WO2014148478A1 - 積層構造体および半導体装置 - Google Patents

積層構造体および半導体装置 Download PDF

Info

Publication number
WO2014148478A1
WO2014148478A1 PCT/JP2014/057299 JP2014057299W WO2014148478A1 WO 2014148478 A1 WO2014148478 A1 WO 2014148478A1 JP 2014057299 W JP2014057299 W JP 2014057299W WO 2014148478 A1 WO2014148478 A1 WO 2014148478A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor element
substrate
laminated structure
linear expansion
Prior art date
Application number
PCT/JP2014/057299
Other languages
English (en)
French (fr)
Inventor
玄人 吉野
真一 阪本
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2014148478A1 publication Critical patent/WO2014148478A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a laminated structure in which a semiconductor element is solder-bonded on a surface, and a semiconductor device including the laminated structure.
  • Patent Document 1 there is a laminated structure in which a matrix material (Ni / CNT composite material) for relaxing thermal stress is sandwiched between a semiconductor element (SiC) and a substrate (ceramic). It is disclosed. According to the laminated structure, damage to the semiconductor element due to thermal stress generated between the semiconductor element and the substrate can be prevented.
  • a matrix material Ni / CNT composite material
  • examples of the thermal stress generated in the semiconductor element due to the deformation of the substrate include a compressive stress and a tensile stress.
  • the bonding surface with the semiconductor element on the substrate has an average linear expansion coefficient of the entire substrate at the time of cooling.
  • a bending action based on the difference in the linear expansion coefficient of each layer occurs.
  • the bending direction and the radius of curvature of the substrate vary depending on the material and thickness of each layer.
  • the bonding surface with the semiconductor element on the substrate actually expands.
  • the amount of expansion is smaller than the amount of contraction due to the contraction action based on the average linear expansion coefficient, the bonding surface with the semiconductor element on the substrate will actually contract.
  • both compressive stress and tensile stress can be generated in the semiconductor element, in the semiconductor device, in order to generate an appropriate stress on the semiconductor element, it is due to the bending action of the substrate at the bonding surface of the substrate.
  • the material and thickness of the substrate must be designed in consideration of the amount of shrinkage or expansion, the amount of shrinkage due to the average linear expansion coefficient of the entire substrate, and the amount of shrinkage of the semiconductor element.
  • the inventors have found that when a tensile stress is generated in a semiconductor element, a defect may occur in the semiconductor element due to an expansion of a micro crack generated on the semiconductor surface. . From this, the inventors derived that it is effective as a means for suppressing a defect of a semiconductor element to generate a compressive stress on the semiconductor element so that the crack does not expand.
  • Patent Document 1 not only relaxes the thermal stress generated between the semiconductor element and the substrate, but does not control the direction of the thermal stress. Therefore, in the technique described in Patent Document 1, tensile stress may be generated in the semiconductor element, and thus the malfunction of the semiconductor element cannot be suppressed.
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide a laminated structure and a semiconductor device capable of suppressing defects in the semiconductor element by generating a compressive stress in the semiconductor element. Is to realize.
  • a multilayer structure according to the present invention is a multilayer structure in which a semiconductor element is solder-bonded on a surface, and after the semiconductor element is solder-bonded on the surface, the multilayer structure
  • the temperature of the solder joint portion of the structure decreases from the temperature at the time of the solder joint, the bending action based on the difference in the linear expansion coefficient of each layer in the laminated structure and the average linear expansion coefficient of the entire substrate
  • the material and thickness of each layer are set so that compressive stress is generated on the semiconductor element by the expansion and contraction action.
  • the present invention it is possible to realize a stacked structure and a semiconductor device capable of suppressing a defect of a semiconductor element by generating a compressive stress in the semiconductor element.
  • FIG. 1 is a side view showing a configuration of a semiconductor device 10 according to the present embodiment.
  • the semiconductor device 10 includes a substrate 100 and a semiconductor element 110.
  • the substrate 100 is a flat member.
  • the semiconductor element 110 is fixed on the surface of the substrate 100 by solder bonding in a state where the bottom surface is in close contact with the surface of the substrate 100.
  • FIG. 2 is a cross-sectional view illustrating a configuration example of the substrate 100 according to the present embodiment.
  • the substrate 100 is a stacked structure in which a plurality of layers having different materials are stacked.
  • the substrate 100 has a two-layer structure in which a first layer 102 and a second layer 104 are laminated.
  • the substrate 100 has a three-layer structure in which a first layer 102, a second layer 104, and a third layer 106 are stacked.
  • the substrate 100 is not limited to a two-layer structure and a three-layer structure, and may have a stacked structure of four or more layers.
  • Each of the above layers is bonded to another layer by bonding means such as solder or adhesive (not shown) or by welding the material used for the layer itself.
  • the temperature of the soldered portion of the substrate 100 is determined from the temperature at the time of soldering.
  • the bending action based on the difference in linear expansion coefficient of each layer in the substrate 100 and the expansion / contraction based on the average linear expansion coefficient of the entire substrate in the substrate 100.
  • the material and thickness of each layer are set so that compressive stress is generated on the semiconductor element 110 by the action.
  • the above “temperature during use” is a temperature within a range where the semiconductor device 10 is assumed to be used, and indicates a predetermined temperature.
  • the “temperature during use” may be a single temperature (for example, “25 ° C.” or the like) or may have a range (for example, “ ⁇ 40 ° C. to 85 ° C.”). . In the latter case, a semiconductor device with higher reliability can be provided by covering the temperature range applied to the reliability test.
  • each layer of the substrate 100 is set so as to satisfy the following formula (1).
  • t represents the thickness of the substrate 100.
  • R represents the radius of curvature of the neutral axis of the substrate 100 (at room temperature).
  • R 0 represents the radius of curvature of the neutral axis of the substrate 100 (at the soldering temperature).
  • represents an average linear expansion coefficient of the entire substrate 100.
  • ⁇ chip indicates the linear expansion coefficient of the semiconductor element 110.
  • T represents a temperature difference between the temperature at the time of use and the temperature at the time of soldering in the substrate 100 (solder joint part).
  • the above formula (1) takes into account both the shrinkage action based on the average linear expansion coefficient of the entire substrate 100 in the substrate 100 and the bending action based on the difference in linear expansion coefficient of each layer in the substrate 100.
  • the material and thickness of the substrate 100 are defined such that the contraction amount of the joint surface due to the contraction action is larger than the extension amount of the joint surface due to the bending action. Therefore, the substrate 100 of the present embodiment is configured to satisfy the above mathematical formula (1), so that the compressive stress can be more reliably generated on the semiconductor element 110 when the temperature is lowered. .
  • FIG. 3 is an explanatory diagram schematically showing a contraction effect generated in the semiconductor device 10 according to the present embodiment.
  • FIG. 4 is an explanatory diagram schematically showing a bending action that occurs in the substrate 100 according to the present embodiment.
  • the shrinkage amount of the semiconductor element 110 accompanying the temperature change can be represented by ⁇ chip T.
  • the contraction amount of the substrate 100 accompanying the temperature change can be represented by ⁇ T. Therefore, by selecting the material of each layer of the substrate 100 so that ⁇ T is larger than ⁇ chip T (that is, the value on the right side in the above formula (1) is positive), the substrate 100 is As an action based on the overall average linear expansion coefficient, it becomes possible to generate a compressive stress on the semiconductor element 110. Conversely, than contraction amount alpha Chip T of the semiconductor element 110 and thus reducing the shrinkage amount ⁇ T of the substrate 100, so that the thus cause tensile stress to the semiconductor device 110.
  • the curvature radius R of the substrate 100 at the time of use is smaller than the curvature radius R 0 of the substrate 100 at the time of soldering (that is, the value on the left side in the equation (1) is negative).
  • the substrate 100 is curved in a concave shape with respect to the semiconductor element 110 as shown in FIG. As a function based on this, a compressive stress is generated on the semiconductor element 110.
  • the curvature radius R of the substrate 100 at the time of use is larger than the curvature radius R 0 of the substrate 100 at the time of soldering (that is, the value on the left side in the equation (1) is positive).
  • the substrate 100 is curved convexly with respect to the semiconductor element 110, and the linear expansion coefficient of each layer is As an action based on the difference, a tensile stress is generated on the semiconductor element 110.
  • the action of the substrate 100 is classified into the expansion and contraction action based on the average linear expansion coefficient of the entire board and the bending action based on the difference in the linear expansion coefficient of each layer. For this reason, even if the bending action causes a tensile stress in the semiconductor element 110 in the substrate 100, as long as the shrinkage action has a compression amount larger than the tensile amount (that is, As a result, the substrate 100 generates a compressive stress on the semiconductor element 110 as long as the magnitude relationship of the mathematical formula (1) is satisfied.
  • the substrate 100 of the present embodiment can cause the compressive stress to the semiconductor element 110 more reliably by setting the material and thickness of each layer so as to satisfy the above formula (1).
  • the substrate 100 when the substrate 100 satisfies the above formula (2), the substrate 100 may further satisfy the following formula (3). That is, the linear expansion coefficient of the substrate 100 (the average linear expansion coefficient of the entire substrate) may be set higher than the linear expansion coefficient of the semiconductor element 110.
  • the bonding surface of the substrate 100 with the semiconductor element 110 is not only contracted by a bending action based on the difference in linear expansion coefficient of each layer, but also contracted by a contracting action based on the average linear expansion coefficient of the entire substrate.
  • a compressive stress can be generated more appropriately and reliably with respect to the semiconductor element 110.
  • the substrate 100 has a laminated structure. Therefore, the linear expansion coefficient ⁇ of the entire substrate 100 used in the above formula (1) and the above formula (2) varies depending on the material and thickness of each layer. For example, the linear expansion coefficient ⁇ of the entire substrate 100 can be obtained by the method described below.
  • each parameter of substrate 100 (in the case of two-layer structure)
  • the linear expansion coefficient ⁇ of the substrate 100 can be obtained by the following mathematical formula (5).
  • t 1 represents the thickness of the first layer 102.
  • E 1 represents the Young's modulus of the first layer 102.
  • ⁇ 1 represents the linear expansion coefficient of the material of the first layer 102.
  • T 2 represents the thickness of the second layer 104.
  • E 2 represents the Young's modulus of the second layer 104.
  • ⁇ 2 represents a linear expansion coefficient of the material of the second layer 104.
  • the compression amount (the left side of the above equation (1)) based on the difference in the linear expansion coefficient of each layer of the substrate 100 is obtained by the following equation (6).
  • each parameter of substrate 100 (in the case of three-layer structure)
  • the linear expansion coefficient ⁇ of the substrate 100 can be obtained by the following mathematical formula (9).
  • t 1 indicates the thickness of the first layer 102.
  • E 1 represents the Young's modulus of the first layer 102.
  • ⁇ 1 represents the linear expansion coefficient of the material of the first layer 102.
  • T 2 represents the thickness of the second layer 104.
  • E 2 represents the Young's modulus of the second layer 104.
  • ⁇ 2 represents a linear expansion coefficient of the material of the second layer 104.
  • T 3 represents the thickness of the third layer 106.
  • E 3 represents the Young's modulus of the third layer 106.
  • ⁇ 3 indicates the linear expansion coefficient of the material of the third layer 106.
  • the compression amount (the left side of the above equation (1)) based on the difference in the linear expansion coefficient of each layer of the substrate 100 is obtained by the following equation (10).
  • each parameter of substrate 100 (in the case of n-layer structure)
  • the linear expansion coefficient ⁇ of the substrate 100 can be obtained by the following mathematical formula (13).
  • t 1 represents the thickness of the first layer 102.
  • E 1 represents the Young's modulus of the first layer 102.
  • ⁇ 1 represents the linear expansion coefficient of the material of the first layer 102.
  • T 2 represents the thickness of the second layer 104.
  • E 2 represents the Young's modulus of the second layer 104.
  • ⁇ 2 represents a linear expansion coefficient of the material of the second layer 104.
  • T 3 represents the thickness of the third layer 106.
  • E 3 represents the Young's modulus of the third layer 106.
  • ⁇ 3 indicates the linear expansion coefficient of the material of the third layer 106.
  • the compression amount (the left side of the equation (1)) based on the difference in the linear expansion coefficient of each layer of the substrate 100 is obtained by the following equation (14).
  • T ij is obtained by the following formula (17).
  • K ij is obtained by the following equation (20).
  • the value obtained by the following mathematical formula (22) is defined as “the compression ratio when the temperature of the substrate 100 changes”. Then, the substrate 100 in which the compression ratio is in the range of 0 to 0.001 is defined as “the substrate 100 capable of generating an appropriate compressive stress on the semiconductor element 110”. Then, the material and thickness of each layer of the board
  • each example and each comparative example 10 substrates 100 are prepared, and for each, the semiconductor element 110 is solder-bonded (a material and solder are stacked on a low-temperature heater and heated while applying pressure from above). Then, the presence or absence of cracks in the semiconductor element 110 was confirmed when the temperature of the soldered portion of the substrate 100 changed from the temperature at the time of soldering to the temperature at the time of use. In each example and each comparative example, when a crack was confirmed in at least one semiconductor element 110, it was determined that “crack: exists”.
  • solder material GaAs (gallium arsenide, linear expansion coefficient: 5.8 ppm)
  • Solder material * Au80Sn20 (gold tin, melting point: 273 ° C.)
  • Temperature during soldering 275 ° C
  • Temperature during use 25 ° C *
  • the solder material is thinner than the other layers and sufficiently soft, so that the solder layer is not considered as one layer.
  • Example 1 (Configuration of substrate 100) Material of the first layer 102: CuW (copper tungsten, linear expansion coefficient: 6.5 ppm, Young's modulus: 320 GPa) The thickness of the first layer 102: 300 ⁇ m Material of second layer 104: AlN (aluminum nitride, linear expansion coefficient: 4.5 ppm, Young's modulus: 280 GPa) The thickness of the second layer 104: 300 ⁇ m R 0 : 4.5 m R: -0.9m Compression rate: 0.0003 (Implementation results) Crack: None [Example 2] (Configuration of substrate 100) Material of the first layer 102: AlN (aluminum nitride, linear expansion coefficient: 4.5 ppm, Young's modulus: 280 GPa) The thickness of the first layer 102: 50 ⁇ m Material of second layer 104: Cu (copper, coefficient of linear expansion: 16.7 ppm, Young's modulus: 128 GPa
  • the material and thickness of each layer of the substrate 100 are not satisfied so that the condition that “the compression ratio obtained by the mathematical formula (22) falls within the range of 0 to 0.001” is not satisfied. It was confirmed that a crack was generated in the semiconductor element 110 when. This is presumably because tensile stress or excessive compressive stress was generated on the semiconductor element 110.
  • FIG. 5 is a graph showing changes in shrinkage rate in the semiconductor device 10 (Example 3) according to the present embodiment.
  • the substrate 100 contracts (that is, a compressive stress is generated in the semiconductor element) due to a slight temperature drop.
  • the shrinkage rate (indicated by a triangular plot in FIG. 5) changes in proportion to the decrease in temperature.
  • the amount of deformation of the radius of curvature (shown by a square plot in FIG. 5) is proportional to the temperature change, and the strain due to the average linear expansion coefficient of the material ( This is because another square plot in FIG.
  • FIG. 5 is proportional to the temperature change. Therefore, the semiconductor device 10 according to the present embodiment can always generate a compressive stress in the semiconductor element below the temperature at the time of soldering. That is, the semiconductor device 10 according to the present embodiment can always generate a compressive stress in the semiconductor element, regardless of which operating temperature is set.
  • FIG. 5 relates to the third embodiment, similarly in other embodiments, it is determined that the substrate 100 contracts due to a slight decrease in temperature, and the contraction rate is proportional to the decrease in temperature. Then increase.
  • a multilayer structure according to the present invention is a multilayer structure in which a semiconductor element is solder-bonded on a surface, and after the semiconductor element is solder-bonded on the surface, the multilayer structure
  • the temperature of the solder joint portion of the structure decreases from the temperature at the time of the solder joint, the bending action based on the difference in the linear expansion coefficient of each layer in the laminated structure and the average linear expansion coefficient of the entire substrate
  • the material and thickness of each layer are set so that compressive stress is generated on the semiconductor element by the expansion and contraction action.
  • the bending action based on the difference in linear expansion coefficient of each layer in the laminated structure and the expansion and contraction action based on the average linear expansion coefficient of the entire substrate so that a compressive stress is generated in the semiconductor element when the temperature is lowered.
  • the material and thickness of each of the above layers are set, so that a compressive stress can be more reliably generated in the semiconductor element.
  • the amount of deformation of the radius of curvature is proportional to the temperature change, and the strain due to the average linear expansion coefficient of the material is also proportional to the temperature change. Compressive stress can always be generated in the semiconductor element.
  • each layer is preferably set so as to satisfy the following mathematical formula (1).
  • t represents the thickness of the multilayer structure.
  • R represents the radius of curvature of the neutral axis when the laminated structure is used.
  • R 0 represents the radius of curvature of the neutral axis of the laminated structure (at the time of soldering).
  • represents an average linear expansion coefficient of the entire substrate in the laminated structure.
  • ⁇ chip represents a linear expansion coefficient of the semiconductor element.
  • T indicates a temperature difference between the temperature of the solder joint portion during use and the temperature of the solder joint portion during solder joint.
  • the laminated structure having the above configuration when the temperature decreases after soldering, the total amount of contraction of the base material based on the average coefficient of linear expansion and the amount of expansion and contraction based on the bending action (that is, actually the semiconductor element on the substrate) The amount of shrinkage generated on the bonding surface of the semiconductor element exceeds the amount of shrinkage of the semiconductor element, so that compressive stress can be generated in the semiconductor element.
  • the material and thickness of each layer are set so as to satisfy the following formula (2) and the following formula (3).
  • R represents the radius of curvature of the neutral axis of the laminated structure (when used).
  • R 0 represents the radius of curvature of the neutral axis of the laminated structure (at the time of soldering).
  • t shows the thickness of the said laminated structure.
  • represents an average linear expansion coefficient of the entire substrate in the laminated structure.
  • ⁇ chip represents a linear expansion coefficient of the semiconductor element.
  • T indicates a temperature difference between the temperature of the solder joint portion during use and the temperature of the solder joint portion during solder joint.
  • the material and thickness of each layer are set so that not only the shrinkage of the joint surface due to the shrinkage action but also the shrinkage of the joint face due to the bending action occurs.
  • a compressive stress can always be generated in the semiconductor element below the bonding temperature.
  • each layer is set so as to satisfy the following mathematical formula (4).
  • the stacked structure includes, in order from the semiconductor element side, a first layer and a second layer, and the semiconductor element is made of GaAs (gallium arsenide) as a material.
  • CuW copper tungsten
  • the second layer is preferably made of AlN (aluminum nitride).
  • the laminated structure having the above configuration it is possible to generate a compressive stress more appropriately and reliably on the semiconductor element so that the semiconductor element is not cracked.
  • the stacked structure includes, in order from the semiconductor element side, a first layer and a second layer, and the semiconductor element is made of GaAs (gallium arsenide) as a material.
  • CuW copper tungsten
  • the second layer is preferably made of Cu (copper).
  • the laminated structure having the above configuration it is possible to generate a compressive stress more appropriately and reliably on the semiconductor element so that the semiconductor element is not cracked.
  • the stacked structure includes a first layer, a second layer, and a third layer in order from the semiconductor element side, and the semiconductor element uses GaAs (gallium arsenide) as a material,
  • the first layer is made of CuW (copper tungsten)
  • the second layer is made of AlN (aluminum nitride)
  • the third layer is made of W (tungsten). Is preferably used as a material.
  • the laminated structure having the above configuration it is possible to generate a compressive stress more appropriately and reliably on the semiconductor element so that the semiconductor element is not cracked.
  • a semiconductor device is characterized by comprising the above-mentioned laminated structure and a semiconductor element that is solder-bonded on the surface of the laminated structure.
  • the same effect as the laminated structure can be obtained.
  • the present invention can be used for a semiconductor device in which a semiconductor element is soldered on a substrate.
  • the present invention can be suitably used for a semiconductor laser device or the like in which a semiconductor laser diode is soldered on a substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Wire Bonding (AREA)

Abstract

 積層構造体において、基板(100)は、はんだ接合時の温度から低下する際に、当該基板(100)における各層の線膨張係数の相違に基づく湾曲作用と、当該基板(100)全体の平均線膨張係数に基づく伸縮作用とにより、半導体素子(110)に対して圧縮応力を生じさせるように、各層の材料および厚みが設定されている。

Description

積層構造体および半導体装置
 本発明は、表面上に半導体素子がはんだ接合される積層構造体、および当該積層構造体を備える半導体装置に関する。
 従来、基板上に半導体素子が実装された半導体装置において、半導体素子等から発せられた熱により、半導体素子に熱応力がかかり、当該半導体素子に亀裂が生じるといった問題が生じていた。そこで、従来、このような問題を解決することを目的とした技術が考案されている。
 例えば、下記特許文献1には、半導体素子(SiC)と基板(セラミック)との間に、熱応力を緩和するためのマトリックス材(Ni/CNT複合材料)を挟んで構成された積層構造体が開示されている。当該積層構造体によれば、半導体素子と基板との間に生じる熱応力による半導体素子の損傷を防止できるとされている。
日本国公開特許公報「特開2010-267745号公報(2010年11月25日公開)」
 ここで、基板の変形により半導体素子に生じる熱応力としては、圧縮応力と引張応力とが挙げられる。例えば、基板が積層構造を有している場合において、当該基板がはんだ接合等によって加熱された場合、当該基板における半導体素子との接合面には、その冷却時に、基板全体の平均線膨張係数に基づく収縮作用のみならず、各層の線膨張係数の相違に基づく湾曲作用が生じる。特に、各層の材料および厚みに応じて、基板の湾曲方向および曲率半径が変化する。
 (基板が凸状に湾曲する場合)
 そして、半導体素子側の層の線膨張係数が、他の層の線膨張係数よりも小さい場合、上記冷却時において、基板が半導体素子に対して凸状に湾曲する傾向にある。(但し、半導体素子側の層の線膨張係数が、他の層の線膨張係数より小さい場合でも、必ずしも凸状に湾曲するとは限らない。正確な反りの方向は、基板が3層の場合には後述する数式(10)、基板がn層の場合には後述する数式(14)により規定される。)この場合、当該湾曲作用は、基板における半導体素子との接合面を伸張させようとするが、その伸張量が、上記平均線膨張係数に基づく収縮作用による収縮量より大きいものであれば、実際には、基板における半導体素子との接合面は伸張することとなる。反対に、その伸張量が、上記平均線膨張係数に基づく収縮作用による収縮量より小さいものであれば、実際には、基板における半導体素子との接合面は収縮することとなる。
 (基板が凹状に湾曲する場合)
 反対に、半導体素子側の層の線膨張係数が、他の層の線膨張係数よりも大きい場合、上記冷却時において、基板が半導体素子に対して凹状に湾曲する傾向にある。(但し、半導体素子側の層の線膨張係数が、他の層の線膨張係数より大きい場合でも、必ずしも凹状に湾曲するとは限らない。正確な反りの方向は、基板が3層の場合には後述する数式(10)、基板がn層の場合には後述する数式(14)により規定される。)この場合、当該湾曲作用は、基板における半導体素子との接合面を収縮させようとする。そして、実際にも、基板における半導体素子との接合面は、収縮することとなる。
 (基板における半導体素子との接合面が伸張する場合)
 そして、上記平均線膨張係数に基づく収縮作用と、上記各層の線膨張係数の相違に基づく湾曲作用との双方により、基板における半導体素子との接合面が伸張する場合、半導体素子の収縮量に関わらず、半導体素子に引張応力が生じることとなる。
 (基板における半導体素子との接合面が収縮する場合)
 また、上記平均線膨張係数に基づく収縮作用と、上記各層の線膨張係数の相違に基づく湾曲作用との双方により、基板における半導体素子との接合面が収縮する場合において、(a)基板における半導体素子との接合面の収縮量が、半導体素子の収縮量を上回るとき、実際には、半導体素子に圧縮応力が生じることとなり、(b)基板における半導体素子との接合面の収縮量が、半導体素子の収縮量を下回るとき、実際には、半導体素子に引張応力が生じることとなる。
 このように半導体素子には圧縮応力および引張応力の双方が生じ得るため、半導体装置において、半導体素子に対して適切な応力を生じさせるためには、基板の上記接合面における、基板の湾曲作用による収縮量または伸長量、基板全体の平均線膨張係数による収縮量、半導体素子の収縮量のそれぞれを考慮しつつ、基板の材料および厚みを設計しなければならない。
 ここで発明者らは、半導体素子に引張応力が生じると半導体表面に生じている微小な亀裂(マイクロクラック)が拡張することが原因で、半導体素子に不具合が生じる可能性があることを見出した。このことから、発明者らは、上記亀裂が拡張しないように半導体素子に対して圧縮応力を生じさせることが、半導体素子の不具合を抑制するための一手段として有効であることを導出した。
 しかしながら、上記特許文献1に記載の技術は、半導体素子と基板との間に生じる熱応力を緩和するだけでしかなく、当該熱応力の方向を制御するものではない。したがって、上記特許文献1に記載の技術では、半導体素子に引張応力が生じる場合があり、よって、半導体素子の不具合を抑制することができない。
 本発明は、このような問題に鑑みてなされたものであり、その目的は、半導体素子に圧縮応力を生じさせることによって、半導体素子の不具合を抑制することが可能な、積層構造体および半導体装置を実現することにある。
 上述した課題を解決するため、本発明に係る積層構造体は、表面上に半導体素子がはんだ接合される積層構造体であって、前記表面上に前記半導体素子がはんだ接合された後、当該積層構造体の前記はんだ接合部分の温度が、前記はんだ接合時の温度から低下する際に、当該積層構造体における各層の線膨張係数の相違に基づく湾曲作用と、基板全体の平均線膨張係数に基づく伸縮作用とにより、前記半導体素子に対して圧縮応力を生じさせるように、前記各層の材料および厚みが設定されていることを特徴とする。
 本発明によれば、半導体素子に圧縮応力を生じさせることによって、半導体素子の不具合を抑制することが可能な、積層構造体および半導体装置を実現することができる。
本実施形態に係る半導体装置の構成を示す側面図である。 本実施形態に係る基板の構成例を示す断面図である。 本実施形態に係る半導体装置に生じる収縮作用を概略的に示す説明図である。 本実施形態に係る基板に生じる湾曲作用を概略的に示す説明図である。 本実施形態に係る半導体装置(実施例3)における収縮率の変化を示すグラフである。
 以下、添付の図面を参照して、本発明の一実施形態に係る半導体装置について説明する。
 〔半導体装置10の構成〕
 まず、図1を参照して、本実施形態に係る半導体装置10の構成について説明する。図1は、本実施形態に係る半導体装置10の構成を示す側面図である。
 半導体装置10は、基板100および半導体素子110を備えている。基板100は、平板状の部材である。半導体素子110は、底面が基板100の表面に密着した状態で、はんだ接合によって、基板100の表面上に固定される。
 〔基板100の構成例〕
 次に、図2を参照して、基板100の構成について説明する。図2は、本実施形態に係る基板100の構成例を示す断面図である。図2に示すように、基板100は、互いに材料が異なる複数の層が積層された、積層構造体である。
 例えば、図2(a)に示す例では、基板100は、第1の層102および第2の層104が積層された、2層構造を有している。また、図2(b)に示す例では、基板100は、第1の層102、第2の層104、および第3の層106が積層された、3層構造を有している。基板100は、2層構造および3層構造に限らず、4層以上の積層構造を有するものであってもよい。
 上記各層は、はんだ、接着材等の接着手段(図示省略)によって、または、当該層に用いられている材料そのものが溶着することによって、他の層と貼り合せられている。
 〔基板100の条件(第1例)〕
 ここで、本実施形態の基板100において、注目すべきは、当該基板100の表面上に半導体素子110がはんだ接合された後、当該基板100のはんだ接合部分の温度が、はんだ接合時の温度から低下する際(より好ましくは、使用時の温度へ変化する際)に、当該基板100における各層の線膨張係数の相違に基づく湾曲作用と、当該基板100における基板全体の平均線膨張係数に基づく伸縮作用とにより、半導体素子110に対して圧縮応力を生じさせるように、各層の材料および厚みが設定されている、という点である。
 上記「使用時の温度」とは、半導体装置10の使用が想定される範囲内の温度であって、予め定められた温度を示す。上記「使用時の温度」は、単一の温度(例えば、「25℃」等)であってもよく、範囲を有するもの(例えば、「-40℃~85℃」等)であってもよい。後者の場合、信頼性試験に適用される温度範囲をカバーすることで、より信頼性が高い半導体装置を提供することができる。
 具体的には、基板100は、下記数式(1)を満たすように、各層の材料および厚みが設定されている。
Figure JPOXMLDOC01-appb-M000005
 上記数式(1)において、tは、基板100の厚みを示す。また、Rは、基板100(常温時)の中立軸の曲率半径を示す。また、Rは、基板100(はんだ接合温度時)の中立軸の曲率半径を示す。また、αは、基板100全体の平均線膨張係数を示す。また、αchipは、半導体素子110の線膨張係数を示す。また、Tは、基板100(はんだ接合部分)における使用時の温度とはんだ接合時の温度との温度差を示す。
 上記数式(1)は、基板100における基板全体の平均線膨張係数に基づく収縮作用と、基板100における各層の線膨張係数の相違に基づく湾曲作用との双方が考慮されたものであり、特に、上記収縮作用による上記接合面の収縮量が、上記湾曲作用による上記接合面の伸張量よりも大きくなるように、基板100の材料および厚みを規定するものである。よって、本実施形態の基板100は、上記数式(1)を満たすように構成されることにより、上記温度低下時において、半導体素子110に対してより確実に圧縮応力を生じさせることが可能となる。
 〔基板100の作用〕
 次に、図3および図4を参照して、本実施形態に係る基板100の作用について説明する。図3は、本実施形態に係る半導体装置10に生じる収縮作用を概略的に示す説明図である。
図4は、本実施形態に係る基板100に生じる湾曲作用を概略的に示す説明図である。
 (基板全体の平均線膨張係数に基づく圧縮作用)
 図3に示すように、上記温度変化に伴う半導体素子110の収縮量は、αchipTによって表すことができる。また、上記温度変化に伴う基板100の収縮量は、αTによって表すことができる。したがって、αchipTよりもαTが大きくなるように(すなわち、上記数式(1)における右辺の値が正となるように)、基板100の各層の材料を選択することにより、基板100は、基板全体の平均線膨張係数に基づく作用としては、半導体素子110に対して圧縮応力を生じさせることが可能となる。反対に、半導体素子110の収縮量αchipTよりも、基板100の収縮量αTを小さくしてしまうと、半導体素子110に対して引張応力を生じさせてしまうこととなる。
 (各層の線膨張係数の相違に基づく圧縮作用)
 また、上記使用時における基板100の曲率半径Rが、上記はんだ接合時における基板100の曲率半径Rよりも、小さくなるように(すなわち、上記数式(1)における左辺の値が負となるように)、基板100の各層の材料が選択された場合には、基板100は、図4(a)に示すように、半導体素子110に対して凹状に湾曲し、各層の線膨張係数の相違に基づく作用としては、半導体素子110に対して圧縮応力を生じさせることとなる。
 (各層の線膨張係数の相違に基づく引張作用)
 反対に、上記使用時における基板100の曲率半径Rが、上記はんだ接合時における基板100の曲率半径Rよりも、大きくなるように(すなわち、上記数式(1)における左辺の値が正となるように)、基板100の各層の材料が選択された場合には、基板100は、図4(b)に示すように、半導体素子110に対して凸状に湾曲し、各層の線膨張係数の相違に基づく作用としては、半導体素子110に対して引張応力を生じさせることとなる。
 (全体的な作用)
 このように、基板100による作用は、基板全体の平均線膨張係数に基づく伸縮作用と、各層の線膨張係数の相違に基づく湾曲作用とに分類される。このため、基板100において、上記湾曲作用が、半導体素子110に引張応力を生じさせるものであっても、上記収縮作用が、上記引張量よりも大きな圧縮量を有するものであれば(すなわち、上記数式(1)の大小関係を満たすものであれば)、結果的に、当該基板100は、半導体素子110に対して圧縮応力を生じさせることとなる。また、上記伸縮作用が、半導体素子110に引張応力を生じさせるものであっても、上記湾曲作用が、上記引張量よりも大きな圧縮量を有するものであれば、結果的に、当該基板100は、半導体素子110に対して圧縮応力を生じさせることとなる。すなわち、本実施形態の基板100は、上記数式(1)を満たすように各層の材料および厚みが設定されることにより、半導体素子110に対して、より確実に圧縮応力を生じさせることができる。
 〔基板100の条件(第2例)〕
 ここで、基板100が下記数式(2)を満たすものである場合(すなわち、はんだ接合時における基板100の曲率が、上記使用時における基板100の曲率よりも大きい場合)、当該基板100は、上記温度低下の際、各層の線膨張係数の相違に基づく作用としては、凹状に湾曲することとなる。すなわち、基板100における半導体素子110との接合面は、各層の線膨張係数の相違に基づいて収縮することとなる。
Figure JPOXMLDOC01-appb-M000006
 よって、基板100が上記数式(2)を満たすものである場合、当該基板100は、さらに下記数式(3)を満たせばよい。すなわち、基板100の線膨張係数(基板全体の平均線膨張係数)を、半導体素子110の線膨張係数よりも高くすればよい。
Figure JPOXMLDOC01-appb-M000007
 これにより、基板100における半導体素子110との接合面は、各層の線膨張係数の相違に基づく湾曲作用によって収縮するだけでなく、基板全体の平均線膨張係数に基づく収縮作用によっても収縮するため、半導体素子110に対して、より適切かつ確実に圧縮応力を生じさせることができる。
 既に説明したとおり、基板100は、積層構造を有している。よって、上記数式(1)および上記数式(2)に用いた、基板100全体としての線膨張係数αは、各層の材料および厚みによって変化する。例えば、基板100全体としての線膨張係数αは、以下に説明する方法によって、求めることが可能である。
 〔基板100の各パラメータ(2層構造の場合)〕
 基板100が2層の積層構造を有する場合、当該基板100の線膨張係数αは、下記数式(5)によって求めることが可能である。
Figure JPOXMLDOC01-appb-M000008
 上記数式(5)において、tは、第1の層102の厚みを示す。また、Eは、第1の層102のヤング率を示す。また、αは、第1の層102の材料の線膨張係数を示す。また、tは、第2の層104の厚みを示す。また、Eは、第2の層104のヤング率を示す。また、αは、第2の層104の材料の線膨張係数を示す。
 基板100が2層の積層構造を有する場合、当該基板100の各層の線膨張係数の相違に基づく圧縮量(上記数式(1)の左辺)は、下記数式(6)によって求められる。
Figure JPOXMLDOC01-appb-M000009
 上記数式(6)において、Fは、下記数式(7)によって求められる。
Figure JPOXMLDOC01-appb-M000010
 上記数式(6)において、Gは、下記数式(8)によって求められる。
Figure JPOXMLDOC01-appb-M000011
 〔基板100の各パラメータ(3層構造の場合)〕
 基板100が3層の積層構造を有する場合、当該基板100の線膨張係数αは、下記数式(9)によって求めることが可能である。
Figure JPOXMLDOC01-appb-M000012
 上記数式(9)において、tは、第1の層102の厚みを示す。また、Eは、第1の層102のヤング率を示す。また、αは、第1の層102の材料の線膨張係数を示す。また、tは、第2の層104の厚みを示す。また、Eは、第2の層104のヤング率を示す。また、αは、第2の層104の材料の線膨張係数を示す。また、tは、第3の層106の厚みを示す。また、Eは、第3の層106のヤング率を示す。また、αは、第3の層106の材料の線膨張係数を示す。
 基板100が3層の積層構造を有する場合、当該基板100の各層の線膨張係数の相違に基づく圧縮量(上記数式(1)の左辺)は、下記数式(10)によって求められる。
Figure JPOXMLDOC01-appb-M000013
 上記数式(10)において、Fは、下記数式(11)によって求められる。
Figure JPOXMLDOC01-appb-M000014
 上記数式(10)において、Gは、下記数式(12)によって求められる。
Figure JPOXMLDOC01-appb-M000015
 〔基板100の各パラメータ(n層構造の場合)〕
 基板100がn層(nは4以上の自然数)の積層構造を有する場合、当該基板100の線膨張係数αは、下記数式(13)によって求めることが可能である。
Figure JPOXMLDOC01-appb-M000016
 上記数式(13)において、tは、第1の層102の厚みを示す。また、Eは、第1の層102のヤング率を示す。また、αは、第1の層102の材料の線膨張係数を示す。また、tは、第2の層104の厚みを示す。また、Eは、第2の層104のヤング率を示す。また、αは、第2の層104の材料の線膨張係数を示す。また、tは、第3の層106の厚みを示す。また、Eは、第3の層106のヤング率を示す。また、αは、第3の層106の材料の線膨張係数を示す。
 基板100がn層の積層構造を有する場合、当該基板100の各層の線膨張係数の相違に基づく圧縮量(上記数式(1)の左辺)は、下記数式(14)によって求められる。
Figure JPOXMLDOC01-appb-M000017
 上記数式(14)において、Gは、下記数式(15)によって求められる。
Figure JPOXMLDOC01-appb-M000018
 上記数式(14)において、Fは、下記数式(16)によって求められる。
Figure JPOXMLDOC01-appb-M000019
 上記数式(15)および数式(16)において、Tijは、下記数式(17)によって求められる。
Figure JPOXMLDOC01-appb-M000020
 上記数式(15)において、Aijは、下記数式(18)によって求められる。
Figure JPOXMLDOC01-appb-M000021
 上記数式(15)および数式(16)において、Xは、下記数式(19)によって求められる。
Figure JPOXMLDOC01-appb-M000022
 上記数式(16)において、Kijは、下記数式(20)によって求められる。
Figure JPOXMLDOC01-appb-M000023
 上記数式(16)において、Yは、下記数式(21)によって求められる。
Figure JPOXMLDOC01-appb-M000024
 以下、本実施形態に係る半導体装置10の実施例を説明する。
 〔基板100の条件〕
 各実施例では、下記数式(22)によって求められる値を、“基板100の温度変化時における圧縮率”として規定した。そして、当該圧縮率が、0~0.001の範囲内となる基板100を、“半導体素子110に対して適切な圧縮応力を生じさせることができる基板100”と規定し、実施例1~3では、当該圧縮率が上記範囲内に収まるように、基板100の各層の材料および厚みを設定した。一方、比較例1~4では、上記条件の適否を検証するため、上記圧縮率が上記範囲外となるように、基板100の各層の材料および厚みを設定した。
Figure JPOXMLDOC01-appb-M000025
 そして、各実施例および各比較例では、基板100を10個用意し、各々について、半導体素子110をはんだ接合(低温のヒーター上に材料、はんだを積層し、上から圧力をかけながら加熱することにより接合)した後、基板100のはんだ接合部分の温度がはんだ接合時の温度から使用時の温度へ変化する際の、半導体素子110の亀裂の有無を確認した。なお、各実施例および各比較例では、少なくとも1つの半導体素子110に亀裂が確認された場合は、「亀裂:あり」と判定することとした。
 〔その他実施条件〕
 半導体素子の材料  :GaAs(ガリウム砒素、線膨張係数:5.8ppm)
 はんだ材料※    :Au80Sn20(金錫、融点:273℃)
 はんだ接合時の温度 :275℃
 使用時の温度    :25℃
 ※本実施例では、はんだ材料として、他の層よりも厚みが薄くなり、且つ、十分に柔らかいものを使用したため、はんだ層を1つの層としては考慮しない。但し、はんだ材料として、降伏応力が50MPaよりも大きいものを使用する場合、または、厚みが他の材料の1/10よりも大きくなる場合には、はんだ層を1つの層として考慮することが好ましい。
 〔実施例1〕
 (基板100の構成)
 第1の層102の材料:CuW(銅タングステン、線膨張係数:6.5ppm、ヤング率:320GPa)
 第1の層102の厚み:300μm
 第2の層104の材料:AlN(窒化アルミニウム、線膨張係数:4.5ppm、ヤング率:280GPa)
 第2の層104の厚み:300μm
 R         :4.5m
 R         :-0.9m
 圧縮率       :0.0003
 (実施結果)
 亀裂        :なし
 〔実施例2〕
 (基板100の構成)
 第1の層102の材料:AlN(窒化アルミニウム、線膨張係数:4.5ppm、ヤング率:280GPa)
 第1の層102の厚み:50μm
 第2の層104の材料:Cu(銅、線膨張係数:16.7ppm、ヤング率:128GPa)
 第2の層104の厚み:450μm
 R         :10.2m
 R         :0.2m
 圧縮率       :0.0008
 (実施結果)
 亀裂        :なし
 〔実施例3〕
 (基板100の構成)
 第1の層102の材料:CuW(銅タングステン、線膨張係数:6.5ppm、ヤング率:320GPa)
 第1の層102の厚み:200μm
 第2の層104の材料:AlN(窒化アルミニウム、線膨張係数:4.5ppm、ヤング率:280GPa)
 第2の層104の厚み:100μm
 第3の層106の材料:W(タングステン、線膨張係数:5.1ppm、ヤング率:330GPa)
 第3の層106の厚み:100μm
 R         :5.5m
 R         :-0.6m
 圧縮率       :0.0001
 (実施結果)
 亀裂        :なし
 〔比較例1〕
 (基板の構成)
 第1の層102の材料:AlN
 第1の層102の厚み:500μm
 第2の層104の材料:CuW
 第2の層104の厚み:300μm
 R         :9.6m
 R         :1.0m
 圧縮率       :-0.0005
 (実施結果)
 亀裂        :あり
 〔比較例2〕
 (基板の構成)
 第1の層102の材料:CuW
 第1の層102の厚み:100μm
 第2の層104の材料:Cu
 第2の層104の厚み:330μm
 R         :-1.0m
 R         :0.1m
 圧縮率       :-0.0001
 (実施結果)
 亀裂        :あり
 〔比較例3〕
 (基板の構成)
 第1の層102の材料:Cu
 第1の層102の厚み:150μm
 第2の層104の材料:AlN
 第2の層104の厚み:500μm
 R         :-1.2m
 R         :-0.2m
 圧縮率       :0.0012
 (実施結果)
 亀裂        :あり
 〔比較例4〕
 (基板の構成)
 第1の層102の材料:CuW
 第1の層102の厚み:150μm
 第2の層104の材料:AlN
 第2の層104の厚み:500μm
 第3の層106の材料:Cu
 第3の層106の厚み:100μm
 R         :0.2m
 R         :-0.2m
 圧縮率       :-0.0001
 (実施結果)
 亀裂        :あり
 〔実施例および比較例についての考察〕
 上記各実施例のとおり、“上記数式(22)によって求められる上記圧縮率が、0~0.001の範囲内となる”という条件を満たすように、基板100の各層の材料および厚みを設定することにより、半導体素子110に亀裂が生じないことが確認された。これは、半導体素子110に対し、適度な圧縮応力が生じたためと考えられる。
 一方、上記各比較例のとおり、“上記数式(22)によって求められる上記圧縮率が、0~0.001の範囲内となる”という条件が満たされないように、基板100の各層の材料および厚みを設定した場合には、半導体素子110に亀裂が生じることが確認された。これは、半導体素子110に対し、引張応力または過度な圧縮応力が生じたためと考えられる。
 以上により、上記条件を満たすように、基板100の各層の材料および厚みを設定することにより、半導体素子110に亀裂を生じさせないという効果を奏することができ、すなわち、上記条件が適切であることが、明らかになった。
 〔補足説明〕
 図5は、本実施形態に係る半導体装置10(実施例3)における収縮率の変化を示すグラフである。図5に示すように、本実施形態の半導体装置10において、基板100は、僅かな温度低下により、収縮する(すなわち、半導体素子に圧縮応力を生じさせる)ことが決定づけられる。そして、その収縮率(図5において、三角形のプロットで示されている)は、温度の低下に比例して変化する。その理由は、図5に示すように、曲率半径の変形量(図5において、四角形のプロットで示されている)は温度変化に比例し、また、材料の平均的な線膨張係数による歪(図5において、他の四角形のプロットで示されている)も温度変化に比例するためである。したがって、本実施形態の半導体装置10は、はんだ接合時の温度以下において、常に半導体素子に圧縮応力を生じさせることができる。すなわち、本実施形態に係る半導体装置10は、その使用温度がいずれに設定されている場合であっても、常に半導体素子に圧縮応力を生じさせることができる。なお、図5は、実施例3に関するものであるが、他の実施例においても同様に、基板100は、僅かな温度低下により収縮することが決定づけられ、その収縮率は、温度の低下に比例して増加する。
 〔まとめ〕
 上述した課題を解決するため、本発明に係る積層構造体は、表面上に半導体素子がはんだ接合される積層構造体であって、前記表面上に前記半導体素子がはんだ接合された後、当該積層構造体の前記はんだ接合部分の温度が、前記はんだ接合時の温度から低下する際に、当該積層構造体における各層の線膨張係数の相違に基づく湾曲作用と、基板全体の平均線膨張係数に基づく伸縮作用とにより、前記半導体素子に対して圧縮応力を生じさせるように、前記各層の材料および厚みが設定されている構成である。
 上記積層構造体によれば、温度低下時に半導体素子に圧縮応力が生じるように、当該積層構造体における各層の線膨張係数の相違に基づく湾曲作用と、基板全体の平均線膨張係数に基づく伸縮作用との双方を考慮しつつ、上記各層の材料および厚みが設定されているため、半導体素子に対してより確実に圧縮応力を生じさせることができる。特に、上記積層構造体によれば、曲率半径の変形量は温度変化に比例し、また、材料の平均的な線膨張係数による歪も温度変化に比例することから、はんだ接合時の温度以下において、常に半導体素子に圧縮応力を生じさせることができる。
 上記積層構造体において、下記数式(1)を満たすように、前記各層の材料および厚みが設定されていることが好ましい。
Figure JPOXMLDOC01-appb-M000026
 上記数式(1)において、tは、当該積層構造体の厚みを示す。Rは、当該積層構造体の使用時の中立軸の曲率半径を示す。Rは、当該積層構造体(前記はんだ接合時)の中立軸の曲率半径を示す。αは、当該積層構造体における基板全体の平均線膨張係数を示す。αchipは、前記半導体素子の線膨張係数を示す。Tは、前記使用時の前記はんだ接合部分の温度と前記はんだ接合時の前記はんだ接合部分の温度との温度差を示す。
 上記構成の積層構造体によれば、はんだ接合後の温度低下時において、上記平均線膨張係数に基づく基材の収縮量と、湾曲作用に基づく伸縮量の合計(すなわち、実際に基板における半導体素子との接合面に生じる収縮量)が、半導体素子の収縮量を上回るため、半導体素子に圧縮応力を生じさせることができる。
 上記積層構造体において、下記数式(2)を満たし、かつ、下記数式(3)を満たすように、前記各層の材料および厚みが設定されていることが好ましい。
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000028
 上記数式(2)において、Rは、当該積層構造体(前記使用時)の中立軸の曲率半径を示す。Rは、当該積層構造体(前記はんだ接合時)の中立軸の曲率半径を示す。また、上記数式(3)において、tは、当該積層構造体の厚みを示す。αは、当該積層構造体における基板全体の平均線膨張係数を示す。αchipは、前記半導体素子の線膨張係数を示す。Tは、前記使用時の前記はんだ接合部分の温度と前記はんだ接合時の前記はんだ接合部分の温度との温度差を示す。
 上記構成の積層構造体によれば、上記収縮作用による上記接合面の収縮だけでなく、上記湾曲作用による上記接合面の収縮が生じるように、各層の材料および厚みが設定されているため、はんだ接合時の温度以下において、常に半導体素子に圧縮応力を生じさせることができる。
 上記積層構造体において、さらに下記数式(4)を満たすように、前記各層の材料および厚みが設定されていることが好ましい。
Figure JPOXMLDOC01-appb-M000029
 上記構成の積層構造体によれば、半導体素子に対して、発明者らが見出したより適切な量の圧縮応力を生じさせることができる。
 上記積層構造体において、前記半導体素子側から順に、第1の層および第2の層を備え、前記半導体素子は、GaAs(ガリウム砒素)が材料として用いられており、前記第1の層は、CuW(銅タングステン)が材料として用いられており、前記第2の層は、AlN(窒化アルミニウム)が材料として用いられていることが好ましい。
 上記構成の積層構造体によれば、半導体素子に亀裂が生じないように、当該半導体素子に対してより適切かつ確実に圧縮応力を生じさせることができる。
 上記積層構造体において、前記半導体素子側から順に、第1の層および第2の層を備え、前記半導体素子は、GaAs(ガリウム砒素)が材料として用いられており、前記第1の層は、CuW(銅タングステン)が材料として用いられており、前記第2の層は、Cu(銅)が材料として用いられていることが好ましい。
 上記構成の積層構造体によれば、半導体素子に亀裂が生じないように、当該半導体素子に対してより適切かつ確実に圧縮応力を生じさせることができる。
 上記積層構造体において、前記半導体素子側から順に、第1の層、第2の層、および第3の層を備え、前記半導体素子は、GaAs(ガリウム砒素)が材料として用いられており、前記第1の層は、CuW(銅タングステン)が材料として用いられており、前記第2の層は、AlN(窒化アルミニウム)が材料として用いられており、前記第3の層は、W(タングステン)が材料として用いられていることが好ましい。
 上記構成の積層構造体によれば、半導体素子に亀裂が生じないように、当該半導体素子に対してより適切かつ確実に圧縮応力を生じさせることができる。
 また、本発明に係る半導体装置は、上記積層構造体と、前記積層構造体の表面上にはんだ接合される半導体素子とを備えたことを特徴とする。
 上記積層構造体によれば、上記積層構造体と同様の効果を奏することができる。
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は、半導体素子が基板上にはんだ接合される半導体装置に利用することができる。例えば、本発明は、半導体レーザダイオードが基板上にはんだ接合される半導体レーザ装置等に好適に利用することができる。
 10 半導体装置
 100 基板(積層構造体)
 102 第1の層
 104 第2の層
 106 第3の層
 110 半導体素子

Claims (9)

  1.  表面上に半導体素子がはんだ接合される積層構造体であって、
     前記表面上に前記半導体素子がはんだ接合された後、当該積層構造体の前記はんだ接合部分の温度が、前記はんだ接合時の温度から低下する際に、当該積層構造体における各層の線膨張係数の相違に基づく湾曲作用と、基板全体の平均線膨張係数に基づく伸縮作用とにより、前記半導体素子に対して圧縮応力を生じさせるように、前記各層の材料および厚みが設定されている
     ことを特徴とする積層構造体。
  2.  下記数式(1)を満たすように、前記各層の材料および厚みが設定されている
     ことを特徴とする請求項1に記載の積層構造体。
    Figure JPOXMLDOC01-appb-M000001
     上記数式(1)において、tは、当該積層構造体の厚みを示す。Rは、当該積層構造体の使用時の中立軸の曲率半径を示す。Rは、当該積層構造体(前記はんだ接合時)の中立軸の曲率半径を示す。αは、当該積層構造体における基板全体の平均線膨張係数を示す。αchipは、前記半導体素子の線膨張係数を示す。Tは、前記使用時の前記はんだ接合部分の温度と前記はんだ接合時の前記はんだ接合部分の温度との温度差を示す。
  3.  下記数式(2)を満たし、かつ、下記数式(3)を満たすように、前記各層の材料および厚みが設定されている
     ことを特徴とする請求項1に記載の積層構造体。
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
     上記数式(2)において、Rは、当該積層構造体(前記使用時)の中立軸の曲率半径を示す。Rは、当該積層構造体(前記はんだ接合時)の中立軸の曲率半径を示す。
     上記数式(3)において、tは、当該積層構造体の厚みを示す。αは、当該積層構造体における基板全体の平均線膨張係数を示す。αchipは、前記半導体素子の線膨張係数を示す。Tは、前記使用時の前記はんだ接合部分の温度と前記はんだ接合時の前記はんだ接合部分の温度との温度差を示す。
  4.  さらに下記数式(4)を満たすように、前記各層の材料および厚みが設定されている
     ことを特徴とする請求項2または3に記載の積層構造体。
    Figure JPOXMLDOC01-appb-M000004
  5.  前記半導体素子側から順に、第1の層および第2の層を備え、
     前記半導体素子は、
     GaAs(ガリウム砒素)が材料として用いられており、
     前記第1の層は、
     CuW(銅タングステン)が材料として用いられており、
     前記第2の層は、
     AlN(窒化アルミニウム)が材料として用いられている
     ことを特徴とする請求項1から4のいずれか1項に記載の積層構造体。
  6.  前記半導体素子側から順に、第1の層および第2の層を備え、
     前記半導体素子は、
     GaAs(ガリウム砒素)が材料として用いられており、
     前記第1の層は、
     CuW(銅タングステン)が材料として用いられており、
     前記第2の層は、
     Cu(銅)が材料として用いられている
     ことを特徴とする請求項1から4のいずれか1項に記載の積層構造体。
  7.  前記半導体素子側から順に、第1の層、第2の層、および第3の層を備え、
     前記半導体素子は、
     GaAs(ガリウム砒素)が材料として用いられており、
     前記第1の層は、
     CuW(銅タングステン)が材料として用いられており、
     前記第2の層は、
     AlN(窒化アルミニウム)が材料として用いられており、
     前記第3の層は、
     W(タングステン)が材料として用いられている
     ことを特徴とする請求項1から4のいずれか1項に記載の積層構造体。
  8.  請求項1から7のいずれか1項に記載の積層構造体と、
     前記積層構造体の表面上にはんだ接合される半導体素子と
     を備えたことを特徴とする半導体装置。
  9.  表面上に半導体素子がはんだ接合される積層構造体の製造方法であって、
     前記表面上に前記半導体素子をはんだ接合した後、当該積層構造体の前記はんだ接合部分の温度が、前記はんだ接合時の温度から低下する際に、当該積層構造体における各層の線膨張係数の相違に基づく湾曲作用と、基板全体の平均線膨張係数に基づく伸縮作用とにより、前記半導体素子に対して圧縮応力を生じさせるように、前記各層の材料および厚みを設定する
     ことを特徴とする積層構造体の製造方法。
PCT/JP2014/057299 2013-03-18 2014-03-18 積層構造体および半導体装置 WO2014148478A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013055680A JP2014183128A (ja) 2013-03-18 2013-03-18 積層構造体および半導体装置
JP2013-055680 2013-03-18

Publications (1)

Publication Number Publication Date
WO2014148478A1 true WO2014148478A1 (ja) 2014-09-25

Family

ID=51580156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057299 WO2014148478A1 (ja) 2013-03-18 2014-03-18 積層構造体および半導体装置

Country Status (2)

Country Link
JP (1) JP2014183128A (ja)
WO (1) WO2014148478A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02257660A (ja) * 1989-03-30 1990-10-18 Mitsubishi Electric Corp 半導体装置
JPH05308107A (ja) * 1991-07-01 1993-11-19 Sumitomo Electric Ind Ltd 半導体装置及びその製作方法
JPH11204704A (ja) * 1998-01-14 1999-07-30 Sony Corp 半導体装置
JP2000150741A (ja) * 1998-11-11 2000-05-30 Nec Corp 半導体装置
JP2003204020A (ja) * 2002-01-04 2003-07-18 Mitsubishi Electric Corp 半導体装置
JP2004327711A (ja) * 2003-04-24 2004-11-18 Toyota Motor Corp 半導体モジュール
JP2005243819A (ja) * 2004-02-25 2005-09-08 Ngk Spark Plug Co Ltd ヒートシンク材およびヒートシンク材の製造方法、ならびにヒートシンク付きセラミックパッケージ
JP2010147101A (ja) * 2008-12-16 2010-07-01 Tdk Corp 電子部品
JP2013229472A (ja) * 2012-04-26 2013-11-07 Denso Corp 半導体装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010103338A (ja) * 2008-10-24 2010-05-06 Nec Electronics Corp 半導体装置、及びその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02257660A (ja) * 1989-03-30 1990-10-18 Mitsubishi Electric Corp 半導体装置
JPH05308107A (ja) * 1991-07-01 1993-11-19 Sumitomo Electric Ind Ltd 半導体装置及びその製作方法
JPH11204704A (ja) * 1998-01-14 1999-07-30 Sony Corp 半導体装置
JP2000150741A (ja) * 1998-11-11 2000-05-30 Nec Corp 半導体装置
JP2003204020A (ja) * 2002-01-04 2003-07-18 Mitsubishi Electric Corp 半導体装置
JP2004327711A (ja) * 2003-04-24 2004-11-18 Toyota Motor Corp 半導体モジュール
JP2005243819A (ja) * 2004-02-25 2005-09-08 Ngk Spark Plug Co Ltd ヒートシンク材およびヒートシンク材の製造方法、ならびにヒートシンク付きセラミックパッケージ
JP2010147101A (ja) * 2008-12-16 2010-07-01 Tdk Corp 電子部品
JP2013229472A (ja) * 2012-04-26 2013-11-07 Denso Corp 半導体装置

Also Published As

Publication number Publication date
JP2014183128A (ja) 2014-09-29

Similar Documents

Publication Publication Date Title
JP4803088B2 (ja) 熱電モジュールおよびその製造方法
WO2016063744A1 (ja) パワーモジュール
JP6468028B2 (ja) 放熱板付パワーモジュール用基板
JP2007081200A (ja) 冷却シンク部付き絶縁回路基板
JP5061442B2 (ja) 絶縁回路基板および冷却シンク部付き絶縁回路基板
JP7016015B2 (ja) 実装構造体
JP5050440B2 (ja) 半導体装置及びその製造方法
JP2005347313A (ja) 半導体装置の製造方法
JP4824327B2 (ja) 半導体装置の製造方法
TW201539681A (zh) 用於電力電子構件的基板、裝備此基板的電力模組以及對應之製程
JP2007299798A (ja) ヒートシンク付きセラミック基板
WO2014148478A1 (ja) 積層構造体および半導体装置
JP2020150244A (ja) 放熱板材
US20120267421A1 (en) Method of joining graphite fibers to a substrate
US11860427B2 (en) Thermosonic bonding for securing photonic components
JP6910553B2 (ja) 半導体装置
JP6020496B2 (ja) 接合構造体およびその製造方法
JP2018090460A (ja) 接合材とそれにより得られる接合体と接合体の製造方法
TW202017116A (zh) 封裝、封裝製造方法、附接合材之蓋體及附接合材之蓋體的製造方法
JP5012577B2 (ja) 半導体装置
JP2009182209A (ja) 半導体装置
JP2015179759A (ja) 半導体装置
JP2008041708A (ja) 半導体装置及びその製造方法
JP2015176925A (ja) 半導体装置
JP2018037426A (ja) レーザ光源装置およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14770107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14770107

Country of ref document: EP

Kind code of ref document: A1