WO2014148335A1 - サブゼロ処理装置 - Google Patents

サブゼロ処理装置 Download PDF

Info

Publication number
WO2014148335A1
WO2014148335A1 PCT/JP2014/056503 JP2014056503W WO2014148335A1 WO 2014148335 A1 WO2014148335 A1 WO 2014148335A1 JP 2014056503 W JP2014056503 W JP 2014056503W WO 2014148335 A1 WO2014148335 A1 WO 2014148335A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
sub
cooled
plate
exhaust port
Prior art date
Application number
PCT/JP2014/056503
Other languages
English (en)
French (fr)
Inventor
公哉 森
米倉 正浩
太田 英俊
Original Assignee
大陽日酸株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陽日酸株式会社 filed Critical 大陽日酸株式会社
Priority to US14/777,074 priority Critical patent/US9845517B2/en
Priority to CN201480016293.0A priority patent/CN105143794B/zh
Publication of WO2014148335A1 publication Critical patent/WO2014148335A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/63Quenching devices for bath quenching
    • C21D1/64Quenching devices for bath quenching with circulating liquids

Definitions

  • the present invention relates to a sub-zero treatment apparatus for cooling steel materials such as machine parts to a low temperature of 0 ° C. or lower to improve performance such as hardness and toughness.
  • Patent Document 1 discloses a sub-zero processing device (see FIG. 12) used when the sub-zero processing is performed.
  • FIG. 12 is a cross-sectional view showing a schematic configuration of a conventional sub-zero processing apparatus.
  • the sub-zero processing apparatus 100 described in Patent Document 1 includes a cooling tank 102, a refrigerant introduction path 103, a liquid refrigerant introduction valve 104, a temperature controller 105, a stirring fan 108, and a rectifying plate. 109.
  • the cooling tank 102 is made of a heat insulating material and has a processing space therein. On the side wall of the cooling tank 102, an exhaust port 102A penetrating the side wall is provided. The exhaust port 102A cools a part of the nitrogen gas in the cooling tank 102 so that it is within a predetermined pressure range when the pressure in the cooling tank 102 rises due to evaporation of liquid nitrogen (liquid refrigerant). Exhaust outside 102.
  • the refrigerant introduction path 103 is connected to a liquid nitrogen supply source (not shown).
  • the refrigerant introduction path 103 supplies liquid nitrogen into the cooling tank 102 when the liquid refrigerant introduction valve 104 (a valve provided in the refrigerant introduction path 103) is opened.
  • the temperature controller 105 measures the temperature in the cooling bath 102 and adjusts the opening degree of the liquid refrigerant introduction valve 104 based on the result.
  • the stirring fan 108 is accommodated in the cooling tank 102.
  • the stirring fan 108 atomizes liquid nitrogen and diffuses the liquid nitrogen into the cooling tank 102 and stirs the low-temperature nitrogen gas (low-temperature gas) in the cooling tank 102.
  • the rectifying plate 109 is accommodated in the cooling bath 102 and is disposed between the stirring fan 108 and the object 101 to be cooled.
  • the rectifying plate 109 has a suction port and a blowout port.
  • the rectifying plate 109 has a function of improving the stirring action by the stirring fan 108.
  • the cooling of the object 101 is uneven and the quality of the object 101 varies. Further, depending on the position of the side wall of the cooling tank 102 where the exhaust port 102A is provided, the low temperature nitrogen gas is exhausted from the exhaust port 102A before sufficiently contributing to the cooling of the processing space. A large amount of liquid refrigerant is required.
  • an object of the present invention is to provide a sub-zero treatment apparatus that can uniformly cool an object to be cooled and can reduce liquid refrigerant used for cooling the object to be cooled.
  • a bottom plate and first to fourth plates each having a cooled object mounting chamber on which an object to be cooled is mounted, and a fan housing chamber connected to the cooled object mounting chamber.
  • a cooling tank body made of a side wall and a cooling tank made of a lid, and the object to be cooled is disposed in the cooling tank so as to divide the object to be cooled and the fan accommodating room, and the object to be cooled is
  • a rectifying member having a suction port for guiding the atmosphere to the fan housing chamber, a blowout port for guiding the atmosphere of the fan housing chamber to the cooled object placement chamber, and the fan so as to face the suction port
  • the liquid refrigerant stored in the storage chamber and supplied to the fan storage chamber is made into a mist-like or low-temperature gas, and the stirring fan that stirs the atmosphere in the cooling tank, and a through hole provided in the cooling tank body Inside of the object to be cooled
  • An exhaust member that extends and has an exhaust port, wherein the first to fourth side walls are
  • a space is formed, and the exhaust port is disposed in an exhaust port arrangement space existing in the object-to-be-cooled object placement chamber in the internal space, and the exhaust port arrangement space is located on the inner space side of the bottom plate
  • the space of the portion where the orthogonal distance from the surface of the lid on the internal space side is H / 2 is H
  • a lateral width of the exhaust port arrangement space which is a width in a direction perpendicular to the height and parallel to the rectifying member having the suction port, is orthogonal to the height and parallel to the rectifying member having the suction port. Coincides with the maximum width of the suction port in the direction
  • the center of the width of the arrangement space, sub-zero treatment apparatus characterized by coincides with the center of the width of the suction port is provided.
  • the exhaust member has an exhaust member main body, and the exhaust member main body is disposed so that the exhaust port faces the lid body side.
  • the exhaust member body is a cylindrical pipe
  • the exhaust member is cut so as to pass through the exhaust port on a surface orthogonal to the extending direction of the exhaust member body.
  • the exhaust port has a central angle formed by connecting both ends of the exhaust port and the center of the exhaust member main body within 90 degrees, and the sub-zero processing apparatus according to (3) is provided. .
  • the rectifying member is at least one plate-like member and has a plate-like member having a uniform thickness, and the suction port and the outlet port penetrate the same plate-like member.
  • the sub-zero processing device according to any one of (1) to (5) is provided.
  • the rectifying member has a first plate-like member facing the stirring fan and second and third plate-like members orthogonal to the first plate-like member, and the suction port is Any one of (1) to (5) is characterized in that the first plate-like member is penetrated and the blowout port penetrates the second and third plate-like members. Is provided.
  • the exhaust member that extends from the through hole provided in the cooling tank constituting the cooled object mounting chamber to the inside of the cooled object mounting chamber and has an exhaust port is provided.
  • the exhaust port is disposed in an exhaust port arrangement space which is a space located in the upper half of the object-to-be-cooled object placement chamber and whose horizontal width matches the maximum horizontal width of the suction port.
  • the liquid refrigerant used for cooling the object to be cooled can be reduced.
  • the object to be cooled can be uniformly cooled, and the liquid refrigerant used for cooling the object to be cooled can be reduced.
  • FIG. 4 is a cross-sectional view of the exhaust member shown in FIG.
  • FIG. 5 is a cross-sectional view of the exhaust member shown in FIG. It is a figure for demonstrating the subzero processing apparatus which concerns on the modified example of 1st Embodiment, and is the figure which made the top view of the said subzero processing apparatus permeate
  • FIG. 10 is a cross-sectional view in the NN line direction of the exhaust member, the third side wall of the cooling tank body, and the second plate member of the rectifying member shown in FIG. 9. It is sectional drawing which shows schematic structure of the conventional subzero processing apparatus.
  • FIG. 1 is a side view showing an appearance of a sub-zero processing apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the components of the sub-zero processing apparatus accommodated in the cooling tank main body shown in FIG. 1, and the cooling tank shown in FIG. FIG. Therefore, in FIG. 2, the illustration of the lid 36 that is a component of the sub-zero processing apparatus 10 of the first embodiment is omitted.
  • FIG. 3 is a diagram for explaining the components of the sub-zero treatment apparatus accommodated in the cooling tank main body shown in FIG. 1, and the cooling tank shown in FIG. 1 is transmitted through the first side wall shown in FIG. FIG. Therefore, in FIG. 3, the illustration of the first side wall 39-1 which is a component of the sub-zero processing apparatus 10 of the first embodiment is omitted. 1 to 3, the same reference numerals are given to the same components.
  • the sub-zero processing apparatus 10 of the first embodiment includes a cooling tank 13, a through hole 14, a temperature sensor 16, a temperature controller 18, a refrigerant supply line 21,
  • the refrigerant supply unit 23, the liquid refrigerant introduction valve 24, the rectifying member 25, the stirring fan 27, the rotating shaft 28, the rotation driving device 29, and the exhaust member 31 are included.
  • the cooling tank 13 includes a cooling tank body 35 and a lid body 36.
  • the cooling bath main body 35 has a bottom plate 38 and first to fourth side walls 39-1 to 39-4.
  • the first to fourth side walls 39-1 to 39-4 are arranged so as to surround the outer peripheral edge of the rectangular bottom plate 38.
  • the lower ends of the first to fourth side walls 39-1 to 39-4 are integrated with the bottom plate 38.
  • the first and second side walls 39-1 and 39-2 are arranged to face each other.
  • the third and fourth side walls 39-3 and 39-4 are arranged to face each other.
  • the first and second side walls 39-1 and 39-2 are integrated with the adjacent third and fourth side walls 39-3 and 39-4, respectively.
  • the lid body 36 is in contact with the upper end surfaces of the first to fourth side walls 39-1 to 39-4.
  • an internal space (a space including the object-to-be-cooled object placement chamber 43 and the fan housing chamber 45) is formed in the cooling tank 13 as a rectangular parallelepiped or a cube.
  • the cooling tank 13 includes a cooled object placement chamber 43 and a fan housing chamber 45.
  • the to-be-cooled object placement chamber 43 and the fan housing chamber 45 are separated by the rectifying member 25.
  • the object 11 to be cooled is placed in the object placement chamber 43.
  • the through hole 14 is provided so as to penetrate the third side wall 39-3.
  • the through hole 14 is a space located in the upper half of the height H of the cooled object placement chamber 43 in the third side wall 39-3, and is positioned between the cooled object 11 and the rectifying member 25. Placed in the part.
  • the shape of the through hole 14 can be, for example, a cylinder (see FIGS. 4 and 5), but is not limited thereto.
  • a quadrangular prism may be used as the shape of the through hole 14.
  • the height H means a distance orthogonal to the inner space side surface (upper surface) of the bottom plate and the inner space side surface (lower surface) of the lid, and the height of the cooled object placement chamber 43.
  • the space located in the upper half of H means a space between the lower surface of the lid and H / 2 at an orthogonal distance from the inner space of the cooling tank.
  • the temperature sensor 16 has a tip portion 16 ⁇ / b> A disposed in the fan housing chamber 45.
  • the temperature sensor 16 is electrically connected to the temperature controller 18.
  • the temperature sensor 16 transmits data related to the temperature of the fan housing chamber 45 to the temperature controller 18.
  • a thermocouple can be used as the temperature sensor 16 for example.
  • the tip 16A is a hot junction junction.
  • the temperature controller 18 is provided outside the cooling bath 13.
  • the temperature controller 18 is electrically connected to the temperature sensor 16 and the liquid refrigerant introduction valve 24.
  • the temperature controller 18 stores data relating to a predetermined temperature range (for example, ⁇ 80 to ⁇ 70 ° C.) of the fan housing chamber 45 in advance.
  • the temperature controller 18 includes data relating to a predetermined temperature range (for example, ⁇ 80 to ⁇ 70 ° C.) of the fan housing chamber 45 and data transmitted from the temperature sensor 16 (specifically, the actual temperature of the fan housing chamber 45). Based on the measured temperature data), the opening degree (including opening and closing) of the liquid refrigerant introduction valve 24 is adjusted so that the temperature of the fan housing chamber 45 falls within a predetermined temperature range.
  • a predetermined temperature range for example, ⁇ 80 to ⁇ 70 ° C.
  • One end of the refrigerant supply line 21 is connected to a liquid refrigerant supply source (not shown) arranged outside the cooling tank 13, and the other end is connected to a refrigerant supply unit 23 arranged in the fan housing chamber 45.
  • a liquid refrigerant supply source for example, one that supplies liquid nitrogen as the liquid refrigerant can be used.
  • the refrigerant supply unit 23 is disposed in the fan housing chamber 45.
  • the refrigerant supply unit 23 is for supplying the liquid refrigerant transported by the refrigerant supply line 21 to the side surface of the stirring fan 27.
  • the liquid refrigerant introduction valve 24 is an electromagnetic valve and is provided in the refrigerant supply line 21.
  • the liquid refrigerant introduction valve 24 is electrically connected to the temperature controller 18.
  • the liquid refrigerant introduction valve 24 is a valve for adjusting whether or not the liquid refrigerant is supplied to the refrigerant supply unit 23 and the supply amount of the liquid refrigerant supplied to the refrigerant supply unit 23.
  • the liquid refrigerant introduction valve 24 is used when the temperature in the fan housing chamber 45 rises and the temperature in the fan housing chamber 45 deviates from a predetermined temperature range (for example, ⁇ 80 to ⁇ 70 ° C.). A liquid refrigerant is supplied into 45.
  • the rectifying member 25 is disposed in the cooling tank 13 so as to separate the object placement chamber 43 and the fan housing chamber 45 from each other.
  • the flow regulating member 25 includes a plate-like member 47, a suction port 48, and first and second blowout ports 49-1 and 49-2.
  • the plate-like member 47 is a member having a uniform thickness.
  • the upper end surface of the plate member 47 is in contact with the lower surface 36a (surface on the inner space side) of the lid 36, and the lower end surface of the plate member 47 is connected with the upper surface 38a (surface on the inner space side) of the bottom plate 38. In contact.
  • One end surface in the horizontal direction of the plate-like member 47 is in contact with the inner surface of the third side wall 39-3, and the other end surface in the horizontal direction of the plate-like member 47 is in the fourth side wall 39-4. It is in contact with the inner surface.
  • the suction port 48 is provided so as to pass through a portion of the plate-like member 47 that faces the stirring fan 27 housed in the fan housing chamber 45 (specifically, the central portion of the plate-like member 47). . That is, the suction port 48 and the first and second blowing ports 49-1 and 49-2 are provided in the same plate-like member 47 having a uniform thickness. The suction port 48 and the first and second blow-out ports 49-1 and 49-2 are opened with a constant area in the thickness direction without decreasing the opening area inside the plate-like member 47. Is particularly preferred.
  • the suction port 48 is a penetrating portion for guiding the atmosphere of the object placement chamber 43 to the fan housing chamber 45.
  • the shape of the suction port 48 can be the same as the outer shape 27A of the stirring fan 27, for example.
  • the size of the suction port 48 is approximately equal to the outer shape 27 ⁇ / b> A of the stirring fan 27.
  • the size of the suction port 48 being approximately equal to the outer shape 27A of the stirring fan 27 means that the diameter of the suction port 48 is in the range of 0.9 to 1.1 times the diameter of the stirring fan 27. .
  • the first blowout port 49-1 passes through the plate member 47 located between the suction port 48 and the third side wall 39-3.
  • a through groove (slit) extending in the direction from the bottom plate 38 toward the lid 36 can be used.
  • the second blowout port 49-2 passes through the plate member 47 located between the suction port 48 and the fourth side wall 39-4.
  • the second outlet 49-2 has the same shape as the first outlet 49-1.
  • the rectifying member 25 has a symmetrical shape.
  • the first and second outlets 49-1 and 49-2 are used to guide the atmosphere of the fan housing chamber 45 to the object placement chamber 43.
  • FIG. 3 a through groove extending in the vertical direction of the plate-like member 47 is illustrated as an example of the first and second blowout ports 49-1 and 49-2, but the first and second blowout ports are illustrated.
  • the shape and number of the ports 49-1 and 49-2 are not limited to this. Further, the shapes of the first and second outlets 49-1, 49-2 may be different.
  • a plate-like member 47 may be provided with one or more rows of circular or square penetrating portions, and the size of the penetrating portions may be set. It may be different.
  • rectangular or elliptical through grooves may be arranged in the horizontal direction or the vertical direction of the plate-like member 47, or the sizes of the through grooves may be varied.
  • the stirring fan 27 is arranged in the fan housing chamber 45 so as to face the suction port 48.
  • the stirring fan 27 is connected to one end of a rotating shaft that passes through the second side wall 39-2.
  • the stirring fan 27 is disposed in the fan housing chamber 45 in a rotatable state.
  • a sirocco fan can be used as the stirring fan 27, for example, a sirocco fan can be used.
  • the stirring fan 27 turns the liquid refrigerant supplied from the side of the stirring fan 27 into a mist or low-temperature gas and stirs the atmosphere in the cooling tank 13.
  • the atmosphere of the object placement chamber 43 sucked through the suction port 48 spreads behind the stirring fan 27, and the atmosphere of the fan housing chamber 45 is the first and second blowout ports 49. -1, 49-2 to be introduced into the cooled object placement chamber 43.
  • the rotary shaft 28 passes through the second side wall 39-2.
  • One end of the rotating shaft 28 is connected to the stirring fan 27, and the other end provided outside the cooling tank 13 is connected to the rotation driving device 29.
  • the rotation drive device 29 is provided outside the cooling tank 13.
  • the rotation drive device 29 rotates the stirring fan 27 via the rotation shaft 28.
  • a motor can be used as the rotation drive device 29, for example.
  • FIG. 4 is a cross-sectional view of the third side wall of the exhaust member and the cooling tank body shown in FIG. 2 in the CC line direction.
  • FIG. 5 is a view of the through hole shown in FIG. 4 and the third side wall located around the through hole as viewed from the D side. 6 is an E view of the exhaust member shown in FIG. In FIG. 5, the exhaust member shown in FIG. 4 is not shown.
  • the exhaust member 31 has an exhaust member main body 55, an exhaust port 56, and a water draining hole 57.
  • the exhaust member main body 55 has a cylindrical shape. One end is an open end. The end of the exhaust member body 55 on the open end side is inserted into the through hole 14 provided in the third side wall 39-3. The outer diameter of the exhaust member body 55 is equal to the inner diameter of the through hole 14.
  • the exhaust member main body 55 extends from the through hole 14 to the inside of the object-to-be-cooled object mounting chamber 43 in a state where the exhaust member main body 55 is mounted in the through hole 14, and the other end is the exhaust port arrangement space 59.
  • the exhaust port arrangement space 59 is a space located in the upper half of the object placement chamber 43 and has a horizontal width that is the maximum horizontal width of the suction port 48 (in the case of FIG. It is a space that coincides with the diameter of the mouth 48.
  • the space located in the upper half is the internal space of the cooling tank when the distance H perpendicular to the lower surface 36a of the lid body 36 and the upper surface 38a of the bottom plate 38 is the height H of the object placement chamber 43.
  • the horizontal direction of the exhaust port arrangement space 59 and the horizontal direction of the suction port 48 mean a direction orthogonal to the height and parallel to the rectifying member 25. Further, the space in which the lateral width of the exhaust port arrangement space 59 coincides with the maximum lateral width of the suction port 48 (in the case of FIG. 3, the diameter of the suction port 48) is the space in the internal space of the cooling tank. This means that the center of the horizontal width of the exhaust port arrangement space coincides with the center of the maximum horizontal width of the suction port and the width in the horizontal direction matches.
  • the outer shape of the surface orthogonal to the extending direction of the exhaust member main body 55 is not particularly limited, and may be, for example, a circle or a rectangle.
  • a pipe having a cylindrical shape is illustrated as an example of the exhaust member main body 55.
  • the exhaust member main body 55 is inserted into the through hole 14 has been described as an example.
  • the inner diameter of the exhaust member main body 55 and the inner diameter of the through hole 14 are the same,
  • the exhaust member main body 55 may be fixed to the cooling tank 13 without inserting a part of the member main body 55 into the through hole 14.
  • the exhaust port 56 passes through the exhaust member main body 55 to the outside of the cooling tank 13 through the low-temperature gas (the liquid refrigerant is a gas). By discharging a part of the gas, the pressure in the cooling tank 13 is adjusted to be within a predetermined pressure range.
  • the exhaust port 56 is provided at the other end of the end connected to the through hole 14 of the exhaust member main body 55. Thus, the exhaust port 56 is disposed inside the object-to-be-cooled object mounting chamber 45 spaced from the first to fourth side walls 39-1 to 39-4 of the cooling tank 13.
  • the space to be cooled 43 is a space located in the upper half, and the lateral width is the maximum lateral width of the suction port 48 (in the case of FIG.
  • the exhaust port 56 By disposing the exhaust port 56 in the exhaust port disposition space 59 that coincides with the diameter), the flow path of the low-temperature gas on the center line in the direction from the side wall 39-1 to the side wall 39-2 in the object placement chamber 43 Since the exhaust port 56 is disposed here, there is no drift, so that the object to be cooled can be uniformly cooled (in other words, variations in the quality of the object 11 to be cooled can be suppressed).
  • a low-temperature gas that is located in the vicinity of the first side wall 39-1, the third side wall 39-3, and the fourth side wall 39-4 and does not sufficiently contribute to the cooling of the object placement chamber 43 is generated. Since it can suppress exhausting from the exhaust port 56, the liquid refrigerant used for cooling the to-be-cooled object 11 can be reduced.
  • the object to be cooled 11 can be uniformly cooled, and the liquid refrigerant used for cooling the object to be cooled 11 can be reduced.
  • the exhaust port 56 is preferably disposed entirely in the exhaust port arrangement space 59, but the same applies to the case where a part of the exhaust port 56 is disposed in the exhaust port arrangement space 59. Effects can be obtained.
  • the exhaust port 56 is disposed, the low temperature gas that can sufficiently contribute to cooling of the object mounting chamber 43 is recovered. As described above, the exhaust port 56 is mounted on the object to be cooled. It is necessary to arrange in the space located in the upper half of the storage room 43.
  • the exhaust member main body 55 has an exhaust port 56 that is open toward the lid side on the other end side of the end connected to the through hole 14.
  • the exhaust port 56 By installing the exhaust port 56 toward the lid, the low-temperature gas having a lower temperature that sinks below the cooling tank 13 reaches the exhaust port 56 so as to wrap around the exhaust member main body 55, so that the cold energy is not wasted. Can be used.
  • the exhaust port 56 of the exhaust member main body 55 is opened in the side wall 39-1 of the cooling tank, the low temperature gas blown from the horizontal direction is easily sucked from the exhaust port 56 before circulating in the cooling tank 13. For this reason, there is a waste of cold energy.
  • the exhaust port 56 has both ends 56 ⁇ / b> A of the exhaust port 56. , 56B and the center of the exhaust member main body 55 may be configured such that the central angle ⁇ formed is within 90 degrees. Since the amount of the low temperature gas sucked from the exhaust port 56 can be made appropriate, the cold heat of the low temperature gas can be used more efficiently.
  • the drain hole 57 is located on the side opposite to the exhaust port 56, that is, on the bottom plate side 38 of the cooling tank 13, and is provided so as to penetrate the exhaust member body 55. Yes.
  • the atmosphere outside the cooling tank 13 is passed through the exhaust member main body 55 (in other words, the exhaust member 31). Intrusion may cause moisture contained in the atmosphere to condense in the exhaust member main body 55, freeze, and block the exhaust member main body 55.
  • the drainage hole 57 in the exhaust member main body 55 located below the exhaust port 56 it is possible to suppress the accumulation of moisture in the exhaust member main body 55, so that the exhaust member main body 55 (in other words, exhaust gas Blockage in the member 31) can be suppressed.
  • the object to be cooled is extended from the through hole 14 provided in the third side wall 39-3 constituting the object to be cooled 43 to the inside of the object to be cooled 43.
  • the exhaust member 31 having the exhaust port 56 is provided, is a space located in the upper half of the object-to-be-cooled object mounting chamber 43, and the lateral width is the maximum lateral width of the suction port 48.
  • the temperature variation of the atmosphere in the object placement chamber 43 can be suppressed.
  • the to-be-cooled object 11 can be cooled uniformly (in other words, the dispersion
  • the liquid refrigerant used for cooling the cooled object 11 can be reduced.
  • the object to be cooled 11 can be uniformly cooled, and the liquid refrigerant used for cooling the object to be cooled 11 can be reduced.
  • the through hole 14 is provided in the third side wall 39-3 as an example, but the exhaust port positioned between the object to be cooled 11 and the rectifying member 25 is described. If it is possible to arrange the exhaust port 56 in the arrangement space, the through hole 14 may be provided anywhere in the cooling tank 13 that constitutes the object placement chamber 43. Specifically, in place of the third side wall 39-3, the through hole 14 may be provided in any of the first side wall 39-1, the fourth side wall 39-4, and the lid body 36.
  • FIG. 8 is a diagram for explaining a sub-zero processing apparatus according to a modification of the first embodiment, and is a plan view of the sub-zero processing apparatus that is transmitted through a cover body that constitutes the sub-zero processing apparatus. It is.
  • the same components as those in the sub-zero processing apparatus 10 according to the first embodiment shown in FIG. Further, in FIG. 8, for convenience of explanation, illustration of the lid (the lid 36 shown in FIG. 1) constituting the sub-zero processing apparatus according to the modification of the first embodiment is omitted.
  • the sub-zero processing apparatus 65 according to the modification of the first embodiment is the same as that of the first embodiment except that the arrangement positions of the through holes 14 and the exhaust members 31 are different.
  • the configuration is the same as that of the sub-zero processing device 10.
  • the exhaust port 56 is disposed in the exhaust port disposition space 59 located between the object 11 to be cooled and the first side wall 39-1.
  • the through hole 14 is provided in the third side wall 39-3 located in the vicinity of the first side wall 39-1.
  • the sub-zero processing device 65 according to the modification of the first embodiment having such a configuration can obtain the same effects as the sub-zero device 10 of the first embodiment.
  • FIG. 9 is a view for explaining a sub-zero processing apparatus according to the second embodiment, and is a view of the sub-zero processing apparatus seen through with a cover body constituting the sub-zero processing apparatus being transmitted.
  • FIG. 9 the same components as those of the sub-zero processing apparatus 10 of the first embodiment shown in FIG. In FIG. 9, for convenience of explanation, the illustration of the lid (the lid 36 shown in FIG. 1) constituting the sub-zero processing apparatus 70 according to the second embodiment is omitted.
  • the sub-zero processing apparatus 70 includes a rectifying member 25 that constitutes the sub-zero processing apparatus 10 according to the first embodiment, and an object to be cooled that is partitioned by the rectifying member 25.
  • the rectifying member 71 has a U shape in a plan view.
  • the rectifying member 71 has a lower end surface in contact with the upper surface 38a of the bottom plate 38, and an upper end surface in contact with the lower surface of the lid (not shown).
  • the rectifying member 71 is disposed inside the rectifying member 71 in the cooling tank 13, and is disposed outside the rectifying member 71 and the cooled object placement chamber 81 that is a rectangular parallelepiped.
  • the fan housing chamber 82 is shaped like a letter.
  • the rectifying member 71 includes a first plate member 72-1, a second plate member 72-2, and a third plate member 72-3.
  • the first plate member 72-1 is disposed between the stirring fan 27 and the exhaust member 31.
  • the first plate-like member 72-1 is disposed so as to be parallel to the first side wall 39-1.
  • the first plate-like member 72-1 has a suction port 48 that faces the stirring fan 27.
  • FIG. 10 is a view of the second plate member of the rectifying member shown in FIG.
  • the second plate-like member 72-2 is provided in the cooling tank 13 and in the third side wall 39- so as to be parallel to the third side wall 39-3. 3 is arranged near.
  • the second plate member 72-2 has one end in the horizontal direction integrated with the first plate member 72-1, and the other end in the horizontal direction is the inner surface of the first side wall 39-1. In contact with.
  • the second plate-like member 72-2 has a first outlet 74-1 and an exhaust member insertion hole 76.
  • the first outlet 74-1 is provided so as to penetrate the lower part of the second plate member 72-2.
  • the first air outlet 74-1 has a function of guiding the atmosphere of the fan housing chamber 82 to the cooled object placement chamber 81.
  • FIG. 11 is a cross-sectional view in the NN line direction of the exhaust member, the third side wall of the cooling tank body, and the second plate member of the rectifying member shown in FIG. 11, the same components as those in FIGS. 9 and 10 are denoted by the same reference numerals.
  • the exhaust member insertion hole 76 is provided so as to penetrate the portion of the second plate-like member 72-2 that faces the through hole 14. The exhaust member 31 is inserted into the exhaust member insertion hole 76.
  • the third plate-like member 72-3 is in the cooling bath 13 and in the vicinity of the fourth side wall 39-4 so as to be parallel to the fourth side wall 39-4. Is arranged.
  • the third plate member 72-3 has one end in the horizontal direction integrated with the first plate member 72-1, and the other end in the horizontal direction is the inner surface of the first side wall 39-1. In contact with.
  • the third plate member 72-3 has a second blowout port 74-2.
  • the second blowout port 74-2 is provided so as to penetrate a portion of the lower part of the third plate-like member 72-3 that faces the first blowout port 74-1.
  • the second blowout port 74-2 has the same shape as the first blowout port 74-1.
  • the second outlet 74-2 has the same function as the first outlet 74-1.
  • FIGS. 9 and 10 as an example of the first and second outlets 74-1 and 74-2, the through grooves extending in the lateral direction of the plate-like members 72-2 and 72-3 are shown.
  • the shape and number of the first and second outlets 74-1 and 74-2 are not limited to this. Further, the shapes of the first and second outlets 74-1 and 74-2 may be different.
  • first and second blowout ports 74-1 and 74-2 one or more rows of circular or square penetrating portions may be provided in the plate-like members 72-2 and 72-3, or through The size of the part may be different.
  • rectangular or elliptical through grooves may be arranged in the horizontal direction or the vertical direction of the plate-like members 72-2 and 72-3, or the size of the through grooves may be different. Good.
  • the sub-zero processing device 70 of the second embodiment having such a configuration can obtain the same effects as the sub-zero device 10 of the first embodiment.
  • the present invention can be applied to a sub-zero treatment apparatus that can uniformly cool an object to be cooled and can reduce liquid refrigerant used for cooling the object to be cooled.
  • Cooling tank 14 Through hole 16 Temperature sensor 16A Tip 18 Temperature controller 21 Refrigerant supply line 23 Refrigerant supply part 24 Liquid refrigerant introduction valve 25, 71 Rectifier member 27 Stirring fan 28 Rotating shaft 29 Rotation Drive unit 31 Exhaust member 35 Cooling tank body 36 Lid 38 Bottom plate 38a Upper surface 39-1 First side wall 39-2 Second side wall 39-3 Third side wall 39-4 Fourth side wall 43, 81 Object to be cooled Mounting chamber 45, 82 Fan housing chamber 47 Plate member 48 Suction port 49-1, 74-1 First outlet 49-2, 74-2 Second outlet 55 Exhaust member body 55A Center 56 Exhaust port 56A 56B End 57 Drain hole 59 Exhaust port arrangement space 72-1 First plate member 72-2 Second plate member 72-3 Third plate member 76 Exhaust member insertion hole H Height ⁇ Heart angle

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

本発明は、被冷却物を均一に冷却することが可能で、かつ被冷却物の冷却に使用する液体冷媒を削減可能なサブゼロ処理装置を提供することを目的とする。被冷却物載置室(43)を構成する冷却槽(13)に設けられた貫通穴(14)から被冷却物載置室(43)の内部に延在し、排気口(56)を有する排気部材(31)を有し、排気口(56)は、被冷却物載置室(43)のうち、上半分に位置する空間であって、かつ横方向の幅が吸い込み口(48)の横方向の最大の幅と一致する排気口配置空間(59)に配置する。

Description

サブゼロ処理装置
 本発明は、機械部品等の鉄鋼材を0℃以下の低温度に冷却して硬度や靭性等の性能の向上を図るサブゼロ処理装置に関する。
 本願は、2013年3月22日に、日本に出願された特願2013-060698号に基づき優先権を主張し、その内容をここに援用する。
 従来、機械部品等の鉄鋼材の高度や靱性等の性能の向上を図るために、機械部品等の鉄鋼材を0℃以下の低温に冷却するサブゼロ処理が実施されている。
 サブゼロ処理方法の1つとして、被冷却物を収容する冷却槽内の雰囲気を冷凍機や液化窒素により冷却することで、被冷却物を冷却する低温雰囲気法が知られている。
 特許文献1には、上記サブゼロ処理を実施する際に使用するサブゼロ処理装置(図12参照)が開示されている。
 図12は、従来のサブゼロ処理装置の概略構成を示す断面図である。
 図12を参照するに、特許文献1に記載のサブゼロ処理装置100は、冷却槽102と、冷媒導入経路103と、液冷媒導入弁104と、温度調節計105と、攪拌ファン108と、整流板109と、を有する。
 冷却槽102は、断熱材で構成されており、その内部に処理空間を有する。冷却槽102の側壁には、前記側壁を貫通する排気口102Aが設けられている。排気口102Aは、液体窒素(液体冷媒)の蒸発により、冷却槽102内の圧力が上昇した際、所定の圧力の範囲内となるように、冷却槽102内の窒素ガスの一部を冷却槽102の外部に排気する。
 冷媒導入経路103は、図示していない液体窒素供給源と接続されている。冷媒導入経路103は、液冷媒導入弁104(冷媒導入経路103に設けられた弁)が開かれた際、冷却槽102内に液体窒素を供給する。
 温度調節計105は、冷却槽102内の温度を測定し、その結果に基づいて、液冷媒導入弁104の開度を調節する。
 攪拌ファン108は、冷却槽102に収容されている。攪拌ファン108は、液体窒素を霧状にして、冷却槽102内に拡散させると共に、冷却槽102内の低温窒素ガス(低温ガス)を撹拌する。
 整流板109は、冷却槽102に収容されると共に、攪拌ファン108と被冷却物101との間に配置されている。整流板109は、吸い込み口及び吹き出し口を有する。整流板109は、攪拌ファン108による攪拌作用を向上させる機能を有する。
特許第3946796号公報
 しかしながら、特許文献1に開示されたサブゼロ処理装置100のように、冷却槽102の側壁を貫通する排気口102Aを介して、低温窒素ガスを冷却槽102の外部に排出すると、冷却槽102内に温度ムラが発生してしまう。
 このように、冷却槽102内に温度ムラが発生すると、被冷却物101の冷却の不均一を招き、被冷却物101の品質がばらついてしまう。
 また、排気口102Aを設ける冷却槽102の側壁の位置によっては、低温窒素ガスが処理空間の冷却に十分寄与する前に、排気口102Aから排気されてしまうため、被冷却物101を冷却する際に使用する液体冷媒が多く必要となる。
 そこで、本発明は、被冷却物を均一に冷却することが可能で、かつ被冷却物の冷却に使用する液体冷媒を削減することの可能なサブゼロ処理装置を提供することを目的とする。
 上記課題を解決するため、(1)被冷却物が載置される被冷却物載置室、及び前記被冷却物載置室と接続されたファン収容室を有する、底板及び第1ないし第4の側壁からなる冷却槽本体及び蓋体からなる冷却槽と、前記被冷却物載置室と前記ファン収容室とを区切るように前記冷却槽内に配置され、かつ前記被冷却物載置室の雰囲気を前記ファン収容室に導くための吸い込み口、及び前記ファン収容室の雰囲気を前記被冷却物載置室に導くための吹き出し口を有する整流部材と、前記吸い込み口と対向するように前記ファン収容室に収容され、前記ファン収容室に供給された液体冷媒を霧状または低温ガスにすると共に、前記冷却槽内の雰囲気を攪拌する攪拌ファンと、前記冷却槽本体に設けられた貫通穴から前記被冷却物載置室の内部に延在し、かつ排気口を有する排気部材と、を有し、前記第1ないし第4の側壁は、前記底板の外周縁を囲むように配置され、前記蓋板と接触し前記冷却槽の内部空間を形成し、前記排気口は、前記内部空間の内、前記被冷却物載置室に存在する排気口配置空間に配置されており、前記排気口配置空間は、前記底板の前記内部空間側の面と前記蓋体の前記内部空間側の面と直交する高さをHとした場合に、前記蓋体の内部空間側の面からの直交距離がH/2である部分の空間であって、前記高さと直交し、かつ前記吸い込み口を有する前記整流部材と平行となる方向の幅である前記排気口配置空間の横幅は、前記高さと直交し、前記吸い込み口を有する前記整流部材と平行となる方向における前記吸い込み口の横幅の最大値と一致し、前記排気口配置空間の前記横幅の中心が、前記吸い込み口の前記横幅の中心と一致することを特徴とするサブゼロ処理装置が提供される。
 また、(2)前記排気口は、前記被冷却物と前記整流部材との間に位置する前記排気口配置空間に配置することを特徴とする(1)に記載のサブゼロ処理装置が提供される。
 また、(3)前記排気部材は、排気部材本体を有し、前記排気部材本体は、前記排気口が前記蓋体側を向くように配置されることを特徴とする(1)または(2)に記載のサブゼロ処理装置が提供される。
 また、(4)前記排気部材本体は、円筒状配管であり、前記排気部材本体の延在方向と直交する面で、前記排気口を通過するように、前記排気部材を切断した状態において、前記排気口は、前記排気口の両端と前記排気部材本体の中心とを結ぶことで形成される中心角が90度以内であることを特徴とする(3)に記載のサブゼロ処理装置が提供される。
 また、(5)前記排気部材は、前記底板側を向くように水抜き用の穴を有することを特徴とする(1)に記載のサブゼロ処理装置が提供される。
 また、(6)前記整流部材は、少なくとも1つの板状部材であって、均一な厚さを有する板状部材を有し、前記吸い込み口及び前記吹き出し口は、同一の前記板状部材を貫通していることを特徴とする(1)ないし(5)のうち、いずれか1つに記載のサブゼロ処理装置が提供される。
 また、(7)前記整流部材は、前記撹拌ファンと対面する第1の板状部材及び前記第1の板状部材と直交する第2及び第3の板状部材を有し、前記吸い込み口は前記第1の板状部材を貫通しており、前記吹き出し口は、前記第2及び第3の板状部材を貫通することを特徴とする(1)ないし(5)のうち、いずれか1つに記載のサブゼロ処理装置が提供される。
 本発明のサブゼロ処理装置によれば、被冷却物載置室を構成する冷却槽に設けられた貫通穴から被冷却物載置室の内部に延在し、かつ排気口を有する排気部材を設けると共に、被冷却物載置室のうち、上半分に位置する空間であって、かつ横方向の幅が吸い込み口の横方向の最大の幅と一致する排気口配置空間に排気口を配置することにより、排気口を介して、冷却槽の外部に低温ガス(液体冷媒がガス化したもの)を排気した場合でも、被冷却物載置室内の雰囲気の温度ばらつきを抑制できる。
 これにより、被冷却物を均一に冷却することができる(言い換えれば、被冷却物の品質のばらつきを抑制できる。)。
 また、低温ガスが処理空間の冷却に十分寄与する前に、排気口から排気されることを抑制できるため、被冷却物の冷却に使用する液体冷媒を削減できる。
 つまり、本発明のサブゼロ処理装置によれば、被冷却物を均一に冷却することができ、かつ被冷却物の冷却に使用する液体冷媒を削減することができる。
本発明の第1の実施の形態に係るサブゼロ処理装置の外観を示す側面図である。 図1に示す冷却槽本体に収容されたサブゼロ処理装置の構成要素を説明するための図であり、図1に示す蓋体を透過させて、図1に示す冷却槽をA視した平面図である。 図1に示す冷却槽本体に収容されたサブゼロ処理装置の構成要素を説明するための図であり、図1に示す第1の側壁を透過させて、図1に示す冷却槽内をB視した図である。 図2に示す排気部材、及び冷却槽本体の第3の側壁のC-C線方向の断面図である。 図4に示す貫通穴、及び貫通穴の周囲に位置する第3の側壁をD視した図である。 図4に示す排気部材をE視した図である。 図4に示す排気部材のG-G線方向の断面図である。 第1の実施の形態の変形例に係るサブゼロ処理装置を説明するための図であり、前記サブゼロ処理装置を構成する蓋体を透過させて、前記サブゼロ処理装置を平面視した図である。 第2の実施の形態に係るサブゼロ処理装置を説明するための図であり、前記サブゼロ処理装置を構成する蓋体を透過させて、前記サブゼロ処理装置を平面視した図である。 図9に示す整流部材の第2の板状部材をM視した図である。 図9に示す排気部材、冷却槽本体の第3の側壁、及び整流部材の第2の板状部材のN-N線方向の断面図である。 従来のサブゼロ処理装置の概略構成を示す断面図である。
 以下、図面を参照して本発明を適用した実施の形態について詳細に説明する。なお、以下の説明で用いる図面は、本発明の実施形態の構成を説明するためのものであり、図示される各部の大きさや厚さや寸法等は、実際のサブゼロ処理装置の寸法関係とは異なる場合がある。
 (第1の実施の形態)
 図1は、本発明の第1の実施の形態に係るサブゼロ処理装置の外観を示す側面図である。図2は、図1に示す冷却槽本体に収容されたサブゼロ処理装置の構成要素を説明するための図であり、図1に示す蓋体を透過させて、図1に示す冷却槽をA視した平面図である。
 したがって、図2では、第1の実施の形態のサブゼロ処理装置10の構成要素である蓋体36の図示を省略する。
 図3は、図1に示す冷却槽本体に収容されたサブゼロ処理装置の構成要素を説明するための図であり、図1に示す第1の側壁を透過させて、図1に示す冷却槽をB視した図である。したがって、図3では、第1の実施の形態のサブゼロ処理装置10の構成要素である第1の側壁39-1の図示を省略する。
 また、図1~図3において、同一構成部分には、同一符号を付す。
 図1~図3を参照するに、第1の実施の形態のサブゼロ処理装置10は、冷却槽13と、貫通穴14と、温度センサ16と、温度調節計18と、冷媒供給ライン21と、冷媒供給部23と、液冷媒導入弁24と、整流部材25と、攪拌ファン27と、回転軸28と、回転駆動装置29、排気部材31と、を有する。
 冷却槽13は、冷却槽本体35と、蓋体36と、を有する。冷却槽本体35は、底板38と、第1ないし第4の側壁39-1~39-4と、を有する。
 第1ないし第4の側壁39-1~39-4は、矩形とされた底板38の外周縁を囲むように配置されている。第1ないし第4の側壁39-1~39-4の下端は、底板38と一体とされている。
 第1及び第2の側壁39-1,39-2は、対向するように配置されている。第3及び第4の側壁39-3,39-4は、対向するように配置されている。
 第1及び第2の側壁39-1,39-2は、それぞれ隣接する第3及び第4の側壁39-3,39-4と一体とされている。
 蓋体36は、第1ないし第4の側壁39-1~39-4の上端面と接触している。これにより、冷却槽13内には、直方体或いは立方体とされた内部空間(被冷却物載置室43及びファン収容室45を含む空間)が形成される。
 冷却槽13は、被冷却物載置室43と、ファン収容室45と、を有する。被冷却物載置室43及びファン収容室45は、整流部材25により区切られている。被冷却物載置室43には、被冷却物11が載置されている。
 貫通穴14は、第3の側壁39-3を貫通するように設けられている。貫通穴14は、第3の側壁39-3のうち、被冷却物載置室43の高さHの上半分に位置する空間で、かつ被冷却物11と整流部材25との間に位置する部分に配置されている。貫通穴14の形状は、例えば、円柱とすることができる(図4及び図5参照)が、これに限定されない。例えば、貫通穴14の形状として、四角柱を用いてもよい。
なお、高さHとは、底板の内部空間側の面(上面)及び蓋体の内部空間側の面(下面)と直交する距離のことを意味し、被冷却物載置室43の高さHの上半分に位置する空間は、冷却槽の内部空間の内、蓋体の下面から直交距離でH/2までの間の空間のことを意味する。
 温度センサ16は、先端部16Aがファン収容室45内に配置されている。温度センサ16は、温度調節計18と電気的に接続されている。温度センサ16は、ファン収容室45の温度に関するデータを温度調節計18に送信する。
 温度センサ16としては、例えば、熱電対を用いることができる。この場合、先端部16Aは、温接点接合点となる。
 温度調節計18は、冷却槽13の外部に設けられている。温度調節計18は、温度センサ16及び液冷媒導入弁24と電気的に接続されている。温度調節計18には、予めファン収容室45の所定の温度範囲(例えば、-80~-70℃)に関するデータが格納されている。
 温度調節計18は、ファン収容室45の所定の温度範囲(例えば、-80~-70℃)に関するデータ、及び温度センサ16から送信されるデータ(具体的には、ファン収容室45の実際に測定した温度に関するデータ)に基づいて、ファン収容室45の温度が所定の温度範囲となるように、液冷媒導入弁24の開度(開閉も含む)を調節する。
 冷媒供給ライン21は、その一端が冷却槽13の外部に配置された液体冷媒供給源(図示せず)と接続されており、他端がファン収容室45に配置された冷媒供給部23と接続されている。液体冷媒供給源(図示せず)としては、例えば、液体冷媒として液体窒素を供給するものを用いることができる。
 冷媒供給部23は、ファン収容室45に配置されている。冷媒供給部23は、冷媒供給ライン21により輸送された液体冷媒を攪拌ファン27の側面に供給するためのものである。
 液冷媒導入弁24は、電磁弁であり、冷媒供給ライン21に設けられている。液冷媒導入弁24は、温度調節計18と電気的に接続されている。
 液冷媒導入弁24は、冷媒供給部23に液体冷媒を供給するか否か、及び冷媒供給部23に供給する液体冷媒の供給量を調節するための弁である。
 液冷媒導入弁24は、ファン収容室45内の温度が上昇して、ファン収容室45内の温度が所定の温度範囲(例えば、-80~-70℃)から外れたときに、ファン収容室45内に液体冷媒を供給する。
 整流部材25は、被冷却物載置室43とファン収容室45とを区切るように冷却槽13内に配置されている。
 整流部材25は、板状部材47と、吸い込み口48と、第1及び第2の吹き出し口49-1,49-2と、を有する。板状部材47は、均一な厚さとされた部材である。
板状部材47の上端面は、蓋体36の下面36a(内部空間側の面)と接触しており、板状部材47の下端面は、底板38の上面38a(内部空間側の面)と接触している。
 また、板状部材47の横方向の一方の端面は、第3の側壁39-3の内面と接触しており、板状部材47の横方向の他方の端面は、第4の側壁39-4の内面と接触している。
 吸い込み口48は、板状部材47のうち、ファン収容室45に収容された攪拌ファン27と対向する部分(具体的には、板状部材47の中央部)を貫通するように設けられている。
 つまり、吸い込み口48、並びに第1及び第2の吹き出し口49-1,49-2は、厚さが均一な同一の板状部材47に設けられている。
 吸い込み口48と、第1及び第2の吹き出し口49-1、49-2は、板状部材47の内部で開口面積が小さくなることなく、厚さ方向に一定の面積で開口していることが特に好ましい。
 吸い込み口48は、被冷却物載置室43の雰囲気をファン収容室45に導くための貫通部である。
 吸い込み口48の形状は、例えば、攪拌ファン27の外形27Aと同様な形状とすることができる。吸い込み口48の大きさは、攪拌ファン27の外形27Aと大体等しい大きさとされている。
 本発明において、吸い込み口48の大きさが攪拌ファン27の外形27Aと大体等しいとは、吸い込み口48の直径が攪拌ファン27の直径の0.9~1.1倍の範囲内のことをいう。
 第1の吹き出し口49-1は、吸い込み口48と第3の側壁39-3との間に位置する板状部材47を貫通している。第1の吹き出し口49-1としては、例えば、底板38から蓋体36に向かう方向に延在する貫通溝(スリット)とすることができる。
 第2の吹き出し口49-2は、吸い込み口48と第4の側壁39-4との間に位置する板状部材47を貫通している。第2の吹き出し口49-2は、第1の吹き出し口49-1と同様な形状とされている。側壁39-3を右側、側壁39-4を左側とした場合、整流部材25は、左右対称な形状とされている。
 第1及び第2の吹き出し口49-1,49-2は、ファン収容室45の雰囲気を被冷却物載置室43に導くためのものである。
 なお、図3では、第1及び第2の吹き出し口49-1,49-2の一例として、板状部材47の上下方向に延在する貫通溝を図示したが、第1及び第2の吹き出し口49-1,49-2の形状及び数は、これに限定されない。また、第1及び第2の吹き出し口49-1、49-2の形状は、異なっていてもよい。
 例えば、第1及び第2の吹き出し口49-1,49-2として、板状部材47に円形或いは四角形とされた貫通部を一列或いは複数列設けてもよいし、前記貫通部の大きさを異ならせてもよい。
 他には、例えば、長方形または楕円形とされた貫通溝を板状部材47の横方向或いは縦方向に配置させてもよいし、前記貫通溝の大きさを異ならせてもよい。
 攪拌ファン27は、吸い込み口48と対向するように、ファン収容室45に配置されている。攪拌ファン27は、第2の側壁39-2を貫通する回転軸の一端と接続されている。これにより、攪拌ファン27は、回転可能な状態で、ファン収容室45に配置されている。攪拌ファン27としては、例えば、シロッコファンを用いることができる。
 攪拌ファン27は、攪拌ファン27の側方から供給された液体冷媒を霧状または低温ガスにすると共に、冷却槽13内の雰囲気を攪拌する。
 これにより、吸い込み口48を介して吸い込まれた被冷却物載置室43の雰囲気は、攪拌ファン27の後ろ側方に広がり、ファン収容室45の雰囲気は、第1及び第2の吹き出し口49-1,49-2を介して、被冷却物載置室43に導入される。
 回転軸28は、第2の側壁39-2を貫通している。回転軸28は、その一端が攪拌ファン27と接続されており、冷却槽13の外部に設けられた他端が回転駆動装置29と接続されている。
 回転駆動装置29は、冷却槽13の外部に設けられている。回転駆動装置29は、回転軸28を介して、攪拌ファン27を回転させる。回転駆動装置29としては、例えば、モータを用いることができる。
 図4は、図2に示す排気部材、及び冷却槽本体の第3の側壁のC-C線方向の断面図である。図5は、図4に示す貫通穴、及び貫通穴の周囲に位置する第3の側壁をD視した図である。図6は、図4に示す排気部材をE視した図である。なお、図5では、図4に示す排気部材の図示を省略する。
 図2~図4、及び図6を参照するに、排気部材31は、排気部材本体55と、排気口56と、水抜き用の穴57と、を有する
 排気部材本体55は、筒状とされた部材であり、一方の端が開放端とされている。排気部材本体55の開放端側の端部は、第3の側壁39-3に設けられた貫通穴14に挿入されている。排気部材本体55の外径は、貫通穴14の内径と等しい。
 排気部材本体55は、排気部材本体55が貫通穴14に装着された状態において、貫通穴14から被冷却物載置室43の内部に延在しており、他方の端部が排気口配置空間59内に配置されている。
 排気口配置空間59は、被冷却物載置室43のうち、上半分に位置する空間であって、かつ横方向の幅が吸い込み口48の横方向の最大の幅(図3の場合、吸い込み口48の直径)と一致する空間である。
なお、上記上半分に位置する空間とは、蓋体36の下面36aと底板38の上面38aを直交する距離を被冷却物載置室43の高さHとした場合の、冷却槽の内部空間の内、蓋体36の下面36aから直交距離でH/2までの空間のことを意味する。排気口配置空間59の横方向及び吸い込み口48の横方向とは、前記高さと直交し、かつ前記整流部材25と平行である方向を意味する。
 また、排気口配置空間59の横方向の幅が、吸い込み口48の横方向の最大の幅(図3の場合、吸い込み口48の直径)と一致する空間とは、冷却槽の内部空間内の、前記排気口配置空間の前記横幅の中心が、前記吸い込み口の最大の横幅の中心と一致し、かつ横方向の幅が一致する空間を意味する。
 排気部材本体55の延在方向と直交する面の外形は、特に限定されないが、例えば、円形や四角形等とすることができる。図6では、排気部材本体55の一例として、円筒状(排気部材本体55の外形が円形)とされた配管を図示する。
 なお、図4では、一例として、排気部材本体55を貫通穴14に挿入させた場合を例に挙げて説明したが、排気部材本体55の内径と貫通穴14の内径とを同じにして、排気部材本体55の一部を貫通穴14に挿入することなく、排気部材本体55を冷却槽13に固定してもよい。
 排気口56は、ファン収容室45内に液体冷媒が供給されて、冷却槽13内の圧力が上昇した際、排気部材本体55を介して、冷却槽13の外部に低温ガス(液体冷媒がガス化されたもの)の一部を排出することで、冷却槽13内の圧力が所定の圧力範囲内となるように調整する機能を有する。
 排気口56は、排気部材本体55の、貫通穴14と接続する端の他端に設けられている。これにより、排気口56は、冷却槽13の第1ないし第4の側壁39-1~39-4から離間した被冷却物載置室45の内部に配置されている。
このように、被冷却物載置室43のうち、上半分に位置する空間であって、かつ横方向の幅が吸い込み口48の横方向の最大の幅(図3の場合、吸い込み口48の直径)と一致する排気口配置空間59に排気口56を配置することにより、被冷却物載置室43内の側壁39-1から側壁39-2へ向かう方向の中心線上に低温ガスの流路が形成され、ここに排気口56が配置されることで偏流がなくなるため、被冷却物を均一に冷却することができる(言い換えれば、被冷却物11の品質のばらつきを抑制できる。)。
 また、第1の側壁39-1、第3の側壁39-3、及び第4の側壁39-4の近傍に位置し、被冷却物載置室43の冷却に十分寄与していない低温ガスが、排気口56から排気されることを抑制できるため、被冷却物11の冷却に使用する液体冷媒を削減できる。
 つまり、被冷却物11を均一に冷却することができ、かつ被冷却物11の冷却に使用する液体冷媒を削減することができる。
 なお、排気口56は、排気口56の全体が排気口配置空間59内に配置されていることが好ましいが、排気口56の一部が排気口配置空間59内に配置されている場合でも同様な効果を得ることができる。
 また、被冷却物載置室43のうち、下半分に位置する空間(冷却槽の内部空間の内、底板38の上面38aから直交距離でH/2までの空間のことを意味する)に、排気口56を配置させた場合、被冷却物載置室43の冷却に十分寄与することが可能な低温ガスが回収されてしまうため、上記説明したように、排気口56は、被冷却物載置室43のうち、上半分に位置する空間に配置する必要がある。
 排気部材本体55は、貫通穴14と接続する端の他端側に、蓋体側に向くようにして開口した排気口56を有する。排気口56を蓋体側に向けて設置することにより、冷却槽13の下方に沈んだより温度の低い低温ガスが排気部材本体55を回り込むようにして排気口56に到達するため、冷熱を無駄なく利用することができる。例えば排気部材本体55の排気口56が冷却槽の側壁39-1に開口している場合、水平方向から送風されてきた低温ガスが冷却槽13内を循環する前に排気口56から吸い込み易くなるため、冷熱に無駄が生じる。
 図7に示すように、排気部材本体55の延在方向と直交する面で、排気口56を通過するように、排気部材31を切断した状態において、排気口56は、排気口56の両端56A,56Bと排気部材本体55の中心とを結ぶことで形成される中心角θが90度以内となるように構成するとよい。排気口56から吸い込む低温ガス量を適切にできるため、低温ガスの冷熱をより無駄なく利用できる。
 図2及び図4を参照するに、水抜き用の穴57は、排気口56とは反対側、すなわち冷却槽13の底板側38に位置し、排気部材本体55を貫通するように設けられている。
 ところで、冷却槽13内の温度が所定の温度範囲内の温度となり、液体冷媒の供給を停止すると、排気部材本体55(言い換えれば、排気部材31)を介して、冷却槽13の外部の大気が侵入し、大気中に含まれる水分が排気部材本体55内で結露し、凍結して、排気部材本体55内を閉塞させてしまうことがある。
 よって、排気口56の下方に位置する排気部材本体55に水抜き用の穴57を設けることで、排気部材本体55内に水分が溜まることを抑制できるので、排気部材本体55(言い換えれば、排気部材31)内の閉塞を抑制することができる。
 第1の実施の形態のサブゼロ処理装置によれば、被冷却物載置室43を構成する第3の側壁39-3に設けられた貫通穴14から被冷却物載置室43の内部に延在し、かつ排気口56を有する排気部材31を設けると共に、被冷却物載置室43の上半分に位置する空間であって、かつ横方向の幅が吸い込み口48の横方向の最大の幅(図3に示す吸い込み口48の場合、直径)と一致する排気口配置空間59に排気口56を配置することにより、排気口56から低温ガス(被冷却物載置室43の冷却に寄与しない低温ガス)を排気した場合でも、被冷却物載置室43内の雰囲気の温度ばらつきを抑制できる。
 これにより、被冷却物11を均一に冷却することができる(言い換えれば、被冷却物11の品質のばらつきを抑制できる。)。
 また、低温ガスが被冷却物載置室43の冷却に十分寄与する前に、排気口56から排気されることを抑制できるため、被冷却物11の冷却に使用する液体冷媒を削減できる。
 つまり、第1の実施の形態のサブゼロ処理装置10によれば、被冷却物11を均一に冷却することができ、かつ被冷却物11の冷却に使用する液体冷媒を削減することができる。
 なお、第1の実施の形態では、第3の側壁39-3に貫通穴14を設けた場合を例に挙げて説明したが、被冷却物11と整流部材25との間に位置する排気口配置空間に、排気口56を配置させることが可能であれば、貫通穴14は、被冷却物載置室43を構成する冷却槽13のどこに設けてもよい。
 具体的には、第3の側壁39-3に替えて、第1の側壁39-1、第4の側壁39-4、蓋体36のいずれかに貫通穴14を設けてもよい。
 図8は、第1の実施の形態の変形例に係るサブゼロ処理装置を説明するための図であり、前記サブゼロ処理装置を構成する蓋体を透過させて、前記サブゼロ処理装置を平面視した図である。
 図8において、図2に示す第1の実施の形態のサブゼロ処理装置10と同一構成部分には、同一符号を付す。また、図8では、説明の便宜上、第1の実施の形態の変形例に係るサブゼロ処理装置を構成する蓋体(図1に示す蓋体36)の図示を省略する。
 図8を参照するに、第1の実施の形態の変形例に係るサブゼロ処理装置65は、貫通穴14及び排気部材31の配設位置を異ならせたこと以外は、第1の実施の形態のサブゼロ処理装置10と同様に構成される。
 第1の実施の形態の変形例に係るサブゼロ処理装置65では、被冷却物11と第1の側壁39-1との間に位置する排気口配置空間59に、排気口56が配置されるように、第1の側壁39-1の近傍に位置する第3の側壁39-3に貫通穴14が設けられている。
 このような構成とされた第1の実施の形態の変形例に係るサブゼロ処理装置65は、第1の実施の形態のサブゼロ装置10と同様な効果を得ることができる。
 (第2の実施の形態)
 図9は、第2の実施の形態に係るサブゼロ処理装置を説明するための図であり、前記サブゼロ処理装置を構成する蓋体を透過させて、前記サブゼロ処理装置を平面視した図である。
 図9において、図2に示す第1の実施の形態のサブゼロ処理装置10と同一構成部分には、同一符号を付す。また、図9では、説明の便宜上、第2の実施の形態に係るサブゼロ処理装置70を構成する蓋体(図1に示す蓋体36)の図示を省略する。
 図9を参照するに、第2の実施の形態のサブゼロ処理装置70は、第1の実施の形態のサブゼロ処理装置10を構成する整流部材25と、整流部材25で区切られた被冷却物載置室43及びファン収容室45と、に替えて、整流部材71と、整流部材71で区切られた被冷却物載置室81及びファン収容室82を有すること以外は、サブゼロ処理装置10と同様に構成される。
 整流部材71は、平面視した状態において、コの字型とされている。整流部材71は、その下端面が底板38の上面38aと接触しており、上端面が図示していない蓋体の下面と接触している。
 これにより、整流部材71は、冷却槽13内において、整流部材71の内側に配置され、かつ直方体とされた被冷却物載置室81と、整流部材71の外側に配置され、かつ平面視コの字型とされたファン収容室82と、を区切っている。
 整流部材71は、第1の板状部材72-1、第2の板状部材72-2、及び第3の板状部材72-3を有する。
 第1の板状部材72-1は、攪拌ファン27と排気部材31との間に配置されている。
第1の板状部材72-1は、第1の側壁39-1に対して平行となるように配置されている。第1の板状部材72-1は、攪拌ファン27と対向する吸い込み口48を有する。
 図10は、図9に示す整流部材の第2の板状部材をM視した図である。
 図9及び図10を参照するに、第2の板状部材72-2は、第3の側壁39-3に対して平行となるように、冷却槽13内で、かつ第3の側壁39-3の近くに配置されている。第2の板状部材72-2は、横方向の一方の端が第1の板状部材72-1と一体とされており、横方向の他方の端が第1の側壁39-1の内面と接触している。
 第2の板状部材72-2は、第1の吹き出し口74-1と、排気部材挿入穴76と、を有する。第1の吹き出し口74-1は、第2の板状部材72-2の下部を貫通するように設けられている。第1の吹き出し口74-1は、ファン収容室82の雰囲気を被冷却物載置室81に導く機能を有する。
 図11は、図9に示す排気部材、冷却槽本体の第3の側壁、及び整流部材の第2の板状部材のN-N線方向の断面図である。図11において、図9及び図10と同一構成部分には、同一符号を付す。
 図9~図11を参照するに、排気部材挿入穴76は、第2の板状部材72-2のうち、貫通穴14と対向する部分を貫通するように設けられている。排気部材挿入穴76には、排気部材31が挿入されている。
 図9を参照するに、第3の板状部材72-3は、第4の側壁39-4に対して平行となるように、冷却槽13内で、かつ第4の側壁39-4の近くに配置されている。第3の板状部材72-3は、横方向の一方の端が第1の板状部材72-1と一体とされており、横方向の他方の端が第1の側壁39-1の内面と接触している。
 第3の板状部材72-3は、第2の吹き出し口74-2を有する。第2の吹き出し口74-2は、第3の板状部材72-3の下部のうち、第1の吹き出し口74-1と対向する部分を貫通するように設けられている。
 第2の吹き出し口74-2は、第1の吹き出し口74-1と同様な形状とされている。
第2の吹き出し口74-2は、第1の吹き出し口74-1と同様な機能を有する。
 なお、図9及び10では、第1及び第2の吹き出し口74-1,74-2の一例として、板状部材72-2及び72-3の横方向に延在する貫通溝を図示したが、第1及び第2の吹き出し口74-1,74-2の形状及び数は、これに限定されない。また、第1及び第2の吹き出し口74-1,74-2の形状は、異なっていてもよい。
 例えば、第1及び第2の吹き出し口74-1,74-2として、板状部材72-2及び72-3に円形或いは四角形とされた貫通部を一列或いは複数列設けてもよいし、貫通部の大きさは異なっていてもよい。
 他には、例えば、長方形または楕円形とされた貫通溝を板状部材72-2及び72-3の横方向或いは縦方向に配置させてもよいし、貫通溝の大きさを異なっていてもよい。
 このような構成とされた第2の実施の形態のサブゼロ処理装置70は、第1の実施の形態のサブゼロ装置10と同様な効果を得ることができる。
 以上、本発明の好ましい実施の形態について詳述したが、本発明はかかる特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 本発明は、被冷却物を均一に冷却することが可能で、かつ被冷却物の冷却に使用する液体冷媒を削減可能なサブゼロ処理装置に適用できる。
10,65,70 サブゼロ処理装置
13 冷却槽
14 貫通穴
16 温度センサ
16A 先端部
18 温度調節計
21 冷媒供給ライン
23 冷媒供給部
24 液冷媒導入弁
25,71 整流部材
27 攪拌ファン
28 回転軸
29 回転駆動装置
31 排気部材
35 冷却槽本体
36 蓋体
38 底板
38a 上面
39-1 第1の側壁
39-2 第2の側壁
39-3 第3の側壁
39-4 第4の側壁
43,81 被冷却物載置室
45,82 ファン収容室
47 板状部材
48 吸い込み口
49-1,74-1 第1の吹き出し口
49-2,74-2 第2の吹き出し口
55 排気部材本体
55A 中心
56 排気口
56A,56B 端
57 水抜き用の穴
59 排気口配置空間
72-1 第1の板状部材
72-2 第2の板状部材
72-3 第3の板状部材
76 排気部材挿入穴
H 高さ
θ 中心角

Claims (7)

  1.  被冷却物が載置される被冷却物載置室、及び前記被冷却物載置室と接続されたファン収容室を有する、底板及び第1ないし第4の側壁からなる冷却槽本体及び蓋体からなる冷却槽と、
     前記被冷却物載置室と前記ファン収容室とを区切るように前記冷却槽内に配置され、かつ前記被冷却物載置室の雰囲気を前記ファン収容室に導くための吸い込み口、及び前記ファン収容室の雰囲気を前記被冷却物載置室に導くための吹き出し口を有する整流部材と、
     前記吸い込み口と対向するように前記ファン収容室に収容され、前記ファン収容室に供給された液体冷媒を霧状または低温ガスにすると共に、前記冷却槽内の雰囲気を攪拌する攪拌ファンと、
     前記冷却槽本体に設けられた貫通穴から前記被冷却物載置室の内部に延在し、かつ排気口を有する排気部材と、
     を有し、
     前記第1ないし第4の側壁は、前記底板の外周縁を囲むように配置され、前記蓋板と接触し前記冷却槽の内部空間を形成し、
     前記排気口は、前記内部空間の内、前記被冷却物載置室に存在する排気口配置空間に配置されており、前記排気口配置空間は、前記底板の前記内部空間側の面と前記蓋体の前記内部空間側の面と直交する高さをHとした場合に、前記蓋体の内部空間側の面からの直交距離がH/2である部分の空間であって、前記高さと直交し、かつ前記吸い込み口を有する前記整流部材と平行となる方向の幅である前記排気口配置空間の横幅は、前記高さと直交し、前記吸い込み口を有する前記整流部材と平行となる方向における前記吸い込み口の横幅の最大値と一致し、前記排気口配置空間の前記横幅の中心が、前記吸い込み口の前記横幅の中心と一致することを特徴とするサブゼロ処理装置。
  2.  前記排気口は、前記被冷却物と前記整流部材との間に位置する前記排気口配置空間に配置することを特徴とする請求項1記載のサブゼロ処理装置。
  3.  前記排気部材は、排気部材本体を有し、
     前記排気部材本体は、前記排気口が前記蓋体側を向くように配置されることを特徴とする請求項1または2記載のサブゼロ処理装置。
  4.  前記排気部材本体は、円筒状配管であり、
     前記排気部材本体の延在方向と直交する面で、前記排気口を通過するように、前記排気部材を切断した状態において、前記排気口は、前記排気口の両端と前記排気部材本体の中心とを結ぶことで形成される中心角が90度以内であることを特徴とする請求項3記載のサブゼロ処理装置。
  5.  前記排気部材は、前記底板側を向くように水抜き用の穴を有することを特徴とする請求項1記載のサブゼロ処理装置。
  6.  前記整流部材は、
    少なくとも1つの板状部材であって、均一な厚さを有する板状部材を有し、
     前記吸い込み口及び前記吹き出し口は、同一の前記板状部材を貫通していることを特徴とする請求項1ないし5のうち、いずれか1項記載のサブゼロ処理装置。
  7.  前記整流部材は、前記撹拌ファンと対面する第1の板状部材及び前記第1の板状部材と直交する第2及び第3の板状部材を有し、前記吸い込み口は前記第1の板状部材を貫通しており、前記吹き出し口は、前記第2及び第3の板状部材を貫通することを特徴とする請求項1ないし5のうち、いずれか1項記載のサブゼロ処理装置。
PCT/JP2014/056503 2013-03-22 2014-03-12 サブゼロ処理装置 WO2014148335A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/777,074 US9845517B2 (en) 2013-03-22 2014-03-12 Sub-zero treatment device
CN201480016293.0A CN105143794B (zh) 2013-03-22 2014-03-12 深冷处理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013060698A JP5988905B2 (ja) 2013-03-22 2013-03-22 サブゼロ処理装置
JP2013-060698 2013-03-22

Publications (1)

Publication Number Publication Date
WO2014148335A1 true WO2014148335A1 (ja) 2014-09-25

Family

ID=51580022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056503 WO2014148335A1 (ja) 2013-03-22 2014-03-12 サブゼロ処理装置

Country Status (4)

Country Link
US (1) US9845517B2 (ja)
JP (1) JP5988905B2 (ja)
CN (1) CN105143794B (ja)
WO (1) WO2014148335A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160265835A1 (en) * 2015-03-09 2016-09-15 John Brothers Cryogenic freezer
US10634414B2 (en) * 2016-01-04 2020-04-28 Haier Us Appliance Solutions, Inc. Method for operating a fan within a refrigerator appliance
CN108642248A (zh) * 2018-07-17 2018-10-12 重庆辉海科技有限公司 汽车配件热处理装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4078394A (en) * 1976-06-29 1978-03-14 J. W. Greer, Inc. Cryogenic freezer
JPS6277770U (ja) * 1985-11-05 1987-05-18
JPS63500053A (ja) * 1985-06-11 1988-01-07 ル エ−ル リクイツド ソシエテ アノニム プ−ル ル エチユド エ ル エクスプルワテシヨン デ プロセデ ジエオルジエ クロ−ド 冷却方法及び冷却トンネル
JPS6345006A (ja) * 1986-06-12 1988-02-26 メツサ−・グリ−スハイム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング ゴム被覆された大型容器の、液体窒素での冷却装置
JPH0835785A (ja) * 1994-07-21 1996-02-06 Shimadzu Corp 熱処理炉
JPH1060524A (ja) * 1996-08-22 1998-03-03 Nippon Sanso Kk サブゼロ処理方法及び装置
JP2000014721A (ja) * 1998-07-03 2000-01-18 Nippon Shooter:Kk 温冷適温配膳車
JP2007032907A (ja) * 2005-07-26 2007-02-08 Ishikawajima Harima Heavy Ind Co Ltd 冷却器
JP2007511728A (ja) * 2003-11-13 2007-05-10 ザ・ビーオーシー・グループ・ピーエルシー 液体の冷却

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1429435A (en) * 1921-04-16 1922-09-19 Jones Alexander Houston Revolving storage device
SE7514249L (sv) * 1975-12-17 1977-06-18 Persson Teknisk Konsult Anordning vid skruvbanetransportor
US4459825A (en) * 1982-07-29 1984-07-17 Crouch Michael D Apparatus for controlled reduction in temperature and preservation of embryos in a cryogenic state
US4612780A (en) * 1985-12-20 1986-09-23 Refrigeration Engineering Corporation Apparatus for air treating articles carried on a spiral conveyor
US5398521A (en) * 1991-09-12 1995-03-21 Baron; David L. Commercial freezer
US5205135A (en) * 1991-11-13 1993-04-27 Liquid Carbonic Corporation Helical conveyor freezer
US5186008A (en) * 1991-11-25 1993-02-16 The Boc Group, Inc. Cryogenic freezer apparatus and method
JPH0765835B2 (ja) * 1993-03-18 1995-07-19 東洋酸素株式会社 横型クライオスタット
JPH10311641A (ja) * 1997-05-09 1998-11-24 Taisei Corp 低温試験設備
JPH1183218A (ja) * 1997-09-05 1999-03-26 Toshiba Corp 超電導コイルの極低温冷却装置
JP4819250B2 (ja) * 2001-07-02 2011-11-24 大陽日酸株式会社 バッチ式食品凍結装置
JP2005113166A (ja) * 2003-10-03 2005-04-28 Toagosei Co Ltd サブゼロ処理方法
DE102006016559A1 (de) 2006-04-07 2007-10-11 Air Liquide Deutschland Gmbh Wärmetauscher für ein mobiles Kühlfahrzeug
JP2009008372A (ja) * 2007-05-29 2009-01-15 Miura Co Ltd 冷却装置
JP2010249332A (ja) * 2009-04-10 2010-11-04 Ihi Corp 熱処理装置及び熱処理方法
CN201411478Y (zh) * 2009-05-21 2010-02-24 江苏胜大石油设备制造有限公司 可提高钻杆焊缝热处理稳定性的控制装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4078394A (en) * 1976-06-29 1978-03-14 J. W. Greer, Inc. Cryogenic freezer
JPS63500053A (ja) * 1985-06-11 1988-01-07 ル エ−ル リクイツド ソシエテ アノニム プ−ル ル エチユド エ ル エクスプルワテシヨン デ プロセデ ジエオルジエ クロ−ド 冷却方法及び冷却トンネル
JPS6277770U (ja) * 1985-11-05 1987-05-18
JPS6345006A (ja) * 1986-06-12 1988-02-26 メツサ−・グリ−スハイム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング ゴム被覆された大型容器の、液体窒素での冷却装置
JPH0835785A (ja) * 1994-07-21 1996-02-06 Shimadzu Corp 熱処理炉
JPH1060524A (ja) * 1996-08-22 1998-03-03 Nippon Sanso Kk サブゼロ処理方法及び装置
JP2000014721A (ja) * 1998-07-03 2000-01-18 Nippon Shooter:Kk 温冷適温配膳車
JP2007511728A (ja) * 2003-11-13 2007-05-10 ザ・ビーオーシー・グループ・ピーエルシー 液体の冷却
JP2007032907A (ja) * 2005-07-26 2007-02-08 Ishikawajima Harima Heavy Ind Co Ltd 冷却器

Also Published As

Publication number Publication date
CN105143794B (zh) 2017-03-29
JP2014185809A (ja) 2014-10-02
US20160024606A1 (en) 2016-01-28
CN105143794A (zh) 2015-12-09
US9845517B2 (en) 2017-12-19
JP5988905B2 (ja) 2016-09-07

Similar Documents

Publication Publication Date Title
WO2014148335A1 (ja) サブゼロ処理装置
CN107850369B (zh) 冰箱
US9851282B2 (en) Sample cooling device, and autosampler provided with the same
EP2963106B1 (en) Culture apparatus
EP3367023A1 (en) Refrigerator and air duct device thereof
BR112017008638B1 (pt) Unidade interna de um dispositivo de ar condicionado
CN1354353A (zh) 冰箱的冷气通道装置
WO2012160788A1 (ja) 冷凍装置の室外ユニット
WO2012160789A1 (ja) 冷凍装置の室外ユニット
JP2015226047A (ja) 電気機器
KR101351874B1 (ko) 냉동고
JP6057826B2 (ja) 蓄電装置
US7779646B2 (en) Refrigerating device with cooling of circulating air
JP2006183894A (ja) 冷蔵庫
JP2009085538A (ja) 冷蔵庫
US20190376736A1 (en) Refrigerator
JP5899257B2 (ja) 冷却装置の気密構造
JP2010007982A (ja) 冷却ユニット
KR101411463B1 (ko) 댐퍼 구동 장치
JP6322820B2 (ja) 電気機器収納用箱
JP2012137260A (ja) 冷却貯蔵庫
JP2012172861A (ja) 冷凍倉庫の結露水処理装置
KR102531292B1 (ko) 쌀 냉장고
JP2017203568A (ja) 冷却貯蔵庫
JP2010175110A (ja) 冷却貯蔵庫

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480016293.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14770434

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14777074

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14770434

Country of ref document: EP

Kind code of ref document: A1