WO2013175580A1 - 培養容器及び自動培養装置 - Google Patents
培養容器及び自動培養装置 Download PDFInfo
- Publication number
- WO2013175580A1 WO2013175580A1 PCT/JP2012/063120 JP2012063120W WO2013175580A1 WO 2013175580 A1 WO2013175580 A1 WO 2013175580A1 JP 2012063120 W JP2012063120 W JP 2012063120W WO 2013175580 A1 WO2013175580 A1 WO 2013175580A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- medium
- culture
- container
- port
- flow path
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M21/00—Bioreactors or fermenters specially adapted for specific uses
- C12M21/08—Bioreactors or fermenters specially adapted for specific uses for producing artificial tissue or for ex-vivo cultivation of tissue
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M25/00—Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
- C12M25/02—Membranes; Filters
- C12M25/04—Membranes; Filters in combination with well or multiwell plates, i.e. culture inserts
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M29/00—Means for introduction, extraction or recirculation of materials, e.g. pumps
- C12M29/10—Perfusion
Definitions
- the present invention relates to a culture container and an automatic culture apparatus for culturing cells or tissues by automatic operation.
- regenerative tissue used for regenerative medical treatment is based on GMP (Good Manufacturing Practice), which is a standard for manufacturing management and quality control of pharmaceuticals.
- GMP Good Manufacturing Practice
- regenerative tissues are manufactured according to SOP (Standard Operational Procedure) by a manufacturing worker with specialized cell culture technology in a CPC (Cell Processing Center) that provides a clean manufacturing environment.
- SOP Standard Operational Procedure
- CPC Cell Processing Center
- the automatic culture device should be able to manufacture high-quality regenerative tissue with good reproducibility in a clean environment while maintaining a clean environment based on GMP for manual work and development guidelines for automatic culture devices. Is required.
- devices as shown in Patent Documents 1, 2, and 3 have been developed that automate the culture process using a closed flow path.
- the closed culture container has a structure in which the medium does not easily leak to the outside.
- an isolated environment is realized in which bacteria that cause biological contamination are not mixed from the outside. Therefore, there is an advantage that cleanliness is easier to maintain than an open culture vessel that opens and closes the lid of the culture vessel.
- the cell types to be cultured are epithelial cells such as corneal epithelial cells, oral mucosal cells, epidermal cells.
- the culture container preferably has a two-layer structure.
- Epithelial cells co-culture with feeder cells such as mouse-derived 3T3-J2 cells and grow with growth factors produced by the feeder cells.
- feeder cells such as mouse-derived 3T3-J2 cells and grow with growth factors produced by the feeder cells.
- Feeder cells are mixed in the regenerated tissue.
- the automatic culture apparatus is required to meet the development guidelines for GMP and automatic culture apparatus that are required for manual work. As one of the requirements, it is necessary to make the quality of the regenerated tissue produced by the automatic culture apparatus constant. There are several conditions that make the quality of the regenerated tissue constant, but one of them is to discharge the old medium and supply a new medium in the medium replacement process, which replaces the entire amount of medium used in many cases. In doing so, it is necessary to avoid mixing the old medium with the new medium.
- the old medium is a medium used for the growth of cells. For example, glucose is consumed and lactic acid is discharged instead. Therefore, when an old medium is mixed into a new medium, the amount of glucose after the medium replacement does not match the concentration in the new medium, and as a result, the reproducibility of the culture process is lost. Similarly, since lactic acid contained in the old medium changes the pH of the medium, contamination with lactic acid derived from the old medium after the medium exchange also affects the reproducibility of the culture process. From the above, in order to improve the reproducibility of the culture process, it is necessary that the old culture medium and the new culture medium are not mixed in the culture medium replacement process in which the entire amount is replaced.
- a medium exchange method is used in which half of the old medium is discharged and an equal amount of new medium is supplied.
- the automatic culture apparatus it is necessary for the automatic culture apparatus to be able to perform medium exchange at a predetermined medium exchange ratio in order to align manual work and culture conditions.
- the new medium is mixed in the old medium that is the drainage liquid. It is necessary to avoid it. The reason is also that the composition of the old and new media is different.
- Patent Document 1 and Patent Document 2 when a medium is replaced, a new medium is supplied in a state where an old medium is present in the culture container, and after the state in which the new medium and the old medium are mixed inside the culture container, Take a continuous medium exchange method where the liquid is drained.
- the old medium accounts for a large percentage of the liquid that is drained, but the new medium and the old medium are mixed in the culture vessel, so the concentration is low.
- the old medium is mixed with the new medium. Since the composition of the old medium varies depending on the cell growth stage (number of cells, degree of differentiation), the concentration of each component of the medium in the culture container after the medium exchange by this method also varies depending on the cell growth stage.
- Patent Document 3 proposes an automatic culture apparatus for culturing with one single-layer closed culture vessel. In the medium exchange, the old medium is discharged and a new medium is supplied. However, since it has a single layer structure, when culturing epithelial cells using this culture vessel, feeder cells to be co-cultured are mixed in the regenerated tissue after production. When culturing epithelial cells, a culture container having a two-layer structure is preferable to a one-layer structure.
- the object of the present invention is to provide a culture container capable of discharging a predetermined amount of an old medium when exchanging the whole amount or exchanging at a predetermined ratio so that an old medium and a new medium do not mix in view of the above problems, And providing an automatic culture apparatus.
- a culture container for holding and culturing cells which is installed in a second container containing a medium and cells, or containing only the medium, and the second container.
- a culture container for holding and culturing cells, the medium and cells, or a first container containing only the medium, and the first container Installed medium and cells, or a second container that contains only the medium, a lid member that seals at least the second container, and a medium supply and gas supply and discharge installed in the first container
- liquid droplets caused by the surface tension generated between the first container have provides a culture vessel configurations are capable of sucking from the port.
- the present invention is an automatic culture apparatus for culturing cells in a culture container by seeding cells in the culture container and exchanging the medium, and containing a cell suspension.
- the culture vessel includes a control device, a culture vessel containing a culture medium and cells or only the culture medium, a first vessel installed inside the second container and containing the culture media and cells or only the culture medium, Connected to the flow path on the outer surface
- a fourth port configured from a first port to a fourth port that is capable of discharging the medium from the second container, wherein at least a part of the fourth port is disposed between the first container and the second container; Installed on the inner wall of the two containers, the control device switches the first to fourth ports when discharging or supplying the medium to the first container or draining or supplying the medium from the second container.
- An automatic culture apparatus configured to control liquid is provided.
- the old medium in the culture container can be completely discharged or a predetermined amount can be discharged.
- the medium feeding accuracy can be improved in the whole amount exchange or the medium exchange at a predetermined ratio, so that the culture reproducibility is improved.
- the analysis accuracy of medium component analysis using the collected old medium is improved.
- gas, liquid, gas and liquid flowing through the flow path of the automatic culture apparatus may be collectively referred to as fluid.
- a closed culture container having a two-layer structure having a culture space inside and having a first container and a second container, the first container being accommodated in the second container.
- the medium is held in the space inside the second container and outside the first container, and the cell suspension or medium is supplied to the first container and the second container, and the air is supplied and discharged.
- a culture container having a configuration having first and third ports, and second and fourth ports for discharging the medium from the first container and the second container, respectively.
- the fourth port for discharging from the second container has a structure having a discharge port extending to the lower part of the first container and the peripheral part of the second container.
- the bottom surface of the second container provides a culture container having a configuration in which the height in the vertical direction is lowered stepwise to the lower part of the first container.
- the fourth port for discharging from the second container can be expanded and contracted, and when the medium is discharged, the fourth port is extended to the liquid droplets remaining in the lower part of the first container, and after sufficiently recovering, the fourth port is contracted to reduce the fourth port.
- a culture container configured to discharge a medium in the periphery of two containers.
- the present invention is an automatic culture apparatus using a closed culture vessel having a culture space inside, comprising a cell suspension.
- a cell bag in which the medium is stored a medium bag in which the medium is stored, a refrigerator that refrigerates the medium, a heater that preheats the medium to 37 ° C.
- a flow path circuit including a culture container, a cell bag, a culture medium bag, a fluid movement control mechanism unit, and the like is installed in a thermostat, and the temperature of the entire flow path circuit is controlled.
- the culture environment of the culture vessel is controlled by a control device.
- a temperature sensor is installed in the device to monitor the internal temperature.
- a microscope is installed to monitor the state of cell growth optically as appropriate.
- the fluid movement control mechanism unit when the cells are seeded in the second vessel in the culture vessel, the fluid movement control mechanism unit causes the cell to move. While supplying the suspension from the cell bag to the first container via the first port, the air in the culture container is discharged to the outside from the third port. When seeding cells in the second container in the culture container, after switching between the first and second ports, the fluid movement control mechanism supplies the cell suspension from the cell bag to the first container via the second port. However, the air in the culture vessel is discharged to the outside from the first port.
- the order which seeds a cell to a 1st container and a 2nd container is arbitrary.
- the medium in the culture container When exchanging the medium in the first container in the culture container, the medium in the culture container is discharged from the third port to the outside while the medium is fed from the medium bag to the first port by the fluid movement control mechanism.
- the medium reaching the first port was refrigerated at 4 ° C. at the time of storage, for example, but passed through a heater that warms up to, for example, 37 ° C. Therefore, at this point, the temperature is 37 ° C. Since the culture medium reaching the first port stands by in a thermostat constantly maintained at 37 ° C., the temperature of the culture medium is also maintained at 37 ° C.
- the air in the culture container is supplied to the inside from the third port.
- the optimum structure and the accompanying medium exchange method are selected from the above-mentioned methods according to the purpose of exchanging the whole amount and the medium at a predetermined ratio.
- the air in the culture container is discharged from the third port to the outside while supplying the medium waiting at the first port to the first container by the fluid movement control mechanism.
- This operation is started immediately after the old medium discharged from the second port is discharged from the first container in the whole amount or a predetermined amount. It is not necessary to complete the complete feeding of the old medium discharged from the second port to the drainage bag or the like.
- a part of the old medium discharged from the second port in the channel tube is collected from the drainage collection bag, and the rest is discharged to the drainage bag.
- the old medium can be discharged in the first container without being mixed with the new medium.
- the medium in the first container after the medium replacement is only the new medium supplied at the time of medium replacement when the entire volume is replaced.
- the new medium and the old medium are mixed at the predetermined ratio. Will do.
- the discharge port is the second port in the first container, whereas it is the fourth port in the second container.
- the discharge port emit whole quantity of an old culture medium from a 2nd container, or to discharge
- air in the culture vessel is discharged from the first port to the outside while the medium is fed from the medium bag to the third port by the fluid movement control mechanism.
- the temperature of the culture medium that has reached the third port is maintained at 37 ° C. at this time, as in the case of the first container.
- the air in the culture container is supplied from the first port to the inside.
- the optimum structure and the accompanying medium exchange method are selected from the above-mentioned methods according to the purpose of exchanging the whole amount and the medium at a predetermined ratio.
- the air in the culture container is discharged from the first port to the outside while the medium waiting at the third port is supplied to the second container by the fluid movement control mechanism.
- This operation starts immediately after the old medium discharged from the fourth port is discharged from the first container in the whole amount or a predetermined amount. It is not necessary to complete the complete feeding of the old medium discharged from the fourth port to the drainage bag or the like. Finally, a part of the old medium discharged from the fourth port in the flow tube is collected from the drainage collection bag, and the rest is discharged to the drainage bag.
- the old medium can be discharged in the second container without being mixed with the new medium in the same manner as in the first container.
- the medium in the first container after the medium replacement is only the new medium supplied at the time of medium replacement when the entire volume is replaced.
- the new medium and the old medium are mixed at the predetermined ratio. Will do. It should be noted that the order of exchanging the medium for the first container and the second container is arbitrary.
- the medium exchange between the first container and the second container after the old medium is completely discharged, the medium maintained at 37 ° C. waiting in the first or third port in advance is replaced with the second medium or the old medium. Promptly supply immediately after discharging from the four ports. As a result, it is possible to avoid drying of the culture surface in the culture vessel and a temperature drop.
- the medium flows in one direction in the flow path circuit. Old and new media do not mix. As a result, the accuracy of medium component analysis on the collected old medium is also improved.
- FIGS. 1 to 13 are views showing a first embodiment of an automatic culture apparatus for culturing a closed culture vessel
- FIG. 1 is a view showing an example of a flow path circuit thereof.
- one closed system culture container is illustrated, but a plurality of closed system culture containers such as 10 are installed in parallel in the closed system culture container.
- one closed culture container is shown.
- FIG. 2 shows a sectional view of an example of a closed culture vessel having a normal discharge structure used in this example.
- FIGS. 3, 4 and 5 show examples of a discharge port for discharging the whole medium and a closed culture vessel having the same in the medium exchange for exchanging the whole quantity.
- FIGS. FIG. 2 shows a discharge port for discharging a predetermined amount of medium and a closed culture container having the medium exchange for exchanging the medium at the ratio.
- 9, FIG. 10, and FIG. 11 each show an example of the flow of the culture medium and air during a predetermined process.
- FIG. 12 shows an example of a control mechanism of an automatic culture apparatus having a closed culture vessel
- FIG. 13 shows a series of protocol examples for culturing cells using the automatic culture apparatus.
- the overall flow path when culturing one closed-system culture container of this example will be described.
- the culture target include epithelial cells such as corneal epithelial cells, oral mucosal cells, and epidermal cells.
- epithelial cells such as corneal epithelial cells, oral mucosal cells, and epidermal cells.
- the details of the closed culture vessel will be described later with reference to FIG. 2, but since it is used for culturing epithelial cells, a layer for culturing epithelial cells and feeder cells that produce growth factors for epithelial cells.
- a culture container 101 having a two-layer structure is used.
- the automatic culture apparatus of the present embodiment is a second flow path circuit configured by a flow path tube between the closed culture vessel 101 and the supply side of the closed culture vessel 101.
- the cell bag 103 is connected via the introduction part 104, and another cell bag 102 is connected via the introduction part 105 of the first flow path circuit which is a flow path tube.
- these closed culture vessels 101 are provided with first and second flow path circuit introduction parts 104 and 105, a plurality of two-way valves 106a to 106f, fluid movement control mechanism parts 108a and 108b, a multi-branch part 109a,
- the medium bag 111, the heater 112, the gas supply units 115a and 115b, the gas concentration adjusting units 116a and 116b, and the filters 117a and 117b are connected via the 109b.
- the fluid movement control mechanisms 108a and 108b function as a pump that moves the fluid.
- each closed culture vessel 101 the multi-branch portions 109a and 109b, the branch passage 121 of the second flow path circuit, the branch path 122 of the first flow path circuit, the first electromagnetic valve 130y, A second electromagnetic valve 132x and an aseptic detachment part 118 are provided.
- a branch path 123 of the second channel circuit and a branch path 124 of the first channel circuit are connected via an aseptic detachment part 118.
- multi-branch portions 109c and 109d which become the discharge portion of the second flow path circuit and the discharge portion of the first flow path circuit, respectively.
- the closed culture vessel 101 is configured to be three-dimensionally rotatable at an arbitrary angle by a rotation mechanism (not shown).
- each two-way valve 106, each fluid movement control mechanism 108, the first solenoid valve 130, the second solenoid valve 132, and each three-way valve 107 are controlled by a predetermined control protocol. And is controlled based on a predetermined sequence.
- flow path control is performed such that the culture medium always flows in one direction with respect to the culture container 101, and a new culture medium is supplied after the old culture medium is discharged.
- the flow path circuit for seeding is divided as described above.
- the cells put in the cell bag 103 pass through the introduction part 104 of the flow path circuit indicated by the solid line.
- the cells put in the cell bag 102 pass through the introduction part 105 of the flow path circuit indicated by a broken line.
- each cell suspension is fed from the cell bags 102 and 103 to the culture vessel 101.
- the predetermined two-way valves 106a to 106f and the three-way valves 107a and 107b are opened and closed in advance at the time of liquid feeding.
- the fluid movement control mechanism sections 108a to 108d are operated to feed liquid while controlling the flow rate and liquid feeding time.
- Cell seeding is sequentially performed on the upper layer and the lower layer of the culture vessel 101. After seeding the cells into the upper layer and the lower layer, a rotation mechanism (not shown) attached to the lower part of the culture vessel 101 is operated.
- the culture container 101 is kept horizontal during cell seeding and cell culture, the culture container 101 is tilted immediately after cell seeding and during medium replacement. By continuously rocking at the time of cell seeding, the distribution of cells after seeding is made uniform. Thereafter, the culture vessel is returned to a horizontal state and cultured in that state.
- the medium is exchanged at a predetermined date and time during the culture period. In the case of epithelial cells, it is generally performed once every 1-3 days. The medium exchange is sequentially performed on the upper layer and the lower layer.
- the medium bag 111 stored in the refrigerator at, for example, 4 ° C. is fed to the position just before the culture container by the fluid movement control mechanism units 108a and 108b.
- the medium at 4 ° C. immediately after being fed from the medium bag 111 is heated to, for example, 37 ° C. by the heater 112.
- the medium heated by the heater 112 maintains 37 ° C.
- the medium in the culture vessel 101 is discharged from the culture vessel.
- the fluid movement control mechanisms 108c and 108d are discharged into the drain bag 113.
- a part of the drainage required for the medium component analysis is collected in the drainage collection bags 114a and 114b.
- the culture container is tilted by a rotation mechanism so that the old medium is easily discharged from the discharge port side in the culture container.
- liquid is fed in advance from the medium bag 111 to just before the culture container 101, and a new medium maintained at 37 ° C. is supplied to the culture container.
- the temperature in the thermostatic chamber where the flow path circuit is installed is maintained at 37 ° C. Thereby, the temperature in a culture container is also maintained at 37 degreeC.
- CO2 etc. are supplied from gas supply part 115a, 115b as needed.
- the concentration is performed by the gas concentration adjusting units 116a and 116b.
- a gas containing 5% CO2 is appropriately sent into the culture vessel.
- the gas composition and the air supply schedule are determined according to the cell type to be cultured and the type of medium used.
- it is performed through the filters 117a and 117b. For this filter, for example, a filter that does not pass particles of 0.22 ⁇ m or more is used.
- aseptic desorption parts 118 are attached before and after the culture vessel 101 in each flow path circuit.
- liquid can be fed in the same manner as the channel tube.
- a plurality of culture containers are usually used. However, only one culture container is removed on the previous day, and the remaining culture containers continue to be cultured while maintaining sterility. At this time, the culture container is removed from the sterile desorption part 118.
- the flow path circuit after being removed by the aseptic desorption section 118 maintains the closed state of the flow path tube by the aseptic desorption section 118 left at the place where the culture vessel 101 was removed. Thereby, even if it removes a culture container for a test
- the closed culture vessel 101 of this embodiment shown in FIG. 1 includes a first port 210 as an upper layer supply section flow path, an upper layer supply section connection projection structure 209, and a first lower section supply section flow path as Three ports 206, lower layer supply projection connecting structure 205, second port 212 as upper layer discharge channel, upper layer discharge projection structure 211, fourth port 208 as lower discharge channel, lower layer A discharge portion connection projection structure 207 is provided.
- the lower layer discharge port is a case where the structural example demonstrated later in FIG. 3 is applied.
- the case where automatic culture is performed for one culture container is shown, but a plurality of culture containers can be obtained by branching the flow path tube before and after the culture container and connecting the culture containers in parallel. As described above, it is possible to perform an automatic culture for.
- FIG. 2 The basic components of the closed culture vessel 101 of the present example will be described in detail with reference to FIG. In FIG. 2, in order to avoid complicated explanation, a discharge port for exchanging the whole amount or exchanging the medium at a predetermined ratio is not shown. This will be described in detail later with reference to FIGS. That is, the discharge port in FIG. 2 is only installed on the side surface of the culture vessel 101.
- the material of the culture vessel 101 is a plastic having rigidity with plasticity such as polycarbonate, polystyrene, and polypropylene.
- the culture vessel 101 is constituted by a culture vessel main body 200, a second flow channel circuit made of a flow channel tube and four connection ports for connecting the first flow channel circuit to the culture vessel main body.
- the culture vessel main body 200 includes a plurality of second containers 201 formed integrally with the main body, a lid portion 202, and a first container 203 inserted between the second container 201 and the lid portion 202. ing.
- the planar shape of each container 201, 203 is, for example, a circle.
- the second container 201 and the lid 202 are each formed by injection molding, cutting, or the like.
- the first container 203 for example, a cell culture insert container that is generally used in culture can be inserted into each second container 201 inside the main body 200.
- Cell culture insert containers may be commercially available, such as those manufactured by BD, manufactured by Corning, manufactured by Greiner, etc., and usable products are not limited.
- the first container 203 in the culture container is a cell culture insert container in the example of FIG. 2, and this first container 203 is an upper layer in this specification.
- the second container 201 is a lower layer, and the lower second container 201 is formed integrally with the culture vessel body 200.
- the cell culture insert container which is the first container 203
- cells are seeded and cultured on the bottom surface of the cell culture insert container.
- the second container 201 composed of the culture container main body 200 and the culture container lid 202
- the cells are seeded and cultured on the bottom surface of the culture container main body.
- An elastic member 204 such as an O-ring is provided on the culture container lid 202 or the second container 201 of the culture container main body.
- grains containing gas, a microbe, etc. do not mix inside from the exterior of the culture container 101.
- the connection of the culture vessel lid 202 to the culture vessel main body 200 can be fixed by mating the threads provided on the culture vessel lid 202 and the culture vessel main body 200, but is limited to this method. is not.
- Reference numeral 222 denotes a gas flow gap between the first container 203 and the second container 201.
- a flow path 206 as a second supply port having a connection projection structure 205 at one end thereof for supplying a medium and supplying and discharging a gas, that is, air / water vapor
- a flow path 208 having a connection projection structure 207 at one end as a second discharge port for discharging the medium is provided.
- the opening position of the flow path 206 to the second container 201 is formed at a position higher than the opening position of the flow path 208 to the first container 203.
- the opening position of the flow path 206 in the main body of the culture container in the second container 201 should be changed depending on the amount of the culture medium introduced into the container, but it may be above the level of the introduced culture medium.
- the opening position of the culture vessel main body of the flow path 208 in the second container 201 is used according to the purpose of exchanging the whole amount or exchanging the medium at a predetermined ratio in order to use the culture vessel main body 201 to discharge the culture medium. .
- the case of changing the whole amount or changing the medium at a predetermined ratio will be described later with reference to FIGS.
- the discharge efficiency is further improved by discharging the culture medium while appropriately tilting the culture vessel 101 by a rotation mechanism (not shown).
- the culture container lid 202 has a connection projection structure 209 at one end thereof for supplying a medium and supplying and discharging a gas, that is, air / water vapor, to the first container 203 which is a cell culture insert container. It has the flow path 210 as a 1st supply port, and the flow path 212 as a 1st discharge
- the opening position of the flow path 210 in the first container 203 is higher than the opening position of the flow path 212 in the first container 203.
- the position of the flow path 210 in the first container 203 should be changed depending on the amount of the culture medium introduced into the container, but may be any position above the introduced culture liquid level. Since the channel 212 is used for discharging the culture medium from the first container 203, the flow path 212 is changed according to the purpose of exchanging the whole amount or exchanging the medium at a predetermined ratio. The case of changing the whole amount or changing the medium at a predetermined ratio will be described later with reference to FIGS.
- the discharge port in FIG. 2 is in a state where the bottom surface of the first container 203 which is a cell culture insert container and the flow path 212 are close to each other.
- the flow path 212 comes into contact with the growth of the cells, and this impedes the growth of the cells.
- the cells grow to a height of about several hundred ⁇ m when cultured to regenerated tissue. Therefore, the flow path 212 can be close to the bottom surface of the cell culture insert container 203 up to about 500 ⁇ m. What is necessary is just to determine the distance which can adjoin according to the kind of cell used as culture
- the discharge efficiency can be improved by discharging the medium while the culture vessel is appropriately tilted by the rotation mechanism, as in the case of exchanging the upper layer medium.
- the bottom surface 220 of the first container 203 is provided with a porous membrane or a pore membrane, so that liquid and gas can move between the first container 203 and the second container 201 via the portion. Yes.
- a gap 222 that allows gas to flow between each other exists between the upper portion of the first container 203 and the upper portion of the second container 201.
- the gap 222 is shown on the side wall of the first container 203 for convenience. However, if the first container 203 and the second container 201 communicate with each other in the upper space, the position and shape are limited. There is no.
- the culture container 101 for holding and culturing cells contains the medium and cells, or the second container 201 that contains only the medium, and the second container interior 201 contains only the medium and cells or the medium.
- a culture vessel having a first vessel 203 and a lid member 202 for sealing at least the second vessel, and a flow channel 210 as a first supply port connectable to a flow channel circuit on the outer surface of the culture vessel,
- a flow path 206 as a second supply port, a flow path 212 as a first discharge port, and a flow path 208 as a second discharge port are provided, and the medium is discharged or supplied to the first container 203, or the first
- the communication state to the first and second supply ports and the communication state to the first and second discharge ports are switched by means for controlling the liquid feeding.
- the flow path 210 which is the first supply port
- the flow path 206 which is the second supply port
- the flow path 210 and the flow path 212 installed in the culture container lid 202 are arranged so as not to hinder cell observation.
- the flow paths 206, 208, 210, and 212 can be connected to a flow path tube 213 made of an elastic material such as silicon having an inner diameter that matches the protrusion structure size of the flow path. Thereby, it can connect with respect to the flow-path circuit which an automatic culture apparatus has.
- the culture medium 214 is contained in the culture container.
- epithelial cells 215 are seeded, and in the lower layer, feeder cells 216 are seeded.
- other cells may be seeded or cultured without seeding the cells.
- culturing without seeding cells it has been reported that epithelial cells are seeded on the upper layer, and cells are not seeded on the lower layer and cultured as a medium alone, thereby culturing without feeder cells.
- FIG. 3 shows an example of a discharge port for discharging the whole medium and a culture container having the same in the medium exchange for exchanging the whole quantity using the automatic culture apparatus of the present embodiment.
- the shape of the lower-layer discharge channel 208 shown in FIG. 1 is changed as shown in FIG.
- the lower layer discharge section channel 301 is installed between the upper layer 302 as the first container and the lower layer 303 as the second container of the culture vessel main body 300.
- the shape of the lower-layer discharge channel 301 is at the lower portion 304 of the upper layer 302, one end of which is the first container, and the other end is the second container. It is in contact with the periphery 305 of a certain lower layer.
- the medium when discharged, the medium remains as droplets due to the surface tension generated between the bottom surface of the upper layer and the lower layer. Therefore, by using the lower-layer discharge portion flow path 301, first, using the fact that one end of the lower-layer discharge portion flow path 301 is below the upper layer 302, a droplet between the upper layer bottom surface and the lower layer is directly sucked. . When the liquid volume of the droplet is reduced by suction, the surface tension with the bottom surface of the upper layer is lost. As a result, droplets between the bottom surface of the upper layer and the lower layer diffuse to the entire lower layer 303.
- FIG. 3A shows a cross-sectional view.
- the lower layer discharge portion channel 301 reaches the bottom surface of the upper layer 302.
- FIG. 3B shows a view from above.
- One end of the lower layer discharge section flow channel 301 is below the upper layer bottom surface 304, and the other end is in contact with the lower layer periphery 305.
- FIG. 3D shows only the lower-layer discharge channel 301.
- (E) in FIG. 3 is obtained by reducing the portion to be sucked as a modified example of the lower-layer discharge channel 301, as is apparent from FIG. Thereby, since the pressure at the time of suction increases while maintaining the above effect, the suction efficiency can be improved.
- the feeder cells seeded in the lower layer 303 as the second container are cultured with respect to the epithelial cells seeded in the upper layer 302 as the first container with the liquid factor released into the medium. Contribute to. Therefore, even if the lower layer discharge part flow path 301 exists in the lower layer 303 which is the second container, and feeder cells adhere and grow on the lower layer discharge part flow path 301 instead of the lower layer bottom face, the epithelial cells There is no effect on the growth.
- FIG. 4 shows a different example of a discharge port for discharging the whole medium and a culture container having the same in the medium exchange for exchanging the whole quantity using the automatic culture apparatus of the present embodiment.
- the lower layer which is the second container of the culture vessel main body 400, has a reduced bottom surface 401 having the same area as the upper layer bottom surface below the bottom surface of the upper layer 403, which is the first container.
- the lower layer has a shape that is squeezed down to the reduced bottom surface 401.
- a staircase structure 402 is provided in the middle. The staircase structure 402 does not contact the upper layer 403 that is the first container.
- the lower layer discharge portion flow path 404 is in contact with the reduced bottom surface 401.
- FIG. 4 (B) in FIG. 4 is a view from above.
- a reduced bottom surface periphery 406 caused by the staircase structure 402.
- FIG. 4 (C) is an enlarged view of the bottom cross section. Since the bottom surface of the lower layer has a concave structure due to the staircase structure 402, the medium is collected on the reduced bottom surface 401 when the medium is discharged. The collected medium is efficiently discharged by the layer discharge portion flow path 404.
- the reduced bottom surface 401 is horizontal and parallel to the upper layer bottom surface 403.
- a part of the staircase structure may be a curved surface 407.
- the medium is accumulated on the bottom surface of the lowermost first container at the time of suction, so that the suction efficiency can be improved.
- the cells can adhere to the horizontal portion of the step-like structure at the time of cell seeding, it is possible to avoid the seeded cells from accumulating on the bottom surface of the first container and increasing the cell density.
- the bottom surface of the first container is parallel to the bottom surface of the second container, so that optical conditions such as light scattering are not disturbed when observing cells in the first container and the second container. Can be realized.
- by making a part of the step-like structure a curved surface it is possible to avoid the surface tension acting on the medium and remaining when the medium is discharged.
- FIG. 5 shows a different example of a discharge port for discharging the whole medium and a culture container having the same in the medium exchange for exchanging the whole quantity using the automatic culture apparatus of the present embodiment.
- the lower layer discharge channel 501 of the culture vessel main body 500 is made sterile by closing the boundary between the elastic lower layer discharge channel 502 and the lower layer discharge channel 501 and the elastic lower layer discharge channel 502.
- the elastic member 503 has elasticity that can be maintained and can maintain the blockage of the boundary even when the elastic lower layer discharge section flow path 502 moves.
- the stretchable lower layer discharge portion flow path 502 reaches the droplets remaining between the upper layer bottom surface and the lower layer. Therefore, it becomes possible to suck directly.
- the droplet diffuses to the entire lower layer.
- the end of the stretchable lower layer discharge channel 502 is moved to the periphery of the lower layer, and the culture vessel is tilted toward the end of the stretchable lower layer discharge channel 502. Collect the medium that has diffused throughout the lower layer. In this state, the remaining medium is aspirated.
- FIG. 6 shows an example of a discharge port for discharging a predetermined amount of medium and a culture container having the same in the medium replacement for exchanging at a predetermined ratio using the automatic culture apparatus of the present embodiment.
- the discharge amount of the medium is controlled by controlling the positions of the upper-layer discharge channel 601 and the lower-layer discharge channel 602 of the culture vessel main body 600.
- the level of the medium remaining after the desired amount of medium is discharged is determined in a state where the culture container is kept horizontal.
- the lower end of the upper layer discharge channel 601 is made the same as the liquid level.
- the medium is discharged when the lower end of the upper layer discharge portion flow path 601 is present in the liquid, and the lower end of the upper layer discharge portion flow path 601 is not present in the liquid.
- the level of the medium remaining after the desired amount of medium is discharged is determined in a state where the culture container is kept horizontal.
- the lower end of the lower layer discharge section flow channel 602 is set to the same level as the liquid level.
- the medium is discharged when the lower end of the lower layer discharge section flow channel 602 exists in the liquid, and the lower end of the lower layer discharge section flow path 602 does not exist in the liquid.
- the lower end of the lower-layer discharge channel 602 is higher than the above-described medium liquid level, air is supplied from the lower-layer discharge channel 602. In other words, no further medium is discharged.
- the medium when there is more medium than the amount that remains without being discharged at the time of medium replacement, the medium is discharged from the port, and when there is the same amount of medium that remains without being discharged at the time of medium replacement, Since air is discharged from the port, the medium is not discharged, and a predetermined amount of medium can be discharged to the medium in the first container or the second container.
- FIG. 7 shows an example of a discharge port for discharging a predetermined amount of medium and a culture container having the same in the medium replacement for exchanging at a predetermined ratio using the automatic culture apparatus of the present embodiment.
- An upper layer liquid supply switching unit 701 and a lower layer liquid supply switching unit 702 are provided for each of the upper layer discharge unit and the lower layer discharge unit of the culture container main body 700.
- the medium In exchanging the medium from the upper layer and the lower layer, when the medium is discharged, the medium is discharged from the upper layer discharge channel 703 and the lower layer discharge channel 704.
- the upper layer liquid supply switching unit 701 or the lower layer liquid supply switching unit 702 is operated to switch to the upper layer air supply channel 705 or the lower layer air supply channel 706. And air is sent and a predetermined amount of culture medium is sent to a discharge bag or the like.
- FIG. 7 is an exploded view of the upper layer liquid feeding switching unit 701 or the lower layer liquid feeding switching unit 702. It consists of an input port 707, a disk-shaped valve 708, and an output port 709.
- a discharge flow path 710 is connected to the input port 707.
- a discharge flow path 711 and an air supply flow path 712 are connected to the output port 709.
- a flow path 713 is provided inside the input port 707, the disk-shaped valve 708, and the output port 709.
- it is selected which of the discharge channel 711 and the air supply channel 712 is to function.
- the port for discharging the culture medium from the first container and the second container includes a discharge flow path for discharging the culture medium from the culture container, and an air supply flow path capable of supplying air from the outside of the culture container to the discharge flow path
- a predetermined amount of medium is discharged
- the medium is discharged from the discharge channel, and after the predetermined amount of medium has been discharged, air is supplied from the air supply channel.
- FIG. 8 shows an example of a discharge port for discharging a predetermined amount of medium and a culture container having the same in medium replacement for exchanging at a predetermined ratio using the automatic culture apparatus of the present embodiment.
- the upper-layer discharge portion flow path 801 and the lower-layer discharge portion flow path 802 of the culture vessel main body 800 have a stretchable upper-layer discharge portion flow path 803 and a stretchable lower-layer discharge portion flow path 804, respectively.
- the elastic lower layer discharge section channel 804 has flexibility and can be extended in the bottom culture bottom direction.
- the boundary between the upper layer discharge section flow channel 801 and the stretchable upper layer discharge section flow path 803 maintains sterility by closing the boundary, and even if the stretchable upper layer discharge section flow path 803 moves, It has the elastic member 805 which has the elasticity which can maintain obstruction
- the lower end of the stretchable upper layer discharge section flow path 803 or the stretchable lower layer discharge section flow path 804 reaches the medium existing in each layer. . Therefore, it becomes possible to discharge directly.
- the lower end of the elastic upper layer discharge part flow path 803 or the elastic lower layer discharge part flow path 804 is moved out of the medium as shown in FIG. Deliver the solution. Thereby, only a predetermined amount can be discharged.
- the port for discharging the medium from the first container and the second container can be expanded and contracted, and the joint is covered with an elastic member in order to avoid the entry of bacteria and the like from the outside during expansion and contraction.
- the port is located outside, and when discharging a predetermined amount of medium, the port is extended and discharged in a state of being placed in the medium. After the discharge of the predetermined amount of medium is completed, the port is expanded and contracted. It is possible to feed air and discharge a predetermined amount of medium to the medium in the first container and the second container.
- FIG. 13 is a flowchart for explaining the operation of the automatic culture apparatus of this example.
- the automatic culture apparatus is activated (step S1), and the schedule is determined (step S2). Further, after opening and closing the appropriate two-way valve and three-way valve, the fluid movement control mechanism is operated, seeding the culture vessel (step S3), culturing the cells in the culture vessel (step S4), and Observation with a microscope is performed (step S5). It is determined whether or not the cells are in a normal state (step S6). If the cells are normal, the culture medium in the culture container is replaced (step S7). Then, collection
- step S4 Regard the culture of cells in the culture vessel 101 (step S4), the medium exchange (step S7), the culture immediately before transplantation, and the medium exchange (step S10), the control protocol of the automatic culture apparatus of this embodiment is sequentially applied. explain.
- FIG. 9A and FIG. 9B are diagrams for explaining a liquid feeding protocol at the time of cell seeding, using the flow path circuit diagram for one closed culture vessel shown in FIG.
- cell seeding is performed in the order of the upper layer and the lower layer, but the order is arbitrary.
- the structure / method shown in FIG. 3 will be described as a structure for improving the discharge efficiency. When another structure / method is used, only the drainage operation may be performed according to the structure / method shown in FIGS.
- FIG. 9A a protocol for seeding cells on the upper layer will be described.
- liquid is fed from the cell bag 102 into the cell culture insert container via the flow path 105.
- the air in the culture vessel is discharged from the flow channel 104 to the outside of the culture vessel.
- the air is finally discharged out of the flow path from the filter 115.
- the two-way valve, the three-way valve, the electromagnetic valve and the like on the flow path through which the culture medium and air flow are previously opened (ON). That is, in FIG. 9A, the two-way valves 106a and 106b and the electromagnetic valves 132a and 130b are placed in an open state (on), and the others are closed (off).
- the fluid movement control mechanism units 108a and 108b are operated to perform liquid feeding and air feeding.
- the process ends. For example, in order to seed the upper layer of the culture vessel 101, each valve and pump are controlled over 30 seconds. If there are a plurality of culture vessels, a series of treatments are performed over 30 seconds for seeding the upper layer of all the culture vessels.
- the cell bag 102 is closed culture through the first flow path circuit 105, the electromagnetic valve 106b, the fluid movement control mechanism unit 108a, the first flow path circuit 122, and the second electromagnetic valve 132a.
- Cell seeding is performed on the upper first container 203 connected to the flow path 210 of the container 101.
- the flow path 206 includes the second flow path circuit 121, the first electromagnetic valve 130b, the fluid movement control mechanism unit 108b, the second flow path circuit 104, and the electromagnetic valve 106a.
- liquid is fed from the cell bag 102 into the cell culture insert container via the flow path 210.
- the air in the culture vessel is discharged from the flow channel 206 to the outside of the culture vessel.
- the air is finally discharged out of the flow path from the filter 117a. In this way, cell seeding from the cell bag 102 to the first container 203 is executed smoothly.
- FIG. 9B shows a protocol for seeding cells in the lower layer.
- the liquid is fed from the cell bag 103 through the flow path 104 into the culture vessel main body.
- the air in the culture vessel is discharged from the flow channel 105 to the outside of the culture vessel.
- the air is finally discharged out of the flow path from the filter 116.
- the two-way valve, the three-way valve, the electromagnetic valve, etc. on the flow path through which the medium and air flow are previously opened (ON). That is, in FIG.
- the two-way valves 106c and 106f and the electromagnetic valves 132a and 130b are placed in an open state (ON), and the others are closed (OFF).
- the fluid movement control mechanism units 108a and 108b are operated to perform liquid feeding and air feeding.
- the process ends. For example, in order to inoculate the lower layer of the culture vessel 101, each valve and pump are controlled over 45 seconds. If a plurality of culture vessels are installed in the automatic culture apparatus, a series of treatments are performed over 45 seconds for seeding the lower layer of each of the other culture vessels.
- the second cell bag 103 has a second flow path circuit 104, a solenoid valve 106 c, a fluid movement control mechanism 108 b, a second flow path circuit 121, and a first flow path for the closed culture 101.
- the first container 203 of the upper layer has the flow path 210 including the first flow path circuit 122, the second electromagnetic valve 132a, the fluid movement control mechanism unit 108a, the first flow path circuit 105, and the electromagnetic valve 106f.
- liquid is fed from the cell bag 103 through the flow path 206 into the second container 201 of the culture container main body.
- the air in the culture vessel is discharged from the flow channel 210 to the outside of the culture vessel.
- the air is finally discharged out of the flow path from the filter 117b. In this way, cell seeding from the second cell bag 103 to the second container 201 is performed smoothly.
- the medium exchange target is the cell culture insert container as the upper layer and the culture container main body as the lower layer.
- both mediums are exchanged. However, it is possible to change only one medium according to the setting of the user of the apparatus.
- exchanges an upper layer and a lower layer is arbitrary. As described in FIG. 1, the culture medium bag 111 is closed via the first flow path circuit 105, the electromagnetic valve 106d, the fluid movement control mechanism 108a, the first flow path circuit 122, and the second electromagnetic valve 132a.
- the second container 201 in the lower layer has a flow path 206 through the second flow path circuit 121, the first electromagnetic valve 130b, the fluid movement control mechanism 108b, the second flow path circuit 104, and the electromagnetic valve 106a. Connected to the filter 117a. Between the upper part of the first container 203 and the upper part of the second container 201, there is a gap 222 that allows gas to flow between each other. The air is exhausted through the filter 117b. Based on this configuration, the medium exchange of the first container 203 and the container 201 will be described.
- FIG. 10A to FIG. 10E are diagrams showing a flow path circuit and a table for explaining a liquid feeding protocol at the time of medium exchange with respect to the first container 203 in the upper layer of the closed culture vessel 101.
- FIG. 10E the two-way valve 106, the three-way valve 107, the fluid movement control mechanism 108, and the electromagnetic valves 130b and 132a are provided on the table 1000 for exchanging the medium in the upper layer of the closed culture vessel 101. It is controlled according to the sequence.
- black circles indicate the opening (ON) of various valves and the operating state of the pump
- X indicates the closing (OFF) of the valve and the stopping of the pump (hereinafter the same).
- This table is stored in a database (DB) or the like stored in the storage unit of the apparatus described later.
- DB database
- liquid is fed from the culture medium bag 111 to the upper layer supply portion connection projection structure 210 in the first container 203 which is a cell culture insert container.
- the air in the culture vessel 101 is discharged from the flow channel 104 to the outside of the culture vessel.
- the air is finally discharged out of the flow path from the filter 117.
- the two-way valves 106a and 106d and the electromagnetic valves 130b and 132a on the flow path through which the medium and air flow are previously opened (ON). Others are closed (off).
- the fluid movement control mechanism units 108a and 108b including tube pumps are operated to carry out liquid feeding and air feeding.
- the culture medium bag 111 since the culture medium bag 111 is installed in the refrigerator, the culture medium immediately after feeding from the culture medium bag is 4 ° C., but it is heated to 37 ° C. by the heater 112 and placed in the thermostatic chamber in which the culture vessel 101 and the like are installed. And maintain at 37 ° C.
- the liquid supply is temporarily stopped. That is, by closing the solenoid valve on the supply side of the first flow path circuit 122 and stopping the pump, the tip of the medium in the first flow path circuit 122 is maintained near the connection protrusion structure 209. In addition, what is necessary is just to change this stop position suitably according to a use.
- the old medium used for the culture in the cell culture insert container is discharged from the upper layer discharge portion flow path 124.
- air is supplied from the flow path 104 into the culture vessel.
- the air is finally supplied from the filter 117a into the flow path.
- the fluid movement control mechanism sections 108b and 108c are operated to drain and supply air.
- the old medium is finally discharged to the drainage bag 113 or the drainage collection bag 114a, but it is not necessary to complete the total amount.
- the medium is fed from the medium bag 111 to the upper layer supply portion connection protrusion structure 210 in the cell culture insert container, and the new medium that has been waiting at 37 ° C. is supplied to the upper layer.
- the air in the culture vessel is discharged out of the culture vessel 101 from the channel 104.
- the air is finally discharged out of the flow path from the filter 117a.
- the two-way valves 106a and 106d and the electromagnetic valves 132a and 130b on the flow path through which the culture medium and air flow are previously opened. Keep everything else closed.
- the fluid movement control mechanism units 108a and 108b are operated to perform liquid feeding and air feeding.
- the old medium remaining between the upper-layer discharge channel 212 and the drainage bag 113 or the drainage collection bag 114a is transferred to the drainage bag 113 or the drainage collection bag 114a.
- Discharge At the same time, air is supplied from the flow path 104 into the culture vessel. The air is finally supplied from the filter 117a into the flow path.
- FIG. 11A to FIG. 11E are diagrams showing a channel circuit and a table 2000 showing the flow of the culture medium and air when the culture medium in the lower layer of one closed culture vessel 101 is exchanged.
- the liquid is fed from the culture medium bag 111 to the lower layer supply portion connection projection structure 206 in the culture vessel main body.
- the solution is fed from the culture medium bag 111 to the connection projection structure of the channel 206 in the second container 201 of the main body of the culture vessel 101 through the second channel circuits 104 and 121. And in this state, liquid feeding is stopped once.
- the air in the culture vessel is discharged from the flow channel 104 to the outside of the culture vessel.
- the air is finally discharged out of the flow path from the filter 117b.
- the two-way valves 106e and 106f and the electromagnetic valves 130b and 132a on the flow path through which the culture medium and air flow are opened in advance. Keep everything else closed.
- the fluid movement control mechanism units 108a and 108b are operated to perform liquid feeding and air feeding.
- the culture medium bag is installed in the refrigerator, the culture medium immediately after feeding from the culture medium bag is 4 ° C., but it is heated to 37 ° C. by the heater 112 and is maintained in the thermostatic chamber in which the culture container is installed. Maintain at ° C.
- the old medium used for the culture in the second container 201 in the culture container main body is discharged from the flow path 208 through the lower layer discharge section flow path 123 or the drain bag 113 or the drainage bag. It discharges to the liquid collection bag 114b.
- air is supplied from the flow path 105 and the first flow path circuit 122 through the flow path 210 into the culture vessel.
- the air is finally supplied from the filter 117b into the flow path.
- the two-way valve 106f, the three-way valve 107b, and the electromagnetic valve 130b on the flow path through which the culture medium and air flow are previously opened. Keep everything else closed.
- the fluid movement control mechanism units 108b and 108d are operated to drain and supply air.
- the old medium is finally discharged to the drainage bag 131 or the drainage collection bag 114b, but it is not necessary to complete the total amount.
- liquid is supplied in advance from the culture medium bag 111 to the supply portion connection projection structure 205 of the flow path 206 of the second container 201 in the lower layer of the culture vessel main body at 37 ° C.
- the fresh medium which has been supplied is supplied to the second container 201 in the lower layer.
- the air in the culture vessel is discharged from the flow channel 210 and the flow channel 105 to the outside of the culture vessel via the first flow channel circuit 122.
- the air is finally discharged out of the flow path from the filter 117b.
- the two-way valves 106e and 106f and the electromagnetic valve 130b on the flow path through which the culture medium and air flow are previously opened. Keep everything else closed.
- the fluid movement control mechanism units 108a and 108b are operated to perform liquid feeding and air feeding.
- the old medium remaining between the lower-layer discharge channel 208 and the drainage bag 113 or the drainage collection bag 114b is transferred to the drainage bag 113 or the drainage collection bag 114b. Discharge.
- air is supplied from the flow path 104 into the culture vessel.
- the air is finally supplied from the filter 117b into the flow path.
- the two-way valve 106f, the three-way valve 107b, and the electromagnetic valve 132a on the flow path through which the culture medium and air flow are previously opened. Keep everything else closed.
- the fluid movement control mechanism units 108a and 108d are operated to drain and supply air.
- the culture medium always flows in one direction in the cell seeding process and the culture medium exchange process, so the old culture medium is not mixed into the new culture medium, and the reproducibility of the culture is improved.
- a new medium is quickly supplied after all the old medium is discharged at the time of medium exchange.
- a part of the flow path tube attached to the closed culture vessel serves both as a liquid feeding function and an air feeding function, so that the entire flow path circuit is simplified.
- FIG. 12 is a block diagram for explaining a functional configuration of an automatic culture apparatus that can be connected to the closed culture vessel of this example. It is a figure which shows the whole structure by which each component controlled by the control apparatus 1202 is connected to the culture container 101 arrange
- the control device 1202 includes a temperature adjusting unit 1204 for controlling the temperature of the thermostatic device 1203, and a gas concentration adjusting unit 1206 having a gas supply unit 1205 for controlling the gas concentration in the culture vessel.
- An object of the present invention is to control fluid movement control 1207 having a flow tube connected to each flow path circuit component, and to control the operation of each component, for automatically replacing the culture medium in the culture vessel.
- a microscope 1208 for cell observation and a CO 2 / O 2 sensor 1209 are connected.
- the control device 1202 and the display screen 1210 are a processing unit and a storage of a normal computer including a processing unit and a storage unit including a CPU (Central Processing Unit), a display unit, an input / output unit including a keyboard, and the like. And the display unit of the display device.
- the control device 1202 operates various programs stored in the storage unit 1213 on the CPU as a processing unit.
- the database (DB) described above is also stored.
- the temperature adjustment unit 1204, gas supply unit 1205, fluid movement control mechanism unit 1207, microscope 1208, CO 2 / O 2 sensor 1209, gas concentration adjustment unit 1211, cell / medium / drainage / drainage recovery bag 1212 The culture environment in the machine 1203 is controlled, and a predetermined culture process in the culture vessel 101 can be performed.
- the gas concentration adjusting unit 1211 does not need to be directly connected to the culture vessel 101.
- the temperature controller 1204, the gas concentration controller 1211, and the CO 2 / O 2 sensor 1209 may be connected to the thermostat 1203.
- a part of the lid of the cell culture container 101 has gas permeability such as polycarbonate, polystyrene, polymethylpentene and the like.
- FIG. 13 is a flowchart for explaining the operation of the automatic culture apparatus of this example.
- the operation of the automatic culture apparatus will be described.
- what is necessary is just to arrange
- cultivation procedure in that case should just perform operation shown below with respect to each culture container in order.
- Step S1 Start> First, as shown in FIG. 13, the automatic culture apparatus is activated. The operation is started when the operator presses the start switch of the operation unit in the control device. At this time, the channel circuit and the like are installed in the automatic culture apparatus in advance. On the operation screen of the control unit display, confirm that the value is appropriate for the internal environment of the automatic culture apparatus. For example, it is confirmed that the temperature of the thermostat is 37 ° C. These numerical values are not limited. For example, the temperature can be selected from the range of 0 ° C to 45 ° C. Further, the inside of the apparatus is sterilized with a sterilizing gas or sterilized with ethanol by an appropriate prior operation, and is in a clean state. In addition, sterilization is performed in advance on the flow path portion used for culture.
- Step S2 Schedule determination> An automatic culture schedule to be performed by an automatic culture apparatus is determined according to the type and amount of cells to be cultured. Conditions such as date, frequency, fluid volume, etc. for performing operations such as cell seeding, medium exchange, microscopic observation, drainage collection, examination tissue collection, and transplantation tissue collection are input from the operation unit of the control unit.
- Step S3 Cell seeding>
- the fluid movement control mechanism is operated to suck the cell suspension from the cell bag.
- the cell suspension is oral mucosal cells suspended in KCM medium (keratinocyte culture medium) and 3T3-J2 cells also suspended in KCM medium in order to culture oral mucosal cells.
- KCM medium keratinocyte culture medium
- 3T3-J2 cells also suspended in KCM medium in order to culture oral mucosal cells.
- the cell suspension is aspirated while discharging the air in the flow path to the outside of the flow path through the air filter. And it seeds to a culture container.
- Cell seeding is sequentially performed on each upper layer and lower layer of each culture vessel. After sowing, the culture vessel is rocked a plurality of times by a rotating mechanism so that the cell distribution on the culture surface becomes uniform.
- Step S4 Cell Culture> Culturing is performed for a predetermined time in a state where the culture vessel is left still horizontally.
- the stationary period is about 5 days after sowing.
- the ambient environment of the culture vessel is maintained at 37 ° C. by a thermostat.
- the gas of a predetermined component is sent into the inside of a culture container as needed.
- the CO2 concentration is maintained at 5% and the humidity at 100%.
- the air inside the automatic culture apparatus is constantly stirred by a fan so that the temperature distribution is always uniform.
- ⁇ Step S5 Observation with a microscope>
- Cell images are acquired using a microscope installed in an automatic culture apparatus.
- the light source installed in the automatic culture apparatus is appropriately illuminated, and the cells are focused and imaged by a microscope. If necessary, set a fixed point on the culture surface and photograph.
- the acquired cell image is stored in a database so that it can be viewed as necessary on a display installed outside the automatic culture apparatus. Judging from the information regarding the growth state of the cells obtained by microscopic observation, the frequency and timing of medium replacement are adjusted. For example, when the cell adhesion is insufficient, the medium of S6 is not changed, and the cell culture of S4 is continued.
- Step S6 Medium replacement>
- the medium exchange is generally performed once every few days.
- the frequency is adjusted according to the state of cell growth.
- the fluid movement control mechanism is operated, and the fluid movement control mechanism is driven to suck the medium from the medium bag.
- the air in the flow path is discharged out of the flow path through the filter.
- the medium immediately after being fed from the medium bag is 4 ° C., but the process proceeds to the next step with the temperature of the medium maintained at 37 ° C. due to the gas phase in the heater and thermostatic chamber.
- the old medium is discharged from the culture vessel.
- the culture vessel is tilted by the rotating mechanism so that the entire amount of the old medium is discharged.
- a new medium maintained at 37 ° C. is supplied into the culture vessel. This avoids drying of the cells on the culture surface and a temperature drop on the culture surface.
- a part of the old medium discharged from the culture container is sent to the drainage collection bag and the rest is sent to the drainage bag.
- the collected old medium is evaluated for cell growth using medium component analysis by a separately prepared medium component analyzer. For example, the amount of glucose used during cell growth and the amount of lactic acid excreted is measured to grasp the cell growth state.
- a mycoplasma test or the like is performed to determine whether the medium is contaminated. When there is contamination, the culture is immediately terminated, and the cells are aseptically discarded by appropriate operations so that the place where the automatic culture apparatus is installed is not contaminated.
- Step S7 Collection of examination tissue> One day out of the culture containers being cultured is collected for examination on the day before the scheduled transplant date.
- the culture container is aseptically removed using a sterile desorption part previously incorporated in the flow path.
- the collected culture vessel it is inspected whether the state of the cells inside has a quality suitable for transplantation. For example, in the case of regenerated tissue with oral mucosal cells, it has a layered structure of about 3 layers by histological evaluation, or oral mucosal stem cells are present in the basal layer of regenerated tissue by immunohistochemical staining evaluation, Evaluate whether or not specific protein is expressed.
- Step S8 Culture and medium exchange just before transplantation> Culture is performed by the same operation as in step S4. And just before implementing step S9, culture medium exchange by the same operation as step S6 is performed.
- Step S9 Collection of transplanted tissue>
- the tissue is collected for transplantation and used for regenerative medical treatment.
- the culture vessel is removed using a sterile desorption part. Then, it is transported to an operating room where regenerative medical treatment is performed while maintaining sterility and biological quality, and used for treatment.
- Step S10 End> Remove the channel used for culture. Subsequently, sterilization with a sterilization gas or disinfection with ethanol is performed by an appropriate operation inside the apparatus to obtain a clean state. The various software of the automatic culture apparatus is terminated, and the operation of the automatic culture apparatus is terminated.
- a peristaltic pump is assumed as a fluid movement control mechanism for moving fluid, but it goes without saying that other drive mechanisms such as a syringe pump may be used.
- the automatic culture apparatus configured as described above, it is possible to completely discharge the old medium in the culture container in the medium exchange for the purpose of exchanging the whole amount.
- the culture medium exchange which replace
- cultivation improves. Analysis accuracy of medium component analysis using the collected old medium is improved.
- a new medium warmed to 37 ° C. in advance is immediately supplied.
- a part of the flow path tube attached to the closed culture vessel serves both as a liquid feeding function and an air feeding function, so that the entire flow path circuit is simplified.
- the present invention is useful as a cell culturing apparatus for culturing cells or tissues by automatic operation using a culture vessel, particularly as a cell culturing apparatus capable of producing a regenerated tissue that can be used for regenerative medicine.
- cell culture insert container (first container) 204 ... Elastic members 205, 207, 209, 211 ... Connection projection structure 206, 208, 210, 212 ... Flow path (port) 214 ... Medium 215 ... Epithelial cell 216 ... Feeder cell 222 ... Gas distribution gap 301 ... Lower port discharge port 4th port 302 ... Upper layer (first container) 303 ... Lower layer (second container) 304 ... Upper layer lower part 305 ... Lower layer periphery 401 ... Reduced bottom surface 402 ... Staircase structure 403 ... Upper layer (first container) 404 ... Lower layer discharge part flow path 405 ... Lower layer bottom face 406 ... Reduced bottom surface periphery 407 ...
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Genetics & Genomics (AREA)
- Sustainable Development (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
自動培養装置に用いる閉鎖系培養容器101で、培地全量を交換または所定比率で交換する培地交換を実施する場合において、排出口の変更により、培養容器内の古い培地を完全に排出、または、所定量を排出する。培養容器1010は、その内部に2層構造の培養空間を有し、第一容器302は第二容器303内に収容され、培養時は第二容器内側と、第一容器外側の空間に培地が保持される。第一容器及び第二容器は、それぞれへ細胞懸濁液または培地の供給と、空気の供給及び排出を行う第一及び第二のポート306、307と、それぞれから培地の排出を行う第三及び第四のポート308、301を有する。第四のポート301は、第一容器302の下部304、及び第二容器303の周辺部305まで広がる排出口を有している。
Description
本発明は、細胞または組織を自動操作により培養する培養容器と自動培養装置に関する。
再生医療治療に用いる再生組織の製造は、医薬品等の製造管理及び品質管理の基準であるGMP(Good Manufacturing Practice;適正製造基準)に基づく。一般に、再生組織は清潔な製造環境を提供するCPC(Cell Processing Center;細胞処理施設)において、専門の細胞培養技術を有した製造従事者により、SOP(Standard Operational Procedure;標準手順書)に従い製造される。そのため、多大な人件費、労力、運用コストが発生する。また、全ての製造工程は人手でなされるため、再生組織の製造量には限界がある。結果として、再生組織を製造するための製造コストは高くなり、再生医療治療の普及の妨げとなっている。
このような現状を打破するため、培養工程の一部ないし全てを自動化する自動培養装置の導入が求められている。培養工程を人手ではなく自動培養装置により実施することで、省力化とコストダウンを実現し、大量生産が可能となる。加えて、自動培養装置による操作は一定であるため、製造後に得られる再生組織の品質一定化への寄与も期待される。
ここで、自動培養装置は人手による作業の代替として細胞を培養するが、人手による作業内容に対するGMPに準拠していることが必要である。また、自動培養装置に特化したGMPは現在のところ規定されていないが、臨床用途の自動培養装置に関する開発ガイドライン(非特許文献1)が経済産業省より提示されている。この開発ガイドラインへの準拠も必要である。以上より自動培養装置は、手作業に対するGMP及び自動培養装置の開発ガイドラインを鑑みて、科学的根拠に基づき、清浄な環境を維持した状態で高品質の再生組織を再現性良く製造可能であることが求められる。
これらの課題を解決する手段として、例えば特許文献1、2、3に示すような、閉鎖系の流路を用いて培養工程を自動化する装置が開発されている。培養容器の蓋を開閉する操作が不要な閉鎖系の培養容器を用いることにより、培養工程の自動化と生物学的汚染リスクの低減が達成される。閉鎖系培養容器は、培地が外部へ容易に漏出しない構造である。また、生物学的汚染の原因となる菌等が外部から混入しない隔離された環境を実現する。よって、培養容器の蓋を開閉する開放系培養容器よりも清潔性を維持しやすいという利点がある。
このような現状を打破するため、培養工程の一部ないし全てを自動化する自動培養装置の導入が求められている。培養工程を人手ではなく自動培養装置により実施することで、省力化とコストダウンを実現し、大量生産が可能となる。加えて、自動培養装置による操作は一定であるため、製造後に得られる再生組織の品質一定化への寄与も期待される。
ここで、自動培養装置は人手による作業の代替として細胞を培養するが、人手による作業内容に対するGMPに準拠していることが必要である。また、自動培養装置に特化したGMPは現在のところ規定されていないが、臨床用途の自動培養装置に関する開発ガイドライン(非特許文献1)が経済産業省より提示されている。この開発ガイドラインへの準拠も必要である。以上より自動培養装置は、手作業に対するGMP及び自動培養装置の開発ガイドラインを鑑みて、科学的根拠に基づき、清浄な環境を維持した状態で高品質の再生組織を再現性良く製造可能であることが求められる。
これらの課題を解決する手段として、例えば特許文献1、2、3に示すような、閉鎖系の流路を用いて培養工程を自動化する装置が開発されている。培養容器の蓋を開閉する操作が不要な閉鎖系の培養容器を用いることにより、培養工程の自動化と生物学的汚染リスクの低減が達成される。閉鎖系培養容器は、培地が外部へ容易に漏出しない構造である。また、生物学的汚染の原因となる菌等が外部から混入しない隔離された環境を実現する。よって、培養容器の蓋を開閉する開放系培養容器よりも清潔性を維持しやすいという利点がある。
加えて、再生医療治療の対象臓器が角膜上皮、食道粘膜、表皮等である場合、培養する細胞種は、角膜上皮細胞、口腔粘膜細胞、表皮細胞といった上皮系細胞となる。この場合、培養容器の構造は2層構造が望ましい。上皮系細胞は、マウス由来3T3-J2細胞等のフィーダー細胞と共に共培養し、フィーダー細胞が産出する成長因子により生育するが、上皮系細胞とフィーダー細胞を同一培養平面上で培養した場合、製造後の再生組織にフィーダー細胞が混入する。一方、2層構造の培養容器を用いて培養した場合、フィーダー細胞であるヒトとは異種のマウス由来の細胞は異なる培養表面上で培養するため、上皮系細胞へのフィーダー細胞の混入を回避することができる。これは、ヒトに対する再生医療治療において、より好ましい。自動培養装置を用いて上皮系細胞を培養する場合においても、同様に2層構造が望ましい。2層構造の閉鎖系培養容器は、特許文献1が示すように、既に開発が進められている。
経済産業省、再生医療分野(ヒト細胞培養加工装置についての設計ガイドライン[改訂])、2009
自動培養装置は前述の通り、手作業において要求されるGMP及び自動培養装置に関する開発ガイドラインを満たすことが要求される。その中の一つの要求として、自動培養装置で製造した再生組織の品質を一定にする必要がある。再生組織の品質を一定にする条件は複数存在するが、その中の一つとして、多くの場合で採用されている培地の全量を交換する培地交換工程において、古い培地を排出し新しい培地を供給する際、新しい培地に古い培地が混入することは回避する必要がある。
古い培地は細胞が生育するために使用した培地であり、例えばグルコースが消費され、代わりに乳酸が排出されている。よって古い培地が新しい培地に混入した場合、培地交換後のグルコース量等は新しい培地における濃度と一致せず、結果として培養工程の再現性は失われる。同様に、古い培地に含まれる乳酸は培地のpHを変化させるため、培地交換後の古い培地に由来する乳酸の混入も、培養工程の再現性に影響を与える。以上より、培養工程の再現性を向上させるには、全量を交換する培地交換工程の場合、古い培地と新しい培地が混入しないことが必要である。
また、培養工程において培養状況を把握するため、排液である古い培地を用いた培地成分分析によるモニタリング機能の搭載が望ましい。正確に培地成分分析を行うには、排液である古い培地の中に、新しい培地が混入することは回避する必要がある。前述の通り、古い培地と新しい培地とで成分組成が異なるため、培地成分分析に使用する古い培地に新しい培地が混入すると、培地成分分析の結果が古い培地のみの分析結果と異なるためである。以上より、培養工程において、古い培地と新しい培地の混入を制御する技術が必要である。
前述の通り、自動培養装置は開発ガイドラインを満たすことが要求される。特に、製造後の再生組織の品質を一定にするためには、培地交換時の交換比率の制御、即ち、培地交換を実施する時点まで細胞培養に使用していた古い培地のうち、どれだけの割合を新しい培地に置き換えるかの制御、が重要である。例えば全量の培地を交換する場合の培地交換工程において、古い培地を排出し新しい培地を供給する際、新しい培地に古い培地が混入しないことが必要である。一般的に手作業で行われる、全量を交換する培地交換では、古い培地を完全に排出し、新しい培地へ置きかえる。手作業を自動化する場合、かつ手作業では全量を交換する培地交換の場合、自動培養装置においても全量を交換可能でなければ、前述の通り古い培地と新しい培地は組成が異なるため、手作業とは培養条件が異なるものになってしまう。結果として培養後の細胞の状態が変わることになり、培養の再現性を実現することはできない。よってその場合において、自動培養装置は古い培地を完全に排出し、新しい培地を所定量供給可能な、全量排出を実施できることが必要である。
細胞種によっては、例えば古い培地の半量を排出し、その等量の新しい培地を供給する培地交換方法が用いられる。手作業においては、全量を交換する培地交換と同様に、所定の比率に従い培地を交換することが可能である。この作業を自動化する場合には、手作業と培養条件を揃えるために、所定の培地交換比率での培地交換を自動培養装置は実施可能であることが必要である。
また、培地交換時の排液である古い培地を用いた培地成分分析によるモニタリング機能を搭載する場合、正確に培地成分分析を行うには、排液である古い培地の中に、新しい培地が混入することは回避する必要がある。理由は同じく、古い培地と新しい培地の組成が異なるためである。
特許文献1、特許文献2は培地交換時、培養容器内に古い培地が存在した状態で新しい培地を供給し、培養容器内部で新しい培地と古い培地とが混在した状態を経て、過剰な分の液体が排出される連続的な培地の交換方法をとる。この方式により、古い培地を新しい培地へ全量交換する培地交換を試みる場合、排出される液体には古い培地の占める割合が多いが、培養容器内に新しい培地と古い培地は混在するため、低濃度になるものの古い培地は新しい培地に混入する。古い培地の組成は、細胞の生育段階(細胞数、分化度)により異なるため、本方法による培地交換後の培養容器内の培地の各成分の濃度も細胞生育段階により異なることになる。また、この方式により、古い培地を新しい培地へ所定の比率で交換する培地交換を試みる場合、交換比率を制御することは不可能である。理由は全量交換の培地交換と同じく、古い培地と新しい培地が混在した状態となるためである。
さらに、この方法で得られた古い培地を用いて培地成分分析を行い、細胞の生育状態をモニタリングする場合、回収した古い培地には新しい培地が混入しているため、モニタリング結果は正確ではなくなるという問題がある。特許文献3は、1個の1層構造の閉鎖系培養容器により培養する自動培養装置を提示している。培地交換は、古い培地を排出してから新しい培地を供給する方式を取る。しかし1層構造であるため、この培養容器を用いて上皮系細胞を培養する場合、製造後の再生組織に共培養するフィーダー細胞が混入する。上皮系細胞を培養する場合には、1層構造より2層構造の培養容器の方が好ましい。
以上を考慮すると、2層構造の閉鎖系培養容器に対し、既存の技術を用い、全量の培地交換、または所定の比率に対する培地交換を実施することは困難である。
本発明の目的は、上記の課題に鑑み、古い培地と新しい培地が混じり合わないよう、全量を交換、または所定の比率で交換する培地交換時に、所定量の古い培地を排出可能な培養容器、及び自動培養装置を提供することにある。
上記の目的を達成するため、本発明においては、細胞を保持、培養するための培養容器であって、培地及び細胞を、または培地のみを収容する第二容器と、第二容器内部に設置される、培地及び細胞をまたは培地のみを収容する第一容器と、第一容器、及び第二容器への培地の供給または排出を行う第一ポート乃至第四ポートとを備え、第二容器からの培地の排出を行う第四ポートを、少なくとも一部分が第一容器と第二容器の間に配置し、少なくとも他の一部分を第二容器の内壁に設置した構成の培養容器を提供する。
また、上記の目的を達成するため、本発明においては、細胞を保持、培養するための培養容器であって、培地及び細胞を、または培地のみを収容する第一容器と、第一容器内部に設置された、培地及び細胞を、または培地のみを収容する第二容器と、第二容器を少なくとも封止する蓋部材と、第一容器に設置された、培地の供給と、気体の供給及び排出をするための第一ポートと、第一容器に設置された、培地を排出するための第二ポートと、第二容器に設置された、培地の供給と、気体の供給及び排出をするための第三ポートと、第二容器に設置された、培地を排出するための第四ポートとを備え、第四ポートは、少なくとも一部分が第一容器と第二容器の間に配置され、少なくとも一部分が第二容器の内壁に設置されており、排出時において第一容器と前記第二容器の間に生じる表面張力により生じる液滴に対し当該ポートより吸引が可能である構成の培養容器を提供する。
更に、上記の目的を達成するため、本発明においては、培養容器内への細胞播種と培地交換を行い、培養容器内において細胞を培養する自動培養装置であって、細胞懸濁液が収容される細胞バッグと、培地が収容される培地バックと、培地を保存する冷蔵庫と、培地を所定温度保持する温度保持部と、細胞を培養する培養容器と、細胞懸濁液及び培地及び空気を送液/送気する流体移動制御機構部と、培養容器、細胞バッグ、培地バッグ、流体移動制御機構部からなる流路回路が設置される細胞培養用恒温槽と、培養容器の培養環境を制御する制御装置を備え、培養容器は、培地及び細胞をまたは培地のみを収容する第二容器と、第二容器内部に設置された、培地及び細胞または培地のみを収容する第一容器と、培養容器の外面に流路と接続可能な第一ポート乃至第四ポートから構成され、第二容器からの培地の排出を行う第四ポートを、少なくとも一部分を第一容器と第二容器の間に配置し、少なくとも他の一部分を第二容器の内壁に設置し、制御装置は、第一容器への培地の排出または供給、あるいは第二容器からの培地の排液または供給をする場合に、第一乃至第四ポートを切り替え、送液を制御する構成の自動培養装置を提供する。
本発明に係る閉鎖系培養容器、あるいは自動培養装置によれば、培養容器内の古い培地を完全に排出する、または、所定量を排出することが可能である。これにより、全量交換または所定の比率での培地交換において、培地送液精度を高めることが可能となるため、培養の再現性が向上する。加えて、回収した古い培地を用いた培地成分分析の分析精度が向上する。
以下、本発明に係る自動培養装置の実施の形態について、図面を参照して詳細に説明する。なお、本明細書において、自動培養装置の流路を流れる気体、液体、気体及び液体を総称して流体と呼ぶ場合がある。
まず、各種の実施例を説明する前に、本発明の好適な態様を概説する。
すなわち、本発明の好適な態様において、内部に培養空間を有し、第一容器及び第二容器を有した2層構造の閉鎖系培養容器であって、第一容器は第二容器内に収容され、培養時は第二容器内側と第一容器外側の空間に培地が保持され、第一容器及び第二容器それぞれへ、細胞懸濁液または培地の供給と、空気の供給及び排出を行う第一及び第三ポートと、第一容器及び第二容器それぞれから培地の排出を行う第二及び第四ポートを有した構成の培養容器を提供する。さらに、全量交換を行う場合に際しては、この構成の培養容器において、第二容器から排出を行う第四ポートは、第一容器の下部及び第二容器の周辺部まで広がる排出口を有した構成の培養容器を提供することにより、排出時において第一容器と第二容器の間に生じる表面張力により生じる液滴に対し当該ポートより吸引が可能であり、また培養容器を傾けることで第二容器の内壁の片側に集積させた培地に対し、第二容器の内壁に設置した部分の当該ポートにより吸引が可能となる。
すなわち、本発明の好適な態様において、内部に培養空間を有し、第一容器及び第二容器を有した2層構造の閉鎖系培養容器であって、第一容器は第二容器内に収容され、培養時は第二容器内側と第一容器外側の空間に培地が保持され、第一容器及び第二容器それぞれへ、細胞懸濁液または培地の供給と、空気の供給及び排出を行う第一及び第三ポートと、第一容器及び第二容器それぞれから培地の排出を行う第二及び第四ポートを有した構成の培養容器を提供する。さらに、全量交換を行う場合に際しては、この構成の培養容器において、第二容器から排出を行う第四ポートは、第一容器の下部及び第二容器の周辺部まで広がる排出口を有した構成の培養容器を提供することにより、排出時において第一容器と第二容器の間に生じる表面張力により生じる液滴に対し当該ポートより吸引が可能であり、また培養容器を傾けることで第二容器の内壁の片側に集積させた培地に対し、第二容器の内壁に設置した部分の当該ポートにより吸引が可能となる。
更に、第二容器の底面は、第一容器の下部まで、階段状に鉛直方向の高さを低くした構成の培養容器を提供する。または、第二容器から排出を行う第四ポートは伸縮可能とし、培地排出時に第一容器の下部に残存する液滴まで第四ポートを伸ばし、十分に回収した後に当該第四ポートを縮めて第二容器の周辺部にある培地の排出を行う構成の培養容器を提供する。
また更に、所定の比率で交換する培地交換を行う場合に際しては、前述の構成の培養容器において、第二容器から排出を行う第四のポートの高さを調整することにより、培地を排出する際はポート先端が培地中に存在し、所定量の培地を排出したため、それ以上の培地の排出が不要になった段階でポート先端が培地外に存在し、以上の方法により所定の比率で交換する培地交換を行う構成の培養容器を提供する。
更にまた、全量交換及び所定の比率で交換する培地交換の両目的を達成するため、本発明においては、内部に培養空間を有する閉鎖系培養容器を用いる自動培養装置であって、細胞懸濁液が収容される細胞バッグと、培地が収容される培地バックと、培地を冷蔵保存する冷蔵庫と培地交換時に事前に培地を37℃に温めるヒーターと、細胞を培養する培養容器と、細胞懸濁液及び培地及び空気を送液/送気する流体移動制御機構部と、二酸化炭素等を供給源となるガスタンク及びガス濃度を調節するガス濃度調節部及び外界との気圧調整を行うフィルタと、流路の開閉を行う二方弁及び三方弁から成る。培養容器、細胞バッグ、培地バッグ、流体移動制御機構部等から構成される流路回路は恒温機の中に設置され、流路回路全体の温度が制御される。培養容器の培養環境は、制御装置により制御する。また、装置内には温度センサを設置し、内部温度をモニタリングする。加えて顕微鏡も設置し、細胞の生育状態を光学的に適宜モニタリングする。
すなわち、本発明の好適な態様の、内部に培養空間を有する閉鎖系培養容器を用いた自動培養装置おいて、培養容器内の第二容器への細胞播種時は、流体移動制御機構部により細胞懸濁液を細胞バッグから第一ポートを経由して第一容器へ供給しつつ、第三ポートから培養容器内の空気を外部へ排出する。培養容器内の第二容器への細胞播種時は、第一及び第二ポートの切り替え後、流体移動制御機構部により細胞懸濁液を細胞バッグから第二ポートを経由して第一容器へ供給しつつ、第一ポートから培養容器内の空気を外部へ排出する。尚、第一容器及び第二容器へ細胞播種を行う順番は任意である。
培養容器内の第一容器の培地交換時は、流体移動制御機構部により培地を培地バッグから第一ポートまで送液しつつ、第三ポートから培養容器内の空気を外部へ排出する。第一ポートまで達した培地は、保存時に例えば4℃にて冷蔵状態であったが例えば37℃まで温めるヒーターを経由しており、よってこの時点で温度は37℃である。第一ポートまで達している培地は、常に37℃に維持されている恒温槽内で待機するため、培地の温度も37℃に維持される。次に、流体移動制御機構部により第一容器の古い培地を第二ポートから排出しつつ、第三ポートから培養容器内の空気を内部へ供給する。この時、全量交換及び所定の比率での培地交換の目的応じ、前述の方法の中から最適な構造及びそれに付随する培地交換方法を選択する。古い培地の排出後、続いて、流体移動制御機構部により第一ポートにて待機している培地を第一容器内へ供給しつつ、第三ポートから培養容器内の空気を外部へ排出する。この操作は、第二ポートから排出した古い培地が第一容器から全量または所定量、排出された直後より、開始する。第二ポートから排出した古い培地が排液バッグ等まで完全に送液することを完了させる必要はない。最後に、流路チューブ内にある第二ポートから排出した古い培地に対し、一部を排液回収バッグより回収し、残りを排液バッグへ排出する。以上により、第一容器内において、古い培地は新しい培地と混じることなく、排出することが可能となる。培地交換後の第一容器内の培地は、全量交換の場合は、培地交換時に供給した新しい培地のみとなり、所定の比率での培地交換の場合は、所定の比率で新しい培地と古い培地が混在することになる。
培養容器内の第二容器の培地交換時は、第一容器の培地交換時に比べ、第一ポートと第三ポートの役割が入れ替わる。また、排出口は、第一容器では第二ポートであったのに対し、第二容器では第四ポートとなる。また、第二容器から古い培地を全量排出する、または、所定量を排出するため、前述の各機能のいずれかを有する。
最初に、流体移動制御機構部により培地を培地バッグから第三ポートまで送液しつつ、第一ポートから培養容器内の空気を外部へ排出する。第三ポートまで達した培地の温度は、第一容器の時と同様に、この時点で37℃を維持している。次に、流体移動制御機構部により第二容器の古い培地を第四ポートから排出しつつ、第一ポートから培養容器内の空気を内部へ供給する。この時、全量交換及び所定の比率での培地交換の目的応じ、前述の方法の中から最適な構造及びそれに付随する培地交換方法を選択する。古い培地の排出後、続いて、流体移動制御機構部により第三ポートにて待機している培地を第二容器内へ供給しつつ、第一ポートから培養容器内の空気を外部へ排出する。この操作は、第四ポートから排出した古い培地が第一容器から全量または所定量、排出された直後より、開始する。第四ポートから排出した古い培地が排液バッグ等まで完全に送液することを完了させる必要はない。最後に、流路チューブ内にある第四ポートから排出した古い培地に対し、一部を排液回収バッグより回収し、残りを排液バッグへ排出する。以上により、第一容器内と同様に、第二容器内において、古い培地は新しい培地と混じることなく、排出することが可能となる。培地交換後の第一容器内の培地は、全量交換の場合は、培地交換時に供給した新しい培地のみとなり、所定の比率での培地交換の場合は、所定の比率で新しい培地と古い培地が混在することになる。尚、第一容器及び第二容器に愛し培地交換を行う順番は任意である。
また、第一容器及び第二容器の培地交換において、古い培地を排出完了後、第一または第三ポートに待機している事前に37℃に維持された培地を、古い培地を第二または第四ポートから排出直後、速やかに供給する。これにより、培養容器内の培養表面の乾燥と温度低下を回避することが可能となる。
加えて、本構成及び本プロトコルにより、流路回路において培地は一方方向に流れることになる。古い培地と新しい培地は混じり合わない。結果として、回収した古い培地に対する培地成分分析の精度も向上する。
図1-図13は、閉鎖系培養容器を培養する自動培養装置の第1の実施例を示す図であり、図1は、その流路回路の一例を示す図である。同図において、1個の閉鎖系培養容器を図示してあるが、閉鎖系培養容器は、例えば10個など複数の閉鎖系培養容器を並列に設置する。ここでは、煩雑さを避けるため、1個の閉鎖系培養容器を示した。
図2は、本実施例に用いる、通常の排出構造を有した閉鎖系培養容器の一例の断面図を示したものである。同様に、図3、4、5は、全量を交換する培地交換において、培地を全量排出する排出口及びそれを有した閉鎖系培養容器の一例を、図6、図7、図8は、所定の比率で交換する培地交換において、所定量の培地を排出する排出口及びそれを有した閉鎖系培養容器を示したものである。図9、図10、図11はそれぞれ、所定の処理時における、培地及び空気の流れの一例を示したものである。また、図12は、閉鎖系培養容器を有する自動培養装置の制御機構の一例を、図13は、自動培養装置を用いて細胞の培養を実施する一連のプロトコル例を示したものである。
図1を用いて、本実施例の閉鎖系培養容器を1個培養する時の全体流路を説明する。培養対象として、角膜上皮細胞、口腔粘膜細胞、表皮細胞等の上皮系細胞を例示する。閉鎖系培養容器は、後で図2を用いて詳細を説明するが、上皮系細胞の培養に用いるため、上皮系細胞を培養する層と、上皮系細胞のための成長因子を産出するフィーダー細胞を培養する層から成る、2層構造の培養容器101を用いる。
図1に明らかなように、本実施例の自動培養装置は、閉鎖系培養容器101と、閉鎖系培養容器101の供給側との間に、流路チューブで構成される第二の流路回路の導入部104を介して細胞バッグ103が接続され、流路チューブである第一の流路回路の導入部105を介して、他の細胞バッグ102が接続されている。また、これらの閉鎖系培養容器101に、第一、第二の流路回路の導入部104、105、複数の二方弁106a~106f、流体移動制御機構部108a、108b、多分岐部109a、109bを介して、培地バッグ111、ヒーター112、ガス供給部115a、115b、ガス濃度調整部116a、116b、フィルタ117a、117bが接続されている。なお、流体移動制御機構部108a、108bは、流体を移動させるポンプとして機能する。
また、各閉鎖系培養容器101の供給側には、多分岐部109a、109bと第二の流路回路の分岐路121、第一の流路回路の分岐路122、第一の電磁弁130y、第二の電磁弁132x、及び無菌脱着部118が設けられている。閉鎖系培養容器101の排出口側は、無菌脱着部118を介して第二の流路回路の分岐路123、第一の流路回路の分岐路124が接続されており、これらの流路回路は、多分岐部109c、109dで、各々第二の流路回路の排出部、第一の流路回路の排出部となり、これらの流路回路はさらに、流体移動制御機構部108c、108d、三方弁107a、107bを介して、排液バッグ113、排液回収バッグ114a、114b、及びフィルタ107a、107bに接続されている。閉鎖系培養容器101は、図示を省略した回転機構によりその位置を任意の角度に、3次元的に回転可能に構成されている。
図1に示す流路回路において、各二方弁106、各流体移動制御機構部108、第一の電磁弁130、第二の電磁弁132、各三方弁107は、予め与えられた制御プロトコルにより、所定のシーケンスに基づいて制御される。これにより、培養容器101に対して培地が常に一方向に流れるように、かつ、古い培地を排出後に新しい培地を供給するなどの流路制御がなされる。
図1に示すように、本実施例の自動培養装置においては、2種類の細胞を用いるため、細胞バッグ102、103は2種類となる。また、細胞播種時において2種類の細胞が混じらないようにするため、播種するための流路回路は、上述の通り分けられている。図1において、本図では、細胞バッグ103に入れた細胞は、実線で示された流路回路の導入部104を通過する。細胞バッグ102に入れた細胞は、破線で示された流路回路の導入部105を通過する。
細胞播種時は、細胞バッグ102、103より、それぞれの細胞懸濁液を培養容器101まで送液する。所定のシーケンスに基づいて、送液時は、事前に所定の二方弁106a~106f、三方弁107a、107bの開閉を行う。そして流体移動制御機構部108a~108dを作動させ、流量、送液時間を制御しつつ送液する。細胞播種は、培養容器101の上層及び下層に対し、順次実施する。上層及び下層へ細胞播種後、培養容器101の下部に取り付けた、図示を省略した回転機構を作動させる。細胞播種時及び細胞培養時において培養容器101は水平状態を保持しているが、細胞播種直後、培地交換時は、培養容器101を傾ける。細胞播種時は連続的に揺動させることにより、播種後の細胞の分布を一様化する。その後、培養容器を水平状態に戻し、その状態で培養を行う。
本実施例の自動培養装置においては、培養期間中、培地交換を所定の日時に実施する。上皮系細胞の場合、1-3日程度に1回の頻度で一般に実施する。培地交換は、上層及び下層に対し、順次実施する。最初に、冷蔵庫内に例えば、4℃にて保管されている培地バッグ111を流体移動制御機構部108a、108bにより培養容器の直前まで送液する。この時、培地バッグ111から送液された直後は4℃である培地を、ヒーター112により例えば37℃まで温める。通常、培養容器101の周囲は、37℃に維持された恒温機の中であるため、ヒーター112により温めた培地は37℃を保持する。続いて、培養容器101内の培地を培養容器から排出する。流体移動制御機構部108c、108dにより、排液バッグ113へ排出する。その時、培地成分分析に必要な排液の一部は、排液回収バッグ114a、114bにおいて回収する。本実施例では、培養容器101の上層及び下層を分けた状態で回収することが可能となっている。また培養容器101から古い培地を排出する際には、回転機構により培養容器を傾け、培養容器内の排出口側から古い培地が排出されやすくなるようにする。続いて、事前に培地バッグ111より培養容器101の直前まで送液し、37℃に保持された状態の新しい培地を、培養容器へ供給する。
細胞播種、培地交換時以外の培養中は、流路回路が設置されている恒温機内の温度を37℃に維持する。これにより、培養容器内の温度も37℃に維持する。また、必要に応じCO2等をガス供給部115a、115bから供給する。濃度はガス濃度調整部116a、116bにて行う。例えば、培養容器内部へ、CO2が5%含まれた気体を適宜送気する。培養対象の細胞種、使用している培地の種類に応じて気体組成と送気スケジュールは決定する。加えて、流路回路外部から気体を取り込んだり、流路回路内部の気圧を調整したりする場合は、フィルタ117a、117bを介して行う。このフィルタは、例えば0.22μm以上の粒子を通さない品質のものを使用する。
図1に示す通り、各流路回路において培養容器101の前後には、無菌脱着部118を取り付ける。培養中は、流路チューブと同様に送液が可能である。先に説明したように、通常自動培養装置においては、複数の培養容器を使用するが、前日検査等で培養容器を1個のみ取り外し、残りの培養容器は無菌性を維持したまま培養を継続する際、無菌脱着部118より培養容器を取り外す。無菌脱着部118により取り外した後の流路回路は、培養容器101が取り外した場所に残された無菌脱着部118により、流路チューブは閉じた状態を維持する。これにより、前日検査のため培養容器を取り外しても、残された培養容器に対して培養を継続可能となる。
また、図1に示す本実施例の閉鎖系培養容器101は、内部に上層用供給部流路としての第一ポート210、上層用供給部接続突起構造209、下層用供給部流路としての第三ポート206、下層用供給部接続突起構造205、上層用排出部流路としての第二ポート212、上層用排出部接続突起構造211、下層用排出部流路としての第四ポート208、下層用排出部接続突起構造207を有する。尚、本図において、下層用排出口は、後で図3において説明する構造例を適用した場合となっている。また、本実施例では、1個の培養容器に対し自動培養する場合を示したが、培養容器の前後において流路チューブを分岐させ、培養容器を並列に接続することで、複数個の培養容器に対する自動培養も可能であることは先に説明した通りである。
図2を用いて、本実施例の閉鎖系培養容器101の基本的な構成要素を詳細に説明する。尚、図2においては、説明の煩雑さを避けるため、全量交換または所定の比率での培地交換を行うための排出口は搭載図示していない。後で、図3~8において詳述する。すなわち、図2の排出口は、培養容器101の側面に設置しただけのものとなっている。
培養容器101の素材はポリカーボネイト、ポリスチレン、ポリプロピレンなどの可塑性と共に剛性有するプラスチックである。本例では、容器底面の形状が正方形である場合を示している。図2において、培養容器101は、培養容器本体200とこの培養容器本体に流路チューブからなる第二の流路回路及び第一の流路回路を接続するための4つの接続ポートによって構成されている。培養容器本体200は、この本体に一体に形成された複数の第二容器201と、蓋部202と、第二容器201と蓋部202との間に挿入される第一容器203とで構成されている。各容器201、203の平面形状は例えば円形である。第二容器201と蓋部202は、各々、射出成形、切削加工等により形成される。
第一容器203として、例えば、一般に培養において使用されるセルカルチャーインサート容器を、本体200の内部の各第二容器201に挿入可能な構造となっている。セルカルチャーインサート容器は市販のものでよく、BD社製、コーニング社製、グライナー社製等があり、使用可能な製品は限定されない。培養容器における第一容器203は、図2の例ではセルカルチャーインサート容器であり、この第一容器203を、本明細書においては上層とする。また、本例では第二容器201を下層とし、この下層の第二容器201は培養容器本体200に一体に形成される。
第一容器203であるセルカルチャーインサート容器では、細胞はセルカルチャーインサート容器の底面上にて播種、培養する。培養容器本体200と培養容器蓋部202で構成する第二容器201では、細胞は培養容器本体部の底面上にて播種、培養する。培養容器蓋部202或いは培養容器本体の第二容器201には、Oリング等の弾性部材204が設けられる。これにより、培養容器101の外部から、気体や菌等を含む粒子は内部に混入しない。培養容器蓋部202の培養容器本体200への接続は、培養容器蓋部202および培養容器本体部200に設けられたネジ山同士をかん合させることにより固定できるが、この方法に限定されるものではない。なお、222は第一容器203と第二容器201との間の気体流通用のギャップである。
培養容器本体の第二容器201には、培地供給と、気体すなわち空気/水蒸気等の供給及び排出をするための、接続突起構造205をその一端に有する第2供給ポートとしての流路206と、培地排出をするための第二排出ポートとしての、接続突起構造207をその一端に有する流路208を有する。この流路206の第二容器201への開口位置は、流路208の第一容器203への開口位置よりも高い位置に形成する。
すなわち、流路206の培養容器本体の第二容器201における開口位置は、容器内に導入する培養液の量によって変えるべきであるが、導入された培養液面よりも上部であればよい。流路208の培養容器本体の第二容器201における開口位置は、培養容器本体部201から培地を排出するために使用するため、全量交換または所定の比率での培地交換を行う目的に応じ変更する。全量交換または所定の比率での培地交換を行う場合については、図3~8を用いて後述する。図2の排出口は、培養容器本体の第二容器201の底面と流路208の内径最下部が、同じ高さとなるように設置しており、そうすることで、培養液の排出効率を向上させることが可能となる。培養容器101を、図示を省略した回転機構により適宜傾けつつ培地を排出することで、排出効率はより向上する。
培養容器蓋部202には、セルカルチャーインサート容器である第一容器203に対し、培地供給と、気体すなわち空気/水蒸気等の供給及び排出をするための、接続突起構造209をその一端に有する、第一供給ポートとしての流路210と、培地排出をするための、接続突起構造211をその一端に有する、第一排出ポートとしての流路212を有する。流路210の第一容器203における開口位置は、流路212の第一容器203における開口位置よりも高い位置にある。
すなわち、流路210の第一容器203における位置は、容器内に導入する培養液の量によって変えるべきであるが、導入された培養液面よりも上部であればよい。流路212は、第一容器203から培地を排出するために使用するため、全量交換または所定の比率での培地交換を行う目的に応じ変更する。全量交換または所定の比率での培地交換を行う場合については、図3~8を用いて後述する。図2の排出口は、セルカルチャーインサート容器である第一容器203の底面と流路212が、近接した状態となっている。但し近接しすぎると、再生組織の製造において、細胞の増殖に従い流路212が接触し、細胞の増殖に対し支障を及ぼす。口腔粘膜細胞の場合、再生組織まで培養すると約数百μmの高さまで細胞は増殖する。よって、流路212は約500μmまでセルカルチャーインサート容器203の底面まで近接可能である。近接が可能となる距離は、培養対象となる細胞の種類に合わせ、決定すればよい。培養液の排出時は、上層の培地交換時と同様に、培養容器を回転機構により適宜傾けつつ培地を排出することで、排出効率を向上させることが可能である。
なお、第一容器203の底面220には多孔性膜やポアメンブレンが設けられており、該部分を介して第一容器203と第二容器201間で液体及び気体が相互に移動可能になっている。また、第一容器203の上部と第二容器201の上部との間には、相互に気体の流通を可能にするギャップ222が存在する。なお、図面では便宜上第一容器203の側壁にギャップ222を表示しているが、第一容器203と第二容器201とが上部空間で相互に連通するものであれば、その位置や形状に制限はない。
このように、細胞を保持、培養するための培養容器101は、培地及び細胞、または培地のみを収容する第二容器201と、この第二容器内部201において、培地及び細胞、または培地のみを収容する第一容器203と、当該第二容器を少なくとも封止する蓋部材202を有する培養容器であり、この培養容器の外面に流路回路と接続可能な第一の供給ポートである流路210、第二の供給ポートである流路206、第一の排出ポートである流路212、第二の排出ポートである流路208を備え、この第一容器203への培地の排出または供給、あるいは第二容器201からの培地の排出または供給をする場合に、送液を制御する手段により、第一、第二の供給ポートへの連通状態、第一、第二の排出ポートへの連通状態が切り替えられる。後で述べるように、第一供給ポートである流路210及び第二供給ポートである流路206は、培地を培養容器101に対して常に一方向へ流し、気体は双方向に流す機能を有している。
培養容器蓋部202に設置した流路210及び流路212は、細胞観察に支障がないように配置する。細胞観察に支障がないとは、例えば細胞培養容器内を顕微鏡観察する際に、顕微鏡光軸を阻害しない形状を備え、また顕微鏡光軸を阻害しない位置に配置することを意味する。流路206、208、210、212は、流路の突起構造サイズに適合した内径を有する、シリコン等の弾性体からなる流路チューブ213が接続可能である。これにより、自動培養装置が有する流路回路に対し接続することができる。培養時において、培養容器内には培地214が入っている。上層には上皮系細胞215を播種し、下層にはフィーダー細胞216が播種されている。但し、用途においては別の細胞を播種したり、細胞を播種しないまま培養したりすることもある。細胞を播種しないまま培養する例として、上層に上皮系細胞を播種し、下層には細胞を播種せず培地のみとし培養することで、フィーダー細胞なしに培養可能であることが報告されている。
図3は、本実施例の自動培養装置を用いて、全量を交換する培地交換において、培地を全量排出する排出口及びそれを有した培養容器の一例を示したものである。図1にて示した下層用排出部流路208の形状を、図3のように変更する。図3の(A)に示すように、下層用排出部流路301は、培養容器本体300の第一容器である上層302と、第二容器である下層303の間に設置する。また、図3の(A)~(D)が示すように下層用排出部流路301の形状は、一端が第一容器である上層302の下部304にあり、残りの一端は第二容器である下層の周囲305に接している。
この構成において、排出時、培地は上層底面と下層の間に生じる表面張力により、液滴となり残存する。よって、下層用排出部流路301を用いることにより、まず、下層用排出部流路301の一端が上層302下にあることを利用し、直接、上層底面と下層の間の液滴を吸引する。吸引により液滴の液量が減ると、上層底面との表面張力は失われる。その結果、上層底面と下層の間の液滴は、下層303全体へ拡散する。その段階で培養容器を傾け、下層用排出部流路301の一端である下層303の周に接している側へ、培養容器を傾ける。これにより、下層全体へ拡散した培地は、下層周囲に接している側から吸引されることになる。下層用排出部流路301の一例として、図3(A)は、断面図を示している。下層用排出部流路301は、上層302の底面まで達している。図3の(B)は、上から見た図を示している。下層用排出部流路301の一端は上層底面304の下にあり、残りの一端は下層周囲305に接している、図3の(C)は、斜めから見た図を示している。図3の(D)は、下層用排出部流路301のみを示した図である。
この実施例の構成により、排出時において第一容器と第二容器の間に生じる表面張力により生じる液滴に対し当該ポートより吸引が可能であり、また培養容器を傾けることで第二容器の内壁の片側に集積させた培地に対し、第二容器の内壁に設置した部分の当該ポートにより吸引が可能となる。
図3の(E)は、同図から明らかなように、下層用排出部流路301の変形例として、吸引する部分をすぼめたものである。これにより、上記の効果を維持したまま、吸引時の圧力が増加するため、吸引効率を向上させることが可能となる。
尚、本構成により、第二容器である下層303に播種するフィーダー細胞は、第一容器である上層302に播種する上皮系細胞に対し、培地中に放出する液性因子をもって上皮系細胞の培養に寄与する。よって、第二容器である下層303に下層用排出部流路301が存在し、フィーダー細胞が下層底面ではなく下層用排出部流路301の上に接着し生育していたとしても、上皮系細胞の生育に対し影響はない。
図4は、本実施例の自動培養装置を用いて、全量を交換する培地交換において、培地を全量排出する排出口及びそれを有した培養容器の異なる一例を示したものである。図4の(A)が示すように、培養容器本体400の第二容器である下層は、第一容器である上層403の底面の下方に、上層底面と同程度の面積である縮小底面401を有する。図1と比べ、下層は縮小底面401まですぼまった形状をしている。途中に、階段構造402を有する。階段構造402は、第一容器である上層403と接触しない。縮小底面401に下層用排出部流路404が接している。
図4の(B)は、上から見た図である。下層底面405の周囲に、階段構造402により生じる縮小底面周囲406がある。図4(のC)は、底面の断面を拡大したものである。階段構造402により、下層底面はすぼまった構造となっているため、培地を排出する際、培地は縮小底面401へ集まることになる。集まった培地は、層用排出部流路404により、効率よく排出される。また縮小底面401は水平であり、上層底面403と平行である。
これにより、上層の細胞を観察する際、例えば情報から光をあて下方から観察する場合、光学的な散乱等を生じることなく、細胞を観察することが可能となる。加えて、階段構造を取ることにより、下層に播種された細胞は、階段構造の水平部分及び縮小底面上に接着し生育することになる。仮に階段構造ではなく鉛直方向に対し斜めの構造を採用した場合、細胞は最下層まで沈降し、縮小底面401に集まり接着、生育することになる。これは、下層に播種したフィーダー細胞の密度が変化することを意味する。細胞間の接触障害等により、フィーダー細胞の生育状況に影響が生じ、結果として培養の再現性が失われることになる。これを回避するため、階段構造を採用している。
また、図4の(D)が示すように、階段構造の一部を曲面407にしても良い。これにより、排出時において、表面張力の作用が減るのでより効率よく培地を排出することが可能となる。
すなわち、以上の構成により、吸引時に最下方の第一容器底面へ培地が集積するため、吸引効率を向上させることが可能となる。また、細胞播種時において階段状構造の水平部分に細胞が接着可能なため、播種後の細胞が最下方の第一容器底面に集積し、細胞密度が増殖することを回避可能である。更に、最下方の第一容器底面は第二容器底面と平行とすることにより、第一容器及び第二容器内の細胞を観察する際に光の散乱等の光学的条件を乱すことがない状態を実現することが可能となる。また更に、階段状構造の一部を曲面にすることで培地排出時に、培地に対し表面張力が作用し残存することが回避可能である。
図5は、本実施例の自動培養装置を用いて、全量を交換する培地交換において、培地を全量排出する排出口及びそれを有した培養容器の異なる一例を示したものである。培養容器本体500の下層用排出部流路501は伸縮性下層用排出部流路502と、下層用排出部流路501と伸縮性下層用排出部流路502の境界を塞ぐことで無菌性を維持し、かつ伸縮性下層用排出部流路502が移動しても境界の閉塞を維持可能な伸縮性を有する弾性部材503から成る。
図5の(A)が示すように、培地を排出する際、伸縮性下層用排出部流路502は、上層底面と下層の間に残存する液滴まで達している。よって、直接吸引することが可能となる。吸引により、液滴に対し上層底面との表面張力が作用しなくなると、液滴は下層全体へ拡散する。その段階で、図5の(B)が示すように伸縮性下層用排出部流路502の端を下層周囲まで移動させ、培養容器を傾け伸縮性下層用排出部流路502の端の方へ、下層全体へ拡散した培地を集める。この状態で、残存している培地を吸引する。
この構成により、排出時において第一容器と第二容器の間に生じる表面張力により生じる液滴に対し当該ポートより吸引が可能であり、また培養容器を傾けることで第二容器の内壁の片側に集積させた培地に対し、第二容器の内壁まで収縮させた当該ポートにより吸引が可能であり、培地の全量排出を行うことができる。
図6は、本実施例の自動培養装置を用いて、所定の比率で交換する培地交換において、所定量の培地を排出する排出口及びそれを有した培養容器の一例を示したものである。培地の排出において、排出口が培地内に存在した状態で流体移動制御機構部を作動させる場合、供給口から空気が培養容器内に送気され、排出口から培地が排液される。逆に、排出口が培地内に存在しない状態で流体移動制御機構部を作動させる場合、供給口から空気が培養容器内に送気され、排出口から空気が送気される。
この現象を利用し、培養容器本体600の上層用排出部流路601及び下層用排出部流路602の位置を制御することで、培地の排出量を制御する。まず上層について、培養容器を水平に維持した状態で、希望する量の培地を排出後に残存している培地の液面高さを求める。上層用排出部流路601の下端は、その液面高さと同一にする。
その状態で流体移動制御機構部を作動させると、上層用排出部流路601の下端が液体内に存在する時は培地が排出され、上層用排出部流路601の下端が液体内に存在しない時、即ち前述の培地液面高さよりも上層用排出部流路601の下端が高い位置に存在する時、上層用排出部流路601から空気が送気される。つまりそれ以上の培地は排出されない。同様に下層について、培養容器を水平に維持した状態で、希望する量の培地を排出後に残存している培地の液面高さを求める。下層用排出部流路602の下端は、その液面高さと同一にする。その状態で流体移動制御機構部を作動させると、下層用排出部流路602の下端が液体内に存在する時は培地が排出され、下層用排出部流路602の下端が液体内に存在しない時、即ち前述の培地液面高さよりも下層用排出部流路602の下端が高い位置に存在する時、下層用排出部流路602から空気が送気される。つまりそれ以上の培地は排出されない。このような上層用排出部流路601及び下層用排出部流路602を設置することで、培地の交換比率を制御する。
これにより、培地交換時に排出させずに残存させる量よりも多い培地が存在する時は当該ポートより培地が排出され、培地交換時に排出させずに残存させる量と同量の培地が存在する時は当該ポートより空気が排出されるため培地は排出されず、第一容器、或いは第二容器の培地に対し、所定量の培地排出を行うことが可能となる。
図7は、本実施例の自動培養装置を用いて、所定の比率で交換する培地交換において、所定量の培地を排出する排出口及びそれを有した培養容器の一例を示したものである。培養容器本体700の上層用排出部及び下層用排出部それぞれに対し、上層用送液切り替え部701及び下層用送液切り替え部702を有している。上層及び下層からの培地交換において、培地を排出する時は、上層用排出流路703及び下層用排出流路704から培地を排出する。所定量の培地を排出後、上層用送液切り替え部701または下層用送液切り替え部702を作動させ、上層用送気流路705または下層用送気流路706へ切り替える。そして空気を送り、所定量の培地を排出バッグ等まで送液する。
図7の(B)は上層用送液切り替え部701または下層用送液切り替え部702の分解図である。入力ポート707、円盤状弁708、出力ポート709から成る。入力ポート707には排出流路710が接続している。出力ポート709には排出流路711及び送気流路712が接続している。入力ポート707、円盤状弁708、出力ポート709の内部には流路713を設ける。円盤状弁708の回転により、排出流路711及び送気流路712のどちらを機能させるか選択する。
これにより、第一容器、第二容器からの培地の排出を行うポートは、培養容器から培地を排出する排出流路と、培養容器外部から当該排出流路へ空気を送気可能な送気流路へ切り替え可能な切り替え機構を有し、所定量の培地の排出を行う際には当該排出流路から排出し、所定量の培地の排出が終了した後は当該送気流路より空気を送気することにより、第一容器、第二容器の培地に対し、所定量の培地排出を行うことが可能となる。
図8は、本実施例の自動培養装置を用いて、所定の比率で交換する培地交換において、所定量の培地を排出する排出口及びそれを有した培養容器の一例を示したものである。培養容器本体800の上層用排出部流路801及び下層用排出部流路802はそれぞれ、伸縮性上層用排出部流路803及び伸縮性下層用排出部流路804を有する。伸縮性下層用排出部流路804は柔軟性を有し、下層培養底面方向への伸長が可能である。上層用排出部流路801と伸縮性上層用排出部流路803の境界には、境界を塞ぐことで無菌性を維持し、かつ伸縮性上層用排出部流路803が移動しても境界の閉塞を維持可能な伸縮性を有する弾性部材805を有する。同様に、下層用排出部流路802と伸縮性下層用排出部流路804の境界には、境界を塞ぐことで無菌性を維持し、かつ伸縮性下層用排出部流路804が移動しても境界の閉塞を維持可能な伸縮性を有する弾性部材806を有する。
図8の(A)が示すように、培地を排出する際、伸縮性上層用排出部流路803または伸縮性下層用排出部流路804の下端は、各層に存在する培地内に達している。よって、直接排出することが可能となる。所定量の培地を排出後、図8の(B)が示すように伸縮性上層用排出部流路803または伸縮性下層用排出部流路804の下端を培地の外へ移動させ、この状態で送液を行う。これにより、所定量のみの排出が可能となる。
すなわち、第一容器、第二容器からの培地の排出を行うポートは伸縮が可能であり、伸縮に際して外部からの菌等の侵入を回避するため接合部は弾性部材で覆われ、収縮時は培地外に当該ポートは位置し、所定量の培地の排出を行う際には当該ポートを伸長させ培地内に位置させた状態で排出し、所定量の培地の排出が終了した後は当該ポートを伸縮させ空気を送気し、第一容器、第二容器の培地に対し、所定量の培地排出を行うことが可能となる。
以上、図1-図8を用いて、閉鎖系培養容器を培養する自動培養装置の第1の実施例の装置構成を中心に説明してきた。これから、以上の構成の自動培養装置を用いて、細胞の培養を実施する一連の動作を、図9A、図9B-図13を用いて説明する。
まず、図13を用いて、本実施例の自動培養装置を用いて細胞の培養を実施する一連の制御フローを概説する。図13は、本実施例の自動培養装置の動作を説明するためのフローチャートである。
まず、自動培養装置を起動させ(ステップS1)、スケジュール決定する(ステップS2)。さらに、適切な二方弁及び三方弁の開閉を行った後、流体移動制御機構部を作動させ、培養容器へ播種を行い(ステップS3)、培養容器で細胞の培養(ステップS4)、及び、顕微鏡による観察を行う(ステップS5)。細胞が正常な状態か判定し(ステップS6)、正常であれば培養容器の培地交換を行う(ステップS7)。その後、検査用組織の回収(ステップS8、S9)、及び、移植直前の培養及び培地交換を行う(ステップS10)を行う。さらに、移植用組織の回収(ステップS11)を行い、一連の細胞培養処理を終了する(ステップS12)。
次に、培養容器101で細胞の培養(ステップS4)、培地交換(ステップS7)、及び、移植直前の培養、及び培地交換(ステップS10)に関し、本実施例の自動培養装置の制御プロトコルを順次説明する。
図9A、図9Bは、図1で示した1個の閉鎖系培養容器に対する流路回路図を用い、細胞播種時の送液プロトコルを説明するための図である。本図では細胞播種を上層、下層の順に実施しているが、その順番は任意である。また、排出効率を向上させる構造として、図3に示した構造・方法を用いて説明する。他の構造・方法を用いる場合、排液操作に関してのみ、図4~8に示した構造・方法に従い、実施すればよい。
まず、図9Aにより、上層へ細胞播種するプロトコルを説明する。図9Aが示すように、細胞バッグ102から流路105を経由してセルカルチャーインサート容器内へ送液する。この時同時に、流路104より培養容器内の空気を培養容器外へ排出する。空気は、最終的にフィルタ115より流路外へ排出する。この時、事前に培地及び空気が流れる流路上の二方弁、三方弁、電磁弁等はあらかじめ開いた状態(オン)にする。すなわち、図9Aにおいて、二方弁106a、106b、電磁弁132a、130bを開いた状態(オン)にして置き、それ以外のものは閉じた状態(オフ)にする。その状態で、流体移動制御機構部108a、108bを作動させることで送液及び送気を実施する。所定量を送液し終えたら終了する。例えば、培養容器101の上層に対する播種のために、30秒かけて各弁やポンプを制御する。もし、培養容器が複数ある場合、全ての培養容器の上層に対する播種のために、各々30秒かけて一連の処理がなされる。
すなわち、図9Aにおいて、細胞バッグ102が、第一の流路回路105、電磁弁106b、流体移動制御機構部108a、第一の流路回路122、第二の電磁弁132aを介して閉鎖系培養容器101の流路210に接続され、上層の第一容器203に対して細胞播種が実施される。この時、下層の第二容器201は、その流路206が第二の流路回路121、第一の電磁弁130b、流体移動制御機構部108b、第二の流路回路104、電磁弁106aを介してフィルタ117aに接続される。第一容器203の上部と第二容器201の上部との間には、相互に気体の流通を可能にするギャップ222が存在するので、第一容器203内の気体は、第二の流路回路104、及びフィルタ117aを介して排気される。
以上詳述したように、細胞バッグ102から流路210を経由してセルカルチャーインサート容器内へ送液する。この時同時に、流路206より培養容器内の空気を培養容器外へ排出する。空気は、最終的にフィルタ117aより流路外へ排出する。このようにして、細胞バッグ102から第一容器203に対する細胞播種は、スムーズに実行される。
続いて図9Bにより、下層へ細胞播種するプロトコルを示す。図9Bが示すように、細胞バッグ103から流路104を経由して培養容器本体部内へ送液する。この時同時に、流路105より培養容器内の空気を培養容器外へ排出する。空気は、最終的にフィルタ116より流路外へ排出する。上層の場合同様、事前に培地及び空気が流れる流路上の二方弁、三方弁、電磁弁等はあらかじめ開いた状態(オン)にする。すなわち、図9Bにおいて、二方弁106c、106f、電磁弁132a、130bを開いた状態(オン)にして置き、それ以外のものは閉じた状態(オフ)にする。その状態で、流体移動制御機構部108a、108bを作動させることで送液及び送気を実施する。所定量を送液し終えたら終了する。例えば、培養容器101の下層に対する播種のために、45秒かけて各弁やポンプを制御する。もし、自動培養装置に複数の培養容器が設置されている場合、それに続いて、他の培養容器各々の下層に対する播種のために、45秒かけて一連の処理がなされる。
すなわち、図9Bにおいて、閉鎖系培養101に対し、第二の細胞バッグ103が、第二の流路回路104、電磁弁106c、流体移動制御機構部108b、第二の流路回路121、第一の電磁弁130bを介して閉鎖系培養容器101の流路206に接続され、下層の第二容器201に対して細胞播種が実施される。この時、上層の第一容器203は、その流路210が第一の流路回路122、第二の電磁弁132a、流体移動制御機構部108a、第一の流路回路105、電磁弁106fを介してフィルタ117bに接続される。第一容器203の上部と第二容器201の上部との間には、相互に気体の流通を可能にするギャップ222が存在するので、第二容器201内の気体は第一の流路回路及びフィルタ117bを介して排気される。
すなわち、図9Bに示すように、細胞バッグ103から流路206を経由して培養容器本体部の第二容器201内へ送液する。この時同時に、流路210より培養容器内の空気を培養容器外へ排出する。空気は、最終的にフィルタ117bより流路外へ排出する。このようにして、第二の細胞バッグ103から第二容器201に対する細胞播種は、スムーズに実行される。
続いて、本実施例の自動培養装置における培養容器の培地交換について説明する。培地交換の対象は、上層であるセルカルチャーインサート容器と、下層である培養容器本体部である。基本的には培地交換において、両方の培地を交換する。しかし装置使用者の設定により、片方のみの培地を交換することも可能である。また、両方の培地を交換する場合において、上層と下層を交換する順番は任意である。図1で説明したように、培地バッグ111は、第一の流路回路105、電磁弁106d、流体移動制御機構部108a、第一の流路回路122、第二の電磁弁132aを介して閉鎖系培養容器101の流路210に接続され、さらに上層の第二容器203に接続される。他方、下層の第二容器201は、その流路206が第二の流路回路121、第一の電磁弁130b、流体移動制御機構部108b、第二の流路回路104、電磁弁106aを介してフィルタ117aに接続される。第一容器203の上部と第二容器201の上部との間には、相互に気体の流通を可能にするギャップ222が存在するので、第二容器203内の気体は第一の流路回路及びフィルタ117bを介して排気される。この構成を前提に、第一容器203、第に容器201の培地交換を説明する。
図10A-図10Eは、閉鎖系培養容器101の上層の第一容器203に対する培地交換時の送液プロトコルを説明するための流路回路とテーブルを示す図である。図10Eのテーブル1000により、閉鎖系培養容器101の上層の培地交換のために、二方弁106、三方弁107、流体移動制御機構部108、電磁弁130b、132aが、テーブル1000で与えられる所定のシーケンスに従い、制御される。図中、黒丸印が各種弁の開(オン)及びポンプの動作状態、×印が弁の閉(オフ)及びポンプの停止状態を示している(以下、同じ)。なお、このテーブルは、後で説明する装置の記憶部に蓄積されたデータベース(DB)等に記憶されている。
まず、図10Aが示すように、培地バッグ111からセルカルチャーインサート容器である第一容器203内の上層用供給部接続突起構造210まで送液する。同時に、流路104より培養容器101内の空気を培養容器外へ排出する。空気は、最終的にフィルタ117より流路外へ排出する。この時、テーブル1000の第一行目に示す状態で、事前に培地及び空気が流れる流路上の二方弁106a、106d、電磁弁130b、132aはあらかじめ開いた状態(オン)にする。それ以外のものは閉じた状態(オフ)にする。その状態で、チューブポンプからなる流体移動制御機構部108a、108bを作動させることで送液及び送気を実施する。また、培地バッグ111は冷蔵庫内に設置するため、培地バッグから送液した直後の培地は4℃であるが、ヒーター112により37℃まで加温し、培養容器101等が設置された恒温機内にて37℃にて維持する。
そして、培地バッグ111から第一の流路回路122を経て容器101の流路210の接続突起構造209まで培地を送液した状態で、送液を一旦停止する。すなわち、第一の流路回路122の供給側の電磁弁を閉じ、ポンプを停止させることで、第一の流路回路122内の培地の先端は、接続突起構造209付近に維持される。なお、この停止位置は、用途によって、適宜変更すれば良い。
次に、図10Bが示すように、セルカルチャーインサート容器内の培養に用いた古い培地を、上層用排出部流路124から排出する。この時同時に、流路104より空気を培養容器内へ供給する。空気は、最終的にフィルタ117aから流路内へ供給する。この時、テーブル1000の第二行目に示す状態で、事前に培地及び空気が流れる流路上の二方弁106a、三方弁107a、電磁弁130bはあらかじめ開いた状態にする。それ以外のものは閉じた状態にする。その状態で、流体移動制御機構部108b、108cを作動させることで排液及び送気を実施する。排液は、上層の第一容器203にある古い培地の全量が、上層から排出された時点で終了する。古い培地は最終的に排液バッグ113または排液回収バッグ114aへ排出されるが、全量に対し完了する必要はない。
続いて、図10Cが示すように、培地バッグ111からセルカルチャーインサート容器内の上層用供給部接続突起構造210まで送液し、37℃にて待機させていた新しい培地を、上層へ供給する。この時同時に、流路104より培養容器内の空気を培養容器101外へ排出する。空気は、最終的にフィルタ117aより流路外へ排出する。この時、テーブル1000の第三行目に示す状態で、事前に培地及び空気が流れる流路上の二方弁106a、106d、電磁弁132a、130bはあらかじめ開いた状態にする。それ以外のものは閉じた状態にする。その状態で、流体移動制御機構部108a、108bを作動させることで送液及び送気を実施する。
最後に、図10Dが示すように、上層用排出部流路212と排液バッグ113または排液回収バッグ114aの間に残存している古い培地を、排液バッグ113または排液回収バッグ114aへ排出する。この時同時に、流路104より空気を培養容器内へ供給する。空気は、最終的にフィルタ117aから流路内へ供給する。この時、テーブル1000の第四行目に示す状態で、事前に培地及び空気が流れる流路上の二方弁106a、三方弁107a、電磁弁130bはあらかじめ開いた状態にする。それ以外のものは閉じた状態にする。その状態で、流体移動制御機構部108b、108cを作動させることで排液及び送気を実施する。排液は、上層にある古い培地が全量、排液バッグ113または排液回収バッグ114aへ排出された時点で終了する。
引き続き、図11A-図11Eを用いて、閉鎖系培養容器101の下層の第二容器201の培地交換を説明する。図11A-図11Eは、1個の閉鎖系培養容器101の下層の培地交換時の培地及び空気の流れを示す流路回路、及びテーブル2000を示す図である。図11Aが示すように、培地バッグ111から、培養容器本体部内の下層用供給部接続突起構造206まで送液する。まず、図13Aに示すように、培地バッグ111から第二の流路回路104、121を介して培養容器101の本体部の第二容器201内の流路206の接続突起構造まで送液する。そして、この状態で、送液を一旦停止する。すなわち、第二の流路回路の供給側の各電磁弁を閉じ、ポンプを停止させることで、第二の流路回路内の培地の先端は、接続突起構造205付近に維持される。なお、この停止位置は、用途によって、適宜変更すれば良い。
この時同時に、流路104より培養容器内の空気を培養容器外へ排出する。空気は、最終的にフィルタ117bより流路外へ排出する。この時、テーブル2000の第一行目に示す状態で、事前に培地及び空気が流れる流路上の二方弁106e、106f、電磁弁130b、132aはあらかじめ開いた状態にする。それ以外のものは閉じた状態にする。その状態で、流体移動制御機構部108a、108bを作動させることで送液及び送気を実施する。また、培地バッグは冷蔵庫内に設置するため、培地バッグから送液した直後の培地は4℃であるが、ヒーター112により37℃まで加温し、培養容器等が設置された恒温機内にて37℃にて維持する。
次に、図11Bが示すように、培養容器本体部内の第二容器201内の培養に用いた古い培地を、流路208から下層用排出部流路123を介して、排液バッグ113または排液回収バッグ114bへ排出する。この時同時に、流路105、第一の流路回路122から、流路210を介して空気を培養容器内へ供給する。空気は、最終的にフィルタ117bから流路内へ供給する。この時、テーブル2000の第二行目に示す状態で、事前に培地及び空気が流れる流路上の二方弁106f、及び三方弁107b、電磁弁130bはあらかじめ開いた状態にする。それ以外のものは閉じた状態にする。その状態で、流体移動制御機構部108b、108dを作動させることで排液及び送気を実施する。排液は、下層にある古い培地が全量、下層から排出された時点で終了する。古い培地は最終的に排液バッグ131または排液回収バッグ114bへ排出されるが、全量に対し完了する必要はない。
続いて、図11Cが示すように、予め、培地バッグ111から、37℃にて培養容器本体部の下層の第二容器201の流路206の供給部接続突起構造205まで送液し、待機させていた新しい培地を、下層の第二容器201へ供給する。この時同時に、流路210、流路105より培養容器内の空気を、第一の流路回路122を介して、培養容器外へ排出する。空気は、最終的にフィルタ117bより流路外へ排出する。この時、テーブル2000の第三行目に示す状態で、事前に培地及び空気が流れる流路上の二方弁106e、106f、電磁弁130bはあらかじめ開いた状態にする。それ以外のものは閉じた状態にする。その状態で、流体移動制御機構部108a、108bを作動させることで送液及び送気を実施する。
最後に、図11Dが示すように、下層用排出部流路208と排液バッグ113または排液回収バッグ114bの間に残存している古い培地を、排液バッグ113または排液回収バッグ114bへ排出する。この時同時に、流路104より空気を培養容器内へ供給する。空気は、最終的にフィルタ117bから流路内へ供給する。この時、テーブル2000の第四行目に示す状態で、事前に培地及び空気が流れる流路上の二方弁106f、及び三方弁107b、電磁弁132aはあらかじめ開いた状態にする。それ以外のものは閉じた状態にする。その状態で、流体移動制御機構部108a、108dを作動させることで排液及び送気を実施する。排液は、下層にある古い培地が全量、排液バッグ113、または排液回収バッグ114bへ排出された時点で終了する。
以上説明した本実施例によれば、細胞播種工程及び培地交換工程において、培地は常に一方向に流れるので古い培地が新しい培地に混入せず、培養の再現性が向上する。培地交換時に古い培地を全て排出した後に新しい培地が速やかに供給される。しかも、閉鎖系培養容器に取り付けた流路チューブの一部は、送液と送気の機能を兼ねるため、全体流路回路は簡潔となる。
以上説明した本実施例によれば、細胞播種工程及び培地交換工程において、培地は常に一方向に流れるので古い培地が新しい培地に混入せず、培養の再現性が向上する。培地交換時に古い培地を全て排出した後に新しい培地が速やかに供給される。しかも、閉鎖系培養容器に取り付けた流路チューブの一部は、送液と送気の機能を兼ねるため、全体流路回路は簡潔となる。
図12は、本実施例の閉鎖系培養容器を接続可能な自動培養装置の一機能構成を説明するブロック図である。制御装置1202により制御される各構成要素が、恒温機1203の内部に配置された培養容器101に接続される全体の構成を示す図である。なお、恒温槽1203中に配置されるものは、図1-図8を用いて説明した培養容器、或いは自動培養装置内に設置された当該培養容器であることは言うまでもない。
図12において、制御装置1202には、恒温機1203の温度を制御するための温度調節部1204と、培養容器内のガス濃度を制御するための、ガス供給部1205を有するガス濃度調節部1206と、培養容器内の培養液を自動で交換するための、各流路回路構成要素に接続された流路チューブを有する流体移動制御1207と、それぞれの構成要素の動作を制御することを目的とした細胞観察用の顕微鏡1208、CO2・O2センサ1209が接続されている。
制御装置1202と表示画面1210は、CPU(Central Processing Unit;中央処理部)から成る処理部、記憶部や、ディスプレイ装置、キーボードから成る入出力部等を備えた通常のコンピュータの、処理部および記憶部とディスプレイ装置の表示部にそれぞれ対応している。制御装置1202は、記憶部1213で記憶された各種プログラムを、処理部としてのCPU上で動作させる。記憶部1213中には、そのほか先に説明したデータベース(DB)も記憶されている。
これにより、温度調整部1204、ガス供給部1205、流体移動制御機構部1207、顕微鏡1208、CO2・O2センサ1209、ガス濃度調整部1211、細胞・培地・排液・排液回収バッグ1212により、恒温機1203中の培養環境を制御し、培養容器101中での所定の培養工程の実施を可能とする。
ガス濃度調節部1211は、培養容器101に直接接続されている必要はない。温度調節部1204、ガス濃度調節部1211と、CO2・O2センサ1209が恒温機1203に接続された構成でも構わない。この構成の場合、細胞培養容器101へは容器外から気体を供給する必要があるため、細胞培養容器101の蓋部の一部に、ポリカーボネイトやポリスチレン、ポリメチルペンテン等のガス透過性を有した透明な薄膜を溶着し、細胞培養容器101内部のガス交換を可能とすることで、細胞培養を可能とすることができる。
ガス濃度調節部1211は、培養容器101に直接接続されている必要はない。温度調節部1204、ガス濃度調節部1211と、CO2・O2センサ1209が恒温機1203に接続された構成でも構わない。この構成の場合、細胞培養容器101へは容器外から気体を供給する必要があるため、細胞培養容器101の蓋部の一部に、ポリカーボネイトやポリスチレン、ポリメチルペンテン等のガス透過性を有した透明な薄膜を溶着し、細胞培養容器101内部のガス交換を可能とすることで、細胞培養を可能とすることができる。
以上の構成を有する本実施例の自動培養装置を用い、細胞を培養する時の一連の培養手順について説明する。図13は、本実施例の自動培養装置の動作を説明するためのフローチャートである。以下、自動培養装置の動作を説明する。尚、使用する培養容器101の数を増やす場合は、流路の多分岐部において、並列に培養容器を並べればよい。またその場合の培養手順は、以下に示す操作を各培養容器に対して順々に実施すればよい。
<ステップS1:スタート>
まず、図13に示すように、自動培養装置を起動させる。操作者が制御装置にある操作部のスタートスイッチを押すことにより起動する。尚、この時点で流路回路等は事前に自動培養装置へ設置されている。制御部のディスプレイの操作画面において、自動培養装置の内部環境として適切な値であることを確認する。例えば、恒温機の温度が37℃であることを確認する。これらの数値は限定的なものでなく、例えば温度は、0℃から45℃の範囲より選択可能である。また装置の内部は、事前の適切な操作により、滅菌ガスによる滅菌或いはエタノールによる消毒が施され、清浄な状態となっている。また、培養に用いる流路部に対しても事前に滅菌を施してある。
まず、図13に示すように、自動培養装置を起動させる。操作者が制御装置にある操作部のスタートスイッチを押すことにより起動する。尚、この時点で流路回路等は事前に自動培養装置へ設置されている。制御部のディスプレイの操作画面において、自動培養装置の内部環境として適切な値であることを確認する。例えば、恒温機の温度が37℃であることを確認する。これらの数値は限定的なものでなく、例えば温度は、0℃から45℃の範囲より選択可能である。また装置の内部は、事前の適切な操作により、滅菌ガスによる滅菌或いはエタノールによる消毒が施され、清浄な状態となっている。また、培養に用いる流路部に対しても事前に滅菌を施してある。
<ステップS2:スケジュール決定>
培養する細胞の種類と量に合わせ、自動培養装置により実施する自動培養スケジュールを決定する。細胞播種、培地交換、顕微鏡観察、排液回収、検査用組織回収、移植用組織回収等の操作を行う日時、頻度、液量等の条件を、制御部の操作部より入力する。
培養する細胞の種類と量に合わせ、自動培養装置により実施する自動培養スケジュールを決定する。細胞播種、培地交換、顕微鏡観察、排液回収、検査用組織回収、移植用組織回収等の操作を行う日時、頻度、液量等の条件を、制御部の操作部より入力する。
<ステップS3:細胞播種>
適切な二方弁及び三方弁の開閉を行った後、流体移動制御機構部を作動させ、細胞バッグより細胞懸濁液を吸引する。細胞懸濁液は、食道粘膜再生の例では口腔粘膜細胞を培養するため、KCM培地(keratinocyte culture medium)に懸濁した口腔粘膜細胞と、同じくKCM培地に懸濁した3T3-J2細胞である。流体移動制御機構部を駆動させることにより、エアフィルタを介して流路外へ流路内の空気を排出しつつ、細胞懸濁液を吸引する。そして培養容器へ播種する。細胞播種は、各培養容器のそれぞれの上層及び下層へ、順次実施する。播種後、回転機構により培養容器を複数回揺動させることにより、培養表面上の細胞分布が均一となるようにする。
適切な二方弁及び三方弁の開閉を行った後、流体移動制御機構部を作動させ、細胞バッグより細胞懸濁液を吸引する。細胞懸濁液は、食道粘膜再生の例では口腔粘膜細胞を培養するため、KCM培地(keratinocyte culture medium)に懸濁した口腔粘膜細胞と、同じくKCM培地に懸濁した3T3-J2細胞である。流体移動制御機構部を駆動させることにより、エアフィルタを介して流路外へ流路内の空気を排出しつつ、細胞懸濁液を吸引する。そして培養容器へ播種する。細胞播種は、各培養容器のそれぞれの上層及び下層へ、順次実施する。播種後、回転機構により培養容器を複数回揺動させることにより、培養表面上の細胞分布が均一となるようにする。
<ステップS4:細胞の培養>
培養容器を水平に静置した状態で所定時間、培養する。例として口腔粘膜細胞の場合、静置期間は播種後5日間程度とする。培養中は、恒温機により培養容器の周囲環境を37℃に維持する。また、必要に応じ培養容器の内部へ所定成分の気体を送気する。口腔粘膜細胞の培養の場合、CO2濃度は5%、湿度は100%に維持する。自動培養装置内部の空気はファンにより常に攪拌し、温度分布が常に一様となるようにする。
培養容器を水平に静置した状態で所定時間、培養する。例として口腔粘膜細胞の場合、静置期間は播種後5日間程度とする。培養中は、恒温機により培養容器の周囲環境を37℃に維持する。また、必要に応じ培養容器の内部へ所定成分の気体を送気する。口腔粘膜細胞の培養の場合、CO2濃度は5%、湿度は100%に維持する。自動培養装置内部の空気はファンにより常に攪拌し、温度分布が常に一様となるようにする。
<ステップS5:顕微鏡による観察>
自動培養装置内に設置した顕微鏡を用い、細胞画像を取得する。自動培養装置内に設置した光源を適宜発光させ、顕微鏡により細胞に焦点を合わせ、撮像する。必要に応じ、培養表面に定点を任意に定め、撮影する。取得した細胞画像はデータベースに保存し、自動培養装置の外部に設置したディスプレイ上で必要に応じ閲覧できるようにする。顕微鏡観察により得た細胞の生育状態に関する情報から判断し、培地交換の頻度、時期の調整を行う。例えば細胞の接着が不十分な場合、S6の培地交換は実施せず、S4の細胞の培養を継続する。
自動培養装置内に設置した顕微鏡を用い、細胞画像を取得する。自動培養装置内に設置した光源を適宜発光させ、顕微鏡により細胞に焦点を合わせ、撮像する。必要に応じ、培養表面に定点を任意に定め、撮影する。取得した細胞画像はデータベースに保存し、自動培養装置の外部に設置したディスプレイ上で必要に応じ閲覧できるようにする。顕微鏡観察により得た細胞の生育状態に関する情報から判断し、培地交換の頻度、時期の調整を行う。例えば細胞の接着が不十分な場合、S6の培地交換は実施せず、S4の細胞の培養を継続する。
<ステップS6:培地交換>
培地交換は、一般に数日に一度の頻度で実施する。細胞の生育状況に応じ、頻度は調整を行う。適切な電磁弁の開閉を行った後、流体移動制御機構部を作動させ、流体移動制御機構部を駆動させることにより培地バッグより培地を吸引する。同時に、フィルタを介して流路外へ流路内の空気を排出する。培地バッグから送液された直後の培地は4℃であるが、ヒーター及び恒温機内の気相により、培地の温度は37℃を維持した状態で次の工程に進む。
培地交換は、一般に数日に一度の頻度で実施する。細胞の生育状況に応じ、頻度は調整を行う。適切な電磁弁の開閉を行った後、流体移動制御機構部を作動させ、流体移動制御機構部を駆動させることにより培地バッグより培地を吸引する。同時に、フィルタを介して流路外へ流路内の空気を排出する。培地バッグから送液された直後の培地は4℃であるが、ヒーター及び恒温機内の気相により、培地の温度は37℃を維持した状態で次の工程に進む。
続いて、培養容器から古い培地を排出する。この時、回転機構により培養容器を傾け、古い培地の全量が排出されるようにする。排出後、速やかに、37℃に維持されている新しい培地を培養容器内へ供給する。これにより、培養表面上の細胞の乾燥と、培養表面の温度低下を回避する。
培養容器から排出した古い培地は、一部を排液回収バッグへ、残りを排液バッグへ送液する。回収した古い培地は、別途用意する培地成分分析装置により培地成分分析を用い、細胞の生育状況を評価する。例えば、細胞が生育時に用いるグルコースと排出する乳酸の量を測定し、細胞の生育状態を把握する。また、マイコプラズマ試験等を実施し、培地が汚染されていないか判定する。汚染があった場合には培養を直ちに終了し、自動培養装置の設置場所が汚染されないよう、細胞を適切な操作により無菌的に破棄する。
<ステップS7:検査用組織の回収>
移植予定日の前日に、培養中の培養容器のうち1枚を検査用に回収する。あらかじめ流路内に組み込まれた無菌脱着部を用い、培養容器を無菌的に取り外す。そして回収した培養容器において、中の細胞の状態が移植に適した質を有するか検査を行う。例えば口腔粘膜細胞による再生組織の場合、組織学的評価により3層程度の重層化した構造を有するか、免疫組織化学染色評価により口腔粘膜幹細胞が再生組織の基底層に存在するか、口腔粘膜細胞特異的タンパク質を発現しているか等の評価を行う。
移植予定日の前日に、培養中の培養容器のうち1枚を検査用に回収する。あらかじめ流路内に組み込まれた無菌脱着部を用い、培養容器を無菌的に取り外す。そして回収した培養容器において、中の細胞の状態が移植に適した質を有するか検査を行う。例えば口腔粘膜細胞による再生組織の場合、組織学的評価により3層程度の重層化した構造を有するか、免疫組織化学染色評価により口腔粘膜幹細胞が再生組織の基底層に存在するか、口腔粘膜細胞特異的タンパク質を発現しているか等の評価を行う。
<ステップS8:移植直前の培養及び培地交換>
ステップS4と同じ操作による培養を行う。そしてステップS9を実施する直前に、ステップS6と同じ操作による培地交換を行う。
ステップS4と同じ操作による培養を行う。そしてステップS9を実施する直前に、ステップS6と同じ操作による培地交換を行う。
<ステップS9:移植用組織の回収>
ステップS7による評価の結果、移植に適した再生組織が培養できていると判断がついた場合、移植用として組織を回収して再生医療治療に用いる。S7と同様に、無菌脱着部を用い培養容器を取り外す。その後、再生医療治療を行う手術室へ、無菌性と生物学的な質を維持した状態で搬送し、治療に用いる。
ステップS7による評価の結果、移植に適した再生組織が培養できていると判断がついた場合、移植用として組織を回収して再生医療治療に用いる。S7と同様に、無菌脱着部を用い培養容器を取り外す。その後、再生医療治療を行う手術室へ、無菌性と生物学的な質を維持した状態で搬送し、治療に用いる。
<ステップS10:終了>
培養に用いた流路部を取り外す。続いて、装置の内部へ適切な操作により、滅菌ガスによる滅菌或いはエタノールによる消毒を施し、清浄な状態にする。自動培養装置の各種ソフトを終了させ、自動培養装置の作動を終了させる。
培養に用いた流路部を取り外す。続いて、装置の内部へ適切な操作により、滅菌ガスによる滅菌或いはエタノールによる消毒を施し、清浄な状態にする。自動培養装置の各種ソフトを終了させ、自動培養装置の作動を終了させる。
以上、本発明の実施の形態の一例を図面に従い説明したが、本発明はこれら実施例に限定されるものでないこと明らかである。例えば実施例において、流体を移動させる流体移動制御機構部としてペリスタルティック・ポンプを想定しているが、シリンジ・ポンプ等の他の駆動機構を用いても良いことは言うまでもない。
以上のように構成された自動培養装置の好適な実施形態によれば、全量交換を目的とした培地交換において、培養容器内の古い培地を完全に排出することが可能である。これにより、全量を交換する培地交換において、古い培地が新しい培地に混入しないようにするため、培養の再現性が向上する。回収した古い培地を用いた培地成分分析の分析精度が向上する。更に、古い培地を回収後は、速やかに事前に37℃へ温めた新しい培地を供給する。閉鎖系培養容器に取り付けた流路チューブの一部は、送液と送気の機能を兼ねるため、全体流路回路は簡潔となる。
本発明は、培養容器を用いて細胞又は組織を自動操作により培養する細胞培養装置、特に再生医療に使用可能な再生組織を製造することのできる細胞培養装置として有用である。
101…培養容器
102、103…細胞バッグ
104、105…流路回路
106…二方弁
107…三方弁
108…流体移動制御機構部
109…多分岐部
111…培地バッグ
112…ヒーター
113…排液バッグ
114…排液回収バッグ
115…ガス供給部
116…ガス濃度調整部
117…フィルタ
118…無菌脱着部
121…下層用供給部流路
122…上層用供給部流路
123…下層用排出部流路
124…上層用排出部流路
200…培養容器本体
201…第二容器
202…培養容器蓋部
203…セルカルチャーインサート容器(第一容器)
204…弾性部材
205、207、209、211…接続突起構造
206、208、210、212…流路(ポート)
214…培地
215…上皮系細胞
216…フィーダー細胞
222…気体流通用ギャップ
301…下層用排出部流路である第四ポート
302…上層(第一容器)
303…下層(第二容器)
304…上層下部
305…下層周囲
401…縮小底面
402…階段構造
403…上層(第一容器)
404…下層用排出部流路
405…下層底面
406…縮小底面周囲
407…曲面
501…下層用排出部流路
502…伸縮性下層用排出部流路
503…弾性部材
601…上層用排出部流路
602…下層用排出部流路
701…上層用送液切り替え部
702…下層用送液切り替え部
703…上層用排出流路
704…下層用排出流路
705…上層用送気流路
706…下層用送気流路
707…入力ポート
708…円盤状弁
709…出力ポート
710、711…排出流路
712…送気流路
713…流路
801…上層用排出部流路
802…下層用排出部流路
803…伸縮性上層用排出部流路
804…伸縮性下層用排出部流路
805、806…弾性部材
1000、2000…テーブル
1202…制御装置
1203…恒温機
1204…温度調節部
1205…ガス供給部
1206…ガス濃度調節部
1207…流体移動制御
1208…顕微鏡
1209…CO2・O2センサ
1210…表示画面
1211…ガス濃度調整部
1212…細胞・培地・排液・排液回収バッグ
1213…記憶部
102、103…細胞バッグ
104、105…流路回路
106…二方弁
107…三方弁
108…流体移動制御機構部
109…多分岐部
111…培地バッグ
112…ヒーター
113…排液バッグ
114…排液回収バッグ
115…ガス供給部
116…ガス濃度調整部
117…フィルタ
118…無菌脱着部
121…下層用供給部流路
122…上層用供給部流路
123…下層用排出部流路
124…上層用排出部流路
200…培養容器本体
201…第二容器
202…培養容器蓋部
203…セルカルチャーインサート容器(第一容器)
204…弾性部材
205、207、209、211…接続突起構造
206、208、210、212…流路(ポート)
214…培地
215…上皮系細胞
216…フィーダー細胞
222…気体流通用ギャップ
301…下層用排出部流路である第四ポート
302…上層(第一容器)
303…下層(第二容器)
304…上層下部
305…下層周囲
401…縮小底面
402…階段構造
403…上層(第一容器)
404…下層用排出部流路
405…下層底面
406…縮小底面周囲
407…曲面
501…下層用排出部流路
502…伸縮性下層用排出部流路
503…弾性部材
601…上層用排出部流路
602…下層用排出部流路
701…上層用送液切り替え部
702…下層用送液切り替え部
703…上層用排出流路
704…下層用排出流路
705…上層用送気流路
706…下層用送気流路
707…入力ポート
708…円盤状弁
709…出力ポート
710、711…排出流路
712…送気流路
713…流路
801…上層用排出部流路
802…下層用排出部流路
803…伸縮性上層用排出部流路
804…伸縮性下層用排出部流路
805、806…弾性部材
1000、2000…テーブル
1202…制御装置
1203…恒温機
1204…温度調節部
1205…ガス供給部
1206…ガス濃度調節部
1207…流体移動制御
1208…顕微鏡
1209…CO2・O2センサ
1210…表示画面
1211…ガス濃度調整部
1212…細胞・培地・排液・排液回収バッグ
1213…記憶部
Claims (15)
- 細胞を保持、培養するための培養容器であって、
培地及び細胞を、または培地のみを収容する第二容器と、
前記第二容器内部に設置される、培地及び細胞を、または培地のみを収容する第一容器と、
前記第一容器、及び前記第二容器への培地の供給または排出を行う第一ポート乃至第四ポートとを備え、
前記第二容器からの培地の排出を行う前記第四ポートを、少なくとも一部分が前記第一容器と前記第二容器の間に配置し、少なくとも他の一部分を前記第二容器の内壁に設置した、
ことを特徴とする培養容器。 - 請求項1に記載の培養容器であって、
前記第四ポートは、前記培地を吸引する側が排出する側に比較してすぼまっている、
ことを特徴とする培養容器。 - 請求項1に記載の培養容器であって、
前記第二容器の底面は階段状に下方へ向かうにつれ底面積を小さく形成し、
前記第四ポートは、最下方の前記第二容器底面より培地の排出を行う、
ことを特徴とする培養容器。 - 請求項3に記載の培養容器であって、
最下方の前記第二容器底面は前記第一容器底面と平行である、
ことを特徴とする培養容器。 - 請求項1に記載の培養容器であって、
前記第二容器の底面を、階段状に下方へ向かうにつれ底面積を小さくした階段状構造とし、且つ当該階段状構造の一部を局面とし、
前記第四ポートは、最下方の前記第二容器底面より培地の排出を行う、
ことを特徴とする培養容器。 - 請求項1に記載の培養容器であって、
前記第四ポートの排出側は伸縮が可能であり、伸縮に際して外部からの菌の侵入を回避するための弾性部材で覆われた接合部を備える、
ことを特徴とする培養容器。 - 請求項1に記載の培養容器であって、
前記第四ポートの下端は、設定する培地交換比率に応じ、培地交換時に排出させずに残存させる量の培地の液面と同位置に配置する、
ことを特徴とする培養容器。 - 請求項1に記載の培養容器であって、
前記第一容器からの培地の排出を行う前記第二ポートの下端は、設定する培地交換比率に応じ、培地交換時に排出させずに残存させる量の培地の液面と同位置に配置する、
ことを特徴とする培養容器。 - 請求項1に記載の培養容器であって、
前記第一容器からの培地の排出を行う前記第二ポートは、前記培養容器から培地を排出する排出流路と、培養容器外部から当該排出流路へ空気を送気可能な送気流路へ切り替え可能な切り替え機構を有し、
前記第一容器に、所定量の培地の排出を行う際には当該排出流路から排出し、所定量の培地の排出が終了した後は当該送気流路より空気を送気する、
ことを特徴とする培養容器。 - 請求項1に記載の培養容器であって、
前記第四ポートは、前記培養容器から培地を排出する排出流路と、培養容器外部から当該排出流路へ空気を送気可能な送気流路へ切り替え可能な切り替え機構を有し、
前記第二容器に、所定量の培地の排出を行う際には当該排出流路から排出し、所定量の培地の排出が終了した後は当該送気流路より空気を送気する、
ことを特徴とする培養容器。 - 請求項1に記載の培養容器であって、
前記第四ポートは伸縮が可能であり、伸縮に際して外部からの菌の侵入を回避するため、接合部は弾性部材で覆われた接合部を備え、収縮時は培地外に当該第四ポートは位置する、
ことを特徴とする培養容器。 - 請求項1に記載の培養容器であって、
第一容器からの培地の排出を行う第二ポートは伸縮が可能であり、伸縮に際して外部からの菌等の侵入を回避するため接合部は弾性部材で覆われ、収縮時は培地外に当該第二ポートは位置する、
ことを特徴とする培養容器。 - 細胞を保持、培養するための培養容器であって、
培地及び細胞を、または培地のみを収容する第一容器と、
当該第一容器内部に、培地及び細胞を、または培地のみを収容する第二容器と、
当該第二容器を少なくとも封止する蓋部材と、
前記第一容器に設置された、前記培地の供給と、気体の供給及び排出をするための第一ポートと、
前記第一容器に設置された、前記培地を排出するための第二ポートと、
前記第二容器に設置された、前記培地の供給と、前記気体の供給及び排出をするための第三ポートと、
前記第二容器に設置された、前記培地を排出するための第四ポートとを備え、
前記第四ポートは、少なくとも一部分が前記第一容器と前記第二容器の間に配置され、少なくとも一部分が前記第二容器の内壁に設置されており、
排出時において前記第一容器と前記第二容器の間に生じる表面張力により生じる液滴に対し当該第四ポートより吸引が可能である、
ことを特徴とする培養容器。 - 請求項13に記載の培養容器であって、
請求項1に記載の培養容器であって、
前記第四ポートは、吸引する側が排出する側に比較してすぼまっている、
ことを特徴とする培養容器。 - 培養容器内への細胞播種と培地交換を行い、培養容器内において細胞を培養する自動培養装置であって、
細胞懸濁液が収容される細胞バッグと、
培地が収容される培地バックと、
培地を冷蔵保存する冷蔵庫と
培地を所定温度保持する温度保持部と、
細胞を培養する培養容器と、
細胞懸濁液及び培地及び空気を送液/送気する流体移動制御機構部と、
前記培養容器、前記細胞バッグ、前記培地バッグ、前記流体移動制御機構部からなる流路回路が設置される細胞培養用恒温槽と、
前記培養容器の培養環境を制御する制御装置を備え、
前記培養容器は、培地及び細胞を、または培地のみを収容する第二容器と、
前記第二容器内部に設置され、培地及び細胞を、または培地のみを収容する第一容器と、
前記培養容器の外面に流路と接続可能な第一ポート乃至第四ポートから構成され、
前記第二容器からの培地の排出を行う前記第四ポートを、少なくとも一部分を前記第一容器と前記第二容器の間に配置し、少なくとも他の一部分を前記第二容器の内壁に設置し、
前記制御装置は、前記第一容器への培地の排出または供給、あるいは前記第二容器からの培地の排液または供給をする場合に、前記第一乃至第四ポートを切り替え、送液を制御する、
ことを特徴とする自動培養装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/063120 WO2013175580A1 (ja) | 2012-05-23 | 2012-05-23 | 培養容器及び自動培養装置 |
JP2014516561A JP5960256B2 (ja) | 2012-05-23 | 2012-05-23 | 培養容器及び自動培養装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/063120 WO2013175580A1 (ja) | 2012-05-23 | 2012-05-23 | 培養容器及び自動培養装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013175580A1 true WO2013175580A1 (ja) | 2013-11-28 |
Family
ID=49623311
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/063120 WO2013175580A1 (ja) | 2012-05-23 | 2012-05-23 | 培養容器及び自動培養装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5960256B2 (ja) |
WO (1) | WO2013175580A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017145870A1 (ja) * | 2016-02-25 | 2017-08-31 | 株式会社フコク | 細胞培養容器および細胞培養容器の固定用治具 |
JP2018509970A (ja) * | 2015-02-26 | 2018-04-12 | オリンパス ビンテル ウント イーベーエー ゲーエムベーハーOlympus Winter & Ibe Gesellschaft Mit Beschrankter Haftung | 外科器具のための再処理デバイス用の流体分配器 |
US10597625B2 (en) | 2016-10-20 | 2020-03-24 | Takasago Electric, Inc. | Perfusion culture apparatus and perfusion culture method |
JPWO2021038996A1 (ja) * | 2019-08-29 | 2021-03-04 | ||
CN113710792A (zh) * | 2019-05-08 | 2021-11-26 | 株式会社岛津制作所 | 细胞评价用器件 |
WO2022270093A1 (ja) * | 2021-06-25 | 2022-12-29 | 東洋製罐グループホールディングス株式会社 | 細胞培養方法、細胞培養キット、及び細胞培養システム |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012008368A1 (ja) * | 2010-07-16 | 2012-01-19 | 株式会社日立製作所 | 細胞培養容器、および細胞培養装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006320304A (ja) * | 2005-05-18 | 2006-11-30 | Cellseed Inc | 密閉系細胞培養容器及びそれを利用した細胞培養方法 |
JP5252828B2 (ja) * | 2007-05-02 | 2013-07-31 | 株式会社セルシード | 上皮系細胞培養方法 |
-
2012
- 2012-05-23 JP JP2014516561A patent/JP5960256B2/ja not_active Expired - Fee Related
- 2012-05-23 WO PCT/JP2012/063120 patent/WO2013175580A1/ja active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012008368A1 (ja) * | 2010-07-16 | 2012-01-19 | 株式会社日立製作所 | 細胞培養容器、および細胞培養装置 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018509970A (ja) * | 2015-02-26 | 2018-04-12 | オリンパス ビンテル ウント イーベーエー ゲーエムベーハーOlympus Winter & Ibe Gesellschaft Mit Beschrankter Haftung | 外科器具のための再処理デバイス用の流体分配器 |
WO2017145870A1 (ja) * | 2016-02-25 | 2017-08-31 | 株式会社フコク | 細胞培養容器および細胞培養容器の固定用治具 |
JP2017148002A (ja) * | 2016-02-25 | 2017-08-31 | 株式会社フコク | 細胞培養容器および細胞培養容器の固定用治具 |
US10597625B2 (en) | 2016-10-20 | 2020-03-24 | Takasago Electric, Inc. | Perfusion culture apparatus and perfusion culture method |
CN113710792A (zh) * | 2019-05-08 | 2021-11-26 | 株式会社岛津制作所 | 细胞评价用器件 |
JPWO2021038996A1 (ja) * | 2019-08-29 | 2021-03-04 | ||
CN114341341A (zh) * | 2019-08-29 | 2022-04-12 | 发那科株式会社 | 细胞制造装置及其制造方法 |
JP7391339B2 (ja) | 2019-08-29 | 2023-12-05 | ファナック株式会社 | 細胞製造装置及びその製造方法 |
WO2022270093A1 (ja) * | 2021-06-25 | 2022-12-29 | 東洋製罐グループホールディングス株式会社 | 細胞培養方法、細胞培養キット、及び細胞培養システム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013175580A1 (ja) | 2016-01-12 |
JP5960256B2 (ja) | 2016-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5894260B2 (ja) | 培養容器及び自動培養装置 | |
JP5866006B2 (ja) | 培養容器及び自動培養装置 | |
JP5722329B2 (ja) | 自動培養装置 | |
JP5891310B2 (ja) | 細胞培養容器およびそれを用いた細胞培養装置 | |
JP5960256B2 (ja) | 培養容器及び自動培養装置 | |
US10087410B2 (en) | Cell culturing device, culturing vessel, and holding vessel | |
JP6279597B2 (ja) | 細胞培養装置 | |
WO2016157322A1 (ja) | 閉鎖系培養容器、輸送方法、及び自動培養装置 | |
JP6097817B2 (ja) | 細胞培養装置 | |
JP4845950B2 (ja) | 自動培養装置 | |
JP5886455B2 (ja) | 自動培養装置 | |
JP6514952B2 (ja) | 自動培養装置 | |
WO2016013070A1 (ja) | 送液装置、及び細胞培養装置 | |
JP6745357B2 (ja) | 細胞培養方法、培養容器及び細胞培養装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12877367 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014516561 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12877367 Country of ref document: EP Kind code of ref document: A1 |