WO2014155628A1 - 脱硝触媒の再生方法 - Google Patents

脱硝触媒の再生方法 Download PDF

Info

Publication number
WO2014155628A1
WO2014155628A1 PCT/JP2013/059382 JP2013059382W WO2014155628A1 WO 2014155628 A1 WO2014155628 A1 WO 2014155628A1 JP 2013059382 W JP2013059382 W JP 2013059382W WO 2014155628 A1 WO2014155628 A1 WO 2014155628A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground
denitration catalyst
fixing member
abrasive
upstream
Prior art date
Application number
PCT/JP2013/059382
Other languages
English (en)
French (fr)
Inventor
敏和 吉河
吉田 和広
島田 裕
操生 登
伊藤 淳
文博 三宅
有一朗 森實
広行 香川
Original Assignee
中国電力株式会社
日高産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社, 日高産業株式会社 filed Critical 中国電力株式会社
Priority to KR1020157030261A priority Critical patent/KR101844362B1/ko
Priority to CN201380075151.7A priority patent/CN105377430A/zh
Priority to CA2908177A priority patent/CA2908177C/en
Priority to JP2015507820A priority patent/JP5844943B2/ja
Priority to EP13880088.3A priority patent/EP2979761A4/en
Priority to US14/780,894 priority patent/US10335780B2/en
Priority to PCT/JP2013/059382 priority patent/WO2014155628A1/ja
Publication of WO2014155628A1 publication Critical patent/WO2014155628A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C3/00Abrasive blasting machines or devices; Plants
    • B24C3/02Abrasive blasting machines or devices; Plants characterised by the arrangement of the component assemblies with respect to each other
    • B24C3/06Abrasive blasting machines or devices; Plants characterised by the arrangement of the component assemblies with respect to each other movable; portable
    • B24C3/065Abrasive blasting machines or devices; Plants characterised by the arrangement of the component assemblies with respect to each other movable; portable with suction means for the abrasive and the waste material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C3/00Abrasive blasting machines or devices; Plants
    • B24C3/32Abrasive blasting machines or devices; Plants designed for abrasive blasting of particular work, e.g. the internal surfaces of cylinder blocks
    • B24C3/325Abrasive blasting machines or devices; Plants designed for abrasive blasting of particular work, e.g. the internal surfaces of cylinder blocks for internal surfaces, e.g. of tubes
    • B24C3/327Abrasive blasting machines or devices; Plants designed for abrasive blasting of particular work, e.g. the internal surfaces of cylinder blocks for internal surfaces, e.g. of tubes by an axially-moving flow of abrasive particles without passing a blast gun, impeller or the like along the internal surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C9/00Appurtenances of abrasive blasting machines or devices, e.g. working chambers, arrangements for handling used abrasive material
    • B24C9/006Treatment of used abrasive material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present invention relates to a method for regenerating a denitration catalyst used in a flue gas denitration apparatus such as a thermal power plant.
  • flue gas denitration equipment has been installed in boilers and various large boilers of thermal power plants using petroleum, coal, gas, etc. as fuel, and other waste incinerators.
  • the denitration catalyst is built in.
  • TiO 2 or the like is generally used as a carrier, V 2 O 5 or the like is used as an active component, and an oxide of tungsten or molybdenum is added as a co-catalyst component.
  • VO x -WO y Composite oxides such as —TiO 2 and VO x —MoO y —TiO 2 are used.
  • honeycomb type As the catalyst shape, a honeycomb type or a plate type is generally used.
  • honeycomb type after manufacturing honeycomb shape with substrate, coated type coated with catalyst component, kneaded type formed by kneading catalyst component on substrate, impregnation with honeycomb shaped substrate impregnated with catalyst component There are shapes.
  • the plate-like material is a metal core or ceramic coated with a catalyst component.
  • a substance that deteriorates the catalyst performance adheres to or dissolves on the catalyst surface and inside, thereby reducing the catalyst performance. There is a problem of going.
  • Patent Document 1 For example, a method of polishing an inner surface of an exhaust gas passage with an abrasive (see Patent Document 1), a method of scraping the surface portion of a deteriorated denitration catalyst to make a new catalytic active surface appear (see Patent Document 2), accompanied by fine particles
  • Patent Document 3 A method of physically removing a deteriorated part or foreign matter and causing an active surface to appear, such as a method of removing a foreign matter by passing a gas through a through hole (see Patent Document 3), has been studied.
  • JP-A-1-119343 Japanese Patent Laid-Open No. 4-197451 JP-A-7-116523
  • the physical grinding method has problems that the work is complicated and the denitration catalyst itself is cracked or destroyed by the regenerating work. Moreover, there exists a problem that it cannot grind uniformly over the flow direction of a flow path.
  • an object of the present invention is to provide a denitration catalyst regeneration method in which the inner wall is uniformly ground and regenerated without destroying the denitration catalyst.
  • an upstream fixing member having an expanded portion having a cross-sectional area larger than the cross-sectional area of the member to be ground is connected to one end of the member to be ground made of a denitration catalyst.
  • a downstream fixing member having a predetermined cross-sectional flow path is connected to the other end portion of the member to be ground from a connecting side end with the member to be ground, and on the upstream side of the upstream fixing member.
  • the mixing portion for mixing the abrasive and the gas is connected by a connecting member having a flow path having a smaller cross-sectional area than the expanding portion, and a predetermined opening is formed on the side of the member to be ground inside the expanding portion.
  • a screen member is disposed, and on the other hand, on the downstream side of the connecting member of the downstream fixing member, classification is performed to separate the abrasive that has passed through the through-hole of the member to be ground and the workpiece to be ground by the abrasive.
  • the present invention relates to a method for regenerating a denitration catalyst characterized by collecting dust at a dust collecting portion.
  • the mixture of the abrasive and the gas is temporarily retained at a reduced flow rate in the expanded portion of the upstream fixing member on the upstream side of the denitration catalyst, and passes through the screen member. At that time, it is decelerated and dispersed, and it is sent into the through hole of the denitration catalyst by the suction force through the downstream fixing member having a predetermined cross-sectional flow path on the downstream side, so the end face of the denitration catalyst is destroyed.
  • the grinding material can be fed uniformly and stably at the same flow rate to all the through-holes arranged from the center to the peripheral edge without grinding, and the inner wall in the through-hole can be evenly ground. Become.
  • a regulating member that regulates the flow in the central portion of the flow path is disposed on the classification portion side of the downstream fixing member. And a method for regenerating a denitration catalyst.
  • the flow velocity of the central portion in the radial direction in the downstream fixing member is reduced by the regulating member, it is more uniform and identical to all the through holes arranged from the central portion to the peripheral portion of the denitration catalyst.
  • the abrasive can be fed stably at a flow rate, and the inner wall in the through hole can be evenly ground.
  • the denitration catalyst regeneration method according to the first or second aspect, wherein the member to be ground has a dummy cell disposed on the outer periphery of the denitration catalyst. Is in the playback method.
  • the member to be ground is held in an upright state so that the lower end portion of the member to be ground is held.
  • the denitration catalyst regeneration method includes fixing with the upstream fixing member and fixing an upper end portion with the downstream fixing member.
  • the end face of the denitration catalyst is not destroyed and all the through holes arranged from the central part to the peripheral part are uniformly and at the same flow rate.
  • the abrasive can be fed, the inner wall in the through hole can be uniformly ground, and the uniform regeneration can be achieved.
  • FIG. 3 is a graph showing test results of Example 1.
  • 6 is a graph showing the test results of Example 2.
  • 6 is a graph showing test results of Comparative Example 1.
  • 10 is a graph showing test results of Comparative Example 2.
  • 10 is a graph showing test results of Example 3.
  • FIG. 1 shows a schematic configuration of a grinding apparatus used in the present embodiment
  • a denitration catalyst 1 used in a flue gas denitration device or the like which is a member to be ground, is fixed in a state of being erected between an upstream fixing member 10 and a downstream fixing member 20,
  • a mixing unit 40 is connected to the fixing member 10 via an upstream connecting member 30, and a compressor 50 is connected to the mixing unit 40.
  • a classifying unit 70 is connected to the downstream fixing member 20 via a downstream connecting member 60, and a dust collecting unit 80 is connected to the classifying unit 70.
  • the upstream fixing member 10 includes a fixing portion 11 that fixes the lower end portion of the denitration catalyst 1.
  • the fixed portion 11 has a cross-sectional area equivalent to that of the denitration catalyst 1, and includes a widened portion 12 having a wide cross-sectional area continuously on the upstream side of the fixed portion 11, and upstream of the widened portion 12.
  • the side has a tapered portion 13 whose sectional area gradually decreases, and further includes a connecting portion 14 that is continuous with the tapered portion 13 and has a sectional area equivalent to the sectional area on the smaller side of the tapered portion 13.
  • One end of the upstream connecting member 30 is connected to the connecting portion 14, and the discharge port of the mixing unit 40 is connected to the other end of the upstream connecting member 30.
  • the cross-sectional shape of each flow path of the upstream fixing member 10 may be rectangular or circular, and may differ depending on the part.
  • a screen member 15 having a predetermined opening is disposed inside the upstream fixing member 10.
  • the screen member 15 is made of a mesh having a predetermined opening, and is disposed on the inner side of the expanded portion 12 on the denitration catalyst 1 side so as to block the flow from the upstream connecting member 30 into the expanded portion 12. Has been.
  • a rectifying plate 16 that forms a conical or square-tapered tapered portion that rectifies the flow from the expanding portion 12 to the fixing portion 11 is provided inside the expanding portion 12 on the fixed portion 11 side. Yes.
  • the downstream fixing member 20 includes a fixing portion 21 that fixes the upper end portion of the denitration catalyst 1, and includes a straight pipe portion 22 that forms a flow path having a constant cross-sectional area by a predetermined dimension from the fixing portion 21, and thereafter has a cross-sectional area. And a connecting portion 24 continuing to the tapered portion 23, and a downstream connecting member 60 is connected to the connecting portion 24.
  • a regulating member 25 that regulates the flow in the central portion of the flow path is provided on the classification portion 70 side of the downstream fixing member 20, specifically, in the straight pipe portion 22 of the downstream fixing member 20.
  • the arrangement position of the regulating member 25 is not limited to the position in the flow direction as long as the flow path is the fastest, and may be on the tapered section 23 side or the denitration catalyst 1 side of the straight pipe section 22.
  • the boundary with the straight pipe part 22 may be sufficient.
  • the shape of the regulating member 25 is not particularly limited, it is preferable to have a shape similar to the cross-sectional shape of the denitration catalyst 1 because it regulates the central portion of the flow. It may be a mesh member that blocks a part but allows a part to pass.
  • the mixing unit 40 has a substantially funnel-shaped space 41 in the center, and has an outside air inlet 42 for sucking outside air upward.
  • the lower part of the substantially funnel-shaped space is connected to the upstream side connecting member 30 in a sealed state.
  • a plurality of sandblast guns 44 for example, 4 to 10 units, for example, six units in the present embodiment are provided inside the mixing unit 40, and the injection port of the sandblast gun 44 has a substantially funnel-shaped space 41. It is directed to the slope direction of the lower part of each.
  • a compressor 50 is connected to the sandblast gun 44 through an air regulator 46 and an abrasive hose 48 is connected.
  • the compressed air supplied from the compressor 50 is adjusted to a desired pressure by the air regulator 46 and supplied to the sand blast gun 44, thereby causing an ejector effect and grinding from the classifying unit 70.
  • the material is supplied.
  • the abrasive and compressed air are uniformly mixed inside the sandblast gun 44 and injected into the mixing unit 40, and the compressed air containing the injected abrasive is sucked from the outside air inlet 42. It is mixed with the outside air and conveyed to the upstream fixing member 10 via the upstream connecting member 30.
  • the classifying unit 70 is a known cyclone classifier and is disposed at a position higher than the mixing unit 40.
  • the classification unit 70 is connected to the downstream fixing member 20 via the downstream connecting member 60, and is sealed with the dust collection unit 80 via the transport pipe 72 and the sandblast gun 44 via the abrasive hose 48. It is connected with.
  • the air containing the abrasive and the ground dust conveyed to the classification unit 70 via the downstream connecting member 60 is separated into the abrasive and the air containing the dust by the classification unit 70.
  • the separated abrasive is dropped and deposited under the classification unit 70 by its own weight, and is supplied again to the sandblast gun 44 through the abrasive hose 48.
  • the classification portion 70 side of the abrasive hose 48 is at a higher position than the sand blast gun 44 side of the abrasive hose 48, the pressure of the compressed air from the compressor 50 is increased when the abrasive is supplied to the sand blast gun 44. Even if it is small, the ejector effect can be fully utilized.
  • the abrasive hose 48 is preferably attached as short as possible and without slack. By doing so, the ejector effect can be utilized more effectively.
  • the air containing dust is conveyed to the dust collection unit 80 via the conveyance pipe 72.
  • the dust collector 80 is a known dust collector.
  • the dust collecting unit 80 is connected to the classifying unit 70 in a sealed state via the transport pipe 72.
  • a cartridge filter 82 and a blower motor 83 capable of changing the rotation speed are provided, and dust contained in the air can be collected.
  • the dust collected by the cartridge filter 82 is periodically wiped off by a pulse jet and stored in the storage unit 84 provided at the lower portion, so that the dust can be collected at a desired timing.
  • clean air that has passed through the cartridge filter 82 is discharged into the atmosphere through the exhaust duct.
  • the denitration catalyst 1 is a honeycomb type catalyst having a cylindrical shape having a honeycomb structure, a substantially elliptical columnar shape, a polygonal shape, or a quadrangular columnar shape, and a plurality of through holes penetrating in the longitudinal direction are arranged in a lattice shape.
  • a denitration catalyst 1 has been used, and deposits adhere to the inner walls of the through holes. Further, in some cases, it may be blocked by (coal) ash or the like. In such a case, it is preferable that the closed portion is previously opened by washing or the like and then set in the grinding apparatus.
  • the sand blast gun 44 When such a denitration catalyst 1 is set, the sand blast gun 44 is operated by adjusting the pressure of the air regulator 46 to a predetermined pressure, and when the blower motor 83 of the dust collecting unit 80 is operated, air flows from the sand blast gun 44. At the same time, abrasive is injected. At this time, the mixture of the abrasive and air injected from the injection port of the sandblast gun 44 passes through the upstream connecting member 30 and reaches the upstream fixing member 10.
  • the mixture that has entered the upstream fixing member 10 and has reached the widening portion 12 from the tapered portion 13 has a reduced flow velocity, and stays temporarily in the widening portion 12 for a short time, but the flow of the mixture.
  • Directional reordering occurs.
  • the mixture collides with the screen member 15 and passes through the screen member 15 while being scattered in multiple directions, and the flow of the mixture is further rearranged on the downstream side of the screen member 15 of the expanding portion 12.
  • the differential pressure is generated by the suction by the dust collection unit 80 between the upstream side and the downstream side of the denitration catalyst 1, the mixture temporarily staying in the expansion unit 12 is sucked from the dust collection unit 80. It is sucked by the force and sent into the through hole of the denitration catalyst 1. Thereby, damage to the upstream end face of the denitration catalyst 1 is suppressed as much as possible.
  • the abrasive is introduced at a uniform amount and at a uniform flow rate into all the through holes arranged from the central portion to the peripheral portion of the cross section of the denitration catalyst 1, the inner walls of all the through holes can be ground uniformly. Can do.
  • the cross-sectional area of the expanded portion 12 of the upstream fixing member 10 is preferably about 3 to 10 times the cross-sectional area S of the denitration catalyst 1, and the volume of the upstream fixing member 10 is ( ⁇ ((3 to 10) ⁇ S )) Preferably about 3 .
  • the opening of the screen member 15 may have a function of diffusing and rearranging the flow of the mixture by collision, and may be selected from about # 8 to # 40, for example.
  • the mixture rearranged in the expanded portion 12 of the upstream fixing member 10 in this manner is sucked into the through hole of the denitration catalyst 1 by the differential pressure before and after the denitration catalyst 1 with the downstream fixing member 20. It is preferable that the pressure in the downstream fixing member 20 is set to be 4 to 8 kPa lower than the pressure in the upstream fixing member 10.
  • the denitration catalyst 1 in order to grind the denitration catalyst 1 as uniformly as possible in the cross-sectional direction, it is preferable to secure a certain length of the straight pipe portion 22 of the downstream fixing member 20. Further, even if there is no change in the cross-sectional area in the flow direction as in the straight pipe portion 22, the flow in the central portion in the cross-sectional direction becomes faster, and the diameter continues to the connecting portion 24 having a small cross-sectional area via the tapered portion 23. Therefore, there is a possibility that the flow in the central portion is further increased in the vicinity of the tapered portion 23. This results in that the central portion of the denitration catalyst 1 is easily ground.
  • the rectangular plate-shaped regulating member 25 is provided in the radially central portion of the straight pipe portion 22.
  • the restricting member 25 preferably has a size having an area of 1 ⁇ 4 to 1 ⁇ 2 of the cross-sectional area of the denitration catalyst 1, preferably about 1 /.
  • the shape of the restriction member 25 in plan view is preferably a shape similar to the cross-sectional shape of the denitration catalyst 1, but is not limited thereto, and may be, for example, a disk shape.
  • a ceramic-based abrasive such as alumina, silicon carbide, zirconia, or zircon
  • a grinding material having a particle size of # 16 to # 80 mesh.
  • FIG. 3 shows a cross section of the main part of the grinding apparatus used in this embodiment
  • FIG. 4 shows a cross section of the member to be ground.
  • the outline of the grinding apparatus other than the member to be ground is the same as that of the above-described embodiment, and members having the same action are denoted by the same reference numerals and redundant description is omitted.
  • a member to be ground is one in which dummy cells 2 are arranged around the denitration catalyst 1.
  • the dummy cell 2 has a through-hole that is the same as or similar to that of the denitration catalyst 1 and is disposed on the radially outer side of the denitration catalyst 1.
  • the material of the dummy cell 2 is not particularly limited as long as it has wear resistance. For example, it may be a ceramic similar to the denitration catalyst 1 or a material such as a metal.
  • the upstream fixing member 10A and the downstream fixing member 20A are the same as those in the first embodiment except that the connecting members 11A and 24A having large dimensions matched to the member to be ground including the dummy cell 2 are provided and the regulating member 25 is not provided. It is.
  • the denitration catalyst 1 is disposed only in the central portion where the flow velocity is substantially uniform among the flow of the mixture of the abrasive and air from the upstream fixing member 10A through the member to be ground to the downstream fixing member 20A. Will be.
  • the mixture at the peripheral portion where the flow velocity tends to decrease passes through the dummy cell 2.
  • the denitration catalyst 1 is designed to have an area of 30% or less, preferably about 5 to 15% of the cross-sectional area, a sufficient effect is exhibited.
  • Test Example 1 The honeycomb-type denitration catalyst 1 having a cross-sectional outer diameter of 150 mm ⁇ 150 mm, a length of 860 mm, a mesh opening of 6 mm, and 6 mm ⁇ 6 mm cross-sectional rectangular through-holes at a pitch of 7 mm, 400 of the above-described first embodiment. It was placed in the apparatus, and # 46 alumina was used as an abrasive, and grinding was performed with a target grinding amount of 100 ⁇ m. At this time, the differential pressure before and after the denitration catalyst 1 was 5.4 kPa.
  • the results of measuring the grinding rate at a plurality of positions in the length direction of through holes (83 locations) at predetermined positions are shown in FIG. 5 as a line graph for each through hole. (Example 1). From this result, the variation between the line graphs corresponds to the grinding variation in the cross-sectional direction, and the variation in the length direction of each line graph corresponds to the grinding variation in the length direction.
  • the processing is performed by introducing an abrasive from the outlet side of the denitration catalyst 1, and the distance from the catalyst inlet side in the graph indicates the distance from the catalyst inlet side (processing outlet side).
  • the grinding rate is defined as follows, and a target grinding amount of 100 ⁇ m corresponds to a grinding rate of 3.34%.
  • the processing reduction rate calculated from the total weight before and after grinding in Example 1 was 12.23%, and the actual grinding amount determined from this was 102 ⁇ m.
  • FIG. 6 shows the result of the same test with only the regulating member 25 removed (Example 2).
  • the processing reduction rate of Example 2 was 100 ⁇ m.
  • Test Example 2 The same as in the second embodiment, except that a dummy cell 2 having a cross-sectional area of 10% is uniformly arranged on the outer side in the radial direction of the denitration catalyst 1 as in Test Example 1, and the regulating member 25 is removed.
  • the same test as in Test Example 1 was performed with a simple grinding apparatus.
  • FIG. 9 shows the results of measuring the grinding rate for a plurality of positions in the length direction of through holes (83 locations) at predetermined positions with respect to the denitration catalyst after processing, as a line graph for each through hole. (Example 3).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Combustion & Propulsion (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

 脱硝触媒からなる被研削部材の一端部に、当該被研削部材の断面積より大きな断面積の拡開部を具備する上流固定部材10を連結する一方、前記被研削部材の他端部に、当該被研削部材との連結側端部から所定寸法だけ一定断面積の流路を具備する下流固定部材20を連結し、前記上流固定部材の上流側には、研削材と気体とを混合する混合部40を前記拡開部より小さな断面積の流路を有する連結部材で連結すると共に前記拡開部の内方の前記被研削部材側に所定目開きのスクリーン部材を配置し、一方、前記下流固定部材の前記連結部材の下流側には、前記被研削部材の貫通孔を通過した研削材と当該研削材により研削された被研削物とを分離する分級部70と、該分級部を介して前記混合部の気体を吸引する集塵部80とを連結し、前記集塵部による吸引により、前記混合部からの前記気体に混合された研削材を前記上流固定部材に送り、前記拡開部で流速を低下させて前記気体と研削材との混合物を一時的に滞留させた後、当該混合物を前記脱硝触媒の貫通孔及び前記下流固定部材を通過させて当該貫通路の内壁を研削し、その後、前記分級部を介して前記集塵部で集塵する。

Description

脱硝触媒の再生方法
 本発明は、火力発電所などの排煙脱硝装置で使用される脱硝触媒の再生方法に関する。
 従来、石油、石炭、ガスなどを燃料とした火力発電所のボイラ及び各種大型ボイラ、その他の廃棄物焼却装置などには排煙脱硝装置が設けられており、排煙脱硝装置には、複数層の脱硝触媒が内蔵されている。
 脱硝触媒としては、一般的には、担体としてTiO等、活性成分としてV等を用い、助触媒成分としてタングステンやモリブデンの酸化物が添加されたものであり、VO-WO-TiOやVO-MoO-TiOのような複合酸化物の形態のものが使用されている。
 また、触媒形状としては、一般的には、ハニカムタイプや板状タイプが使用されている。ハニカムタイプには、基材でハニカム形状を製造した後、触媒成分をコーティングしたコート形、基材に触媒成分を混練して成形した混練形、ハニカム形状の基材に触媒成分を含浸させた含浸形などがある。板状のものとは、芯金又はセラミックスに触媒成分をコーティングしたものである。
 何れにしても、このような脱硝触媒の使用を続けていくと、触媒表面及び内部に触媒性能を劣化させる物質(以下、劣化物質という)が付着又は溶解することにより、触媒性能が低下していくという問題がある。
 そこで、従来より、脱硝触媒の再生方法が種々検討されている。
 例えば、摩耗剤により排ガス通路内面を研摩する方法(特許文献1参照)、劣化した脱硝触媒の表面部分を削り落とし新たな触媒活性面を出現させる方法(特許文献2参照)、微粒体を同伴した気体を貫通孔に通過させて異物を除去する方法(特許文献3参照)など、物理的に劣化部位や異物を除去して活性面を出現させる方法が検討されている。
特開平1-119343号公報 特開平4-197451号公報 特開平7-116523号公報
 しかしながら、物理的に研削等する方法は、作業が煩雑であったり、再生作業により脱硝触媒自体が割れたり破壊されたりするという問題がある。また、流路の流れ方向に亘って均一に研削できないという問題がある。
 本発明はこのような事情に鑑み、脱硝触媒を破壊することなく、内壁を均一に研削して再生する脱硝触媒の再生方法を提供することを課題とする。
 前記課題を解決する本発明の第1の態様は、脱硝触媒からなる被研削部材の一端部に、当該被研削部材の断面積より大きな断面積の拡開部を具備する上流固定部材を連結する一方、前記被研削部材の他端部に、当該被研削部材との連結側端部から所定寸法だけ一定断面積の流路を具備する下流固定部材を連結し、前記上流固定部材の上流側には、研削材と気体とを混合する混合部を前記拡開部より小さな断面積の流路を有する連結部材で連結すると共に前記拡開部の内方の前記被研削部材側に所定目開きのスクリーン部材を配置し、一方、前記下流固定部材の前記連結部材の下流側には、前記被研削部材の貫通孔を通過した研削材と当該研削材により研削された被研削物とを分離する分級部と、該分級部を介して前記混合部の気体を吸引する集塵部とを連結し、前記集塵部による吸引により、前記混合部からの前記気体に混合された研削材を前記上流固定部材に送り、前記拡開部で流速を低下させて前記気体と研削材との混合物を一時的に滞留させた後、当該混合物を前記脱硝触媒の貫通孔及び前記下流固定部材を通過させて当該貫通路の内壁を研削し、その後、前記分級部を介して前記集塵部で集塵することを特徴とする脱硝触媒の再生方法にある。
 かかる第1の態様では、研削材と気体との混合物は、脱硝触媒の上流側の上流固定部材の拡開部内で流速が低下して一時的に滞留した状態とされ、且つスクリーン部材を通過する際に減速されると共に分散され、下流側の一定断面積の流路を所定寸法だけ有する下流固定部材を介しての吸引力により脱硝触媒の貫通孔内に送られるので、脱硝触媒の端面を破壊することなく且つ中心部から周縁部に配置される全ての貫通孔に均一に且つ同一の流速で安定して研削材を送通することができ、貫通孔内の内壁の均一な研削が可能となる。
 本発明の第2の態様は、第1の態様に記載の脱硝触媒の再生方法において、前記下流固定部材の前記分級部側には流路の中央部の流れを規制する規制部材を配置したことを特徴とする脱硝触媒の再生方法にある。
 かかる第2の態様では、下流固定部材内の径方向中央部の流速が規制部材により低減されるので、脱硝触媒の中心部から周縁部に配置される全ての貫通孔にさらに均一に且つ同一の流速で安定して研削材を送通することができ、貫通孔内の内壁のさらに均一な研削が可能となる。
 本発明の第3の態様は、第1又は2の態様に記載の脱硝触媒の再生方法において、前記被研削部材は、脱硝触媒の外周にダミーセルを配置したものであることを特徴とする脱硝触媒の再生方法にある。
 かかる第3の態様では、流速が低減する傾向が排除できない流れの周縁部にダミーセルを配置してより均一な流れである中央部のみで研削を行うので、より均一な研削が可能となる。
 本発明の第4の態様は、第1~3の何れかの1つの態様に記載の脱硝触媒の再生方法において、前記被研削部材を立設状態で保持して当該被研削部材の下端部を前記上流固定部材で固定すると共に、上端部を前記下流固定部材で固定することを特徴とする脱硝触媒の再生方法にある。
 かかる第4の態様では、脱硝触媒を立設状態で研削するので、全ての貫通孔に対してより均一な研削が可能となる。
 以上説明したように、本発明の脱硝触媒の再生方法によれば、脱硝触媒の端面を破壊することなく且つ中心部から周縁部に配置される全ての貫通孔に均一に且つ同一の流速で安定して研削材を送通することができ、貫通孔内の内壁の均一な研削が可能となり、均一な再生ができるという効果を奏する。
本発明の実施形態1に係る脱硝触媒の再生方法を実施する研削装置の概略構成を示す図である。 図1の要部断面図である。 本発明の実施形態2に係る脱硝触媒の再生方法を実施する研削装置の要部断面図を示す図である。 図3の被研削部材の横断面図である。 実施例1の試験結果を示すグラフである。 実施例2の試験結果を示すグラフである。 比較例1の試験結果を示すグラフである。 比較例2の試験結果を示すグラフである。 実施例3の試験結果を示すグラフである。
 以下、本発明を一実施形態に基づいて説明する。
 (実施形態1)
 本実施形態で用いる研削装置の概略構成を図1に、その要部断面を図2にそれぞれ示す。
 これらの図面に示すように、被研削部材である、排煙脱硝装置などで使用された脱硝触媒1は、上流固定部材10と下流固定部材20との間に立設した状態で固定され、上流固定部材10には、上流側連結部材30を介して混合部40が接続され、混合部40には、コンプレッサー50が接続されている。一方、下流固定部材20には、下流側連結部材60を介して分級部70が接続され、分級部70には集塵部80が接続されている。
 上流固定部材10は、脱硝触媒1の下端部を固定する固定部11を具備する。固定部11は、脱硝触媒1と同等な断面積を有しており、この固定部11の上流側に連続して断面積が大きく広がった拡開部12を具備し、拡開部12の上流側は断面積が徐々に小さくなるテーパー部13を有し、さらに、テーパー部13に連続してテーパー部13の小さい側の断面積と同等な断面積を有する連結部14を具備する。そして、連結部14には、上流側連結部材30の一端が連結され、上流側連結部材30の他端部には混合部40の排出口が接続されている。なお、上流固定部材10の各流路の断面形状は矩形でも円形でもよく、部位によって異なっていてもよい。
 また、上流固定部材10の内方には、所定目開きを有するスクリーン部材15が配置されている。スクリーン部材15は、所定の目開きを有するメッシュからなり、拡開部12の内方の脱硝触媒1側に配置され、上流側連結部材30から拡開部12内への流れを遮るように配置されている。
 さらに、拡開部12の内方で固定部11側には、拡開部12から固定部11への流れを整流する円錐状又は四角錘状のテーパー部を形成する整流板16が設けられている。
 下流固定部材20は、脱硝触媒1の上端部を固定する固定部21を具備し、固定部21から所定寸法だけ一定断面積の流路を形成する直管部22を具備し、その後、断面積を徐々に小さくしたテーパー部23と、それに連続する連結部24を具備し、連結部24には下流側連結部材60が接続されている。
 また、下流固定部材20の分級部70側、具体的には、下流固定部材20の直管部22内には流路の中央部の流れを規制する規制部材25が設けられている。規制部材25の配置位置は、流路の流れが最も速い中央部であれば流れ方向の位置に限定されず、直管部22のテーパー部23側でも脱硝触媒1側でもよく、テーパー部23と直管部22との境界でもよい。規制部材25の形状は特に限定されないが、流れの中央部を規制するものであるから、脱硝触媒1の断面形状と相似する形状が好ましく、また、流れを完全に遮断するものでも、流れの大部分を遮断するが一部通過させるメッシュ部材のようなものでもよい。
 混合部40は、中央部に略漏斗形状の空間41を有し、上方に外部の空気を吸入する外気吸入口42を有する。また略漏斗形状の空間の下部は密閉した状態で上流側連結部材30と連結されている。また、混合部40の内部には、サンドブラストガン44が内部に複数台、例えば、4~10台、本実施形態では6台備えられており、サンドブラストガン44の噴射口は略漏斗形状の空間41の下部の斜面方向にそれぞれ向けられている。このサンドブラストガン44には、エアレギュレータ46を介してコンプレッサー50が接続されると共に、研削材ホース48が接続されている。そして、サンドブラストガン44を作動させると、コンプレッサー50から供給された圧縮空気がエアレギュレータ46で所望の圧力に調整され、サンドブラストガン44に供給され、これにより、エジェクター効果が生じ、分級部70から研削材が供給される。そして、サンドブラストガン44の内部で研削材と圧縮空気とが均一に混合された状態で混合部40の内部に噴射され、噴射された研削材を含む圧縮空気は、外気吸入口42から吸入された外気と混合されて上流側連結部材30を介して上流固定部材10に搬送されることになる。
 分級部70は、公知のサイクロン分級器であり、混合部40よりも高い位置に配置されている。この分級部70は、下流側連結部材60を介して下流固定部材20と接続され、搬送パイプ72を介して集塵部80と、研削材ホース48を介してサンドブラストガン44と、それぞれ密閉した状態で連結されている。
 下流側連結部材60を介して分級部70に搬送された研削材及び研削された粉塵を含む空気は、分級部70によって、研削材と、粉塵を含む空気とに分離される。分離された研削材は、自重により分級部70の下部に落下して堆積し、研削材ホース48を介して再度サンドブラストガン44に供給されることになる。このとき、研削材ホース48の分級部70側は研削材ホース48のサンドブラストガン44側よりも高い位置にあるため、サンドブラストガン44に研削材を供給する際、コンプレッサー50からの圧縮空気の圧力が小さくてもエジェクター効果を十分に利用することができる。なお、この研削材ホース48は、可能な限り短く、弛みがない状態で取り付けることが好ましい。こうすることにより、エジェクター効果をより有効に活用することができる。一方、粉塵を含む空気は搬送パイプ72を介して集塵部80に搬送される。
 集塵部80は、公知の集塵装置である。この集塵部80は、搬送パイプ72を介して分級部70と密閉した状態で連結されている。この集塵部80の内部にはカートリッジフィルタ82と回転数の変更が可能なブロアモータ83が設けられており、空気中に含まれる粉塵を捕集することができる。また、カートリッジフィルタ82に捕集された粉塵は定期的にパルスジェットによって払い落とされ、下部に設けられている貯蔵部84に貯蔵されるため、所望のタイミングで粉塵を回収することができる。一方、カートリッジフィルタ82を通過した清浄な空気は、排気ダクトより大気中に排出される。
 以上説明した研削装置を用いて脱硝触媒1の再生を行う方法について説明する。
 脱硝触媒1は、ハニカム型触媒であり、ハニカム構造を有する円柱形状、略楕円柱形状、多角形状又は四角柱形状であり、長手方向に貫通する複数の貫通孔が格子状に配置されている。このような脱硝触媒1は、使用済みのものであり、貫通孔内壁には付着物が付着している。また、場合によっては(石炭)灰などにより閉塞している場合があるが、このような場合には、予め水洗等で閉塞部を開口した後、研削装置にセットするのが好ましい。
 このような脱硝触媒1をセットして、エアレギュレータ46の圧力を所定の圧力に調節してサンドブラストガン44を動作させ、また、集塵部80のブロアモータ83を動作させると、サンドブラストガン44から空気と共に研削材が噴射される。このとき、サンドブラストガン44の噴射口から噴射された研削材と空気との混合物は、上流側連結部材30を通過して上流固定部材10に到達する。
 ここで、上流固定部材10に入ってテーパー部13から拡開部12に到達した混合物は、流速が低下し、拡開部12内にごく短時間であるが一時的に滞留し、混合物の流れ方向の再配列が起こる。さらに、混合物は、スクリーン部材15に衝突して多方向に散乱しながら当該スクリーン部材15を通過し、拡開部12のスクリーン部材15の下流側で混合物の流れがさらに再配列される。
 一方、脱硝触媒1の上流側と下流側とでは、集塵部80による吸引により差圧が生じているので、拡開部12内に一時的に滞留した混合物が、集塵部80からの吸引力により吸引されて脱硝触媒1の貫通孔内に送られることになる。これにより、脱硝触媒1の上流側端面の破損が極力抑えられる。また、脱硝触媒1の断面の中央部から周縁部にかけて配置される全ての貫通孔に均一な量で且つ均一流速で研削材が導入されるので、全ての貫通孔の内壁を均一に研削することができる。
 さらに詳細に説明すると、脱硝触媒1の端面の破損を防止すると共に均一な研削を行うためには、まず、上流固定部材10の拡開部12内での混合物の流速をできるだけ小さくする必要があるが、上述したように、拡開部12を設けると共にスクリーン部材15を配置することにより、流れが再配列され、流速が低下し且つ均一なものとなる。
 ここで、上流固定部材10の拡開部12の断面積は、脱硝触媒1の断面積Sの3~10倍程度が好ましく、上流固定部材10の容積は(√((3~10)×S))程度にすることが好ましい。
 ここで、(√((3~10)×S))は、以下の式を表す。
Figure JPOXMLDOC01-appb-M000001
 また、スクリーン部材15の目開きは、混合物の流れを衝突により拡散して再配列する作用を有するものとすればよいが、例えば、#8~♯40程度から選択すればよい。
 このように上流固定部材10の拡開部12内で再配列された混合物は、下流固定部材20との間、すなわち、脱硝触媒1の前後の差圧によって脱硝触媒1の貫通孔内に吸引されるのが好ましく、上流固定部材10内の圧力に対して、下流固定部材20内の圧力が、4~8kPa低くなるように設定されるのが好ましい。
 また、脱硝触媒1を断面方向においてできるだけ均一に研削するためには、下流固定部材20の直管部22の長さをある程度確保するのが好ましい。また、直管部22のように流れ方向の断面積に変化がなくても、断面方向中央部の流れが速くなり、且つテーパー部23を介して径が断面積が小さな連結部24に連続するので、テーパー部23近傍では中央部の流れがさらに大きくなる可能性がある。これは脱硝触媒1の中央部が研削され易くなる結果となるので、本実施形態では、直管部22の内方の径方向中央部に四角形板状の規制部材25を設けている。これにより、中央部での流れが規制され、脱硝触媒1内での径方向の流れの速さが均一化され、脱硝触媒1の研削が均一化される。規制部材25は、脱硝触媒1の断面積の1/4~1/2の面積、好ましくは、1/3程度の面積を有する大きさとするのが好ましい。なお、規制部材25の平面視の形状は脱硝触媒1の断面形状と相似する形状が好ましいが、これに限定されず、例えば、円盤状などとしてもよい。
 なお、研削材は、アルミナ、炭化珪素、ジルコニア、ジルコンなどセラミック系の研削材を用いるのが好ましい。脱硝触媒1の端面の破壊を極力防止するためには、研削材は、#16~#80メッシュの粒度のものを用いるのが好ましい。
 (実施形態2)
 本実施形態で用いる研削装置の要部断面を図3に、その被研削部材の横断面を図4にそれぞれ示す。なお、本実施形態は、被研削部材を変更した以外の研削装置の概要は上述した実施形態と同様であり、同一作用を示す部材には、同一符号を付して重複する説明は省略する。
 図3及び図4に示すように、本実施形態では、被研削部材として、脱硝触媒1の周囲にダミーセル2を配置したものを用いている。ダミーセル2は、脱硝触媒1と同一又は類似の貫通孔を有するものであり、脱硝触媒1の径方向外側に配置されている。ダミーセル2の材質は耐摩耗性を有していれば特に限定されないが、例えば、脱硝触媒1と同様なセラミックスでも、金属などの材質でもよい。
 上流固定部材10Aと下流固定部材20Aは、ダミーセル2を含めた被研削部材に合わせた大寸法の連結部11A及び24Aを具備し、規制部材25を設けない以外は、実施形態1と同様なものである。
 本実施形態では、上流固定部材10Aから被研削部材を通過して下流固定部材20Aへの研削材と空気の混合物の流れのうち、流れの速度がほぼ均一な中央部のみに脱硝触媒1が配置されることになる。一方、流れの速度がどうしても低下しがちな周縁部の混合物はダミーセル2を通過することになる。これにより、脱硝触媒1の断面方向に亘った研削状態がさらに均一になるという効果を奏する。
 ダミーセル2の面積は、大きいほど研削状態が均一化するが、ダミーセル2の面積分だけ、流量を大きくする必要があり、経済的な効率は低くなる。
 よって、脱硝触媒1の断面積の30%以下、好ましくは、5~15%程度の面積となるように設計すれば十分な効果が発揮される。
 (試験例1)
 断面外径が150mm×150mmで、長さが860mmであり、目開き6mmで、6mm×6mmの断面矩形の貫通孔を7mmピッチで400有するハニカム型の脱硝触媒1を上述した実施形態1の研削装置に配置し、研削材として#46のアルミナを用い、目標研削量100μmで研削した。この時の脱硝触媒1の前後の差圧は5.4kPaであった。
 加工後の脱硝触媒について、予め決められた所定の位置の貫通孔(83箇所)について、長さ方向の複数位置について研削率を測定した結果を、各貫通孔毎の折れ線グラフとして図5に示す(実施例1)。この結果より、折れ線グラフ間のバラツキは断面方向の研削バラツキに相当し、各折れ線グラフの長さ方向のおけるバラツキは、長さ方向の研削バラツキに相当する。なお、加工は、脱硝触媒1の出口側から研削材を導入して加工し、グラフの触媒入口側からの距離は触媒入口側(加工の出口側)からの距離を示してある。
 研削率は、以下の定義とし、目標研削量100μmは研削率3.34%に相当する。
 研削率=[(研削後の目開き-研削前の目開き)÷研削前の目開き]×100
 実施例1の研削前後の全体重量から算出した加工減率は12.23%であり、これから求めた実質研削量は102μmであった。
 また、同様にして、規制部材25のみを外して同様に試験した結果(実施例2)を図6に示す。実施例2の加工減率は100μmであった。
 比較のため、スクリーン部材15及び規制部材25の両方を外して同様に試験した結果(比較例1)、スクリーン部材15のみを外して同様に試験した結果(比較例2)をそれぞれ図7、図8に示す。
 これらの結果、スクリーン部材15及び規制部材25を設けた実施形態1、規制部材25を外した実施例2と比較して、スクリーン部材15及び規制部材25の両方を外した比較例1、スクリーン部材15のみを外した比較例2では、径方向に亘ったバラツキが大きくなることが確認された。
 スクリーン部材15及び規制部材25は、径方向のバラツキを軽減する効果が大きいことがわかった。
 (試験例2)
 試験例1と同様な脱硝触媒1の径方向外側に、断面積で10%となるダミーセル2を均一に配置したものを被研削部材とし、規制部材25を外した以外は、実施形態2と同様な研削装置で、試験例1と同様な試験を行った。
 加工後の脱硝触媒について、予め決められた所定の位置の貫通孔(83箇所)について、長さ方向の複数位置について研削率を測定した結果を、各貫通孔毎の折れ線グラフとして図9に示す(実施例3)。
 この結果を実施例2(図6)と比較することにより、ダミーセル2を設けることにより、径方向の研削バラツキが著しく低下することが確認された。
 排煙脱硝装置の脱硝触媒の他、ボイラ設備などのセラミック製のハニカム構造の触媒に適用できる。
1 脱硝触媒
10 上流固定部材
20 下流固定部材
30 上流側連結部材
40 混合部
50 コンプレッサー
60 下流側連結部材
70 分級部
80 集塵部

Claims (4)

  1.  脱硝触媒からなる被研削部材の一端部に、当該被研削部材の断面積より大きな断面積の拡開部を具備する上流固定部材を連結する一方、前記被研削部材の他端部に、当該被研削部材との連結側端部から所定寸法だけ一定断面積の流路を具備する下流固定部材を連結し、
     前記上流固定部材の上流側には、研削材と気体とを混合する混合部を前記拡開部より小さな断面積の流路を有する連結部材で連結すると共に前記拡開部の内方の前記被研削部材側に所定目開きのスクリーン部材を配置し、一方、前記下流固定部材の前記連結部材の下流側には、前記被研削部材の貫通孔を通過した研削材と当該研削材により研削された被研削物とを分離する分級部と、該分級部を介して前記混合部の気体を吸引する集塵部とを連結し、
     前記集塵部による吸引により、前記混合部からの前記気体に混合された研削材を前記上流固定部材に送り、前記拡開部で流速を低下させて前記気体と研削材との混合物を一時的に滞留させた後、当該混合物を前記脱硝触媒の貫通孔及び前記下流固定部材を通過させて当該貫通路の内壁を研削し、その後、前記分級部を介して前記集塵部で集塵する
     ことを特徴とする脱硝触媒の再生方法。
  2.  請求項1に記載の脱硝触媒の再生方法において、前記固定部材の前記分級部側には流路の中央部の流れを規制する規制部材を配置したことを特徴とする脱硝触媒の再生方法。
  3.  請求項1又は2に記載の脱硝触媒の再生方法において、前記被研削部材は、脱硝触媒の外周にダミーセルを配置したものであることを特徴とする脱硝触媒の再生方法。
  4.  請求項1~3の何れか一項に記載の脱硝触媒の再生方法において、前記被研削部材を立設状態で保持して当該被研削部材の下端部を前記上流固定部材で固定すると共に、上端部を前記下流固定部材で固定することを特徴とする脱硝触媒の再生方法。
PCT/JP2013/059382 2013-03-28 2013-03-28 脱硝触媒の再生方法 WO2014155628A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020157030261A KR101844362B1 (ko) 2013-03-28 2013-03-28 탈질 촉매의 재생 방법
CN201380075151.7A CN105377430A (zh) 2013-03-28 2013-03-28 脱氮催化剂的再生方法
CA2908177A CA2908177C (en) 2013-03-28 2013-03-28 Method for regenerating denitrification catalyst
JP2015507820A JP5844943B2 (ja) 2013-03-28 2013-03-28 脱硝触媒の再生方法
EP13880088.3A EP2979761A4 (en) 2013-03-28 2013-03-28 Method for regenerating denitrification catalyst
US14/780,894 US10335780B2 (en) 2013-03-28 2013-03-28 Method for regenerating denitrification catalyst
PCT/JP2013/059382 WO2014155628A1 (ja) 2013-03-28 2013-03-28 脱硝触媒の再生方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/059382 WO2014155628A1 (ja) 2013-03-28 2013-03-28 脱硝触媒の再生方法

Publications (1)

Publication Number Publication Date
WO2014155628A1 true WO2014155628A1 (ja) 2014-10-02

Family

ID=51622699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059382 WO2014155628A1 (ja) 2013-03-28 2013-03-28 脱硝触媒の再生方法

Country Status (7)

Country Link
US (1) US10335780B2 (ja)
EP (1) EP2979761A4 (ja)
JP (1) JP5844943B2 (ja)
KR (1) KR101844362B1 (ja)
CN (1) CN105377430A (ja)
CA (1) CA2908177C (ja)
WO (1) WO2014155628A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6318313B1 (ja) * 2017-05-15 2018-04-25 中国電力株式会社 脱硝触媒の研削装置
WO2018151278A1 (ja) * 2017-02-17 2018-08-23 学校法人早稲田大学 担持触媒および炭素ナノ構造体の製造方法
JP2018167169A (ja) * 2017-03-29 2018-11-01 中国電力株式会社 脱硝触媒の再利用方法
JP2019150739A (ja) * 2018-02-28 2019-09-12 中国電力株式会社 脱硝触媒の研磨時間決定方法及び脱硝触媒の再生方法
WO2021171625A1 (ja) * 2020-02-28 2021-09-02 中国電力株式会社 脱硝触媒研磨装置
WO2021171628A1 (ja) * 2020-02-28 2021-09-02 中国電力株式会社 脱硝触媒研磨装置
WO2021171624A1 (ja) * 2020-02-28 2021-09-02 中国電力株式会社 脱硝触媒研磨装置
WO2021245841A1 (ja) * 2020-06-03 2021-12-09 中国電力株式会社 脱硝触媒研磨装置
WO2021245842A1 (ja) * 2020-06-03 2021-12-09 中国電力株式会社 脱硝触媒研磨装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016047585A (ja) * 2014-08-28 2016-04-07 ブラスト工業株式会社 ブラスト加工装置及びブラスト加工方法
JP6433199B2 (ja) * 2014-08-28 2018-12-05 ブラスト工業株式会社 ブラスト加工装置及びブラスト加工方法
CN110385649A (zh) * 2019-08-15 2019-10-29 襄阳新东特锻造有限公司 一种抛丸清理机的丸渣清理机构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241555A (ja) * 1986-04-11 1987-10-22 Kawasaki Heavy Ind Ltd 触媒の乾式再生方法
JPH01119343A (ja) 1987-11-04 1989-05-11 Ishikawajima Harima Heavy Ind Co Ltd 脱硝触媒の再生処理方法
JPH04197451A (ja) 1990-11-29 1992-07-17 Japan Carlit Co Ltd:The 脱硝触媒の再生方法
JPH07116523A (ja) 1993-10-28 1995-05-09 Ishikawajima Harima Heavy Ind Co Ltd 脱硝触媒の再生方法および再生装置
JP2000325801A (ja) * 1999-05-21 2000-11-28 Shikoku Electric Power Co Inc 劣化触媒再生用の投射装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3981685A (en) * 1973-12-26 1976-09-21 United Technologies Corporation Monolithic catalytic converter having fluidized abrasive particles bed for maintaining catalyst activity
JPS5239568A (en) 1975-09-25 1977-03-26 Jgc Corp Process for removing dust sticked to inside of reactor
JPH02245241A (ja) * 1989-03-20 1990-10-01 Ishikawajima Harima Heavy Ind Co Ltd 触媒の再生装置
US5391356A (en) * 1993-03-26 1995-02-21 International Paper Company Flow distributor for a fluidized bed reactor
JP3936238B2 (ja) * 2002-05-20 2007-06-27 株式会社デンソー 触媒体および触媒体の製造方法
JP4578048B2 (ja) * 2002-06-21 2010-11-10 中国電力株式会社 脱硝触媒再生方法
US20040001781A1 (en) * 2002-06-27 2004-01-01 Engelhard Corporation Multi-zone catalytic converter
JP5555551B2 (ja) 2010-06-14 2014-07-23 株式会社日高ファインテクノロジーズ 研削加工装置及び研削加工方法
JP5799938B2 (ja) * 2012-11-20 2015-10-28 トヨタ自動車株式会社 排ガス浄化用触媒
JP7014486B2 (ja) * 2018-01-25 2022-02-01 株式会社デンソーテン 配線パターン構造及び電子機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241555A (ja) * 1986-04-11 1987-10-22 Kawasaki Heavy Ind Ltd 触媒の乾式再生方法
JPH01119343A (ja) 1987-11-04 1989-05-11 Ishikawajima Harima Heavy Ind Co Ltd 脱硝触媒の再生処理方法
JPH04197451A (ja) 1990-11-29 1992-07-17 Japan Carlit Co Ltd:The 脱硝触媒の再生方法
JPH07116523A (ja) 1993-10-28 1995-05-09 Ishikawajima Harima Heavy Ind Co Ltd 脱硝触媒の再生方法および再生装置
JP2000325801A (ja) * 1999-05-21 2000-11-28 Shikoku Electric Power Co Inc 劣化触媒再生用の投射装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2979761A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018151278A1 (ja) * 2017-02-17 2018-08-23 学校法人早稲田大学 担持触媒および炭素ナノ構造体の製造方法
JPWO2018151278A1 (ja) * 2017-02-17 2019-12-12 学校法人早稲田大学 担持触媒および炭素ナノ構造体の製造方法
JP7093971B2 (ja) 2017-02-17 2022-07-01 学校法人早稲田大学 担持触媒および炭素ナノ構造体の製造方法
JP2018167169A (ja) * 2017-03-29 2018-11-01 中国電力株式会社 脱硝触媒の再利用方法
WO2018211549A1 (ja) * 2017-05-15 2018-11-22 中国電力株式会社 脱硝触媒の研削装置
JP6318313B1 (ja) * 2017-05-15 2018-04-25 中国電力株式会社 脱硝触媒の研削装置
JP7002964B2 (ja) 2018-02-28 2022-01-20 中国電力株式会社 脱硝触媒の研磨時間決定方法及び脱硝触媒の再生方法
JP2019150739A (ja) * 2018-02-28 2019-09-12 中国電力株式会社 脱硝触媒の研磨時間決定方法及び脱硝触媒の再生方法
WO2021171625A1 (ja) * 2020-02-28 2021-09-02 中国電力株式会社 脱硝触媒研磨装置
WO2021171624A1 (ja) * 2020-02-28 2021-09-02 中国電力株式会社 脱硝触媒研磨装置
WO2021171628A1 (ja) * 2020-02-28 2021-09-02 中国電力株式会社 脱硝触媒研磨装置
JP7535454B2 (ja) 2020-02-28 2024-08-16 中国電力株式会社 脱硝触媒研磨装置
JP7543137B2 (ja) 2020-02-28 2024-09-02 中国電力株式会社 脱硝触媒研磨装置
WO2021245841A1 (ja) * 2020-06-03 2021-12-09 中国電力株式会社 脱硝触媒研磨装置
WO2021245842A1 (ja) * 2020-06-03 2021-12-09 中国電力株式会社 脱硝触媒研磨装置

Also Published As

Publication number Publication date
CA2908177C (en) 2020-01-14
JPWO2014155628A1 (ja) 2017-02-16
EP2979761A1 (en) 2016-02-03
US20160051976A1 (en) 2016-02-25
JP5844943B2 (ja) 2016-01-20
KR20160002805A (ko) 2016-01-08
CN105377430A (zh) 2016-03-02
KR101844362B1 (ko) 2018-04-02
US10335780B2 (en) 2019-07-02
CA2908177A1 (en) 2014-10-02
EP2979761A4 (en) 2017-01-18

Similar Documents

Publication Publication Date Title
JP5844943B2 (ja) 脱硝触媒の再生方法
EP1747400B1 (en) Method and device for the separation of dust particles
CN100427772C (zh) 在流体流中的改善的颗粒的相互作用
JP5768423B2 (ja) 電気集塵装置
CN107970772A (zh) 一种scr烟气脱硝装置
WO2012073873A1 (ja) 排ガス処理装置
JPH01315304A (ja) ガス処理装置
JPH0295415A (ja) 排ガス脱硝装置
JP6318313B1 (ja) 脱硝触媒の研削装置
JPH07116523A (ja) 脱硝触媒の再生方法および再生装置
KR20120119638A (ko) 백 필터 유닛의 탈진 장치
JPH09323263A (ja) ブラスト装置
US20130340618A1 (en) Filter design and process of capturing particles
KR102015928B1 (ko) 플라이 애쉬 포집 장치
KR101581539B1 (ko) 스택용 먼지 집진장치
JP2003027920A (ja) 排気ガス処理方法および装置
WO2021245841A1 (ja) 脱硝触媒研磨装置
KR101838745B1 (ko) 와류발생을 통한 미분 집진기
US20200023311A1 (en) Systems and methods for catalyst screens in selective catalytic reduction reactors
EP3064833B1 (en) Apparatus for collecting large particle ash in thermal power plant
WO2021245842A1 (ja) 脱硝触媒研磨装置
CN108883421A (zh) 气体除尘过滤设备和方法
CN218295776U (zh) 一种烟道和发电机组
KR101897034B1 (ko) 원료저장고 내부 집진환경 개선 시스템
JP4900037B2 (ja) 排気ガス浄化用触媒の製造装置および製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880088

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015507820

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2908177

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14780894

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013880088

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157030261

Country of ref document: KR

Kind code of ref document: A