JP5960256B2 - 培養容器及び自動培養装置 - Google Patents

培養容器及び自動培養装置 Download PDF

Info

Publication number
JP5960256B2
JP5960256B2 JP2014516561A JP2014516561A JP5960256B2 JP 5960256 B2 JP5960256 B2 JP 5960256B2 JP 2014516561 A JP2014516561 A JP 2014516561A JP 2014516561 A JP2014516561 A JP 2014516561A JP 5960256 B2 JP5960256 B2 JP 5960256B2
Authority
JP
Japan
Prior art keywords
medium
container
culture
port
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014516561A
Other languages
English (en)
Other versions
JPWO2013175580A1 (ja
Inventor
貴之 野崎
貴之 野崎
広斌 周
広斌 周
亮太 中嶌
亮太 中嶌
志津 松岡
志津 松岡
豊茂 小林
豊茂 小林
直子 千田
直子 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2013175580A1 publication Critical patent/JPWO2013175580A1/ja
Application granted granted Critical
Publication of JP5960256B2 publication Critical patent/JP5960256B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/08Bioreactors or fermenters specially adapted for specific uses for producing artificial tissue or for ex-vivo cultivation of tissue
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/02Membranes; Filters
    • C12M25/04Membranes; Filters in combination with well or multiwell plates, i.e. culture inserts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/10Perfusion

Description

本発明は、細胞または組織を自動操作により培養する培養容器と自動培養装置に関する。
再生医療治療に用いる再生組織の製造は、医薬品等の製造管理及び品質管理の基準であるGMP(Good Manufacturing Practice;適正製造基準)に基づく。一般に、再生組織は清潔な製造環境を提供するCPC(Cell Processing Center;細胞処理施設)において、専門の細胞培養技術を有した製造従事者により、SOP(Standard Operational Procedure;標準手順書)に従い製造される。そのため、多大な人件費、労力、運用コストが発生する。また、全ての製造工程は人手でなされるため、再生組織の製造量には限界がある。結果として、再生組織を製造するための製造コストは高くなり、再生医療治療の普及の妨げとなっている。
このような現状を打破するため、培養工程の一部ないし全てを自動化する自動培養装置の導入が求められている。培養工程を人手ではなく自動培養装置により実施することで、省力化とコストダウンを実現し、大量生産が可能となる。加えて、自動培養装置による操作は一定であるため、製造後に得られる再生組織の品質一定化への寄与も期待される。
ここで、自動培養装置は人手による作業の代替として細胞を培養するが、人手による作業内容に対するGMPに準拠していることが必要である。また、自動培養装置に特化したGMPは現在のところ規定されていないが、臨床用途の自動培養装置に関する開発ガイドライン(非特許文献1)が経済産業省より提示されている。この開発ガイドラインへの準拠も必要である。以上より自動培養装置は、手作業に対するGMP及び自動培養装置の開発ガイドラインを鑑みて、科学的根拠に基づき、清浄な環境を維持した状態で高品質の再生組織を再現性良く製造可能であることが求められる。
これらの課題を解決する手段として、例えば特許文献1、2、3に示すような、閉鎖系の流路を用いて培養工程を自動化する装置が開発されている。培養容器の蓋を開閉する操作が不要な閉鎖系の培養容器を用いることにより、培養工程の自動化と生物学的汚染リスクの低減が達成される。閉鎖系培養容器は、培地が外部へ容易に漏出しない構造である。また、生物学的汚染の原因となる菌等が外部から混入しない隔離された環境を実現する。よって、培養容器の蓋を開閉する開放系培養容器よりも清潔性を維持しやすいという利点がある。
加えて、再生医療治療の対象臓器が角膜上皮、食道粘膜、表皮等である場合、培養する細胞種は、角膜上皮細胞、口腔粘膜細胞、表皮細胞といった上皮系細胞となる。この場合、培養容器の構造は2層構造が望ましい。上皮系細胞は、マウス由来3T3−J2細胞等のフィーダー細胞と共に共培養し、フィーダー細胞が産出する成長因子により生育するが、上皮系細胞とフィーダー細胞を同一培養平面上で培養した場合、製造後の再生組織にフィーダー細胞が混入する。一方、2層構造の培養容器を用いて培養した場合、フィーダー細胞であるヒトとは異種のマウス由来の細胞は異なる培養表面上で培養するため、上皮系細胞へのフィーダー細胞の混入を回避することができる。これは、ヒトに対する再生医療治療において、より好ましい。自動培養装置を用いて上皮系細胞を培養する場合においても、同様に2層構造が望ましい。2層構造の閉鎖系培養容器は、特許文献1が示すように、既に開発が進められている。
特開2006−149237号公報 特開2004−208664号公報 特開2007−312668号公報
経済産業省、再生医療分野(ヒト細胞培養加工装置についての設計ガイドライン[改訂])、2009
自動培養装置は前述の通り、手作業において要求されるGMP及び自動培養装置に関する開発ガイドラインを満たすことが要求される。その中の一つの要求として、自動培養装置で製造した再生組織の品質を一定にする必要がある。再生組織の品質を一定にする条件は複数存在するが、その中の一つとして、多くの場合で採用されている培地の全量を交換する培地交換工程において、古い培地を排出し新しい培地を供給する際、新しい培地に古い培地が混入することは回避する必要がある。
古い培地は細胞が生育するために使用した培地であり、例えばグルコースが消費され、代わりに乳酸が排出されている。よって古い培地が新しい培地に混入した場合、培地交換後のグルコース量等は新しい培地における濃度と一致せず、結果として培養工程の再現性は失われる。同様に、古い培地に含まれる乳酸は培地のpHを変化させるため、培地交換後の古い培地に由来する乳酸の混入も、培養工程の再現性に影響を与える。以上より、培養工程の再現性を向上させるには、全量を交換する培地交換工程の場合、古い培地と新しい培地が混入しないことが必要である。
また、培養工程において培養状況を把握するため、排液である古い培地を用いた培地成分分析によるモニタリング機能の搭載が望ましい。正確に培地成分分析を行うには、排液である古い培地の中に、新しい培地が混入することは回避する必要がある。前述の通り、古い培地と新しい培地とで成分組成が異なるため、培地成分分析に使用する古い培地に新しい培地が混入すると、培地成分分析の結果が古い培地のみの分析結果と異なるためである。以上より、培養工程において、古い培地と新しい培地の混入を制御する技術が必要である。
前述の通り、自動培養装置は開発ガイドラインを満たすことが要求される。特に、製造後の再生組織の品質を一定にするためには、培地交換時の交換比率の制御、即ち、培地交換を実施する時点まで細胞培養に使用していた古い培地のうち、どれだけの割合を新しい培地に置き換えるかの制御、が重要である。例えば全量の培地を交換する場合の培地交換工程において、古い培地を排出し新しい培地を供給する際、新しい培地に古い培地が混入しないことが必要である。一般的に手作業で行われる、全量を交換する培地交換では、古い培地を完全に排出し、新しい培地へ置きかえる。手作業を自動化する場合、かつ手作業では全量を交換する培地交換の場合、自動培養装置においても全量を交換可能でなければ、前述の通り古い培地と新しい培地は組成が異なるため、手作業とは培養条件が異なるものになってしまう。結果として培養後の細胞の状態が変わることになり、培養の再現性を実現することはできない。よってその場合において、自動培養装置は古い培地を完全に排出し、新しい培地を所定量供給可能な、全量排出を実施できることが必要である。
細胞種によっては、例えば古い培地の半量を排出し、その等量の新しい培地を供給する培地交換方法が用いられる。手作業においては、全量を交換する培地交換と同様に、所定の比率に従い培地を交換することが可能である。この作業を自動化する場合には、手作業と培養条件を揃えるために、所定の培地交換比率での培地交換を自動培養装置は実施可能であることが必要である。
また、培地交換時の排液である古い培地を用いた培地成分分析によるモニタリング機能を搭載する場合、正確に培地成分分析を行うには、排液である古い培地の中に、新しい培地が混入することは回避する必要がある。理由は同じく、古い培地と新しい培地の組成が異なるためである。
特許文献1、特許文献2は培地交換時、培養容器内に古い培地が存在した状態で新しい培地を供給し、培養容器内部で新しい培地と古い培地とが混在した状態を経て、過剰な分の液体が排出される連続的な培地の交換方法をとる。この方式により、古い培地を新しい培地へ全量交換する培地交換を試みる場合、排出される液体には古い培地の占める割合が多いが、培養容器内に新しい培地と古い培地は混在するため、低濃度になるものの古い培地は新しい培地に混入する。古い培地の組成は、細胞の生育段階(細胞数、分化度)により異なるため、本方法による培地交換後の培養容器内の培地の各成分の濃度も細胞生育段階により異なることになる。また、この方式により、古い培地を新しい培地へ所定の比率で交換する培地交換を試みる場合、交換比率を制御することは不可能である。理由は全量交換の培地交換と同じく、古い培地と新しい培地が混在した状態となるためである。
さらに、この方法で得られた古い培地を用いて培地成分分析を行い、細胞の生育状態をモニタリングする場合、回収した古い培地には新しい培地が混入しているため、モニタリング結果は正確ではなくなるという問題がある。特許文献3は、1個の1層構造の閉鎖系培養容器により培養する自動培養装置を提示している。培地交換は、古い培地を排出してから新しい培地を供給する方式を取る。しかし1層構造であるため、この培養容器を用いて上皮系細胞を培養する場合、製造後の再生組織に共培養するフィーダー細胞が混入する。上皮系細胞を培養する場合には、1層構造より2層構造の培養容器の方が好ましい。
以上を考慮すると、2層構造の閉鎖系培養容器に対し、既存の技術を用い、全量の培地交換、または所定の比率に対する培地交換を実施することは困難である。
本発明の目的は、上記の課題に鑑み、古い培地と新しい培地が混じり合わないよう、全量を交換、または所定の比率で交換する培地交換時に、所定量の古い培地を排出可能な培養容器、及び自動培養装置を提供することにある。
上記の目的を達成するため、本発明においては、細胞を保持、培養するための培養容器であって、培地及び細胞を、または培地のみを収容する第二容器と、第二容器内部に設置される、培地及び細胞をまたは培地のみを収容する第一容器と、第一容器、及び第二容器への培地の供給または排出を行う第一ポート乃至第四ポートとを備え、第二容器からの培地の排出を行う第四ポートを、少なくとも一部分が第一容器と第二容器の間に配置し、少なくとも他の一部分を第二容器の内壁に設置した構成の培養容器を提供する。
また、上記の目的を達成するため、本発明においては、細胞を保持、培養するための培養容器であって、培地及び細胞を、または培地のみを収容する第一容器と、第一容器内部に設置された、培地及び細胞を、または培地のみを収容する第二容器と、第二容器を少なくとも封止する蓋部材と、第一容器に設置された、培地の供給と、気体の供給及び排出をするための第一ポートと、第一容器に設置された、培地を排出するための第二ポートと、第二容器に設置された、培地の供給と、気体の供給及び排出をするための第三ポートと、第二容器に設置された、培地を排出するための第四ポートとを備え、第四ポートは、少なくとも一部分が第一容器と第二容器の間に配置され、少なくとも一部分が第二容器の内壁に設置されており、排出時において第一容器と前記第二容器の間に生じる表面張力により生じる液滴に対し当該ポートより吸引が可能である構成の培養容器を提供する。
更に、上記の目的を達成するため、本発明においては、培養容器内への細胞播種と培地交換を行い、培養容器内において細胞を培養する自動培養装置であって、細胞懸濁液が収容される細胞バッグと、培地が収容される培地バックと、培地を保存する冷蔵庫と、培地を所定温度保持する温度保持部と、細胞を培養する培養容器と、細胞懸濁液及び培地及び空気を送液/送気する流体移動制御機構部と、培養容器、細胞バッグ、培地バッグ、流体移動制御機構部からなる流路回路が設置される細胞培養用恒温槽と、培養容器の培養環境を制御する制御装置を備え、培養容器は、培地及び細胞をまたは培地のみを収容する第二容器と、第二容器内部に設置された、培地及び細胞または培地のみを収容する第一容器と、培養容器の外面に流路と接続可能な第一ポート乃至第四ポートから構成され、第二容器からの培地の排出を行う第四ポートを、少なくとも一部分を第一容器と第二容器の間に配置し、少なくとも他の一部分を第二容器の内壁に設置し、制御装置は、第一容器への培地の排出または供給、あるいは第二容器からの培地の排液または供給をする場合に、第一乃至第四ポートを切り替え、送液を制御する構成の自動培養装置を提供する。
本発明に係る閉鎖系培養容器、あるいは自動培養装置によれば、培養容器内の古い培地を完全に排出する、または、所定量を排出することが可能である。これにより、全量交換または所定の比率での培地交換において、培地送液精度を高めることが可能となるため、培養の再現性が向上する。加えて、回収した古い培地を用いた培地成分分析の分析精度が向上する。
第1の実施例を示す、閉鎖系培養容器を1枚培養する時の全体流路回路図である。 第1の実施例に係る、閉鎖系培養容器の断面図である。 第1の実施例に係る、全量を交換する培地交換において、培地を全量排出する排出口及びそれを有した培養容器の一例を示した図である。 第1の実施例に係る、全量を交換する培地交換において、培地を全量排出する排出口及びそれを有した培養容器の一例を示した図である。 第1の実施例に係る、全量を交換する培地交換において、培地を全量排出する排出口及びそれを有した培養容器の一例を示した図である。 第1の実施例に係る、所定の比率で交換する培地交換において、所定量の培地を排出する排出口及びそれを有した培養容器の一例を示した図である。 第1の実施例に係る、所定の比率で交換する培地交換において、所定量の培地を排出する排出口及びそれを有した培養容器の一例を示した図である。 第1の実施例に係る、所定の比率で交換する培地交換において、所定量の培地を排出する排出口及びそれを有した培養容器の一例を示した図である。 第1の実施例に係る、細胞播種時の培地及び空気の流れを示した図である。 第1の実施例に係る、細胞播種時の培地及び空気の流れを示した図である。 第1の実施例に係る、上層の培地交換時の培地及び空気の流れを示した図である。 第1の実施例に係る、上層の培地交換時の培地及び空気の流れを示した図である。 第1の実施例に係る、上層の培地交換時の培地及び空気の流れを示した図である。 第1の実施例に係る、上層の培地交換時の培地及び空気の流れを示した図である。 第1の実施例に係る、上層の培地交換時の培地及び空気の流れる流路の制御テーブルを示す図である。 第1の実施例に係る、下層の培地交換時の培地及び空気の流れを示した図である。 第1の実施例に係る、下層の培地交換時の培地及び空気の流れを示した図である。 第1の実施例に係る、下層の培地交換時の培地及び空気の流れを示した図である。 第1の実施例に係る、下層の培地交換時の培地及び空気の流れを示した図である。 第1の実施例に係る、下層の培地交換時の培地及び空気の流れる流路の制御テーブルを示した図である。 第1の実施例に係る、閉鎖系培養容器を有する自動培養装置の制御機構の一例を示した図である。 第1の実施例に係る自動培養装置を用いて細胞の培養処理のフローの一例を示した図である。
以下、本発明に係る自動培養装置の実施の形態について、図面を参照して詳細に説明する。なお、本明細書において、自動培養装置の流路を流れる気体、液体、気体及び液体を総称して流体と呼ぶ場合がある。
まず、各種の実施例を説明する前に、本発明の好適な態様を概説する。
すなわち、本発明の好適な態様において、内部に培養空間を有し、第一容器及び第二容器を有した2層構造の閉鎖系培養容器であって、第一容器は第二容器内に収容され、培養時は第二容器内側と第一容器外側の空間に培地が保持され、第一容器及び第二容器それぞれへ、細胞懸濁液または培地の供給と、空気の供給及び排出を行う第一及び第三ポートと、第一容器及び第二容器それぞれから培地の排出を行う第二及び第四ポートを有した構成の培養容器を提供する。さらに、全量交換を行う場合に際しては、この構成の培養容器において、第二容器から排出を行う第四ポートは、第一容器の下部及び第二容器の周辺部まで広がる排出口を有した構成の培養容器を提供することにより、排出時において第一容器と第二容器の間に生じる表面張力により生じる液滴に対し当該ポートより吸引が可能であり、また培養容器を傾けることで第二容器の内壁の片側に集積させた培地に対し、第二容器の内壁に設置した部分の当該ポートにより吸引が可能となる。
更に、第二容器の底面は、第一容器の下部まで、階段状に鉛直方向の高さを低くした構成の培養容器を提供する。または、第二容器から排出を行う第四ポートは伸縮可能とし、培地排出時に第一容器の下部に残存する液滴まで第四ポートを伸ばし、十分に回収した後に当該第四ポートを縮めて第二容器の周辺部にある培地の排出を行う構成の培養容器を提供する。
また更に、所定の比率で交換する培地交換を行う場合に際しては、前述の構成の培養容器において、第二容器から排出を行う第四のポートの高さを調整することにより、培地を排出する際はポート先端が培地中に存在し、所定量の培地を排出したため、それ以上の培地の排出が不要になった段階でポート先端が培地外に存在し、以上の方法により所定の比率で交換する培地交換を行う構成の培養容器を提供する。
更にまた、全量交換及び所定の比率で交換する培地交換の両目的を達成するため、本発明においては、内部に培養空間を有する閉鎖系培養容器を用いる自動培養装置であって、細胞懸濁液が収容される細胞バッグと、培地が収容される培地バックと、培地を冷蔵保存する冷蔵庫と培地交換時に事前に培地を37℃に温めるヒーターと、細胞を培養する培養容器と、細胞懸濁液及び培地及び空気を送液/送気する流体移動制御機構部と、二酸化炭素等を供給源となるガスタンク及びガス濃度を調節するガス濃度調節部及び外界との気圧調整を行うフィルタと、流路の開閉を行う二方弁及び三方弁から成る。培養容器、細胞バッグ、培地バッグ、流体移動制御機構部等から構成される流路回路は恒温機の中に設置され、流路回路全体の温度が制御される。培養容器の培養環境は、制御装置により制御する。また、装置内には温度センサを設置し、内部温度をモニタリングする。加えて顕微鏡も設置し、細胞の生育状態を光学的に適宜モニタリングする。
すなわち、本発明の好適な態様の、内部に培養空間を有する閉鎖系培養容器を用いた自動培養装置おいて、培養容器内の第二容器への細胞播種時は、流体移動制御機構部により細胞懸濁液を細胞バッグから第一ポートを経由して第一容器へ供給しつつ、第三ポートから培養容器内の空気を外部へ排出する。培養容器内の第二容器への細胞播種時は、第一及び第二ポートの切り替え後、流体移動制御機構部により細胞懸濁液を細胞バッグから第二ポートを経由して第一容器へ供給しつつ、第一ポートから培養容器内の空気を外部へ排出する。尚、第一容器及び第二容器へ細胞播種を行う順番は任意である。
培養容器内の第一容器の培地交換時は、流体移動制御機構部により培地を培地バッグから第一ポートまで送液しつつ、第三ポートから培養容器内の空気を外部へ排出する。第一ポートまで達した培地は、保存時に例えば4℃にて冷蔵状態であったが例えば37℃まで温めるヒーターを経由しており、よってこの時点で温度は37℃である。第一ポートまで達している培地は、常に37℃に維持されている恒温槽内で待機するため、培地の温度も37℃に維持される。次に、流体移動制御機構部により第一容器の古い培地を第二ポートから排出しつつ、第三ポートから培養容器内の空気を内部へ供給する。この時、全量交換及び所定の比率での培地交換の目的応じ、前述の方法の中から最適な構造及びそれに付随する培地交換方法を選択する。古い培地の排出後、続いて、流体移動制御機構部により第一ポートにて待機している培地を第一容器内へ供給しつつ、第三ポートから培養容器内の空気を外部へ排出する。この操作は、第二ポートから排出した古い培地が第一容器から全量または所定量、排出された直後より、開始する。第二ポートから排出した古い培地が排液バッグ等まで完全に送液することを完了させる必要はない。最後に、流路チューブ内にある第二ポートから排出した古い培地に対し、一部を排液回収バッグより回収し、残りを排液バッグへ排出する。以上により、第一容器内において、古い培地は新しい培地と混じることなく、排出することが可能となる。培地交換後の第一容器内の培地は、全量交換の場合は、培地交換時に供給した新しい培地のみとなり、所定の比率での培地交換の場合は、所定の比率で新しい培地と古い培地が混在することになる。
培養容器内の第二容器の培地交換時は、第一容器の培地交換時に比べ、第一ポートと第三ポートの役割が入れ替わる。また、排出口は、第一容器では第二ポートであったのに対し、第二容器では第四ポートとなる。また、第二容器から古い培地を全量排出する、または、所定量を排出するため、前述の各機能のいずれかを有する。
最初に、流体移動制御機構部により培地を培地バッグから第三ポートまで送液しつつ、第一ポートから培養容器内の空気を外部へ排出する。第三ポートまで達した培地の温度は、第一容器の時と同様に、この時点で37℃を維持している。次に、流体移動制御機構部により第二容器の古い培地を第四ポートから排出しつつ、第一ポートから培養容器内の空気を内部へ供給する。この時、全量交換及び所定の比率での培地交換の目的応じ、前述の方法の中から最適な構造及びそれに付随する培地交換方法を選択する。古い培地の排出後、続いて、流体移動制御機構部により第三ポートにて待機している培地を第二容器内へ供給しつつ、第一ポートから培養容器内の空気を外部へ排出する。この操作は、第四ポートから排出した古い培地が第一容器から全量または所定量、排出された直後より、開始する。第四ポートから排出した古い培地が排液バッグ等まで完全に送液することを完了させる必要はない。最後に、流路チューブ内にある第四ポートから排出した古い培地に対し、一部を排液回収バッグより回収し、残りを排液バッグへ排出する。以上により、第一容器内と同様に、第二容器内において、古い培地は新しい培地と混じることなく、排出することが可能となる。培地交換後の第一容器内の培地は、全量交換の場合は、培地交換時に供給した新しい培地のみとなり、所定の比率での培地交換の場合は、所定の比率で新しい培地と古い培地が混在することになる。尚、第一容器及び第二容器に愛し培地交換を行う順番は任意である。
また、第一容器及び第二容器の培地交換において、古い培地を排出完了後、第一または第三ポートに待機している事前に37℃に維持された培地を、古い培地を第二または第四ポートから排出直後、速やかに供給する。これにより、培養容器内の培養表面の乾燥と温度低下を回避することが可能となる。
加えて、本構成及び本プロトコルにより、流路回路において培地は一方方向に流れることになる。古い培地と新しい培地は混じり合わない。結果として、回収した古い培地に対する培地成分分析の精度も向上する。
図1−図13は、閉鎖系培養容器を培養する自動培養装置の第1の実施例を示す図であり、図1は、その流路回路の一例を示す図である。同図において、1個の閉鎖系培養容器を図示してあるが、閉鎖系培養容器は、例えば10個など複数の閉鎖系培養容器を並列に設置する。ここでは、煩雑さを避けるため、1個の閉鎖系培養容器を示した。
図2は、本実施例に用いる、通常の排出構造を有した閉鎖系培養容器の一例の断面図を示したものである。同様に、図3、4、5は、全量を交換する培地交換において、培地を全量排出する排出口及びそれを有した閉鎖系培養容器の一例を、図6、図7、図8は、所定の比率で交換する培地交換において、所定量の培地を排出する排出口及びそれを有した閉鎖系培養容器を示したものである。図9、図10、図11はそれぞれ、所定の処理時における、培地及び空気の流れの一例を示したものである。また、図12は、閉鎖系培養容器を有する自動培養装置の制御機構の一例を、図13は、自動培養装置を用いて細胞の培養を実施する一連のプロトコル例を示したものである。
図1を用いて、本実施例の閉鎖系培養容器を1個培養する時の全体流路を説明する。培養対象として、角膜上皮細胞、口腔粘膜細胞、表皮細胞等の上皮系細胞を例示する。閉鎖系培養容器は、後で図2を用いて詳細を説明するが、上皮系細胞の培養に用いるため、上皮系細胞を培養する層と、上皮系細胞のための成長因子を産出するフィーダー細胞を培養する層から成る、2層構造の培養容器101を用いる。
図1に明らかなように、本実施例の自動培養装置は、閉鎖系培養容器101と、閉鎖系培養容器101の供給側との間に、流路チューブで構成される第二の流路回路の導入部104を介して細胞バッグ103が接続され、流路チューブである第一の流路回路の導入部105を介して、他の細胞バッグ102が接続されている。また、これらの閉鎖系培養容器101に、第一、第二の流路回路の導入部104、105、複数の二方弁106a〜106f、流体移動制御機構部108a、108b、多分岐部109a、109bを介して、培地バッグ111、ヒーター112、ガス供給部115a、115b、ガス濃度調整部116a、116b、フィルタ117a、117bが接続されている。なお、流体移動制御機構部108a、108bは、流体を移動させるポンプとして機能する。
また、各閉鎖系培養容器101の供給側には、多分岐部109a、109bと第二の流路回路の分岐路121、第一の流路回路の分岐路122、第一の電磁弁130y、第二の電磁弁132x、及び無菌脱着部118が設けられている。閉鎖系培養容器101の排出口側は、無菌脱着部118を介して第二の流路回路の分岐路123、第一の流路回路の分岐路124が接続されており、これらの流路回路は、多分岐部109c、109dで、各々第二の流路回路の排出部、第一の流路回路の排出部となり、これらの流路回路はさらに、流体移動制御機構部108c、108d、三方弁107a、107bを介して、排液バッグ113、排液回収バッグ114a、114b、及びフィルタ107a、107bに接続されている。閉鎖系培養容器101は、図示を省略した回転機構によりその位置を任意の角度に、3次元的に回転可能に構成されている。
図1に示す流路回路において、各二方弁106、各流体移動制御機構部108、第一の電磁弁130、第二の電磁弁132、各三方弁107は、予め与えられた制御プロトコルにより、所定のシーケンスに基づいて制御される。これにより、培養容器101に対して培地が常に一方向に流れるように、かつ、古い培地を排出後に新しい培地を供給するなどの流路制御がなされる。
図1に示すように、本実施例の自動培養装置においては、2種類の細胞を用いるため、細胞バッグ102、103は2種類となる。また、細胞播種時において2種類の細胞が混じらないようにするため、播種するための流路回路は、上述の通り分けられている。図1において、本図では、細胞バッグ103に入れた細胞は、実線で示された流路回路の導入部104を通過する。細胞バッグ102に入れた細胞は、破線で示された流路回路の導入部105を通過する。
細胞播種時は、細胞バッグ102、103より、それぞれの細胞懸濁液を培養容器101まで送液する。所定のシーケンスに基づいて、送液時は、事前に所定の二方弁106a〜106f、三方弁107a、107bの開閉を行う。そして流体移動制御機構部108a〜108dを作動させ、流量、送液時間を制御しつつ送液する。細胞播種は、培養容器101の上層及び下層に対し、順次実施する。上層及び下層へ細胞播種後、培養容器101の下部に取り付けた、図示を省略した回転機構を作動させる。細胞播種時及び細胞培養時において培養容器101は水平状態を保持しているが、細胞播種直後、培地交換時は、培養容器101を傾ける。細胞播種時は連続的に揺動させることにより、播種後の細胞の分布を一様化する。その後、培養容器を水平状態に戻し、その状態で培養を行う。
本実施例の自動培養装置においては、培養期間中、培地交換を所定の日時に実施する。上皮系細胞の場合、1−3日程度に1回の頻度で一般に実施する。培地交換は、上層及び下層に対し、順次実施する。最初に、冷蔵庫内に例えば、4℃にて保管されている培地バッグ111を流体移動制御機構部108a、108bにより培養容器の直前まで送液する。この時、培地バッグ111から送液された直後は4℃である培地を、ヒーター112により例えば37℃まで温める。通常、培養容器101の周囲は、37℃に維持された恒温機の中であるため、ヒーター112により温めた培地は37℃を保持する。続いて、培養容器101内の培地を培養容器から排出する。流体移動制御機構部108c、108dにより、排液バッグ113へ排出する。その時、培地成分分析に必要な排液の一部は、排液回収バッグ114a、114bにおいて回収する。本実施例では、培養容器101の上層及び下層を分けた状態で回収することが可能となっている。また培養容器101から古い培地を排出する際には、回転機構により培養容器を傾け、培養容器内の排出口側から古い培地が排出されやすくなるようにする。続いて、事前に培地バッグ111より培養容器101の直前まで送液し、37℃に保持された状態の新しい培地を、培養容器へ供給する。
細胞播種、培地交換時以外の培養中は、流路回路が設置されている恒温機内の温度を37℃に維持する。これにより、培養容器内の温度も37℃に維持する。また、必要に応じCO2等をガス供給部115a、115bから供給する。濃度はガス濃度調整部116a、116bにて行う。例えば、培養容器内部へ、CO2が5%含まれた気体を適宜送気する。培養対象の細胞種、使用している培地の種類に応じて気体組成と送気スケジュールは決定する。加えて、流路回路外部から気体を取り込んだり、流路回路内部の気圧を調整したりする場合は、フィルタ117a、117bを介して行う。このフィルタは、例えば0.22μm以上の粒子を通さない品質のものを使用する。
図1に示す通り、各流路回路において培養容器101の前後には、無菌脱着部118を取り付ける。培養中は、流路チューブと同様に送液が可能である。先に説明したように、通常自動培養装置においては、複数の培養容器を使用するが、前日検査等で培養容器を1個のみ取り外し、残りの培養容器は無菌性を維持したまま培養を継続する際、無菌脱着部118より培養容器を取り外す。無菌脱着部118により取り外した後の流路回路は、培養容器101が取り外した場所に残された無菌脱着部118により、流路チューブは閉じた状態を維持する。これにより、前日検査のため培養容器を取り外しても、残された培養容器に対して培養を継続可能となる。
また、図1に示す本実施例の閉鎖系培養容器101は、内部に上層用供給部流路としての第一ポート210、上層用供給部接続突起構造209、下層用供給部流路としての第三ポート206、下層用供給部接続突起構造205、上層用排出部流路としての第二ポート212、上層用排出部接続突起構造211、下層用排出部流路としての第四ポート208、下層用排出部接続突起構造207を有する。尚、本図において、下層用排出口は、後で図3において説明する構造例を適用した場合となっている。また、本実施例では、1個の培養容器に対し自動培養する場合を示したが、培養容器の前後において流路チューブを分岐させ、培養容器を並列に接続することで、複数個の培養容器に対する自動培養も可能であることは先に説明した通りである。
図2を用いて、本実施例の閉鎖系培養容器101の基本的な構成要素を詳細に説明する。尚、図2においては、説明の煩雑さを避けるため、全量交換または所定の比率での培地交換を行うための排出口は搭載図示していない。後で、図3〜8において詳述する。すなわち、図2の排出口は、培養容器101の側面に設置しただけのものとなっている。
培養容器101の素材はポリカーボネイト、ポリスチレン、ポリプロピレンなどの可塑性と共に剛性有するプラスチックである。本例では、容器底面の形状が正方形である場合を示している。図2において、培養容器101は、培養容器本体200とこの培養容器本体に流路チューブからなる第二の流路回路及び第一の流路回路を接続するための4つの接続ポートによって構成されている。培養容器本体200は、この本体に一体に形成された複数の第二容器201と、蓋部202と、第二容器201と蓋部202との間に挿入される第一容器203とで構成されている。各容器201、203の平面形状は例えば円形である。第二容器201と蓋部202は、各々、射出成形、切削加工等により形成される。
第一容器203として、例えば、一般に培養において使用されるセルカルチャーインサート容器を、本体200の内部の各第二容器201に挿入可能な構造となっている。セルカルチャーインサート容器は市販のものでよく、BD社製、コーニング社製、グライナー社製等があり、使用可能な製品は限定されない。培養容器における第一容器203は、図2の例ではセルカルチャーインサート容器であり、この第一容器203を、本明細書においては上層とする。また、本例では第二容器201を下層とし、この下層の第二容器201は培養容器本体200に一体に形成される。
第一容器203であるセルカルチャーインサート容器では、細胞はセルカルチャーインサート容器の底面上にて播種、培養する。培養容器本体200と培養容器蓋部202で構成する第二容器201では、細胞は培養容器本体部の底面上にて播種、培養する。培養容器蓋部202或いは培養容器本体の第二容器201には、Oリング等の弾性部材204が設けられる。これにより、培養容器101の外部から、気体や菌等を含む粒子は内部に混入しない。培養容器蓋部202の培養容器本体200への接続は、培養容器蓋部202および培養容器本体部200に設けられたネジ山同士をかん合させることにより固定できるが、この方法に限定されるものではない。なお、222は第一容器203と第二容器201との間の気体流通用のギャップである。
培養容器本体の第二容器201には、培地供給と、気体すなわち空気/水蒸気等の供給及び排出をするための、接続突起構造205をその一端に有する第2供給ポートとしての流路206と、培地排出をするための第二排出ポートとしての、接続突起構造207をその一端に有する流路208を有する。この流路206の第二容器201への開口位置は、流路208の第一容器203への開口位置よりも高い位置に形成する。
すなわち、流路206の培養容器本体の第二容器201における開口位置は、容器内に導入する培養液の量によって変えるべきであるが、導入された培養液面よりも上部であればよい。流路208の培養容器本体の第二容器201における開口位置は、培養容器本体部201から培地を排出するために使用するため、全量交換または所定の比率での培地交換を行う目的に応じ変更する。全量交換または所定の比率での培地交換を行う場合については、図3〜8を用いて後述する。図2の排出口は、培養容器本体の第二容器201の底面と流路208の内径最下部が、同じ高さとなるように設置しており、そうすることで、培養液の排出効率を向上させることが可能となる。培養容器101を、図示を省略した回転機構により適宜傾けつつ培地を排出することで、排出効率はより向上する。
培養容器蓋部202には、セルカルチャーインサート容器である第一容器203に対し、培地供給と、気体すなわち空気/水蒸気等の供給及び排出をするための、接続突起構造209をその一端に有する、第一供給ポートとしての流路210と、培地排出をするための、接続突起構造211をその一端に有する、第一排出ポートとしての流路212を有する。流路210の第一容器203における開口位置は、流路212の第一容器203における開口位置よりも高い位置にある。
すなわち、流路210の第一容器203における位置は、容器内に導入する培養液の量によって変えるべきであるが、導入された培養液面よりも上部であればよい。流路212は、第一容器203から培地を排出するために使用するため、全量交換または所定の比率での培地交換を行う目的に応じ変更する。全量交換または所定の比率での培地交換を行う場合については、図3〜8を用いて後述する。図2の排出口は、セルカルチャーインサート容器である第一容器203の底面と流路212が、近接した状態となっている。但し近接しすぎると、再生組織の製造において、細胞の増殖に従い流路212が接触し、細胞の増殖に対し支障を及ぼす。口腔粘膜細胞の場合、再生組織まで培養すると約数百μmの高さまで細胞は増殖する。よって、流路212は約500μmまでセルカルチャーインサート容器203の底面まで近接可能である。近接が可能となる距離は、培養対象となる細胞の種類に合わせ、決定すればよい。培養液の排出時は、上層の培地交換時と同様に、培養容器を回転機構により適宜傾けつつ培地を排出することで、排出効率を向上させることが可能である。
なお、第一容器203の底面220には多孔性膜やポアメンブレンが設けられており、該部分を介して第一容器203と第二容器201間で液体及び気体が相互に移動可能になっている。また、第一容器203の上部と第二容器201の上部との間には、相互に気体の流通を可能にするギャップ222が存在する。なお、図面では便宜上第一容器203の側壁にギャップ222を表示しているが、第一容器203と第二容器201とが上部空間で相互に連通するものであれば、その位置や形状に制限はない。
このように、細胞を保持、培養するための培養容器101は、培地及び細胞、または培地のみを収容する第二容器201と、この第二容器内部201において、培地及び細胞、または培地のみを収容する第一容器203と、当該第二容器を少なくとも封止する蓋部材202を有する培養容器であり、この培養容器の外面に流路回路と接続可能な第一の供給ポートである流路210、第二の供給ポートである流路206、第一の排出ポートである流路212、第二の排出ポートである流路208を備え、この第一容器203への培地の排出または供給、あるいは第二容器201からの培地の排出または供給をする場合に、送液を制御する手段により、第一、第二の供給ポートへの連通状態、第一、第二の排出ポートへの連通状態が切り替えられる。後で述べるように、第一供給ポートである流路210及び第二供給ポートである流路206は、培地を培養容器101に対して常に一方向へ流し、気体は双方向に流す機能を有している。
培養容器蓋部202に設置した流路210及び流路212は、細胞観察に支障がないように配置する。細胞観察に支障がないとは、例えば細胞培養容器内を顕微鏡観察する際に、顕微鏡光軸を阻害しない形状を備え、また顕微鏡光軸を阻害しない位置に配置することを意味する。流路206、208、210、212は、流路の突起構造サイズに適合した内径を有する、シリコン等の弾性体からなる流路チューブ213が接続可能である。これにより、自動培養装置が有する流路回路に対し接続することができる。培養時において、培養容器内には培地214が入っている。上層には上皮系細胞215を播種し、下層にはフィーダー細胞216が播種されている。但し、用途においては別の細胞を播種したり、細胞を播種しないまま培養したりすることもある。細胞を播種しないまま培養する例として、上層に上皮系細胞を播種し、下層には細胞を播種せず培地のみとし培養することで、フィーダー細胞なしに培養可能であることが報告されている。
図3は、本実施例の自動培養装置を用いて、全量を交換する培地交換において、培地を全量排出する排出口及びそれを有した培養容器の一例を示したものである。図1にて示した下層用排出部流路208の形状を、図3のように変更する。図3の(A)に示すように、下層用排出部流路301は、培養容器本体300の第一容器である上層302と、第二容器である下層303の間に設置する。また、図3の(A)〜(D)が示すように下層用排出部流路301の形状は、一端が第一容器である上層302の下部304にあり、残りの一端は第二容器である下層の周囲305に接している。
この構成において、排出時、培地は上層底面と下層の間に生じる表面張力により、液滴となり残存する。よって、下層用排出部流路301を用いることにより、まず、下層用排出部流路301の一端が上層302下にあることを利用し、直接、上層底面と下層の間の液滴を吸引する。吸引により液滴の液量が減ると、上層底面との表面張力は失われる。その結果、上層底面と下層の間の液滴は、下層303全体へ拡散する。その段階で培養容器を傾け、下層用排出部流路301の一端である下層303の周に接している側へ、培養容器を傾ける。これにより、下層全体へ拡散した培地は、下層周囲に接している側から吸引されることになる。下層用排出部流路301の一例として、図3(A)は、断面図を示している。下層用排出部流路301は、上層302の底面まで達している。図3の(B)は、上から見た図を示している。下層用排出部流路301の一端は上層底面304の下にあり、残りの一端は下層周囲305に接している、図3の(C)は、斜めから見た図を示している。図3の(D)は、下層用排出部流路301のみを示した図である。
この実施例の構成により、排出時において第一容器と第二容器の間に生じる表面張力により生じる液滴に対し当該ポートより吸引が可能であり、また培養容器を傾けることで第二容器の内壁の片側に集積させた培地に対し、第二容器の内壁に設置した部分の当該ポートにより吸引が可能となる。
図3の(E)は、同図から明らかなように、下層用排出部流路301の変形例として、吸引する部分をすぼめたものである。これにより、上記の効果を維持したまま、吸引時の圧力が増加するため、吸引効率を向上させることが可能となる。
尚、本構成により、第二容器である下層303に播種するフィーダー細胞は、第一容器である上層302に播種する上皮系細胞に対し、培地中に放出する液性因子をもって上皮系細胞の培養に寄与する。よって、第二容器である下層303に下層用排出部流路301が存在し、フィーダー細胞が下層底面ではなく下層用排出部流路301の上に接着し生育していたとしても、上皮系細胞の生育に対し影響はない。
図4は、本実施例の自動培養装置を用いて、全量を交換する培地交換において、培地を全量排出する排出口及びそれを有した培養容器の異なる一例を示したものである。図4の(A)が示すように、培養容器本体400の第二容器である下層は、第一容器である上層403の底面の下方に、上層底面と同程度の面積である縮小底面401を有する。図1と比べ、下層は縮小底面401まですぼまった形状をしている。途中に、階段構造402を有する。階段構造402は、第一容器である上層403と接触しない。縮小底面401に下層用排出部流路404が接している。
図4の(B)は、上から見た図である。下層底面405の周囲に、階段構造402により生じる縮小底面周囲406がある。図4(のC)は、底面の断面を拡大したものである。階段構造402により、下層底面はすぼまった構造となっているため、培地を排出する際、培地は縮小底面401へ集まることになる。集まった培地は、層用排出部流路404により、効率よく排出される。また縮小底面401は水平であり、上層底面403と平行である。
これにより、上層の細胞を観察する際、例えば情報から光をあて下方から観察する場合、光学的な散乱等を生じることなく、細胞を観察することが可能となる。加えて、階段構造を取ることにより、下層に播種された細胞は、階段構造の水平部分及び縮小底面上に接着し生育することになる。仮に階段構造ではなく鉛直方向に対し斜めの構造を採用した場合、細胞は最下層まで沈降し、縮小底面401に集まり接着、生育することになる。これは、下層に播種したフィーダー細胞の密度が変化することを意味する。細胞間の接触障害等により、フィーダー細胞の生育状況に影響が生じ、結果として培養の再現性が失われることになる。これを回避するため、階段構造を採用している。
また、図4の(D)が示すように、階段構造の一部を曲面407にしても良い。これにより、排出時において、表面張力の作用が減るのでより効率よく培地を排出することが可能となる。
すなわち、以上の構成により、吸引時に最下方の第一容器底面へ培地が集積するため、吸引効率を向上させることが可能となる。また、細胞播種時において階段状構造の水平部分に細胞が接着可能なため、播種後の細胞が最下方の第一容器底面に集積し、細胞密度が増殖することを回避可能である。更に、最下方の第一容器底面は第二容器底面と平行とすることにより、第一容器及び第二容器内の細胞を観察する際に光の散乱等の光学的条件を乱すことがない状態を実現することが可能となる。また更に、階段状構造の一部を曲面にすることで培地排出時に、培地に対し表面張力が作用し残存することが回避可能である。
図5は、本実施例の自動培養装置を用いて、全量を交換する培地交換において、培地を全量排出する排出口及びそれを有した培養容器の異なる一例を示したものである。培養容器本体500の下層用排出部流路501は伸縮性下層用排出部流路502と、下層用排出部流路501と伸縮性下層用排出部流路502の境界を塞ぐことで無菌性を維持し、かつ伸縮性下層用排出部流路502が移動しても境界の閉塞を維持可能な伸縮性を有する弾性部材503から成る。
図5の(A)が示すように、培地を排出する際、伸縮性下層用排出部流路502は、上層底面と下層の間に残存する液滴まで達している。よって、直接吸引することが可能となる。吸引により、液滴に対し上層底面との表面張力が作用しなくなると、液滴は下層全体へ拡散する。その段階で、図5の(B)が示すように伸縮性下層用排出部流路502の端を下層周囲まで移動させ、培養容器を傾け伸縮性下層用排出部流路502の端の方へ、下層全体へ拡散した培地を集める。この状態で、残存している培地を吸引する。
この構成により、排出時において第一容器と第二容器の間に生じる表面張力により生じる液滴に対し当該ポートより吸引が可能であり、また培養容器を傾けることで第二容器の内壁の片側に集積させた培地に対し、第二容器の内壁まで収縮させた当該ポートにより吸引が可能であり、培地の全量排出を行うことができる。
図6は、本実施例の自動培養装置を用いて、所定の比率で交換する培地交換において、所定量の培地を排出する排出口及びそれを有した培養容器の一例を示したものである。培地の排出において、排出口が培地内に存在した状態で流体移動制御機構部を作動させる場合、供給口から空気が培養容器内に送気され、排出口から培地が排液される。逆に、排出口が培地内に存在しない状態で流体移動制御機構部を作動させる場合、供給口から空気が培養容器内に送気され、排出口から空気が送気される。
この現象を利用し、培養容器本体600の上層用排出部流路601及び下層用排出部流路602の位置を制御することで、培地の排出量を制御する。まず上層について、培養容器を水平に維持した状態で、希望する量の培地を排出後に残存している培地の液面高さを求める。上層用排出部流路601の下端は、その液面高さと同一にする。
その状態で流体移動制御機構部を作動させると、上層用排出部流路601の下端が液体内に存在する時は培地が排出され、上層用排出部流路601の下端が液体内に存在しない時、即ち前述の培地液面高さよりも上層用排出部流路601の下端が高い位置に存在する時、上層用排出部流路601から空気が送気される。つまりそれ以上の培地は排出されない。同様に下層について、培養容器を水平に維持した状態で、希望する量の培地を排出後に残存している培地の液面高さを求める。下層用排出部流路602の下端は、その液面高さと同一にする。その状態で流体移動制御機構部を作動させると、下層用排出部流路602の下端が液体内に存在する時は培地が排出され、下層用排出部流路602の下端が液体内に存在しない時、即ち前述の培地液面高さよりも下層用排出部流路602の下端が高い位置に存在する時、下層用排出部流路602から空気が送気される。つまりそれ以上の培地は排出されない。このような上層用排出部流路601及び下層用排出部流路602を設置することで、培地の交換比率を制御する。
これにより、培地交換時に排出させずに残存させる量よりも多い培地が存在する時は当該ポートより培地が排出され、培地交換時に排出させずに残存させる量と同量の培地が存在する時は当該ポートより空気が排出されるため培地は排出されず、第一容器、或いは第二容器の培地に対し、所定量の培地排出を行うことが可能となる。
図7は、本実施例の自動培養装置を用いて、所定の比率で交換する培地交換において、所定量の培地を排出する排出口及びそれを有した培養容器の一例を示したものである。培養容器本体700の上層用排出部及び下層用排出部それぞれに対し、上層用送液切り替え部701及び下層用送液切り替え部702を有している。上層及び下層からの培地交換において、培地を排出する時は、上層用排出流路703及び下層用排出流路704から培地を排出する。所定量の培地を排出後、上層用送液切り替え部701または下層用送液切り替え部702を作動させ、上層用送気流路705または下層用送気流路706へ切り替える。そして空気を送り、所定量の培地を排出バッグ等まで送液する。
図7の(B)は上層用送液切り替え部701または下層用送液切り替え部702の分解図である。入力ポート707、円盤状弁708、出力ポート709から成る。入力ポート707には排出流路710が接続している。出力ポート709には排出流路711及び送気流路712が接続している。入力ポート707、円盤状弁708、出力ポート709の内部には流路713を設ける。円盤状弁708の回転により、排出流路711及び送気流路712のどちらを機能させるか選択する。
これにより、第一容器、第二容器からの培地の排出を行うポートは、培養容器から培地を排出する排出流路と、培養容器外部から当該排出流路へ空気を送気可能な送気流路へ切り替え可能な切り替え機構を有し、所定量の培地の排出を行う際には当該排出流路から排出し、所定量の培地の排出が終了した後は当該送気流路より空気を送気することにより、第一容器、第二容器の培地に対し、所定量の培地排出を行うことが可能となる。
図8は、本実施例の自動培養装置を用いて、所定の比率で交換する培地交換において、所定量の培地を排出する排出口及びそれを有した培養容器の一例を示したものである。培養容器本体800の上層用排出部流路801及び下層用排出部流路802はそれぞれ、伸縮性上層用排出部流路803及び伸縮性下層用排出部流路804を有する。伸縮性下層用排出部流路804は柔軟性を有し、下層培養底面方向への伸長が可能である。上層用排出部流路801と伸縮性上層用排出部流路803の境界には、境界を塞ぐことで無菌性を維持し、かつ伸縮性上層用排出部流路803が移動しても境界の閉塞を維持可能な伸縮性を有する弾性部材805を有する。同様に、下層用排出部流路802と伸縮性下層用排出部流路804の境界には、境界を塞ぐことで無菌性を維持し、かつ伸縮性下層用排出部流路804が移動しても境界の閉塞を維持可能な伸縮性を有する弾性部材806を有する。
図8の(A)が示すように、培地を排出する際、伸縮性上層用排出部流路803または伸縮性下層用排出部流路804の下端は、各層に存在する培地内に達している。よって、直接排出することが可能となる。所定量の培地を排出後、図8の(B)が示すように伸縮性上層用排出部流路803または伸縮性下層用排出部流路804の下端を培地の外へ移動させ、この状態で送液を行う。これにより、所定量のみの排出が可能となる。
すなわち、第一容器、第二容器からの培地の排出を行うポートは伸縮が可能であり、伸縮に際して外部からの菌等の侵入を回避するため接合部は弾性部材で覆われ、収縮時は培地外に当該ポートは位置し、所定量の培地の排出を行う際には当該ポートを伸長させ培地内に位置させた状態で排出し、所定量の培地の排出が終了した後は当該ポートを伸縮させ空気を送気し、第一容器、第二容器の培地に対し、所定量の培地排出を行うことが可能となる。
以上、図1−図8を用いて、閉鎖系培養容器を培養する自動培養装置の第1の実施例の装置構成を中心に説明してきた。これから、以上の構成の自動培養装置を用いて、細胞の培養を実施する一連の動作を、図9A、図9B−図13を用いて説明する。
まず、図13を用いて、本実施例の自動培養装置を用いて細胞の培養を実施する一連の制御フローを概説する。図13は、本実施例の自動培養装置の動作を説明するためのフローチャートである。
まず、自動培養装置を起動させ(ステップS1)、スケジュール決定する(ステップS2)。さらに、適切な二方弁及び三方弁の開閉を行った後、流体移動制御機構部を作動させ、培養容器へ播種を行い(ステップS3)、培養容器で細胞の培養(ステップS4)、及び、顕微鏡による観察を行う(ステップS5)。細胞が正常な状態か判定し(ステップS6)、正常であれば培養容器の培地交換を行う(ステップS7)。その後、検査用組織の回収(ステップS8、S9)、及び、移植直前の培養及び培地交換を行う(ステップS10)を行う。さらに、移植用組織の回収(ステップS11)を行い、一連の細胞培養処理を終了する(ステップS12)。
次に、培養容器101で細胞の培養(ステップS4)、培地交換(ステップS7)、及び、移植直前の培養、及び培地交換(ステップS10)に関し、本実施例の自動培養装置の制御プロトコルを順次説明する。
図9A、図9Bは、図1で示した1個の閉鎖系培養容器に対する流路回路図を用い、細胞播種時の送液プロトコルを説明するための図である。本図では細胞播種を上層、下層の順に実施しているが、その順番は任意である。また、排出効率を向上させる構造として、図3に示した構造・方法を用いて説明する。他の構造・方法を用いる場合、排液操作に関してのみ、図4〜8に示した構造・方法に従い、実施すればよい。
まず、図9Aにより、上層へ細胞播種するプロトコルを説明する。図9Aが示すように、細胞バッグ102から流路105を経由してセルカルチャーインサート容器内へ送液する。この時同時に、流路104より培養容器内の空気を培養容器外へ排出する。空気は、最終的にフィルタ115より流路外へ排出する。この時、事前に培地及び空気が流れる流路上の二方弁、三方弁、電磁弁等はあらかじめ開いた状態(オン)にする。すなわち、図9Aにおいて、二方弁106a、106b、電磁弁132a、130bを開いた状態(オン)にして置き、それ以外のものは閉じた状態(オフ)にする。その状態で、流体移動制御機構部108a、108bを作動させることで送液及び送気を実施する。所定量を送液し終えたら終了する。例えば、培養容器101の上層に対する播種のために、30秒かけて各弁やポンプを制御する。もし、培養容器が複数ある場合、全ての培養容器の上層に対する播種のために、各々30秒かけて一連の処理がなされる。
すなわち、図9Aにおいて、細胞バッグ102が、第一の流路回路105、電磁弁106b、流体移動制御機構部108a、第一の流路回路122、第二の電磁弁132aを介して閉鎖系培養容器101の流路210に接続され、上層の第一容器203に対して細胞播種が実施される。この時、下層の第二容器201は、その流路206が第二の流路回路121、第一の電磁弁130b、流体移動制御機構部108b、第二の流路回路104、電磁弁106aを介してフィルタ117aに接続される。第一容器203の上部と第二容器201の上部との間には、相互に気体の流通を可能にするギャップ222が存在するので、第一容器203内の気体は、第二の流路回路104、及びフィルタ117aを介して排気される。
以上詳述したように、細胞バッグ102から流路210を経由してセルカルチャーインサート容器内へ送液する。この時同時に、流路206より培養容器内の空気を培養容器外へ排出する。空気は、最終的にフィルタ117aより流路外へ排出する。このようにして、細胞バッグ102から第一容器203に対する細胞播種は、スムーズに実行される。
続いて図9Bにより、下層へ細胞播種するプロトコルを示す。図9Bが示すように、細胞バッグ103から流路104を経由して培養容器本体部内へ送液する。この時同時に、流路105より培養容器内の空気を培養容器外へ排出する。空気は、最終的にフィルタ116より流路外へ排出する。上層の場合同様、事前に培地及び空気が流れる流路上の二方弁、三方弁、電磁弁等はあらかじめ開いた状態(オン)にする。すなわち、図9Bにおいて、二方弁106c、106f、電磁弁132a、130bを開いた状態(オン)にして置き、それ以外のものは閉じた状態(オフ)にする。その状態で、流体移動制御機構部108a、108bを作動させることで送液及び送気を実施する。所定量を送液し終えたら終了する。例えば、培養容器101の下層に対する播種のために、45秒かけて各弁やポンプを制御する。もし、自動培養装置に複数の培養容器が設置されている場合、それに続いて、他の培養容器各々の下層に対する播種のために、45秒かけて一連の処理がなされる。
すなわち、図9Bにおいて、閉鎖系培養101に対し、第二の細胞バッグ103が、第二の流路回路104、電磁弁106c、流体移動制御機構部108b、第二の流路回路121、第一の電磁弁130bを介して閉鎖系培養容器101の流路206に接続され、下層の第二容器201に対して細胞播種が実施される。この時、上層の第一容器203は、その流路210が第一の流路回路122、第二の電磁弁132a、流体移動制御機構部108a、第一の流路回路105、電磁弁106fを介してフィルタ117bに接続される。第一容器203の上部と第二容器201の上部との間には、相互に気体の流通を可能にするギャップ222が存在するので、第二容器201内の気体は第一の流路回路及びフィルタ117bを介して排気される。
すなわち、図9Bに示すように、細胞バッグ103から流路206を経由して培養容器本体部の第二容器201内へ送液する。この時同時に、流路210より培養容器内の空気を培養容器外へ排出する。空気は、最終的にフィルタ117bより流路外へ排出する。このようにして、第二の細胞バッグ103から第二容器201に対する細胞播種は、スムーズに実行される。
続いて、本実施例の自動培養装置における培養容器の培地交換について説明する。培地交換の対象は、上層であるセルカルチャーインサート容器と、下層である培養容器本体部である。基本的には培地交換において、両方の培地を交換する。しかし装置使用者の設定により、片方のみの培地を交換することも可能である。また、両方の培地を交換する場合において、上層と下層を交換する順番は任意である。図1で説明したように、培地バッグ111は、第一の流路回路105、電磁弁106d、流体移動制御機構部108a、第一の流路回路122、第二の電磁弁132aを介して閉鎖系培養容器101の流路210に接続され、さらに上層の第二容器203に接続される。他方、下層の第二容器201は、その流路206が第二の流路回路121、第一の電磁弁130b、流体移動制御機構部108b、第二の流路回路104、電磁弁106aを介してフィルタ117aに接続される。第一容器203の上部と第二容器201の上部との間には、相互に気体の流通を可能にするギャップ222が存在するので、第二容器203内の気体は第一の流路回路及びフィルタ117bを介して排気される。この構成を前提に、第一容器203、第に容器201の培地交換を説明する。
図10A−図10Eは、閉鎖系培養容器101の上層の第一容器203に対する培地交換時の送液プロトコルを説明するための流路回路とテーブルを示す図である。図10Eのテーブル1000により、閉鎖系培養容器101の上層の培地交換のために、二方弁106、三方弁107、流体移動制御機構部108、電磁弁130b、132aが、テーブル1000で与えられる所定のシーケンスに従い、制御される。図中、黒丸印が各種弁の開(オン)及びポンプの動作状態、×印が弁の閉(オフ)及びポンプの停止状態を示している(以下、同じ)。なお、このテーブルは、後で説明する装置の記憶部に蓄積されたデータベース(DB)等に記憶されている。
まず、図10Aが示すように、培地バッグ111からセルカルチャーインサート容器である第一容器203内の上層用供給部接続突起構造210まで送液する。同時に、流路104より培養容器101内の空気を培養容器外へ排出する。空気は、最終的にフィルタ117より流路外へ排出する。この時、テーブル1000の第一行目に示す状態で、事前に培地及び空気が流れる流路上の二方弁106a、106d、電磁弁130b、132aはあらかじめ開いた状態(オン)にする。それ以外のものは閉じた状態(オフ)にする。その状態で、チューブポンプからなる流体移動制御機構部108a、108bを作動させることで送液及び送気を実施する。また、培地バッグ111は冷蔵庫内に設置するため、培地バッグから送液した直後の培地は4℃であるが、ヒーター112により37℃まで加温し、培養容器101等が設置された恒温機内にて37℃にて維持する。
そして、培地バッグ111から第一の流路回路122を経て容器101の流路210の接続突起構造209まで培地を送液した状態で、送液を一旦停止する。すなわち、第一の流路回路122の供給側の電磁弁を閉じ、ポンプを停止させることで、第一の流路回路122内の培地の先端は、接続突起構造209付近に維持される。なお、この停止位置は、用途によって、適宜変更すれば良い。
次に、図10Bが示すように、セルカルチャーインサート容器内の培養に用いた古い培地を、上層用排出部流路124から排出する。この時同時に、流路104より空気を培養容器内へ供給する。空気は、最終的にフィルタ117aから流路内へ供給する。この時、テーブル1000の第二行目に示す状態で、事前に培地及び空気が流れる流路上の二方弁106a、三方弁107a、電磁弁130bはあらかじめ開いた状態にする。それ以外のものは閉じた状態にする。その状態で、流体移動制御機構部108b、108cを作動させることで排液及び送気を実施する。排液は、上層の第一容器203にある古い培地の全量が、上層から排出された時点で終了する。古い培地は最終的に排液バッグ113または排液回収バッグ114aへ排出されるが、全量に対し完了する必要はない。
続いて、図10Cが示すように、培地バッグ111からセルカルチャーインサート容器内の上層用供給部接続突起構造210まで送液し、37℃にて待機させていた新しい培地を、上層へ供給する。この時同時に、流路104より培養容器内の空気を培養容器101外へ排出する。空気は、最終的にフィルタ117aより流路外へ排出する。この時、テーブル1000の第三行目に示す状態で、事前に培地及び空気が流れる流路上の二方弁106a、106d、電磁弁132a、130bはあらかじめ開いた状態にする。それ以外のものは閉じた状態にする。その状態で、流体移動制御機構部108a、108bを作動させることで送液及び送気を実施する。
最後に、図10Dが示すように、上層用排出部流路212と排液バッグ113または排液回収バッグ114aの間に残存している古い培地を、排液バッグ113または排液回収バッグ114aへ排出する。この時同時に、流路104より空気を培養容器内へ供給する。空気は、最終的にフィルタ117aから流路内へ供給する。この時、テーブル1000の第四行目に示す状態で、事前に培地及び空気が流れる流路上の二方弁106a、三方弁107a、電磁弁130bはあらかじめ開いた状態にする。それ以外のものは閉じた状態にする。その状態で、流体移動制御機構部108b、108cを作動させることで排液及び送気を実施する。排液は、上層にある古い培地が全量、排液バッグ113または排液回収バッグ114aへ排出された時点で終了する。
引き続き、図11A−図11Eを用いて、閉鎖系培養容器101の下層の第二容器201の培地交換を説明する。図11A−図11Eは、1個の閉鎖系培養容器101の下層の培地交換時の培地及び空気の流れを示す流路回路、及びテーブル2000を示す図である。図11Aが示すように、培地バッグ111から、培養容器本体部内の下層用供給部接続突起構造206まで送液する。まず、図13Aに示すように、培地バッグ111から第二の流路回路104、121を介して培養容器101の本体部の第二容器201内の流路206の接続突起構造まで送液する。そして、この状態で、送液を一旦停止する。すなわち、第二の流路回路の供給側の各電磁弁を閉じ、ポンプを停止させることで、第二の流路回路内の培地の先端は、接続突起構造205付近に維持される。なお、この停止位置は、用途によって、適宜変更すれば良い。
この時同時に、流路104より培養容器内の空気を培養容器外へ排出する。空気は、最終的にフィルタ117bより流路外へ排出する。この時、テーブル2000の第一行目に示す状態で、事前に培地及び空気が流れる流路上の二方弁106e、106f、電磁弁130b、132aはあらかじめ開いた状態にする。それ以外のものは閉じた状態にする。その状態で、流体移動制御機構部108a、108bを作動させることで送液及び送気を実施する。また、培地バッグは冷蔵庫内に設置するため、培地バッグから送液した直後の培地は4℃であるが、ヒーター112により37℃まで加温し、培養容器等が設置された恒温機内にて37℃にて維持する。
次に、図11Bが示すように、培養容器本体部内の第二容器201内の培養に用いた古い培地を、流路208から下層用排出部流路123を介して、排液バッグ113または排液回収バッグ114bへ排出する。この時同時に、流路105、第一の流路回路122から、流路210を介して空気を培養容器内へ供給する。空気は、最終的にフィルタ117bから流路内へ供給する。この時、テーブル2000の第二行目に示す状態で、事前に培地及び空気が流れる流路上の二方弁106f、及び三方弁107b、電磁弁130bはあらかじめ開いた状態にする。それ以外のものは閉じた状態にする。その状態で、流体移動制御機構部108b、108dを作動させることで排液及び送気を実施する。排液は、下層にある古い培地が全量、下層から排出された時点で終了する。古い培地は最終的に排液バッグ131または排液回収バッグ114bへ排出されるが、全量に対し完了する必要はない。
続いて、図11Cが示すように、予め、培地バッグ111から、37℃にて培養容器本体部の下層の第二容器201の流路206の供給部接続突起構造205まで送液し、待機させていた新しい培地を、下層の第二容器201へ供給する。この時同時に、流路210、流路105より培養容器内の空気を、第一の流路回路122を介して、培養容器外へ排出する。空気は、最終的にフィルタ117bより流路外へ排出する。この時、テーブル2000の第三行目に示す状態で、事前に培地及び空気が流れる流路上の二方弁106e、106f、電磁弁130bはあらかじめ開いた状態にする。それ以外のものは閉じた状態にする。その状態で、流体移動制御機構部108a、108bを作動させることで送液及び送気を実施する。
最後に、図11Dが示すように、下層用排出部流路208と排液バッグ113または排液回収バッグ114bの間に残存している古い培地を、排液バッグ113または排液回収バッグ114bへ排出する。この時同時に、流路104より空気を培養容器内へ供給する。空気は、最終的にフィルタ117bから流路内へ供給する。この時、テーブル2000の第四行目に示す状態で、事前に培地及び空気が流れる流路上の二方弁106f、及び三方弁107b、電磁弁132aはあらかじめ開いた状態にする。それ以外のものは閉じた状態にする。その状態で、流体移動制御機構部108a、108dを作動させることで排液及び送気を実施する。排液は、下層にある古い培地が全量、排液バッグ113、または排液回収バッグ114bへ排出された時点で終了する。
以上説明した本実施例によれば、細胞播種工程及び培地交換工程において、培地は常に一方向に流れるので古い培地が新しい培地に混入せず、培養の再現性が向上する。培地交換時に古い培地を全て排出した後に新しい培地が速やかに供給される。しかも、閉鎖系培養容器に取り付けた流路チューブの一部は、送液と送気の機能を兼ねるため、全体流路回路は簡潔となる。
図12は、本実施例の閉鎖系培養容器を接続可能な自動培養装置の一機能構成を説明するブロック図である。制御装置1202により制御される各構成要素が、恒温機1203の内部に配置された培養容器101に接続される全体の構成を示す図である。なお、恒温槽1203中に配置されるものは、図1−図8を用いて説明した培養容器、或いは自動培養装置内に設置された当該培養容器であることは言うまでもない。
図12において、制御装置1202には、恒温機1203の温度を制御するための温度調節部1204と、培養容器内のガス濃度を制御するための、ガス供給部1205を有するガス濃度調節部1206と、培養容器内の培養液を自動で交換するための、各流路回路構成要素に接続された流路チューブを有する流体移動制御1207と、それぞれの構成要素の動作を制御することを目的とした細胞観察用の顕微鏡1208、CO2・O2センサ1209が接続されている。
制御装置1202と表示画面1210は、CPU(Central Processing Unit;中央処理部)から成る処理部、記憶部や、ディスプレイ装置、キーボードから成る入出力部等を備えた通常のコンピュータの、処理部および記憶部とディスプレイ装置の表示部にそれぞれ対応している。制御装置1202は、記憶部1213で記憶された各種プログラムを、処理部としてのCPU上で動作させる。記憶部1213中には、そのほか先に説明したデータベース(DB)も記憶されている。
これにより、温度調整部1204、ガス供給部1205、流体移動制御機構部1207、顕微鏡1208、CO2・O2センサ1209、ガス濃度調整部1211、細胞・培地・排液・排液回収バッグ1212により、恒温機1203中の培養環境を制御し、培養容器101中での所定の培養工程の実施を可能とする。
ガス濃度調節部1211は、培養容器101に直接接続されている必要はない。温度調節部1204、ガス濃度調節部1211と、CO2・O2センサ1209が恒温機1203に接続された構成でも構わない。この構成の場合、細胞培養容器101へは容器外から気体を供給する必要があるため、細胞培養容器101の蓋部の一部に、ポリカーボネイトやポリスチレン、ポリメチルペンテン等のガス透過性を有した透明な薄膜を溶着し、細胞培養容器101内部のガス交換を可能とすることで、細胞培養を可能とすることができる。
以上の構成を有する本実施例の自動培養装置を用い、細胞を培養する時の一連の培養手順について説明する。図13は、本実施例の自動培養装置の動作を説明するためのフローチャートである。以下、自動培養装置の動作を説明する。尚、使用する培養容器101の数を増やす場合は、流路の多分岐部において、並列に培養容器を並べればよい。またその場合の培養手順は、以下に示す操作を各培養容器に対して順々に実施すればよい。
<ステップS1:スタート>
まず、図13に示すように、自動培養装置を起動させる。操作者が制御装置にある操作部のスタートスイッチを押すことにより起動する。尚、この時点で流路回路等は事前に自動培養装置へ設置されている。制御部のディスプレイの操作画面において、自動培養装置の内部環境として適切な値であることを確認する。例えば、恒温機の温度が37℃であることを確認する。これらの数値は限定的なものでなく、例えば温度は、0℃から45℃の範囲より選択可能である。また装置の内部は、事前の適切な操作により、滅菌ガスによる滅菌或いはエタノールによる消毒が施され、清浄な状態となっている。また、培養に用いる流路部に対しても事前に滅菌を施してある。
<ステップS2:スケジュール決定>
培養する細胞の種類と量に合わせ、自動培養装置により実施する自動培養スケジュールを決定する。細胞播種、培地交換、顕微鏡観察、排液回収、検査用組織回収、移植用組織回収等の操作を行う日時、頻度、液量等の条件を、制御部の操作部より入力する。
<ステップS3:細胞播種>
適切な二方弁及び三方弁の開閉を行った後、流体移動制御機構部を作動させ、細胞バッグより細胞懸濁液を吸引する。細胞懸濁液は、食道粘膜再生の例では口腔粘膜細胞を培養するため、KCM培地(keratinocyte culture medium)に懸濁した口腔粘膜細胞と、同じくKCM培地に懸濁した3T3−J2細胞である。流体移動制御機構部を駆動させることにより、エアフィルタを介して流路外へ流路内の空気を排出しつつ、細胞懸濁液を吸引する。そして培養容器へ播種する。細胞播種は、各培養容器のそれぞれの上層及び下層へ、順次実施する。播種後、回転機構により培養容器を複数回揺動させることにより、培養表面上の細胞分布が均一となるようにする。
<ステップS4:細胞の培養>
培養容器を水平に静置した状態で所定時間、培養する。例として口腔粘膜細胞の場合、静置期間は播種後5日間程度とする。培養中は、恒温機により培養容器の周囲環境を37℃に維持する。また、必要に応じ培養容器の内部へ所定成分の気体を送気する。口腔粘膜細胞の培養の場合、CO2濃度は5%、湿度は100%に維持する。自動培養装置内部の空気はファンにより常に攪拌し、温度分布が常に一様となるようにする。
<ステップS5:顕微鏡による観察>
自動培養装置内に設置した顕微鏡を用い、細胞画像を取得する。自動培養装置内に設置した光源を適宜発光させ、顕微鏡により細胞に焦点を合わせ、撮像する。必要に応じ、培養表面に定点を任意に定め、撮影する。取得した細胞画像はデータベースに保存し、自動培養装置の外部に設置したディスプレイ上で必要に応じ閲覧できるようにする。顕微鏡観察により得た細胞の生育状態に関する情報から判断し、培地交換の頻度、時期の調整を行う。例えば細胞の接着が不十分な場合、S6の培地交換は実施せず、S4の細胞の培養を継続する。
<ステップS6:培地交換>
培地交換は、一般に数日に一度の頻度で実施する。細胞の生育状況に応じ、頻度は調整を行う。適切な電磁弁の開閉を行った後、流体移動制御機構部を作動させ、流体移動制御機構部を駆動させることにより培地バッグより培地を吸引する。同時に、フィルタを介して流路外へ流路内の空気を排出する。培地バッグから送液された直後の培地は4℃であるが、ヒーター及び恒温機内の気相により、培地の温度は37℃を維持した状態で次の工程に進む。
続いて、培養容器から古い培地を排出する。この時、回転機構により培養容器を傾け、古い培地の全量が排出されるようにする。排出後、速やかに、37℃に維持されている新しい培地を培養容器内へ供給する。これにより、培養表面上の細胞の乾燥と、培養表面の温度低下を回避する。
培養容器から排出した古い培地は、一部を排液回収バッグへ、残りを排液バッグへ送液する。回収した古い培地は、別途用意する培地成分分析装置により培地成分分析を用い、細胞の生育状況を評価する。例えば、細胞が生育時に用いるグルコースと排出する乳酸の量を測定し、細胞の生育状態を把握する。また、マイコプラズマ試験等を実施し、培地が汚染されていないか判定する。汚染があった場合には培養を直ちに終了し、自動培養装置の設置場所が汚染されないよう、細胞を適切な操作により無菌的に破棄する。
<ステップS7:検査用組織の回収>
移植予定日の前日に、培養中の培養容器のうち1枚を検査用に回収する。あらかじめ流路内に組み込まれた無菌脱着部を用い、培養容器を無菌的に取り外す。そして回収した培養容器において、中の細胞の状態が移植に適した質を有するか検査を行う。例えば口腔粘膜細胞による再生組織の場合、組織学的評価により3層程度の重層化した構造を有するか、免疫組織化学染色評価により口腔粘膜幹細胞が再生組織の基底層に存在するか、口腔粘膜細胞特異的タンパク質を発現しているか等の評価を行う。
<ステップS8:移植直前の培養及び培地交換>
ステップS4と同じ操作による培養を行う。そしてステップS9を実施する直前に、ステップS6と同じ操作による培地交換を行う。
<ステップS9:移植用組織の回収>
ステップS7による評価の結果、移植に適した再生組織が培養できていると判断がついた場合、移植用として組織を回収して再生医療治療に用いる。S7と同様に、無菌脱着部を用い培養容器を取り外す。その後、再生医療治療を行う手術室へ、無菌性と生物学的な質を維持した状態で搬送し、治療に用いる。
<ステップS10:終了>
培養に用いた流路部を取り外す。続いて、装置の内部へ適切な操作により、滅菌ガスによる滅菌或いはエタノールによる消毒を施し、清浄な状態にする。自動培養装置の各種ソフトを終了させ、自動培養装置の作動を終了させる。
以上、本発明の実施の形態の一例を図面に従い説明したが、本発明はこれら実施例に限定されるものでないこと明らかである。例えば実施例において、流体を移動させる流体移動制御機構部としてペリスタルティック・ポンプを想定しているが、シリンジ・ポンプ等の他の駆動機構を用いても良いことは言うまでもない。
以上のように構成された自動培養装置の好適な実施形態によれば、全量交換を目的とした培地交換において、培養容器内の古い培地を完全に排出することが可能である。これにより、全量を交換する培地交換において、古い培地が新しい培地に混入しないようにするため、培養の再現性が向上する。回収した古い培地を用いた培地成分分析の分析精度が向上する。更に、古い培地を回収後は、速やかに事前に37℃へ温めた新しい培地を供給する。閉鎖系培養容器に取り付けた流路チューブの一部は、送液と送気の機能を兼ねるため、全体流路回路は簡潔となる。
本発明は、培養容器を用いて細胞又は組織を自動操作により培養する細胞培養装置、特に再生医療に使用可能な再生組織を製造することのできる細胞培養装置として有用である。
101…培養容器
102、103…細胞バッグ
104、105…流路回路
106…二方弁
107…三方弁
108…流体移動制御機構部
109…多分岐部
111…培地バッグ
112…ヒーター
113…排液バッグ
114…排液回収バッグ
115…ガス供給部
116…ガス濃度調整部
117…フィルタ
118…無菌脱着部
121…下層用供給部流路
122…上層用供給部流路
123…下層用排出部流路
124…上層用排出部流路
200…培養容器本体
201…第二容器
202…培養容器蓋部
203…セルカルチャーインサート容器(第一容器)
204…弾性部材
205、207、209、211…接続突起構造
206、208、210、212…流路(ポート)
214…培地
215…上皮系細胞
216…フィーダー細胞
222…気体流通用ギャップ
301…下層用排出部流路である第四ポート
302…上層(第一容器)
303…下層(第二容器)
304…上層下部
305…下層周囲
401…縮小底面
402…階段構造
403…上層(第一容器)
404…下層用排出部流路
405…下層底面
406…縮小底面周囲
407…曲面
501…下層用排出部流路
502…伸縮性下層用排出部流路
503…弾性部材
601…上層用排出部流路
602…下層用排出部流路
701…上層用送液切り替え部
702…下層用送液切り替え部
703…上層用排出流路
704…下層用排出流路
705…上層用送気流路
706…下層用送気流路
707…入力ポート
708…円盤状弁
709…出力ポート
710、711…排出流路
712…送気流路
713…流路
801…上層用排出部流路
802…下層用排出部流路
803…伸縮性上層用排出部流路
804…伸縮性下層用排出部流路
805、806…弾性部材
1000、2000…テーブル
1202…制御装置
1203…恒温機
1204…温度調節部
1205…ガス供給部
1206…ガス濃度調節部
1207…流体移動制御
1208…顕微鏡
1209…CO2・O2センサ
1210…表示画面
1211…ガス濃度調整部
1212…細胞・培地・排液・排液回収バッグ
1213…記憶部

Claims (15)

  1. 細胞を保持、培養するための培養容器であって、
    培地及び細胞を、または培地のみを収容する第二容器と、
    前記第二容器内部に設置される、培地及び細胞を、または培地のみを収容する第一容器と、
    前記第一容器、及び前記第二容器への培地の供給または排出を行う第一ポート乃至第四ポートとを備え、
    前記第二容器からの培地の排出を行う前記第四ポートを、少なくとも一部分前記第一容器の下に配置し、少なくとも他の一部分を前記第二容器の内壁に設置した、
    ことを特徴とする培養容器。
  2. 請求項1に記載の培養容器であって、
    前記第四ポートは、前記培地を吸引する側が排出する側に比較してすぼまっている、
    ことを特徴とする培養容器。
  3. 請求項1に記載の培養容器であって、
    前記第二容器の底面は階段状に下方へ向かうにつれ底面積を小さく形成し、
    前記第四ポートは、最下方の前記第二容器底面より培地の排出を行う、
    ことを特徴とする培養容器。
  4. 請求項3に記載の培養容器であって、
    最下方の前記第二容器底面は前記第一容器底面と平行である、
    ことを特徴とする培養容器。
  5. 請求項1に記載の培養容器であって、
    前記第二容器の底面を、階段状に下方へ向かうにつれ底面積を小さくした階段状構造とし、且つ当該階段状構造の一部を曲面とし、
    前記第四ポートは、最下方の前記第二容器底面より培地の排出を行う、
    ことを特徴とする培養容器。
  6. 請求項1に記載の培養容器であって、
    前記第四ポートの排出側は伸縮が可能であり、伸縮に際して外部からの菌の侵入を回避するための弾性部材で覆われた接合部を備える、
    ことを特徴とする培養容器。
  7. 請求項1に記載の培養容器であって、
    前記第四ポートの下端は、設定する培地交換比率に応じ、培地交換時に排出させずに残存させる量の培地の液面と同位置に配置する、
    ことを特徴とする培養容器。
  8. 請求項1に記載の培養容器であって、
    前記第一容器からの培地の排出を行う前記第二ポートの下端は、設定する培地交換比率に応じ、培地交換時に排出させずに残存させる量の培地の液面と同位置に配置する、
    ことを特徴とする培養容器。
  9. 請求項1に記載の培養容器であって、
    前記第一容器からの培地の排出を行う前記第二ポートは、前記培養容器から培地を排出する排出流路と、培養容器外部から当該排出流路へ空気を送気可能な送気流路へ切り替え可能な切り替え機構を有し、
    前記第一容器に、所定量の培地の排出を行う際には当該排出流路から排出し、所定量の培地の排出が終了した後は当該送気流路より空気を送気する、
    ことを特徴とする培養容器。
  10. 請求項1に記載の培養容器であって、
    前記第四ポートは、前記培養容器から培地を排出する排出流路と、培養容器外部から当該排出流路へ空気を送気可能な送気流路へ切り替え可能な切り替え機構を有し、
    前記第二容器に、所定量の培地の排出を行う際には当該排出流路から排出し、所定量の培地の排出が終了した後は当該送気流路より空気を送気する、
    ことを特徴とする培養容器。
  11. 請求項1に記載の培養容器であって、
    前記第四ポートは伸縮が可能であり、伸縮に際して外部からの菌の侵入を回避するため、接合部は弾性部材で覆われた接合部を備え、収縮時は培地外に当該第四ポートは位置する、
    ことを特徴とする培養容器。
  12. 請求項1に記載の培養容器であって、
    第一容器からの培地の排出を行う第二ポートは伸縮が可能であり、伸縮に際して外部からの菌等の侵入を回避するため接合部は弾性部材で覆われ、収縮時は培地外に当該第二ポートは位置する、
    ことを特徴とする培養容器。
  13. 細胞を保持、培養するための培養容器であって、
    培地及び細胞を、または培地のみを収容する第一容器と、
    当該第一容器内部に、培地及び細胞を、または培地のみを収容する第二容器と、
    当該第二容器を少なくとも封止する蓋部材と、
    前記第一容器に設置された、前記培地の供給と、気体の供給及び排出をするための第一ポートと、
    前記第一容器に設置された、前記培地を排出するための第二ポートと、
    前記第二容器に設置された、前記培地の供給と、前記気体の供給及び排出をするための第三ポートと、
    前記第二容器に設置された、前記培地を排出するための第四ポートとを備え、
    前記第四ポートは、少なくとも一部分が前記第一容器の下に配置され、少なくとも一部分が前記第二容器の内壁に設置されており、
    排出時において前記第一容器と前記第二容器の間に生じる表面張力により生じる液滴に対し当該第四ポートより吸引が可能である、
    ことを特徴とする培養容器。
  14. 請求項13に記載の培養容器であって、
    請求項1に記載の培養容器であって、
    前記第四ポートは、吸引する側が排出する側に比較してすぼまっている、
    ことを特徴とする培養容器。
  15. 培養容器内への細胞播種と培地交換を行い、培養容器内において細胞を培養する自動培養装置であって、
    細胞懸濁液が収容される細胞バッグと、
    培地が収容される培地バッグと、
    培地を冷蔵保存する冷蔵庫と
    培地を所定温度保持する温度保持部と、
    細胞を培養する培養容器と、
    細胞懸濁液及び培地及び空気を送液/送気する流体移動制御機構部と、
    前記培養容器、前記細胞バッグ、前記培地バッグ、前記流体移動制御機構部からなる流路回路が設置される細胞培養用恒温槽と、
    前記培養容器の培養環境を制御する制御装置を備え、
    前記培養容器は、培地及び細胞を、または培地のみを収容する第二容器と、
    前記第二容器内部に設置され、培地及び細胞を、または培地のみを収容する第一容器と、
    前記培養容器の外面に流路と接続可能な第一ポート乃至第四ポートから構成され、
    前記第二容器からの培地の排出を行う前記第四ポートを、少なくとも一部分を前記第一容器の下に配置し、少なくとも他の一部分を前記第二容器の内壁に設置し、
    前記制御装置は、前記第一容器への培地の排出または供給、あるいは前記第二容器からの培地の排液または供給をする場合に、前記第一乃至第四ポートを切り替え、送液を制御する、
    ことを特徴とする自動培養装置。
JP2014516561A 2012-05-23 2012-05-23 培養容器及び自動培養装置 Expired - Fee Related JP5960256B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/063120 WO2013175580A1 (ja) 2012-05-23 2012-05-23 培養容器及び自動培養装置

Publications (2)

Publication Number Publication Date
JPWO2013175580A1 JPWO2013175580A1 (ja) 2016-01-12
JP5960256B2 true JP5960256B2 (ja) 2016-08-02

Family

ID=49623311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014516561A Expired - Fee Related JP5960256B2 (ja) 2012-05-23 2012-05-23 培養容器及び自動培養装置

Country Status (2)

Country Link
JP (1) JP5960256B2 (ja)
WO (1) WO2013175580A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10597625B2 (en) 2016-10-20 2020-03-24 Takasago Electric, Inc. Perfusion culture apparatus and perfusion culture method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015203429A1 (de) * 2015-02-26 2016-09-01 Olympus Winter & Ibe Gmbh Fluidverteiler für eine Aufbereitungseinrichtung für chirurgische Instrumente
JP6588845B2 (ja) * 2016-02-25 2019-10-09 株式会社フコク 細胞培養容器および細胞培養容器の固定用治具
WO2020226149A1 (ja) * 2019-05-08 2020-11-12 株式会社島津製作所 細胞評価用デバイス
JP7391339B2 (ja) * 2019-08-29 2023-12-05 ファナック株式会社 細胞製造装置及びその製造方法
JP2023003954A (ja) * 2021-06-25 2023-01-17 東洋製罐グループホールディングス株式会社 細胞培養方法、細胞培養キット、及び細胞培養システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320304A (ja) * 2005-05-18 2006-11-30 Cellseed Inc 密閉系細胞培養容器及びそれを利用した細胞培養方法
JP5252828B2 (ja) * 2007-05-02 2013-07-31 株式会社セルシード 上皮系細胞培養方法
WO2012008368A1 (ja) * 2010-07-16 2012-01-19 株式会社日立製作所 細胞培養容器、および細胞培養装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10597625B2 (en) 2016-10-20 2020-03-24 Takasago Electric, Inc. Perfusion culture apparatus and perfusion culture method

Also Published As

Publication number Publication date
WO2013175580A1 (ja) 2013-11-28
JPWO2013175580A1 (ja) 2016-01-12

Similar Documents

Publication Publication Date Title
JP5894260B2 (ja) 培養容器及び自動培養装置
JP5866006B2 (ja) 培養容器及び自動培養装置
JP5722329B2 (ja) 自動培養装置
JP5891310B2 (ja) 細胞培養容器およびそれを用いた細胞培養装置
JP5960256B2 (ja) 培養容器及び自動培養装置
US10087410B2 (en) Cell culturing device, culturing vessel, and holding vessel
JP6279597B2 (ja) 細胞培養装置
WO2016157322A1 (ja) 閉鎖系培養容器、輸送方法、及び自動培養装置
JP6097817B2 (ja) 細胞培養装置
JP4845950B2 (ja) 自動培養装置
JP5886455B2 (ja) 自動培養装置
US20160108350A1 (en) Liquid delivery device and cell culture device using same
JP6514952B2 (ja) 自動培養装置
WO2016013070A1 (ja) 送液装置、及び細胞培養装置
JP6745357B2 (ja) 細胞培養方法、培養容器及び細胞培養装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160622

R150 Certificate of patent or registration of utility model

Ref document number: 5960256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees