WO2014156191A1 - 半導体発光素子の製造方法、および半導体発光素子 - Google Patents

半導体発光素子の製造方法、および半導体発光素子 Download PDF

Info

Publication number
WO2014156191A1
WO2014156191A1 PCT/JP2014/001841 JP2014001841W WO2014156191A1 WO 2014156191 A1 WO2014156191 A1 WO 2014156191A1 JP 2014001841 W JP2014001841 W JP 2014001841W WO 2014156191 A1 WO2014156191 A1 WO 2014156191A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide film
semiconductor light
aluminum nitride
light emitting
nitride substrate
Prior art date
Application number
PCT/JP2014/001841
Other languages
English (en)
French (fr)
Inventor
孔明 武田
哲史 山田
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to CN201480018911.5A priority Critical patent/CN105103312B/zh
Priority to KR1020157026539A priority patent/KR101709431B1/ko
Priority to JP2015508093A priority patent/JP5957142B2/ja
Priority to US14/779,664 priority patent/US20160049552A1/en
Priority to EP14775606.8A priority patent/EP2980862B1/en
Publication of WO2014156191A1 publication Critical patent/WO2014156191A1/ja
Priority to US15/652,300 priority patent/US10497832B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/005Oxydation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02513Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings

Definitions

  • the present invention relates to a method for manufacturing a semiconductor light emitting element and a semiconductor light emitting element, and more particularly to a method for manufacturing a semiconductor light emitting element in which a semiconductor layer is formed on an aluminum nitride substrate, and the semiconductor light emitting element.
  • a semiconductor light emitting device for example, a nitride semiconductor light emitting diode (LED), has a semiconductor laminated portion in which an n-type semiconductor layer, a light emitting layer, an electron block layer, and a p-type semiconductor layer are sequentially laminated on a substrate, and a voltage applied to the light emitting layer.
  • an electrode for applying voltage is provided. Then, the light generated in the light emitting layer is emitted to the outside of the semiconductor light emitting element from the externally exposed surface (upper surface, side surface) of the semiconductor stacked portion, the exposed surface (back surface, side surface) of the substrate, or the like.
  • Patent Document 1 the surface of the semiconductor layer and / or the surface of the sapphire substrate that is interfaced with the outside is dry-etched using an organic substance that is phase-separated as a mask. Describes a method of forming a concavo-convex structure having cone-shaped convex portions having a length of 100 nm or more and a base having a size of 1 to 500 nm.
  • Patent Document 2 describes a method for improving the light extraction efficiency of a light-emitting element by forming substantially polygonal irregularities on the surface of a sapphire substrate on which a semiconductor layer is formed using a mask and etching.
  • the present invention has been made in view of such circumstances, and has high mass productivity, and it is possible to emit semiconductor light while suppressing etching damage to the semiconductor layer and deterioration of crystallinity of the semiconductor layer in the semiconductor light emitting device. It is an object of the present invention to provide a method for manufacturing a semiconductor light emitting device capable of improving the light extraction efficiency of the device, and a semiconductor light emitting device.
  • the method for manufacturing a semiconductor light emitting device includes an installation step of installing an aluminum nitride substrate having a semiconductor layer formed on a first main surface in a chamber, and introducing water molecules into the chamber. In this state, the inside of the chamber is heated, and an oxide film including an amorphous oxide film and / or a crystalline oxide film is formed on the second main surface located on the opposite side of the first main surface of the aluminum nitride substrate. And an oxide film forming step to be formed.
  • the oxide film having a concavo-convex structure may be formed in the oxide film forming step.
  • the relative humidity in the chamber may be 50% or more and 100% or less in the oxide film forming step.
  • the temperature in the chamber may be 100 ° C. or higher and 140 ° C. or lower in the oxide film forming step.
  • the relative pressure in the chamber may be 0.01 MPa or more and 0.3 MPa or less in the oxide film forming step.
  • a semiconductor light emitting device includes a semiconductor layer formed on a first main surface of an aluminum nitride substrate, and a second layer located on the opposite side of the first main surface of the aluminum nitride substrate. And an oxide film having a refractive index smaller than that of the aluminum nitride substrate, the oxide film including an amorphous oxide film and / or a crystalline oxide film.
  • the semiconductor light emitting element may have a concavo-convex structure at an interface between the oxide film and the aluminum nitride substrate.
  • the semiconductor light emitting device may have a concavo-convex structure on the surface of the oxide film.
  • the oxide film has a laminated structure including a plurality of oxide films including the amorphous oxide film and the crystalline oxide film, and the oxide film has the amorphous oxide film and the crystallinity.
  • An uneven structure may be provided at the interface with the oxide film.
  • the oxide film has a laminated structure including a plurality of oxide films including the amorphous oxide film and the crystalline oxide film, and the oxide film is formed on the amorphous oxide film.
  • the structure may include a crystalline oxide film.
  • the oxide film may be an oxide film containing Al.
  • the oxide film may have a thickness of 10 nm to 5 ⁇ m.
  • the oxide film may include at least an amorphous oxide film, and the amorphous oxide film may have a thickness of 10 nm to 3 ⁇ m.
  • the oxide film may include at least a crystalline oxide film, and the thickness of the crystalline oxide film may be not less than 10 nm and not more than 2 ⁇ m.
  • the semiconductor layer may be a group III-V compound semiconductor layer containing at least an element selected from the group consisting of aluminum, gallium, nitrogen, and indium.
  • the second main surface of the aluminum nitride substrate may be a C plane in a hexagonal crystal and an N plane.
  • a semiconductor light emitting device includes an installation step of installing an aluminum nitride substrate having a semiconductor layer formed on a first main surface in a chamber, and a state in which water molecules are introduced into the chamber.
  • the second main surface of the aluminum nitride substrate is heat-treated, and an oxide film forming step for forming an oxide film including an amorphous oxide film on the second main surface is obtained. To do.
  • the inside of the chamber is heated in a state where water molecules are introduced into the chamber in which the aluminum nitride substrate is disposed.
  • an oxide film including an amorphous oxide film and / or a crystalline oxide film having a refractive index smaller than that of the aluminum nitride substrate can be formed on the second main surface of the aluminum nitride substrate.
  • the light extraction efficiency from the second main surface of the aluminum nitride substrate can be remarkably improved.
  • the step of forming the oxide film (that is, the oxide film forming step), it is not necessary to form a mask by using a photolithography technique, and further, the surface of the oxide film or the second main surface of the aluminum nitride substrate is not required. There is no need to perform a dry etching process. For this reason, mass productivity is good and etching damage to the aluminum nitride substrate and the semiconductor layer can be suppressed. Further, in the oxide film forming step, an oxide film is formed on the second main surface after forming the semiconductor layer.
  • a concavo-convex structure is formed on the second main surface.
  • the film formation process does not affect the generation of crystal defects during the growth of the semiconductor layer, and the deterioration of the crystallinity of the semiconductor layer can be suppressed.
  • FIG. 4 is a graph of output change with time of a semiconductor light emitting device oxidized and crystal-grown in Example 1.
  • the manufacturing method of the semiconductor light emitting device of this embodiment includes an installation step of installing an aluminum nitride (AlN) substrate having a semiconductor layer formed on a first main surface in a chamber, and water (H 2 O) in the chamber.
  • the installation step in the method for manufacturing a semiconductor light emitting device of this embodiment is a step of installing an aluminum nitride substrate having a semiconductor layer formed on the first main surface in a chamber.
  • the chamber is not particularly limited as long as an aluminum nitride substrate can be installed therein and water molecules can be introduced into the internal space.
  • the chamber is preferably provided with a mechanism that controls the relative humidity, temperature, and relative pressure while monitoring.
  • the oxide film forming step in the method for manufacturing a semiconductor light emitting device of the present embodiment includes heating the inside of the chamber with water molecules introduced into the chamber, and forming an amorphous oxide film on the second main surface of the aluminum nitride substrate. And / or an oxide film including a crystalline oxide film is formed. Moreover, it is preferable to form the oxide film by controlling processing conditions (relative humidity, temperature, relative pressure, processing time).
  • the oxide film may be a single layer of an amorphous oxide film or a crystalline oxide film, or a laminate of an amorphous oxide film and a crystalline oxide film.
  • a natural oxide film is formed on the surface of an aluminum nitride substrate by exposing the aluminum nitride substrate to the atmosphere.
  • this natural oxide film does not improve the light extraction efficiency.
  • the relative humidity in the chamber in the oxide film forming step is preferably 50% to 100%, and more preferably 65% to 100%.
  • the temperature in the chamber in the oxide film forming step is preferably 100 ° C. or higher and 140 ° C. or lower, and more preferably 105 ° C. or higher and 121 ° C. or lower.
  • the relative pressure (gauge pressure) in the chamber in the oxide film forming step is preferably 0.01 MPa or more and 0.3 MPa or less, and 0.01 MPa or more and 0.1 MPa. The following is more preferable.
  • an amorphous oxide film and / or a crystalline oxide film is formed on the second main surface of the aluminum nitride substrate by heating the inside of the chamber in a state where water molecules are present in the chamber.
  • An oxide film is formed.
  • the water vapor easily reacts with the second main surface of the aluminum nitride substrate, and the amorphous oxide film and / or the crystalline oxide film having the effect of improving light extraction. It is assumed that an oxide film containing is formed.
  • the amorphous oxide film having an effect of improving light extraction is obtained when the second main surface of the aluminum nitride substrate is processed at a temperature of 100 ° C. or higher, a relative humidity of 50% or higher, and a pressure higher than atmospheric pressure. Prominently formed.
  • the temperature in the chamber is high (for example, higher than 105 ° C.)
  • a crystalline oxide film having a concavo-convex structure tends to be formed on the surface.
  • This crystalline oxide film is presumed to be formed by hydrothermal synthesis.
  • the oxide film containing aluminum (Al) include, but are not limited to, aluminum oxide, aluminum hydroxide oxide, aluminum hydroxide, and a film in which aluminum nitride is mixed.
  • the reaction of the water vapor with the second main surface of the aluminum nitride substrate is controlled by controlling at least one of temperature, relative humidity, and relative pressure, or a combination thereof, and the form of the oxide film and surface irregularities Can be controlled.
  • oxide film forming process of this embodiment plasma or the like used in dry etching is not used. As a result, etching damage to the semiconductor layer is not caused, so that light emission efficiency reduction due to etching damage is suppressed.
  • an oxide film having an uneven structure is formed on the second main surface of the aluminum nitride substrate. Instead of providing an optical pattern having a light extraction effect on the surface of the substrate on which the semiconductor layer is grown (interface between the substrate and the semiconductor layer), an uneven structure is formed on the second main surface. Accordingly, since the generation of crystal defects during the growth of the semiconductor layer is not affected, the light emission efficiency due to crystal defects does not decrease.
  • the aluminum nitride substrate used in the method for manufacturing a semiconductor light emitting device of this embodiment may be made of a substance that is mainly composed of aluminum (Al) and nitrogen (N). Further, the aluminum nitride substrate has a particularly limited shape as long as it has a first main surface for forming a semiconductor layer and a second main surface for forming an oxide film in the oxide film forming step. Instead, it may be in the form of a wafer or in the form of an individual chip. The first main surface and the second main surface are preferably opposed in a substantially parallel relationship.
  • the aluminum nitride substrate may contain various dopants and impurities as necessary.
  • the aluminum nitride substrate may be polycrystalline or single crystal. From the viewpoint of forming a semiconductor layer with good crystallinity, a single crystal is preferable.
  • the method for producing the aluminum nitride substrate is not particularly limited. For example, a sublimation method, HVPE (Hydride vapor phase epitaxy) method, MOCVD (Metal Organic Chemical Vapor Deposition) method, Aluminum nitride obtained by an MBE (Molecular Beam Epitaxy) method or the like can be used.
  • the first main surface of the aluminum nitride substrate is preferably an Al plane, more preferably a C plane in hexagonal crystal, and more preferably an Al plane.
  • the second main surface of the aluminum nitride substrate is preferably a C plane in a hexagonal crystal and an N plane.
  • the second main surface of the aluminum nitride substrate is not subjected to CMP (Chemical Mechanical Polishing) from the viewpoint of further enhancing the light extraction efficiency improvement effect. It is preferable.
  • the semiconductor layer formed on the first main surface of the aluminum nitride substrate used in the method for manufacturing the semiconductor light emitting device of this embodiment is not particularly limited as long as it emits light when power is supplied to the semiconductor layer.
  • the semiconductor layer may be a single layer or may have a stacked structure in which a plurality of semiconductor layers having different constituent elements and constituent element ratios are stacked. From the viewpoint of improving luminous efficiency, the semiconductor layer preferably has a stacked structure, more preferably a stacked structure including an n-type semiconductor layer, a light-emitting layer, an electron block layer, and a p-type semiconductor layer, and supplies power. It is more preferable that the layered structure further includes a contact layer for reducing the contact resistance with the electrode in a region in contact with the electrode.
  • the light emitting layer preferably has a multiple quantum well (MQW) structure.
  • the semiconductor layer is preferably a compound semiconductor, more preferably a group III-V compound semiconductor, and includes an element selected from the group consisting of aluminum, gallium, nitrogen, and indium.
  • a III-V compound semiconductor layer is more preferable, and a nitride compound semiconductor is even more preferable.
  • the constituent elements and composition ratio of the semiconductor layer can be variously selected depending on which wavelength of light is emitted.
  • the first main surface of the aluminum nitride substrate is not formed with an electrode on the second main surface of the aluminum nitride substrate. It is preferable to form a mesa structure, an n-electrode, and a p-electrode in the semiconductor layer.
  • the oxide film formed by the method for manufacturing a semiconductor light emitting device of the present embodiment is not particularly limited as long as it is an oxide film including an amorphous oxide film and / or a crystalline oxide film (that is, only an amorphous oxide film or a crystal can be used). It may be only a crystalline oxide film or may include both an amorphous oxide film and a crystalline oxide film.)
  • the amorphous oxide film is preferably an oxide film containing Al. Further, from the viewpoint of improving luminous efficiency, an oxide film having an uneven structure is preferable.
  • the interface between the oxide film and the aluminum nitride substrate may have a concavo-convex structure, or the surface of the oxide film (that is, the surface opposite to the surface in contact with the aluminum nitride substrate) may have a concavo-convex structure.
  • the oxide film has a laminated structure including a plurality of oxide films including an amorphous oxide film and a crystalline oxide film, and the oxide film has an uneven structure at the interface between the amorphous oxide film and the crystalline oxide film. May be.
  • the crystalline oxide film is preferably a polycrystal containing Al.
  • the oxide film may have a laminated structure including a plurality of oxide films including an amorphous oxide film and a crystalline oxide film, and the oxide film may have a structure having a crystalline oxide film on the amorphous oxide film. .
  • the concavo-convex structure at the interface between the oxide film and the aluminum nitride substrate is evaluated to be flat (no concavo-convex structure) if the height of the concavo-convex structure described below is less than 10 nm, and is evaluated to have a concavo-convex structure if the height is 10 nm or more.
  • the height of the concavo-convex structure is preferably from 10 nm to 2 ⁇ m, more preferably from 50 nm to 1 ⁇ m, and further preferably from 100 nm to 500 nm.
  • the height of the concavo-convex structure is measured from an image obtained by photographing a cross section of the oxide film with a STEM (scanning transmission electron microscope) (imaging magnification: 40000 times).
  • a reference line parallel to the interface between the aluminum nitride substrate and the semiconductor layer is provided under the concavo-convex structure so as not to overlap with the concavo-convex structure portion.
  • the distance from the reference line to the concavo-convex structure (the surface of the oxide film and / or the interface between the oxide film and the aluminum nitride substrate) is read by a width of 3 ⁇ m from the reference line, and from the top with the longest distance to the top with the fifth longest distance.
  • 10-point average roughness R which is the difference between the average of the distance (Yp) and the average of the distance (Yv) from the bottom having the shortest distance to the fifth shortest bottom.
  • a top part and a bottom part mean the area
  • the cross-sectional image is taken until the number of images is 20 or more by moving from the shooting location to the adjacent field of view. To do.
  • the above-described calculation of the ten-point average roughness R is performed at five different cross sections, and the average value of the ten-point average roughness R at the five cross sections is defined as the height of the concavo-convex structure.
  • the oxide film may contain aluminum as a constituent element.
  • the oxide film containing aluminum includes, but is not limited to, aluminum oxide, aluminum hydroxide oxide, aluminum hydroxide, or a film in which these and aluminum nitride are mixed.
  • the refractive index of this oxide film is lower than the refractive index of aluminum nitride, which is the material of the substrate.
  • the refractive index of the above-mentioned aluminum oxide, aluminum hydroxide oxide, and aluminum hydroxide is lower than the refractive index of aluminum nitride.
  • the thickness of the oxide film is not particularly limited, but since the effect of improving the light extraction efficiency is not expected at a thickness of about a natural oxide film, the thickness of the oxide film is preferably 10 nm or more and 5 ⁇ m or less, preferably 100 nm or more and 5 ⁇ m or less. More preferably.
  • the thickness of the amorphous oxide film is preferably 10 nm to 3 ⁇ m, more preferably 50 nm to 2.5 ⁇ m, and more preferably 100 nm from the viewpoint of improving light extraction efficiency. More preferably, it is 2 ⁇ m or less.
  • the thickness of the crystalline oxide film is preferably 10 nm or more and 2 ⁇ m or less, more preferably 50 nm or more and 1.5 ⁇ m or less, and further preferably 100 nm or more and 1 ⁇ m or less.
  • the thickness of the oxide film is measured by photographing a cross section of the oxide film with a STEM.
  • the thickness measurement direction is a direction perpendicular to the interface between the aluminum nitride substrate and the semiconductor layer.
  • the thickness measurement direction is a direction perpendicular to the interface between the aluminum nitride substrate and the semiconductor layer.
  • FIG. 12A when the interface between the oxide film and the aluminum nitride substrate is flat, the value measured at one place is taken as the thickness of the oxide film.
  • the oxide film or the aluminum nitride substrate has a concavo-convex structure, since the concave portion and the convex portion appear repeatedly, the thickness varies depending on the measurement location. For example, as shown in FIG.
  • the concavo-convex and convex parts of all the concavo-convex structures in the underlayer are used as a reference.
  • the average value of the values measured in step 1 is defined as the oxide film thickness.
  • the magnification for imaging was 300000 times when the thickness of the oxide film was 10 nm to 100 nm, 20000 times when the thickness was 100 nm to 3 ⁇ m, and 5000 times when the thickness was 3 ⁇ m to 5 ⁇ m.
  • the whole mechanism of improving the light extraction efficiency of the semiconductor light emitting device by the oxide film formed by the method of manufacturing a semiconductor light emitting device of this embodiment is not clear, aluminum nitride is formed on the second main surface of the aluminum nitride substrate. Since the oxide film with a lower refractive index than the substrate is arranged, the critical angle defined by Snell's law can be designed to be large at the interface between the aluminum nitride substrate and the oxide film, and the reflection of incident light is reduced accordingly. However, it is assumed that the extraction efficiency increases. Furthermore, the oxide film formed according to this embodiment suppresses reflection of light at the interface between the substrate and the oxide film because the density and composition of the oxide film continuously or discontinuously change. It is assumed that the light extraction efficiency is improved.
  • the oxide film has a laminated structure of an amorphous oxide film and a crystalline oxide film, it is presumed that the light extraction efficiency due to the above-described mechanism is more significantly improved.
  • the surface of the oxide film, the interface between the oxide films (for example, the interface between the amorphous oxide film and the crystalline oxide film), and / or the interface between the oxide film and the aluminum nitride substrate have an uneven structure, the light scattering effect
  • the light extraction efficiency can be improved by the above.
  • a semiconductor light emitting device with further improved light extraction efficiency can be obtained.
  • FIG. 1 is a schematic diagram showing a configuration example of an oxide film forming apparatus 50 suitable for use in this embodiment.
  • 2A to 2D are cross-sectional views showing the method of manufacturing the semiconductor light emitting device 100 according to this embodiment in the order of steps.
  • an oxide film forming apparatus 50 for forming the oxide film 20 on the second main surface 1b of the aluminum nitride substrate 1 that is, performing the installation process and the oxide film forming process is provided. Prepare in advance.
  • this oxide film forming apparatus 50 is placed in a chamber 51 that can be hermetically sealed so that the interior can be maintained at atmospheric pressure or higher, and supports an aluminum nitride substrate (for example, a wafer) 1.
  • the heater 81 that heats the inside of the chamber 51, the H 2 O supply source 61, and the heater 81 are respectively controlled, and the relative humidity and temperature in the chamber 51 are in a preset (ie, predetermined) range, respectively.
  • a control unit 90 for controlling as described above.
  • a heater may be built in the stage 53, and the heater built in the stage 53 may heat the inside of the chamber.
  • the relative pressure (gauge pressure) inside the chamber 51 is determined by the relative humidity and temperature inside the chamber 51. That is, the relative pressure inside the chamber 51 is not an independent parameter.
  • the relative pressure inside the chamber 51 is controlled by the control unit 90 (or set in advance by an apparatus administrator who manages the oxide film forming apparatus 50).
  • the temperature and relative humidity inside the chamber 51 are set higher than in the standby state. By doing so, it can be made relatively higher than atmospheric pressure.
  • the oxide film forming apparatus 50 may be provided with a pressure pump that can intentionally control the relative pressure inside the chamber 51.
  • the H 2 O supply source 61 has a water tank (not shown) in the oxide film forming apparatus 50 and a water tank heater (heater different from that for chamber heating).
  • the water tank heater supplies water in the water tank.
  • a configuration may be adopted in which heated water is supplied into the chamber 51 through the nozzle 55.
  • the relative humidity in the chamber 51 depends on the output of the water tank heater and the atmospheric temperature in the chamber.
  • the output of the water tank heater may be controlled by the control unit 90 or may be a preset value set in advance by the apparatus administrator.
  • an aluminum nitride substrate 1 is prepared. As shown in FIG. 2A, the aluminum nitride substrate 1 has a first main surface 1a and a second main surface 1b located on the opposite side of the first main surface 1a. As shown in FIG. 2B, an n-type semiconductor layer 11, a light emitting layer 13, an electron block layer 15, and a p-type semiconductor layer 17 are sequentially stacked on the first main surface 1a of the aluminum nitride substrate 1, The semiconductor layer 10 containing is formed. The semiconductor layer 10 is formed by, for example, the MBE method or the MOCVD method. Next, as shown in FIG. 2C, the semiconductor layer 10 is patterned into a mesa shape using a photolithography technique and an etching technique.
  • an insulating film 31 is deposited on the first main surface 1a of the aluminum nitride substrate 1 to cover the semiconductor layer 10 patterned in a mesa shape (ie, mesa structure).
  • the insulating film 31 is a silicon oxide film (SiO 2 ), for example, and is formed by, for example, a CVD method.
  • the insulating film 31 is partially removed to form contact holes having the n-type semiconductor layer 11 and the p-type semiconductor layer 17 as bottom surfaces.
  • a metal film is selectively deposited so as to fill the contact hole by using a photolithography technique and a lift-off technique.
  • the metal film is deposited by, for example, an evaporation method.
  • the aluminum nitride substrate 1 on which the electrode portion 35 is formed is placed on the stage 53 of the oxide film forming apparatus 50 shown in FIG.
  • the aluminum nitride substrate 1 is placed on the stage 53 with the second main surface 1b of the aluminum nitride substrate 1 facing upward (ie, the nozzle 55 side) (installation step).
  • the interior of the chamber 51 is heated with water molecules introduced into the chamber 51.
  • the second main surface 1b of the aluminum nitride substrate 1 is heat-treated to form an oxide film 20 including an amorphous oxide film 21 on the second main surface 1b (see FIG. 2D). Oxide film forming step).
  • control unit 90 shown in FIG. 1 controls the H 2 O supply source 61 and the heater 81, for example, so that the heat treatment conditions (relative humidity, temperature, relative pressure, treatment time) of the aluminum nitride substrate 1 are predetermined. Control to be within range. Further, the control unit 90 may further form a crystalline oxide film 23 having a concavo-convex structure on the amorphous oxide film 21 on the second main surface 1b by controlling the heat treatment conditions. The crystalline oxide film 23 is formed at the same time as the amorphous oxide film 21 is formed in the oxide film forming step.
  • the semiconductor light emitting device 100 is completed.
  • the inside of the chamber 51 is heated in a state where water molecules are introduced into the chamber 51 in which the aluminum nitride substrate 1 is disposed.
  • the oxide film 20 including the amorphous oxide film 21 and / or the crystalline oxide film 23 having a refractive index smaller than that of the aluminum nitride substrate 1 is formed on the second main surface 1 b of the aluminum nitride substrate 1.
  • the light extraction efficiency from the second main surface 1b of the aluminum nitride substrate 1 can be remarkably improved.
  • the oxide film forming step In the step of forming the oxide film 20 (that is, the oxide film forming step), it is not necessary to perform an etching process on the surface of the oxide film 20 or the second main surface 1b of the aluminum nitride substrate 1. Therefore, mass productivity is good and etching damage to the aluminum nitride substrate 1 and the semiconductor layer 10 can be suppressed. Further, the oxide film forming step is performed after the semiconductor layer 10 is formed. Thus, an oxide film on the second main surface is not provided on the surface of the substrate on which the semiconductor layer is grown (an interface between the substrate and the semiconductor layer), but an optical uneven structure pattern having a light extraction effect is not provided. Form. Therefore, since the oxide film forming step does not affect the generation of crystal defects when the semiconductor layer 10 is grown, the deterioration of the crystallinity of the semiconductor layer 10 can be suppressed.
  • Example 1 An n-type semiconductor layer containing aluminum, gallium, and nitrogen, an MQW (multiple quantum well) light-emitting layer, an electron block layer, and a p-type semiconductor layer are sequentially formed on an aluminum nitride substrate using a MOCVD (metal organic chemical vapor deposition) apparatus.
  • MOCVD metal organic chemical vapor deposition
  • a mesa structure that exposes the n-type semiconductor layer is formed using a known lithography technique and dry etching technique, and electrodes are deposited on both the P and N-type semiconductor layers to form a second aluminum nitride substrate.
  • the main surface was ground to produce six semiconductor light emitting elements in the ultraviolet region.
  • each semiconductor light emitting element was set in a chamber and held for 1000 hours under conditions of a temperature of 121 ° C., a relative humidity of 100%, and a relative pressure of 0.1 MPa (installation process, oxide film formation process). During this time, when 50 hours, 100 hours, 250 hours, 350 hours, 450 hours, 550 hours, 750 hours, and 1000 hours have elapsed since the start of the treatment, each semiconductor light emitting element is taken out once, a current of 100 mA is applied, The emission intensity of the semiconductor light emitting device was measured and recorded.
  • 3 and 4 show SEM (Scanning Electron Microscope) images on the second main surface of the aluminum nitride substrate of the semiconductor light emitting device after being taken out of the chamber after the treatment for 500 hours. 3 and 4, it can be seen that a film having a concavo-convex structure is formed on the second main surface.
  • FIG. 5 shows a STEM image (20,000 times) of a cross section of the aluminum nitride substrate.
  • FIG. 5 shows that a first layer having a thickness of 550 nm and a second layer having a thickness of 300 nm and having an uneven surface are formed on the second main surface of the aluminum nitride substrate.
  • the height of the concavo-convex structure was measured from five cross-sectional STEM images (40000 times)
  • the height of the concavo-convex structure on the surface of the second layer was 160 nm
  • the second main surface of the first layer and the aluminum nitride substrate The height of the concavo-convex structure at the interface was 140 nm.
  • the height of the concavo-convex structure at the interface between the first layer and the second layer was less than 10 nm and was flat.
  • EDX energy dispersive X-ray analysis; energy dispersive X-ray spectroscopy
  • FIG. 6 shows a graph of the change with time of the output with respect to the processing time, where the initial value is 0 hours.
  • the horizontal axis in FIG. 6 represents the processing time (hr), and the vertical axis represents the light output change rate (%).
  • (1) to (6) are data of the six semiconductor light emitting elements in the ultraviolet region described above. It is understood that the output is improved by 30 to 80% or more after the processing (50 hr to 1000 hr) as compared with the initial value (0 hr) before the processing. That is, it is understood that the light extraction efficiency is dramatically improved by processing the second main surface of the aluminum nitride substrate in the chamber in the presence of water molecules.
  • Example 2 A semiconductor light-emitting device obtained by the same method as in Example 1 except that CMP polishing was performed after grinding the second main surface of the semiconductor light-emitting device, and the temperature was 121 ° C., the relative humidity was 100%, and the relative pressure was 0. It was kept for 50 hours under the condition of 1 MPa.
  • FIG. 7 shows an SEM image of the second main surface of the aluminum nitride substrate of the semiconductor light emitting device after processing. From FIG. 7, it can be seen that an oxide film having a concavo-convex structure is formed as in Example 1.
  • FIG. 8 shows a STEM image (20,000 times) of a cross section of the aluminum nitride substrate. From FIG.
  • an amorphous oxide film (first layer) having a thickness of 1400 nm and a crystalline oxide film (second layer) having a thickness of 250 nm and having an uneven surface are formed on the second main surface of the aluminum nitride substrate. It was found that it was formed.
  • the height of the concavo-convex structure was measured with five cross-sectional STEM images (40000 times), the height of the concavo-convex structure on the surface of the second layer was 100 nm.
  • the height of the concavo-convex structure at the interface between the first layer and the aluminum nitride substrate and the interface between the second layer and the first layer was less than 10 nm and was flat.
  • the emission intensity was compared before and after the treatment, the emission intensity was improved by 10% by the above treatment. Comparing Example 1 and Example 2, it is understood that it is more preferable that the interface between the aluminum nitride substrate and the first layer has a concavo-convex structure as in Example 1 from the viewpoint of improving luminous efficiency. .
  • the second of the aluminum nitride substrate before the heat treatment is performed in the chamber with water molecules introduced. It was also found that the condition of the main surface was caused. Specifically, it is understood that an uneven structure tends to be formed at the interface between the aluminum nitride substrate and the first layer after grinding.
  • Example 3 The semiconductor light-emitting device obtained by the same method as in Example 1 was ground at a temperature of 121 ° C., a relative humidity of 65%, and a relative pressure of 0, except that CMP polishing was performed after grinding the second main surface of the semiconductor light-emitting device. It was held for 50 hours under the condition of 0.03 MPa.
  • FIG. 9 shows an SEM image of the second main surface of the aluminum nitride substrate of the semiconductor light emitting device after the treatment. From FIG. 9, it can be seen that in Example 3, an oxide film having a concavo-convex structure is formed as in Example 1. When the emission intensity was compared before and after the treatment, the emission intensity was improved by 15% by the above treatment. This shows that a relative humidity of at least 65% or more is necessary to form an oxide film capable of improving the light extraction efficiency.
  • Example 4 A semiconductor light-emitting device obtained by the same method as in Example 1 was ground at a temperature of 105 ° C., a relative humidity of 100%, and a relative pressure of 0, except that CMP polishing was performed after grinding the second main surface of the semiconductor light-emitting device. It was held for 50 hours under the condition of 0.02 MPa.
  • FIG. 10 shows an SEM image of the second main surface of the aluminum nitride substrate of the semiconductor light emitting device after processing.
  • the surface state of the second main surface before the treatment is the same as that of Examples 2 and 3, whereas the surface state after the treatment is significantly different from those of Examples 2 and 3, and the second state before the treatment is It was a flat surface close to the second main surface.
  • FIG. 11 shows a STEM image (500000 times) of a cross section of the aluminum nitride substrate.
  • FIG. 11 shows that the first layer having a thickness of 32.7 nm is formed on the second main surface of the aluminum nitride substrate. It can also be seen that the interface between the first layer and the aluminum nitride substrate has a flat structure.
  • the sample of Example 4 had an emission intensity improved by 15% by the above treatment. From this, it is presumed that the light extraction efficiency is improved if an oxide film of at least 32.7 nm or more is formed.
  • Example 1 The semiconductor light-emitting device obtained by the same method as in Example 1 was ground at a temperature of 25 ° C., a relative humidity of 100%, and a relative pressure of 0 MPa, except that the second main surface of the semiconductor light-emitting device was ground and then further subjected to CMP polishing. For 50 hours.
  • the oxide film of 10 nm or more was not formed by the above treatment, and the emission intensity was not improved. That is, it is understood that a thick oxide film capable of improving light extraction efficiency is not formed on the second main surface of the aluminum nitride substrate unless the inside of the chamber is heated.
  • Example 2 The semiconductor light-emitting device obtained by the same method as in Example 1 was ground at a temperature of 121 ° C., a relative humidity of 0%, and a relative pressure of 0 MPa, except that the second main surface of the semiconductor light-emitting device was ground and then subjected to CMP polishing. For 50 hours. An oxide film of 10 nm or more was not formed by the above treatment, and the emission intensity was not improved by the above treatment. That is, when the relative humidity is too low (substantially no water molecules are introduced), a thick oxide film capable of improving the light extraction efficiency is not formed on the second main surface of the aluminum nitride substrate. Is understood. Table 1 summarizes the processing conditions and luminous intensity improvement rates of the examples and comparative examples.
  • the present invention relates to a method for manufacturing a semiconductor light-emitting device and a semiconductor light-emitting device, and more particularly to a nitride semiconductor light-emitting device formed on an aluminum nitride substrate and having high luminous efficiency.

Abstract

 第一の主面に半導体層が形成された窒化アルミニウム基板(1)をチャンバー(51)内に設置する設置工程と、チャンバー(51)内に水(HO)分子を導入した状態で該チャンバー(51)内を加熱し、窒化アルミニウム基板(1)の第一の主面の反対側に位置する第二の主面(1b)上に、アモルファス酸化膜を含む酸化膜を形成する酸化膜形成工程と、を備える。

Description

半導体発光素子の製造方法、および半導体発光素子
 本発明は、半導体発光素子の製造方法、および半導体発光素子に関し、詳細には窒化アルミニウム基板上に半導体層が形成された半導体発光素子の製造方法、および半導体発光素子に関する。
 半導体発光素子、例えば窒化物半導体の発光ダイオード(LED)は、基板上にn型半導体層、発光層、電子ブロック層、p型半導体層が順に積層された半導体積層部と、発光層に電圧を印加するための電極を備えていることが一般的である。
 そして、発光層で発生した光は、半導体積層部の外部露出面(上面、側面)や、基板の露出面(裏面、側面)などから半導体発光素子の外部に出射される。その際、半導体界面や半導体発光素子と空気との界面などにおいて、界面の屈折率から定まる全反射の制限から、臨界角以上の角度で入射した光は全反射を繰り返しながら半導体層内を伝搬し、その間に光の一部は半導体層内で自己吸収されたり、あるいは電極に吸収され熱に変換されたりしてしまい、外部への光取り出し効率が低下し、発光強度が減少してしまう。そのため、光取り出し効率を高めるために様々な工夫がなされている。
 中でも、臨界角以下で光が界面に入射するように半導体素子表面を加工することで、光取り出し効率を向上させる技術がよく用いられている。特許文献1では相分離する有機物をマスクとして用いて、外部と界面をなす半導体層の表面および/またはサファイア基板の表面をドライエッチングすることにより、半導体層の表面および/またはサファイア基板の表面に高さが100nm以上であり、底辺が1~500nmの大きさの異なる錐体形状の凸部を有する凹凸構造を形成する手法が記載されている。また、特許文献2にはマスクとエッチングを用いてサファイア基板の半導体層を形成する側の表面に略多角形状の凹凸を形成し発光素子の光取り出し効率を向上させる方法が記載されている。
特開2003-218383号公報 特開2012-238895号公報
 しかしながら、上記特許文献1、2に記載された技術に代表される従来技術では、以下の点でなお改善の余地を有していた。
 従来技術のように、フォトリソグラフィ工程や有機物の相分離を利用して被加工面にマスクを形成し、マスクを利用してエッチング工程を実施する方法によれば、所望の凹凸パターンを基板表面に形成することができる。しかしながら、マスクを用いて凹凸パターンを形成する方法は、マスクの形成工程に多段階の工程が必要となるため量産性が悪く、また製造コストが増大する。
 また、特許文献1のようにドライエッチングで凹凸構造を形成する技術では、被加工面の表面のみならず、内部の半導体層にエッチングダメージを与えてしまうため、半導体発光素子の光出力を劣化させる恐れがある。さらに、特許文献2に開示された基板の半導体層を成長させる側の表面(基板と半導体層との界面)に光取り出し効果のある光学的な凹凸構造のパターンを設ける技術では、凹凸構造の基板表面上に半導体層を形成しなければならないため、半導体層結晶性が劣化し、光出力が低下する恐れがある。
 そこで、本発明は、このような事情に鑑みてなされたものであって、量産性が良く、半導体発光素子における半導体層へのエッチングダメージや半導体層の結晶性の劣化を抑制しつつ、半導体発光素子の光取り出し効率を向上することが可能な半導体発光素子の製造方法、および半導体発光素子を提供することを目的とする。
 本発明者らは上記課題を解決するために鋭意検討した結果、下記の半導体発光素子の製造方法または下記の半導体発光素子により、上記課題を解決できることを見出した。
 即ち、本発明の一態様に係る半導体発光素子の製造方法は、第一の主面に半導体層が形成された窒化アルミニウム基板をチャンバー内に設置する設置工程と、前記チャンバー内に水分子を導入した状態で該チャンバー内を加熱し、前記窒化アルミニウム基板の前記第一の主面の反対側に位置する第二の主面上に、アモルファス酸化膜および/または結晶性酸化膜を含む酸化膜を形成する酸化膜形成工程と、を備えることを特徴とする。
 また、上記の半導体発光素子の製造方法では、前記酸化膜形成工程において、表面が凹凸構造の前記酸化膜を形成することを特徴としてもよい。
 また、上記の半導体発光素子の製造方法では、前記酸化膜形成工程において、前記チャンバー内の相対湿度が50%以上100%以下であることを特徴としてもよい。
 また、上記の半導体発光素子の製造方法では、前記酸化膜形成工程において、前記チャンバー内の温度が100℃以上140℃以下であることを特徴としてもよい。
 また、上記の半導体発光素子の製造方法では、前記酸化膜形成工程において、前記チャンバー内の相対圧力が0.01MPa以上0.3MPa以下であることを特徴としてもよい。
 本発明の一態様に係る半導体発光素子は、窒化アルミニウム基板の第一の主面上に形成された半導体層と、前記窒化アルミニウム基板の前記第一の主面の反対側に位置する第二の主面上に形成された、前記窒化アルミニウム基板よりも屈折率の小さい酸化膜と、を備え、前記酸化膜が、アモルファス酸化膜および/または結晶性酸化膜を含むことを特徴とする。
 また、上記の半導体発光素子において、前記酸化膜と前記窒化アルミニウム基板との界面に凹凸構造を有することを特徴としてもよい。
 また、上記の半導体発光素子において、前記酸化膜の表面に凹凸構造を有することを特徴としてもよい。
 また、上記の半導体発光素子において、前記酸化膜が前記アモルファス酸化膜および前記結晶性酸化膜を含む複数の酸化膜からなる積層構造であり、かつ、前記酸化膜は前記アモルファス酸化膜と前記結晶性酸化膜との界面に凹凸構造を有することを特徴としてもよい。
 また、上記の半導体発光素子において、前記酸化膜が前記アモルファス酸化膜および前記結晶性酸化膜を含む複数の酸化膜からなる積層構造であり、かつ、前記酸化膜は前記アモルファス酸化膜の上に前記結晶性酸化膜を有する構造であることを特徴としてもよい。
 また、上記の半導体発光素子において、前記酸化膜が、Alを含む酸化膜であることを特徴としてもよい。
 また、上記の半導体発光素子において、前記酸化膜の厚さが、10nm以上5μm以下あることを特徴としてもよい。
 また、上記の半導体発光素子において、前記酸化膜が少なくともアモルファス酸化膜を含み、前記アモルファス酸化膜の厚さが、10nm以上3μm以下であることを特徴としてもよい。
 また、上記の半導体発光素子において、前記酸化膜が少なくとも結晶性酸化膜を含み、前記結晶性酸化膜の厚さが、10nm以上2μm以下であることを特徴としてもよい。
 また、上記の半導体発光素子において、前記半導体層は、少なくとも、アルミニウム、ガリウム、窒素、およびインジウムからなる群より選択される元素を含むIII-V族化合物半導体層であることを特徴としてもよい。
 また、上記の半導体発光素子において、前記窒化アルミニウム基板の第二の主面が六方晶におけるC面で、かつN面であることを特徴としてもよい。
 本発明の別の態様に係る半導体発光素子は、第一の主面に半導体層が形成された窒化アルミニウム基板をチャンバー内に設置する設置工程と、前記チャンバー内に水分子を導入した状態で前記窒化アルミニウム基板の第二の主面を熱処理して、該第二の主面上に、アモルファス酸化膜を含む酸化膜を形成する酸化膜形成工程と、を実行することにより得られることを特徴とする。
 本発明の一態様によれば、窒化アルミニウム基板が配置されたチャンバー内に水分子を導入した状態で該チャンバー内を加熱する。これにより、窒化アルミニウム基板の第二の主面上に、窒化アルミニウム基板よりも屈折率の小さい、アモルファス酸化膜および/または結晶性酸化膜を含む酸化膜を形成することができる。その結果、窒化アルミニウム基板の第二の主面からの光取り出し効率を格段に向上させることが可能となる。
 また、上記の酸化膜を形成する工程(即ち、酸化膜形成工程)では、フォトリソ技術を用いてマスクを形成する必要はなく、さらに、酸化膜の表面や窒化アルミニウム基板の第二の主面にドライエッチング処理を実施する必要がない。このため、量産性が良く、窒化アルミニウム基板や半導体層へのエッチングダメージを抑制することができる。
 さらに、上記の酸化膜形成工程は半導体層を形成した後に第二の主面上に酸化膜を形成をする。基板の半導体層を成長させる側の表面(基板と半導体層との界面)に光取り出し効果のある光学的なパターンを設けるのではなく、第二の主面上に凹凸構造を形成するため、酸化膜形成工程が半導体層成長時の結晶欠陥発生に影響を与えることはなく、半導体層の結晶性の劣化を抑制することができる。
本実施形態に用いて好適な酸化膜形成装置50の構成例を示す模式図。 本実施形態に係る半導体発光素子100の製造方法を工程順に示す断面図。 実施例1で処理した第二の主面を表面を観察したSEM画像。 実施例1で処理した第二の主面を観察したSEM画像。 実施例1で処理した第二の主面を観察したSTEM画像。 実施例1で酸化・結晶成長した半導体発光素子の出力経時変化のグラフ。 実施例2で処理した第二の主面を観察したSEM画像。 実施例2で処理した第二の主面を観察したSTEM画像。 実施例3で処理した第二の主面を観察したSEM画像。 実施例4で処理した第二の主面を観察したSEM画像。 実施例4で処理した第二の主面を観察したSTEM画像。 酸化膜の厚さの測定方法を示すための断面模式図。
 以下、本発明を実施するための形態(以下、本実施形態と称する)について、詳細に説明する。
<半導体発光素子の製造方法>
 本実施形態の半導体発光素子の製造方法は、第一の主面に半導体層が形成された窒化アルミニウム(AlN)基板をチャンバー内に設置する設置工程と、前記チャンバー内に水(HO)分子を導入した状態で該チャンバー内を加熱し、前記窒化アルミニウム基板の第二の主面上にアモルファス酸化膜および/または結晶性酸化膜を含む酸化膜を形成する酸化膜形成工程と、を備える。
 [設置工程]
 本実施形態の半導体発光素子の製造方法における設置工程は、第一の主面に半導体層が形成された窒化アルミニウム基板をチャンバー内に設置する工程である。
 前記チャンバーは、内部に窒化アルミニウム基板を設置することが可能であり、内部空間に水分子を導入することが可能なものであれば特に制限されない。酸化膜形成工程において、相対湿度・温度・相対圧力を所望の範囲に制御する場合は、チャンバーがこれら相対湿度・温度・相対圧力をモニタしながら制御する機構を備えていることが好ましい。
 [酸化膜形成工程]
 本実施形態の半導体発光素子の製造方法における酸化膜形成工程は、前記チャンバー内に水分子を導入した状態で前記チャンバー内を加熱し、前記窒化アルミニウム基板の第二の主面上にアモルファス酸化膜および/または結晶性酸化膜を含む酸化膜を形成する。
 また、処理条件(相対湿度、温度、相対圧力、処理時間)を制御することにより、前記酸化膜を形成するのが好ましい。前記酸化膜は、アモルファス酸化膜または結晶性酸化膜の単層でも、アモルファス酸化膜と結晶性酸化膜との積層でも良い。
 なお、大気中に窒化アルミニウム基板を曝すことにより窒化アルミニウム基板の表面に自然酸化膜が形成されることは知られている。しかしながら、この自然酸化膜では光取り出し効率の向上は生じず、チャンバー内に水分子を導入した状態で意図的に前記チャンバー内を加熱することで得られる窒化アルミニウム基板の第二の主面上のアモルファス酸化膜および/または結晶性酸化膜を含む酸化膜によって、第二の主面からの光取り出し効率の向上の効果を奏することが後述の実施例において確認されている。
 光取り出し効率をより高める酸化膜を形成する観点から、酸化膜形成工程におけるチャンバー内の相対湿度は、50%以上100%以下が好ましく、65%以上100%以下がより好ましい。
 また、光取り出し効率をより高める酸化膜を形成する観点から、酸化膜形成工程におけるチャンバー内の温度は、100℃以上140℃以下が好ましく、105℃以上121℃以下がより好ましい。
 また、光取り出し効率をより高める酸化膜を形成する観点から、酸化膜形成工程におけるチャンバー内の相対圧力(ゲージ圧)は、0.01MPa以上0.3MPa以下が好ましく、0.01MPa以上0.1MPa以下がより好ましい。
 以下、酸化膜形成工程における酸化膜形成のメカニズムについて説明する。本実施形態における酸化膜形成工程は、チャンバー内に水分子が存在する状態で前記チャンバー内を加熱することで窒化アルミニウム基板の第二の主面上にアモルファス酸化膜および/または結晶性酸化膜を含む酸化膜を形成する。このため、自然酸化膜が形成されるときの条件と比較して、水蒸気が窒化アルミニウム基板の第二の主面と反応しやすく、光取り出し向上効果のあるアモルファス酸化膜および/または結晶性酸化膜を含む酸化膜を形成するものと推察される。本実施形態における、光取り出し向上効果のあるアモルファス酸化膜は、温度が100℃以上、相対湿度が50%以上、大気圧よりも高い圧力で窒化アルミニウム基板の第二の主面を処理したときに顕著に形成される。
 また、チャンバー内の温度が高い場合(例えば105℃より高い場合)、表面が凹凸構造の結晶性酸化膜が形成される傾向にあることが後述の実施例によって確認されている。この結晶性酸化膜は水熱合成によって形成されるものと推察される。
 アルミニウム(Al)を含む酸化膜とは酸化アルミニウム、水酸化酸化アルミニウム、水酸化アルミニウムあるいはこれらと窒化アルミニウムが混在した膜などが挙げられるが、これに限定されない。酸化膜形成工程において、温度、相対湿度、相対圧力の少なくとも一つまたはそれらの組み合わせを制御することによって窒化アルミニウム基板の第二の主面と水蒸気の反応を制御し酸化膜や表面の凹凸の形態を制御することができる。
 本実施形態の酸化膜形成工程では、ドライエッチングで用いられるプラズマ等を使用しない。これにより、半導体層へのエッチングダメージを招来することがないため、エッチングダメージによる発光効率低減が抑制される。
 また、本実施形態の酸化膜形成工程は、半導体層を形成した後に、窒化アルミニウム基板の第二の主面上に凹凸構造を有する酸化膜を形成する。基板の半導体層を成長させる側の表面(基板と半導体層との界面)に光取り出し効果のある光学的なパターンを設けるのではなく、第二の主面上に凹凸構造を形成する。したがって、半導体層成長時の結晶欠陥発生に影響を与えないため、結晶欠陥由来の発光効率低減が生じない。
 [窒化アルミニウム基板]
 本実施形態の半導体発光素子の製造方法で用いられる窒化アルミニウム基板は、アルミニウム(Al)と窒素(N)を主たる構成元素である物質からなるものであればよい。
 また、該窒化アルミニウム基板は、半導体層を形成するための第一の主面と、酸化膜形成工程において酸化膜を形成するための第二の主面を有するものであれば、形状も特に制限されず、ウェハ状であってもよいし、個片化されたチップ状であってもよい。第一の主面と第二の主面は略平行な関係で対向していることが好ましい。
 また、該窒化アルミニウム基板は、必要に応じ種々のドーパントや不純物を含んでいてもよい。該窒化アルミニウム基板は多結晶でも単結晶でもよい。結晶性の良い半導体層を形成する観点から単結晶であることが好ましい。
 また、該窒化アルミニウム基板を製造する方法は特に制限されず、例えば昇華法やHVPE(Hydride vapor phase epitaxy;ハイドライド気相成長)法、MOCVD(Metal Organic Chemical Vapor Deposition;有機金属気相成長) 法、MBE(Molecular beam epitaxy;分子線エピタキシー)法などにより得られる窒化アルミニウムを用いることができる。
 半導体層の平坦性と結晶性向上の観点から窒化アルミニウム基板の第一の主面はAl面であることが好ましく、六方晶におけるC面であり、かつAl面であることがより好ましい。また、効率的に本実施形態における酸化膜を形成する観点から、窒化アルミニウム基板の第二の主面は六方晶におけるC面で、かつ、N面であることが好ましい。
 また、本実施形態の半導体発光素子の製造方法においては、光取り出し効率向上効果をより高める観点から、該窒化アルミニウム基板の第二の主面はCMP(Chemical Mechanical Polishing)処理されていないものであることが好ましい。
 [半導体層]
 本実施形態の半導体発光装置の製造方法で用いられる窒化アルミニウム基板の第一の主面上に形成される半導体層は、該半導体層に電力を供給すると光を発光するものであれば特に制限されない。
 該半導体層は、単層であってもよいし、構成元素や構成元素の比率が異なる複数の半導体層が積層された積層構造であってもよい。発光効率向上の観点から、該半導体層は積層構造であることが好ましく、n型半導体層、発光層、電子ブロック層、p型半導体層を有する積層構造であることがより好ましく、電力を供給するための電極と接する領域に電極との接触抵抗を小さくするコンタクト層をさらに有する積層構造であることがよりさらに好ましい。
 発光効率向上の観点から、前記発光層は多重量子井戸構造(MQW;Multi Quantum Well)であることが好ましい。
 発光波長を制御する観点から、半導体層は化合物半導体であることが好ましく、III-V族化合物半導体であることがより好ましく、アルミニウム、ガリウム、窒素、およびインジウムからなる群より選択される元素を含むIII-V族化合物半導体層であることがさらに好ましく、窒化物化合物半導体であることがよりさらに好ましい。半導体層の構成元素や組成比は、どの波長の光を発光させるかにより種々選択することが可能であり、窒化物化合物半導体を用いる場合、例えば、窒化ガリウム、窒化アルミニウム、窒化インジウム、窒化ホウ素、あるいはこれらの混晶を用いることが出来るがこれに限定されない。
 また、窒化アルミニウム基板の第二の主面から効率的に光を取り出す観点から、前記窒化アルミニウム基板の第二の主面に電極を形成するのではなく、前記窒化アルミニウム基板の第一の主面の半導体層にメサ構造とn電極、およびp電極を形成することが好ましい。
 [酸化膜]
 本実施形態の半導体発光素子の製造方法により形成される酸化膜は、アモルファス酸化膜および/または結晶性酸化膜を含む酸化膜であれば特に制限されない(即ち、アモルファス酸化膜のみでもよいし、結晶性酸化膜のみでもよいし、アモルファス酸化膜と結晶性酸化膜の両方を含んでいてもよい。)。
 発光効率向上の観点から、該アモルファス酸化膜はAlを含んだ酸化膜であることが好ましい。また、発光効率向上の観点から、凹凸構造を有する酸化膜であることが好ましい。即ち、酸化膜と窒化アルミニウム基板との界面が凹凸構造でもよいし、酸化膜の表面(即ち、酸化膜の窒化アルミニウム基板と接する面の反対側の面)が凹凸構造でもよい。また、酸化膜がアモルファス酸化膜および結晶性酸化膜を含む複数の酸化膜からなる積層構造であり、かつ、該酸化膜はアモルファス酸化膜と結晶性酸化膜との界面に凹凸構造を有していてもよい。該結晶性酸化膜は、Alを含んだ多結晶体であることが好ましい。また、酸化膜がアモルファス酸化膜および結晶性酸化膜を含む複数の酸化膜からなる積層構造であり、かつ、該酸化膜はアモルファス酸化膜の上に結晶性酸化膜を有する構造であってもよい。
 酸化膜と窒化アルミニウム基板との界面の凹凸構造は、後述の凹凸構造の高さが10nm未満であれば平坦(凹凸構造はない)と評価し、10nm以上であれば凹凸構造を有すると評価する。取り出し効率向上の観点から、凹凸構造の高さが10nm以上2μm以下であることが好ましく、50nm以上1μm以下であることがより好ましく、100nm以上500nm以下であることがさらに好ましい。
 前記凹凸構造の高さは酸化膜断面をSTEM(走査透過型電子顕微鏡;scanning transmission electron microscope)(撮影倍率:40000倍)で撮影した画像から計測される。まず、窒化アルミニウム基板と半導体層との界面に対して平行な基準線を、凹凸構造部と重複しないように凹凸構造の下に設ける。次に、基準線から凹凸構造(酸化膜の表面および/または酸化膜と窒化アルミニウム基板との界面)までの距離を基準線の幅3μm分読み取り、距離が最も長い頂部から5番目に長い頂部までの距離(Yp)の平均と、距離が最も短い底部から5番目に短い底部までの距離(Yv)の平均と、の差である十点平均粗さRを算出する。頂部および底部は傾きが基準線と平行になる領域を意味する。なお、基準線の幅3μmの範囲に頂部および底部が一つも存在しない場合は、凹凸構造の高さはゼロとする。また、基準線の幅3μmの範囲内の、頂部と底部の合計が1個以上20個以下の場合は、撮影した箇所から隣接する視野に移動して、20個以上になるまで断面像を撮影する。
 上述した十点平均粗さRの算出を、異なる5カ所の断面で行い、5カ所の断面の十点平均粗さRの平均値を凹凸構造の高さとする。
 前記酸化膜はアルミニウムを構成元素として含んでもよい。アルミニウムを含む酸化膜としては、前述のとおり、酸化アルミニウム、水酸化酸化アルミニウム、水酸化アルミニウムあるいはこれらと窒化アルミニウムが混在した膜が挙げられるが、これに限定されない。
 この酸化膜の屈折率は、基板の材料である窒化アルミニウムの屈折率よりも低くなる。特に、上述の酸化アルミニウム、水酸化酸化アルミニウム、水酸化アルミニウムの屈折率は、窒化アルミニウムの屈折率よりも低い。
 前記酸化膜の厚みは特に限定されないが、自然酸化膜程度の厚さでは光の取り出し効率向上効果は期待されないため、前記酸化膜の厚みは10nm以上5μm以下あることが好ましく、100nm以上5μm以下であることがより好ましい。前記酸化膜がアモルファス酸化膜と結晶性酸化膜の積層構造である場合、光取り出し効率向上の観点からアモルファス酸化膜の厚みは10nm以上3μm以下が好ましく、50nm以上2.5μm以下がより好ましく、100nm以上2μm以下がさらに好ましい。結晶性酸化膜の厚みは10nm以上2μm以下が好ましく、50nm以上1.5μm以下がより好ましく、100nm以上1μm以下であることがさらに好ましい。
 酸化膜の厚さは、酸化膜断面をSTEMで撮影して計測される。厚さの計測方向(軸)は前記窒化アルミニウム基板と半導体層との界面に対して面直方向とする。例えば図12(a)に示すように、酸化膜と窒化アルミニウム基板との界面が平坦な場合は、一か所で計測した値を酸化膜の厚さとする。また、酸化膜や窒化アルミニウム基板が凹凸構造を有する場合、凹部と凸部が繰り返し出現するため、計測箇所によって厚さが異なってしまう。例えば図12(b)に示すように、酸化膜と窒化アルミニウム基板(下地)との界面が凹凸構造を有する場合は、下地の凹凸構造を基準とし、下地の全ての凹凸構造の凹部と凸部で計測した値の平均値を酸化膜の厚さとする。撮像する倍率は酸化膜の厚みが、10nm~100nmの場合は300000倍、100nm~3μmの場合は20000倍、3μm~5μmの場合は5000倍とした。
 本実施形態の半導体発光素子の製造方法により形成される酸化膜によって、半導体発光素子の光取り出し効率が向上するメカニズムの全容は明らかではないが、窒化アルミニウム基板の第二の主面上に窒化アルミニウム基板より屈折率の小さい酸化膜が配置された構造となるため、窒化アルミニウム基板と酸化膜との界面において、スネルの法則で定義される臨界角を大きく設計でき、その分入射光の反射を抑制し、取り出し効率が増えるものと推察される。さらに本実施形態によって形成される酸化膜は、該酸化膜の密度や組成が連続的または非連続的に変化していることで、基板と酸化膜との界面での光の反射を抑制し、光取り出し効率を改善しているものと推察される。
 特に、前記酸化膜が、アモルファス酸化膜と結晶性酸化膜の積層構造となる場合、上述のメカニズムによる光取り出し効率がより顕著に向上するものと推察される。さらに酸化膜の表面、酸化膜の界面(例えば、アモルファス酸化膜と結晶性酸化膜との界面)、酸化膜と窒化アルミニウム基板との界面の少なくともいずれかに凹凸構造を有する場合、光の散乱効果による光取り出し効率向上も生じ得る。また、酸化膜の上に光の散乱効果を考慮した凹凸構造を形成することで、さらに光取り出し効率を向上させた半導体発光素子となる。
[プロセス・フローの一例]
 次に、図面を参照しながら、本実施形態に係るプロセス・フローについて、一例を挙げて説明する。ここでは、窒化アルミニウム基板から、本実施形態に係る半導体発光素子を完成させるまでを工程順に説明する。また、本実施形態に用いて好適な、酸化膜形成装置について説明する。
 図1は、本実施形態に用いて好適な酸化膜形成装置50の構成例を示す模式図である。また、図2(a)~(d)は、本実施形態に係る半導体発光素子100の製造方法を工程順に示す断面図である。
 本プロセス・フローでは、まず、窒化アルミニウム基板1の第二の主面1b上に酸化膜20を形成する(即ち、設置工程、酸化膜形成工程を実施する)ための、酸化膜形成装置50を予め用意しておく。
 図1に示すように、この酸化膜形成装置50は、内部を大気圧以上に維持できるように密閉可能なチャンバー51と、チャンバー51内に配置され、窒化アルミニウム基板(例えば、ウェハ)1を支持可能なステージ53と、チャンバー51内の上部中央に配置されたノズル55と、ノズル55を通してチャンバー51内に水(HO)分子を供給するHO供給源61と、チャンバー51の外周に設けられてチャンバー51内を加熱するヒーター81と、HO供給源61およびヒーター81をそれぞれ制御して、チャンバー51内の相対湿度、温度がそれぞれ予め設定した(即ち、所定の)範囲となるように制御する制御部90と、を備える。また、図示しないが、ステージ53にヒーターが内蔵されていてもよく、このステージ53に内蔵されたヒーターがチャンバー内を加熱してもよい。
 ここで、チャンバー51内部の相対圧力(ゲージ圧)は、チャンバー51内部の相対湿度、温度によって、その値が決まる。即ち、チャンバー51内部の相対圧力は、独立パラメータではない。チャンバー51内部の相対圧力は、制御部90によって制御される(または、酸化膜形成装置50を管理する装置管理者によって予め設定される)チャンバー51内部の温度および相対湿度を待機状態よりも高く設定することにより、大気圧よりも相対的に高くすることができる。また、図示はしないが、酸化膜形成装置50は、チャンバー51内部の相対圧力を意図的に制御することができる加圧ポンプを設けていてもよい。
 また、HO供給源61は、酸化膜形成装置50内に図示しない水槽と、水槽用ヒーター(チャンバー加熱用とは別のヒーター)とを有し、この水槽用ヒーターで水槽内の水を加熱し、気体となった水をノズル55を通してチャンバー51内に供給する構成でもよい。この場合、チャンバー51内の相対湿度は、水槽用ヒーターの出力とチャンバー内の雰囲気温度に依存する。水槽用ヒーターの出力は、制御部90が制御してもよいし、装置管理者によって予め設定される設定値としてもよい。
 次に、窒化アルミニウム基板1を用意する。図2(a)に示すように、窒化アルミニウム基板1は、第一の主面1aと、第一の主面1aの反対側に位置する第二の主面1bとを有する。図2(b)に示すように、窒化アルミニウム基板1の第一の主面1a上にn型半導体層11、発光層13、電子ブロック層15、p型半導体層17を順に積層して、これらを含む半導体層10を形成する。半導体層10の形成は、例えばMBE法やMOCVD法で行う。
 次に、図2(c)に示すように、フォトリソグラフィ技術およびエッチング技術を用いて、半導体層10をメサ形状にパターニングする。次に、窒化アルミニウム基板1の第一の主面1a上に絶縁膜31を堆積して、メサ形状にパターニングされた(即ち、メサ構造の)半導体層10を覆う。絶縁膜31は例えばシリコン酸化膜(SiO)であり、その形成は例えばCVD法で行う。
 そして、公知のフォトリソグラフィ技術およびエッチング技術を用いて、絶縁膜31を部分的に除去し、n型半導体層11とp型半導体層17をそれぞれ底面とするコンタクトホールを形成する。
 次に、フォトリソグラフィ技術およびリフトオフ技術を用いて、前記コンタクトホールを埋め込むように選択的に金属膜を堆積する。金属膜の堆積は、例えば蒸着法で行う。これにより、n型半導体層11と電気的に接続する電極部33と、p型半導体層17と電気的に接続する電極部35とを形成する。
 次に、電極部35を形成した窒化アルミニウム基板1を、図1に示した酸化膜形成装置50のステージ53上に設置する。ここでは、図1に示すように、窒化アルミニウム基板1の第二の主面1bを上方(即ち、ノズル55側)に向けた状態で、窒化アルミニウム基板1をステージ53上に設置する(設置工程)。
 そして、チャンバー51内に水分子を導入した状態で、チャンバー51内を加熱する。これにより、図2(d)に示すように、窒化アルミニウム基板1の第二の主面1bを熱処理して、第二の主面1b上にアモルファス酸化膜21を含む酸化膜20を形成する(酸化膜形成工程)。
 ここでは、図1に示した制御部90が、例えばHO供給源61およびヒーター81を制御して、窒化アルミニウム基板1の熱処理条件(相対湿度、温度、相対圧力、処理時間)が所定の範囲となるように制御する。また、制御部90が、熱処理条件を制御することにより、第二の主面1bのアモルファス酸化膜21上に、表面が凹凸構造の結晶性酸化膜23をさらに形成するようにしてもよい。結晶性酸化膜23は、酸化膜形成工程においてアモルファス酸化膜21が形成されるのと同時に形成される。
 そして、窒化アルミニウム基板1の第二の主面1b上に酸化膜20を形成した後、窒化アルミニウム基板1を酸化膜形成装置50のチャンバー51内から搬出する。以上の工程を経て、本実施形態に係る半導体発光素子100が完成する。
<実施形態の効果>
 本発明の実施形態によれば、窒化アルミニウム基板1が配置されたチャンバー51内に水分子を導入した状態で、チャンバー51内を加熱する。これにより、窒化アルミニウム基板1の第二の主面1b上に、窒化アルミニウム基板1よりも屈折率の小さい、アモルファス酸化膜21をおよび/または結晶性酸化膜23を含む酸化膜20を形成することができる。その結果、窒化アルミニウム基板1の第二の主面1bからの光取り出し効率を格段に向上させることが可能となる。
 また、上記の酸化膜20を形成する工程(即ち、酸化膜形成工程)では、酸化膜20の表面や窒化アルミニウム基板1の第二の主面1bにエッチング処理を実施する必要がない。このため、量産性が良く、窒化アルミニウム基板1や、半導体層10へのエッチングダメージを抑制することができる。
 さらに、上記の酸化膜形成工程は半導体層10を形成した後に行う。これにより、基板の半導体層を成長させる側の表面(基板と半導体層との界面)に光取り出し効果のある光学的な凹凸構造のパターンを設けるのではなく、第二の主面上に酸化膜を形成する。したがって、酸化膜形成工程が半導体層10成長時の結晶欠陥発生に影響を与えることはないため、半導体層10の結晶性の劣化を抑制することができる。
 実施例に基づいて本発明をさらに詳細に説明する。なお、本発明は以下の実施例に限定されるものではなく、適宜変更して実施可能なものである。
[実施例1]
 窒化アルミニウム基板上にMOCVD(有機金属気相成長)装置を用いてアルミニウム、ガリウム、窒素を含むn型半導体層、MQW(多重量子井戸)発光層、電子ブロック層、p型半導体層を順に成膜したウェハに、公知のリソグラフィー技術とドライエッチング技術を用いてn型半導体層が露出するようなメサ構造を形成し、P,N型半導体層の両方に電極を蒸着し、窒化アルミニウム基板の第二の主面を研削して、紫外域の半導体発光素子を6個作製した。
 次に、各半導体発光素子に100mAの電流を印加し、各半導体発光素子の発光強度を測定し、初期値として記録した。
 次に、各半導体発光素子をチャンバー内にセットし、温度121℃、相対湿度100%、相対圧力0.1MPaの条件で1000時間保持した(設置工程、酸化膜形成工程)。
 この間、処理開始から、50時間、100時間、250時間、350時間、450時間、550時間、750時間、1000時間経過した際に、一度各半導体発光素子を取り出し、100mAの電流を印加し、各半導体発光素子の発光強度を測定し、記録した。
 500時間処理後にチャンバーから取り出した後の半導体発光素子の窒化アルミニウム基板の第二の主面上のSEM(走査型電子顕微鏡;Scanning Electron Microscope)画像を図3、4に示す。図3、4から第二の主面上に表面が凹凸構造の膜が形成されていることがわかる。
 図5に、窒化アルミニウム基板の断面のSTEM画像(20000倍)を示す。図5から、窒化アルミニウム基板の第二の主面上に厚さが550nmの第1層と、厚さが300nmで、表面が凹凸の第2層が形成されていることがわかった。5カ所の断面STEM画像(40000倍)から凹凸構造の高さを測定したところ、第2層の表面の凹凸構造の高さは160nmであり、第1層と窒化アルミニウム基板の第二の主面との界面の凹凸構造の高さは140nmであった。また、第1層と第2層の界面の凹凸構造の高さは10nm未満であり、平坦であった。EDX(エネルギー分散型X線分析;Energy Dispersive X-ray spectrometry)と電子線回折により各層の組成・性状を分析したところ、第1層はAl:O=1:3のアモルファス酸化膜であり、第2層はAl:O=1:3の結晶性酸化膜であることがわかった。
 また、図6に、前記初期値を0時間として、処理時間に対する出力経時変化のグラフを示す。図6の横軸は処理時間(hr)を示し、縦軸は光出力変化率(%)を示す。図中の(1)~(6)は、上記した紫外域の半導体発光素子6個の各データである。処理前の初期値(0hr)に比べ処理後(50hr~1000hr)は出力が30~80%以上向上していることが理解される。即ち、窒化アルミニウム基板の第二の主面を水分子が存在する状態においてチャンバー内で処理することにより、光取り出し効率が劇的に向上したことが理解される。
[実施例2]
 半導体発光素子の第二の主面を研削した後に、さらにCMP研磨を行った以外は、実施例1と同様の方法で得られた半導体発光素子を温度121℃、相対湿度100%、相対圧力0.1MPaの条件で50時間保持した。
 処理後の半導体発光素子の窒化アルミニウム基板の第二の主面のSEM画像を図7に示す。図7から、実施例1と同様に表面が凹凸構造の酸化膜が形成されていることがわかる。
 図8に、窒化アルミニウム基板の断面のSTEM画像(20000倍)を示す。図8から、窒化アルミニウム基板の第二の主面上に厚さが1400nmのアモルファス酸化膜(第1層)と、厚さが250nmで、表面が凹凸の結晶性酸化膜(第2層)が形成されていることがわかった。5カ所の断面STEM画像(40000倍)で凹凸構造の高さを計測すると、第2層の表面の凹凸構造の高さは100nmであった。また、第1層と窒化アルミニウム基板との界面、および第2層と第1層の界面の凹凸構造の高さは10nm未満であり、平坦であった。
 また、処理前後で発光強度を比較したところ、上記処理により発光強度が10%向上していた。実施例1と実施例2を比較すると、実施例1のように窒化アルミニウム基板と第1層との界面が凹凸構造となっていることが、発光効率向上の観点からより好ましいことが理解される。また、実施例1のような窒化アルミニウム基板と第1層との界面に凹凸構造を形成するためには、水分子を導入した状態でチャンバー内を加熱処理する前の窒化アルミニウム基板の第二の主面の状態が起因することもわかった。具体的には、研削を行った後の窒化アルミニウム基板と第1層との界面に凹凸構造が形成されやすい傾向があることが理解される。
[実施例3]
 半導体発光素子の第二の主面を研削した後に、さらにCMP研磨を行った以外は、実施例1と同様の方法で得られた半導体発光素子を温度121℃、相対湿度65%、相対圧力0.03MPaの条件で50時間保持した。
 処理後の半導体発光素子の窒化アルミニウム基板の第二の主面のSEM画像を図9に示す。図9から、実施例3では実施例1と同様に表面が凹凸構造の酸化膜が形成されていることがわかる。
 処理前後で発光強度を比較したところ、上記処理により発光強度が15%向上していた。このことから、光取り出し効率を向上させることが可能な酸化膜を形成するには、少なくとも65%以上の相対湿度が必要であることがわかる。
[実施例4]
 半導体発光素子の第二の主面を研削した後に、さらにCMP研磨を行った以外は、実施例1と同様の方法で得られた半導体発光素子を温度105℃、相対湿度100%、相対圧力0.02MPaの条件で50時間保持した。
 処理後の半導体発光素子の窒化アルミニウム基板の第二の主面のSEM画像を図10に示す。実施例4は、処理前の第二の主面の表面状態は実施例2、3と同じであるのに対して、処理後の表面状態は実施例2、3と大きく異なり、処理前の第二の主面に近い平坦な表面であった。このことから、表面の形状は温度に大きく依存するものと推察される。
 図11に、窒化アルミニウム基板の断面のSTEM画像(500000倍)を示す。図11から、窒化アルミニウム基板の第二の主面上に厚さが32.7nmの第1層が形成されていることがわかる。また、第1層と窒化アルミニウム基板との界面は平坦構造であることがわかる。
 また、実施例4のサンプルは、上記処理により発光強度が15%向上していた。このことから、少なくとも32.7nm以上の酸化膜が形成されれば、光取り出し効率が向上するものと推察される。
[比較例1]
 半導体発光素子の第二の主面を研削した後に、さらにCMP研磨を行った以外は、実施例1と同様の方法で得られた半導体発光素子を温度25℃、相対湿度100%、相対圧力0MPaの条件で50時間保持した。
 上記処理によって10nm以上の酸化膜は形成されず、発光強度は向上しなかった。即ち、チャンバー内を加熱しないと、窒化アルミニウム基板の第二の主面上に光取り出し効率を向上させることが可能な厚い酸化膜は形成されないことが理解される。
[比較例2]
 半導体発光素子の第二の主面を研削した後に、さらにCMP研磨を行った以外は、実施例1と同様の方法で得られた半導体発光素子を温度121℃、相対湿度0%、相対圧力0MPaの条件で50時間保持した。
 上記処理によって10nm以上の酸化膜は形成されず、上記処理によって発光強度は向上しなかった。即ち、相対湿度が低すぎる(実質的に水分子が導入されていない)状態では、窒化アルミニウム基板の第二の主面上に光取り出し効率を向上させることが可能な厚い酸化膜は形成されないことが理解される。
 表1に、実施例と比較例の処理条件と発光強度向上率をまとめて示す。
Figure JPOXMLDOC01-appb-T000001
<その他>
 なお、本発明は、上記の実施形態に限定されるものではない。当業者の知識に基づいて実施形態に設計の変更等を加えてもよく、そのような変更が加えられた態様も本発明の範囲に含まれる。
 本発明は、半導体発光素子の製造方法および半導体発光素子に関し、特に窒化アルミニウム基板上に形成された窒化物半導体発光素子において、発光効率の高い素子に関するものである。
1 窒化アルミニウム基板
1a 第一の主面
1b 第二の主面
10 半導体層
11 n型半導体層
13 発光層
15 電子ブロック層
17 p型半導体層
20 酸化膜
21 アモルファス酸化膜
23 結晶性酸化膜
31 絶縁膜
33、35 電極部
50 酸化膜形成装置
51 チャンバー
53 ステージ
55 ノズル
61 HO供給源
81 ヒーター
90 制御部
100 半導体発光素子
 

Claims (17)

  1.  第一の主面に半導体層が形成された窒化アルミニウム基板をチャンバー内に設置する設置工程と、
     前記チャンバー内に水分子を導入した状態で該チャンバー内を加熱し、前記窒化アルミニウム基板の前記第一の主面の反対側に位置する第二の主面上に、アモルファス酸化膜および/または結晶性酸化膜を含む酸化膜を形成する酸化膜形成工程と、を備える半導体発光素子の製造方法。
  2.  前記酸化膜形成工程において、表面が凹凸構造の前記酸化膜を形成する請求項1に記載の半導体発光素子の製造方法。
  3.  前記酸化膜形成工程において、前記チャンバー内の相対湿度が50%以上100%以下である請求項1または請求項2に記載の半導体発光素子の製造方法。
  4.  前記酸化膜形成工程において、前記チャンバー内の温度が100℃以上140℃以下である請求項1から請求項3のいずれか一項に記載の半導体発光素子の製造方法。
  5.  前記酸化膜形成工程において、前記チャンバー内の相対圧力が0.01MPa以上0.3MPa以下である請求項1から請求項4のいずれか一項に記載の半導体発光素子の製造方法。
  6.  窒化アルミニウム基板の第一の主面上に形成された半導体層と、
     前記窒化アルミニウム基板の前記第一の主面の反対側に位置する第二の主面上に形成された、前記窒化アルミニウム基板よりも屈折率の小さい酸化膜と、を備え、
     前記酸化膜が、アモルファス酸化膜および/または結晶性酸化膜を含む半導体発光素子。
  7.  前記酸化膜と前記窒化アルミニウム基板との界面に凹凸構造を有する請求項6に記載の半導体発光素子。
  8. 前記酸化膜の表面に凹凸構造を有する請求項6または請求項7に記載の半導体発光素子。
  9.  前記酸化膜が前記アモルファス酸化膜および前記結晶性酸化膜を含む複数の酸化膜からなる積層構造であり、かつ、
     前記酸化膜は前記アモルファス酸化膜と前記結晶性酸化膜との界面に凹凸構造を有する請求項6から請求項8のいずれか一項に記載の半導体発光素子。
  10.  前記酸化膜が前記アモルファス酸化膜および前記結晶性酸化膜を含む複数の酸化膜からなる積層構造であり、かつ、
     前記酸化膜は前記アモルファス酸化膜の上に前記結晶性酸化膜を有する構造である請求項6から請求項9のいずれか一項に記載の半導体発光素子。
  11.  前記酸化膜が、Alを含む酸化膜である請求項6から請求項10のいずれか一項に記載の半導体発光素子。
  12.  前記酸化膜の厚さが、10nm以上5μm以下ある請求項6から請求項11のいずれか一項に記載の半導体発光素子。
  13.  前記酸化膜が少なくともアモルファス酸化膜を含み、
     前記アモルファス酸化膜の厚さが、10nm以上3μm以下である請求項6から請求項12のいずれか一項に記載の半導体発光素子。
  14.  前記酸化膜が少なくとも結晶性酸化膜を含み、
     前記結晶性酸化膜の厚さが、10nm以上2μm以下である請求項6から請求項13のいずれか一項に記載の半導体発光素子。
  15.  前記半導体層は、少なくとも、アルミニウム、ガリウム、窒素、およびインジウムからなる群より選択される元素を含むIII-V族化合物半導体層である請求項6から請求項14のいずれか一項に記載の半導体発光素子。
  16.  前記窒化アルミニウム基板の第二の主面が六方晶におけるC面で、かつN面である請求項6から請求項15のいずれか一項に記載の半導体発光素子。
  17.  第一の主面に半導体層が形成された窒化アルミニウム基板をチャンバー内に設置する設置工程と、
     前記チャンバー内に水分子を導入した状態で前記窒化アルミニウム基板の第二の主面を熱処理して、該第二の主面上に、アモルファス酸化膜を含む酸化膜を形成する酸化膜形成工程と、を実行することにより得られる半導体発光素子。
PCT/JP2014/001841 2013-03-29 2014-03-28 半導体発光素子の製造方法、および半導体発光素子 WO2014156191A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201480018911.5A CN105103312B (zh) 2013-03-29 2014-03-28 半导体发光元件的制造方法、及半导体发光元件
KR1020157026539A KR101709431B1 (ko) 2013-03-29 2014-03-28 반도체 발광 소자의 제조 방법, 및 반도체 발광 소자
JP2015508093A JP5957142B2 (ja) 2013-03-29 2014-03-28 半導体発光素子の製造方法、および半導体発光素子
US14/779,664 US20160049552A1 (en) 2013-03-29 2014-03-28 Manufacturing method of semiconductor light-emitting element, and semiconductor light-emitting element
EP14775606.8A EP2980862B1 (en) 2013-03-29 2014-03-28 Manufacturing method for semiconductor light-emitting element, and semiconductor light-emitting element
US15/652,300 US10497832B2 (en) 2013-03-29 2017-07-18 Semiconductor light-emitting element having an aluminum nitride substrate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-074028 2013-03-29
JP2013074028 2013-03-29
JP2013227375 2013-10-31
JP2013-227375 2013-10-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/779,664 A-371-Of-International US20160049552A1 (en) 2013-03-29 2014-03-28 Manufacturing method of semiconductor light-emitting element, and semiconductor light-emitting element
US15/652,300 Division US10497832B2 (en) 2013-03-29 2017-07-18 Semiconductor light-emitting element having an aluminum nitride substrate

Publications (1)

Publication Number Publication Date
WO2014156191A1 true WO2014156191A1 (ja) 2014-10-02

Family

ID=51623202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001841 WO2014156191A1 (ja) 2013-03-29 2014-03-28 半導体発光素子の製造方法、および半導体発光素子

Country Status (6)

Country Link
US (2) US20160049552A1 (ja)
EP (1) EP2980862B1 (ja)
JP (1) JP5957142B2 (ja)
KR (1) KR101709431B1 (ja)
CN (1) CN105103312B (ja)
WO (1) WO2014156191A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074980A (ja) * 1996-06-25 1998-03-17 Sumitomo Electric Ind Ltd 半導体素子
JP2003218383A (ja) 2002-01-18 2003-07-31 Toshiba Corp 半導体発光素子及びその製造方法
JP2010132525A (ja) * 2008-03-25 2010-06-17 Panasonic Electric Works Co Ltd 酸化層を有する窒化アルミニウム基板、窒化アルミニウム焼結体、それらの製造方法、回路基板、及びledモジュール
JP2011187658A (ja) * 2010-03-08 2011-09-22 Toshiba Corp 半導体発光素子
JP2012238895A (ja) 2006-12-21 2012-12-06 Nichia Chem Ind Ltd 半導体発光素子用基板の製造方法及びそれを用いた半導体発光素子

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393612A (ja) 1989-09-04 1991-04-18 Yoichi Takamiya 耐水性窒化アルミニウム及びその製造法
JP4670612B2 (ja) * 2005-11-30 2011-04-13 Tdk株式会社 誘電体素子とその製造方法
JP5237854B2 (ja) * 2009-02-24 2013-07-17 パナソニック株式会社 発光装置
US20100308323A1 (en) * 2009-06-08 2010-12-09 Walsin Lihwa Corporation Method for improving light extraction efficiency of group-III nitride-based light emitting device
JP5187854B2 (ja) * 2009-08-28 2013-04-24 シャープ株式会社 窒化物半導体発光素子
US8723201B2 (en) 2010-08-20 2014-05-13 Invenlux Corporation Light-emitting devices with substrate coated with optically denser material
US8940388B2 (en) * 2011-03-02 2015-01-27 Micron Technology, Inc. Insulative elements
US8796800B2 (en) 2011-11-21 2014-08-05 Optiz, Inc. Interposer package for CMOS image sensor and method of making same
US20130234166A1 (en) 2012-03-08 2013-09-12 Ting-Chia Ko Method of making a light-emitting device and the light-emitting device
KR20140057852A (ko) * 2012-11-05 2014-05-14 삼성디스플레이 주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074980A (ja) * 1996-06-25 1998-03-17 Sumitomo Electric Ind Ltd 半導体素子
JP2003218383A (ja) 2002-01-18 2003-07-31 Toshiba Corp 半導体発光素子及びその製造方法
JP2012238895A (ja) 2006-12-21 2012-12-06 Nichia Chem Ind Ltd 半導体発光素子用基板の製造方法及びそれを用いた半導体発光素子
JP2010132525A (ja) * 2008-03-25 2010-06-17 Panasonic Electric Works Co Ltd 酸化層を有する窒化アルミニウム基板、窒化アルミニウム焼結体、それらの製造方法、回路基板、及びledモジュール
JP2011187658A (ja) * 2010-03-08 2011-09-22 Toshiba Corp 半導体発光素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2980862A4

Also Published As

Publication number Publication date
JPWO2014156191A1 (ja) 2017-02-16
EP2980862B1 (en) 2019-05-15
KR101709431B1 (ko) 2017-02-22
US10497832B2 (en) 2019-12-03
CN105103312A (zh) 2015-11-25
EP2980862A1 (en) 2016-02-03
US20170317234A1 (en) 2017-11-02
EP2980862A4 (en) 2016-11-09
JP5957142B2 (ja) 2016-07-27
US20160049552A1 (en) 2016-02-18
CN105103312B (zh) 2017-09-22
KR20150122738A (ko) 2015-11-02

Similar Documents

Publication Publication Date Title
US9871164B2 (en) Nanostructure light emitting device and method of manufacturing the same
JP4908381B2 (ja) Iii族窒化物半導体層の製造方法、及びiii族窒化物半導体発光素子、並びにランプ
JP5280004B2 (ja) 発光素子及びその製造方法
US9379283B2 (en) Method of manufacturing nanostructure semiconductor light emitting device by forming nanocores into openings
US8765509B2 (en) Method for producing group III nitride semiconductor light-emitting device
TWI495142B (zh) 半導體裝置、發光裝置及其製造方法
TWI689611B (zh) Iii族氮化物積層體及具有該積層體之發光元件
TWI419354B (zh) Iii族氮化物半導體發光元件及其製造方法
TWI416612B (zh) 半導體元件及其製造方法
JP2007019318A (ja) 半導体発光素子、半導体発光素子用基板の製造方法及び半導体発光素子の製造方法
JP6910341B2 (ja) 縦型紫外発光ダイオード
TW201013987A (en) Group III nitride semiconductor light emitting device, process for producing the same, and lamp
US9190270B2 (en) Low-defect semiconductor device and method of manufacturing the same
WO2009142265A1 (ja) Iii族窒化物半導体発光素子及びその製造方法、並びにランプ
WO2007097242A1 (ja) 発光素子
WO2014123193A1 (ja) 凹凸基板及び発光ダイオードの製造方法、並びに凹凸基板、発光ダイオード及び有機薄膜太陽電池
JP5957142B2 (ja) 半導体発光素子の製造方法、および半導体発光素子
KR20120065610A (ko) 질화물 반도체 발광소자 및 그 제조방법
JP2009231745A (ja) Iii族窒化物半導体発光素子、iii族窒化物半導体発光素子の製造方法、及びランプ
Yan et al. High-efficiency GaN-based blue LEDs grown on nano-patterned sapphire substrates for solid-state lighting
JP2011091442A (ja) 窒化ガリウム系化合物半導体発光ダイオード

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480018911.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775606

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508093

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157026539

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14779664

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014775606

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE