WO2014148722A1 - 고효율 해수 증발 장치 및 증발로프 모듈 - Google Patents

고효율 해수 증발 장치 및 증발로프 모듈 Download PDF

Info

Publication number
WO2014148722A1
WO2014148722A1 PCT/KR2013/011302 KR2013011302W WO2014148722A1 WO 2014148722 A1 WO2014148722 A1 WO 2014148722A1 KR 2013011302 W KR2013011302 W KR 2013011302W WO 2014148722 A1 WO2014148722 A1 WO 2014148722A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporation
seawater
rope
salt
ropes
Prior art date
Application number
PCT/KR2013/011302
Other languages
English (en)
French (fr)
Inventor
박용희
Original Assignee
Park Yong Hee
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Park Yong Hee filed Critical Park Yong Hee
Priority to EP13879039.9A priority Critical patent/EP2977351B1/en
Priority to SI201331484T priority patent/SI2977351T1/sl
Priority to CN201380074931.XA priority patent/CN105073641B/zh
Priority to JP2016504223A priority patent/JP6213794B2/ja
Priority to ES13879039T priority patent/ES2730932T3/es
Priority to DK13879039.9T priority patent/DK2977351T3/da
Priority to US14/775,857 priority patent/US10376808B2/en
Publication of WO2014148722A1 publication Critical patent/WO2014148722A1/ko
Priority to HRP20191041TT priority patent/HRP20191041T1/hr
Priority to CY20191100610T priority patent/CY1121714T1/el

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0011Heating features
    • B01D1/0029Use of radiation
    • B01D1/0035Solar energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/16Evaporating by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/16Evaporating by spraying
    • B01D1/18Evaporating by spraying to obtain dry solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/22Evaporating by bringing a thin layer of the liquid into contact with a heated surface
    • B01D1/24Evaporating by bringing a thin layer of the liquid into contact with a heated surface to obtain dry solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/30Accessories for evaporators ; Constructional details thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/04Chlorides
    • C01D3/06Preparation by working up brines; seawater or spent lyes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/141Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation

Definitions

  • the present invention relates to a high-efficiency seawater evaporation device and an evaporation rope model employed therein, and more particularly, to increase the salt productivity while reducing the area of the salt field for salt precipitation by accelerating the evaporation rate of seawater.
  • the present invention relates to a highly efficient seawater evaporation apparatus and a seawater evaporation method.
  • the present invention by spraying the seawater to the evaporation rope installed in the vertical direction while branched into a number of strands so that the water is evaporated while the seawater falls along the evaporation rope of several strands, maximizing the seawater evaporation cross-sectional area
  • the present invention relates to a new high efficiency seawater evaporation device capable of obtaining concentration seawater as quickly and easily as possible.
  • the present invention relates to a new high-efficiency seawater evaporation apparatus which has a special structure for evaporating all of the seawater showered in the evaporation rope while flowing from the top to the bottom, which is very helpful in depositing the sun salt as quickly as possible.
  • the salt manufacturing method employs a method of depositing natural salt by drying (evaporating) seawater after dragging it into the salt field.
  • seawater is poured into roughly square salts made by attaching tiles, plastic pallets, or ceramics pallets to the floor, and when the seawater evaporates by solar heat in the natural state, salt precipitates in the salt crystals.
  • These salts are evaporated to collect salts and natural salts, which are precipitated to produce salts.
  • the salts and salts produced by evaporation of sea water contain calum, magnesium, and various trace minerals. It is known to be beneficial.
  • evaporation sheet (diaper) is laid on the clothesline in multiple stages to increase the surface area to increase the evaporation rate of seawater, and install a hoist on the top to lower and raise the evaporation sheet block. There is one that made the concentration higher.
  • the sea water must be allowed to move while simultaneously exposing the sea water to sunlight and air as much as possible to maximize the water evaporation efficiency can take the sea water evaporation time as little as possible.
  • the seawater In order to spray the seawater onto the evaporation rope to evaporate the water smoothly, the seawater must be moved from the top to the bottom, so that the seawater is to go from the top to the bottom, and a means for maximizing the water evaporation efficiency is required.
  • An object of the present invention is to provide a high-efficiency seawater evaporation apparatus of a new structure that can maximize the efficiency and economic efficiency of salt production while reducing the facility site for salt precipitation by accelerating the evaporation rate of seawater. It is done.
  • an object of the present invention is to install the evaporation rope which is the main part of the seawater evaporation apparatus without changing the structure of the salt farm, evenly spraying the seawater on the evaporation rope, the water by gravity from the top down to the bottom along the evaporation rope by gravity Efficient seawater evaporation system and its evaporation rope, which have a special structure to maximize evaporation and seawater evaporation cross-sectional area, which contributes to accelerated evaporation rate due to the high salt concentration of seawater in the lower salt field (evaporation). It is to provide the models.
  • the present invention has a special structure that allows the evaporation of all the seawater showered in the evaporation rope from the top to the bottom to prevent evaporation and stagnant seawater in the horizontal direction, so that the salt concentration time and the like can be taken as soon as possible.
  • the goal is to provide a new high-efficiency seawater evaporation system that will help to precipitate the salt as quickly as possible and maximize the productivity of the salt.
  • the present invention provides a showering unit (30) installed in the salt field (4);
  • the evaporation ropes 34 are configured to be collected in a group by the holder 32, and the evaporation ropes 34 are configured to extend in the up-down direction while being spaced apart from each other by a predetermined distance.
  • the seawater is supplied to each of the evaporation ropes 34, the seawater is removed from each of the evaporation ropes 34, which extend in the vertical direction and are spaced apart from each other, so as to accelerate evaporation of the seawater.
  • It provides a high-efficiency seawater evaporation apparatus comprising an evaporation rope module (30).
  • the water evaporates while the seawater is pulled down the evaporation rope of each of the evaporation ropes by gravity, and the evaporation ropes are separated from each other by a holder at a predetermined interval. Therefore, the maximum evaporation surface area where seawater is exposed to air and sunlight when seawater is taken down the evaporation rope, so the evaporation rate of water in seawater is as fast as possible, and thus the seawater concentration due to the fastest evaporation rate of seawater. (I.e. the ratio of salt to salt in the seawater) is raised quite rapidly, which speeds up the evaporation rate of the seawater and accelerates the rate of seawater evaporation as the seawater falls from top to bottom. The time for depositing salt in the crystal can be shortened as much as possible. As it is condensed, it means very advantageous in salt productivity.
  • the evaporation rope module in which a plurality of evaporation ropes are grouped by the holder which is the main part of the present invention, it is the key to allow the sea water to move from top to bottom without stagnating in the horizontal direction. If the seawater is supplied in a state where the evaporation rope module is hanged on the support frame like a hanger and installed in the vertical direction, the seawater does not stagnate and all the seawater evaporates down, so that the evaporation cross section is maximized.
  • FIG. 1 is a view schematically showing the configuration of a high-efficiency seawater evaporation apparatus according to the present invention
  • FIG. 2 is a view schematically showing the configuration of another embodiment of the high-efficiency seawater evaporation apparatus according to the present invention.
  • Figure 3 is a perspective view showing the configuration and installation state of the evaporation rope model, which is the main part of the present invention
  • FIG. 4 is a perspective view of a holder which is a main part shown in FIG.
  • FIG. 5 and 6 are partially enlarged perspective views showing an evaporation rope module in which an evaporation rope is coupled to a holder shown in FIG. 4.
  • FIG. 7 is an enlarged perspective view showing a partially installed state of the evaporation rope models shown in FIG. 3.
  • FIG. 7 is an enlarged perspective view showing a partially installed state of the evaporation rope models shown in FIG. 3.
  • FIG. 8 is a plan view schematically showing the configuration of the main part of the high-efficiency seawater evaporation apparatus according to the present invention
  • FIG. 9 is a side view schematically showing the configuration of an evaporation rope modal as a main part of the present invention and a seawater pumping tube as a main part of a showering unit.
  • FIG. 10 is a perspective view showing a modified embodiment of the holder which is the main part of the present invention.
  • FIG. 11 is an enlarged perspective view illustrating a state in which an evaporation rope is coupled to a holder illustrated in FIG. 10.
  • FIG. 20 is a perspective view showing a state in which an evaporation rope, which is a main part of another embodiment of the present invention, is installed in a salt field;
  • FIG. 21 is a perspective view illustrating a state in which an evaporation rope, which is a main part of another embodiment of the present invention, is installed in a salt field;
  • the high-efficiency seawater evaporation apparatus of the present invention is configured such that a plurality of evaporation ropes 34 are grouped by a showering unit 30 installed in the salt field 4 and a holder 32.
  • the evaporation ropes 34 are configured to extend in the vertical direction in a state spaced apart from each other by a predetermined interval, evaporation rope modules 30 to accelerate the evaporation of sea water flows down the seawater riding each evaporation rope (34) Characterized in that it comprises a.
  • the high-efficiency seawater evaporation apparatus is a device for producing salt 8 by evaporating seawater in saltfield 4, the showering unit 30 provided in the saltfield 4.
  • a plurality of evaporation ropes 34 are grouped by the holder 32 and the evaporation ropes 34 are configured to extend in a vertical direction at a predetermined interval from each other, and the shower ring
  • the seawater is supplied to each of the evaporation ropes 34 by the unit, the evaporation of the seawater is accelerated by the seawater being taken down by the evaporation ropes 34 which are spaced apart from each other so as to be spaced apart from each other to extend in the vertical direction.
  • the showering unit is connected to the seawater pumping pipe 22 in which the seawater rises by the pump P at an appropriate position of the saltfield 4 so as to be horizontal (in a direction facing the bottom surface of the saltfield 4). It may be provided with a plurality of distribution tube 24 arranged in parallel with each other.
  • Four seawater pumping tubes 22 are erected in at least four corners of the salt field 4 in the vertical direction, and the outer distribution tube 24 is installed in the front, rear, left and right directions with respect to the core of the salt field 4, By arranging a plurality of distribution pipes 24 connected side by side in the direction intersecting the outer distribution pipes 24, the plurality of distribution pipes 24 arranged side by side at regular intervals in the upper position of the salt field 4 It can take the structure provided.
  • a horizontal seawater distribution pipe 24 arranged in a closed loop along the periphery of the salt water 4 is connected to each corner position vertical seawater pumping pipe 22 of the salt field 4.
  • the horizontal seawater distribution tube 24 is connected to a pump (P) 26, which is a source of seawater pumping power, which becomes the pump (P) connected to the overflow tank 50 and the seawater pump tube 22 described later).
  • P pump
  • the seawater is pumped up and rises along each vertical seawater pumping tube 22 to distribute the seawater to each distribution tube 24.
  • the sea water pumped to each distribution pipe 24 can be showered (sprayed) to the evaporation rope mod 30 to be described later via the valve and the nozzle pipe 25 provided in the distribution pipe 24.
  • the distribution pipe 24 is installed only in the upper position of the salt field 4 in the horizontal direction, and the pump P is directly connected to each of the distribution pipe 24 via a connecting pipe or the like through the pump (P). It is also possible to supply seawater directly to the distribution pipe 24 in the horizontal direction through the N, and to shower the sea water through the nozzle pipe 25 provided in the distribution pipe 24.
  • a plurality of distribution pipes 24 are erected in the vertical direction, and a plurality of nozzle pipes 25 are installed in each vertical distribution pipe 24, and a pump P is connected to the vertical distribution pipe 24.
  • the seawater rising up along the inside of the vertical distribution pipe 24 by the pump P may be showered in the evaporation rope module 30 through each nozzle pipe 25.
  • the distribution pipe 24 is preferably provided with a valve 24a.
  • FIG. 1 and FIG. 2 it is shown that a valve 24a branched from the distribution pipe 24 is provided.
  • a valve 24a is provided in each of the nozzle pipes 25 or one valve 24a is connected to a plurality of nozzle pipes 25 in common, and seawater is supplied to each nozzle pipe 25 through the valve 24a. Can be dispensed and spread (shower).
  • the horizontal distribution tube 24 preferably has a structure arranged inclined to both sides with respect to the center.
  • the horizontal dispensing tube 24 has a structure arranged inclined so as to have the highest position and both ends gradually lower. It is also possible to arrange the inclined arrangement so that one end of the horizontal distribution tube 24 is relatively high and the other end is relatively low.
  • the horizontal distribution tube 24 may have a structure interconnected by connecting support bars arranged in a direction orthogonal to maintain the support strength. That is, the horizontal distribution tube 24 and the connecting support bar may have a structure arranged in a lattice form.
  • the showering unit 30 binds and mounts a flexible hose to the top of the evaporation rope 20 using a strap or the like, and attaches a hole (fine hole) to the flexible hose. It is also possible to form a seam, and to connect the seawater pumping device such as the pump (P) to the flexible hose, it is possible to constitution of the seawater through the hole of the hose.
  • the evaporation rope mod 30 is configured to collect a plurality of evaporation ropes 34 in a group by a holder 32, and at the same time, each of the evaporation ropes 34 is spaced apart from each other by a predetermined interval. And extend in the direction. What is important in the evaporation rope module 30 is that each evaporation rope 34 is arranged in the horizontal direction and not all evaporation ropes 34 are arranged to face up and down, so that the seawater Gravity moves from top to bottom to evaporate the water so that concentrated water (seawater with a high salt (8) content) is produced quickly.
  • the holder 32 may be configured in various shapes.
  • One of the holders 32 may include a plurality of triangular portions disposed at regular intervals in a radial direction with respect to a central portion, such as a star shape (star shape).
  • the inner side of the triangular portion has a configuration including a bridge portion extending in a straight line in the radial direction with respect to the center portion.
  • the holder 32 is provided with a plurality of rope holes 32h penetrating from the upper surface to the lower surface. Rope holes 32h penetrating from the upper surface to the lower surface of the triangular portion and the bridge portion of the header 32 are provided, and approximately 37 rope holes 32h are formed.
  • the holder 32 is provided with a space portion communicating from the upper surface to the bottom surface between the triangular shape portion and the bridge portion. And the side part of the holder 32 is provided with the recessed part formed in the center direction (namely, the inner direction of the holder 32).
  • the evaporation ropes 34 are coupled one by one to the rope holes 32h penetrating from the upper surface of the holder 32 to the lower surface. Since the rope holes 32h of the holder 32 are spaced apart from each other by a predetermined interval, the respective evaporation ropes 34 are not in contact with each other, but are arranged in a spaced apart state from each other.
  • the evaporation rope 34 is a plurality of holders arranged at regular intervals in the vertical direction
  • each evaporation rope 34 Passing through each rope hole (32h) of (32), a plurality of evaporation rope 34 and a plurality of holders 32 is formed to form the evaporation rope mod 30.
  • Each evaporation rope 34 is configured to be collected in the central direction (ie, the central direction of the evaporation rope modal 30) by the gripping portion 35 provided between the respective holders 32.
  • the evaporation rope 34 may be made of a plurality of materials such as a rope structure or a fiber material such as a sponge by weaving a plurality of thin threads of the fiber material, the gripping portion 35 is the same as the evaporation rope 34 By arranging a string made of material in a manner of tying in a circle outside the respective evaporation ropes 34, the plurality of evaporation ropes 34 are moved by the gripping portion 35 toward the central portion of the evaporation rope modules 30. It is possible to take a structure that is gathered and bound.
  • the gripping portion 35 is configured in an annular ring body shape, and may have a structure for tying each evaporation rope 34 to be collected. In any case, all of the evaporation ropes 34 can be employed as the gripping portion 35 as long as the structure is collected in a manner of binding together.
  • the gripping portion 35 is important, as the plurality of evaporation ropes 34 are gathered in the middle direction between the respective holders 32 so that each holder 32 is evaporated. Stable while securing space of regular intervals It is to maintain the state coupled to the evaporation rope (34).
  • the gripping portion 35 is a structure in which all the evaporation ropes 34 are collected and tied between the respective holders 32 in the middle, so that each evaporation lot is connected between the respective holders 32 by the gripping portions 35. In the form of a shape (bundled shape) as if the janggu shape, thereby allowing the top and bottom of each holder 32 can be supported by the evaporation rope (34).
  • each evaporation rope 34 is configured to be collected in the shape of a janggu between the holder 32 by the gripping portion 35, and each evaporation rope 34 has an upper support rope portion 34a and a lower support rope portion. 34b is formed, and a structure in which the upper support rope portion 34a and the lower support rope portion 34b of the evaporation rope 34 support the holder 32 from above and below, respectively, results in the respective holders 32 ) Can be stably arranged without leaving the position in a state where a space of a certain interval is secured up and down.
  • each evaporation rope 34 is It will be able to have a structure in which a certain space is secured in between, and the wind or sunlight passes through each space of the evaporation rope 34, thereby maximizing the seawater evaporation surface area.
  • the holder 32 is formed in a disc shape (disc type), the evaporation rope 34 may be configured to penetrate from the top surface to the bottom surface.
  • the evaporation rope 34 is coupled to each rope hole 32h of the disc-shaped holder 32 so that the evaporation rope 34 passes one by one, and the plurality of evaporation ropes 34 can be arranged to secure spaces spaced apart from each other.
  • the plurality of evaporation ropes 34 may have a shape collected as if it is a janggu shape.
  • the holder 32 may be configured in various shapes other than a shape in which a plurality of triangular portions are branched in a radial direction or a disk shape, such as a star shape.
  • the holder 32 includes a plurality of triangular pyramid-shaped outer holder pieces disposed in a radial direction with respect to the center portion, and a plurality of radially disposed at an inner position of the outer holder pieces.
  • the annular inner holder piece connected by the two bridge pieces is provided, and each outer holder piece and the inner holder piece are provided with the rope hole 32h which penetrated from the upper surface to the lower surface.
  • the holder 32 includes a triangular outer holder piece and an inner holder piece arranged in connection with the bridge piece at an inner position of the outer holder piece. And a plurality of rope holes penetrated from the upper surface to the lower surface by the outer holder piece and the inner holder piece.
  • the holder 32 includes an outer holder body having a rectangular closed loop shape, and an inner holder body disposed in connection with a plurality of bridge pieces inside the outer holder body.
  • the outer holder body and the inner holder body may be provided with a plurality of rope holes 32h penetrating from the upper surface to the lower surface.
  • the holder 32 is arranged in a lozenge closed-loop armature holder body and connected to a plurality of bridge pieces at an inner position of the outer holder body and formed in a lozenge plate shape.
  • An inner holder body may be provided, and a rope hole 32h may be formed in the outer holder body and the inner holder body.
  • the holder 32 has an inner holder body of a hexagon closed loop shape connected via a bridge piece inside an outer holder body of a hexagon closed loop shape, and has a hexagon closed loop shape.
  • a rope hole 32h may be formed in the outer holder body and the inner holder body.
  • the holder 32 has a circular inner ring body arranged inside the circular outer ring body via a plurality of bridges, and a plurality of rope holes (not shown) in the outer ring body and the inner ring body. 32h) may be formed.
  • the holder 32 has a structure in which a cross holder body is provided in a rectangular rim holder body, and a plurality of rope holes 32h are formed in the rim holder body and the cross holder body. Can be.
  • the holder 32 has a shape in which a plurality of holder body pieces are radially diverged in a radial direction, like a starfish shape, with a plurality of ropes on each holder body piece. It may have a structure in which the holes 32h are formed.
  • the above-described holder 32 of various shapes is a part of the embodiment, and a plurality of rope holes 32h are formed, all of which are important in the holder 32, penetrating from the upper surface to the lower surface, and each rope hole 32h.
  • the evaporation rope 34 is coupled so as to pass through the strands one by one, so that each of the evaporation ropes 34 is disposed so as to be spaced apart from each other. All have common features.
  • the upper end of the evaporation rope mod 30 is supported on the support frame 40 and installed in the vertical direction, and the plurality of evaporation rope mods 30 are installed by the support frame 40.
  • the support frame 40 is installed in the salt field 4, and the support frame 40 is disposed in the support post 42 in the up and down direction so as to be disposed in a direction facing the ground of the salt field 4.
  • a plurality of support hanger bars 44 are provided to extend in the intersecting direction to support the upper end of the evaporation rope module 30 by walking. That is, the support posts 42 are installed in the salt field 4 in the vertical direction, and the support posts 42 are arranged at regular intervals along the salt field 4, and each support post 42 has a support hanger bar ( Both ends of 44 are connected, and the plurality of support hanger bars 44 are arranged in a direction facing the salt field 4 at regular intervals.
  • the support hanger bar 44 has at least one support bar connected to each other in an intersecting direction, and each support hanger bar 44 has a structure that is firmly connected to each other through the support bar. Do it.
  • a support frame 40 (especially a support hanger) for supporting the evaporation rope modules 30 in a plurality is supported.
  • the support structure of the bar 44 part can be more stabilized and is better.
  • each evaporation rope mod 30 is installed so as to stand in the vertical direction to the salt field (4).
  • the top of the evaporation rope mod 30 is a bundle of a plurality of evaporation ropes 34 so that one strand of evaporation ropes 34 among the plurality of evaporation ropes 34 collect and tie the other evaporation ropes 34 to the center. Turn the evaporation rope 34 to the outer circumferential surface by a suitable number of times, and bundle the strand evaporation rope 34 with the other plurality of evaporation ropes 34 from the bottom of the bundled rope portion of the evaporation rope 34.
  • each evaporation may be fixed to the support hanger bar 44 to have a structure arranged in the vertical direction to the salt field 4. At least one strand of the evaporation rope 34 of the evaporation rope 34 is provided with a substantially hook-shaped hanger member, each hanger member in such a way to hang the support hanger bar 44 of the support frame 40
  • the evaporation rope module 30 may be installed in a vertical direction to the salt field 4.
  • the evaporation rope modules 30 may be fixed to the support hanger bar 44 of the support frame 40 to be used to install the evaporation rope module 30.
  • the hanger means that can be installed vertically in 4) may be employed as an upright installation fixing means of the evaporation rope mod 30.
  • the support frame 40 is provided such that at least a portion of the support hanger bar 44 can be lifted up and down.
  • the support frame 40 has a fixed frame sleeve vertically arranged with the lower end fixed to the torsion 4, and the lifting frame to which the support hanger bar 44 is connected so as to be relatively elevable to the fixed frame sleeve.
  • the lifting frame bar It is composed of a frame bar, it is possible to raise or lower the lifting frame bar and the support hanger bar 44 connected to it by the lifting operation means such as a lifting machine connected to the lifting frame bar via a rope.
  • the hoist is mounted on a support not shown, and the hoist is connected to the lifting frame bar via a rope. As the hoist is operated, the lifting frame bar and the support hanger bar 44 provided thereon are lifted and the support hanger bar. As the 44 is raised and lowered, the evaporation rope modules 30 may be stretched in the vertical direction to be erected or folded compactly.
  • the support hanger bar 44 is raised by a winch.
  • a person climbs up the stairs provided in the support, not shown, and attaches the hanger clip of the rope connected to the lifting frame bar to the fixing ring 52 provided in the support 40.
  • the evaporation rope module 30 can be configured to remain firmly coupled to the support by its own load, etc. to maintain the unfolded state in the vertical direction.
  • the grid support hanger bar 44 sectors may be lifted at a time.
  • any structure for allowing the support hanger bar 44 which is connected to the elevating frame bar to be elevated by other lifting means can be adopted.
  • the present invention further includes an overflow reservoir 50.
  • the overflow reservoir 50 is a reservoir of the overflow reservoir.
  • the overflow reservoir 50 is a tank structure that can form water by digging the ground around the salt field (4).
  • the height of the overflow reservoir 50 is formed at a position relatively lower than the bottom of the salt field 4, the bottom of the salt field 4 and the overflow reservoir 50 is connected via the bypass channel 52 1 and 2, mud (mud) is accumulated at the bottom of the salt field 4 in the seawater brought down the evaporation rope module 30 and the water is over the bypass channel 52 It flows into the flow reservoir 50.
  • the overflow reservoir 50 is connected to the bottom of the salt field 4, and is connected to the reservoir 12 (also referred to as a reservoir for storing seawater) via a pipe or the like that is overflowed, and the reservoir ( 12) and overflow storage The pipe etc.
  • the reservoir 12 may be composed of a first reservoir 12a and a second reservoir 12, the second reservoir 12 is a structure in which the overflow reservoir 50 is connected.
  • the first reservoir 12a may be connected to the reservoir 11 from which seawater is drawn or directly connected to the sea.
  • the pump P is connected between the overflow reservoir 50 and the showering unit for supplying seawater to the evaporation rope module 30. That is, the pump P is provided on the sea water pumping pipe 22 connected to the overflow reservoir 50, and the pump is provided for every horizontal distribution pipe 24 for supplying seawater to the evaporation rope module 30.
  • (P) has a connected structure.
  • the showering unit is connected to the crystal ground 6 after the salt field 4.
  • Each distribution tube 24 of the showering unit is connected to the determined value via the connecting tube 28, and the seawater coming into each distribution tube 24 of each evaporation rope 34 of the evaporation rope module 30 is provided.
  • the distribution pipe 24 is provided with a valve 28a individually, it can be configured to supply or block the supply of the concentrated water supplied to the distribution pipe 24 in accordance with the opening and closing of the valve (28a).
  • the concentrated water passed to the crystallized paper 6 is about 15% to 25% by weight of salt (8) by weight, for convenience, the concentrated water is also referred to as sea water.
  • a valve is provided on the connecting pipe 28 between the distribution pipe 24 and the crystal paper 6 of the showering unit, and this valve is provided with the distribution pipe 24 and the crystal paper 6 of the showering unit. It is connected to the salinity meter 27 disposed on the connecting body 28 between, and can be configured to open and close the valve in conjunction with the salinity meter 27 according to the salt (8) concentration sensed by the salinity meter (27). When the salinity meter 27 detects that the salt (8) concentration in the seawater is about 15% to 25%, the valve is opened and the seawater (concentrated water) is passed to the crystallization land (6).
  • a reservoir 12 is connected to the reservoir by a pipe or the like, and the reservoir 12 is connected to an overflow reservoir 50 by a pipe or the like.
  • a pipe (P) and a valve may be provided in the pipe connecting the reservoir 12 and the overflow reservoir 50.
  • the reservoir 12 may include a first reservoir 12a connected to a low resin and a pipe, and a second reservoir 12 connected to the first reservoir 12a and a pipe.
  • a pump P and a valve may be installed in the pipe connecting the first reservoir 12a and the second reservoir 12.
  • An overflow reservoir 50 may be connected to the second reservoir 12 by a pipe or the like.
  • the pipes connecting between the second reservoir 12 and the overflow reservoir 50 are The bar 54 is installed.
  • the valve 54 is opened and closed to supply or shut off supply of the seawater stored in the reservoir 12, the second reservoir 12b in FIG. 1, to the overflow reservoir 50.
  • the overflow reservoir 50 may be referred to as a third reservoir, such that the third reservoir and the first reservoir 12a and the second reservoir 12 may constitute the reservoir 12 of the present invention.
  • Each of the overflow reservoir 50 and the distribution tube 24 of the showering unit is connected to the seawater pumping tube 22 installed in the salt field 4 through the overflow tank of the seawater pumping tube 22.
  • a pump P is provided in the intermediate connector body 28 connected to the pump 50, or a pump P is provided in the sea water pumping pipe body 22 itself, and the seawater filled in the overflow reservoir 50 is pumped. It can be pumped through (P) to be supplied to the respective evaporation rope modules 30 via the distribution tube (24).
  • the intermediate connecting body 28 may be arranged around the salt field 4 so as to be connected to the lower end of each seawater pumping pipe 22 and connected to the overflow reservoir 50 at the same time.
  • the evaporation rope module is placed on the crystal paper 6 for depositing salt (8).
  • the over blow reservoir 12 may be provided once more. That is, a plurality of evaporation rope modules 30 supported by the support frame 40 are installed in the vertical direction at the bottom upper position of the crystal paper 6, and the crystal channel 6 has a bypass channel 52.
  • the other overflow reservoir 50 is connected to each other, and the seawater stored in the overflow reservoir 50 is discharged to each of the evaporation rope models 30 by a showering unit provided once more on the crystallization pond 6.
  • Can be supplied as The seawater from the salt field (4) has a structure of evaporating the water of seawater once more using the evaporation rope mod 30 and then depositing salt (8) in the crystal paper (6).
  • the overflow reservoir 50 is formed by digging the ground around the salt field 4, the overflow reservoir 50 is provided with a ball tower (ball), and is provided with a sensor for detecting the water level by the ball tower. may boltap a reference water level is more than the number of filled to the overflow reservoir 50 through the pump (P) and the shower ring unit, configured to supply to each of the evaporation rope modeul 30. ⁇
  • the salt (8) concentration will be raised further, and the concentration of the seawater will be at an appropriate salt (8) concentration (about 15% to Seawater (concentrated water) with 25% salt (8) concentration is passed to crystallized land (6).
  • the seawater stored in the (12) is re-injected into the overflow reservoir (50) and the same
  • the seawater circulation process between the evaporation rope mod 30 and the overflow reservoir 50 is repeated.
  • the salt (8) concentration in the seawater will be lowered, and the seawater with a low salt (8) concentration will be repeatedly circulated between the evaporation rope modules 30 and the overflow reservoir 50.
  • the process is repeated to make the concentrate.
  • the valve is locked to a pipe or the like connecting the reservoir 12 and the overflow reservoir.
  • the seawater can be circulated only between the evaporation rope modules 30 and the overflow reservoir tank 50 so that the seawater can be made into concentrated water with a suitable salt (8) concentration so that it can be supplied to the crystallized land (6).
  • the overflow reservoir 50 may be provided at a lower position than the storage tank 12 and the salt field 4 so that the seawater may enter the overflow reservoir 50 at a natural pressure (ie, water pressure difference).
  • the salt is directly supplied from the storage tank 12 to each of the distribution pipes 24 of the showering unit, and the sea salt is directly sprayed from the storage tank 12 to each of the evaporation rope mods 30 to directly titrate salt.
  • seawater (concentrated water) with a concentration i.e. 15% to 25% salt (8) concentration
  • the structure of the present invention includes crystallization paper 6, which goes down the evaporation rope 34 from the salt farm 4 and takes over concentrated water having a high concentration of salt 8. Between 4) and crystallographic land 6 is provided a salinity meter 27 for measuring the salinity of seawater (concentrated water) concentrated at the salt field (4) side.
  • the showering unit is provided with a plurality of distribution tubes 24 disposed at an upper position of the evaporation rope mods 30, and the distribution tube 24 is adjacent to at least two evaporation rope mods 30.
  • At least two nozzles are provided to extend so that seawater is supplied to each of the evaporation rope modules 30 adjacent to the nozzles.
  • each nozzle has a smaller cross-sectional area gradually from the proximal end to the distal end.
  • An injection propulsion sleeve is provided, and an injection hole is provided at the end of the injection propulsion sleeve.
  • the evaporation rope module 30 is supported by a support frame.
  • the pump (P) 34 is continuously supplied along the evaporation rope module 30 on the top of the seawater evaporation apparatus in the seawater having a salinity of about 2% to 3% and each evaporated by gravity. As the seawater flows down the ropes 34, the water evaporates, so that salts (8) have a high concentration of seawater. Seawater (concentrated water) with a salt (8) concentration of approximately 15% to 25% can be obtained, and salt (8) (especially sun salt) can be precipitated by passing this high concentration of seawater to crystallization (6). Make sure
  • the evaporation rope mod 30 is held in the form of a cube cube (ie, a cube rope block having upper and lower surfaces, front and rear and right and left sides, analogous dice dice in the unfolded state coupled to the support 40).
  • a plurality of evaporation ropes 34, 22 can be folded into a flat form (i.e. flat form) due to the nature of the interwoven structure, and when the typhoon blows, the evaporation rope 34 is lowered using a hoist or the like. Since it is possible to fold flat, the evaporation rope 34 is not damaged by a typhoon, such as falling, flying or tearing.
  • the water evaporates while the seawater is pulled down by the gravity through each of the evaporation ropes 34 of the evaporation rope module 30, and the evaporation rope modules 30 are attached to the holder 32. Since the evaporation ropes 34 are spaced apart from each other by a predetermined interval, the evaporation surface area where seawater is exposed to air and sunlight is maximized when the seawater descends on the evaporation ropes 34, so that water evaporates from the seawater.
  • the speed is as fast as possible, and the seawater evaporation rate is as fast as possible, so that the seawater concentration (that is, the ratio of salt to salt in the seawater (8)) is significantly increased, which can accelerate the evaporation rate of seawater. It is possible to maximize the rate of seawater evaporation as seawater flows down from top to bottom. Chukdoel can, and it means that much oil in the Lee salts (8) productivity as the salt (8), deposition time is shortened.
  • the seawater is not stagnated in the horizontal direction by the evaporation rope module 30 in which a plurality of evaporation ropes 34 are grouped by the holder 32 of the present invention.
  • the key is to make them all move from top to bottom.
  • each of the distribution pipes 24 for supplying the seawater is disposed inclined, so that the mud component mixed with the seawater does not accumulate inside the distribution pipe 24 and is pulled out, thereby distributing the distribution pipe 24. ) Can be reliably prevented from clogging due to mud content.
  • seawater coming down the respective evaporation ropes 34 of the evaporation rope modules 30 installed in the salt field 4 in the vertical direction (at this time, the sea water is salt 8, mud and water, etc.).
  • the sea water is salt 8, mud and water, etc.
  • the furnace is stored out of the sea water except the mud, and the sea water stored in the overflow reservoir 50 is pumped back to each distribution tube 24 of the showering unit through a pump (P) to the respective evaporation rope mod 30 Re-supply, the seawater evaporation acceleration is further increased.
  • seawater storage to the overflow reservoir 50 and the circulation of resupplying the seawater from the overflow reservoir 50 to the evaporation rope modules 30 can be repeatedly performed, so-called seawater continues to be returned without stopping. This makes the function of maximizing seawater evaporation acceleration more reliably.
  • a salinity meter 27 for measuring the salinity of the seawater (concentrated water) concentrated on the saltfield 4 side between the saltfield 4 and the crystallized land 6, The degree of concentration can be accurately sensed and passed on to crystallization (6), further increasing the salt (8) precipitation efficiency.
  • Salt (8) concentration required by repeating the process of evaporating seawater by continuously turning seawater into the evaporation rope modules 30 on the overflow reservoir 50 and the salt field 4 side (E.g., having a concentration of salt (8) of 15% to 25%) to produce concentrated seawater, and in this repeated seawater cycle, the salinity meter (27) is titrated with salt (8) concentration.
  • the valve is detected, the valve is opened by the salinity meter 27 so that the seawater (concentrated water) is passed to the crystallization pond 6, so that the accuracy in the precipitation of the salt 8 can be reliably increased.
  • a distribution tube for supplying seawater to each of the evaporation rope modules 30 In addition, in the present invention, a distribution tube for supplying seawater to each of the evaporation rope modules 30.
  • Each nozzle of (24) is provided with an injection propulsion sleeve portion having a progressively smaller cross-sectional area at the distal end portion, and an injection hole is provided at the end of the injection propulsion sleeve portion so that even when the pressure of the pump P for pumping seawater is rather low, There is also the effect that the seawater is evenly distributed (sprayed) to all evaporation rod models. At this time, if the length of the nozzle is gradually increased and the tip portion has a configuration that gradually flattens (the injection propulsion sleeve configuration), enough pressure comes out even using only one pump (P) for pumping sea water. There is a better effect.
  • a plurality of spaces penetrating from the upper surface to the lower surface are provided in several places in the holder 32 itself, which supports each evaporation rope 34 of the evaporation rope mod 30 in a bundled form,
  • the seawater is supplied by the showering unit and flows down through the evaporation rope module 30, even though the holder 32 receives the load of the seawater, it smoothly falls out through the space provided in the holder 32.
  • structural stability can be more stabilized.
  • Each support hanger bar 44 of 40 has a special effect by being convex upward.
  • the support hanger bar 44 itself is adopted as an arch to evaporate the rope.
  • the arcuate support hanger bar 44 is more firmly and stably supported so that each evaporation rope mod 30 does not sag downward. It has a very desirable effect such as extending its life.
  • both the support frame 40 and the support post 42 and the support hanger bar 44 are all made of bamboo. It is good to consist of. Since bamboo is not easily corroded by salt (8) in nature, the seawater evaporation apparatus of the present invention has the advantage of significantly increasing its life after installing the salt water (4).
  • the bamboo has a node on the outer circumferential surface at regular intervals, so that when the evaporation rope mod 30 is fixed in such a manner as to bind one strand of the evaporation rope 34, the node of the bamboo evaporation rope 34 Since it serves as a support jaw to prevent slipping on the bamboo surface, it is possible to expect the side effect of maintaining the correct position of the evaporation rope module 30 easily and stably.
  • a seawater pumping pipe 22 arranged in the vertical direction, followed by a distribution pipe 24 arranged in the horizontal direction on top of the salt field 4, the sea water pumping
  • the tubular body 22 may have a structure in which a drain guide part is provided at one side and a valve is installed at the drain guide part.
  • the valve 22b of the drain guide portion 22a extended inclined downward to one side is opened to the seawater pumping tube 22, the mud component mixed with the seawater is drain guide portion 22a. Since it flows down inside and falls out of the seawater pumping pipe 22 through the valve 22b, it is possible to prevent a case where mud builds up inside the seawater pumping pipe 22 and malfunctions.
  • the showering unit 30 installed in the salt field 4 and the salt field 4 are disposed in the vertical direction in a vertical distance from each other.
  • the seawater may include a plurality of evaporation ropes 34 which allow the seawater to be sucked down to induce evaporation of the seawater.
  • each evaporation rope 34 is independently connected to each support hanger bar 44 of the support frame 40 installed in the salt field 4 and disposed up and down. Except for that, the structure is the same as the above-described embodiment, and the evaporation acceleration of the seawater is increased as the seawater rides down each of the evaporation ropes 34.
  • a plurality of up and down evaporation ropes 34 and two neighboring ones in the evaporation rope 34 are arranged in a zigzag direction.
  • a plurality of connecting evaporation ropes 38 woven together to form a first direction inclined rope portion 38a and a second direction inclined rope portion 38b, wherein the evaporation rope 34 and the connecting heavy ropes 38 are The net evaporation rope segment is formed, and the net evaporation rope segment is connected to each support hanger bar 44 of the support frame 40 and disposed in the vertical direction.
  • the up and down direction in the network evaporation rope segment The first direction inclined rope portion 38a inclined in one direction (left side when viewed from the front) as well as the seawater is taken down from each evaporation rope 34 to the right (as viewed from the front) Seawater also flows down from the top to the bottom of the second inclined rope portion 38b inclined in the direction), thereby maximizing seawater evaporation efficiency.
  • each of the evaporation rope (30) of the evaporation ropes (30) come down to the seawater and the mud will accumulate on the bottom of the salt field (4), the seawater always comes out of the overflow reservoir (50) and always Jinjin In this way, the mud accumulated in the salt field 4 is always in contact with the air, thereby optimizing the optimum conditions for the incubation of various beneficial organisms, and consequently, the salt field 4 itself. Since it is made of living tidal flats, it will have the advantage of not needing a separate land.
  • the shower unit 50 has a structure in which a control unit for spraying seawater at regular time intervals is connected.
  • the control unit is connected to the main valve of the main seawater pipe connected to each distribution pipe 24 constituting the showering unit 50, the main valve is composed of a valve that is automatically opened and closed by the control unit, the control By opening the main valve at regular time intervals, the seawater can be intermittently distributed to the evaporation rope module 30.
  • the seawater evaporation efficiency is further increased, and thus the salt precipitation efficiency can be further increased, so that more desirable results can be expected in various aspects.
  • the present invention is equipped with a special structure to evaporate all the seawater showered in the evaporation rope while flowing from top to bottom, so that the industrial availability as a new high-efficiency seawater evaporation device which is very helpful for depositing sun salt as quickly as possible. have.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Treating Waste Gases (AREA)

Abstract

본 발명은 고효율 해수 증발 장치, 특히 바람과 태양열을 이용한 고효율 해수 증발 장치를 제공하는 것을 목적으로 하는 것으로, 본 발명에 의한 고효율 해수 증발 장치의 구성은 염전(4)에 설치된 샤워링 유닛(30)과; 홀더(32)에 의해 복수개의 증발로프(34)가 그룹으로 모아지도록 구성됨과 동시에 상기 증발로프(34)들은 서로 간에 일정 간격 이격된 상태에서 상하 방향으로 연장되도록 구성되어, 상기 샤워링 유닛에 의해 해수를 상기 각각의 증발로프(34)에 공급하면, 상하 방향으로 연장되면서 서로 간에 간격이 확보되도록 이격되어 있는 상기 각각의 증발로프(34)를 타고 해수가 흘러내려서 해수의 증발이 가속화되도록 하는 증발로프 모듈(30)을 포함하는 것을 특징으로 한다.

Description

【명세서】
【발명의 명칭】
고효율 해수 증발 장치 및 증발로프 모들
【기술분야】
<1> 본 발명은 고효율 해수 증발 장치 및 이에 채용되는 증발로프 모들에 관한 것으로, 더욱 상세하게는 해수의 증발 속도를 가속화시켜서 소금 석출을 위한 염전 의 시설 용지 면적을 줄이면서 소금 생산성의 증가 등을 기할 수 있는 고효율 해수 증발 장치 및 해수 증발 방법에 관한 것이다. 특히, 본 발명은 다수 가닥으로 분기 되어 있으면서 상하 방향으로 연장 설치된 증발로프에 해수를 살포하여 여러 가닥 의 증발로프를 따라 해수가 홀러내리면서 수분이 증발되도록 함으로써, 해수 증발 단면적을 극대화시켜 소금이 높은 농도의 해수를 최대한 신속하고 용이하게 얻을 수 있는 새로운 구성의 고효율 해수 증발 장치에 관한 것이다. 특히, 본 발명은 증 발로프에 샤워링되는 해수 전부를 위에서 아래로 흘러내리도록 하면서 증발시키는 특수 구조를 구비하고 있어서 최대한 신속하게 천일염을 석출하는데 상당히 도움이 되는 새로운 고효율 해수 증발 장치에 관한 것이다.
【배경기술】
<2> 일반적으로 소금 제조방법은 바닷물을 염전으로 끌어드린 후에 건조 (증발) 시켜서 천연소금을 석출시키는 방법을 많이 채용한다. 다시 말해, 바닥에 타일이나 플라스틱 깔판이나 도자기 재질의 깔판을 부착시켜 만든 대략 사각형 염전에 해수 ( 바닷물)을 퍼을린 다음, 자연 상태에서 태양열에 의해 바닷물이 증발하면 염전의 결정에 소금이 침전되고, 이러한 해수를 증발시켜 석출된 식염, 천연소금을 수집하 여 소금을 생산하는 것이며 , 이처럼 해수 증발로 석출 제조된 천연소금이나 식염은 칼슴, 마그네슘 및 여러 가지 미량의 미네랄을 함유하고 있어서, 사람의 건강에 유 익한 것으로 알려져 있다.
<3> 그러나, 염전에 해수를 끌어들여 증발시켜서 소금을 생산하는 방법은 대략 사각 면적의 염전을 연속적으로 이어지도록 설치하고, 염전으로 끌어들인 해수가 한 염전에서 옆의 염전으로 넘어가면서 증발하는 과정을 거쳐서 소금을 석출하는 것으로서, 이러한 해수로부터의 소금 제조 방법의 경우 해수의 증발 속도 등을 감 안하여 비교적 대형 면적의 염전 용지를 확보해야 하므로, 염전 용지가 제한된 지 역에서는 염전을 설치하기 곤란한 경우가 있고, 해안가의 개발에 의해 염전 용지의 확보가 점점 어렵게 되고 있는 실정이며, 염전의 설치 용지 제한 등으로 인하여 소 금의 수요가 많을 때 갑자기 염전을 증가시킬 수 없고 수요가 즐어들 때 갑자기 염 전을 감소시킬 수 없기 때문에, 소금 생산량의 관리가 비효율적이고 해수의 증발 속도 지연으로 인해 소금 생산성 (단위 시간당 생산량)이 저하된다는 문제를 가지고 있는 것이다.
<4> 한편 , 종래에 증발 시트지 (기저귀)를 빨래줄에 여러 단으로 널어서 표면적을 넓혀 해수 증발률올 높이고 상부에 호이스트를 설치하여 증발 시트 블록을 내리고 올리도록 구성하고, 하부의 저장조에 해수의 농도가 높아지도록 한 것이 있다.
<5> 그런데, 상기와 같은 해수 증발 장치의 경우 바람이 세게 불면 저항이 커져 서 장비 보전 (즉, 증발 시트지 등)에 문제가 발생하고, 상기 해수 증발 장치가 소 형인 경우에는 크게 문제되지는 않으나 대형 장치로서는 태풍이나 강한 바람 등에 의해 증발 시트지가 쓰러져 파손되는 등의 문제가 생겨서 대형 장치로 채용하기는 불가능하여, 최근에 증발로프를 이용하여 해수를 증발시키고 태풍 등의 강한 바람 이 불 경우에는 증발로프를 내려서 강풍 등에 대비하는 해수 증발 장치가 개발되어 있기도 하다.
<6> 한편, 해수를 최대한 햇빛과 공기 등에 노출시키면서 동시에 해수가 움직이 도록 하여야 수분 증발 효율이 극대화돠어 해수 증발 시간을 최대한 적게 가져갈 수 있다. 해수를 증발로프에 살포하여 수분을 원활하게 증발시키기 위해서는 해수 가 위쪽에서 아래쪽으로 흘러내리는 이동을 시켜야 하므로, 이러한 해수가 위에서 아래로 내려가면서 수분 증발 효율을 극대화기 위한 수단이 요구된다 하겠다.
【발명의 상세한 설명】
[기술적 과제]
<7> 본 발명의 목적은 해수의 증발 속도를 가속화시켜서 소금 석출을 위한 염전 의 시설 용지를 줄이면서도 소금 생산의 효율성과 경제성 등을 극대화할 수 있는 새로운 구조의 고효율 해수 증발 장치를 제공하는 것을 목적으로 한다. 특히, 본 발명의 목적은 해수 증발 장치의 주요부인 증발로프를 염전의 구조 변경 없이 설치 하여, 해수를 증발로프에 골고루 살포하되, 중력에 의해 해수가 증발로프를 따라 위쪽에서 아래쪽으로 내려오면서 수분이 증발하도록 하고 동시에 해수 증발 단면적 은 극대화시키는 특수 구조를 구비하여, 하부 염전 (증발지)에서 소금 농도가 높은 해수가 고여서 증발 속도가 가속화될 수 있도록 하는데 크게 기여하는 고효율 해수 증발 장치 및 그 증발로프 모들을 제공하고자 하는 것이다.
<8> 본 발명은 증발로프에 샤워링되는 해수 전부를 위에서 아래로 흘러내리도록 하면서 증발되도록 하고 수평 방향으로 정체되는 해수는 생기지 않게 하는 특수한 구조를 구비하고 있어서, 소금 농축 시간 등을 최대한 빠르게 가져갈 수 있으므로, 최대한 신속하게 천일염을 석출하는데 상당한 도움이 되고 천일염의 생산성도 극대 화시킬 수 있는 새로운 고효율 해수 증발 장치를 제공하고자 하는 목적을 층족시킬 수 있다는데 의미가 크다.
【기술적 해결방법】
<9> 본 발명은 염전 (4)에 설치된 샤워링 유닛 (30)과; 홀더 (32)에 의해 복수개의 증발로프 (34)가 그룹으로 모아지도록 구성됨과 동시에 상기 증발로프 (34)들은 서로 간에 일정 간격 이격된 상태에서 상하 방향으로 연장되도록 구성되어, 상기 샤워링 유닛에 의해 해수를 상기 각각의 증발로프 (34)에 공급하면, 상하 방향으로 연장되 면서 서로 간에 간격이 확보되도록 이격되어 있는 상기 각각의 증발로프 (34)를 타 고 해수가 홀러내려서 해수의 증발이 가속화되도록 하는 증발로프 모들 (30)을 포함 하는 고효율 해수 증발 장치를 제공한다.
【유리한 효과】
<ιο> 본 발명에서는 해수가 중력에 의해 증발로프 모들의 각각의 증발로프를 타고 홀러내리면서 수분이 증발하는데, 상기 증발로프 모들이 홀더에 의해 각각의 증발 로프가 서로 간에 일정 간격 이격되어 있는 상태라서, 해수가 증발로프를 타고 내 려갈 때에 해수가 공기와 햇빛에 노출되는 증발 표면적이 극대화되므로, 해수에서 수분의 증발 속도가 최대한 빨라지게 되며, 이처럼 해수의 증발 속도가 최대한 빨 라짐으로 인하여 해수 농도 (즉, 해수에 석인 소금량의 비율)가 상당히 신속하게 높 아지게 되므로, 이로 인하여 해수의 증발 속도가 가속화될 수 있게 되며, 해수가 위에서 아래로 홀러내리면서 해수 증발 속도를 최대한 가속화시킬 수 있다는 것은 결정지에서 소금을 석출하는 시간이 최대한 단축될 수 있고, 소금 석출 시간이 단 축되는 만큼 소금 생산성에서 매우 유리하다는 것을 의미한다.
<π> 다시 말해, 본 발명의 주요부인 홀더에 의해 복수개의 증발로프가 그룹으로 묶여진 증발로프 모듈을 구비함으로 인하여 해수가 수평 방향으로 정체되지 않고 모두 위에서 아래로 움직일 수 있도록 한 것이 핵심인데, 상기 증발로프 모듈을 서 포트 프레임에 옷걸이에 걸듯이 걸어주어 수직 방향으로 설치한 상태에서 해수를 공급하면, 해수가 하나도 정체되지 않고 모든 해수가 아래로 내려가면서 증발을 하 므로, 증발 단면적의 극대화로 인하여 해수 증발 속도를 매우 향상시키며, 해수 증 발 속도가 매우 향상된다는 것은 소금 석출 시간을 현저히 단축시켜 작업성 측면이 나 비용적인 측면에서 효율성을 높이는 것과 같은 여러 가지 바람직한 효과를 갖는 다는 것을 의미한다. 증발로프 모들에서 각각의 증발로프 사이가 떠 있으므로, 공 기나 햇빛이 각각의 증발로프 사이로 들어가서 해수의 증발 속도 향상의 효과를 가 져오고, 가장 중요한 것은 해수가 위에서 아래로 항상 움직이므로, 해수 증발 속도 를 극대화시킬 수 있다. 물이 수평 방향으로 정체되어 움직이지 않는 것과 상기한 구조의 본 발명을 비교할 때에 그 해수 증발 효율에 있어서 비교조차도 되지 않는 것이다.
【도면의 간단한 설명】
<12> 도 1은 본 발명에 의한 고효율 해수 증발장치의 구성을 개략적으로 보여주는 도면
<13> 도 2는 본 발명에 의한 고효율 해수 증발장치의 다른 실시예의 구성을 개략 적으로 보여주는 도면
<14>. 도 3은 본 발명의 주요부인 증발로프 모들의 구성과 설치 상태를 보여주는 사시도
<15> 도 4는 도 3에 도시된 주요부인 홀더의 사시도
<16> 도 5와 도 6은 도 4에 도시된 홀더에 증발로프가 결합된 증발로프 모둘을 일 부 확대하여 보여주는 사시도
<17> 도 7은 도 3에 도시된 증발로프 모들의 설치 상태를 부분 확대하여 보여주는 사시도
<18> 도 8은 본 발명에 의한 고효율 해수 증발장치의 주요부 구성을 개략적으로 보여주는 평면도
<19> 도 9는 본 발명의 주요부인 증발로프 모들과 샤워링 유닛의 주요부인 해수 펌핑 관체의 구성을 개략적으로 보여주는 일측면도
<20> 도 10은 본 발명의 주요부인 홀더의 변형된 실시예를 보여주는 사시도
<21> 도 11은 도 10에 도시된 홀더에 증발로프가 결합된 상태를 확대하여 보여주 는 사시도
<22> 도 12 내지 도 19는 본 발명의 주요부인 홀더의 변형된 실시예들을 보여주는 평면도
<23> 도 20은 본 발명의 다른 실시예의 주요부인 증발로프를 염전에 설치한 상태 를 보여주는 사시도
<24> 도 21은 본 발명의 또 다른 실시예의 주요부인 증발로프를 염전에 설치한 상 태를 보여주는 사시도
【발명의 실시를 위한 최선의 형태】
<25> 본 발명의 고효율 해수 증발 장치는 염전 (4)에 설치된 샤워링 유닛 (30)과, 홀더 (32)에 의해 복수개의 증발로프 (34)가 그룹으로 모아지도록 구성됨과 동시에 상기 증발로프 (34)들은 서로 간에 일정 간격 이격된 상태에서 상하 방향으로 연장 되도톡 구성되어, 각각의 증발로프 (34)를 타고 해수가 흘러내려서 해수의 증발이 가속화되도록 하는 증발로프 모들 (30)을 포함하는 것을 특징으로 한다.
【발명의 실시를 위한 형태】
<26> 도면을 참조하면, 본 발명에 의한 고효율 해수 증발 장치는 염전 (4)에서 해 수를 증발시켜 소금 (8)을 제조하는 장치에 있어서, 염전 (4)에 설치된 샤워링 유닛 (30)과, 홀더 (32)에 의해 복수개의 증발로프 (34)가 그룹으로 모아지도록 구성됨과 동시에 상기 증발로프 (34)들은 서로 간에 일정 간격 이격된 상태에서 상하 방향으 로 연장되도록 구성되어, 상기 샤워링 유닛에 의해 해수를 각각의 증발로프 (34)에 공급하면, 상하 방향으로 연장되면서 서로 간에 간격이 확보되도록 이격되어 있는 각각의 증발로프 (34)를 타고 해수가 홀러내려서 해수의 증발이 가속화되는 증발로 프 모들 (30)을 구비하 것으로, 증발로프 (34)에 해수를 샤워링할 때에 상당량의 해 수가 수평 방향으로 정체되는 일이 없이 모든 해수가 증발로프 (34)를 따라 위에서 아래로 홀러내리는 이동을 하면서 해수의 수분이 증발되도록 하므로, 적정 농도의 농축수를 최대한 신속하게 만들고 소금 (8)의 석출 (특히, 천일염의 석출) 속도 등을 극대화시키며, 나아가 적은 부지로도 원하는 만큼의 충분할 량의 소금 (8) 석출이 가능하여 비교적 넓다고 할 수 없는 부지에서도 층분하게 소금 (8) 석출이 가능한 등의 여러 가지 유익한 효과가 있는 발명이다.
<27> 상기 샤워링 유닛은 염전 (4)의 적정 위치에 해수가 펌프 (P)에 의해 상승하는 해수 펌핑 관체 (22)에 연결되어 수평 방향 (염전 (4)의 바닥면과 마주하는 방향)으로 배치되며 서로 간에 나란한 복수개의 분배 관체 (24)를 구비할 수 있다. 염전 (4)의 적어도 네 군데 코너부에 수직 방향으로 네 개의 해수 펌핑 관체 (22)를 세우고, 염 전 (4)의 증심부를 기준으로 전후 좌우 방향으로 외곽부 분배 관체 (24)를 설치하고, 외곽부 분배 관체 (24)에 교차되는 방향으로 연결된 복수개의 분배 관체 (24)를 나란 하게 설치함으로써, 염전 (4)의 상부 위치에 일정 간격으로 나란하면서 수평 배열된 복수개의 분배 관체 (24)가 구비된 구조를 취할 수 있다.
<28> 또한, 염전 (4)의 각각의 코너부 위치 수직 방향 해수 펌핑 관체 (22)에는 염 전 (4)의 둘레부를 따라 폐루프 형태로 배치된 수평 해수 분배 관체 (24)를 연결하 고, 수평 해수 분배 관체 (24)에는 해수 펌핑 동력원인 펌프 (P)(26) (후술할 오버 플 로우 저수조 (50)와 해수 펌큉 관체 (22)에 연결된 펌프 (P)가 됨)가 연결되도록 할 수 있다. 이러한 경우 펌프 (PK26)가 작동하면 해수가 펌핑되어 각각의 수직 방향 의 해수 펌핑 관체 (22) 내부를 따라 올라가서 각각의 분배 관체 (24)로 해수가 분배 되며, 각 분배 관체 (24)로 펌핑된 해수는 분배 관체 (24)에 구비된 밸브와 노즐관 (25)을 거쳐서 후술할 증발로프 모들 (30)로 샤워링 (살포)될 수 있게 된다. 이때, 본 발명에서는 염전 (4)의 상부 위치에만 수평 방향으로 분배 관체 (24)를 설치하고, 펌프 (P)를 각각의 분배 관체 (24)에 연결관 등을 매개로 직접 연결하여 펌프 (P)를 통해 직접 해수를 수평 방향의 분배 관체 (24)에 공급하고, 분배 관체 (24)에 구비된 노즐관 (25)을 통해 해수를 샤워링되도록 할 수도 있다. 또한, 분배 관체 (24)를 수 직 방향으로 복수개 세우고 각각의 수직 방향 분배 관체 (24)에 복수개의 노즐관 (25)을 설치하며, 수직 방향 분배 관체 (24)에는 펌프 (P)가 연결되도록 설치하여, 펌프 (P)에 의해 수직 방향 분배 관체 (24) 내부를 따라 위로 올라오는 해수를 각각 의 노즐관 (25)을 통해 증발로프 모듈 (30)에 샤워링되도록 할 수도 있다. 이때, 분 배 관체 (24)에는 밸브 (24a)가 설치되는 것이 바람직한데, 도 1과 도 2에서는 분배 관체 (24)에서 분기된 밸브 (24a)가 설치된 것이 도시되어 있다. 상기 노즐관 (25)에 각각 밸브 (24a)가 설치되거나 복수개의 노즐관 (25)에 공통으로 한 개의 밸브 (24a) 가 연결되어, 밸브 (24a)를 통해 각 노즐관 (25)으로 해수가 분배되어 살포 (샤워링) 되도록 할 수 있다.
<29> 한편, 상기 수평 방향 분배 관체 (24)는 가운데를 기준으로 양쪽으로 기울어 지게 배치된 구조를 가지는 것이 바람직하다. 즉 수평 방향 분배 관체 (24)가 가운 데가 가장 높고 양쪽 단부는 점차적으로 낮아지도록 경사지게 배치된 구조를 가지 도록 하는 것이 좋다. 수평 방향 분배 관체 (24) 한쪽 단부는 상대적으로 높고 다른 쪽 단부는 상대적으로 낮도록 경사지게 배치된 구조도 가능하다. 수평 방향 분배 관체 (24)는 지지 강도를 유지하도록 직교하는 방향으로 배치된 연결 지지바아로 상 호 연결한 구조를 가질 수 있다. 즉, 수평 방향 분배 관체 (24)와 연결 지지바아가 격자 형태로 배열된 구조를 가질 수 있는 것이다.
<30> 한편, 샤워링 유닛 (30)은 폴렉시블한 재질의 호스를 증발 로프 (20)의 상단에 스트랩 등을 이용하여 바인딩하여 장착하고, 상기 플렉시블 재질의 호스에 구멍 (미 세 구멍)을 형성하고, 플렉시블 호스에 펌프 (P) 등의 해수 펌핑 장치를 연결하여, 호스의 구멍으로 통해 해수를 살포하는 구성도 가능하다.
<3i> 상기 증발로프 모들 (30)은 홀더 (32)에 의해 복수개의 증발로프 (34)가 그룹으 로 모아지도록 구성됨과 동시에 각각의 증발로프 (34)들은 서로 간에 일정 간격 이 격된 상태에서 상하 방향으로 연장되도록 구성된다. 증발로프 모듈 (30)에서 중요한 것은 각각의 증발로프 (34)가 수평 방향으로 배치되어 있는 것은 하나도 없고 모든 증발로프 (34)가 하나도 빠짐없이 상하 방향을 향하도록 배치되어 있어서, 해수가 중력에 의해 위에서 아래로 이동하면서 수분을 증발시켜 농축수 (소금 (8) 함량이 높 아진 해수)가 신속하게 만들어지도록 한다는 것이다.
<32> 상기 홀더 (32)는 다양한 형상으로 구성될 수 있는데, 이러한 홀더 (32) 중의 하나는 마치 별 형상 (스타 형상) 같이 중심부를 기준으로 복수개의 삼각 형상부가 방사 방향으로 일정 간격으로 배치되고, 삼각 형상부의 안쪽에는 중심부를 기준으 로 방사 방향으로 직선형으로 연장된 브릿지부를 구비한 구성을 이루고 있다. 상기 홀더 (32)에는 상면에서 저면으로 관통된 복수개의 로프홀 (32h)이 구비되어 있다. 흘더 (32)의 삼각 형상부와 브릿지부에 상면에서 저면으로 관통된 로프홀 (32h)이 구 비되어 있는데, 대략 37개 정도의 로프홀 (32h)이 형성되어 있다. 또한, 상기 홀더 (32)는 삼각 형상부와 브릿지부 사이에는 상면에서 저면으로 연통된 공간부가 구비 되어 있다. 그리고, 홀더 (32)의 측면부에는 중심부 방향 (즉, 홀더 (32)의 안쪽 방 향)으로 오목하게 형성된 홈부가 구비되어 있다.
<33> 상기 홀더 (32)의 상면에서 저면으로 관통된 로프홀 (32h)에 증발로프 (34)가 한 개씩 (한 가닥씩 ) 통과되도록 결합된다. 홀더 (32)의 로프홀 (32h)이 서로 일정 간 격 이격되어 있기 때문에, 각각의 증발로프 (34)가 서로 접촉되어 있는 것이 아니고 서로 간에 일정 간격 이격된 상태로 배열된다.
<34> 상기 증발로프 (34)는 상하 방향으로 일정 간격으로 배치된 복수개의 홀더
(32)의 각 로프홀 (32h)을 통과하여, 복수개의 증발로프 (34)와 복수개의 홀더 (32)가 결합된 증발로프 모들 (30)을 형성하게 된다. 각각의 증발로프 (34)는 각각의 홀더 (32) 사이에 구비된 그립핑부 (35)에 의해 중심부 방향 (즉, 증발로프 모들 (30)의 중 심부 방향)으로 모아지도록 구성된다. 증발로프 (34)는 복수개의 섬유 재질의 얇은 실을 엮어서 일반적인 로프 구조를 이루거나 스폰지와 같은 섬유 재질과 같은 여러 가지 재질로 이루어질 수 있는데, 상기 그립핑부 (35)는 증발로프 (34)와 동일한 재 질로 이루어진 끈을 각각의 증발로프 (34) 외측에서 원형으로 묶어주는 방식으로 구 비함으로써, 상기 그립핑부 (35)에 의해 증발로프 모들 (30)의 중심부 방향으로 복수 개의 증발로프 (34)가 모아져 묶여진 구조를 취할 수 있게 된다. 그립핑부 (35)는 환 형의 링체 형상으로 구성되어, 각각의 증발로프 (34)를 모아지도록 묶어주는 구조를 취할 수도 있다. 아무튼, 각각의 증발로프 (34)를 함께 묶어주는 방식으로 모아주는 구조이면 모두 그립핑부 (35)로 채용할 수 있다.
<35> 이때, 그립핑부 (35)가 중요한 것은 각각의 홀더 (32) 사이에서 복수개의 증발 로프 (34)를 가운데 방향으로 뭉쳐지는 것과 같이 모아주어서 각각의 홀더 (32)가 증 발로프 (34)를 따라 홀러내리지 않고 상하 일정 간격의 스페이스 확보하면서 안정 적으로 증발로프 (34)에 결합된 상태를 유지한다는 것이다. 상기 그립핑부 (35)는 각 각의 홀더 (32) 사이에서 모든 증발로프 (34)를 가운데로 모아서 묶어주는 구조라서, 이러한 그립핑부 (35)에 의해 각 증발로트는 각각의 홀더 (32) 사이에서 마치 장구 형상처럼 모아진 형상 (묶여진 형상)을 이루고 있으며, 이로 인하여 각각의 홀더 (32)의 상면과 저면이 증발로프 (34)에 의해 지지될 수 있게 된다. 즉, 그립핑부 (35)에 의해 각 증발로프 (34)가 흘더 (32) 사이에서 장구 모양처럼 모아지도록 구성 되어, 각각의 증발로프 (34)는 상부 지지 로프부 (34a)와 하부 지지 로프부 (34b)가 형성되고, 이러한 증발로프 (34)의 상부 지지 로프부 (34a)와 하부 지지 로프부 (34b) 가 홀더 (32)를 위아래에서 각각 받치고 있는 구조가 생기므로, 각각의 홀더 (32)가 상하 간에 일정 간격의 스페이스를 확보한 상태에서 제위치를 벗어나지 않고 안정 적으로 배열될 수 있게 된다. 하부 지지 로프부 (34b)는 밑에서 홀더 (32)를 받치고 상부 지지 로프부 (34a)는 위에서 홀더 (32)를 받치고 있으므로, 홀더 (32)는 제자리 에 안정적으로 고정되고 각 증발로프 (34)는 그 사이에 일정 스페이스가 확보된 구 조를 가질 수 있게 되는 것이며, 이러한 증발로프 (34)의 각 스페이스 사이로 바람 이나 햇빛 등이 지나가도 들어오게 되어, 해수 증발 표면적을 극대화시키게 된다. <36> 한편, 도 10 및 도 11에 도시된 바와 같이, 상기 홀더 (32)는 원판형 (디스크 형)으로 구성되어, 상기 증발로프 (34)가 상면에서 저면으로 관통되도록 구성될 수 있다. 디스크형 홀더 (32)의 각각의 로프홀 (32h)에 증발로프 (34)가 한 가닥씩 통과 되도록 결합되어, 복수개의 증발로프 (34)가 서로 간격 일정 간격 이격된 스페이스 가 확보되도록 배열될 수 있으며, 역시 각각의 홀더 (32) 사이에 구비된 그립핑부 (35)에 의해 복수개의 증발로프 (34)가 마치 장구 형상처럼 모아진 형상을 이를 수 있다.
<37> 상기한 바와 같이, 본 발명에서 홀더 (32)는 별 형상처럼 복수개의 삼각부가 방사 방향으로 분기된 형상이나 디스크 형상 이외에 여러 가지 다양한 형상으로 구 성될 수 있다.
<38> 도 12에 도시된 바와 같이, 상기 홀더 (32)는 중심부를 기준으로 방사 방향으 로 배치된 복수개의 삼각뿔 형상의 아웃터 홀더편과, 이러한 아웃터 홀더편의 안쪽 위치에 방사 방향으로 배치된 복수개의 브릿지편에 의해 연결된 환형의 이너 홀더 편올 구비하고, 각각의 아웃터 홀더편과 이너 홀더편에 상면에서 저면으로 관통된 로프홀 (32h)이 구비된 구조를 취할 수 있다.
<39> 도 13에 도시된 바와 같이, 홀더 (32)는 삼각형상의 아웃터 홀더편과, 이 아 웃터 홀더편의 안쪽 위치에 브릿지편으로 연결되어 배치된 이너 홀더편을 구비하 며, 아웃터 홀더편과 이너 홀더편에 상면에서 저면으로 관통된 복수개의 로프홀
(32h)이 구비된 구조를 가질 수 있다.
<40> 도 14에 도시된 바와 같이, 홀더 (32)는 사각 폐루프 형상의 아웃터 홀더 바 디와, 이 아웃터 홀더 바디의 안쪽에 복수개의 브릿지편으로 연결되어 배치된 이너 홀더 바디를 구비하고, 아웃터 홀더 바디와 이너 홀더 바디에 상면에서 저면으로 관통된 복수개의 로프홀 (32h)이 구비될 수 있다.
<41> 도 15에 도시된 바와 같이, 상기 홀더 (32)는 마름모꼴 폐루프 형상의 아옷터 홀더 바디와, 이 아웃터 홀더 바디의 안쪽 위치에 복수개의 브릿지편으로 연결 배 치되며 마름모꼴 판형상으로 이루어진 이너 홀더 바디를 구비하며, 아웃터 홀더 바 디와 이너 홀더 바디에 로프홀 (32h)이 형성될 수 있다.
<42> 도 16에 도시된 바와 같이 , 홀더 (32)는 육각형 폐루프 형상의 아웃터 홀더 바디 안쪽에 브릿지편을 매개로 연결된 육각형 폐루프 형상의 이너 홀더 바디를 구 비하고, 육각형 폐루프 형상의 아웃터 홀더 바디와 이너 홀더 바디에 로프홀 (32h) 이 형성될 수 있다.
<43> 도 17에 도시된 바와 같이 , 상기 홀더 (32)는 원형의 아웃터 링체 안쪽 위치 에 원형의 이너 링체가 복수개의 브릿지부를 매개로 연결 배치되며, 아웃터 링체와 이너 링체에 복수개의 로프홀 (32h)이 형성된 구조를 가질 수 있다.
<44> 도 18에 도시된 바와 같이, 상기 홀더 (32)는 사각형 테두리 홀더 바디에 십 자형 홀더 바디가 구비되고, 테두리 홀더 바디와 십자형 홀더 바디에 복수개의 로 프홀 (32h)이 형성된 구조를 취할 수 있다.
<45> 또한 도 19에 도시된 바와 같이 , 상기 홀더 (32)는 중심부를 기준으로 마치 불가사리 형상처럼 복수개의 홀더 바디편이 방사 방향으로 분기된 형상으로 이루어 지고, 각각의 홀더 바디편에 복수개의 로프홀 (32h)이 형성된 구조를 가질 수 있다.
<46> 상기한 다양한 형상의 홀더 (32)는 실시예의 일부로서, 홀더 (32)에서 중요한 것은 모두 상면에서 저면으로 관통된 복수개의 로프홀 (32h)이 형성되고, 각각의 로 프홀 (32h)에 증발로프 (34)가 한 가닥씩 통과하도록 결합되어, 각각의 증발로프 (34) 사이가 서로 이격된 상태로 배치되도록 지지하는 기능을 가진 점이며, 이러한 점에 서 상기한 홀더 (32)가 모두 공통된 특징을 갖는다.
<47> 본 발명에서는 상기 증발로프 모들 (30)의 상단부가 서포트 프레임 (40)에 지 지되어 상하 방향으로 설치되며, 복수개의 증발로프 모들 (30)은 서포트 프레임 (40) 에 의해 염전 (4)에 전후 좌우 입방체 형태로 배치된다. 즉, 복수개의 증발로프 모 들 (30)이 염전 (4)의 위에서 볼 때에 행 방향과 열 방향으로 일정 간격을 이루어 배 W 201
10 치된 것이다.
<48> 구체적으로, 상기 염전 (4)에는 서포트 프레임 (40)이 설치되고, 서포트 프레 임 (40)에는 염전 (4)의 지면과 마주하는 방향으로 배치되도록 상하 방향의 서포트 포스트 (42)에 교차되는 방향으로 연장되어 증발로프 모듈 (30)의 상단부를 걸어서 지지하기 위한 복수개의 서포트 행거 바아 (44)가 구비된다. 즉, 염전 (4)에는 수직 방향으로 서포트 포스트 (42)가 설치되고, 서포트 포스트 (42)는 염전 (4)을 따라 일 정 간격으로 배치되며, 각각의 서포트 포스트 (42)에는 서포트 행거 바아 (44)의 양 단부가 연결되어, 복수개의 서포트 행거 바아 (44)가 일정 간격을 이루어 염전 (4)과 마주하는 방향으로 배치되어 있다. 바람직하게, 도시되어 있지는 않지만, 상기 서 포트 행거 바아 (44)에는 교차되는 방향으로 적어도 하나 이상의 지지 바아가 연결 되어, 각 서포트 행거 바아 (44)가 지지 바아를 매개로 상호 견고하게 연결된 구조 를 취하도록 한다. 적어도 두 개 이상의 지지 바아와 각각의 서포트 행거 바아 (44) 가 격자형으로 연결된 구조를 취하게 되면, 상기 증발로프 모들 (30)을 복수개로 걸 어서 지지하는 서포트 프레임 (40) (특히, 서포트 행거 바아 (44) 부분)의 지지 구조 를 보다 안정화시킬 수 있어서 보다 좋다.
<4 > 상기 서포트 프레임 (40)의 각각의 서포트 행거 바아 (44)에 증발로프 모들
(30)의 상단부를 고정하여 각 증발로프 모들 (30)이 염전 (4)에 수직 방향으로 세워 지도록 설치된다. 증발로프 모들 (30)의 가장 위쪽은 복수개의 증발로프 (34) 중에서 한 가닥의 증발로프 (34)가 다른 증발로프 (34)를 가운데로 모아서 묶어주도록 한 가 닥의 증발로프 (34)를 각각의 증발로프 (34) 외주면으로 적정한 횟수만큼 돌려서 감 아주고, 증발로프 (34)의 돌려서 감아준 묶음 로프부의 밑에서부터 상기 한 가닥의 증발로프 (34)를 다른 복수개의 증발로프 (34)와 묶음 로프부 사이로 통과시켜서 위 로 빼고, 이처럼 증발로프 모들 (30)의 위로 연장시킨 한 가닥의 증발로프 (34)를 상 기 서포트 프레임 (40)의 서포트 행거 바아 (44)에 묶어주면, 각각의 증발로프 모들 (30)의 상단부가 서포트 행거 바아 (44)에 고정되어 염전 (4)에 수직 방향으로 배치 된 구조를 가질 수 있다. 상기 증발로프 (34) 중에서 적어도 한 가닥의 증발로프 (34)에 대략 후크 형상의 행거부재를 구비하고, 이 행거부재를 서포트 프레임 (40) 의 서포트 행거 바아 (44)에 걸어주는 방식으로 각각의 증발로프 모듈 (30)을 염전 (4)에 수직 방향으로 설치되도톡 할 수도 있다ᅳ 이밖에 , 상기 증발로프 모들 (30)를 서포트 프레임 (40)의 서포트 행거 바아 (44)에 고정하여 염전 (4)에 수직 설치할 수 있는 행거수단은 모두 증발로프 모들 (30)의 직립 설치 고정수단으로 채용할 수 있 을 것이다. <50> 또한, 상기 서포트 프레임 (40)은 적어도 서포트 행거 바아 (44) 부분이 상하 로 승강 가능하게 구비되도록 하는 것이 바람직하다. 예를 들어, 서포트 프레임 (40)은 염전 (4)에 하단부가 고정되어 수직 배치된 고정 프레임 슬리브와, 이 고정 프레임 슬리브에 상대 승강 가능하게 결합되며 상기 서포트 행거 바아 (44)가 연결 되어 있는 승강 프레임 바아로 구성되어, 상기 승강 프레임 바아에 로프를 매개로 연결된 권양기 등의 승강 작동수단에 의해 승강 프레임 바아와 이에 연결된 서포트 행거 바아 (44)를 을리거나 내릴 수 있도록 한다. 권양기는 미도시된 지지대에 장착 되고, 권양기에는 로프를 매개로 승강 프레임 바아에 연결되어, 권양기를 작동시킴 에 따라 승강 프레임 바아와 이에 구비된 서포트 행거 바아 (44)가 승강되고, 서포 트 행거 바아 (44)가 승강됨에 따라 증발로프 모들 (30)이 수직 방향으로 펼쳐져 세 워지거나 콤팩트하게 접혀질 수 있다. 상기와 같이, 권양기를 증발로프 모들 (30)을 지지한 서포트 행거 바아 (44)를 지지하는 승강 프레임 바아에 로프 등의 연결체를 매개로 연결하여, 권양기에 의해 서포트 행거 바아 (44)를 올려서 증발로프 모들 (30)을 수직으로 세운 다음, 상기 미도시된 지지대에 구비된 계단을 타고 사람이 올라가서 상기 승강 프레임 바아에 연결된 로프의 행거 클립을 지지대 (40)에 구비 된 고정고리 (52)에 걸어주면, 증발로프 모듈 (30)이 자체의 하중 등에 의해 견고하 게 지지대에 결합되어 수직 방향으로 펼쳐진 상태를 유지하도록 구성할 수 있다. 이때, 상기 서포트 행거 바아 (44)에 각각 연결된 지지 바아를 구비한 경우에는 격 자형상의 서포트 행거 바아 (44) 섹터를 한꺼번에 승강시킬 수 있어서 좋다. 한편, 본 발명에서는 염전 (4) 위쪽에 설치된 각각의 서포트 행거 바아 (44)에 그냥 증발로 프 모들 (30)의 상단부를 고정한 구조를 가질 수 있음은 물론이다. 권양기 이외에 다른 승강수단으로 승강 프레임 바아에 연결된 서포트 행거 바아 (44)를 승강되도록 하는 구성은 모두 채용할 수 있다.
<5i> 본 발명은 오버 플로우 저수조 (50)를 더 포함한다. 상기 오버 플로우 저수조
(50)는 염전 (4) 주위의 땅을 파서 형성하여 물을 담을 수 있는 수조 구조이다. 이 때, 오버 플로우 저수조 (50)의 높이는 염전 (4)의 바닥보다 상대적으로 낮은 위치에 형성되고, 염전 (4)의 바닥과 오버 플로우 저수조 (50)는 바이패스 수로 (52)를 매개 로 연결되어, 도 1과 도 2에 도시된 바와 같이, 상기 증발로프 모듈 (30)을 타고 내 려온 해수에서 진흙 (머드)은 염전 (4)의 바닥에 쌓이고 물은 바이패스 수로 (52)를 통해 오버 플로우 저수조 (50)로 유입된다. 결국, 염전 (4)의 바닥에는 오버 플로우 저수조 (50)가 연결되고, 오버 플로우 저장되는 파이프 등을 매개로 저장조 (12) (해 수 보관용 저장조라 할 수 있음)에 연결되고, 상기 저장조 (12)와 오버 플로우 저수 조 (50)를 연결하는 파이프 등에는 밸브가 구비된다. 상기 파이프 상에 펌프 (P)가 구비될 수도 있다. 이때 저장조 (12)는 제 1저장조 (12a)와 제 2저장조 (12)로 구성될 수 있고, 제 2저장조 (12)가 오버 플로우 저수조 (50)가 연결된 구조이다. 제 1저장조 (12a)는 해수를 끌어온 저수지 (11)에 연결되거나 바다에 직접 연결될 수 있다.
<52> 상기 펌프 (P)는 오버 플로우 저수조 (50)와 상기 증발로프 모듈 (30)에 해수를 공급하는 샤워링 유닛 사이에 연결된다. 즉, 오버 플로우 저수조 (50)에 연결된 해 수 펌핑 관체 (22) 상에 펌프 (P)가 구비되어, 상기 증발로프 모듈 (30)로 해수를 공 급하는 수평 방향의 분배 관체 (24)마다 펌프 (P)가 연결된 구조를 가지고 있다. 또 한, 상기 샤워링 유닛은 염전 (4) 다음의 결정지 (6)에 연결된다. 샤워링 유닛의 각 각의 분배 관체 (24)가 연결관체 (28)를 매개로 결정치에 연결되어, 각 분배 관체 (24)로 들어오는 해수가 증발로프 모듈 (30)의 각 증발로프 (34)를 타고 내려와서 농 축수를 만들고, 상기 샤워링 유닛의 해수 펌핑 관체 (22)에 접속된 연결관체 (28)를 통해 결정지 (6)로 농축수가 공급될 수 있게 된다. 한편, 상기 분배 관체 (24)에는 개별적으로 밸브 (28a)가 구비되어, 밸브 (28a)의 개폐에 따라 분배 관체 (24)로 공급 되는 농축수를 공급하거나 공급 차단하도록 구성될 수 있다. 한편, 상기 결정지 (6) 로 넘어가는 농축수는 소금 (8)의 농도가 중량부로 15% 내지 25% 정도인데, 아하 편의상 농축수도 해수로 칭하기로 한다.
<53> 상기 샤워링 유닛의 분배 관체 (24)와 결정지 (6) 사이에 연결관체 (28) 상에는 밸브가 구비되고, 이러한 밸브는 샤워링 유닛의 분배 관체 (24)와 결정지 (6) 사이의 연결관체 (28) 상에 배치된 염도계 (27)에 연결되어, 염도계 (27)가 감지하는 소금 (8) 농도에 따라 염도계 (27)와 연동하여 밸브가 개폐되도록 구성될 수 있다. 염도계 (27)에 의해 해수의 소금 (8) 농도가 15% 내지 25% 정도인 것으로 감지되면, 밸브 가 열려서 결정지 (6)로 해수 (농축수)를 넘겨주게 된다.
<54> 한편, 해수를 바다에서 끌어와 저수지에 저장하는데, 본 발명에서는 저수지 에 파이프 등으로 연결된 저장조 (12)를 구비하고, 저장조 (12)에는 오버 플로우 저 수조 (50)가 파이프 등으로 연결되며, 상기 저장조 (12)와 오버 플로우 저수조 (50)를 연결하는 파이프 등에는 펌프 (P)와 밸브가 구비될 수 있다. 이때, 저장조 (12)는 저 수지와 파이프 등을 매개로 연결된 게 1저장조 (12a)와, 이러한 제 1저장조 (12a)와 파 이프 등으로 연결된 제 2저장조 (12)를 구비할 수 있다. 게 1저장조 (12a)와 제 2저장조 (12) 사이를 연결하는 파이프 등에는 펌프 (P)와 밸드 등이 역시 설치될 수 있다.
<55> 상기 제 2저장조 (12)에 오버 플로우 저수조 (50)가 파이프 등에 의해 연결될 수 있다. 제 2저장조 (12)와 오버 플로우 저수조 (50) 사이를 연결하는 파이프에는 밸 브 (54)가 설치된다. 밸브 (54)는 저장조 (12), 도 1에서는 제 2저장조 (12b)에 저수되 어 있는 해수를 오버 플로우 저수조 (50)에 공급하거나 공급 차단하도록 개폐된다. 상기 오버 플로우 저수조 (50)는 제 3저장조라 할 수 있는데, 이러한 게 3저장조 및 제 1저장조 (12a)와 제 2저장조 (12)가 본 발명의 저장조 (12)를 구성할 수 있다. 상기 오버 플로우 저수조 (50)와 샤워링 유닛의 각각의 분배 관체 (24)는 염전 (4)에 설치 된 해수 펌핑 관체 (22)를 매개로 연결되고, 해수 펌핑 관체 (22)를 오버 플로우 저 수조 (50)에 연결하는 중간 연결관체 (28)에 펌프 (P)가 구비되거나 해수 펌핑 관체 (22) 자체에 펌프 (P)가 구비되어, 상기 오버 플로우 저수조 (50)에 채워져 있는 해 수를 펌프 (P)를 통해 펌핑하여 분배 관체 (24)를 거쳐서 각각의 증발로프 모들 (30) 에 공급되도록 할 수 있다. 이때, 중간 연결관체 (28)는 염전 (4)의 주위에 배치되어 각각의 해수 펌핑 관체 (22) 하단부에 연통되도록 연결됨과 동시에 오버 플로우 저 수조 (50)에 연결되어 있는 구조를 취할 수도 있다.
<56> 또한, 본 발명에서는 소금 (8)을 석출하는 결정지 (6)에 상기 증발로프 모듈
(30)과 오버 블로우 저장조 (12)의 구조를 한번 더 구비할 수 있다. 즉, 결정지 (6) 의 바닥 상부 위치에 상기 서포트 프레임 (40)에 의해 지지되는 복수개의 증발로프 모들 (30)이 수직 방향으로 설치되며, 상기 결정지 (6)에는 바이패스 수로 (52)를 통 하여 다른 오버 플로우 저수조 (50)가 연결되며, 오버 플로우 저수조 (50)에 저수된 해수는 상기 결정지 (6)에 한번 더 구비된 샤워링 유닛에 의해 각각의 증발로프 모 들 (30)로 공급되도록 할 수 있다. 상기 염전 (4)에서 넘어온 해수를 증발로프 모들 (30)을 이용하여 해수의 수분을 한번 더 증발시킨 다음 결정지 (6)에서 소금 (8)을 석출하는 구조를 가지고 있는 것이다.
<57> 상기 오버 플로우 저수조 (50)는 염전 (4) 주변의 땅을 파서 형성하는데, 오버 플로우 저수조 (50)에는 볼탑 (부구)가 설치되어 있고, 볼탑에 의해 수위를 감지하는 센서가 구비되어, 볼탑이 기준 수위 이상이면 오버 플로우 저수조 (50)에 채워진 해 수를 펌프 (P)와 샤워링 유닛을 통해' 각각의 증발로프 모들 (30)에 공급하도록 구성 할 수 있다. ·
<58> 오버 폴로우 저수조 (50)와 증발로프 모듈 (30) 사이의 해수 순환이 계속되면 소금 (8) 농도는 더욱 올라갈 것이고, 상기 해수의 농도가 적정 소금 (8) 농도 (대략 15% 내지 25% 정도의 소금 (8) 농도)를 가진 해수 (농축수)를 결정지 (6)로 넘겨주 게 된다.
<59> 한편 오버 플로우 저수조 (50)의 해수가 결정지 (6)로 넘어가면 다시 저장조
(12)에 저장되어 있는 해수를 오버 플로우 저수조 (50)로 재투입하여 상기와 같은 증발로프 모들 (30)과 오버 플로우 저수조 (50) 사이의 해수 순환 과정을 반복한다. 새로운 해수가 오버 플로우 저수조 (50)에 공급되면 해수의 소금 (8) 농도는 낮아질 것이고, 소금 (8) 농도가 낮은 해수를 증발로프 모들 (30)과 오버 플로우 저수조 (50) 사이에서 반복해서 순환시키는 과정을 반복하여 농축수를 만들게 되는 것이다. 이 때, 상기 증발로프 모돌 (30)과 오버 플로우 저수조 (50) 사이의 해수 순환 과정이 이루어지는 동안 상기 저장조 (12)와 오버 플로우 저장소 사이를 연결하는 파이프 등에 밸브는 잠금 상태를 유지한다. 그래야, 증발로프 모들 (30)과 오버 플로우 저 수조 (50) 사이로만 해수가 순환되어 해수를 적정 소금 (8) 농도를 가진 농축수로 만 들어서 결정지 (6)에 공급되도록 할 수 있다. 이때, 오버 플로우 저수조 (50)는 저장 조 (12) 및 염전 (4)보다 더 낮은 위치에 구비되어, 해수가 자연압 (즉, 수압차)으로 오버 플로우 저수조 (50)에 들어오도록 할 수 있다. 한편, 본 발명에서는 상기 저장 조 (12)에서 직접 샤워링 유닛의 각 분배 관체 (24)로 해수를 공급하여 저장조 (12)측 에서 직접 각 증발로프 모들 (30)로 해수를 살포함으로써 바로 적정 소금 (8) 농도 ( 즉, 15% 내지 25% 정도의 소금 (8) 농도)를 가진 해수 (농축수)를 만들어서 결정지 (6)로 넘겨줄 수 있음은 당연하다.
<60> 본 발명의 구조를 정리하면, 상기 염전 (4)에서 증발로프 (34)를 타고 내려가 서 소금 (8)의 농도가 높아진 농축수를 넘겨받는 결정지 (6)를 포함하몌 상기 염전 (4)과 결정지 (6) 사이에는 염전 (4)측에서 농축되는 해수 (농축수)의 염도를 측정하 는 염도계 (27)가 구비된다.
<6i> 상기 샤워링 유닛은 증발로프 모들 (30)의 상부 위치에 배치된 복수개의 분배 관체 (24)이 구비되고, 상기 분배 관체 (24)에는 적어도 두 개 이상의 증발로프 모들 (30)에 인접되도록 연장된 적어도 두 개 이상의 노즐이 구비되어, 상기 노즐이 인 접한 각각의 증발로프 모들 (30)에 해수가 공급되도록 하는데, 바람직하게 각각의 노즐은 기단부에서 선단부 방향으로 갈수록 단면적이 점차적으로 작아지는 분사 추 진 슬리브부가 구비되고, 상기 분사 추진 슬리브부의 끝단에 분사공이 구비된다.
<62>
<63> 이러한 구성의 본 발명에 의하면, 상기 증발로프 모듈 (30)을 서포트 프레임
(40)에 의해 지지하여 수직 방향으로 펼쳐지도록 배치한 상태에서 샤워링 유닛 (30) (정확하게는 각각의 분배 관체 (24))를 통해 공급되는 해수가 각 증발로프 (34)(22)의 표면을 따라 중력에 의해 위에서 아래로 흘러내리면서 증발할 수 있는 증발 표면적을 극대화시켜주므로, 해수의 증발 속도를 최대한 가속화시킬 수 있고, 증발로프 모들 (30) 아래의 염전 (4)에는 농도가 높아진 해수 (다시 말해, 소금 (8)량 의 비율이 높은 해수)가 고여서 염전 (4)에서도 해수의 증발 속도가 가속화될 수 있 으며, 상기 증발로프 모들 (30) 자체는 복수개의 증발로프 (34)가 서로 간에 이격된 상태로 배치되어 있어서 각 증발로프 (34) 사이의 빈 공간 사이로 햇빛이 들어가면 서도 해풍이 지나가므로, 증발로프 모듈 (30)가 해풍에 의해 흔들리는 등의 영향을 받는 것이 최소화되면서도 해수의 수분 증발 단면적은 극대화시켜서 소금 (8) 석출 을 위한 해수 증발 시간 단축 효율을 극대화시킬 수 있게 된다.
<64> 본 발명에서는 2% ~ 3% 정도 염도의 해수에서 펌프 (P) (34)를 이용하여 해 수 증발 장치 상부의 증발로프 모듈 (30)를 따라 연속적으로 공급하고 중력에 의해 각각의 증발로프 (34)를 따라 해수가 흘러내리면서 수분이 증발하므로 소금 (8)이 높 은 농도의 해수를 얻을 수 있게 된다. 대략 15%에서 25% 정도의 소금 (8) 농도를 가진 해수 (농축수)를 얻올 수 있으며, 이러한 고농도의 해수를 결정지 (6)에 넘겨서 소금 (8) (특히, 천일염)이 석출될 수 있도록 한다.
<65> 또한, 상기 증발로프 모들 (30)은 지지대 (40)에 결합되어 펼쳐진 상태에서는 육면체 형태 (즉, 상하면과 전후면 및 좌우면이 구비된 입방체 로프 블록형태, 비유 하자면 주사위 블록 형태로 유지되는 한편 다수개의 증발로프 (34)(22)가 엮어진 구조의 특성상 플랫한 형태 (즉, 납작한 형태)로 접혀질 수 있어서, 태풍이 불 때에 는 권양기 등을 이용하여 증발로프 (34)를 하강시켜 납작하게 접어놓을 수 있으므 로, 태풍에 의해 증발로프 (34)가 쓰러지거나 날라가거나 또는 찢어지는 것과 같은 파손이 생기지 않게 된다.
<66> 특히, 본 발명에서는 해수가 중력에 의해 증발로프 모듈 (30)의 각각의 증발 로프 (34)를 타고 홀러내리면서 수분이 증발하는데, 상기 증발로프 모들 (30)이 홀더 (32)에 의해 각각의 증발로프 (34)가 서로 간에 일정 간격 이격되어 있는 상태라서, 해수가 증발로프 (34)를 타고 내려갈 때에 해수가 공기와 햇빛에 노출되는 증발 표 면적이 극대화되므로, 해수에서 수분의 증발 속도가 최대한 빨라지게 되며, 이처럼 해수의 증발 속도가 최대한 빨라짐으로 인하여 해수 농도 (즉, 해수에 석인 소금 (8) 량의 비율)가 상당히 신속하게 높아지게 되므로, 이로 인하여 해수의 증발 속도가 가속화될 수 있게 되며, 해수가 위에서 아래로 흘러내리면서 해수 증발 속도를 최 대한 가속화시킬 수 있다는 것은 결정지 (6)에서 소금 (8)을 석출하는 시간이 최대한 단축될 수 있고, 소금 (8) 석출 시간이 단축되는 만큼 소금 (8) 생산성에서 매우 유 리하다는 것을 의미한다.
<67> 다시 말해, 본 발명의 홀더 (32)에 의해 복수개의 증발로프 (34)가 그룹으로 묶여진 증발로프 모듈 (30)을 구비함으로 인하여 해수가 수평 방향으로 정체되지 않 고 모두 위에서 아래로 움직일 수 있도록 한 것이 핵심인데, 상기 증발로프 모들
(30)을 서포트 프레임 (40)에 옷걸이에 걸듯이 걸어주어 수직 방향으로 설치한 상태 에서 해수를 공급하면, 해수가 하나도 정체되지 않고 모든 해수가 아래로 내려가면 서 증발을 하므로, 증발 단면적의 극대화로 인하여 해수 증발 속도를 매우 향상시 키며, 해수 증발 속도가 매우 향상된다는 것은 소금 (8) 석출 시간을 단축시켜 작업 성 측면이나 비용적인 측면에서 효율성을 높이는 것과 같은 여러 가지 바람직한 효 과가 있다. 증발로프 모들 (30)에서 각각의 증발로프 (34) 사이가 떠 있으므로, 공기 나 햇빛이 각각의 증발로프 (34) 사이로 들어가서 해수의 증발 속도 향상의 효과를 가져오고, 가장 증요한 것은 해수가 위에서 아래로 항상 움직이므로, 해수 증발 속 도를 극대화시킬 수 있다. 물이 수평 방향으로 정체되어 움직이지 않는 것과 상기 한 구조의 본 발명을 비교할 때에 그 해수 증발 효율에 있어서 비교조차도 되지 않 는 것이다.
<68> 또한, 본 발명에서 해수를 공급하는 각각의 분배 관체 (24)는 경사지게 배치 되어 있어서, 해수에 섞인 진흙 성분이 분배 관체 (24) 내부에 쌓이지 않고 밖으로 홀러내려 빠지게 되므로, 분배 관체 (24)가 진흙 성분에 막혀서 제대로 작동되지 않 는 경우를 확실하게 방지할 수 있다.
<69> 또한, 본 발명에서는 염전 (4)에 상하 방향으로 설치된 증발로프 모들 (30)의 각각의 증발로프 (34)를 타고 내려오는 해수 (이때, 해수는 소금 (8)과 진흙 및 물 등 이 함께 섞인 것임)가 염전 (4) 바닥에 쌓이는데, 염전 (4)에는 별도의 오버 플로우 저수조 (50)가 연결되어, 염전 (4)에서는 진흙이 공기에 노출되고 오버 플로우 저수 조 (50)로는 진흙을 제외한 해수가 빠져서 저장되며, 이러한 오버 플로우 저수조 (50)에 저장되는 해수는 다시 펌프 (P)를 통해 샤워링 유닛의 각 분배 관체 (24)로 펌핑되어 각각의 증발로프 모들 (30)로 재공급되므로, 해수 증발 가속도를 더욱더 높이게 된다. 본 발명에서는 오버 플로우 저수조 (50)로의 해수 저장, 오버 플로우 저수조 (50)의 해수를 증발로프 모들 (30)에 재공급하는 순환 과정을 반복적으로 수 행할 수 있으므로, 이른바 해수는 정지시키지 않고 계속 돌려줌으로 인하여 해수 증발 가속도를 극대화시키는 기능을 더욱더 확실하게 수행할 수 있다.
<70> 또한, 본 발명에서는 염전 (4)과 결정지 (6) 사이에는 염전 (4)측에서 농축되는 해수 (농축수)의 염도를 측정하는 염도계 (27)가 더 구비되어 있어서, 해수의 농축 정도를 정확하게 감지하여 결정지 (6)로 넘길 수 있으므로, 소금 (8) 석출 효율성을 더욱 높이게 된다. 상기 오버 플로우 저수조 (50)와 염전 (4)측의 증발로프 모들 (30) 로 해수를 계속 돌려서 해수를 증발시키는 과정을 반복함으로써 필요한 소금 (8) 농 도 (예를 들어, 소금 (8) 농축 비율이 15% 내지 25% 정도가 되는 것)로 농축된 해 수를 만들고, 이러한 반복되는 해수 순환 과정에서 염도계 (27)가 적정 소금 (8) 농 도를 감지하면, 염도계 (27)에 의해 밸브가 개방되어 결정지 (6)로 해수 (농축수)를 넘겨주도록 하므로, 소금 (8) 석출 작업에 있어서 정확도를 확실하게 높일 수 있게 된다.
<7)> 또한, 본 발명에서 각각의 증발로프 모듈 (30)에 해수를 공급하는 분배 관체
(24)의 각 노즐에는 선단부에 단면적이 점차적으로 작아지는 분사 추진 슬리브부가 구비되고, 상기 분사 추진 슬리브부의 끝단에 분사공이 구비되어 있어서ᅳ 해수를 펌핑하는 펌프 (P)의 압력이 다소 낮은 경우에도 모든 증발로드 모들에 균일하게 해 수가 공급 (살포)되는 효과도 있다. 이때, 상기 노즐의 길이를 점차적으로 길게하고 선단부는 점차적으로 납작하게 하는 구성 (상기 분사 추진 슬리브 구성)을 가지도록 하면, 해수를 펌핑하는 펌프 (P)를 하나만 사용해도 충분한 압력이 나오므로, 구성 사으로 보다 좋은 효과가 있다.
<72> 그리고, 본 발명에서는 증발로프 모들 (30)의 각 증발로프 (34)가 묶여진 형태 로 지지하는 홀더 (32) 자체에 상면에서 저면으로 관통된 복수개의 공간부가 군데 군데에 구비되어 있어서, 상기 샤워링 유닛에 의해 해수가 공급되어 증발로프 모듈 (30)을 타고 흘러내릴 때에 해수의 하중을 홀더 (32)가 받으려 하여도 홀더 (32)에 구비된 공간부를 통해 원활하게 밑으로 빠져 들어가므로, 홀더 (32) 부분에 가해지 는 과도한 해수의 하중에 의해 증발로프 모들 (30)의 밑으로 처지거나 하는 일이 없 으므로, 구조적으로 보다 안정화를 기할 수 있게 된다.
<73> 또한, 본 발명에서 각 증발로프 모들 (30)을 걸어서 지지하는 서포트 프레임
(40)의 각 서포트 행거 바아 (44)를 위로 볼록한 아치형으로 구성함으로써 각별한 효과를 가지게 된다.
<74> 건물의 천정을 아치 형상으로 하는 이유는 하중에 보다 잘 견디도톡 하여 보 다 견고한 구조의 건축물을 구현하고자 하는 것인데, 본 발명에서도 서포트 행거 바아 (44) 자체를 아치형으로 채용함으로써 증발로프 모듈 (30)을 보다 견고한 힘으 로 지지할 수 있는 장점이 있다. 본 발명의 해수 증발 장치를 설치한 다음에 비교 적 상당한 기간이 지나더라도 아치형의 서포트 행거 바아 (44)가 각 증발로프 모들 (30)이 하측으로 처지지 않도록 보다 견고하게 안정적으로 지지하고 있게 되므로, 그 수명이 연장되는 등의 매우 바람직한 효과를 거두게 된다.
<75> 한편, 상기 서포트 프레임 (40), 정확하게는 서포트 포스트 (42)와 서포트 행 거 바아 (44) (지지 바아가 있는 경우에는 지지 바아까지 포함) 부분이 모두 대나무 로 이루어지는 것이 좋다. 대나무는 특성상 소금 (8)에 의해 쉽게 부식되는 일이 없 어서 본 발명의 해수 증발 장치를 염전 (4)에 설치하고 나서 그 수명을 현저히 높 여주는 장점을 가지게 된다. 또한, 대나무는 외주면에 일정 간격으로 마디가 있어 서, 상기 증발로프 모들 (30)을 한 가닥의 증발로프 (34)를 묶어주는 등의 방식으로 고정할 때에 대나무의 마디 부분이 증발로프 (34)가 대나무 표면에서 미끄러지는 것 을 방지하는 지지턱 기능을 하므로, 손쉬우면서도 안정적으로 증발로프 모들 (30)의 정위치를 유지하는 부수적인 효과도 기대할 수 있게 된다.
<76> 또한, 본 발명의 다른 실시예에서는 염전 (4)의 상부에 수평 방향으로 배치된 분배 관체 (24)에 이어져서 상하 방향으로 배치된 해수 펌핑 관체 (22)가 구비되고, 상기 해수 펌핑 관체 (22)는 일측에 드레인 가이드부가 구비되고, 상기 드레인 가이 드부에는 밸브가 설치된 구조를 가질 수도 있다.
<77> 본 발명의 다른 실시예에서는 해수 펌핑 관체 (22)에 일측으로 하향 경사지게 연장된 드레인 가이드부 (22a)의 벨브 (22b)를 열어주면, 해수에 섞인 진흙 성분이 드레인 가이드부 (22a) 내부를 타고 흘러내리다가 밸브 (22b)를 통해 해수 펌핑 관체 (22)의 외부로 빠지므로, 해수 펌핑 관체 (22) 내부에 진흙이 쌓여서 작동이 제대로 되지 않는 경우를 방지할 수 있다.
<78> 한편 도 20에 도시된 본 발명의 또 다른 실시예에 의하면, 염전 (4)에 설치 된 샤워링 유닛 (30)과, 상기 염전 (4)에 상하 방향으로 배치되어 서로 간에 일정 간 격 이격된 상태에서 샤워링 유닛에 의해 해수를 공급하면 해수가 타고 홀러내려서 해수의 증발이 유도되도록 하는 복수개의 증발로프 (34)를 포함할 수 있다.
<79> 본 발명의 또 다른 실시예에서는 각각의 증발로프 (34)가 독립적으로 염전 (4) 에 설치된 서포트 프레임 (40)의 각각의 서포트 행거 바아 (44)에 연결되어 상하 방 향으로 배치된 것 이외에는 전술한 실시예와 구조가 동일하며, 각각의 증발로프 (34)를 해수가 타고 내려오면서 해수의 증발 가속도가 높아지게 된다.
<80> 또한, 도 21에 도시된 본 발명의 제 3실시예에서는 복수개의 상하 방향 증발 로프 (34)와, 상기 증발로프 (34) 증에서 서로 이웃한 두 개의 사이에 지그 재그 방 향으로 배치되도록 엮어져서 제 1방향 경사 로프부 (38a)와 제 2방향 경사 로프부 (38b)를 형성하는 복수개의 연결 증발로프 (38)를 포함하며, 상기 증발로프 (34)와 연결 중발로프 (38)에 의해 망형상의 증발로프 세그먼트를 형성한 것이며, 이러한 망형상의 증발로프 세그먼트가 서포트 프레임 (40)의 각각의 서포트 행거 바아 (44) 에 연결되어 상하 방향으로 배치된다.
<8i> 본 발명의 제 3실시예의 경우, 망형상의 증발로프 세그먼트에서 상하 방향의 각 증발로프 (34)를 타고 해수가 위에서 아래로 홀러내림은 물론 한쪽 방향 (정면에 서 볼 때에 좌측 방향)으로 경사진 제 1방향 경사 로프부 (38a)와 다른 쪽 방향 (정면 에서 볼 때에 우측 방향)으로 경사진 제 2방향 경사 로프부 (38b)를 타고 해수가 역 시 위에서 아래로 흘러내리는 구조라서 역시 해수 증발 효율의 극대화를 꾀할 수 있게 된다.
또한, 본 발명에서는 증발로프 모들 (30)의 각 증발로프 (34)를 해수가 타로 내려와서 염전 (4)의 바닥에 진흙이 쌓이게 되는데, 오버 플로우 저수조 (50)로 항시 해수가 빠져서 진홁은 항상 공기와 접촉되도록 구성되는데, 이처럼 염전 (4)에 쌓인 진흙이 항상 공기와 접촉되므로 함으로 인하여 각종의 유익한 생물이 식생하는 최 적의 조건이 활성화될 수 있는 장점이 있으며, 결과적으로, 염전 (4) 자체를 살아있 는 갯벌로 조성하므로, 객토를 따로 할 필요가 없는 장점을 가지게 된다.
또한, 본 발명에서는 샤워링 유닛 (50)에 해수를 일정한 시간 간격을 두고 분 사하는 컨트를부가 연결된 구조를 가진다. 컨트롤부는 샤워링 유닛 (50)을 구성하는 각각의 분배 관체 (24)에 연결된 메인 해수 관체의 메인 밸브에 연결되고, 메인 밸 브는 컨트롤부에 의해 자동 개폐 조절되는 밸브로 구성되어, 상기 컨트를부에 의해 메인 밸브를 일정한 시간 간격을 두고 개방함으로써 증발 로프 모듈 (30)에 해수를 간헐적으로 분배되도록 할 수 있다.
따라서, 해수를 증발 로프 모들 (30)에 간헐적으로 분배하면, 해수 증발 효율 이 더욱 높아지고, 이로 인하여 소금 석출 효율도 더욱 높일 수 있게 되므로, 여러 가지 면에서 더욱 바람직한 결과를 기대할 수 있게 된다.
【산업상 이용가능성】
. 본 발명은 증발로프에 샤워링되는 해수 전부를 위에서 아래로 흘러내리도록 하면서 증발시키는 특수 구조를 구비하고 있어서 최대한 신속하게 천일염을 석출하 는데 상당히 도움이 되는 새로운 고효율 해수 증발 장치로서 산업상 이용 가능성이 있다.

Claims

【청구의 범위】
【청구항 11
염전 (4)에 설치된 샤워링 유닛 (30)과;
홀더 (32)에 의해 복수개의 증발로프 (34)가 그룹으로 모아지도록 구성됨과 동 시에 상기 증발로프 (34)들은 서로 간에 일정 간격 이격된 상태에서 상하 방향으로 연장되도록 구성되어, 상기 샤워링 유닛에 의해 해수를 상기 각각의 증발로프 (34) 에 공급하면, 상하 방향으로 연장되면서 서로 간에 간격이 확보되도록 이격되어 있 는 상기 각각의 증발로프 (34)를 타고 해수가 흘러내려서 해수의 증발이 가속화되도 록 하는 증발로프 모들 (30);을 포함하는 것을 특징으로 하는 고효율 해수 증발 장 치 .
【청구항 2】
제 1항에 있어서,
상기 증발로프 모들 (30)은 종횡으로 이격되도록 상기 염전 (4)에 복수개로 배 치되어 각각의 증발로프 모들 (30)가 상기 염전 (4)에 입방체 형태로 배치되며, 상기 각각의 개별 증발로프 모들 (30)에서 상기 각각의 증발로프 (34)를 타고 해수가 흘러 내리는 하강 이동을 하면서 해수의 수분 증발 속도를 가속화시키는 것을 특징으로 하는 고효율 해수 증발 장치 .
【청구항 3】
제 2항에 있어서,
상기 염전 (4)에는 서포트 프레임 (40)이 설치되고, 상기 서포트 프레임 (40)에 는 상기 염전 (4)의 지면과 마주하는 방향으로 배치되도록 상하 방향의 서포트 포스 트 (42)에 교차되는 방향으로 연장되어 상기 증발로프 모들 (30)의 상단부를 걸어서 지지하기 위한 복수개의 서포트 행거 바아 (44)가 구비되며, 상기 서포트 행거 바아 (44)는 중간 부분이 상측으로 볼톡하고 양단부측은 상대적으로 하측으로 더 내려간 아치 형상으로 구성된 것을 특징으로 하는 고효율 해수 증발 장치.
【청구항 4】
제 1항에 있어서,
상기 홀더 (32)는 상면에서 저면으로 관통된 복수개의 로프흘 (32h)이 일정 간 격 이격되도록 형성되어, 상기 로프흘 (32h)을 통과하는 상기 증발로프 (34)가 서로 간의 간격이 확보되도록 배치된 것을 특징으로 하는 고효율 해수 증발 장치.
【청구항 5]
제 4항에 있어서,
상기 홀더 (32)는 상기 증발 로프의 상하 방향을 따라 일정 간격을 이루어 복 수개로 배치되며, 복수개의 상기 홀더 (32) 사이에 배치된 증발로프 (34)를 상기 증 발로프 모들 (30)의 중심부 방향으로 좁혀지도톡 뭉쳐주어 상기 홀더 (32)의 상면과 저면이 상기 증발로프 (34)에 의해 지지 (상부 지지 로프부 (34a)와 하부 지지 로프부 (34b)를 형성하여 지지)되도록 하는 그립핑부 (35)를 더 포함하는 것을 특징으로 하 는 고효율 해수 증발 장치 .
【청구항 6】
거 U항에 있어서,
상기 염전 (4)에 연결되어 상기 증발로프 모들 (30)의 각 증발로프 (34)를 타고 내려오는 농축수가 상기 염전 (4)에서 넘어가서 저장되도록 하는 오버 플로우 저수 조 (50)와;
상기 오버 플로우 저수조 (50)에서 상기 증발로프 모듈 (30)의 상부측으로 농 축수를 다시 공급되도록 펌핑하는 펌프 (P);를 더 포함하는 것을 특징으로 하는 고 효율 해수 증발 장치 .
【청구항 7]
제 6항에 있어서,
상기 염전 (4)에서 상기 증발로프 (34)를 타고 내려가서 소금 (8)의 농도가 높 아진 농축수를 넘겨받는 결정지 (6)를 더 포함하며 , 상기 염전 (4)과 상기 결정지 (6) 사이에는 상기 염전 (4)측에서 농축되는 농축수의 염도를 측정하는 염도계 (27)가 더 구비된 것올 특징으로 하는 고효율 해수 증발 장치 .
【청구항 8】
거 U항에 있어서,
상기 샤워링 유닛은 상기 증발로프 모들 (30)의 상부 위치에 배치된 복수개의 분배 관체 (24)이 구비되고, 상기 분배 관체 (24)에는 적어도 두 개 이상의 증발로프 모들 (30)에 인접되도특 연장된 적어도 두 개 이상의 노즐이 구비되어, 상기 노즐 '이 인접한 각각의 증발로프 모들 (30)에 해수가 공급되도록 하는 것을 특징으로 하는 고효율 해수 증발 장치 .
【청구항 9】
제 8항에 있어서,
상기 노즐은 기단부에서 선단부 방향으로 갈수록 단면적이 점차적으로 작아 지는 분사 추진 슬리브부가 구비되고, 상기 분사 추진 슬리브부의 끝단에 분사공이 구비된 것을 특징으로 하는 고효율 해수 증발 장치.
【청구항 10】
제 8항에 있어서,
상기 분배 관체 (24)에 이어져서 상하 방향으로 배치된 해수 펌핑 관체 (22) 구비되고, 상기 해수 펌핑 관체 (22)는 일측에 드레인 가이드부가 구비되고, 상기 드레인 가이드부에는 밸브가 설치된 것을 특징으로 하는 고효율 해수 증발 장치.
【청구항 11】
염전 (4)에 설치된 샤워링 유닛 (30)과;
상기 염전 (4)에 상하 방향으로 배치되어 서로 간에 일정 간격 이격된 상태에 서 상기 샤워링 유닛에 의해 해수를 공급하면 해수가 타고 홀러내려서 해수의 증발 이 유도되도록 하는 복수개의 증발로프 (34); 포함하는 것을 특징으로 하는 고효율 해수 증발 장치 .
【청구항 12]
제 11항에 있어서,
상기 증발로프 (34)는 지그 재그 방향으로 배치되어 제 1방향 경사 로프부 (38a)와 제 2방향 경사 로프부 (38b)를 형성하는 복수개의 연결 증발로프 (38)에 결합 되어, 상기 증발로프 (34)와 상기 연결 증발로프 (38)에 의해 망형상의 증발로프 세 그먼트를 형성하는 것을 특징으로 하는 고효율 해수 증발 장치.
【청구항 13]
염전 (4)에서 해수를 증발시켜 소금 (8)을 제조하는 장치에 있어서,
상기 염전 (4)에 상하 방향으로 배치되도톡 설치되는 복수개의 증발로프 (34) 와;
상기 복수개의 증발로프 (34)를 그룹으로 모아지도록 묶어서 지지하여 상기 각각의 증발로프 (34)에 살포할 때에 상하 방향으로 연장되면서 서로 간에 간격이 확보되도록 이격되어 있는 상기 각각의 증발로프 (34)를 타고 해수가 흘러내려서 해 수의 증발이 유도되도록 하는 복수개의 홀더 (32);를 포함하는 해수 증발 장치용 증 발로프모들 (30).
【청구항 14】
제 13항에 있어서,
상기 홀더 (32)는 상면에서 저면으로 관통된 복수개의 로프홀 (32h)이 구비되 어, 상기 복수개의 증발로프 (34)가 하나씩 상기 로프홀 (32h)을 통과하도록 결합되 어 서로 간에 이격되는 간격이 확보되도록 구성된 것을 특징으로 하는 해수 증발 장치용 증발로프 모들 (30).
【청구항 15]
제 1항에 있어서,
상기 샤워링 유닛 (50)에는 해수를 일정한 시간 간격을 두고 분사하는 컨트를 부가 연결된 것을 특징으로 하는 고효율 해수 증발 장치.
PCT/KR2013/011302 2013-03-21 2013-12-06 고효율 해수 증발 장치 및 증발로프 모듈 WO2014148722A1 (ko)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP13879039.9A EP2977351B1 (en) 2013-03-21 2013-12-06 Highly efficient sea water evaporator, and evaporation rope module
SI201331484T SI2977351T1 (sl) 2013-03-21 2013-12-06 Visoko učinkovit uparjalnik morske vode in uparjalni vrvni modul
CN201380074931.XA CN105073641B (zh) 2013-03-21 2013-12-06 高效率海水蒸发装置及蒸发绳模块
JP2016504223A JP6213794B2 (ja) 2013-03-21 2013-12-06 高効率海水蒸発装置及び蒸発ロープモジュール
ES13879039T ES2730932T3 (es) 2013-03-21 2013-12-06 Evaporador de agua de mar altamente eficiente y módulo de cables de evaporación
DK13879039.9T DK2977351T3 (da) 2013-03-21 2013-12-06 Højeffektiv fordamper af havvand, og fordamperrebmodul
US14/775,857 US10376808B2 (en) 2013-03-21 2013-12-06 Sea water evaporator, and evaporation rope module for salt production
HRP20191041TT HRP20191041T1 (hr) 2013-03-21 2019-06-10 Visokodjelotvorni otparivač morske vode, te modul s otparivačkim užetom
CY20191100610T CY1121714T1 (el) 2013-03-21 2019-06-12 Εξατμιστης θαλασσιου υδατος υψηλης αποδοσης και δομοστοιχειο σχοινιων εξατμισης

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130030368A KR101383565B1 (ko) 2013-03-21 2013-03-21 고효율 해수 증발 장치 및 증발로프 모듈
KR10-2013-0030368 2013-03-21

Publications (1)

Publication Number Publication Date
WO2014148722A1 true WO2014148722A1 (ko) 2014-09-25

Family

ID=50657207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011302 WO2014148722A1 (ko) 2013-03-21 2013-12-06 고효율 해수 증발 장치 및 증발로프 모듈

Country Status (13)

Country Link
US (1) US10376808B2 (ko)
EP (1) EP2977351B1 (ko)
JP (1) JP6213794B2 (ko)
KR (1) KR101383565B1 (ko)
CN (1) CN105073641B (ko)
CY (1) CY1121714T1 (ko)
DK (1) DK2977351T3 (ko)
ES (1) ES2730932T3 (ko)
HR (1) HRP20191041T1 (ko)
PT (1) PT2977351T (ko)
SI (1) SI2977351T1 (ko)
TR (1) TR201908773T4 (ko)
WO (1) WO2014148722A1 (ko)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101719525B1 (ko) * 2014-11-12 2017-03-24 박용희 시소 트레이에 의한 소금 결정 효율을 향상시킨 소금 생산장치
KR101658840B1 (ko) * 2014-11-12 2016-09-22 박용희 입체 구조 증발지에 의한 소금 생산 자동화 시스템
KR101680373B1 (ko) * 2014-11-12 2016-12-12 박용희 해수 농축지와 배추 절임조가 복합된 배추 절임 시스템
KR101956293B1 (ko) * 2016-12-14 2019-06-24 김민호 해수 담수화장치 및 천일염 제조방법
CN110844954A (zh) * 2018-08-21 2020-02-28 国家能源投资集团有限责任公司 蒸发系统
CN110844953A (zh) * 2018-08-21 2020-02-28 国家能源投资集团有限责任公司 蒸发装置
CN112678905B (zh) * 2019-10-17 2022-07-19 国家能源投资集团有限责任公司 一种含盐水回收处理装置
CN110818001A (zh) * 2019-10-29 2020-02-21 江苏海澄水工机械有限公司 一种低温高浓度污水处理用蒸发室
CN110921683B (zh) * 2019-12-10 2023-02-28 江苏金羿射日新材料科技有限公司 一种竖板吸水光热材料阵列加速晒盐的方法和装置
KR102344981B1 (ko) 2021-03-05 2021-12-31 당두 1호 농업회사법인 (주) 해수 증발 장치
KR102428217B1 (ko) 2021-08-03 2022-08-02 당두 1호 농업회사법인(주) 해수 증발 장치 및 그를 포함하는 염전
KR102389951B1 (ko) * 2021-08-27 2022-04-22 박규식 해수 농축방법
CN114570101B (zh) * 2022-02-28 2023-04-04 江西省巴斯夫生物科技有限公司 一种天然维生素e过滤装置
KR20240014873A (ko) * 2022-07-26 2024-02-02 재단법인대구경북과학기술원 3차원 구조의 태양광 증발 소자(3D Interfacial solar vapor generator) 및 이의 제조 방법, 이를 포함하는 태양 증류기(Solar Still)
KR102577284B1 (ko) 2022-10-07 2023-09-08 유성운 독립된 모듈을 통해 높이 조절이 가능한 해수 증발장치
KR102577292B1 (ko) * 2022-10-07 2023-09-08 유성운 구조 개선형 해수 증발 장치
CN116947139B (zh) * 2023-09-21 2023-12-05 湖南品清环保科技有限公司 一种高效蒸发分离装置及其使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080006451U (ko) * 2007-06-18 2008-12-23 김경희 천일염 조기결정을 유도시키는 수분증발 유도장치
KR20100005160U (ko) * 2008-11-10 2010-05-19 이구희 천일염 생산 염전
KR200454519Y1 (ko) * 2011-02-28 2011-07-08 정태진 염전 증발수로 조립체
KR101085446B1 (ko) * 2011-06-29 2011-11-21 김형은 태양열을 이용한 소금생성장치
KR20140011362A (ko) 2011-03-09 2014-01-28 글락소스미스클라인 인털렉츄얼 프로퍼티 (넘버 2) 리미티드 펩티드 데포르밀라제 억제제
KR101530069B1 (ko) 2014-11-11 2015-06-18 유명화 염전 소금채집장치

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3363664A (en) * 1964-02-25 1968-01-16 Juan T. Villanueva Scheme of salt manufacture
JPS5939363B2 (ja) * 1978-02-24 1984-09-22 克彦 谷 食塩製造方法
CN1088888A (zh) * 1992-12-28 1994-07-06 张子明 铺垫盐田蒸发区的薄膜的固定方法
CN1101009A (zh) * 1993-09-29 1995-04-05 吉林省文化发展总公司 快速海水蒸发型盐提取设备及其方法
JPH07213801A (ja) * 1994-01-31 1995-08-15 Daiei Eng:Kk 気液接触装置
DE10083141B4 (de) * 1999-10-18 2006-04-20 Manteufel, Rolf P. C. Verfahren und Vorrichtung zum Stoff- und/oder Engergieaustausch in einer Rieselkolonne
JP4913943B2 (ja) * 2000-11-27 2012-04-11 幸信 小渡 海塩製造装置
JP2010082617A (ja) * 2008-09-08 2010-04-15 Tadayoshi Nagaoka 物質移動等を行う装置内の気液接触機構
JP2011183259A (ja) * 2010-03-05 2011-09-22 Tadayoshi Nagaoka 物質移動等を行う装置内の気液接触機構
US8647509B2 (en) * 2010-06-15 2014-02-11 General Electric Company Seawater desalination plant and production of high purity salt
WO2012061886A1 (en) * 2010-11-10 2012-05-18 Avivapure Pty Ltd. Evaporation device and system
CN102350061A (zh) * 2011-07-14 2012-02-15 江双余 常温蒸发器设计方法
KR20130025504A (ko) * 2011-09-02 2013-03-12 김병곤 태양열에 의한 미네랄 정제염 제조 장치
KR20150090562A (ko) 2014-01-29 2015-08-06 한국기술교육대학교 산학협력단 염전소금 채취용 자동화장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080006451U (ko) * 2007-06-18 2008-12-23 김경희 천일염 조기결정을 유도시키는 수분증발 유도장치
KR20100005160U (ko) * 2008-11-10 2010-05-19 이구희 천일염 생산 염전
KR200454519Y1 (ko) * 2011-02-28 2011-07-08 정태진 염전 증발수로 조립체
KR20140011362A (ko) 2011-03-09 2014-01-28 글락소스미스클라인 인털렉츄얼 프로퍼티 (넘버 2) 리미티드 펩티드 데포르밀라제 억제제
KR101085446B1 (ko) * 2011-06-29 2011-11-21 김형은 태양열을 이용한 소금생성장치
KR101530069B1 (ko) 2014-11-11 2015-06-18 유명화 염전 소금채집장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2977351A4

Also Published As

Publication number Publication date
CN105073641A (zh) 2015-11-18
JP6213794B2 (ja) 2017-10-18
EP2977351B1 (en) 2019-03-13
US10376808B2 (en) 2019-08-13
ES2730932T3 (es) 2019-11-13
CY1121714T1 (el) 2020-07-31
EP2977351A4 (en) 2016-09-07
PT2977351T (pt) 2019-06-25
EP2977351A1 (en) 2016-01-27
US20160114258A1 (en) 2016-04-28
CN105073641B (zh) 2016-12-28
KR101383565B1 (ko) 2014-04-09
DK2977351T3 (da) 2019-06-17
SI2977351T1 (sl) 2019-08-30
JP2016518302A (ja) 2016-06-23
HRP20191041T1 (hr) 2019-09-06
TR201908773T4 (tr) 2019-07-22

Similar Documents

Publication Publication Date Title
WO2014148722A1 (ko) 고효율 해수 증발 장치 및 증발로프 모듈
CN100540101C (zh) 一种充分利用风能和太阳能大幅度提高晒盐效率的方法
CN202068776U (zh) 一种梯田式培养架
KR20130063309A (ko) 고효율 해수 증발 장치 및 이를 이용한 해수 증발 방법
ES2587184T3 (es) Portador para cultivar macroalgas en un volumen de agua, y una disposición para suspender dichos portadores
CN103004512B (zh) 组合式垂直绿化装置
CN111519800B (zh) 一种绿色建筑幕墙结构
CN106172173A (zh) 一种养殖池塘智能降温系统
CN102444236A (zh) 绿化用板状构件以及壁面等绿化结构
US10369494B2 (en) Salt production automation system utilizing three-dimensionally structured evaporation fields
CN103081743A (zh) 适用于舰船、居家阳台、农业生产的可卸载条状盆叠种装置
CN101966404B (zh) 一种滤元内曝气清洗纤维滤床
CN201467811U (zh) 悬浮式鱼卵孵化器
CN204370439U (zh) 一种用于大坡度石质边坡的护理结构
CN204138428U (zh) 一种生态浮床的消浪助浮装置
CN203340811U (zh) 标准化组合式网箱
CN108901459A (zh) 植生墙绿化布和悬挂升降式垂直绿化装置及其使用方法
CN208691828U (zh) 植生墙绿化布和悬挂升降式垂直绿化装置
KR102577292B1 (ko) 구조 개선형 해수 증발 장치
CN210987205U (zh) 一种建筑小区生态立体绿化墙
JP2004248550A (ja) 壁面緑化装置および壁面緑化方法
CN205357753U (zh) 一种多层悬挂式柔性太阳能集热水产养殖装置
CN104310588A (zh) 生态浮床的消浪助浮装置
CN216752935U (zh) 日光温室大棚
JP4866032B2 (ja) 緑化構造

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380074931.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879039

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016504223

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013879039

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14775857

Country of ref document: US