WO2014155500A1 - 細胞培養装置、培養容器、及び保持容器 - Google Patents

細胞培養装置、培養容器、及び保持容器 Download PDF

Info

Publication number
WO2014155500A1
WO2014155500A1 PCT/JP2013/058648 JP2013058648W WO2014155500A1 WO 2014155500 A1 WO2014155500 A1 WO 2014155500A1 JP 2013058648 W JP2013058648 W JP 2013058648W WO 2014155500 A1 WO2014155500 A1 WO 2014155500A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
heat storage
container
culture vessel
cell
Prior art date
Application number
PCT/JP2013/058648
Other languages
English (en)
French (fr)
Inventor
貴之 野崎
広斌 周
政晴 木山
中村 拓
志津 武田
亮太 中嶌
菅谷 昌和
光一 寺田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to EP13879732.9A priority Critical patent/EP2980200B1/en
Priority to JP2015507724A priority patent/JP6022674B2/ja
Priority to PCT/JP2013/058648 priority patent/WO2014155500A1/ja
Priority to US14/770,627 priority patent/US10087410B2/en
Publication of WO2014155500A1 publication Critical patent/WO2014155500A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/20Heating; Cooling
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/48Holding appliances; Racks; Supports
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/58Reaction vessels connected in series or in parallel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/14Incubators; Climatic chambers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control

Definitions

  • the present invention relates to a cell culture device, and relates to a technique for culturing cells or tissues by automatic operation and transporting the cells or cells outside the cell culture device after the culture.
  • GMP Good Manufacturing Practice
  • SOP Standard Procedures
  • Patent Documents 1 and 2 as prior art documents related to these. These disclose an apparatus for storing a biological sample and transporting it while maintaining the temperature.
  • the biological sample manufactured by an automatic culture apparatus when a biological sample manufactured by an automatic culture apparatus is applied to a living body as a treatment, the biological sample needs to be maintained in a good state, including at the time of manufacture and during transportation. Specifically, among all the steps of regenerative medicine treatment, in the process of manufacturing a biological sample for transplantation using a plurality of culture containers, the shipment judgment is made from the automatic culture apparatus on the day before transplantation for the shipment judgment to judge whether transplantation is possible or not. Therefore, it is necessary to take out the culture container and confirm and evaluate the quality of the cells in the culture container.
  • the automatic culture apparatus is maintained at a temperature suitable for culture (for example, 37 ° C.), it is exposed to the outside air (for example, 25 ° C.) at the time of removal.
  • Patent Documents 1 and 2 are devices that maintain the temperature with a transport container in the transport process, and further require a temperature maintaining mechanism at times other than the transport process.
  • the object of the present invention has been made in view of such problems, and a cell culture device, a culture container, and a holding container that can avoid a temperature drop during the manufacturing process, the transportation process, and the treatment time point are provided. It is to provide.
  • a cell culture device is installed in a culture space, and a culture vessel base on which a plurality of culture vessels can be placed, and the culture vessel is kept warm for each of the plurality of culture vessels.
  • Cell culture that has a plurality of heat storage units to be mounted on a culture container base during culture in the culture space and is configured to be able to take out at least one of the plurality of heat storage units containing the culture containers from the culture space Providing equipment.
  • a culture container having a heat insulating part from which a part of the heat insulating part can be removed and capable of heating the exposed heat storage part after removing a part of the heat insulating part.
  • a holding container for transporting the culture container in order to keep the biological sample to be cultured, and surrounding the heat storage part covering the periphery and the outer periphery of the heat storage part,
  • a holding container including a plurality of culture containers with a heat storage material having a heat insulating portion from which a part thereof can be removed, and a heat insulating member surrounding the plurality of culture containers with a heat storage material.
  • the culture container with a heat storage material According to the culture container with a heat storage material according to the present invention, it is possible to avoid the temperature drop of the culture container when the culture container is taken out from the automatic culture apparatus. Further, when the culture container taken out from the automatic culture apparatus is transported and handled in the CPC or the like, it is also possible to avoid a temperature drop.
  • FIG. 1 is a block diagram showing a control mechanism of an automatic culture apparatus according to Example 1.
  • FIG. 1 shows the structure of the culture container based on Example 1.
  • FIG. 1 shows one structure of the culture container with a heat storage material based on Example 1.
  • FIG. 1 shows the other structure of the culture container with a heat storage material based on Example 1.
  • FIG. 1 The figure which shows the other structure of the culture container with a heat storage material based on Example 1.
  • FIG. 1 The figure which shows the other structure of the culture container with a heat storage material based on Example 1.
  • FIG. 1 The figure which shows the other structure of the culture container with a heat storage material based on Example 1.
  • FIG. 1 The figure which shows the culture container with a thermal storage material installed in the apparatus based on Example 1.
  • FIG. The top view which shows one structure of the culture container with a heat storage material based on Example 1.
  • FIG. The figure which shows the state which put the container on the hotplate based on Example 1.
  • FIG. The figure which shows the state which accommodated the culture container in the holding
  • FIG. 1 The figure which shows the other example which accommodated the culture container in the holding
  • FIG. The figure explaining the microscope observation of the culture container with a heat storage material based on Example 1.
  • FIG. The figure explaining the microscope observation of the culture container with a heat storage material based on Example 1.
  • FIG. The flowchart figure of the culture
  • FIG. The figure which shows one structure of the culture container with a heat storage material based on Example 2.
  • FIG. The figure which shows the culture container with a thermal storage material on the culture container base based on Example 3.
  • FIG. The figure which shows the culture container with a thermal storage material on the culture container base based on Example 3.
  • Example 1 the basic configuration and operation flow of the cell culture device according to each example including Example 1 will be described in detail with reference to the drawings.
  • the basic configuration and the operation flow are not limited to this, and a configuration may be added or the operation flow may be changed as appropriate depending on the application.
  • an automatic culture apparatus comprising 12 components will be described in detail below.
  • the twelve components are: a culture vessel section 1, a flow path section 2, a rotary valve mechanism 3, a culture cell and feeder cell bottle section 4, a medium bottle section 5 composed of a refrigerator, etc., a preheating bottle section 6 , Drainage bag unit 7, observation unit 8, incubator unit 9, gas supply unit 10, humidifying bottle unit 11, and control unit 12.
  • the control unit 12 includes a control terminal 13.
  • the automatic culture apparatus uses the cell bottle installed by the user, the cell suspension in the medium bottle, and the medium for the closed system flow path that is a closed culture space, and the flow path unit of the present apparatus.
  • the control unit 12 controls a solenoid valve, a tube pump, etc. (not shown) provided in 2 etc., so that cells are seeded into the culture vessel of the culture vessel unit 1 and cultured.
  • control unit 12 controls the observation unit 8 composed of a microscope or the like provided in the apparatus to capture a cell image in the culture vessel. Except at the time of automatic photographing, cell seeding, medium exchange, and gas exchange, it is possible to control the position of the microscope based on the input from the operation screen of the control terminal and to photograph and store the cell image by manual observation of the microscope.
  • the temperature environment is observed by the sensor mechanism, and the observation result is displayed on the control terminal 13.
  • All logs of operation and measurement of the solenoid valve, tube pump, etc. of the flow path unit 2 are recorded in a storage unit such as a hard disk (not shown) provided in the control terminal 13.
  • the presence / absence of an operation error is determined, and the operation status is displayed on the monitor screen of the control terminal 13. Those data can be transferred outside the automatic culture apparatus.
  • FIG. 2 shows a closed circuit flow path circuit of the above-described automatic culture apparatus.
  • the closed system flow path includes the culture container section 1, the flow path section 2, the rotary valve mechanism 3, the cell bottle section 4, the culture bottle section 5, the preheating bottle section 6, and the drainage bag section among the components shown in FIG. 7 includes a gas supply unit 10 and a humidification bottle unit 11.
  • Example 1 will be described by way of example for the purpose of producing a regenerative tissue of epithelial cells such as corneal epithelial cells, oral mucosal epithelial cells, and epidermal cells. It is not limited.
  • the flow path circuit uses two types of cells. However, when only one type of cells such as cardiomyocytes and fibroblasts are to be cultured, one cell is used. It is good also as a flow path circuit of the cell bottle and the flow path with respect to it. Alternatively, in a channel circuit that uses two types of cells, only a channel circuit that targets one type of cell may be used.
  • the flow path circuit of FIG. 2 uses 10 culture vessels, it is also possible to use a flow path circuit composed of different numbers of culture vessels by installing or removing the culture vessels in parallel.
  • the closed system flow path shown in FIG. 2 mainly has the following components.
  • ten culture vessels 201 are provided to produce ten regenerated tissues.
  • the whole culture vessel 201 is installed on a culture vessel base 202 which is a flat plate, and an actuator 203 for changing the inclination is attached to the culture vessel base 202.
  • two cell bottles 204 and 205 are used.
  • One type of cell is placed in each cell bottle 204,205.
  • the entire culture vessel has a two-layer structure, and one type of cell is cultured in each layer.
  • the flow path circuits from the cell bottles 204 and 205 to each layer of the culture container use different flow path circuits (1) and (2) in order to prevent cells from being mixed during the liquid feeding.
  • the cell suspension in the cell bottle 204 is, for example, epithelial cells, passed through the solid line circuit (1) 206, and fed to one layer of each culture vessel, for example, the upper layer of all the culture vessels.
  • the cell suspension in the cell bottle 205 is, for example, feeder cells, and is fed to the layer on one side of each culture vessel, for example, the lower layer of all the culture vessels, through the dotted line circuit (2) 207.
  • the cell type By dividing the flow path according to the cell type in this way, it is possible to suppress mixing of cells cultured in the upper layer of the culture container and cells cultured in the lower layer. Since a xenogeneic cell may be used as a feeder cell, it is possible to avoid the risk of xenotransplantation in which the xenogeneic cell is mixed in the regenerative tissue to be transplanted.
  • reference numeral 222 denotes a multi-branch portion which will be described later.
  • the cell bottle is different for each cell type, since the medium is common, one medium bottle 208 is used.
  • the medium bottle is stored at 4 ° C. using a refrigerator as described in FIG.
  • the amount necessary for one medium exchange is transferred to the preheating bottle 209, and after heating to 36 ° C., for example, it is used for medium exchange.
  • the flow path circuit (1) 206 and the flow path circuit (2) 207 are appropriately branched via the bifurcation 210. Thereafter, the medium sent to the channel circuit (1) 206 is sequentially sent to one layer of each culture vessel. The same applies to the medium fed to the flow path circuit (2) 207.
  • the tube pump 211 gives a driving force for liquid feeding and air feeding in the flow path.
  • the liquid feeding direction is controlled by the electromagnetic valve 212 and the rotary valve mechanism 213 corresponding to the rotary valve mechanism 3 of FIG.
  • oxygen and carbon dioxide are supplied to each culture vessel 201 as gas exchange. This is because cells consume oxygen and discharge carbon dioxide.
  • a gas cylinder 216 filled with air containing 5% CO 2 is adjusted to a predetermined air supply speed with a gas flow meter 217, and then passed through a humidifying bottle 218 containing sterilized water. Saturate and air. Gas is sent to each culture vessel through an air supply circuit 219 located in parallel with the tube pump 211.
  • the flow path circuit of the present embodiment there is a sterile desorption part 220 and a sterile connection part 221.
  • the aseptic desorption part 220 is installed on the flow channel tube in the vicinity of each culture vessel 201.
  • one culture container can be removed aseptically on the day before transplantation for inspection.
  • the removed culture container and the remaining culture containers and flow paths after removal can each maintain sterility.
  • the culture vessel 201 is removed using the aseptic desorption part 220.
  • the aseptic desorption part 220 is a flow-path tube which can be heat-welded as an example, and cuts between two places sandwiching the cut portion after heat-welding.
  • the aseptic connection part 221 is installed on the flow path tubes in the vicinity of the cell bottles 204 and 205, the medium bottle 208, and the humidification bottle 218.
  • the cell bottles 204 and 205, the medium bottle 208, and the humidification bottle 218 are carried into the CPC in an empty state, and a user puts a predetermined cell suspension, medium and sterilized water into the closed system flow path. At that time, aseptic connection is made using the aseptic connection part 221.
  • FIG. 3 shows an example of the culture container base 202 of the apparatus of the present embodiment and a state in which ten culture containers 201 are installed on the culture container base 202.
  • the culture vessel base 202 of this example has a horseshoe shape. That is, the culture vessel base 202 has a structure in which a gap is formed by hollowing out a central portion with a rectangular flat plate, and a notch is provided at an end of the flat plate on the side to be inserted into the apparatus, that is, a part of the outer periphery. And has a so-called U-shaped shape.
  • the inner side of the central part of the culture vessel base 202 is circular, and the culture vessel 201 is arranged in a circle around it.
  • the culture vessel base 202 is formed with holding means such as a recess for holding each culture vessel 201.
  • a microscope of the observation unit 8 to be described later is disposed in the hollow space portion that is hollowed out.
  • An observation hole 301 for microscopic observation is provided in a portion that holds the culture vessel 201.
  • the installation direction in the apparatus is uniquely determined. That is, when the culture vessel base 202 is installed, the culture vessel base 202 is brought close to the microscope from the scraping side formed on one side of the culture vessel base 202, the microscope is guided into the gap, and installed in the actuator or the like. With the shape having the cut-out gap, the culture vessel base 202 can be arranged at the center of the plurality of culture vessels 201. In addition, since the user can easily install and remove the plurality of culture vessels 201 on the culture vessel base 202 without contacting the microscope, the quality deterioration of the cell culture can be suppressed by damaging the flow path or the like due to human error. It becomes possible.
  • a culture vessel installation base (not shown) having the same shape as the culture vessel base 202 or divided into a plurality of pieces is provided in the apparatus, and the culture vessel 201 and the like are installed on the culture vessel installation base.
  • the culture container installation base may be placed on the base 202 so that the installation operation can be simplified even when the weight of the culture container base is heavy.
  • FIG. 3 shows a state in which ten culture vessels 201 are installed on the culture vessel base 202.
  • four channel tubes 302 are connected to each of the culture vessels 201, and the four channel tubes 302 are arranged outwardly with respect to the culture vessel base 202.
  • the channel tube 302 By disposing the channel tube 302 outside the culture vessel base 202, that is, on the outer periphery, it is possible to suppress deterioration in cell quality due to contact between the microscope, the culture vessel base 202, the channel tube, and the like when the microscope is driven.
  • the sterilization / removal part 303 for enabling the removal of each culture vessel.
  • the culture surface of the culture vessel is subjected to a temperature response when the temperature of the culture vessel 201 falls below the phase transition temperature of the temperature-responsive culture surface, for example, 32 ° C.
  • the nature of the surface of the sex culture changes from hydrophobic to hydrophilic, and the cells that have adhered, spread and proliferated spontaneously at 37 ° C. are detached.
  • the culture conditions change greatly, and the quality of the cells at the time of transplantation also changes.
  • a small door for taking out the work before the day before the completion of the culture for the purpose of quality confirmation in the culture process Can be prepared in the upper part of the door of the incubator unit 9, and the time and range of exposing the inside of the incubator unit 9 to the outside air can be reduced to reduce the temperature drop during operation.
  • a transparent material such as glass
  • FIG. 4 is a perspective view showing an outline of the automatic culture apparatus described above.
  • the incubator 401 is on a desk 405.
  • a refrigerator 406 for storing medium bottles at, for example, 4 ° C.
  • a storage box 407 for storing drainage bags.
  • the drain bag may be installed in the refrigerator 406. In that case, the advantages of reduced installation area and cost can be obtained.
  • 4B is a diagram showing the relative positional relationship between the microscope 400 installed in the observation unit 8 and the culture vessel 201, which will be described later.
  • the incubator 401, the refrigerator 406, and the storage 407 are connected by a flow channel tube 408.
  • This means that the incubator 401 maintained at 37 ° C. and the refrigerator 406 maintained at about 4 ° C. are not in spatial proximity, separated by a CPC air-conditioned space, which is typically about 25 ° C. ing.
  • a CPC air-conditioned space which is typically about 25 ° C. ing.
  • FIG. 1 is installed in the vicinity of the incubator 401 to operate this apparatus.
  • the fully automatic culture apparatus is controlled by a single control apparatus.
  • a management monitor that enables management from outside the CPC will be installed if necessary.
  • Reference numeral 403 denotes a monitoring monitor.
  • a small window 409 is installed on the side surface of the incubator 401. This role will be described later. .
  • the components inside the apparatus such as the flow path unit 2 and the culture vessel base 202 (not shown) installed in the incubator 401 are respectively connected to mounting tables (not shown) connected to rails installed in the incubator 401. Since it is placed, it can be pulled out from the door 402 at once.
  • the user connects and installs the flow channel to the flow channel unit etc. at the start of culture, etc., it becomes possible to install in a state where the mounting table is pulled out, reducing the complexity at the time of channel installation, It is possible to suppress human error by the user.
  • it is desirable that the microscope installed in the flow path unit 2 and the observation unit 8 is not completely taken out from the incubator 401 and is made a part.
  • the microscope may be fixed in the apparatus.
  • the part to be removed from the incubator 401 may be the flow path part 2 and the culture vessel base 202, and the microscope 400 may not be removed. In this case, since the number of components to be pulled out is reduced as compared with the above-described method, the drawing operation becomes easier.
  • the culture vessel base 202 When the so-called U-shaped culture vessel base 202 is used as in this embodiment, the culture vessel base 202 is placed on the side of the notch provided on the culture vessel base 202 as shown by the arrow in FIG. Then, it is inserted into the housing of the apparatus through the door 402 shown in FIG. This is because the microscope 400 is guided to the gap so that the culture vessel base 202 does not come into contact.
  • FIG. 5 is a functional block diagram illustrating the functional configuration of the above-described automatic culture apparatus.
  • Each component controlled by the control device 501 corresponding to the control unit in FIG. 1 is disposed inside the incubator unit, the refrigerator, and the storage 503 and connected to the culture vessel 201.
  • the culture vessel 201 installed in the automatic culture apparatus.
  • the control device 501 includes a temperature adjusting unit 504 that controls the temperature of the incubator, refrigerator, and storage 503, a temperature sensor 505, and a gas supply unit 506 that supplies gas into the culture vessel corresponding to the previous gas supply unit 10.
  • a temperature adjusting unit 504 that controls the temperature of the incubator, refrigerator, and storage 503, a temperature sensor 505, and a gas supply unit 506 that supplies gas into the culture vessel corresponding to the previous gas supply unit 10.
  • fluid movement control mechanism unit 508 for automatically feeding liquid and gas in the channel corresponding to the previous channel unit 2, and the previous microscope 400
  • a cell observation microscope 509 is connected.
  • the control device 501 and the display screen 502 corresponding to the control unit 12 and the control terminal 13 are input / output composed of a processing unit, a storage unit, a display unit, and a keyboard including a CPU (Central Processing Unit). It corresponds to a processing unit and a storage unit of a normal computer including a unit and a display unit of a display device, respectively.
  • the control device 501 operates various programs stored in the storage unit by a CPU as a processing unit. Thereby, the culture environment in the incubator / refrigerator / storage 503 is controlled by the temperature adjustment unit 504, temperature sensor 505, gas supply unit 506, fluid movement control mechanism unit 508, microscope 509, solution holding unit / drainage bag 507, It is possible to perform a predetermined culture process in the culture vessel 501.
  • the culture vessel 201 holds a biological sample therein. Therefore, sterilization by sterilization is possible.
  • sterilization can be performed by sterilization by ⁇ -ray irradiation or ethylene oxide gas treatment before use.
  • polystyrene is taken as an example, but it goes without saying that it can be applied if it can be sterilized with a material that is not harmful to a biological sample.
  • the culture vessel 201 is preferably a closed culture vessel that forms a closed space.
  • a culture container is shown in which a culture dish 602 and a temperature-responsive cell culture insert container 603 generally used in cell culture by hand culture are incorporated to form a closed space.
  • Two types of culture dishes 202 and a temperature-responsive cell culture insert container 203 enable two-layer culture of epithelial cells using, for example, feeder cells.
  • the culture is performed in a state where the flow path tube is always connected to the flow path circuit.
  • the channel tube is attached to a connector 604 included in the culture vessel 201. Since this example is a two-layer culture, a supply connector and a discharge connector are installed on one layer. Therefore, it has a total of four connectors.
  • the heat storage unit 701 of the present embodiment includes a heat storage material 605, a heat storage unit container 606 made of polycarbonate or the like that houses the heat storage material 605, and a metal heat receiving part 607 that is in contact with the culture container, such as aluminum having high thermal conductivity. .
  • Heat is efficiently conducted from the heat storage material 605 in the heat storage unit 701 to the culture vessel 201 by the receiving unit 607.
  • a window 608 is provided to enable cell observation in a state where the culture vessel 201 is placed in the heat storage unit 701. The bottom surface of the culture vessel 201 is exposed, which allows light transmission.
  • the culture vessel 201 may be surrounded by a transparent material such as polyethylene as long as it does not hinder the optical conditions during cell observation. In this case, since the culture vessel 201 is not exposed, the temperature decrease becomes more gradual. Furthermore, there is an advantage that the manufacturing is easier than installing a window.
  • the heat storage material 605 may be a substance having a high heat capacity when the conveyance time after incubation is as short as about 1 hour, for example. What is necessary is just to maintain temperature until the time when conveyance is complete
  • this heat storage material 605 there is a solid heat storage material (for example, a heat storage material manufactured by Mitsubishi Cable Industries, Ltd.) as an example.
  • the heat storage material 605 is preferably a pure substance having a constant melting point or a substance having a large heat capacity and a small temperature change of the melting point (for example, ⁇ 1 ° C. or less). This is because when the melting point is included in the temperature zone during transportation, the heat capacity during transportation becomes larger. In addition, since the variation range of the internal temperature during transportation is small, the influence of the temperature on the biological sample is small.
  • hydrocarbon which is a pure substance is given.
  • the melting point of hydrocarbon (n-eicosane) having the chemical formula C 20 H 42 is 36.4 ° C.
  • Hydrocarbons having different numbers of C have different melting points. Therefore, it is possible to change the temperature value at which the cell transport container is kept constant by selecting the type of hydrocarbon.
  • a liquid heat storage material such as a hydrocarbon
  • hermeticity is not necessary and there is an advantage of cost reduction.
  • a closed culture vessel After culturing, in the case of a closed culture vessel, it is aseptically removed from the flow path circuit and transported while maintaining the closed state.
  • an open culture vessel that can be easily opened and closed, open and close the lid while maintaining the inside of the automatic culture device at the same level of cleanliness as in the safety cabinet during culture. I do.
  • the culture vessel After the culture, in order to prevent the internal medium from leaking out, the culture vessel is once taken out from the culture part and the process proceeds to the process of continuously closing the periphery with parafilm or the like. Since the closed culture container is assumed in the present embodiment, it is possible to proceed to the next step while being accommodated in the heat storage section.
  • the heat storage part 701 is surrounded by a heat insulating part 601 after the culture.
  • the heat insulating portion 601 includes an upper surface heat insulating portion 609, a lower surface heat insulating portion 610, and a side heat insulating portion 611.
  • the heat insulating portion 601 can be partially removed depending on the process.
  • a part may be integrated according to a use, and FIG. 6F is what the upper surface and side surface heat insulation part 612 and the lower surface heat insulation part 613 connected with the hinge 614.
  • the automatic culture apparatus includes an incubator 401 that is a space for culturing cells at a culture temperature of 37 ° C., a refrigerator 406 that stores medium bottles, and a storage that houses a drainage bag. 407, a gas cylinder 404, a control unit 12 for controlling the automatic culture apparatus, and the like.
  • each heat storage unit 701 has a trapezoidal shape as shown.
  • the culture vessel base 202 has a groove-shaped guide (not shown), and determines the positions of the culture vessel 201 and the heat storage unit 701.
  • the cells in the culture vessel 201 are observed with the microscope 400.
  • a flow path section 2 having a drive system such as an electromagnetic valve 212 and a tube pump 213 for feeding a medium or the like to each culture vessel 201 is installed.
  • the automatic culture apparatus is a cell seeding by feeding a cell suspension into a culture vessel 201, a culture for maintaining the temperature at 37 ° C. while appropriately performing gas exchange, a medium exchange for discharging an old medium and supplying a new medium, a microscope Conduct cell observation by
  • the steps performed by the automatic culture apparatus are cell seeding, medium exchange, culture, and microscopic observation. However, it goes without saying that some steps can be replaced manually.
  • the periphery of the culture vessel 201 is surrounded by the heat storage material 605 in the automatic culture apparatus, but the heat storage material 605 is warmed together with the culture container in the automatic culture device.
  • the heat storage unit 701 is not surrounded by the heat insulating material, heat is efficiently supplied from within the incubator. For this reason, means, such as a heater, for heating the heat storage unit 701 is unnecessary, and therefore the configuration of the automatic culture apparatus is not changed. In this state, there is no optical hindrance to microscopic observation.
  • One day or a plurality of culture vessels 201 are taken out for a shipment inspection to determine whether transplantation is possible on the day before transplantation or the like.
  • the culture container to be taken out is arbitrary as one aspect, and can be determined by the user based on the cell observation result or the like.
  • the door 402 of the incubator 401 shown on the left side of FIG. 4 is opened, and then the flow path tube 302 attached to the culture vessel 201 is aseptically cut.
  • the culture vessel 201 and the heat storage unit 701 are taken out. Or you may implement this operation
  • the culture vessel 201 and the heat storage unit 701 are quickly accommodated in the heat insulating unit 601 and taken out of the automatic culture apparatus. Then, the door or small window 409 of the incubator 401 is closed.
  • the temperature in the incubator is, for example, 37 ° C.
  • the room in which the incubator is installed is, for example, 25 ° C.
  • the temperature is generally lower in the room. Therefore, while the door of the incubator is opened, the temperature in the incubator is lowered by being exposed to the air outside the chamber lower in temperature than the inside, but the temperature drop can be avoided because the culture vessel 201 is surrounded by the heat retaining means. Become.
  • the removed culture container is transported in a state surrounded by a heat insulating part.
  • the temperature can be maintained until the time of the shipping inspection, that is, the shipping inspection can be performed under the same conditions as at the time of manufacturing.
  • the culture container to be taken out for examination on the day before transplantation if it is determined in advance rather than arbitrarily selecting during the culture, only the culture container for examination can be taken out, and a plurality of remaining transplantation containers are used.
  • the culture vessel can also have a connected shape. In this case, at least two or more integrated culture vessels can be collectively handled in a process such as transport. That is, a culture container other than the test culture container to be taken out and a heat storage unit for storing them are integrated, and can be taken out from the incubator in an integrated state.
  • the temperature is lowered by supplying necessary heat insulating units and heat insulating members to the incubator 401 and preheating them to 37 ° C. It is possible to surround the culture vessel 201 and the livestock heat unit 701 with the heat insulating unit 601 in the incubator 401 in a state where the above is avoided.
  • the culture container used for the shipping inspection is immediately stored in the heat insulating part in the heat insulating part after taking out from the incubator or immediately before taking out, and in that state the safety cabinet Transport to etc.
  • culture containers that are not used for shipping inspection are kept in the incubator.
  • the periphery is covered with the heat storage unit 701
  • the remaining culture vessel 201 can avoid the temperature drop.
  • the culture vessels used for transplantation are sequentially taken out from the incubator. As in the case of taking out the day before, it is quickly accommodated in the heat insulating part and then transported to a safety cabinet or the like.
  • the culture container taken out from the apparatus the day before or on the day of transplantation is transported in a state of being accommodated in the heat storage unit 701 and the heat insulating unit 601 as shown in FIG. 6C. This avoids a temperature drop even when exposed to room temperature, which is lower than the culture space.
  • disinfecting ethanol when moving to a room with different cleanliness in the CPC, it passes through a pass box, but at that time, in order to avoid cross-contamination, disinfecting ethanol may be sprayed. Sprayed ethanol for disinfection lowers the temperature when vaporized, but it is also possible to avoid a decrease in temperature with a heat insulating material.
  • the heat insulating material is resistant to disinfecting ethanol and the like.
  • process biological samples in the safety cabinet examples of processing are given below.
  • a culture container for shipping inspection taken out the day before transplantation inspect in a safety cabinet. Evaluate whether biological samples can be collected, expression of specific proteins, cell viability, etc.
  • the test may be performed non-invasively, returned to the automatic culture apparatus again, and the culture schedule or the like may be changed by the control mechanism according to the test result to correct the culture process more efficiently.
  • the flow path tube is aseptically connected again.
  • an open culture vessel it is aseptically returned to the automatic culture apparatus.
  • the culture medium is replaced with a transport medium if necessary. That is, the lid of the culture container is opened, the culture medium at the time of culture is removed, the transport medium is added, and the lid is closed again.
  • the culture container lid may be in a form suitable for transportation. In such a safety cabinet, the culture vessel is warmed with a hot plate as necessary to avoid a temperature drop.
  • the culture container is accommodated in the transport container in the shipping room in the CPC.
  • FIG. 9A shows a case where the product is transported while being taken out from the automatic culture apparatus.
  • the outermost shell of the transport container 900 is a storage container main body 901 and a storage container lid 902, and a heat insulating member 903 is provided therein. It also has an environmental sensor 904 for measuring the temperature during transportation.
  • the culture vessel 201 is accommodated in a state surrounded by the heat storage unit 701 and the heat insulating unit 601. Therefore, the heat release of the culture container is suppressed twice by the heat storage unit 701 and the heat insulating unit 601 covering the heat storage unit 701.
  • FIG. 9B shows a state in which the heat storage material 905 of the transport container 900 is surrounded by a heat insulating member 903. Since the periphery is surrounded by the heat insulating member, the culture vessel 201 is not kept warm, but as a result, the temperature maintenance time of the culture vessel 201 becomes longer in order to compensate for the heat gradually released out of the transport container.
  • FIG. 9C shows a case where a heat storage material 408 is added to the inside of the transport container as compared with FIG. 9B. Moreover, in order to warm a culture container with the thermal storage material 408, it accommodates in the state which removed the heat insulation part which covered the circumference
  • the heat storage material immediately after taking out from the thermostat just before long-distance transportation is used for transportation.
  • a heat storage material having a large heat storage capacity for example, the hydrocarbon pure substance C 20 H 42 has a melting point of 36.4 ° C. and is close to the culture temperature of 37 ° C., so that it is used in a state preheated to 37 ° C. This makes it possible to maintain the temperature for a long time when the state changes from liquid to solid.
  • the state of the cells is confirmed by microscopic observation, which is a non-invasive method, if necessary. For example, the presence or absence of changes in cell quality is evaluated after the transport process.
  • microscopic observation it is necessary to place the culture vessel 201 on the stage 1001 of the microscope 400.
  • the culture vessel 201 needs to be optically transparent.
  • the cell needs to be focused, that is, the distance to the cell with respect to the objective lens needs to be sufficiently small. Taking these into consideration, as shown in FIG. 6E, during observation, the upper and lower surfaces 609 and 610 of the heat insulating portion 601 are removed so that light can be transmitted.
  • the upper and lower surfaces are arranged so as to cover the side surface 611 as shown in FIG. 6C, and after the upper and lower surfaces are removed, the side surface 611 becomes equal to the height of the culture vessel. To do. That is, the heat insulation part 601 after removing the upper and lower surfaces of the heat insulation part 601 is in a state close to the stage in the vertical direction.
  • the culture container surrounded by the heat insulating part 601 and the heat storage material is taken out from the transport container carried to the operating room.
  • the lid of the culture vessel is opened aseptically and a biological sample is taken out and used for treatment to the patient.
  • the culture vessel is taken out of the heat storage part and the heat insulation part, then moved into a thermostat such as 20 ° C., and subjected to a low temperature treatment, for example, left for about 30 minutes. . Since the property of the temperature-responsive culture surface is switched from hydrophobic to hydrophilic, the cells that have adhered to the temperature-responsive culture surface spontaneously change their shape and detach.
  • the culture vessel is set in the automatic culture apparatus in advance.
  • the flow path is formed from a culture vessel, a cell bottle containing a cell suspension, a medium bottle containing a medium, a drainage bag for collecting the drainage, and a channel tube connecting them.
  • the culture vessel 201 is sequentially accommodated in the heat storage unit 701 installed in advance on the culture vessel base 202. After confirming the installation normality after installing the flow path, the process moves to step S1.
  • Step S1 Start> Activate the automatic culture device.
  • the operation is started when the operator presses the start switch of the operation unit in the control unit 12.
  • the inside of the apparatus is in a clean environment by performing disinfection or sterilization in advance.
  • a value related to the internal environment of the automatic culture apparatus is displayed on the operation screen of the display of the control unit 12. Therefore, it is confirmed on the operation screen of the display of the control unit that the internal environment of the automatic culture apparatus is appropriate.
  • the temperature of the incubator 401 is 37 ° C.
  • Step S2 Schedule determination> An automatic culture schedule to be performed by the automatic culture apparatus is determined. An automatic culture schedule to be executed by an automatic culture apparatus is input according to the type and amount of cells to be cultured. Conditions such as date, frequency, fluid volume, etc. for operations such as cell seeding, medium exchange, microscopic observation, drainage collection, examination tissue collection, transplantation tissue collection, etc. are controlled from the control terminal 13 connected to the control unit 12 or the like. input.
  • Step S3 Cell seeding> After opening and closing the appropriate electromagnetic valve 212, the tube pump 211 is operated to suck the cell suspension from the cell bottle.
  • the cell suspension is obtained by suspending oral mucosal epithelial cells in KCM medium (keratinocyte culture medium) and 3T3-J2 cells or NIH suspended in KCM medium. It is a feeder cell such as -3T3 cell. Each is in a different cell bottle.
  • each cell suspension is sent from the two cell bottles 4 to the culture vessel 201.
  • the culture vessel 201 to be fed and the electromagnetic valve connected to the flow path are opened to enable feeding.
  • the solenoid valve connected to the culture vessel and the flow path that are not the liquid supply target is closed so that the liquid cannot be supplied.
  • Cell seeding is sequentially performed on the upper and lower layers of 10 culture vessels.
  • the epithelial cells pass through the flow path circuit (1) indicated by the solid line in FIG.
  • the feeder cells pass through the flow path circuit (2) indicated by a broken line and are sequentially seeded in the lower layer of each culture vessel.
  • the cell distribution in the cell bottle is made uniform by sucking and discharging the cell suspension immediately before feeding, and the cell concentration of the sent cell suspension is made uniform.
  • the actuator below the culture vessel base 202 for installing the culture vessel is operated.
  • the culture container at the time of cell seeding and cell culture maintains a horizontal state
  • the culture container 201 is tilted using the actuator 203 immediately after cell seeding and at the time of medium replacement.
  • the cell distribution is made uniform by continuously shaking. Thereafter, the culture vessel is returned to a horizontal state and cultured in that state.
  • Step S4 Cell Culture> Incubation is performed for a predetermined time in a state where the culture vessel 201 is left horizontally.
  • the stationary period is about 3 days after seeding.
  • the inside is maintained at 37 ° C. by an incubator.
  • the air in the apparatus is constantly stirred by a fan so that the temperature distribution is always uniform.
  • gas exchange is performed by supplying a predetermined component gas into the culture vessel. Gas exchange is also performed several times a day during the culture period.
  • air containing 5% CO2 is supplied into the culture container.
  • the gas is supplied from a gas supply unit, and water molecules are saturated by passing the humidifying bottle unit 11 before supplying the gas to each culture vessel. Thereby, it is avoided that water is evaporated from the culture medium in each culture vessel, and as a result, the culture medium components are changed.
  • the gas is directly supplied to each culture vessel using a gas pressure from an air supply circuit in parallel with the tube pump without passing through the tube pump.
  • the air supply speed can be increased as compared with the case through the tube pump, and the gas exchange efficiency is improved. Also, the load on the tube pump is eliminated. Unnecessary gas after being supplied to the culture vessel is discharged out of the flow path through the filter. Further, the air pressure in the flow path is adjusted through a filter as necessary. For example, a filter having a quality that does not pass particles of 0.22 ⁇ m or more is used.
  • the culture vessel 201 used in the apparatus of this example does not distinguish between a flow channel tube used for liquid feeding and a flow channel tube used for air feeding. That is, the air supply function is used in combination in the flow channel tube used for liquid supply. In the case of this configuration, the number of channel tubes connected to the culture vessel 201 is reduced as compared with the case where the channel tube used for liquid feeding and the channel tube used for air feeding are made independent. As a result, the flow path can be simplified.
  • Step S5 Observation with a microscope>
  • a cell image is acquired using the microscope 400 installed in the observation part 8 in an automatic culture apparatus.
  • a light source installed in the automatic culture apparatus is appropriately caused to emit light, and the cell is focused and imaged by the microscope 400. If necessary, set a fixed point on the culture surface and take a picture.
  • the acquired cell image is stored in a database and viewed on a control terminal installed outside the apparatus. Judging from the information regarding the growth state of the cells obtained by microscopic observation, the frequency and timing of medium replacement are adjusted. For example, when the cell adhesion is insufficient, the culture of S4 cells is continued without performing the medium exchange of S6.
  • ⁇ Step S6 Medium replacement> Medium exchange is performed once every few days during the culture period.
  • the medium stored at 4 ° C. in the refrigerator is fed to the preheating bottle and preheated. It heats by the heat conduction by the contact with the receiving part arrange
  • the old medium is discharged from the culture vessel 201.
  • the culture vessel is tilted to the outlet side by the actuator so that the entire amount of the old medium is discharged.
  • a new pre-heated new medium is supplied into the culture vessel. This avoids cell drying and temperature drop on the culture surface.
  • the old medium is finally discharged to the drainage bag portion 7 shown in FIG. Assuming that it is used for medium component analysis, in this embodiment, the upper and lower layers of the culture vessel 201 are collected separately.
  • the cell suspension and medium flow in one direction by the flow path circuit shown in FIG. That is, the old medium used for culture in the culture container and the new medium not used for culture are not mixed.
  • an old medium and a new medium have different amounts of glucose consumed by cells and lactic acid produced, which means that the culture environment changes when they are mixed at the time of medium exchange.
  • the effect of improving the reproducibility of cell culture can be obtained by preventing both from being mixed by the apparatus configuration of the present embodiment.
  • the effect of improving the accuracy of medium component analysis can be obtained because the new medium and the old medium are not mixed.
  • Step S7 Collection of examination tissue> One day or a plurality of the culture vessels 201 being cultured are collected for examination on the day before the scheduled transplantation date or the like.
  • the door of the automatic culture apparatus is opened, and the flow path tube 302 of the test culture vessel 201 is aseptically cut by means such as heat welding. Thereafter, the culture vessel 201 is taken out together with the heat storage unit 701 and accommodated in a heat insulating unit 601 prepared in advance.
  • the heat insulating portion 601 may be preheated by being placed in the incubator 401 from the start of culture. This makes the temperature drop more gradual.
  • the removed culture vessel 201 is transported out of the safety cabinet or CPC and promptly inspected. For example, the number of cells in a biological sample, the survival rate, the expression of a specific protein, etc. are evaluated. Immediately close the incubator door after removing the culture vessel for testing.
  • the inside of the incubator 401 is exposed to room temperature and the temperature is lowered.
  • the culture container not for examination but for transplantation is also surrounded by a heat storage unit 701 that is preheated to 37 ° C. Therefore, even if the door of the incubator 401 is opened and exposed to air at room temperature, a temperature drop can be avoided. This avoids detachment of cells before transplantation, particularly from a temperature-responsive culture surface having a phase transition temperature of 32 ° C. in the culture vessel 201.
  • the temperature is adjusted by controlling the air conditioner and the heater so that the temperature rapidly returns to 37 ° C., which is the culture temperature.
  • the heat storage amount of the heat storage unit 701 that surrounds the culture vessel 201 other than the test container and has released heat in this process is also recovered.
  • the aseptic desorption part 303 is a flow channel tube that can be thermally welded as an example, and cuts between two portions sandwiching the cut portion after heat welding. This makes it possible to maintain the sterility of the removed culture container and the culture container and the flow channel that have not been removed even after the removal. Thereafter, the removed culture container is promptly inspected to determine whether transplantation is possible. Furthermore, it is possible to analyze the test results, evaluate the culture status up to that point, and change to an appropriate culture schedule for the culture vessel that continues to culture in the culture space according to the culture status evaluation results. It is.
  • Step S8 Culture and medium exchange just before transplantation> As in steps S4 and S6, cell culture and medium exchange are performed.
  • Step S9 Collection of transplanted tissue>
  • the fact that the culture is completed is displayed on the display of the control unit.
  • the culture container is aseptically removed from the flow path together with the heat storage part, accommodated in the heat insulating part, and taken out from the incubator. Carry it into the safety cabinet as needed.
  • the lower surface of the heat insulating part 601 is removed and placed on the heat block.
  • the lower surface of the heat storage unit 701 is warmed by a heat block, and heat release from other than the lower surface is suppressed by the heat insulating unit 601.
  • the lid is removed as necessary, and the medium in the culture container is replaced with a transport medium.
  • Step S10 Pass box>
  • the cells are transported from the cell preparation room where the cells are cultured to the shipping room, they pass through a pass box.
  • a pass box disinfects the outside by spraying with disinfectant ethanol as necessary.
  • Step S11 Accommodation in transport container> A culture container with a heat storage material is accommodated in a transport container for a short distance or a long distance in a shipping room.
  • the transport container is a container covered with a heat insulating material, thereby avoiding a temperature drop in the transport process. It also contains a monitoring device. The monitoring device turns on the power before storage and starts measurement, and measures temperature, pressure, impact, etc. over the entire process during transportation.
  • Step S12 Transport> Remove the shipping container out of the CPC.
  • Step S13 Acceptance inspection after transportation> Before treatment in the operating room, cell observation with a microscope is performed as an acceptance test if necessary. When carrying out microscopic observation, the culture vessel surrounded by the heat insulating part and the heat storage part is taken out from the transport container. The cells are observed on the stage of the microscope with the top and bottom surfaces of the heat insulation part removed. This makes it possible to observe cells in a state in which the temperature drop is suppressed. As a result of the evaluation, if it is confirmed that the transported culture container is suitable for treatment, preparation for treatment is started. Until the start of treatment, the culture container is accommodated in the transport container and the temperature is maintained.
  • Step S14 Treatment>
  • move the transport container to the operating room When it reaches the operating room, the culture vessel is taken out together with the heat insulating part and the heat storage part. And a culture container is taken out from a thermal storage part. Subsequently, the biological sample is removed from the culture vessel.
  • a temperature-responsive culture surface is used for the culture vessel, a low-temperature treatment is performed in advance, for example, by leaving it in a thermostat at 20 ° C. for 30 minutes.
  • FIGS. 6A to 6F an embodiment of a culture container with a heat storage material including a heat storage section having a configuration different from the configuration of the heat storage section shown in FIGS. 6A to 6F will be described.
  • the heat storage unit conducts heat stored in advance to the culture container and maintains the temperature of the culture container.
  • the temperature on the outer peripheral side becomes lower than the inside as time passes.
  • heat is efficiently transferred from the inside of the heat storage unit to the culture vessel.
  • thermal conductors such as a linear metal 1201, a planar metal 1202, and a rod-shaped metal 1203 are installed from the inside of the heat storage unit to the culture vessel.
  • the volume inside a thermal storage part reduces, so that the volume of these internal metals becomes large. As a result, the temperature holding time decreases.
  • the shape and arrangement of the heat conductor are selected according to the necessary temperature holding time.
  • Example 3 an example in which the position of the culture vessel in the heat storage unit is changed will be described. Since the heat storage part of the culture container with a heat storage material is intended to maintain the temperature of the culture container, it is desirable that the spatial distribution of the heat storage part surrounding the culture container is uniform. That is, it is best to be located at the center of the heat storage section as in the configuration of the first embodiment.
  • the microscope 400 needs to move in order to approach the culture vessel.
  • the moving mechanism of the microscope 400 also becomes large, and as a result, the automatic culture apparatus becomes large. This contributes to an increase in cost and is not preferable.
  • FIG. 13A shows that a plurality of culture containers with a heat storage material are installed on a plurality of culture container bases 202 with a thin heat storage section 1301 on the side where the microscope 400 is installed so that the moving distance becomes smaller when the microscope approaches. It is a figure which shows what was done. Since the microscope 400 is located at the center of the culture vessel base 202, the center side of the trapezoidal heat storage unit 1301 surrounding the culture vessel 201 is thin. As shown in one culture container with a heat storage material taken out for inspection in FIG. 13B, the culture container 201 is eccentric in the trapezoidal heat storage unit 1301, that is, on one of a pair of opposing side surfaces.
  • the perspective view of the culture container with a heat storage material provided with the trapezoidal heat storage part which has the eccentric structure of a present Example, and the heat insulation part and the culture container with a heat storage part in FIG. showed that.
  • the culture vessel base 1402 is rectangular, and two sets of rectangular heat storage units 1401 arranged in a straight line are installed. And the observation part 8 in which the microscope 400 is installed moves back and forth, right and left (XY direction).
  • the rectangular heat storage unit 1401 of this embodiment is also thin on the space side between the two culture vessels 201 on the side where the microscope 400 exists. That is, in each heat storage unit 1401, the culture vessel 201 is arranged eccentrically on the microscope 400 side in the observation unit, that is, at a position close to one of a pair of opposing side surfaces, thereby reducing the movement of the microscope, It is possible to reduce the size of the apparatus and shorten the observation time.
  • Example 4 an example in which the culture container with a heat storage material is used not by an automatic culture process by an automatic culture apparatus but by a manual operation by an incubator will be described.
  • the channel tube is not connected to each culture vessel.
  • the culture vessel may be closed or open.
  • each culture container is in a state of being accommodated in the heat storage unit.
  • When taking out the culture vessel from the incubator immediately store it in the heat insulating part. Even if the culture container left in the incubator is exposed to air at room temperature by the heat storage section, the temperature does not decrease.
  • the culture container after removal is subjected to temperature maintenance with a hot plate and observation with a microscope with a part of the heat insulation part removed as necessary. Thereby, the temperature fall of a culture container can be avoided. This is particularly effective when using a temperature-responsive culture surface in a culture vessel.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for better understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • another configuration can be added, deleted, or replaced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 生体試料を製造する培養容器において、自動培養装置からの取り出し時と、自動培養装置から取り出し後の搬送時の温度低下回避を可能とする。生体試料を内部に保持する培養容器201と、培養容器を保持する蓄熱部701と、蓄熱部を囲う断熱部601から成る。断熱部601は設置環境に応じ、全周または一部609、610、611の取り外しを可能とする。

Description

細胞培養装置、培養容器、及び保持容器
本発明は細胞培養装置に係り、細胞又は組織を自動操作により培養し、培養後は細胞培養装置外にて搬送する技術に関する。
 細胞を原料として製造した再生組織等の生体試料を用い、臓器等の機能を回復させる再生医療は、従来治療法のなかった疾病に対する根治療法として期待されている。再生組織等の生体試料の製造工程は、医薬品等の製造管理及び品質管理の基準である適正製造基準(GMP:Good Manufacturing Practice)に基づく。製造は細胞処理施設(CPC:Cell Processing Center)で行い、GMPを満たした標準手順書(SOP:Standard Operating Procedure)に従う。GMPは、日本国内では厚生労働省の定める法規が施行されている(例えば厚生省令第179号、薬発第480号)。日本国外では欧米の機関(例えば米国食料医薬品庁、欧州委員会)を中心に関連法規が施行されている。
 生体試料の製造コストを下げるため、培養工程の一部ないし全てを自動化する自動培養装置の導入が求められている。培養工程を手作業ではなく自動培養装置により実施することで省力化とコストダウンを実現し、大量生産が可能となる。加えて自動培養装置による操作は一定であるため、製造後に得られる再生組織の品質一定化への寄与も期待される。製造後は、製造場所であるCPCから再生医療治療を行う医療機関の手術室まで再生組織を運ぶ必要がある。CPCと手術室は同一敷地内にある場合と異なる場所にある場合がある。いずれにおいても製造場所及び治療場所以外の空間において再生組織を輸送する必要があり、そこでは一般的に温度、清浄性等は制御されていない。
 これらに関連する先行技術文献として、例えば特許文献1、2がある。これらは、生体試料を収容し温度を維持した状態で輸送する装置が開示されている。
特開2010-163207号公報 特開2007-284137号公報
 上述の通り、自動培養装置により製造した生体試料を治療として生体へ適用するにあたり、製造時及び輸送時を含め、生体試料は良好な状態を維持している必要がある。再生医療治療の全工程の中で具体的には、複数の培養容器を用い移植用の生体試料を製造する工程において、移植可否を判定する出荷判定のため移植前日等に自動培養装置から出荷判定用に培養容器を取り出して培養容器内の細胞の品質を確認・評価する必要がある。自動培養装置内は培養に適した温度(例えば37℃)に維持されているが、取り出しに際し外気(例えば25℃)に晒されるため、出荷判定には使用しない培養を継続する培養容器の温度が低下する危険性がある。また、製造後に培養容器を自動培養装置から取り出し手術室まで運ぶ輸送工程において、CPCの内外で輸送する際にも温度低下の危険性がある。これらは製造時と異なる温度条件となることを意味し、移植時に生体試料の状態が変化する危険性を有する。特に培養容器において、37℃では細胞の接着、伸展、増殖を可能とし、相転移温度である32℃以下では細胞が自発的に剥離する温度応答性培養表面を用い生体試料を製造する場合、製造時及び輸送時に温度が32℃以下に低下し細胞が剥離すると、生体試料の品質は大きく変化してしまう。以上より、製造工程から輸送工程を経て治療する時点まで培養容器の温度維持が重要である。
 例えば部屋間を移動する場合はパスボックスを通過する。また必要に応じ、安全キャビネット内にて培地を輸送用培地へ交換したり、何らかの処理を実施したりする必要がある。加えて製造時において、移植前日等に自動培養装置内から一部の培養容器を検査用に取り出すが、検査用以外の移植用培養容器の温度低下を回避する必要がある。移植当日においてもインキュベータから移植用培養容器を取り出す必要があり、同じく温度低下のリスクがある。最後に、輸送後等に顕微鏡を用い輸送の影響有無を評価する場合、室温下で実施するため同じく温度低下のリスクがある。つまり培養中における移植の前日及び当日取出し時、培養後に自動培養装置から輸送容器までの搬送する間、輸送後に顕微鏡により観察する時、温度を維持する必要がある。これは前述の通り、培養容器に温度応答性培養表面を使用する場合において特に良く当てはまる。特許文献1、2は輸送工程において輸送容器により温度を維持する装置であり、輸送工程以外の時の温度維持機構がさらに必要である。
 本発明の目的は、このような課題に鑑みてなされたものであり、製造工程から輸送工程、治療時点までの間、温度低下回避を可能とする、細胞培養装置、培養容器、及び保持容器を提供することにある。
 上記の目的を達成するため、本発明においては、細胞培養装置であって、培養空間に設置され、複数の培養容器を載置できる培養容器ベースと、複数の培養容器毎に当該培養容器を保温するための複数の蓄熱部を有し、培養空間で培養中に培養容器ベースに載置され、培養容器を収容した複数の蓄熱部の少なくとも一つを培養空間から取り出し可能に構成された細胞培養装置を提供する。
 又、上記の目的を達成するため、本発明においては、培養容器であって、生体試料を培養する当該培養容器を保温するため、その周囲を覆う蓄熱部と、蓄熱部の外周を囲むと共に、その一部を取り外し可能な断熱部を有し、断熱部の一部を取り外し後に、露出した蓄熱部を加温することが可能である培養容器を提供する。
 更に、上記の目的を達成するため、本発明においては、培養容器を輸送する保持容器であって、培養する生体試料を保温するため、周囲を覆う蓄熱部と、蓄熱部の外周を囲むと共に、その一部を取り外し可能な断熱部を有する蓄熱材付培養容器を複数収納し、複数の蓄熱材付培養容器の周囲を取り囲む断熱部材を備える保持容器を提供する。
 本発明に係る蓄熱材付培養容器によれば、自動培養装置からの培養容器取り出し時、培養容器の温度低下の回避が可能となる。また自動培養装置から取り出した培養容器をCPC内等にて搬送及びハンドリングする際、同じく温度低下の回避が可能となる。
実施例1に係る、自動培養装置の一構成を示す図。 実施例1に係る、自動培養装置の閉鎖系流路の流路回路を示す図。 実施例1に係る、流路回路に含まれる培養容器ベースの一例を示す図。 実施例1に係る、自動培養装置の概略の一例を示す図。 実施例1に係る、自動培養装置の制御機構を示すブロック図。 実施例1に係る、培養容器の構成を示す図。 実施例1に係る、蓄熱材付培養容器の一構成を示す図。 実施例1に係る、蓄熱材付培養容器の他の構成を示す図。 実施例1に係る、蓄熱材付培養容器の他の構成を示す図。 実施例1に係る、蓄熱材付培養容器の他の構成を示す図。 実施例1に係る、蓄熱材付培養容器の他の構成を示す図。 実施例1に係る、装置内に設置した蓄熱材付培養容器を示す図。 実施例1に係る、蓄熱材付培養容器の一構成を示す平面図。 実施例1に係る、容器をホットプレートに乗せた状態を示す図。 実施例1に係る、保持容器に培養容器を収納した状態を示す図。 実施例1に係る、保持容器に培養容器を収納した他の例を示す図。 実施例1に係る、保持容器に培養容器を収納した他の例を示す図。 実施例1に係る、蓄熱材付培養容器の顕微鏡観察を説明する図。 実施例1に係る、蓄熱材付培養容器の顕微鏡観察を説明する図。 実施例1に係る、培養装置の培養プロトコルのフローチャート図。 実施例2に係る、蓄熱材付培養容器の一構成を示す図。 実施例3に係る、培養容器ベース上の蓄熱材付培養容器を示す図。 実施例3に係る、培養容器ベース上の蓄熱材付培養容器を示す図。
 以下、本発明の各種の実施態様を図面に従い説明する。
 まず、実施例1を含め、各実施例に係る細胞培養装置の基本的な構成および動作フローについて、図面を参照して詳細に説明する。ただし基本構成や動作フローはこれに限られるものではなく、用途に応じ適宜構成の追加や動作フローの変更等を行ってもよい。
 図1を用いて、自動培養装置の基本的な構成の一例として、以下12個の構成要素より成る自動培養装置を詳細に説明する。12個の構成要素はすなわち、培養容器部1、流路部2、回転式弁機構3、培養細胞用及びフィーダー細胞用ボトル部4、冷蔵庫等で構成される培地ボトル部5、予熱ボトル部6、排液バッグ部7、観察部8、インキュベータ部9、気体供給部10、加湿ボトル部11、制御部12である。尚、図1に示すように、制御部12は制御用端末13を備えている。
 以上の構成要素において自動培養装置は、閉鎖された培養空間である閉鎖系流路に対し、ユーザが設置した細胞ボトル及び培地ボトル内の細胞懸濁液、培地を用い、本装置の流路部2等に備え付けられた図示を省略した電磁弁、チューブポンプ等を制御部12により制御することで、培養容器部1の培養容器内へ細胞を播種し培養を行う。
 また細胞培養中は、本装置に備え付けられた顕微鏡等からなる観察部8を制御部12により制御することで、培養容器内の細胞画像を撮影する。自動撮影、細胞播種、培地交換、気体交換時以外は、顕微鏡の手動観察により制御用端末の操作画面からの入力に基づく顕微鏡の位置制御、細胞画像の撮影及び保存が可能である。
 本自動培養装置のインキュベータ部9内ではセンサ機構により温度環境を観測し、観測結果を制御用端末13上に表示する。流路部2の電磁弁、チューブポンプ等の各動作と測定の全ログは制御用端末13が備える、図示を省略したハードディスク等の記憶部に記録する。加えて動作エラー有無を判定し、動作状況を制御用端末13のモニタ画面上に表示する。それらのデータは自動培養装置外へ移行可能である。
 図2は、上述した自動培養装置の閉鎖系流路の流路回路を示している。閉鎖系流路は、図1で示した構成要素のうち培養容器部1、流路部2、回転式弁機構3、細胞ボトル部4、培地ボトル部5、予熱ボトル部6、排液バッグ部7、気体供給部10、加湿ボトル部11よりなる。
 実施例1では角膜上皮細胞、口腔粘膜上皮細胞、表皮細胞等の上皮系細胞の再生組織の製造を目的とした場合を例とし説明するが、本自動培養装置によって培養可能な細胞種はこれに限るものではない。また、図2では上皮系細胞を対象とするため2種類の細胞を使用する流路回路となっているが、心筋細胞、繊維芽細胞といった1種類のみの細胞を培養対象とする場合は1個の細胞ボトルとそれに対する流路の流路回路としても良い。或いは、2種類の細胞を使用する流路回路において、1種類分の細胞を対象とする流路回路のみを使用しても良い。さらに、図2の流路回路は10個の培養容器を使用するが、培養容器を並列に設置または取り外すことで、異なる個数の培養容器から成る流路回路の使用も可能である。
 図2の示す閉鎖系流路は主に次の構成要素を有する。本例では10個の再生組織を製造するため、10個の培養容器201を有する。全培養容器201は平面状の板である培養容器ベース202の上に設置し、培養容器ベース202には傾きを変化させるアクチュエータ203が取り付けられている。
 上述したように、本例では2種類の細胞を用いるため2個の細胞ボトル204、205を用いる。それぞれの細胞ボトル204、205に対し1種類の細胞を入れる。また培養容器内で2種類の細胞が混じることを回避するため全培養容器は2層構造であり、それぞれの層に1種類ずつの細胞を培養する。細胞ボトル204、205から培養容器の各層へ至る流路回路は、送液途中で細胞が混じらないようにするため異なる流路回路(1)、(2)を使用する。細胞ボトル204内の細胞懸濁液は例えば上皮系細胞とし、実線の流路回路(1)206を通り、各培養容器の片側の層、例えば全培養容器の上層へ送液される。一方、細胞ボトル205内の細胞懸濁液は例えばフィーダー細胞とし、点線の流路回路(2)207を通り、各培養容器の片側の層、例えば全培養容器の下層へ送液される。このように細胞種によって流路を分けることにより、培養容器の上層で培養する細胞と、下層で培養する細胞が混じることを抑制する。フィーダー細胞として異種由来細胞を用いることがあるため、移植する再生組織の中に異種由来細胞が混入する異種移植の危険性を回避することが可能となる。尚、図2において、222は後で説明する多分岐部を示している。
 細胞種毎に細胞ボトルは異なるのに対し培地は共通であるため、培地ボトル208は1個を使用する。培地ボトルは図1で説明したように冷蔵庫を用いて4℃で保管する。培地交換時、予熱ボトル209へ1回の培地交換に必要な量を移動させ、例えば36℃まで加温後、培地交換に使用する。予熱ボトルからは流路回路(1)206及び流路回路(2)207へ二分岐部210を介し適宜分岐させる。流路回路(1)206へ送液された培地はその後、各培養容器の片側の層へ順次送液する。流路回路(2)207へ送液された培地も同様である。流路内での送液及び送気に対する駆動力はチューブポンプ211により与える。送液方向は電磁弁212、及び図1の回転式弁機構3に対応する回転式弁機構213により制御する。培地交換時、培養に使用した古い培地は排液バッグ214、215へ送液する。
 培養時、気体交換として各培養容器201へ酸素及び二酸化炭素を供給する。細胞は酸素を消費し二酸化炭素を排出するためである。本装置では気体交換時、5%CO2を含む空気を充填したガスボンベ216より、所定の送気速度へガスフローメータ217にて調整した上で、滅菌水を入れた加湿ボトル218を通過し水分を飽和させ送気する。チューブポンプ211と並列に位置する送気用回路219を通り各培養容器へ気体を送る。
 本実施例の流路回路の他の構成として、無菌脱着部220と無菌接続部221を有する。無菌脱着部220は各培養容器201の近傍の流路チューブ上に設置されている。この構成により、例えば移植前日に1個の培養容器を検査するため無菌的に取り外すことが可能になる。取り外した培養容器と、取り外し後の残りの培養容器及び流路は、それぞれ無菌性を維持可能である。移植当日は、残りの培養容器201を取り外す時に無菌脱着部220を使用し培養容器201を取り外す。無菌脱着部220は例として熱溶着可能な流路チューブであり、切断箇所を挟む2ヶ所を熱溶着後にその間を切断する。
 一方、無菌接続部221は細胞ボトル204、205、培地ボトル208、加湿ボトル218それぞれの近傍の流路チューブ上に設置されている。細胞ボトル204、205、培地ボトル208、加湿ボトル218は空の状態でCPC内へ搬入し、ユーザが所定の細胞懸濁液、培地、滅菌水を入れ閉鎖系流路へ取り付ける。その際、無菌接続部221を用い無菌的に接続する。
 図3は、本実施例の装置の培養容器ベース202、及び培養容器ベース202へ10個の培養容器201を設置した状態を示した例である。図3上段の(A)で示すように本例の培養容器ベース202は馬蹄型の形状をしている。すなわち、培養容器ベース202は、方形形状の平面板で中央部がくり抜かれた空隙が形成され、平面板における装置へ挿入する側の端、つまりは外周の一部に切りかきが設けられた構造であり、所謂U字型の形状を有している。培養容器ベース202の中央部の内辺は円形形状でその周囲に培養容器201を円状に配置する。培養容器ベース202には、各培養容器201を保持するための窪み等の保持手段が形成されている。くり抜かれた円形の空隙部分には後述する観察部8の顕微鏡を配置する。培養容器201を保持する部分には、顕微鏡観察のための観察孔301が設けられている。
 培養容器ベース202は上記のようにU字型であるため装置への設置方向が一義的に定まる。すなわち、培養容器ベース202を設置する時は培養容器ベース202の一辺に形成された切りかき側から培養容器ベース202を顕微鏡へ接近させ、顕微鏡を空隙内に導き、アクチュエータ等に設置する。この切り抜きの空隙を有した形状により、培養容器ベース202を複数の培養容器201の中心へ配置させることが可能となる。またユーザは顕微鏡に培養容器ベース202上の複数の培養容器201を接触させることなく簡便な設置及び取り外しが可能なため、人的ミスにより流路等が損傷することによる細胞培養の品質劣化抑制が可能となる。
 また、装置内に培養容器ベース202と同形状の、または複数個へ分割した、図示を省略した培養容器設置ベースを設け、培養容器設置ベース上に培養容器201等を設置した状態で、培養容器ベース202へ培養容器設置ベースを載置させるようにして、培養容器ベースの重量が重い場合等であっても設置作業がより簡便となるようにしてもよい。
 図3下段の(B)は、培養容器ベース202上に10個の培養容器201を設置した状態を示している。本実施例では、培養容器201の各々に対し4本が纏められた流路チューブ302が接続しており、4本の流路チューブ302は培養容器ベース202に対し外側方向に配置されている。培養容器ベース202の外側、すなわち、外周に流路チューブ302を配置することにより、顕微鏡の駆動時に顕微鏡と培養容器ベース202、流路チューブ等が接触することによる細胞の品質低下を抑制可能となる。各培養容器201の近傍の流路チューブ内には、一つ一つの培養容器の取り外しを可能とするための無菌脱着部303を有する。これにより、例えば移植前日に細胞が移植可能な品質を有するか出荷判定を行うため任意の培養容器1個のみを取り外し評価する際、取り外した培養容器内及び、取り外さなかった培養容器と流路内は、取り外し後も無菌性を維持可能となる。
 培養容器の培養表面は、例えばセルシード社製の温度応答性セルカルチャーインサート容器を適用する場合、培養容器201の温度が温度応答性培養表面の相転移温度、例えば32℃よりも低下すると、温度応答性培養表面の性質が疎水性から親水性へと変化し、37℃の培養時に接着、伸展、増殖していた細胞は自発的に剥離する。温度低下により温度応答性培養表面から細胞が剥離すると培養条件は大きく変化するため、移植時の細胞の品質も変化してしまうことになる。よって前日取り出し後に残された培養容器201、及びインキュベータ部9内が37℃より大きく低下しないために、培養過程での品質確認を目的として培養完了の前日以前に取り出し作業を行うための、小扉をインキュベータ部9の扉上部に用意し、インキュベータ部9内を外気に晒す時間及び範囲を低下させ作業時の温度低下を小さくする効果が得られる。また、この前日取り出し用の小扉をガラス等の透明な素材で作成することで、培養の経過状況、例えば培地の色によるpH、混濁有無による生物学的汚染有無を小扉から確認することも可能となる。
 移植当日の取り出しでは培養容器に接続された全流路チューブを無菌切断後、複数の培養容器を培養容器ベースに設置した状態で装置から取り外し、培養容器ベースに培養容器が載置された状態で安全キャビネット等へ運搬する。即ち、複数の培養容器に対し一括した取り扱いが可能である。1個のみを装置内に置き忘れるといった人的ミスの回避が可能となる。また全培養容器の取り出しに対する時間条件と温度条件が同一となる利点も有する。
 図4は、以上で説明した自動培養装置の概略を示す斜視図である。図4左側の(A)に示す通り、インキュベータ401は机405の上にあり、机の下には培地ボトルを例えば4℃にて保管する冷蔵庫406と、排液バッグを保管する収容庫407を有する。尚、排液バッグは冷蔵庫406に設置してもよい。その場合、設置面積減少とコスト低減の利点を得る。尚、図4右側の(B)は、観察部8に設置される顕微鏡400と培養容器201の相対位置関係を示す図であり、後で説明する。
 インキュベータ401と冷蔵庫406及び収容庫407の間は流路チューブ408により連結されている。これはすなわち、37℃に維持するインキュベータ401と約4℃に維持する冷蔵庫406が空間的に近接しておらず、両者の間は一般に約25℃であるCPCの空調管理された空間により隔てられている。この構成により、インキュベータ401と冷蔵庫406の間において高度な断熱材を不要とし、装置構成の単純化によるコスト低減と温度維持性能向上の実現が可能となる。
 インキュベータ401の近傍には図1の制御部12が設置され、本装置を稼働させる。本実施例の自動培養装置を複数台、並列稼働させる場合は一台の制御装置で全自動培養装置を制御させる。またCPC外からの管理を可能とする管理モニタも必要に応じ設置する。403は監視モニタを示す。尚、インキュベータ401の側面には、小窓409が設置されているが、この役割については後述する。。
 インキュベータ401内に設置した、図示を省略した流路部2、培養容器ベース202等の装置内部の構成部品は、インキュベータ401内に設置したレールに接続された、同じく図示を省略した載置台に夫々載置されているため、扉402から一括して引き出すことが可能である。培養開始時等に、ユーザが流路を流路部等に接続、設置する際は、載置台を引き出した状態で設置することが可能となるため、流路設置時の煩雑さを軽減させ、ユーザによる人的ミスを抑制可能となる。この時インキュベータ401内から流路部2及び観察部8に設置される顕微鏡を完全に取り出さず一部とすることが望ましい。或いは、顕微鏡は装置内に固定してもよい。流路部及び顕微鏡は軽量ではないため、落下する事態により破損したり作業者が怪我をしたりすることを回避するためである。尚、インキュベータ401から取り外す部分は流路部2と培養容器ベース202とし顕微鏡400は取り外さない方式でも良い。この場合、前述の方式に比べ引き出す構成数が減るため、引き出し作業がより容易となる。
 本実施例のように所謂U字形状の培養容器ベース202を用いる場合、図4右側の(B)の矢印で示すように、培養容器ベース202を、培養容器ベース202に設けられた切りかき側から、図4左側の(A)に示す扉402を介して装置の筐体内に挿入する。顕微鏡400を、培養容器ベース202が接触しないように空隙部分へ導くためである。
  続いて、以上で説明した本実施例の自動培養装置の制御機構の一例を説明する。まず、図5は前述した自動培養装置の機能構成を説明する機能ブロック図である。図1の制御部に対応する制御装置501により制御される各構成要素が、インキュベータ部・冷蔵庫・収容庫503の内部に配置され培養容器201に接続されている。尚、インキュベータ・冷蔵庫・収容庫503中に配置されるものは自動培養装置内に設置された培養容器201であることは言うまでもない。
 図5において制御装置501にはインキュベータ・冷蔵庫・収容庫503の温度を制御する温度調節部504、温度センサ505、先の気体供給部10に対応する培養容器内へ気体を供給する気体供給部506、細胞ボトル・培地ボトル・予熱ボトル・排液バッグ507、先の流路部2に対応する流路内の液体及び気体を自動で送液する流体移動制御機構部508、先の顕微鏡400に対応する細胞観察用の顕微鏡509が接続されている。
 先の制御部12と制御用端末13に対応する、制御装置501と表示画面502は、CPU(Central Processing Unit:中央処理部)から成る処理部、記憶部や、ディスプレイ装置、キーボードから成る入出力部等を備えた通常のコンピュータの処理部及び記憶部とディスプレイ装置の表示部にそれぞれ対応している。制御装置501は記憶部で記憶された各種プログラムを、処理部としてのCPUで動作させる。これにより温度調整部504、温度センサ505、気体供給部506、流体移動制御機構部508、顕微鏡509、溶液保持部・排液バッグ507によりインキュベータ・冷蔵庫・収容庫503中の培養環境を制御し、培養容器501中での所定の培養工程の実施を可能とする。
 続いて、図6A、図6Bを用いて、実施例1に係る蓄熱材付培養容器の基本的な構成要素を説明する。培養容器201は内部に生体試料を保持する。よって滅菌処理による無菌化が可能である。例えば素材をポリスチレンとする場合、使用前にγ線照射またはエチレンオキシダイドガス処理による滅菌操作を施すことによる無菌化が可能である。上記ではポリスチレンを例としたが、生体試料にとって有害ではない素材で滅菌が可能であれば適用可能であることは云うまでもない。
 また、培養容器201は閉鎖空間を形成する閉鎖系培養容器が望ましい。本実施例では、手培養での細胞培養において一般に使用する培養皿602及び温度応答性セルカルチャーインサート容器603を内部に組み込み閉鎖空間を形成する培養容器を示している。2種類の培養皿202及び温度応答性セルカルチャーインサート容器203により、例えばフィーダー細胞を用いた上皮系細胞に対する2層培養を可能とする。自動培養時は、流路チューブを介し流路回路に常時接続した状態で培養する。流路チューブは培養容器201が有するコネクタ604に取り付ける。本例は2層培養であるため、片方の層に対し供給用及び排出用コネクタを設置する。よって計4個のコネクタを有する。
 図6Bに示すように、培養中、培養容器は蓄熱部701により囲われた状態である。本実施例の蓄熱部701は、蓄熱材605と、蓄熱材605を収容するポリカーボネイト等で構成した蓄熱部容器606と、培養容器に接する熱伝導性の高いアルミ等の金属の受け部607から成る。受け部607により蓄熱部701内の蓄熱材605から培養容器201へ効率良く熱を伝導する。また蓄熱部701内に培養容器201を入れた状態での細胞観察を可能とするため、窓608を有する。培養容器201の底面が露出しており、これにより光の透過が可能となる。窓の代わりに、細胞観察時の光学条件に対し支障が出なければ、ポリエチレン等の透明素材で培養容器201を囲っても良い。この場合、培養容器201は露出状態ではなくなるため、温度低下がより緩やかとなる。さらに窓を設置するよりも製作が容易となる利点も得る。
 蓄熱材605は培養後の搬送時間が例えば1時間程度と短い場合、熱容量の高い物質であれば構わない。搬送が終了する時間まで温度が維持されれば良く、例えば室温下(約25℃)で34℃以上の温度を1時間以上維持すれば良い。これは例えばCPCと手術室が同一敷地内にある場合を想定している。この蓄熱材605は、例として固体蓄熱材(例えば三菱電線工業株式会社製の蓄熱材)がある。
 培養後の輸送時間が長い場合、例えば航空機等を使用し遠方まで運ぶ場合、数日の温度維持機能が必要となる。その場合、蓄熱材605は一定の融点を有する純物質、或いは、熱容量が大きく融点の温度変化が小さい(例えば±1℃以下)物質とすることが好ましい。融点が輸送時の温度帯に含まれる場合、輸送中の熱容量はより大きくなるためである。また輸送中の内部温度の変化幅が小さくなるため、生体試料への温度の影響は小さくなる。
 蓄熱材605の例として、純物質である炭化水素が挙げられる。例えば化学式がC2042である炭化水素(n-エイコサン)の融点は36.4℃である。Cの数が異なる炭化水素は融点も異なる。よって炭化水素の種類の選択により、細胞輸送容器が一定に維持する温度の値を変えることも可能である。但し、特に炭化水素のように液状の蓄熱材を使用する場合、外部へ漏出しない気密容器とする必要がある。一方、固体の蓄熱材の場合、気密性は不要でありコスト低減の利点がある。
 培養後は、閉鎖系培養容器の場合、流路回路から無菌的に取り外し閉鎖状態を維持したまま運ぶ。蓋の開閉が容易な開放系培養容器を使用する場合、培養時は自動培養装置内を安全キャビネット内と同等の清浄度であるグレードAに維持した状態で蓋を開閉し、培地交換等の操作を行う。培養後は内部の培地が漏出しないようにするため、一旦培養部から培養容器を取り出しパラフィルム等で周囲を塞ぎ続く工程へ進む。本実施例では閉鎖系培養容器を想定しているため、蓄熱部内部に収容したまま次の工程へ進むことが可能である。
 図6C~図6Fに示すように、本実施例の蓄熱材付培養容器にあっては、培養後、蓄熱部701の周囲を断熱部601により囲う。図6Cが示す通り、断熱部601は、上面断熱部609、下面断熱部610、側面断熱部611から成る。断熱部601は図6D、図6Eが示すように工程に応じ部分的な取り外しが可能である。また用途に応じ一部を一体化しても構わなく、図6Fは、上面及び側面断熱部612と下面断熱部613がヒンジ614により連結したものである。
 次に、図7A、図7Bを用い、自動培養装置内で培養する時の、本実施例の蓄熱材付培養容器の構成、機能について説明する。自動培養装置は、図1や図4に示したように、培養温度である37℃にて細胞を培養する空間であるインキュベータ401、培地ボトルを保管する冷蔵庫406、排液バッグを収容する保管庫407、ガスボンベ404、自動培養装置を制御する制御部12等から成る。
 図7Aの斜視図、図7Bの上面・側面図に示すように、図示を省略したインキュベータ内には、細胞を培養する複数個の培養容器201、各培養容器を囲う蓄熱部701、それらを設置する培養容器ベース202を有する。図7Bに見るように、複数の培養容器201を円状に配置するため、各蓄熱部701は図示の通り、台形状をしている。
 培養容器ベース202は、図示を省略した溝状のガイドを有し、培養容器201及び蓄熱部701の位置を決定する。培養容器201内の細胞は顕微鏡400により観察する。また各培養容器201へ培地等を送液する電磁弁212、チューブポンプ213等の駆動系を有する流路部2が設置されている。自動培養装置は、培養容器201への細胞懸濁液の送液による細胞播種、気体交換を適宜行いつつ温度を37℃に維持する培養、古い培地を排出し新しい培地を供給する培地交換、顕微鏡による細胞観察等を実施する。尚、自動培養装置の実施する工程を本例では細胞播種、培地交換、培養、顕微鏡観察としたが、一部の工程を手作業により代替しても適用可能であることは云うまでもない。
 上述の通り、自動培養装置内において培養容器201の周囲は蓄熱材605に囲われているが、自動培養装置内で培養容器と共に蓄熱材605を温める。この段階では、蓄熱部701は断熱材に囲われていないため、インキュベータ内から効率良く熱が供給される。このため、蓄熱部701を温めるためのヒーター等の手段は不要であり、よって自動培養装置の構成に変更はない。また、この状態では顕微鏡観察に対する光学的な支障もない。
 移植前日等に、移植可否を判定する出荷検査のため培養容器201を1個ないし複数個取り出す。取り出す培養容器は一態様として任意であり、ユーザが細胞観察結果等に基づき決定できる。取り出す培養容器201を決定後、図4左側の(A)に示したインキュベータ401の扉402を開け、続いて培養容器201に取り付けられた流路チューブ302を無菌的に切断する。切断後、培養容器201及び蓄熱部701を取り出す。または、扉402を介さず、インキュベータ401の側面に設けられた小窓409を介し本作業を実施しても良い。この場合、インキュベータ401内の温度低下をより小さくすることが可能である。
 培養容器201及び蓄熱部701は速やかに断熱部601の中へ収容し自動培養装置外へ取り出す。そしてインキュベータ401の扉または小窓409を閉じる。インキュベータ内の温度は例えば37℃であり、一方インキュベータを設置する室内は例えば25℃で一般に室内の方が温度は低い。よってインキュベータの扉を開けている間、庫内より温度の低い庫外の空気に晒されインキュベータ内の温度は低下するが、培養容器201は保温手段により囲われているため温度低下を回避可能となる。取り出した培養容器は断熱部で周囲を囲った状態で搬送する。よって出荷検査の時点まで温度を維持でき、すなわち製造時と同じ条件での出荷検査を実施可能である。尚、移植前日に検査用として取り出す培養容器に関し、培養途中で任意に選択するのではなくあらかじめ決定しておく場合、検査用の培養容器のみを取り出せるようにし、残りの移植用である複数個の培養容器は連結した形状とすることも可能である。この場合、少なくとも2個以上の一体化した培養容器に対し搬送等の工程において一括した取り扱いが可能となる。すなわち、取り出す検査用の培養容器以外の培養容器、及びそれらを収容する蓄熱部が一体化され、一体化状態でインキュベータから取り出し可能とする。
 上記の説明においては、培養容器201と畜熱部701を断熱部601で囲う際、インキュベータ401内に、必要な断熱部、断熱部材を供給し事前に37℃に温めておくことにより、温度低下をより回避した状態でインキュベータ401内にて培養容器201と畜熱部701を断熱部601で囲うことが可能となる。
 上述したように、移植前日取り出し時は、出荷検査に使用する培養容器については、インキュベータから取り出し後、或いは取り出す直前に、速やかに断熱部内へ培養容器及び蓄熱部を収容し、その状態で安全キャビネット等へ搬送する。一方、出荷検査に使用しない培養容器はインキュベータ内にそのまま保持する。この時、図7Aに示したように、周囲が蓄熱部701で覆われているため、自動培養装置内が外気に晒されても、残された培養容器201は温度低下を回避可能となる。また、移植当日取り出し時は、インキュベータ内から移植に使用する培養容器を順次取り出す。前日取り出し時と同様、断熱部内へ速やかに収容し、その後安全キャビネット等へ搬送する。
 移植の前日または当日に装置内から取り出した培養容器は、図6Cに示したように蓄熱部701及び断熱部601に収容された状態で搬送する。これにより培養空間より温度の低い室温に晒されても温度低下を回避する。
 またCPC内において清浄度の異なる部屋へ移動する際にパスボックスを通過するが、その時には交差汚染を回避するため消毒用エタノール等を噴霧することがある。噴霧した消毒用エタノールは気化時に温度を低下させるが、同じく断熱材により温度低下を回避可能である。また断熱材は消毒用エタノール等に対し耐性を有することとする。
 必要に応じ安全キャビネット内にて生体試料に対し処理を行う。処理の例を以下に挙げる。移植前日に取り出した出荷検査用の培養容器の場合、安全キャビネット内にて検査をする。生体試料の回収可否や特定タンパク質発現、細胞生存率等を評価する。目的によっては検査を非侵襲的に実施し、再度自動培養装置内に戻し、検査結果に応じ培養スケジュール等を制御機構により変更し、より効率の良い培養工程へ修正しても良い。その場合、検査後も培養を可能とするため、閉鎖系培養容器の場合は再度流路チューブを無菌的に接続する。開放系培養容器の場合はそのまま自動培養装置内へ無菌的に戻す。
 移植当日に取り出した移植用培養容器の場合、特に長距離の輸送を行う場合、必要に応じ培地を輸送用培地へ置換する。すなわち培養容器の蓋を開け培養時の培地を取り除き、輸送用培地を入れ、再度蓋を閉める。培養容器の蓋は、輸送に適した形態のものを使用しても構わない。こういった安全キャビネットでの処理において、温度低下を避けるため必要に応じホットプレートにより培養容器を温める。
 この時、図6D、図8が示すように断熱部601の下面のみを取り外した状態でホットプレートの上に乗せる。ホットプレート801と蓄熱部701が直接接するため、蓄熱部701へ熱は効率良く伝導する。一方、下面以外は断熱部601により囲われているため、蓄熱部701よりも温度の低い外気に晒されていても熱の放出効率は低下する。
 安全キャビネット内で必要な処理を実施しパスボックスを通過後、CPC内の出荷室にて輸送容器内へ培養容器を収容する。輸送時間に応じ輸送容器を選択する。最初に輸送時間の短い場合を説明する。具体的にはCPCと手術室が同一敷地内で、温度が大きく変化しない場所を手運びで搬送する場合を想定している。
 図9Aは自動培養装置から取り出した状態のまま輸送する場合を示している。輸送容器900の最外殻は収容容器本体部901及び収容容器蓋部902であり、その内部に断熱部材903がある。また輸送中の温度等を計測する環境センサ904を有する。培養容器201は蓄熱部701及び断熱部601に囲われた状態で収容する。よって培養容器は蓄熱部701と、蓄熱部701を覆う断熱部601により2重に熱放出が抑制される。
 図9Bは輸送容器900の蓄熱材905の周囲を断熱部材903で囲った状態としたものである。断熱部材により周囲が囲われているので培養容器201を保温しないが、輸送容器外へ徐々に放出される熱を補うため結果として培養容器201の温度維持時間は長くなる。
 治療を行う手術室までの輸送時間が長い場合は図9Cに示した通りである。長距離輸送は、例えば製造場所であるCPCと治療場所である手術室が同一敷地内にはなく、航空機、車両等の手段により運ぶ必要がある場合を想定している。図9Cは図9Bと比べ輸送容器の内部に蓄熱材408を追加した場合を示している。また蓄熱材408により培養容器を温めるため、蓄熱部の周囲を覆った断熱部を外した状態で収容する。長距離輸送の場合、温度保持時間を十分長くする必要がある。そのため長距離輸送の直前に恒温槽から取り出した直後の蓄熱材を使用し輸送する。また蓄熱容量の大きな蓄熱材の使用が好ましく、例えば炭化水素の純物質C2042は融点が36.4℃と培養温度である37℃に近いため、37℃にあらかじめ温めた状態で使用することにより、液体から固体への状態変化時に長時間にわたる温度維持が可能となる。
 図10A、図10Bに示すように、輸送後等においては必要に応じ非侵襲な方法である顕微鏡観察により細胞の状態を確認する。例えば輸送工程後、細胞の質の変化有無を評価する。観察時、培養容器201を顕微鏡400のステージ1001上に乗せる必要がある。また培養容器201が光学的に透明である必要がある。細胞に対し焦点が合う必要もあり、つまり対物レンズに対し細胞への距離は十分小さいことが必要である。それらを考慮し、図6Eに示したように、観察時は断熱部601の上下面609、610を取り外し、光が透過可能な状態とし行う。また対物レンズからの細胞への距離を小さくするため、上下面は図6Cが示すように側面611を覆うように配置し、上下面を取り外し後は側面611が培養容器の高さと等しくなるようにする。つまり断熱部601の上下面を取り外し後の断熱部601は鉛直方向に対しステージと近接した状態である。
 移植直前、手術室へ運んだ輸送容器から断熱部601、及び蓄熱材に囲われた状態の培養容器を取り出す。培養容器を取り出し後、培養容器の蓋を無菌的に開き生体試料を取り出し、患者への治療に用いる。尚、培養容器において温度応答性培養表面を使用する場合、培養容器を蓄熱部及び断熱部の中から取り出し後、20℃等の恒温機内へ移動し、例えば約30分静置する低温処理を行う。温度応答性培養表面の性質が疎水性から親水性へ切り替わるため、温度応答性培養表面上に接着していた細胞は自発的に形態を変化させ剥離する。
 図11のフローチャートに従い、以上説明した実施例の構成を有する蓄熱材付培養容器を用い、生体試料を製造及び輸送する時の一連の手順を説明する。下記のステップを進めるにあたって、事前に培養容器を自動培養装置に設置する。図1、2に示したように、流路は培養容器、細胞懸濁液の入った細胞ボトル、培地の入った培地ボトル、排液を回収する排液バッグ等とそれらをつなぐ流路チューブから成る。培養容器201は培養容器ベース202上に、あらかじめ設置した蓄熱部701内へ順次収容する。流路を設置後に設置正常性を確認後、ステップS1へ移動する。
 <ステップS1:スタート>
  自動培養装置を起動させる。操作者が制御部12にある操作部のスタートスイッチを押すことにより起動する。尚、装置内はあらかじめ消毒或いは除菌の実施により清浄な環境となっている。制御部12のディスプレイの操作画面には自動培養装置の内部環境に関する値が表示されている。そこで、制御部のディスプレイの操作画面にて自動培養装置の内部環境が適切であることを確認する。例えばインキュベータ401の温度が37℃であることを確認する。これらの数値は限定的なものでなく、例えば温度は0℃から45℃の範囲より選択可能である。
 <ステップS2:スケジュール決定>
  自動培養装置の実施する自動培養スケジュールを決定する。培養する細胞の種類と量に合わせ、自動培養装置により実施する自動培養スケジュールを入力する。細胞播種、培地交換、顕微鏡観察、排液回収、検査用組織回収、移植用組織回収等の操作を行う日時、頻度、液量等の条件を制御部12に接続された制御用端末13等より入力する。
 <ステップS3:細胞播種>
  適切な電磁弁212の開閉を行った後、チューブポンプ211を作動させ細胞ボトルより細胞懸濁液を吸引する。細胞懸濁液は、食道再生の例では口腔粘膜上皮細胞を培養するため、KCM培地(keratinocyte culture medium)に懸濁した口腔粘膜上皮細胞と、同じくKCM培地に懸濁した3T3-J2細胞またはNIH-3T3細胞等のフィーダー細胞である。それぞれ異なる細胞ボトル内に入っている。
 細胞播種時は2個の細胞ボトル4よりそれぞれの細胞懸濁液を培養容器201へ送液する。事前に送液対象となる培養容器201及び流路に連結した電磁弁を開き送液可能な状態とする。一方、送液対象ではない培養容器及び流路に連結する電磁弁は閉じ送液不可能な状態にする。細胞播種は10個の培養容器の上層及び下層に対し順次実施する。
 先に説明したように、上皮系細胞は図2における実線で示した流路回路(1)を通過し各培養容器201の上層へ順次播種する。フィーダー細胞は破線で示した流路回路(2)を通過し各培養容器の下層へ順次播種する。尚、送液直前に細胞懸濁液の吸引・吐出を行うことで細胞ボトル内の細胞分布を一様化させ、送液する細胞懸濁液の細胞濃度を一様化する。全てに対し播種終了後、培養容器を設置する培養容器ベース202下部のアクチュエータを作動させる。細胞播種時及び細胞培養時の培養容器は水平状態を保持しているが、アクチュエータ203を使い細胞播種直後及び培地交換時は培養容器201を傾ける。細胞播種時は連続的に揺動させ細胞分布を一様化する。その後培養容器を水平状態に戻し、その状態で培養を行う。
 <ステップS4:細胞の培養>
  培養容器201を水平に静置した状態で所定時間、培養する。例として口腔粘膜上皮細胞の場合、静置期間は播種後3日間程度とする。培養中はインキュベータにより内部を37℃に維持する。装置内の空気はファンにより常に攪拌し、温度分布が常に一様となるようにする。尚、本例では示していないが装置内にパーティクルカウンタや生菌数計測装置を取り付け清浄度をモニタリングし、製造の安全性を増すことが可能である。
 また培養中及び細胞播種直後において、培養容器の内部へ所定成分の気体を送気する気体交換を行う。気体交換は培養期間中、1日に数回程度の頻度でも実施する。また口腔粘膜上皮細胞の培養の場合、培養容器内はCO2濃度5%を含む空気を供給する。その気体は気体供給部から供給し、各培養容器への送気前に加湿ボトル部11を通すことにより水分子を飽和させたものとする。これにより各培養容器内の培地から水分が蒸発し、結果として培地成分が変化することを回避する。さらに気体は各培養容器へチューブポンプを介さず、チューブポンプと並行した送気用回路より気体圧を利用し直接送気する。これにより送気速度はチューブポンプを介した場合よりも上げることが可能となり、気体交換効率は向上する。またチューブポンプへの負荷はなくなる。培養容器へ送気後の不要な気体はフィルタを介し流路外へ排出する。また必要に応じフィルタを介し流路内の気圧を調整する。フィルタは、例えば0.22μm以上の粒子を通さない品質のものを使用する。
 本実施例の装置で使用する培養容器201は送液に使用する流路チューブと、送気に使用する流路チューブを区別していない。すなわち送液に使用する流路チューブにおいて送気機能を併用させている。この構成の場合、送液に使用する流路チューブと送気に使用する流路チューブを独立させる場合に比べ、培養容器201に接続する流路チューブの本数は減る。結果として流路簡略化を実現できる。
 <ステップS5:顕微鏡による観察>
  自動培養装置内の観察部8に設置した顕微鏡400を用い細胞画像を取得する。自動培養装置内に設置した光源を適宜発光させ、顕微鏡400により細胞に焦点を合わせ撮像する。必要に応じ培養表面に定点を任意に定め撮影する。取得した細胞画像はデータベースに保存し、装置外に設置した制御用端末上で閲覧する。顕微鏡観察により得た細胞の生育状態に関する情報から判断し、培地交換の頻度、時期の調整を行う。例えば細胞の接着が不十分な場合、S6の培地交換は実施せずS4の細胞の培養を継続する。
 自動細胞撮影時以外はユーザが適宜顕微鏡400を手作業で操作し細胞を観察及び撮影を行う。自動細胞撮影時と同じく撮影後の画像は保存が可能である。
 <ステップS6:培地交換>
  培地交換は培養期間中、数日に一度の頻度で実施する。最初に冷蔵庫内で4℃にて保管されている培地を予熱ボトルまで送液し予熱を行う。予熱ボトルの周囲に配置した受け部との接触による熱伝導と、インキュベータによる37℃の気相により加温する。例えば数時間~1日程度予熱を行うことで温度を36℃以上まで上昇させ、その培地を培地交換に用いる。
 続いて培養容器201から古い培地を排出する。アクチュエータにより培養容器を排出口側へ傾け、古い培地の全量が排出されるようにする。排出後、速やかに予熱した新しい培地を培養容器内へ供給する。これにより培養表面上の細胞の乾燥と温度低下を回避する。古い培地は最終的に図1に示した排液バッグ部7へ排出する。培地成分分析に用いることを想定し、本実施例では培養容器201の上層及び下層を分けた状態で回収する。
 尚、前述した細胞播種及び培地交換において、図2に示した流路回路により細胞懸濁液及び培地は一方向に流れる。つまり培養容器内にて培養に使用した古い培地と、培養に使用していない新しい培地は混じらない。古い培地と新しい培地は、例えば細胞が消費するグルコースと産出する乳酸の量が異なるため、培地交換時に両者が混じると培養環境が変化することを意味する。逆に本実施例の装置構成により両者が混じらないようにすることで、細胞培養の再現性向上の効果を得ることが可能となる。また排出した古い培地に対し培地成分分析を行う場合、同じく新しい培地と古い培地が混じらないことによる培地成分分析の精度向上の効果が得られる。
 <ステップS7:検査用組織の回収>
  移植予定日の前日等において、培養中の培養容器201のうち1個または複数個を検査用に回収する。自動培養装置の扉を開け、検査用培養容器201の流路チューブ302を熱溶着等の手段により無菌切断する。その後、培養容器201を蓄熱部701と一緒に取り出し、あらかじめ用意した断熱部601の中に収容する。尚、上述したように断熱部601は培養開始時からインキュベータ401内に入れ予熱しても良い。これにより温度低下はより緩やかとなる。取り外した培養容器201は安全キャビネットまたはCPC外へ搬送し、速やかに検査を実施する。例えば生体試料の細胞数、生存率、特定タンパク質の発現等を評価する。検査用の培養容器を取り出し後はインキュベータの扉を速やかに閉じる。
 この時点までの作業中にインキュベータ401内は室温に晒され温度が低下している。しかし本実施例の構成の場合、図7A、図7Bに示したように、検査用ではなく移植用である培養容器もあらかじめ37℃に温められている蓄熱部701に囲われた状態である。よってインキュベータ401の扉を開けた時に室温の空気に晒されても、温度低下を回避可能である。これは特に培養容器201において32℃の相転移温度を有する温度応答性培養表面から、移植前の細胞の剥離を回避する。また作業終了後は、培養温度である37℃等まで迅速に温度が戻るよう空調及びヒーターを制御し温度を調整する。これにより検査用以外の培養容器201を囲っている、本過程において熱を放出した蓄熱部701の蓄熱量も回復する。
 無菌脱着部303は例として熱溶着可能な流路チューブであり、切断箇所を挟む2ヶ所を熱溶着後にその間を切断する。これにより取り外した培養容器内及び、取り外さなかった培養容器と流路内は、取り外し後も無菌性を維持可能となる。取り出した培養容器に対しその後、速やかに検査を実施し移植可否を判定する。更に、検査結果を解析し、その時点までの培養状況を評価し、培養状況評価結果に応じ、培養空間にて培養を継続している培養容器に対し、適切な培養スケジュールへ変更することも可能である。
 <ステップS8:移植直前の培養及び培地交換>
  ステップS4及びS6と同じく、細胞の培養と培地交換を実施する。
 <ステップS9:移植用組織の回収>
  ステップS7による検査の結果により移植可能と判断された場合、制御部のディスプレイに培養が完了した旨を表示する。その後ステップS7同様、培養容器を蓄熱部と共に流路から無菌的に取り外し断熱部へ収容し、インキュベータから取り出す。必要に応じ安全キャビネット内へ運び処理を行う。
 安全キャビネット内では培養容器の温度低下を回避するため、必要に応じインキュベータの温度と同じ値に設定したヒートブロックやホットプレートを使用する。ヒートブロック等に蓄熱材付培養容器を乗せる直前に断熱部601の下面を取り外し、ヒートブロック上に乗せる。蓄熱部701の下面はヒートブロックにより温め、下面以外からの熱放出は断熱部601により抑制する。安全キャビネット内に移動した培養容器に対し、必要に応じ蓋を取り外し培養容器内の培地を輸送用培地へ交換する。 <ステップS10:パスボックスの通過>
  細胞を培養する細胞調製室から出荷室への搬出ではパスボックスを通過する。パスボックスを通過する際、必要に応じ消毒用エタノール等を噴霧し外側を消毒する。噴霧された消毒用エタノールの蒸発により温度低下のリスクが生じるが、断熱部により回避する。
 <ステップS11:輸送容器への収容>
  出荷室にて短距離用または長距離用の輸送容器内へ蓄熱材付培養容器を収容する。上述の通り、輸送容器は断熱材で覆われた容器であり、これにより輸送工程における温度低下を回避する。またモニタリング装置を収容する。モニタリング装置は収容前に電源を入れ測定を開始し、輸送中の全行程にわたり温度、圧力、衝撃等を測定する。
 <ステップS12:輸送>
  輸送容器をCPC外へ運び出す。
 <ステップS13:輸送後の受入検査>
  手術室での治療前に、必要に応じ受入検査として顕微鏡による細胞観察を行う。顕微鏡観察を実施する場合、輸送容器内から断熱部及び蓄熱部に囲まれた培養容器を取り出す。断熱部の上下面を取り外した状態で顕微鏡のステージに乗せ細胞を観察する。これにより温度低下を抑制した状態での細胞観察が可能となる。評価の結果、輸送した培養容器が治療に適すると確認できたならば治療の準備を開始する。治療開始時までは輸送容器内に培養容器を収容し温度を維持する。
 <ステップS14:治療>
  治療準備が整ったら手術室へ輸送容器を移動する。手術室に着いたら断熱部及び蓄熱部ごと培養容器を取り出す。そして蓄熱部から培養容器を取り出す。続いて生体試料を培養容器から取り出す。培養容器に温度応答性培養表面を使用している場合は、事前に例えば20℃の恒温機内に30分静置する低温処理を施す。
 第2の実施例として、図6A~図6Fに示した蓄熱部の構成とは異なる構成の蓄熱部を備える蓄熱材付培養容器の実施例を説明する。蓄熱部は培養容器に対し、事前に蓄えた熱を伝導し培養容器の温度を維持する。一方、蓄熱部は外部から冷やされるため、時間が経つと外周側は内部より温度が低くなる。内部に閉じ込められた熱量を培養容器へ効率良く伝達するため、本実施例では蓄熱部の内部から培養容器へ熱を効率良く伝達する。
 図12A~図12Cがそれぞれ示すように、蓄熱部内部から培養容器まで線状金属1201、面状金属1202、棒状金属1203等の熱伝導体を設置する。尚、これらの内部金属の体積が大きくなる程、蓄熱部内部の体積は減る。結果として温度保持時間は低下する。本実施例の構成にあっては、必要な温度保持時間に応じ熱伝導体の形状、配置を選択する。
 実施例3として、蓄熱部における培養容器の設置の位置を変更した実施例を説明する。蓄熱材付培養容器の蓄熱部は培養容器の温度維持が目的のため、培養容器を囲う蓄熱部の空間分布は一様であることが望ましい。つまり、先の実施例1の構成のように、蓄熱部の中央に位置するのが最良である。
 一方、図1、図7Bに示すように培養容器を自動培養装置内に設置した観察部8の顕微鏡400により観察する場合、顕微鏡400は培養容器へ近接するために移動する必要がある。この場合、移動距離が大きいと顕微鏡400の移動機構も大きくなり、結果として自動培養装置は大きくなる。これはコスト増加の一因となり好ましくない。
 図13の(A)は、顕微鏡が近接する際に移動距離が小さくなるよう顕微鏡400が設置される側の蓄熱部1301を薄くした複数の蓄熱材付培養容器が複数培養容器ベース202上に設置されたものを示す図である。顕微鏡400は培養容器ベース202の中心に位置するため、培養容器201を取り囲む、台形状の蓄熱部1301の中心側は薄いものとなっている。図13の(B)の検査用に取りだされた一個の蓄熱材付培養容器に示すように、培養容器201は、台形状の蓄熱部1301内において偏心、すなわち対向する一対の側面の一方に寄った位置に配置され、これにより観察部の顕微鏡400に近くなるため、その移動距離を少なくすることが可能となり、装置の小型化や、観察時間の短縮を図ることができる。図13の(C),図13の(D)に、本実施例の偏心した構造を有する台形状の蓄熱部を備えた蓄熱材付培養容器、及び断熱部、蓄熱部付培養容器の斜視図を示した。
 図14では培養容器ベース1402を長方形とし、矩形状の各蓄熱部1401を一直線に並べたものを2セット設置したものである。そして、顕微鏡400が設置される観察部8は前後左右(XY方向)に動く。この実施例の矩形状の蓄熱部1401も、顕微鏡400が存在する側である2枚の培養容器201の間の空間側において薄くなっている。すなわち、各蓄熱部1401内で培養容器201は、観察部内の顕微鏡400側に偏心、すなわち対向する一対の側面の一方に寄った位置に配置され、これにより顕微鏡の移動を少なくすることができ、装置の小型化や観察時間の短縮を図ることができる。
 次に、実施例4として、蓄熱材付培養容器を自動培養装置による自動培養工程ではなく、インキュベータによる手作業で使用する場合の実施例について説明する。この場合、実施例1で示したように各培養容器へ流路チューブは接続していない。また培養容器は閉鎖系、開放系を問わない。インキュベータ内において各培養容器は蓄熱部に収容された状態である。インキュベータから培養容器を取り出す際は速やかに断熱部の中へ収容する。インキュベータ内に残された培養容器は蓄熱部により室温の空気に晒されても温度は低下しない。取り出し後の培養容器は、必要に応じ断熱部の一部を取り外した状態でホットプレートによる温度維持、顕微鏡による観察を行う。これにより培養容器の温度低下を回避可能である。培養容器において温度応答性培養表面を使用する場合、特に有効となる。
 尚、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上述した実施例は本発明のより良い理解のために詳細に説明したのであり、必ずしも説明の全ての構成を備えるものに限定されものではない。ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることが可能である。また各実施例の構成の一部について、他の構成の追加・削除・置換をすることができる。
 更に、上述した各構成、機能、制御部等は、それらの一部又は全部を実現するプログラムを作成することによりソフトウェアで実現する場合を説明したが、例えば集積回路で設計する等によりハードウェアで実現しても良い。
1 培養容器部
2、1203 流路部
3、213 回転式弁機構
4 細胞ボトル部
5 培地ボトル部
6 予熱ボトル部
7 排液バッグ部
8 観察部
9 インキュベータ部
10 気体供給部
11 加湿ボトル部
12 制御部
13 制御用端末
201 培養容器
202、1402 培養容器ベース
203 アクチュエータ
204、205 細胞ボトル
206、207 流路回路
208 培地ボトル
209 予熱ボトル
210 分岐部
211 チューブポンプ
212 電磁弁
214、215 排液バッグ
216、404 ガスボンベ
217 気体フローメータ
218 加湿ボトル
219 送気用回路
220 無菌脱着部
221 無菌接続部
222 多分岐部
301 観察孔
302 流路チューブ
303 無菌脱着部
400、509 顕微鏡
401 インキュベータ
402 扉
403 監視モニタ
405 机
406 冷蔵庫
407 収納庫
408 流路チューブ
409 小窓
501 制御装置
502 表示画面
503 インキュベータ他
504 温度調節部
505 温度センサ
506 気体供給部
507 溶液保持部他
508 流体移動制御機構部
601 断熱部
602 培養皿
603 温度応答性セルカルチャーインサート容器
604 コネクタ
605 蓄熱材
606 蓄熱材容器
607 受け部
608 窓
609 上面断熱部
610、613 下面断熱部
611 側面断熱部
612 上面・側面断熱部
614 ヒンジ
701、1201、1301、1401 蓄熱部
801 ホットプレート
900 輸送容器
901 保持容器本体部
902 保持容器蓋部
903 断熱部材
904 環境センサ
905、906 蓄熱材
1001 ステージ
1202 線状金属
1203 面状金属
1204 棒状金属

Claims (14)

  1. 細胞培養装置であって、
    培養空間に設置され、複数の培養容器を載置できる培養容器ベースと、
    前記複数の培養容器毎に当該培養容器を保温するための複数の蓄熱部を有し、
    前記培養空間で培養中に前記培養容器ベースに載置され、前記培養容器を収容した前記複数の蓄熱部の少なくとも一つを前記培養空間から取り出し可能に構成されている、
    ことを特徴とする細胞培養装置。
  2. 請求項1に記載の細胞培養装置であって、
    前記培養容器ベースは、前記培養容器が収容された状態で培養が実行できるように、前記培養空間の所定領域に複数の前記蓄熱部を設置できるガイド部を備える、
    ことを特徴とする細胞培養装置。
  3. 請求項1に記載の細胞培養装置であって、
    前記複数の培養容器を観察するための観察部を更に有し、
    前記培養容器ベースはU字形状を備え、前記培養空間の所定領域に設置された状態で、載置された前記複数の培養容器が前記観察部を取り囲むように配置される、
    ことを特徴とする細胞培養装置。
  4. 請求項3に記載の細胞培養装置であって、
    前記培養容器は、前記蓄熱部内で、前記観察部側に偏心した位置に配置される、
    ことを特徴とする細胞培養装置。
  5. 請求項1に記載の細胞培養装置であって、
    前記複数の培養容器を観察するための顕微鏡を更に有し、
    前記細胞培養装置内で前記顕微鏡による観察をする際に、前記顕微鏡が近接する方向の前記蓄熱部は、それ以外の方向の前記蓄熱部に比べ薄い、
    ことを特徴とする細胞培養装置。
  6. 請求項1に記載の細胞培養装置であって、
    培養中に前記培養容器ベースに載置され、前記培養容器を収容した前記複数の蓄熱部の少なくとも一つを前記培養空間から取り出す際に、前記培養容器ベースから取り出さない前記培養容器の温度を保持可能に構成されている、
    ことを特徴とする細胞培養装置。
  7. 請求項1に記載の細胞培養装置であって、
    取り出す培養容器以外の前記培養容器、及びそれらを収容する前記蓄熱部が一体化され、一体化状態で前記培養空間から取り出し可能に構成されている、
    ことを特徴とする細胞培養装置。
  8. 請求項1に記載の細胞培養装置であって、
    前記培養容器を収容した前記複数の蓄熱部の少なくとも一つを前記培養空間から取り出す際に、取り出す前記蓄熱部の外周を覆う断熱部を更に有する、
    ことを特徴とする細胞培養装置。
  9. 培養容器であって、
    生体試料を培養する当該培養容器を保温するため、その周囲を覆う蓄熱部と、
    前記蓄熱部の外周を囲むと共に、その一部を取り外し可能な断熱部を有し、
    前記断熱部の一部を取り外し後に、露出した前記蓄熱部を加温することが可能である、
    ことを特徴とする培養容器。
  10. 請求項9に記載の培養容器であって、
    前記断熱部の一部を取り外し後に露出した前記培養容器は、前記生体試料の観察を可能とする光透過性の窓を備える、
    ことを特徴とする培養容器。
  11. 請求項9に記載の培養容器であって、
    前記畜熱部は一対の側面を備え、当該蓄熱部に収容される前記培養容器は、前記一対の側面の一方に偏心して配置されている、
    ことを特徴とする培養容器。
  12. 請求項11に記載の培養容器であって、
    前記蓄熱部は、前記複数の培養容器を円状に配置可能とするため、台形状を備え、
    前記培養容器は、台形状の短辺側の側面に偏心している、
    ことを特徴とする培養容器。
  13. 培養容器を輸送する保持容器であって、
    培養する生体試料を保温するため、周囲を覆う蓄熱部と、前記蓄熱部の外周を囲むと共に、その一部を取り外し可能な断熱部を有する蓄熱材付培養容器を複数収納し、それらの周囲を取り囲む断熱部材を有する、
    ことを特徴とする保持容器。
  14. 請求項13に記載の保持容器であって、
    複数の前記蓄熱材付培養容器と前記断熱部との間に蓄熱材を有する、
    ことを特徴とする保持容器。
PCT/JP2013/058648 2013-03-25 2013-03-25 細胞培養装置、培養容器、及び保持容器 WO2014155500A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13879732.9A EP2980200B1 (en) 2013-03-25 2013-03-25 Cell culturing device, culturing vessel, and holding vessel
JP2015507724A JP6022674B2 (ja) 2013-03-25 2013-03-25 細胞培養装置、及び培養容器
PCT/JP2013/058648 WO2014155500A1 (ja) 2013-03-25 2013-03-25 細胞培養装置、培養容器、及び保持容器
US14/770,627 US10087410B2 (en) 2013-03-25 2013-03-25 Cell culturing device, culturing vessel, and holding vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/058648 WO2014155500A1 (ja) 2013-03-25 2013-03-25 細胞培養装置、培養容器、及び保持容器

Publications (1)

Publication Number Publication Date
WO2014155500A1 true WO2014155500A1 (ja) 2014-10-02

Family

ID=51622590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058648 WO2014155500A1 (ja) 2013-03-25 2013-03-25 細胞培養装置、培養容器、及び保持容器

Country Status (4)

Country Link
US (1) US10087410B2 (ja)
EP (1) EP2980200B1 (ja)
JP (1) JP6022674B2 (ja)
WO (1) WO2014155500A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046068A1 (ja) * 2013-09-25 2015-04-02 東京エレクトロン株式会社 自動培養システム及び自動培養装置
WO2016125863A1 (ja) * 2015-02-05 2016-08-11 オリンパス株式会社 細胞培養装置
WO2016157322A1 (ja) * 2015-03-27 2016-10-06 株式会社日立製作所 閉鎖系培養容器、輸送方法、及び自動培養装置
JP2016208866A (ja) * 2015-04-30 2016-12-15 株式会社日立製作所 自動培養装置
JPWO2016110980A1 (ja) * 2015-01-08 2017-10-12 オリンパス株式会社 画像取得装置および画像取得方法
EP3377981A4 (en) * 2015-11-18 2019-06-19 Thrive Bioscience, Inc. PLANNING THE RESOURCES OF AN INSTRUMENT
JP2019154434A (ja) * 2018-03-07 2019-09-19 国立大学法人鳥取大学 細胞培養ディッシュ
WO2020009017A1 (ja) * 2018-07-05 2020-01-09 富士フイルム株式会社 細胞培養装置及び撹拌方法
CN110791427A (zh) * 2019-10-25 2020-02-14 上海东富龙医疗装备有限公司 一种通用型细胞处理全站系统
CN112585259A (zh) * 2018-08-19 2021-03-30 赛特拉细胞工程有限公司 用于自动细胞培养的系统和方法
JPWO2020170313A1 (ja) * 2019-02-18 2021-09-30 株式会社日立ハイテク 培養容器ラック及び分析装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3054272C (en) 2017-02-27 2023-01-24 I Peace, Inc. Cell processing system and cell processing apparatus
US10680281B2 (en) 2017-04-06 2020-06-09 GM Global Technology Operations LLC Sulfide and oxy-sulfide glass and glass-ceramic films for batteries incorporating metallic anodes
CN109251863A (zh) * 2018-11-22 2019-01-22 英诺维尔智能科技(苏州)有限公司 一种新型的细胞培养器皿
US20220195486A1 (en) * 2019-05-14 2022-06-23 Institut Pasteur Multiplexable microfluidic culture chamber for imaging monolayer growth of single cells
KR102327638B1 (ko) * 2019-11-04 2021-11-17 숭실대학교 산학협력단 장내 환경 모사를 이용한 혐-호기성 세포 공배양장치 및 방법
US20220340856A1 (en) * 2021-04-23 2022-10-27 Biofridge Inc. Container w/ Heat Plate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005204545A (ja) * 2004-01-21 2005-08-04 Olympus Corp 培養処理装置
JP2006014675A (ja) * 2004-07-02 2006-01-19 J Tec:Kk インキュベータ及びそれに用いる培養カセット
JP2007284137A (ja) 2006-04-20 2007-11-01 Hitachi Ltd 輸送容器、その輸送方法及び恒温輸送容器
JP2008039209A (ja) * 2006-08-02 2008-02-21 Hitachi Ltd 温度調整部材
JP2009073513A (ja) * 2007-09-20 2009-04-09 Hitachi Ltd 温度調整部材
WO2010044417A1 (ja) * 2008-10-14 2010-04-22 株式会社セルシード 温度応答性細胞培養器材、及びその製造方法
JP2010098971A (ja) * 2008-10-22 2010-05-06 Miyazaki Prefecture 生殖細胞の保存容器及び保存方法
JP2010163207A (ja) 2008-12-03 2010-07-29 Masazumi Tanaka 試料輸送容器、並びに、試料輸送方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4301252A (en) * 1980-04-04 1981-11-17 Baker Fraser L Controlled environment incubator for light microscopy
US6365367B1 (en) * 1999-12-06 2002-04-02 Cellomics, Inc. Environmental chamber for the analysis of live cells
US7157270B2 (en) * 2002-04-24 2007-01-02 Genx International Inc. Lightweight chamber having variable configurations and a method for making such
FR2849862A1 (fr) * 2003-01-15 2004-07-16 In Cyto Tox Dispositif et procede de culture de cellules pour essai in vitro
ITNA20040016A1 (it) * 2004-04-02 2004-07-02 High Tech Consulting S R L In Incubatore a co2 da microscopio con circolazione interna di acqua o altro fluido a temperatura controllata
JP2005333823A (ja) * 2004-05-24 2005-12-08 Olympus Corp 培養容器用アダプタおよび培養処理装置
JP2006174828A (ja) * 2004-11-29 2006-07-06 Olympus Corp 生体試料培養観察システム、インキュベータボックス、供給手段、および培養容器
WO2008118500A1 (en) * 2007-03-27 2008-10-02 Wafergen, Inc. Nutrient perfusion plate with heater & gas exchange for high content screening
US20090098593A1 (en) * 2007-10-15 2009-04-16 Biocision, Inc. Laboratory plate thermal vault

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005204545A (ja) * 2004-01-21 2005-08-04 Olympus Corp 培養処理装置
JP2006014675A (ja) * 2004-07-02 2006-01-19 J Tec:Kk インキュベータ及びそれに用いる培養カセット
JP2007284137A (ja) 2006-04-20 2007-11-01 Hitachi Ltd 輸送容器、その輸送方法及び恒温輸送容器
JP2008039209A (ja) * 2006-08-02 2008-02-21 Hitachi Ltd 温度調整部材
JP2009073513A (ja) * 2007-09-20 2009-04-09 Hitachi Ltd 温度調整部材
WO2010044417A1 (ja) * 2008-10-14 2010-04-22 株式会社セルシード 温度応答性細胞培養器材、及びその製造方法
JP2010098971A (ja) * 2008-10-22 2010-05-06 Miyazaki Prefecture 生殖細胞の保存容器及び保存方法
JP2010163207A (ja) 2008-12-03 2010-07-29 Masazumi Tanaka 試料輸送容器、並びに、試料輸送方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Keitaigata Teion Yuso Yoki o Kaihatsu shi Saisei Iryoyo Baiyo Saibo no Chokyori Yuso ni Seiko", 2005, HITACHI BUTSURYU NEWS RELEASE 2005 NEN (HEISEI 17 NEN, 23 August 2005 (2005-08-23), XP008180940, Retrieved from the Internet <URL:http://www.hitachi-hb.co.jp/news/2005/news_20050823.html> [retrieved on 20130409] *
See also references of EP2980200A4

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046068A1 (ja) * 2013-09-25 2015-04-02 東京エレクトロン株式会社 自動培養システム及び自動培養装置
JPWO2016110980A1 (ja) * 2015-01-08 2017-10-12 オリンパス株式会社 画像取得装置および画像取得方法
JPWO2016125863A1 (ja) * 2015-02-05 2017-11-16 オリンパス株式会社 細胞培養装置
WO2016125863A1 (ja) * 2015-02-05 2016-08-11 オリンパス株式会社 細胞培養装置
WO2016157322A1 (ja) * 2015-03-27 2016-10-06 株式会社日立製作所 閉鎖系培養容器、輸送方法、及び自動培養装置
JPWO2016157322A1 (ja) * 2015-03-27 2017-06-22 株式会社日立製作所 閉鎖系培養容器、輸送方法、及び自動培養装置
JP2016208866A (ja) * 2015-04-30 2016-12-15 株式会社日立製作所 自動培養装置
EP3377981A4 (en) * 2015-11-18 2019-06-19 Thrive Bioscience, Inc. PLANNING THE RESOURCES OF AN INSTRUMENT
US11884913B2 (en) 2015-11-18 2024-01-30 Thrive Bioscience, Inc. Instrument resource scheduling
JP2019154434A (ja) * 2018-03-07 2019-09-19 国立大学法人鳥取大学 細胞培養ディッシュ
WO2020009017A1 (ja) * 2018-07-05 2020-01-09 富士フイルム株式会社 細胞培養装置及び撹拌方法
JPWO2020009017A1 (ja) * 2018-07-05 2021-06-03 富士フイルム株式会社 細胞培養装置及び撹拌方法
JP7030980B2 (ja) 2018-07-05 2022-03-07 富士フイルム株式会社 細胞培養装置及び撹拌方法
CN112585259A (zh) * 2018-08-19 2021-03-30 赛特拉细胞工程有限公司 用于自动细胞培养的系统和方法
JP7150131B2 (ja) 2019-02-18 2022-10-07 株式会社日立ハイテク 培養容器ラック及び分析装置
JPWO2020170313A1 (ja) * 2019-02-18 2021-09-30 株式会社日立ハイテク 培養容器ラック及び分析装置
JP2022173354A (ja) * 2019-02-18 2022-11-18 株式会社日立ハイテク 培養容器ラック及び分析装置
JP2022173361A (ja) * 2019-02-18 2022-11-18 株式会社日立ハイテク 培養容器ラック及び分析装置
JP7411751B2 (ja) 2019-02-18 2024-01-11 株式会社日立ハイテク 培養容器ラック及び分析装置
JP7411750B2 (ja) 2019-02-18 2024-01-11 株式会社日立ハイテク 培養容器ラック及び分析装置
CN110791427A (zh) * 2019-10-25 2020-02-14 上海东富龙医疗装备有限公司 一种通用型细胞处理全站系统

Also Published As

Publication number Publication date
EP2980200A4 (en) 2016-11-30
EP2980200B1 (en) 2018-05-30
US10087410B2 (en) 2018-10-02
US20160017271A1 (en) 2016-01-21
EP2980200A1 (en) 2016-02-03
JP6022674B2 (ja) 2016-11-09
JPWO2014155500A1 (ja) 2017-02-16

Similar Documents

Publication Publication Date Title
JP6022674B2 (ja) 細胞培養装置、及び培養容器
JP5722329B2 (ja) 自動培養装置
JP5982492B2 (ja) 生体試料用包装容器及びそれを用いた生体試料の輸送方法
EP2832847B1 (en) Culture vessel and automated culture apparatus
JP6097817B2 (ja) 細胞培養装置
JP5866006B2 (ja) 培養容器及び自動培養装置
US20170342365A1 (en) Closed-system culture vessel, transport method, and automated culturing device
WO2015076391A1 (ja) 自動培養システム及び細胞管理システム
CN109337804B (zh) 一种用于监测生物材料发育的设备
JP5960256B2 (ja) 培養容器及び自動培養装置
US20170145365A1 (en) Cell culturing device and closed-system culture vessel
JP5886455B2 (ja) 自動培養装置
JP6514952B2 (ja) 自動培養装置
JP2012147693A (ja) 分注装置及び細胞培養処理システム
US20220340847A1 (en) Cell culture system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879732

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015507724

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013879732

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14770627

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE