fuel is located below the lower end surface 215a of the stepped portion 215 (the state of the liquid level S2 in FIG. 14), the cylindrical portion 212 The air inside is easy to flow. Therefore, the fuel level is lower than the lower end surface 215a of the step 215 (the level S2 in FIG. 14), and the suction filter 90 (see FIG. 13) is clogged. If so, the air in the cylindrical portion 212 is sucked. Thereby, since air is mixed in the fuel supplied at the time of starting the engine, the user can detect clogging of the suction filter 90 early based on the behavior of the engine at the time of starting.
  • the foreign matter intrusion suppressing means 65 of the first embodiment is the flange unit 9 and the foreign matter intrusion suppressing means 165 of the second embodiment is the cylindrical member 163.
  • the present invention is not limited to the first embodiment and the second embodiment, and various modifications can be made.
  • the foreign matter intrusion suppression unit 65 of the first embodiment and the foreign matter intrusion suppression unit 165 of the second embodiment may be combined. That is, in the top-fitting type fuel supply device 1, the first foreign matter intrusion suppressing means 65 is provided by covering the discharge port 61 of the discharge pipe 60 with the flange portion 11, the upper cup 10, and the annular wall portion 13 of the flange unit 9.
  • the second foreign matter intrusion suppression means 165 may be provided by fitting the cylindrical member 163 to the cylindrical portion 62a above the discharge pipe main body portion 62.
  • the fuel supply apparatus 1 of the first embodiment includes the cap filter 63 provided with the porous member 63e at the upper end of the discharge pipe 60, the cap filter 63 may not be provided. However, by providing the cap filter 63, even if the fuel in the fuel tank 2 is sucked through the deaeration discharge path 64 and the discharge pipe 60, a part of the fuel sucked by the porous member 63e is filtered. The Therefore, the present embodiment is advantageous in that the inhalation of foreign matter in the fuel can be further suppressed.
  • the suction filter 90 is disposed below the lower cup 25.
  • the suction filter 90 is disposed inside the flange unit 9.
  • the foreign matter intrusion suppression means 65, 165 of each embodiment is applied to a so-called external filter type fuel supply device in which a filter unit including a suction filter is provided outside the fuel tank. Good.
  • the porous member 163e is provided on a part of the peripheral wall portion 163c of the cylindrical member 163.
  • the porous member 163e may be provided only on a part of the bottom part 163a of the cylindrical member 163, or the porous member 163e is provided on a part of the peripheral wall part 163c and a part of the bottom part 163a of the cylindrical member 163. It may be.
  • the discharge port of the discharge pipe since the discharge port of the discharge pipe is disposed above the deaeration hole, the discharge port of the discharge pipe can be prevented from being immersed in the fuel in the fuel tank.
  • foreign matter intrusion suppression means is provided so as to cover the discharge port at the other end of the discharge pipe and the outer peripheral surface of the other end, the fuel is temporarily supplied from the discharge port of the discharge pipe due to clogging of the suction filter. Even if it is going to be sucked, the fuel is sucked while bypassing the foreign matter intrusion suppression means. Thereby, since the path
  • Fuel supply device 2 Fuel tank 3
  • Fuel pump 9 Flange unit 10 Flange unit 10, 110, 210
  • Upper cup 11 Flange portion 13 Annular wall portion (wall portion) 27
  • One end 60b, 160b The other end 61, 161, 261 Discharge port 63e, 163e, 263e
  • Porous member 64, 164, 264 Deaeration discharge path 65, 165, 265
  • Foreign matter intrusion Suppression means 90

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filtration Of Liquid (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

 燃料供給装置(1)は、燃料ポンプ(3)と、ベーパを排出する脱気孔(27)と、を備え、一方端部(60a)が脱気孔(27)と接続され、ベーパを通流させて他方端部(60b)の排出口(61)から排出可能な排出管(60)を備え、排出管(60)の排出口(61)は、脱気孔(27)よりも上方に配置され、排出管(60)の他方端部(60b)には、排出口(61)および他方端部(60b)の外周面を覆うように異物侵入抑制手段(65)が設けられ、排出管(60)の他方端部(60b)の外周面と、異物侵入抑制手段(65)との間には、排出口(61)を介して排出管(60)の内部と連通する脱気排出路(64)が設けられている。

Description

燃料供給装置
 本発明は、燃料供給装置に関するものである。
 本願は、2013年3月26日に、日本に出願された特願2013-063825号に基づき優先権を主張し、その内容をここに援用する。
 一般に、自動二輪車や四輪車の車両用の燃料供給装置として、燃料タンク内に燃料ポンプを配設し、燃料タンク内の燃料に燃料供給装置を浸漬する、いわゆるインタンク式を採用する場合が多い。この種の燃料供給装置の燃料ポンプは、下方に燃料を汲み上げて内燃機関(エンジン)へと圧送するポンプ部を備えている。また、このポンプ部の上方には、ポンプ部を駆動するモータ部が設けられている。
 例えば、特許文献1には、ハウジングに設けられたモータと、ハウジングに設けられ、モータにより回転部材を回転させることにより燃料を昇圧するポンプ部と、ハウジングに設けられ、ポンプ部に燃料を吸入するための吸入口と、ハウジングに設けられ、ポンプ部にて昇圧された燃料を外部へ吐出するための吐出口と、ハウジングに設けられ、ポンプ部にて発生するベーパを外へ排出するためのベーパ排出孔と、ポンプ部に吸引される燃料を濾過するサクションフィルタと、を備えた燃料ポンプが記載されている。ハウジングの外側には、ベーパ排出孔に対応して設けられ、ベーパ排出孔からのベーパの排出を許容し、ベーパ排出孔への異物の侵入を規制する入出流調整手段が設けられている。この入出流調整手段は、ベーパ排出孔から排出されるベーパの通過を許容し、かつ、ベーパ排出孔へ侵入しようとする異物の通過を規制する多孔材を含む濾過部材により形成されている。
特開2008-274820号公報
 従来技術の燃料ポンプおいて、 サクションフィルタに目詰まりが発生した場合には、燃料タンク内の燃料は、脱気孔を介して燃料ポンプ内に吸入される。しかし、脱気孔を介して燃料ポンプ内に吸入された燃料は、サクションフィルタにより濾過されていないため異物を含んでいる可能性がある。異物が燃料ポンプ内に吸引されると、燃料ポンプのインペラの回転抵抗が増大する可能性がある。
 そこで、特許文献1に記載の従来技術のように、例えば脱気孔に濾過部材(フィルタ)を設け、脱気孔を介して吸入される燃料を濾過することにより、燃料ポンプ内への異物の吸入を防止することも考えられる。しかし、脱気孔にフィルタを設けると、通常動作時にベーパを排出する際の抵抗となるため、ベーパを良好に排出することができず、燃料ポンプの動作に影響を及ぼす可能性がある。
 本発明は、通常動作時には、燃料ポンプの動作に影響を与えることがなく、サクションフィルタが目詰まりを起こした際には、脱気孔から異物の侵入を抑制することができる燃料供給装置を提供する。
 本発明の第一の態様によれば、燃料供給装置は、燃料タンク内に配置され、サクションフィルタを介して前記燃料タンク内の燃料を吸入し、内燃機関へ圧送する燃料ポンプと、前記燃料ポンプ内で発生したベーパを排出する脱気孔と、を備える。この燃料供給装置は、一方端部が前記脱気孔と接続され、前記脱気孔から排出された前記ベーパを通流させて他方端部の排出口から排出可能な排出管を備え、前記排出管の前記排出口は、前記脱気孔よりも上方に配置され、前記排出管の前記他方端部には、前記排出口および前記他方端部の外周面を覆うように異物侵入抑制手段が設けられ、前記排出管の前記他方端部の前記外周面と、前記異物侵入抑制手段との間には、前記排出口を介して前記排出管の内部と連通する脱気排出路が設けられている。
 上記の構成によれば、排出管の排出口が脱気孔よりも上方に配置されているので、排出管の排出口が燃料タンク内の燃料に浸漬されるのを抑制できる。
 また、排出管の他方端部の排出口および他方端部の外周面を覆うように異物侵入抑制手段を設けているので、サクションフィルタの目詰まりに起因して仮に燃料が排出管の排出口から吸引しようとしても、燃料は異物侵入抑制手段を迂回しつつ吸引される。これにより、燃料が排出管の排出口から吸引される際の経路が長くなるので、燃料中の異物の侵入を抑制できる。しかも、燃料タンク内の燃料中の異物は下方に沈殿しやすく、排出管の排出口近傍には比較的異物が少ない。したがって、サクションフィルタの目詰まりに起因して、燃料ポンプが排出管の排出口から燃料を吸引しようとしても、さらに燃料中の異物の侵入を抑制できる。
 また、排出管の他方端部の外周面と異物侵入抑制手段との間に排出管の内部と連通する脱気排出路を設けているので、サクションフィルタに目詰まりが発生していないとき、例えば燃料ポンプの始動時等に、異物侵入抑制手段が抵抗となることなく良好にベーパを排出でき、かつ燃料ポンプの始動に支障をきたさない。
 したがって、本発明の燃料供給装置は、脱気孔から異物が混入した燃料を吸入するのを抑制できるとともに、脱気孔からベーパを確実に排出できる。
 本発明の第二の態様によれば、本発明の第一の態様に係る燃料供給装置は、前記燃料ポンプを支持するとともに前記燃料タンクに固定されるフランジユニットを備える。前記フランジユニットは、前記燃料タンクの上壁に取り付けられるフランジ部と、前記フランジ部に設けられ、前記燃料ポンプを覆うアッパーカップと、前記アッパーカップの径方向外側に設けられ、前記フランジ部から立設された壁部と、を有する。前記異物侵入抑制手段は、前記フランジユニットであり、前記排出管の前記他方端部は、前記アッパーカップと前記壁部との間に配置されて、前記フランジ部と前記アッパーカップと前記壁部とにより覆われ、前記他方端部の前記外周面と、前記アッパーカップおよび前記壁部との間には、前記脱気排出路が設けられている。
 上記の構成によれば、燃料タンクの上壁に取り付けられる、いわゆる上付けタイプの燃料供給装置のフランジユニットを異物侵入抑制手段としているので、別部品として異物侵入抑制手段を設ける必要がない。したがって、特に上付けタイプの燃料供給装置において、異物侵入抑制手段を簡単かつ低コストに形成できる。
 本発明の第三の態様によれば、本発明の第一の態様若しくは第二の態様に係る燃料供給装置において、前記排出管の前記他方端部の前記外周面には、前記燃料を濾過可能な多孔部材が設けられていてもよい。
 上記の構成によれば、排出管の他方端部の外周面には、燃料を濾過可能な多孔部材が設けられているので、サクションフィルタの目詰まりに起因して排出管の内部に吸引されようとする燃料を濾過できる。したがって、異物が侵入するのをさらに抑制できる。しかも、排出管の排出口は、脱気排出路によりベーパの排出機能が阻害されることもない。したがって、本発明の態様に係る燃料供給装置は、脱気孔から異物が混入した燃料を吸引するのを確実に抑制できるとともに、脱気孔からベーパを確実に排出できる。
 本発明の第四の態様によれば、本発明の第一の態様から第三の態様のいずれか一の態様に係る燃料供給装置において、前記排出管の開口面積は、前記脱気孔の開口面積よりも大きく形成されていてもよい。
 上記の構成によれば、排出管の開口面積が脱気孔の開口面積よりも大きく形成されているので、排出管の内部が燃料で充たされている状態であっても、脱気孔から排出されたベーパが排出管の内部を容易に流通できる。したがって、排出管を介して、脱気孔から排出されたベーパを確実に外部に排出できる。
 本発明の第五の態様によれば、本発明の第一の態様に係る燃料供給装置において、前記異物侵入抑制手段は、前記他方端部の前記排出口と対向する底部と、前記他方端部の前記外周面を囲繞する周壁部と、を有し、前記他方端部に装着された筒部材であり、前記他方端部の前記外周面と、前記筒部材の前記周壁部との間には、前記脱気排出路が設けられている。
 上記の構成によれば、筒部材により異物侵入抑制手段を形成し、排出管とは別部材としているので、異物侵入抑制手段を簡単に形成できる。
 また、筒部材の周壁部の高さを調整することにより、排出管の他方端部の外周面と筒部材の周壁部との重なり量を調整できる。これにより、排出管の他方端部の外周面と筒部材の周壁部との間の脱気排出路の長さを簡単に調整できるので、サクションフィルタの目詰まりに起因して燃料が排出管の排出口から吸引される際の経路(すなわち脱気排出路)を所望の長さに設定できる。したがって、脱気排出路によるベーパの排出機能および異物の侵入抑制機能を、所望のバランスに設定できる。
 本発明の第六の態様によれば、本発明の第五の態様に係る燃料供給装置において、前記筒部材の前記底部および前記周壁部の少なくともいずれかの一部には、前記燃料を濾過可能な多孔部材が設けられていてもよい。
 上記の構成によれば、筒部材の底部および周壁部の少なくともいずれかの一部に多孔部材が設けられることにより、サクションフィルタの目詰まりに起因して排出管の排出口から吸引される燃料を濾過できる。したがって、異物が侵入するのを確実に抑制できる。しかも、筒部材の一部を多孔部材で形成しつつ、排出管の他方端部の外周面と筒部材の周壁部との間に脱気排出路を設けているので、ベーパの排出を阻害することもない。したがって、本発明の燃料供給装置は、脱気孔から燃料が燃料ポンプ内に吸入されたときであっても異物が侵入するのを確実に抑制できるとともに、脱気孔からベーパを確実に排出できる。
 上記の燃料供給装置によれば、排出管の排出口が脱気孔よりも上方に配置されているので、排出管の排出口が燃料タンク内の燃料に浸漬されるのを抑制できる。
 また、排出管の他方端部の排出口および他方端部の外周面を覆うように異物侵入抑制手段を設けているので、サクションフィルタの目詰まりに起因して仮に燃料が排出管の排出口から吸引しようとしても、燃料は異物侵入抑制手段を迂回しつつ吸引される。これにより、燃料が排出管の排出口から吸引される際の経路が長くなるので、燃料中の異物の侵入を抑制できる。しかも、燃料タンク内の燃料中の異物は下方に沈殿しやすく、排出管の排出口近傍には比較的異物が少ない。したがって、サクションフィルタの目詰まりに起因して、燃料ポンプが排出管の排出口から燃料を吸引しようとしても、さらに燃料中の異物の侵入を抑制できる。
 また、排出管の他方端部の外周面と異物侵入抑制手段との間に排出管の内部と連通する脱気排出路を設けているので、サクションフィルタに目詰まりが発生していないとき、例えば燃料ポンプの始動時等に、異物侵入抑制手段が抵抗となることなく良好にベーパを排出でき、かつ燃料ポンプの始動に支障をきたさない。
 したがって、本発明の燃料供給装置は、脱気孔から異物が混入した燃料を吸入するのを抑制できるとともに、脱気孔からベーパを確実に排出できる。
第一実施形態の燃料供給装置の斜視図である。 図1のA-A線に沿った断面図である。 図1のB-B線に沿った断面図である。 図1のC-C線に沿った断面図である。 キャップフィルターの斜視図である。 脱気排出路の説明図である。 第一実施形態の変形例に係る排出管の斜視図である。 図7のD-D線に沿った断面図である。 第二実施形態の燃料供給装置の斜視図である。 図9のE-E線に沿った断面図である。 筒部材の斜視図である。 図9のF-F線に沿った断面図である。 第二実施形態の変形例に係る燃料供給装置の斜視図である。 図13のG-G線に沿った断面図である。
(第一実施形態の燃料供給装置)
 以下に、第一実施形態の燃料供給装置について、図面を参照して説明する。なお、以下の説明では、上方および下方は、鉛直方向の上方および下方に相当し、燃料ポンプの軸方向の相対位置についても上方および下方ということがある。
 図1は、第一実施形態の燃料供給装置1の斜視図である。
 図2は、図1のA-A線に沿った断面図である。
 図3は、図1のB-B線に沿った断面図である。
 図1に示すように、第一実施形態の燃料供給装置1はいわゆる上付けタイプの燃料供給装置1であり、図2に示すように、燃料タンク2の上壁2bに形成されている開口2aから挿入され、燃料タンク2の上壁2bに取り付けられて燃料に浸漬される。
 燃料供給装置1は、燃料タンク2内に配置される燃料ポンプ3と、燃料タンク2の上壁2bに取り付けられて燃料ポンプ3を支持するホルダ部4と、燃料ポンプ3の吸入側、すなわち下側に配設されたサクションフィルタ90と、燃料ポンプ3内のベーパを排出するための脱気孔27(図3参照)と連通する排出管60(図3参照)と、を備えている。以下に、燃料供給装置1の各構成部品について説明する。
(燃料ポンプ)
 燃料ポンプ3は、略円柱形状に形成されており、燃料ポンプ3の上側に配設されたモータ部30と、燃料ポンプ3の下側に配設されたポンプ部40とを有している。なお、以下では、燃料ポンプ3の中心の軸線を中心軸Oとして説明する。また、以下では、燃料ポンプ3の中心軸Oに沿う方向を単に軸方向といい、燃料ポンプ3の周方向を単に周方向ということがある。
(モータ部)
 モータ部30には、例えば、ブラシ(不図示)付きの直流モータ30aが使用される。モータ部30の中央には出力軸30bが配置されており、モータ部30の上側と、ポンプ部40の下側とにより回動自在に軸支されている。
 モータ部30の上側には、ブラシと電気的に接合している一対のモータ端子(不図示)が設けられている。一対のモータ端子には、ハーネス6が接続されており、ハーネス6により外部電源とモータ部30とが電気的に接続されて、外部電源から直流モータ30aを駆動するための電力が供給される。
 また、モータ部30の上側には、アウトレットカバー8が設けられている。アウトレットカバー8には、燃料を排出する吐出ポート31と、この吐出ポート31と連通するチェックバルブ74とが設けられている。吐出ポート31は、燃料ポンプ3によって汲み上げられた燃料が吐出される部位である。チェックバルブ74は、吐出ポート31から吐出された燃料の逆流を防止するためのものである。また、アウトレットカバー8の下部外周には、後述のハウジングケース20をカシメるための段部30cが形成されている。
(ポンプ部)
 ポンプ部40は、インペラ47を有する非容積型のポンプが用いられており、インペラ47と、インペラ47の全体を覆うように形成されたポンプケース45とにより構成されている。
 インペラ47は、例えば樹脂からなる略円板状に形成された部材であって、モータ部30の出力軸30bに相対回転不能に連結されている。インペラ47の上面および下面には、外周側に複数の羽根部(不図示)が形成されている。これら複数の羽根部の間は、インペラ47の肉厚方向に貫通形成されている。また、インペラ47には、肉厚方向に貫通する燃料流路孔(不図示)が形成されている。直流モータ30aの駆動によりインペラ47が回転すると、燃料が不図示の燃料流路孔を通ってインペラ47の下側から上側に向かって圧送される。
 インペラ47の全体を覆うポンプケース45は、ロワーケース42と、アッパーケース43と、ロワーケース42およびアッパーケース43に挟持されるミドルケース44とにより構成されている。ロワーケース42、アッパーケース43およびミドルケース44は、いずれも耐油性を有する樹脂からなり、例えば金型を用いたインジェクション成型等により形成される。
 ロワーケース42は、インペラ47の下部を覆うように略円板状に形成されている。ロワーケース42のインペラ47側の面には、軸方向平面視略C字状の溝部(不図示)が形成されている。この溝部の径方向外側の一端には、ロワーケース42の肉厚方向に貫通する燃料流路孔(不図示)が形成されている。また、ロワーケース42の下部には燃料吸入管41が設けられている。
 燃料吸入管41は、ロワーケース42に形成されている不図示の燃料流路孔に連通しており、これによって燃料吸入管41からポンプ部40内に燃料が汲み上げられる。
 燃料吸入管41は、インペラ47に形成されているC字上の溝部(不図示)の一端に対応する部位に形成された不図示の燃料流路孔に連通するように形成されているので、ロワーケース42の外周部寄りに配置された状態になっている。
 ロワーケース42の下部外周には、ゴム製の角リング46が装着可能な段差部42aが形成されている。
 また、ロワーケース42には、ロワーケース42の厚さ方向(上下方向)に貫通する不図示の貫通孔が形成されている。この貫通孔は、後述するロワーカップ25の底壁25bを貫通する脱気孔27と連通している。これにより、ポンプ部40内で発生したベーパは、ロワーケース42の貫通孔およびロワーカップ25の脱気孔27を介して、ポンプ部40の外部に排出可能となっている。
 アッパーケース43は、モータ部30と略同一の外径を有した略円板状の部材である。アッパーケース43の略中央には挿通孔43aが形成されており、直流モータ30aの出力軸30bが挿通される。また、挿通孔43aの外周側には、アッパーケース43の下面と上面とを貫通する燃料流路孔(不図示)が形成されている。燃料流路孔はモータ部30と連通しており、インペラ47から圧送された燃料が通過する。
 ミドルケース44は、モータ部30と略同一の外径を有した略リング状の部材である。
ミドルケース44の内側には、ミドルケース44の中心軸とインペラ47の中心軸とが一致するように、インペラ47が配置される。ミドルケース44の内径は、インペラ47の外径よりも若干大きくなるように形成されており、ミドルケース44の内面44a(すなわちポンプケース45の内面44a)とインペラ47の外周面との間にクリアランスが形成される。
 また、ミドルケース44は、アッパーケース43とロワーケース42との間に配置される。ここで、ミドルケース44の軸方向の厚さは、上述のインペラ47と略同一か、インペラ47よりも若干厚くなるように形成されている。すなわち、ミドルケース44は、インペラ47の上面とアッパーケース43の下面、およびインペラ47の下面とロワーケース42の上面との接触を防止するスペーサの役割をしている。そして、インペラ47の上面とアッパーケース43の下面との間、およびインペラ47の下面とロワーケース42の上面との間に、クリアランスが形成される。
 燃料ポンプ3の効率は、ポンプケース45とインペラ47との間に形成された各クリアランスに依存する。各クリアランスは、要求される燃料ポンプ3の効率に応じて所定値に設定される。
 モータ部30およびポンプ部40は、ハウジングケース20により覆われている。ハウジングケース20は、鉄等からなる略円筒状の部材であり、例えばシームレス管を切断することにより形成される。ハウジングケース20の上側端部はカシメ部22となっており、モータ部30に形成された段部30cに対してカシメられている。
 また、ハウジングケース20の下側端部には、鍔部21が径方向内側に向かって屈曲延出されている。鍔部21の内周縁の直径は、ロワーケース42に形成されている段差部42aの外周よりもやや大きくなるように設定されている。そして、段差部42aの底面とハウジングケース20の鍔部21とにより、角リング46を若干押し潰して挟持した状態になっている。これにより、ハウジングケース20とポンプ部40との間のシール性が確保される。
(ホルダ部)
 上述のように構成された燃料ポンプ3は、ホルダ部4により支持される。ホルダ部4は、燃料タンク2の上壁2bに固定されるフランジユニット9と、フランジユニット9の燃料タンク2の内側に設けられ燃料ポンプ3を内包するアッパーカップ10と、このアッパーカップ10に取り付けられ、燃料ポンプ3の下部を覆いつつ、燃料ポンプ3を支持する有底筒状のロワーカップ25とにより構成されている。
(フランジユニット)
 フランジユニット9は、樹脂製の略円板状のフランジ部11を有している。フランジ部11には、燃料タンク2の開口2aに対応する部位に、下方に向かって環状壁部13(請求項の「壁部」に相当。)が立設されている。フランジ部11は、燃料タンク2の上壁2bに形成された開口2aに外側(上側)から環状壁部13が挿入され、環状壁部13の外周面と燃料タンク2の開口2aとの位置を合わせた状態で上壁2bに取り付けられている。これにより、フランジユニット9の上面は、燃料タンク2の外部に露出した状態となっている。
 フランジユニット9には、燃料ポンプ3の吐出ポート31と連通する燃料取出管12が設けられている。すなわち、燃料は吐出ポート31から燃料取出管12を介して内燃機関へと圧送される。また、フランジユニット9には、燃料取出管12に連通するプレッシャレギュレータ76が設けられており、内燃機関へと圧送される燃料に対して所定の燃圧を確保できる。
 フランジユニット9の上面には、コネクタ9aが設けられている。このコネクタ9aには、外部電源に接続された外部コネクタが嵌着される。また、コネクタ9aは、燃料ポンプ3のモータ部30と電気的に接続され、これによってモータ部30が駆動する。さらに、フランジ部11の内面側には、環状壁部13の内側に凹部14が形成されており、凹部14にアッパーカップ10が固定されている。なお、環状壁部13とアッパーカップ10との間の凹部14内には、後述する排出管60の他方端部60b(いずれも図3参照)が配置されている。
(アッパーカップ)
 アッパーカップ10は、例えば樹脂等により形成された筒状の部材であり、燃料ポンプ3の外周面を覆うように設けられている。アッパーカップ10の下端には、開口部10aを有しており、下側から開口部10aに燃料ポンプ3を挿入できるようになっている。アッパーカップ10の周壁10bは、フランジユニット9から燃料ポンプ3の軸方向略中央に至るまで延出している。
 図1に示すように、アッパーカップ10には、開口部10aの周縁から軸方向下方に向かって延出する係合片17が4箇所周方向に等間隔で形成されている。この係合片17は、先端が拡径する方向に向かって弾性変形可能に形成されている。係合片17は、燃料ポンプ3のポンプ部40(いずれも図2参照)よりもやや下方まで延出している。係合片17には、ロワーカップ25に形成されている係合凸部18に係合する係合孔19が形成されている。そして、後述のロワーカップ25に係合片17がスナップフィットすることにより、ロワーカップ25の軸方向、および周方向の位置決めが行われる。
(ロワーカップ)
 燃料ポンプ3の吸入側に配設されたロワーカップ25は、略有底筒状に形成されたものである。ロワーカップ25の周壁25aは、内径が燃料ポンプ3を嵌合可能、かつ外径がアッパーカップ10の周壁10bの内径よりもやや小さくなる程度に設定されている。
 ロワーカップ25の周壁25aには、アッパーカップ10に形成された係合片17の係合孔19に対応する位置に、この係合孔19に係合可能な係合凸部18が形成されている。係合凸部18にアッパーカップ10の係合片17がスナップフィットすることによって、アッパーカップ10、およびロワーカップ25が一体化される。そして、これらアッパーカップ10とロワーカップ25とによって、燃料ポンプ3(図2参照)を支持することができる。
 ロワーカップ25の下側であって径方向外側には、不図示の液面検出器の取付部26が形成されている。取付部26は、径方向外側に向かって延出形成された板状に形成されており、ロワーカップ25を形成する際、同時にインジェクションにより成型される。
 また、図2に示すように、ロワーカップ25の下側には、サクションフィルタ90が取り付けられている。サクションフィルタ90の材質は、燃料を必要な清浄さまで濾過できればどのようなものであってもよい。例えば、軸受の摩耗粉等、燃料噴射弁などの動作に悪影響を与える大きさの塵埃を濾過できるような網状、繊維状、多孔質状、粒状等のフィルタが採用できる。具体的にサクションフィルタ90の材料としては、例えば、メッシュ状のナイロン布を用いることができる。
 サクションフィルタ90は、フィルタ排出管38を介して、燃料吸入管41と連通している。燃料タンク2内の燃料は、サクションフィルタ90およびフィルタ排出管38を介して、ポンプ部40の燃料吸入管41に導入される。そして、燃料は、ポンプケース45内を通過してモータ部30の上側に圧送され、燃料取出管12を通って内燃機関(不図示)に搬送される。
(脱気孔)
 図3に示すように、ロワーカップ25の底壁25bには、ロワーカップ25の底壁25bを厚さ方向に貫通する脱気孔27が形成されている。この脱気孔27は、燃料ポンプ3内で発生したベーパを、ポンプ部40の外部に排出する。脱気孔27は、中心軸Oに直交する断面形状(すなわち脱気孔27の開口形状)が略円形状に形成されている。
(排出管)
 燃料供給装置1は、排出管60を備えている。排出管60は、下方に配置された一方端部60aが脱気孔27と接続され、脱気孔27から排出されたベーパを通流させて上方に配置された他方端部60bの排出口61から排出可能に構成されている。排出管60は、排出管本体部62とキャップフィルター63とにより形成されている。
 排出管本体部62は、ロワーカップ25の底壁25bおよび周壁25aにわたって、中心軸Oを含む断面視で略L字形状に形成されている。
 排出管本体部62はロワーカップ25と一体形成されている。排出管本体部62のうち、アッパーカップ10の周壁10bの下端よりも下方側の領域は、ロワーカップ25の底壁25bおよび周壁25aに密着して設けられている。
 また、排出管本体部62のうち、アッパーカップ10の周壁10bに対応する領域は、燃料ポンプ3の外周面から、アッパーカップ10の周壁10bの厚さ以上の距離だけ離間して設けられている。これにより、アッパーカップ10とロワーカップ25とを係合したとき、燃料ポンプ3の外周面と排出管本体部62との間に、アッパーカップ10の周壁10bが配置される。したがって、アッパーカップ10の周壁10bと排出管本体部62とが干渉することなく、アッパーカップ10とロワーカップ25とを確実に係合して燃料ポンプ3を保持できる。
 図4は、図1のC-C線に沿った断面図である。図4に示すように、排出管本体部62は、周方向に幅広に形成されている。排出管本体部62の中心軸Oに直交する断面形状(すなわち排出管本体部62の開口形状)は、略扇形状に形成されている。排出管本体部62の開口面積は、略円形状の開口形状を有する脱気孔27の開口面積よりも、十分に大きくなるように設定される。これにより、排出管60の内部が燃料で充たされている状態であっても、脱気孔27から排出されたベーパが排出管60の内部を容易に流通できる。
 図3に示すように、排出管本体部62の上方には円筒部62aが設けられている。この円筒部62aにキャップフィルター63が外嵌されている。
 図5は、キャップフィルター63の斜視図である。キャップフィルター63は、例えば樹脂等により形成された円筒体の外周面63cの一部を径方向に抜いて窓部63dを設け、この窓部63dに、例えばメッシュ状のナイロン布等、燃料を濾過可能な多孔部材63eを設けることで形成されている。キャップフィルター63を軸方向から見たときの開口面積は、脱気孔27の開口面積よりも十分に大きくなるように設定される。
 図3に示すように、キャップフィルター63の上端部63aは、排出管60の他方端部60bに相当する。また、キャップフィルター63の上端部63aの開口は、排出管60の排出口61に相当する。
 キャップフィルター63の内径は、排出管本体部62の円筒部62aの外径よりも若干小さくなるように設定されている。これにより、キャップフィルター63の下端部63bを排出管本体部62の円筒部62aに外嵌して、排出管本体部62の円筒部62aにキャップフィルター63を固定できる。
 排出管60の他方端部60b(本実施形態では、キャップフィルター63の上端部63a)は、アッパーカップ10と環状壁部13との間の凹部14内に配置される。そして、排出管60の他方端部60bは、フランジ部11とアッパーカップ10と環状壁部13とにより覆われるとともに、排出口61が脱気孔27よりも上方であってフランジ部11近傍に配置される。このように、フランジユニット9は、フランジ部11とアッパーカップ10と環状壁部13とにより排出管60の排出口61を覆うことで、燃料内の異物が燃料ポンプ3内に進入するのを抑制する異物侵入抑制手段65を形成している。異物侵入抑制手段65の作用については後述する。
 また、排出管60の他方端部60bの外周面と、アッパーカップ10および環状壁部13との間には間隙が形成されている。この隙間は、排出管60の排出口61を介して排出管60の内部と連通する脱気排出路64を構成している。したがって、脱気孔27から排出されたベーパは、排出管60、排出口61および脱気排出路64を介して、燃料供給装置1の外部に排出可能となっている。
(第一実施形態の燃料供給装置の作用)
 続いて、第一実施形態の燃料供給装置1の作用について説明する。
 図2に示すように、燃料ポンプ3のモータ部30を駆動させると、出力軸30bが回転し、これに相対回転不能に連結されているインペラ47が回転する。インペラ47が回転することにより、インペラ47とポンプケース45との間で旋回流が発生する。
 ポンプ部40は、この旋回流により燃料を昇圧する。そして、ポンプ部40は、燃料タンク2内の燃料がサクションフィルタ90を介して濾過された状態で、フィルタ排出管38を介して燃料吸入管41から燃料を吸入する。
 図6は、脱気排出路64の説明図である。なお、図6中の一点鎖線は、燃料が十分に満たされた状態時(またはこれに近い状態)における燃料の液面S1を示し、図6中の二点鎖線は、燃料が所定量消費されて環状壁部13の下端縁部よりも下方になったときの燃料の液面S2を示している。また、図6中の矢印Vはベーパの流通を示し、矢印Fは燃料の液面S1時における燃料の流通を示しいている。
 ポンプ部40(図3参照)内のベーパは、昇圧された燃料とともに脱気孔27から排出される。そして、図6に示すように、脱気孔27(図3参照)から排出されたベーパは、排出管60の他方端部60bの外周面と、アッパーカップ10および環状壁部13との間の脱気排出路64を介して、燃料供給装置1の外部に排出される。このとき、脱気排出路64は、排出管60の内部と排出口61を介して連通しているので、異物侵入抑制手段65やキャップフィルター63等が抵抗となることなく良好にベーパが排出される。
 また、図3に示すように、燃料供給装置1の動作時において、仮にサクションフィルタ90に目詰まりが発生した場合、燃料供給装置1は、排出管60の他方端部60bの排出口61から脱気孔27を介し、燃料ポンプ3内に向かって吸引力が作用する。
 ところで、従来技術の燃料供給装置にあっては、脱気孔が燃料ポンプの下方の面に設けられていた。したがって、従来技術の燃料供給装置の脱気孔は、燃料タンク内の燃料に浸漬された状態が長くなっていた。このため、燃料内の異物は、サクションフィルタにより濾過されることなく、脱気孔を介して燃料ポンプ内に燃料とともに吸引される可能性があった。
 これに対して、本実施形態の燃料供給装置1は、排出管60の排出口61が脱気孔27よりも上方であって、フランジ部11の近傍に配置されている。したがって、本実施形態の燃料供給装置1の排出口61は、燃料タンク2内の燃料に浸漬されるのが抑制される。また、燃料内の異物は、重力により燃料タンク2の下方に沈殿しやすく、排出管60の排出口61近傍には比較的異物が少ない。したがって、燃料内の異物は、上方に配置された排出管60の排出口61を介して燃料ポンプ3内に吸引されるのが抑制される。
 ここで、例えば、燃料タンク2内に燃料が十分に満たされた状態(図6における液面S1の状態)であって、サクションフィルタ90に目詰まりが発生している場合には、燃料が吸引される。しかし、排出管60の排出口61は、フランジ部11とアッパーカップ10と環状壁部13とにより覆われているので、燃料はフランジ部11とアッパーカップ10と環状壁部13とを迂回しつつ、キャップフィルター63に設けられた多孔部材63eを介して吸引される(図6における矢印F参照)。これにより、燃料が排出管60の排出口61から吸引される際の経路が長くなるとともに、多孔部材63eにより燃料が濾過されるので、燃料中の異物の侵入が抑制される。すなわち、フランジユニット9は、フランジ部11とアッパーカップ10と環状壁部13とにより排出管60の排出口61を覆うことで、燃料内の異物が燃料ポンプ3内に進入するのを抑制する異物侵入抑制手段65を形成している。
 さらに、例えば、燃料タンク2内の燃料が所定量消費され、燃料の液面が環状壁部13の下端縁部よりも下方に位置する状態(図6における液面S2の状態)では、脱気排出路64は、燃料の液面S2(図6参照)によって閉塞されておらず、燃料タンク2内の空気が通流し易い状態となっている。したがって、燃料の液面が環状壁部13の下端縁部よりも下方に位置する状態(図6における液面S2の状態)であって、サクションフィルタ90に目詰まりが発生している場合には、燃料タンク2内の空気が吸引される。これにより、エンジン始動時に供給される燃料には空気が混入するので、使用者は、始動時のエンジンの挙動に基づき早期にサクションフィルタ90の目詰まりを検知することができる。
(第一実施形態の効果)
 本実施形態によれば、排出管60の排出口61が脱気孔よりも上方に配置されているので、排出管60の排出口61が燃料タンク2内の燃料に浸漬されるのを抑制できる。
 また、排出管60の他方端部60bの排出口61および他方端部60bの外周面を覆うように異物侵入抑制手段65を設けているので、サクションフィルタ90の目詰まりに起因して仮に燃料が排出管60の排出口61から吸引しようとしても、燃料は異物侵入抑制手段65を迂回しつつ多孔部材63eを介して吸引される。これにより、燃料が排出管60の排出口61から吸引される際の経路が長くなるとともに、多孔部材63eにより燃料が濾過されるので、燃料中の異物の侵入を抑制できる。しかも、燃料タンク2内の燃料中の異物は下方に沈殿しやすく、排出管60の排出口61近傍には比較的異物が少ない。したがって、サクションフィルタ90の目詰まりに起因して、燃料ポンプ3が排出管60の排出口61から燃料を吸引しようとしても、さらに燃料中の異物の侵入を抑制できる。
 また、排出管60の他方端部60bの外周面と異物侵入抑制手段65との間に、排出管60の内部と連通する脱気排出路64を設けているので、サクションフィルタ90に目詰まりが発生していないとき、例えば燃料ポンプ3の始動時等に、異物侵入抑制手段65が抵抗となることなく良好にベーパを排出でき、かつ燃料ポンプ3の始動に支障をきたさない。
 したがって、本実施形態の燃料供給装置1は、脱気孔27から異物が混入した燃料を吸入するのを抑制できるとともに、脱気孔27からベーパを確実に排出できる。
 また、燃料タンク2の上壁2bに取り付けられる、いわゆる上付けタイプの燃料供給装置1のフランジユニット9を異物侵入抑制手段65としているので、別部品として異物侵入抑制手段65を設ける必要がない。したがって、特に上付けタイプの燃料供給装置1において、異物侵入抑制手段65を簡単かつ低コストに形成できる。
 また、排出管60の他方端部60bの外周面の一部に多孔部材63eを設けているので、サクションフィルタ90の目詰まりに起因して排出管60内に吸引される燃料の一部を濾過できる。したがって、異物が侵入するのをさらに抑制できる。しかも、排出管60の排出口61は、多孔部材63eによりベーパの排出機能が阻害されることもない。したがって、本実施形態の燃料供給装置1は、脱気孔27から燃料が燃料ポンプ3内に吸入されたときであっても異物が侵入するのを確実に抑制できるとともに、脱気孔27からベーパを確実に排出できる。
 また、排出管60の開口面積は、脱気孔27の開口面積よりも大きく形成されているので、排出管60の内部が燃料で充たされている状態であっても、脱気孔27から排出されたベーパが排出管60の内部を容易に流通できる。したがって、排出管60を介して、脱気孔27から排出されたベーパを確実に外部に排出できる。
(第一実施形態の変形例)
 図7は、第一実施形態の変形例に係る排出管60の斜視図であり、図8は、図7のD-D線に沿った断面図である。なお、図7および図8においては、分かり易くするために排出管60のみを図示しており、他の部品については適宜図示を省略している。また、図8においては、脱気孔27を二点鎖線で図示している。
 第一実施形態に係る排出管60は、排出管本体部62が周方向に幅広に形成されていた(図4参照)。
 これに対して、図7に示すように、第一実施形態の変形例に係る排出管60は、排出管本体部62が円筒状に形成されている点で、第一実施形態とは異なっている。なお、第一実施形態と同様の構成部分については詳細な説明を省略し、異なる部分についてのみ説明する。
 図7に示すように、第一実施形態の変形例に係る排出管60は、外観が略L字形状に形成されている。図8に示すように、排出管60の一方端部60aの開口面積は、脱気孔27の開口面積よりも大きくなるように設定される。また、排出管本体部62の開口面積は、排出管60の一方端部60aの開口面積よりも十分に大きくなるように設定される。これにより、排出管60の内部が燃料で充たされている状態であっても、脱気孔27から排出されたベーパが排出管60の内部を容易に流通できる。
 排出管60の形状は、第一実施形態および第一実施形態の変形例に限定されることは無く、種々変更が可能である。
(第二実施形態)
 図9は、第二実施形態の燃料供給装置100の斜視図である。
 続いて、第二実施形態の燃料供給装置100について説明する。
 第一実施形態の燃料供給装置1は、燃料タンク2の上壁2bに取り付けられる、いわゆる上付けタイプの燃料供給装置1であり、フランジユニット9により異物侵入抑制手段65を形成していた。
 これに対して、第二実施形態の燃料供給装置100は、燃料タンクの下壁(不図示)に取り付けられる、いわゆる下付けタイプの燃料供給装置100であり、かつ筒部材163により異物侵入抑制手段165を形成している点で、第一実施形態とは異なっている。なお、第一実施形態と同様の構成部分については詳細な説明を省略し、異なる部分についてのみ説明する。
 図9に示す燃料供給装置100は、燃料タンク内に配置される燃料ポンプ3と、燃料タンクの下壁に取り付けられて燃料ポンプ3を支持するホルダ部4と、燃料ポンプ3内のベーパを排出するための脱気孔27と連通する排出管160と、を備えている。以下に、燃料供給装置100の各構成部品について説明する。
 燃料ポンプ3は、略円柱形状に形成されており、燃料ポンプ3の上側に配設されたモータ部30と、燃料ポンプ3の下側に配設されたポンプ部40とを有している。
 燃料ポンプ3は、ホルダ部4により支持される。ホルダ部4は、燃料タンクの下壁に固定されるフランジユニット9と、フランジユニット9の燃料タンクの内側に設けられ燃料ポンプ3の下部を支持するロワーカップ125と、このロワーカップ125に取り付けられ、燃料ポンプ3を上部から覆うアッパーカップ110とにより構成されている。
(フランジユニット)
 フランジユニット9のフランジ部11には、燃料タンクの下壁の開口(不図示)に対応する部位に、上方に向かって環状壁部13が立設されている。フランジ部11は、燃料タンクの下壁に形成された開口部に外側(下側)から環状壁部13を挿入し、環状壁部13の外周面と燃料タンクの開口との位置を合わせた状態で燃料タンクの下壁に取り付けられている。したがって、フランジユニット9の下面は、燃料タンクの外部に露出した状態になる。
 フランジユニット9には、燃料ポンプ3の上側に設けられた吐出ポート31と連通する燃料取出管12が設けられており、燃料取出管12を介して内燃機関へと圧送される。また、燃料ポンプ3の吐出ポート31の上側には、燃料取出管12に連通するプレッシャレギュレータ76が設けられており、内燃機関へと圧送される燃料に対して所定の燃圧を確保できる。
 フランジユニット9の下面には、コネクタ9aが設けられており、燃料ポンプ3のモータ部30と電気的に接続されて、モータ部30が駆動する。
 フランジユニット9の内部には、サクションフィルタ90が収納されている。サクションフィルタ90には、ポンプ部40の燃料吸入管41が接続されている。燃料タンク内の燃料は、サクションフィルタ90を通って濾過された後、ポンプ部40に汲み上げられる。
(ロワーカップ)
 ロワーカップ125は、例えば樹脂等により形成された筒状の部材であり、燃料ポンプ3の下部の外周面を覆うように設けられている。ロワーカップ125の上端には、開口部125aを有しており、上側から開口部125aに燃料ポンプ3を挿入できる。
(アッパーカップ)
 アッパーカップ110は、燃料ポンプ3を上側から覆うように配設されており、略有底筒状に形成されたものである。アッパーカップ110の上側であって径方向外側には、不図示の液面検出器の取付部26が形成されている。
 アッパーカップ110の下部には、段差111aにより拡径した拡径部111が形成されている。拡径部111の外周面には、例えば不図示の係合爪が設けられており、ロワーカップ125に係合可能となっている。
 また、拡径部111の段差111aには上下方向に貫通する貫通孔111bが設けられている。貫通孔111bには、後述する排出管160が挿通されている。
 また、アッパーカップ110の拡径部111の外周側には、リング状の規制部材135が外嵌されている。規制部材135は、アッパーカップ110とロワーカップ125との係合部分の径方向外側への変位を規制する。これにより、アッパーカップ110とロワーカップ125との係合が解除されるのを抑制している。
(排出管)
 燃料供給装置100は、排出管160を備えている。排出管160は、例えば鉄等の金属により形成されたパイプ状の部材であり、側面視で例えば略L字状に屈曲形成されている。排出管160は、アッパーカップ110と別体形成されている。
 排出管160は、下方に配置された一方端部160aがポンプ部40の下方の脱気孔27と接続されており、脱気孔27から排出されたベーパを通流させて上方に配置された他方端部160bの排出口161(図10参照)から排出可能に構成されている。
 排出管本体部162は、中心軸Oに沿うように上方に延びている。排出管本体部162の中心軸Oに直交する断面形状は、例えば略円形状に形成されている。排出管本体部162の開口面積は、第一実施形態と同様に、脱気孔27の開口面積よりも十分に大きくなるように設定される。
(異物侵入抑制手段)
 図10は、図9のE-E線に沿った断面図である。なお、図10中の矢印Vはベーパの流通を示し、矢印Fは燃料の流通を示しいている。
 図10に示すように、排出管160の他方端部160bには、異物侵入抑制手段165である筒部材163が排出口161を覆うように設けられている。筒部材163は、例えば金属等により形成された側面断面視略ハット形状の部材であり、排出管160の他方端部160bの排出口161と対向する底部163aと、排出管160の他方端部160bの外周面を囲繞する周壁部163cと、を有している。
 図11は、筒部材163の斜視図である。
 図11に示すように、筒部材163は、周壁部163cの一部を径方向に抜いて窓部163dを設けるとともに、この窓部163dを閉塞する例えばメッシュ状のナイロン布等の多孔部材163eを設けている。
 図10に示すように、筒部材163の内径は、排出管160の外径よりも十分大きくなるように設定されている。これにより、排出管160の他方端部160bの外周面と、筒部材163の周壁部163cとの間には、間隙が形成されて脱気排出路164が設けられている。
 図12は、図9のF-F線に沿った断面図である。
 図12に示すように、筒部材163の下端部163bの開口には、径方向内側に突出した嵌合部163fが形成されている。嵌合部163fは、例えば筒部材163の周方向に略120°ピッチで3箇所形成されている。筒部材163の中心から各嵌合部163fまでの寸法は、排出管160の外周面の半径よりも小さくなるように設定されている。これにより、筒部材163の下端部163bは、各嵌合部163fにより排出管160の他方端部160bの外周面に外嵌される。各嵌合部163fの間には、脱気排出路164が形成される。各脱気排出路164は、排出口161(図10参照)を介して排出管160の内部と直接連通している。
 ここで、図10に示すように、筒部材163の周壁部163cの高さ(すなわち図10における周壁部163cの上下方向の長さ)は、要求される異物の侵入抑制度合いに応じて適宜設定される。具体的には、周壁部163cの高さを調整することにより、排出管160の他方端部160bの外周面と、筒部材163の周壁部163cとの重なり量αを調整して、排出管160の他方端部160bの外周面と筒部材163の周壁部163cとの間の脱気排出路164の長さを調整できる。そして、周壁部163cの高さを高くし、排出管160の他方端部160bの外周面と筒部材163の周壁部163cとの重なり量αを大きくすることにより、脱気排出路164の長さを長くして異物の侵入を抑制できる。この重なり量αは、脱気排出路164によるベーパの排出機能および異物の侵入抑制機能のバランスに応じて適宜設定される。
(第二実施形態の燃料供給装置の作用)
 続いて、第二実施形態の燃料供給装置100の作用について説明する。
 図9に示すように、ポンプ部40内のベーパは、昇圧された燃料とともに脱気孔27から排出される。そして、図10に示すように、脱気孔27(図9参照)から排出されたベーパは、排出管160の他方端部160bの外周面と、筒部材163の周壁部163cとの間の各脱気排出路164を介して、燃料供給装置100(図9参照)の外部に排出される。このとき、各脱気排出路164は、排出管160の内部と排出口161を介して直接連通しているので、異物侵入抑制手段165である筒部材163や、筒部材163の周壁部163cに設けられた多孔部材163e等が抵抗となることがない。したがって、ベーパは、燃料供給装置100(図9参照)の外部に良好に排出される。
 また、図9に示すように、燃料供給装置100の動作時において、仮にサクションフィルタ90に目詰まりが発生した場合、燃料供給装置100は、排出管160の他方端部160bの排出口161(図10参照)から、脱気孔27を介して燃料ポンプ3内に吸入しようとする。ここで、第二実施形態の燃料供給装置100は、排出管160の排出口161が脱気孔27よりも上方であって、アッパーカップ110の底部のプレッシャレギュレータ76よりも上方に配置されている。したがって、第二実施形態の燃料供給装置100の排出口161は、第一実施形態と同様に、燃料タンク内の燃料に浸漬されるのが抑制される。また、燃料内の異物は、重力により燃料タンクの下方に沈殿する傾向にある。したがって、燃料内の異物は、排出管160の排出口161を介して燃料ポンプ3内に吸引されるのが抑制される。
 さらに、極めてまれな状況ではあるが、例えば、燃料タンク内の燃料が十分に満たされた状態で排出管160の他方端部160bが燃料内に浸漬しており、かつサクションフィルタ90に目詰まりが発生している場合には、燃料が排出管160の排出口161から吸引される。
 しかし、図10に示すように、排出管160の排出口161は、異物侵入抑制手段165である筒部材163の底部163aと周壁部163cとにより覆われているので、燃料は筒部材163の底部163aと周壁部163cとを迂回しつつ、各脱気排出路164を介して吸引される。これにより、燃料が排出管160の排出口161から吸引される際の経路が長くなるので、燃料中の異物の侵入が抑制される。
 また、図11に示すように、筒部材163の周壁部163cの一部には、多孔部材163eを設けている。したがって、排出管160内に吸引される燃料の一部は、多孔部材163eにより濾過される。
(第二実施形態の効果)
 第二実施形態の燃料供給装置100によれば、筒部材163により異物侵入抑制手段165を形成し、排出管160とは別部材としているので、異物侵入抑制手段165を簡単に形成できる。
 また、筒部材163の周壁部163cの高さを調整することにより、排出管160の他方端部160bの外周面と筒部材163の周壁部163cとの重なり量αを調整できる。これにより、排出管160の他方端部160bの外周面と筒部材163の周壁部163cとの間の脱気排出路164の長さを簡単に調整できるので、サクションフィルタ90の目詰まりに起因して燃料が排出管160の排出口161から吸引される際の経路(すなわち脱気排出路164)を所望の長さに設定できる。したがって、脱気排出路164によるベーパの排出機能および異物の侵入抑制機能を、所望のバランスに設定できる。
 また、筒部材163の周壁部163cの一部に多孔部材163eを設けることにより、サクションフィルタ90の目詰まりに起因して排出管160の排出口161から吸引される燃料を濾過できる。したがって、異物が侵入するのを確実に抑制できる。しかも、筒部材163の一部に多孔部材163eを設け、排出管160の他方端部160bの外周面と筒部材163の周壁部163cとの間に脱気排出路164を設けているので、多孔部材163eによりベーパの排出機能が阻害されることもない。したがって、第二実施形態の燃料供給装置100は、脱気孔27から燃料が燃料ポンプ3内に吸入されたときであっても異物が侵入するのを確実に抑制できるとともに、脱気孔27からベーパを確実に排出できる。
(第二実施形態の変形例に係る燃料供給装置)
 図13は、第二実施形態の変形例に係る燃料供給装置100の斜視図である。
 第一実施形態に係る燃料供給装置1は、いわゆる上付けタイプの燃料供給装置1であり、フランジユニット9により形成された異物侵入抑制手段65がアッパーカップ10の外側に形成されていた(図6参照。)
 第二実施形態に係る燃料供給装置100は、いわゆる下付けタイプの燃料供給装置100であり、異物侵入抑制手段165である筒部材163がアッパーカップ110の外側に形成されていた(図9参照。)
 これに対して、図13に示すように、第二実施形態の変形例に係る燃料供給装置200は、アッパーカップ210内に排出管260およびキャップフィルター263が設けられており、異物侵入抑制手段265がアッパーカップ210の内側に形成されている点で、第一実施形態および第二実施形態とは異なっている。なお、第一実施形態および第二実施形態と同様の構成部分については詳細な説明を省略し、異なる部分についてのみ説明する。
 排出管260は、ポンプ部40の下方の脱気孔27と接続されており、中心軸Oに沿うように上方に延びている。排出管260の先端には、キャップフィルター263が外嵌されている。なお、キャップフィルター263は、第一実施形態に係るキャップフィルター63(図5参照)と同一のため、説明を省略する。
 図14は、図13のG-G線に沿った断面図である。なお、図14中の一点鎖線は、燃料が十分に満たされた状態時(またはこれに近い状態)における燃料の液面S1を示し、図14中の二点鎖線は、燃料が所定量消費されたときの燃料の液面S2を示している。また、図14中の矢印Vはベーパの流通を示し、矢印Fは満タン時における燃料の流通を示しいている。
 図14に示すように、アッパーカップ210は、排出管260の先端およびキャップフィルター263を外側から覆う筒状部212を備えている。筒状部212の内部には、段差部215が設けられている。段差部215の下端面215aは、例えばキャップフィルター263の多孔部材263eよりも下方に配設されている。筒状部212の内径は、排出管260およびキャップフィルター263の外径よりも十分大きくなるように設定されている。これにより、排出管260およびキャップフィルター263の外周面と、筒状部212の内周面との間には、間隙が形成されて脱気排出路264が設けられている。アッパーカップ210の筒状部212は、排出管260の排出口261を覆うことで、燃料内の異物が燃料ポンプ3(図13参照)内に進入するのを抑制する異物侵入抑制手段265を形成している。
(第二実施形態の変形例に係る燃料供給装置の作用)
 ポンプ部40(図13参照)内のベーパは、昇圧された燃料とともに脱気孔27(図13参照)から排出される。そして、脱気孔27から排出されたベーパは、排出管260の上端部の外周面およびキャップフィルター263の外周面と、筒状部212の内周面との間の脱気排出路264を通じ、アッパーカップ210を介して、燃料供給装置200の外部に排出される。
 また、図13に示すように、燃料供給装置200の動作時において、仮にサクションフィルタ90に目詰まりが発生した場合、燃料供給装置200は、排出管260の他方端部の排出口261(図14参照)から脱気孔27を介し、燃料ポンプ3内に向かって吸引力が作用する。ここで、図14に示すように、例えば、燃料タンク内に燃料が十分に満たされた状態(図14における液面S1の状態)であって、サクションフィルタ90(図13参照)に目詰まりが発生している場合には、燃料が吸引されることとなる。しかし、排出管260の排出口261は、筒状部212により覆われている。したがって、燃料は、排出管260の上端部の外周面およびキャップフィルター263の外周面と、筒状部212の内周面との間を迂回しつつ、キャップフィルター263に設けられた多孔部材263eを介して吸引される(図14における矢印F参照)。これにより、燃料が排出管260から吸引される際の経路が長くなるとともに、多孔部材263eにより燃料が濾過されるので、燃料中の異物の侵入が抑制される。すなわち、アッパーカップ210の筒状部212は、排出管260の排出口261を覆うことで、燃料内の異物が燃料ポンプ3(図3参照)内に進入するのを抑制する異物侵入抑制手段265を形成している。
 さらに、例えば、燃料タンク内の燃料が所定量消費され、燃料の液面が段差部215の下端面215aよりも下方に位置する状態(図14における液面S2の状態)では、筒状部212内の空気が通流し易い状態となっている。したがって、燃料の液面が段差部215の下端面215aよりも下方に位置する状態(図14における液面S2の状態)であって、サクションフィルタ90(図13参照)に目詰まりが発生している場合には、筒状部212内の空気が吸引される。これにより、エンジン始動時に供給される燃料には空気が混入するので、使用者は、始動時のエンジンの挙動に基づき早期にサクションフィルタ90の目詰まりを検知することができる。
 なお、この発明の技術範囲は上記の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 第一実施形態の異物侵入抑制手段65は、フランジユニット9であり、第二実施形態の異物侵入抑制手段165は、筒部材163であったが、異物侵入抑制手段65,165の形状は、第一実施形態および第二実施形態に限定されることはなく、種々変更が可能である。
 第一実施形態の異物侵入抑制手段65と、第二実施形態の異物侵入抑制手段165とを組み合わせてもよい。すなわち、上付けタイプの燃料供給装置1において、フランジユニット9のフランジ部11とアッパーカップ10と環状壁部13とにより排出管60の排出口61を覆って第一の異物侵入抑制手段65を設けるととともに、排出管本体部62の上方の円筒部62aに筒部材163を外嵌して、第二の異物侵入抑制手段165を設けてもよい。
 第一実施形態の燃料供給装置1は、排出管60の上端に、多孔部材63eを設けたキャップフィルター63を備えていたが、キャップフィルター63はなくてもよい。ただし、キャップフィルター63を備えることで、仮に燃料タンク2内の燃料が脱気排出路64および排出管60を介して吸入された場合でも、多孔部材63eにより吸入された燃料の一部が濾過される。したがって、燃料内の異物の吸入をさらに抑制できる点で、本実施形態に優位性がある。
 第一実施形態の燃料供給装置1は、サクションフィルタ90がロワーカップ25の下側に配設されていた。また、第二実施形態の燃料供給装置100は、サクションフィルタ90がフランジユニット9の内部に配設されていた。これに対して、例えばサクションフィルタを備えたフィルタユニットが燃料タンクの外部に設けられた、いわゆる外付けフィルタタイプの燃料供給装置に、各実施形態の異物侵入抑制手段65,165を適用してもよい。
 第二実施形態では、筒部材163の周壁部163cの一部に多孔部材163eを設けていた。これに対して、例えば筒部材163の底部163aの一部のみに多孔部材163eを設けていてもよいし、筒部材163の周壁部163cの一部および底部163aの一部に多孔部材163eを設けていてもよい。また、筒部材163の一部に多孔部材163eを設けることなく、筒部材163により排出管160の排出口161を覆いつつ、脱気排出路164を形成する構成としてもよい。
 上記の燃料供給装置によれば、排出管の排出口が脱気孔よりも上方に配置されているので、排出管の排出口が燃料タンク内の燃料に浸漬されるのを抑制できる。
 また、排出管の他方端部の排出口および他方端部の外周面を覆うように異物侵入抑制手段を設けているので、サクションフィルタの目詰まりに起因して仮に燃料が排出管の排出口から吸引しようとしても、燃料は異物侵入抑制手段を迂回しつつ吸引される。これにより、燃料が排出管の排出口から吸引される際の経路が長くなるので、燃料中の異物の侵入を抑制できる。しかも、燃料タンク内の燃料中の異物は下方に沈殿しやすく、排出管の排出口近傍には比較的異物が少ない。したがって、サクションフィルタの目詰まりに起因して、燃料ポンプが排出管の排出口から燃料を吸引しようとしても、さらに燃料中の異物の侵入を抑制できる。
 また、排出管の他方端部の外周面と異物侵入抑制手段との間に排出管の内部と連通する脱気排出路を設けているので、サクションフィルタに目詰まりが発生していないとき、例えば燃料ポンプの始動時等に、異物侵入抑制手段が抵抗となることなく良好にベーパを排出でき、かつ燃料ポンプの始動に支障をきたさない。
 したがって、上記した燃料供給装置は、脱気孔から異物が混入した燃料を吸入するのを抑制できるとともに、脱気孔からベーパを確実に排出できる。
1,100,200 燃料供給装置
2 燃料タンク
3 燃料ポンプ
9 フランジユニット
10,110,210 アッパーカップ
11 フランジ部
13 環状壁部(壁部)
27 脱気孔
60,160 排出管
60a,160a 一方端部
60b,160b 他方端部
61,161,261 排出口
63e,163e,263e 多孔部材
64,164,264 脱気排出路
65,165,265 異物侵入抑制手段
90 サクションフィルタ
163 筒部材
163a 底部
163c 周壁部

Claims (10)

  1.  燃料タンク内に配置され、サクションフィルタを介して前記燃料タンク内の燃料を吸入し、内燃機関へ圧送する燃料ポンプと、
     前記燃料ポンプ内で発生したベーパを排出する脱気孔と、
     を備えた燃料供給装置であって、
     一方端部が前記脱気孔と接続され、前記脱気孔から排出された前記ベーパを通流させて他方端部の排出口から排出可能な排出管を備え、
     前記排出管の前記排出口は、前記脱気孔よりも上方に配置され、
     前記排出管の前記他方端部には、前記排出口および前記他方端部の外周面を覆うように異物侵入抑制手段が設けられ、
     前記排出管の前記他方端部の前記外周面と、前記異物侵入抑制手段との間には、前記排出口を介して前記排出管の内部と連通する脱気排出路が設けられている燃料供給装置。
  2.  請求項1に記載の燃料供給装置であって、
     前記燃料ポンプを支持するとともに前記燃料タンクに固定されるフランジユニットを備え、
     前記フランジユニットは、
      前記燃料タンクの上壁に取り付けられるフランジ部と、
       前記フランジ部に設けられ、前記燃料ポンプを覆うアッパーカップと、
       前記アッパーカップの径方向外側に設けられ、前記フランジ部から立設された壁部と、
     を有し、
     前記異物侵入抑制手段は、前記フランジユニットであり、
     前記排出管の前記他方端部は、前記アッパーカップと前記壁部との間に配置されて、前記フランジ部と前記アッパーカップと前記壁部とにより覆われ、
     前記他方端部の前記外周面と、前記アッパーカップおよび前記壁部との間には、前記脱気排出路が設けられている燃料供給装置。
  3.  請求項1に記載の燃料供給装置であって、
     前記排出管の前記他方端部の前記外周面には、前記燃料を濾過可能な多孔部材が設けられている燃料供給装置。
  4.  請求項2に記載の燃料供給装置であって、
     前記排出管の前記他方端部の前記外周面には、前記燃料を濾過可能な多孔部材が設けられている燃料供給装置。
  5.  請求項1に記載の燃料供給装置であって、
     前記排出管の開口面積は、前記脱気孔の開口面積よりも大きく形成されている燃料供給装置。
  6.  請求項2に記載の燃料供給装置であって、
     前記排出管の開口面積は、前記脱気孔の開口面積よりも大きく形成されている燃料供給装置。
  7.  請求項3に記載の燃料供給装置であって、
     前記排出管の開口面積は、前記脱気孔の開口面積よりも大きく形成されている燃料供給装置。
  8.  請求項4に記載の燃料供給装置であって、
     前記排出管の開口面積は、前記脱気孔の開口面積よりも大きく形成されている燃料供給装置。
  9.  請求項1に記載の燃料供給装置であって、
     前記異物侵入抑制手段は、前記他方端部の前記排出口と対向する底部と、前記他方端部の前記外周面を囲繞する周壁部と、を有し、前記他方端部に装着された筒部材であり、
     前記他方端部の前記外周面と、前記筒部材の前記周壁部との間には、前記脱気排出路が設けられている燃料供給装置。
  10.  請求項9に記載の燃料供給装置であって、
     前記筒部材の前記底部および前記周壁部の少なくともいずれかの一部には、前記燃料を濾過可能な多孔部材が設けられている燃料供給装置。
PCT/JP2014/057289 2013-03-26 2014-03-18 燃料供給装置 WO2014156817A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480016303.0A CN105190013B (zh) 2013-03-26 2014-03-18 燃料供给装置
BR112015023734-7A BR112015023734B1 (pt) 2013-03-26 2014-03-18 Dispositivo de suprimento de combustível

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-063825 2013-03-26
JP2013063825A JP5663624B2 (ja) 2013-03-26 2013-03-26 燃料供給装置

Publications (1)

Publication Number Publication Date
WO2014156817A1 true WO2014156817A1 (ja) 2014-10-02

Family

ID=51623797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057289 WO2014156817A1 (ja) 2013-03-26 2014-03-18 燃料供給装置

Country Status (5)

Country Link
JP (1) JP5663624B2 (ja)
CN (1) CN105190013B (ja)
AR (1) AR095710A1 (ja)
BR (1) BR112015023734B1 (ja)
WO (1) WO2014156817A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017194007A (ja) * 2016-04-20 2017-10-26 愛三工業株式会社 燃料供給装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6487750B2 (ja) * 2015-03-31 2019-03-20 株式会社ケーヒン 燃料供給装置
CN107061082A (zh) * 2017-02-17 2017-08-18 广西玉柴机器股份有限公司 电控共轨发动机无忧启动系统
JP7202826B2 (ja) * 2018-09-19 2023-01-12 株式会社ミツバ 燃料供給装置
JP7198796B2 (ja) 2020-09-23 2023-01-04 本田技研工業株式会社 燃料ポンプユニットカバー及びその取付方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62214294A (ja) * 1986-03-17 1987-09-21 Nippon Denso Co Ltd 燃料ポンプ装置
JP2008180112A (ja) * 2007-01-23 2008-08-07 Hitachi Ltd 燃料供給装置
JP2008274820A (ja) * 2007-04-27 2008-11-13 Aisan Ind Co Ltd 燃料ポンプ及び燃料ポンプ装置
JP2011047398A (ja) * 2009-08-27 2011-03-10 Hyundai Motor Co Ltd 車両の燃料ポンプ潤滑油ベント構造

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3116303B2 (ja) * 1997-08-29 2000-12-11 株式会社ケーヒン 燃料噴射装置におけるベーパーセパレータ
US6311675B2 (en) * 1999-04-28 2001-11-06 Walbro Corporation Vent valve and fuel pump module
JP2003214276A (ja) * 2002-01-24 2003-07-30 Mikuni Corp 燃料供給装置
JP2010001761A (ja) * 2008-06-18 2010-01-07 Aisan Ind Co Ltd 燃料供給装置
JP4923123B2 (ja) * 2010-03-24 2012-04-25 株式会社ミツバ 燃料供給装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62214294A (ja) * 1986-03-17 1987-09-21 Nippon Denso Co Ltd 燃料ポンプ装置
JP2008180112A (ja) * 2007-01-23 2008-08-07 Hitachi Ltd 燃料供給装置
JP2008274820A (ja) * 2007-04-27 2008-11-13 Aisan Ind Co Ltd 燃料ポンプ及び燃料ポンプ装置
JP2011047398A (ja) * 2009-08-27 2011-03-10 Hyundai Motor Co Ltd 車両の燃料ポンプ潤滑油ベント構造

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017194007A (ja) * 2016-04-20 2017-10-26 愛三工業株式会社 燃料供給装置

Also Published As

Publication number Publication date
JP5663624B2 (ja) 2015-02-04
AR095710A1 (es) 2015-11-04
BR112015023734B1 (pt) 2021-11-09
CN105190013A (zh) 2015-12-23
JP2014190167A (ja) 2014-10-06
CN105190013B (zh) 2017-03-15
BR112015023734A2 (pt) 2017-07-18

Similar Documents

Publication Publication Date Title
WO2014156817A1 (ja) 燃料供給装置
JPWO2018030373A1 (ja) 駆動装置
WO2013180099A1 (ja) 燃料供給装置
JP5335648B2 (ja) 燃料供給装置
WO2012086634A1 (ja) 燃料供給装置
JP2011117323A (ja) 燃料供給装置
JP2013029049A (ja) 車両用燃料供給装置
JP5745879B2 (ja) 燃料供給装置
JP5809948B2 (ja) 燃料供給ユニット
JP5756354B2 (ja) 燃料供給装置
JP5285057B2 (ja) 燃料供給装置
JP2009209720A (ja) 車両用燃料供給装置
WO2017163835A1 (ja) 燃料供給装置
JP2011153603A (ja) 燃料供給装置
JP2010090830A (ja) 車両用燃料供給装置
WO2024135311A1 (ja) 燃料供給装置
JP2012163014A (ja) 燃料供給装置
JP2021060009A (ja) 燃料供給装置
JP2013064329A (ja) 燃料供給装置
JP7202826B2 (ja) 燃料供給装置
JP4978247B2 (ja) 燃料ポンプ
JP6257445B2 (ja) 燃料供給装置
US11331602B2 (en) Fuel filter with rotatable sleeve
JP2011153605A (ja) 燃料供給装置
JP4960470B2 (ja) 燃料供給装置および燃料供給システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480016303.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201506126

Country of ref document: ID

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015023734

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 14775283

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112015023734

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150915