WO2014148265A1 - マイクロチップ、dna解析方法及びdna解析システム - Google Patents

マイクロチップ、dna解析方法及びdna解析システム Download PDF

Info

Publication number
WO2014148265A1
WO2014148265A1 PCT/JP2014/055721 JP2014055721W WO2014148265A1 WO 2014148265 A1 WO2014148265 A1 WO 2014148265A1 JP 2014055721 W JP2014055721 W JP 2014055721W WO 2014148265 A1 WO2014148265 A1 WO 2014148265A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
dna
microchip
pcr
electrophoresis
Prior art date
Application number
PCT/JP2014/055721
Other languages
English (en)
French (fr)
Inventor
麻生川 稔
萩原 久
喜典 三品
靖夫 飯村
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US14/778,260 priority Critical patent/US10195607B2/en
Priority to JP2015506693A priority patent/JP6137301B2/ja
Priority to EP14769006.9A priority patent/EP2977438A4/en
Publication of WO2014148265A1 publication Critical patent/WO2014148265A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0832Geometry, shape and general structure cylindrical, tube shaped
    • B01L2300/0838Capillaries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0867Multiple inlets and one sample wells, e.g. mixing, dilution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1822Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using Peltier elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1827Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using resistive heater
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0421Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic electrophoretic flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2531/00Reactions of nucleic acids characterised by
    • C12Q2531/10Reactions of nucleic acids characterised by the purpose being amplify/increase the copy number of target nucleic acid
    • C12Q2531/113PCR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44791Microapparatus

Definitions

  • the present invention is based on a Japanese patent application: Japanese Patent Application No. 2013-059106 (filed on March 21, 2013), and the entire contents of the application are incorporated herein by reference.
  • the present invention relates to a microchip, a DNA analysis method, and a DNA analysis system.
  • the present invention relates to a microchip in which reaction vessels communicate with each other through a fine channel, a DNA analysis method and a DNA analysis system using the microchip.
  • Electrophoresis for analysis of DNA deoxyribonucleic acid
  • ions low-molecular compounds and the like
  • electrophoresis for analysis of DNA is performed.
  • personal identification using DNA is an effective means for efficiently narrowing down investigation targets in criminal investigations, and thus the necessity of electrophoresis for DNA is increasing.
  • Patent Documents 1 to 5 disclose microchips in which a filling container and a fine channel are provided on one chip.
  • the microchips disclosed in Patent Documents 1 to 5 have a multilayer structure in which a plurality of plates are stacked, and a sample tank and a reaction tank are formed by penetrating a part of the plurality of plates. Furthermore, the transfer of the liquid is controlled by applying pressure to the sample tank and the reaction tank from the outside and pushing out the liquid into a fine channel between the sample tank and the reaction tank.
  • Non-Patent Document 1 discloses a DNA analysis apparatus that performs steps necessary for DNA analysis on a microchip.
  • the technique disclosed in the above prior art document has a problem that the analysis accuracy is low. That is, since personal identification using DNA is also used for criminal investigations, high analysis accuracy is required. However, with the technique disclosed in the above-mentioned prior art document, a ghost peak is detected, and the required analysis accuracy may not be satisfied.
  • An object of the present invention is to provide a microchip, a DNA analysis method, and a DNA analysis system that contribute to an improvement in DNA analysis accuracy.
  • a PCR unit that amplifies a desired region in the template DNA
  • a denaturing unit that denatures the amplicon amplified by the PCR unit from double-stranded DNA to single-stranded DNA
  • a microchip including an electrophoresis unit for separating an amplicon according to a base sequence length.
  • a desired region in the template DNA is amplified, the amplified amplicon is denatured from double-stranded DNA to single-stranded DNA, and the amplicon is Provided is a DNA analysis method for separation according to the base sequence length.
  • a PCR unit for amplifying a desired region in the template DNA a denaturing unit for denaturing the amplicon amplified by the PCR unit from double-stranded DNA to single-stranded DNA
  • a microchip including an electrophoresis unit that separates amplicons according to the base sequence length, PCR in the PCR unit, denaturation treatment in the denaturation unit, and electrophoresis processing in the electrophoresis unit
  • a DNA analysis system including a DNA analysis device that performs DNA analysis is provided.
  • a microchip, a DNA analysis method, and a DNA analysis system that contribute to improvement of DNA analysis accuracy are provided.
  • FIG. 1 is a perspective view showing a configuration of a DNA analysis apparatus 10 according to a first embodiment.
  • 1 is a diagram illustrating an example of a configuration of a microchip 100.
  • FIG. FIG. 4 is an example of a cross-sectional view taken along line AA shown in FIG. 3. It is a flowchart which shows an example of the program of PCR. It is an example of a plan view of an area of the table 12 and an area including the temperature adjustment unit 13.
  • FIG. 7 is an example of a cross-sectional view taken along the line BB shown in FIG. 6. It is an example of a plan view of an area of the table 12 and an area including the temperature adjustment unit 14.
  • FIG. 3 is an example of a plan view of an area of the table 12 that includes an electrophoresis unit 15.
  • FIG. 10 is an example of a cross-sectional view taken along the line CC shown in FIG. 9. It is a figure which shows an example of the top view of the PTC heater 153.
  • 4 is a diagram for explaining the positional relationship between electrode wirings 158a and 158b of a PTC heater 153 and a capillary 116 inside a microchip 100.
  • FIG. It is a figure which shows an example of the top view of the PTC heater 153. It is a figure which shows an example of the top view of the PTC heater 153.
  • 3 is a flowchart showing an example of the operation of the DNA analysis apparatus 10.
  • the microchip includes a PCR unit 112 that amplifies a desired region in template DNA, a denaturing unit 114 that denatures the amplified amplicon from double-stranded DNA to single-stranded DNA, and an amplicon as a base. And an electrophoresis unit 115 that separates according to the arrangement length.
  • FIG. 1 since electrophoresis is performed after DNA denaturation treatment, a crosslinked structure (FIG. 1 (b)), a bulge loop structure (FIG. 1 (c)), a hairpin structure (FIG. 1 ( The occurrence of ghost peaks due to the occurrence of d)) is eliminated, and the analysis accuracy is improved.
  • FIG. 2 is a perspective view showing the configuration of the DNA analyzer 10 according to the present embodiment.
  • a table 12 is disposed on the pedestal 11, and temperature adjustment units 13 and 14 are embedded in the table 12.
  • the temperature adjustment unit 14 is also referred to as a temperature adjustment unit.
  • An electrophoresis unit 15 is disposed on the table 12. Further, the base 11 and the lid 16 are connected via a hinge 17 so that the lid 16 can be opened and closed.
  • the microchip 100 used by the DNA analysis apparatus 10 has a multilayer structure formed by stacking a plurality of plates as disclosed in Patent Document 5.
  • the microchip 100 forms a sample tank or a reaction tank by penetrating a part of a plurality of plates.
  • the microchip 100 used for DNA analysis is placed at a predetermined position by matching the pin holes 19a and 19b provided in the microchip 100 with the pins 18a and 18b provided on the table 12.
  • a predetermined region of the microchip 100 comes into contact with the temperature adjustment units 13 and 14. Further, by closing the lid 16, a predetermined region of the microchip 100 comes into contact with the surface of the electrophoresis unit 15, and the electrode 20 is inserted into an electrode tank provided on the microchip 100.
  • the lid 16 is provided with a plurality of pressure holes 21.
  • the region of the lid 16 corresponding to these pressurizing holes 21 penetrates, and the pressurizing hole 21 provided in the lid 16 is connected to an electromagnetic valve 23 via a tube 22. Further, by closing the lid 16, the pressure hole 21 provided in the lid 16 and a predetermined region on the microchip 100 come into contact with each other.
  • Compressed air or the like is sealed in the animal pressure device 24, and the controller 25 controls the electromagnetic valve 23 so that the compressed air or the like is released from the pressurizing hole 21 installed in the lid 16.
  • the internal pressure of the animal pressure device 24 is controlled so as to maintain a predetermined pressure by a pressure sensor and a pump (not shown).
  • the microchip 100 according to the present embodiment has a channel opening / closing function disclosed in Patent Document 5, for example.
  • the controller 25 controls the electromagnetic valve 23 to pressurize a part of the microchip 100 from the pressurizing hole 21 of the lid 16, thereby pushing out the liquid from the reaction tank provided in the microchip 100 to the flow path. Transfer to reaction tank.
  • an electromagnet 26 is disposed on the lid 16, and the electromagnet 26 can generate a magnetic field in a predetermined region on the microchip 100 by receiving power from the power supply unit 27.
  • the controller 25 controls the excitation of the electromagnet 26 by instructing the power supply unit 27 to supply power to the electromagnet 26 and stop the power.
  • the temperature adjustment units 13 and 14 control the temperature of a predetermined region of the microchip 100 that is determined in advance. Details of the temperature adjustment units 13 and 14 will be described later.
  • the electrode 20 and the electrophoresis unit 15 are used when performing electrophoresis on the microchip 100. More specifically, the controller 25 applies a DC voltage to the electrode 20 via the power supply unit 27 in the step of performing electrophoresis in the microchip 100. When a DC voltage is applied to the electrode 20, the charged DNA moves within the capillary.
  • the electrophoresis unit 15 includes means for irradiating a laser and means for receiving fluorescence emitted by excitation by the laser irradiation. The output of the laser receiving means included in the electrophoresis unit 15 is sent to the DNA analysis unit 28 and used for analysis (discrimination) of the DNA length by the DNA analysis unit 28. Details of the electrophoresis unit 15 will be described later.
  • FIG. 3 is a diagram illustrating an example of the configuration of the microchip 100.
  • the microchip 100 includes a sample solution injection unit 101, a washing buffer injection unit 102, a PCR reagent injection unit 103, a formamide injection unit 104, a migration polymer injection unit 105, a drain port 106, a DNA extraction unit 111, A PCR unit 112, a weighing unit 113, a denaturing unit 114, an electrophoresis unit 115, a capillary 116, and a flow channel 200 that communicates each part are included.
  • the capillary 116 is provided inside the microchip 100 and extends in the first direction shown in FIG.
  • FIG. 4 is an example of a cross-sectional view taken along the line AA shown in FIG.
  • a plurality of capillaries 116 extend inside the microchip 100.
  • the microchip 100 has a planar shape, and the thickness of the microchip 100 is thinner than the width and depth.
  • the electrophoresis unit 115 includes an electrode tank 117, and the electrode 20 attached to the lid 16 is inserted into the electrode tank 117 when DNA is analyzed.
  • the electrode tank 117 includes an electrode tank that receives the insertion of the positive electrode and an electrode tank that receives the insertion of the negative electrode, both of which are connected to the capillary 116.
  • the sample solution injection unit 101 has a hollow structure, and the sample solution is injected by the user.
  • the sample solution is a solution in which cells (eg, oral mucosa, blood, body fluid, etc.) collected from a subject are suspended in a lysis buffer (eg, SDS / LiOAc solution (sodium dodecyl sulfate / lithium acetate solution)).
  • a lysis buffer eg, SDS / LiOAc solution (sodium dodecyl sulfate / lithium acetate solution).
  • the cleaning buffer injection unit 102 also has a hollow structure, and the cleaning buffer is injected by the user.
  • the wash buffer is, for example, a Tris buffer, and is prepared at a high salt concentration to maintain DNA binding to silica.
  • the PCR reagent injection unit 103 also has a hollow structure, and the PCR reagent is injected by the user.
  • the PCR reagent contains a polymerase, dNTPs, magnesium and the like, and also serves as an elution buffer for eluting DNA from silica, and thus is prepared at a low salt concentration.
  • the formamide injection part 104 also has a hollow structure, and a formamide solution is injected by the user.
  • the formamide solution is a holding agent that holds DNA in a single-stranded state. That is, the DNA undergoing denaturation treatment is denaturation (also referred to as melting and dissociation) that denatures from a double-stranded state to a single-stranded state, and hybridization that denatures from a single-stranded state to a double-stranded state ( (Also called annealing and bonding).
  • formamide maintains DNA in a single-stranded state, formamide acts as a result to denature double-stranded DNA into single-stranded DNA.
  • “hold” and “denaturation” may be used interchangeably.
  • the formamide solution also contains a ssDNA (single-stranded DNA) size marker labeled with a fluorescent dye.
  • the electrophoresis polymer injection part 105 also has a hollow structure, and a polymer for electrophoresis is injected by the user.
  • the lysis buffer, washing buffer, PCR reagent, formamide, ssDNA size marker and polymer are commercially available, and can be prepared by modifying the composition as necessary.
  • the washing buffer, PCR reagent, formamide solution, and polymer can be sealed in the microchip 100 in advance, instead of being injected by the user.
  • the DNA extraction unit 111 is a reaction tank provided for extracting DNA from a sample solution.
  • DNA extracted from the sample solution is also referred to as template DNA.
  • the DNA analysis apparatus 10 has an electromagnet 26 so as to face the DNA extraction unit 111, and magnetic beads coated with silica are encapsulated in the DNA extraction unit 111 in advance.
  • the DNA analyzer 10 moves the sample solution injected into the sample solution injection unit 101 to the DNA extraction unit 111, and adsorbs the sample DNA to magnetic beads (silica) sealed in the DNA extraction unit 111.
  • the template DNA is extracted by washing the magnetic beads with the washing buffer in the washing buffer injection unit 102.
  • the DNA analyzer 10 discharges the sample solution and the washing buffer from the drain port 106. At this time, the magnetic beads are discharged together with the sample solution and the washing buffer by adsorbing the magnetic beads to the electromagnet 26. To prevent that.
  • DNA extraction methods using magnetic beads for example, Toyobo Co., Ltd .: MagExtractor (registered trademark), Takara Bio Inc .: NucleoMag (registered trademark), etc. are known.
  • the protocol of the DNA extraction method can be modified as necessary, for example, by increasing the number of washings.
  • the DNA extraction method is not limited to the method using magnetic beads, and template DNA may be extracted using a silica bead column (see, for example, Qiagen: QIAamp).
  • the PCR unit 112 is one or a plurality of reaction tanks provided in order to perform PCR for amplifying a desired region in the template DNA, and each PCR unit 112 is arranged in contact with the temperature adjustment unit 13. Each PCR unit 112 encloses a primer set designed to amplify a desired region in the template DNA.
  • the primer set is, for example, a forward primer and a reverse primer for PCR amplification of a region containing microsatellite (TPOX, FGA, etc.), and either or both of the primers have a fluorescent dye (fluorescein, etc.) label.
  • TPOX microsatellite
  • FGA microsatellite
  • fluorescent dye fluorescein, etc.
  • Such a primer is commercially available from Promega (registered trademark) or the like, and can be designed as necessary. Note that a plurality of primer sets can be enclosed in one PCR unit 112.
  • the DNA analysis apparatus 10 moves the PCR reagent containing the template DNA from the DNA extraction unit 111 to the plurality of PCR units 112, and transmits it to the temperature adjustment unit 13.
  • the temperature of the PCR unit 112 is controlled as programmed in advance via a heat material.
  • the DNA analyzer 10 executes PCR by temperature control of temperature and time setting shown in FIG.
  • the PCR temperature conditions and the number of cycles can be changed based on the Tm value (melting temperature) and the length of the amplicon.
  • DNA amplified by PCR is referred to as an amplicon
  • a PCR reagent containing the amplicon is referred to as a reaction sample.
  • the weighing unit 113 is a reaction vessel provided for discarding a part of the reaction sample, particularly a reaction vessel having a smaller capacity than the PCR unit 112. Specifically, the weighing process will be described.
  • the DNA analyzer 10 moves the reaction sample from the PCR unit 112 to the weighing unit 113 until the weighing unit is full, and discharges the remaining PCR reagents from the drain port 106.
  • the denaturing unit 114 is a reaction tank provided to denature the amplicon from double-stranded DNA (dsDNA) to single-stranded DNA (ssDNA), and is disposed so as to contact the temperature adjustment unit 14. The denaturing process will be specifically described.
  • the DNA analyzer 10 holds the denaturing unit 114 at a preset temperature (for example, 60 ° C.) via the temperature adjustment unit 14. Then, the DNA analyzer 10 moves the formamide injected into the formamide injection unit 104 to the denaturing unit 114 via the PCR unit 112 and the weighing unit 113.
  • the amplicon amplified by the PCR unit 112 flows into the denaturing unit 114 together with the retention agent (formamide), the amplicon and the retention agent are more separated than the amplicon and the retention agent that are separately flowed into the denaturation unit 114. Can be mixed well. Then, the DNA analyzer 10 holds the reaction sample for a preset reaction time in the denaturing unit 114.
  • the electrophoresis unit 115 is configured to separate the amplicons according to the base sequence length by the molecular sieving effect, and is disposed so as to contact a PTC heater described later. Specifically, the electrophoresis unit 115 includes a capillary 116, and in particular abuts against the PTC heater so that the temperature of the capillary 116 is kept constant.
  • the DNA analyzer 10 fills the capillary 116 with the polymer in the electrophoresis polymer injection part 105, and sets the electrophoresis part 115 to a preset temperature (for example, 50 ° C.) by a PTC heater. Hold on. Then, the DNA analysis apparatus 10 moves the reaction sample from the denaturing unit 114 to the electrophoresis unit 115 and injects the reaction sample into each capillary 116.
  • a so-called cross-injection method see JP 2002-310858 A
  • the DNA analyzer 10 applies a DC voltage via the electrode tank 117 connected to the capillary 116 when starting peak detection by the light receiving means.
  • the temperature adjustment unit 13 is a means for controlling the temperature of the PCR unit 112 on the microchip 100 based on an instruction from the controller 25.
  • FIG. 6 is an example of a plan view of the area of the table 12 and including the temperature adjustment unit 13.
  • FIG. 7 is an example of a cross-sectional view taken along the line BB shown in FIG.
  • the temperature adjustment unit 13 is embedded in the area of the table 12. Referring to FIG. 6, the heat transfer material 131 is exposed on the surface of the table 12, and the temperature sensor 132 is disposed at the center of the heat transfer material 131.
  • the temperature sensor 132 is connected to the controller 25. Further, one surface of the heat transfer material 131 and the temperature application surface of the Peltier element 133 are in contact with each other. Further, the temperature heat radiation surface of the Peltier element 133 is in contact with one surface of the heat radiation plate 134. A power supply line of the Peltier element 133 is connected to the controller 25. The controller 25 acquires the temperature of the PCR unit 112 from the temperature sensor 132, determines the direction of the current supplied to the Peltier element 133 based on the acquired temperature, and controls the heat generation or cooling of the Peltier element 133. The temperature control of the unit 112 is realized.
  • the temperature adjustment unit 14 is a means for keeping the temperature of the denaturing part 114 on the microchip 100 constant based on an instruction from the controller 25.
  • FIG. 8 is an example of a plan view of an area of the table 12 that includes the temperature adjustment unit 14. As shown in FIG. 8, the configuration of the temperature adjustment unit 14 can be the same as the configuration of the temperature adjustment unit 13. However, it is not intended to limit the structure of the temperature adjustment unit 14, and the temperature adjustment unit 14 may be configured using a heater or the like.
  • FIG. 9 is an example of a plan view of an area of the table 12 that includes the electrophoresis unit 15.
  • FIG. 10 is an example of a cross-sectional view taken along the line CC in FIG. Note that the capillary 116 indicated by a dotted line in FIG. 9 does not exist in the electrophoresis unit 15 but is located inside the microchip 100. Further, an electrode tank 117 (shown by a dotted circle in FIG. 9) for inserting the electrode 20 is also provided in the microchip 100. These are illustrated in FIG. 9 for easy understanding.
  • the electrophoresis unit 15 includes a heat transfer plate 151, and the heat transfer plate 151 is provided with a measurement hole 152 through which a laser used for DNA length measurement is passed. . Further, referring to FIG. 10, a PTC (Positive Temperature Coefficient) heater 153 is disposed on the bottom surface of the heat transfer plate 151 so as to be bonded to the heat transfer plate 151. The PTC heater 153 is also provided with a measurement hole 152.
  • PTC Physical Temperature Coefficient
  • the laser output unit 154 includes a laser diode, and irradiates laser light toward the measurement hole 152. Laser light irradiation by the laser output unit 154 is controlled to be turned on / off in accordance with an instruction from the controller 25.
  • the light receiving unit 155 receives the fluorescence emitted from the DNA that passes through the portion corresponding to the measurement hole 152 of the electrophoresis unit 115.
  • the light receiving unit 155 includes, for example, a photomultiplier tube (photomultiplier).
  • the light receiving unit 155 converts the light reflected by the DNA when the DNA moves through the capillary and reaches the measurement hole 152 by electrophoresis into an electrical signal, and outputs the electrical signal to the DNA analyzing unit 28.
  • the light receiving unit 155 may include an imaging device such as a CCD (Charge-Coupled Device), measure the brightness of reflected light, and detect that DNA passes over the measurement hole 152.
  • CCD Charge-Coupled Device
  • the electrophoresis unit 15 illustrated in FIG. 9 has a configuration in which laser is irradiated from below the microchip 100 (configuration in which laser is irradiated in a direction from the table 12 to the lid 16 in FIG. 2).
  • laser irradiation of the electrophoresis unit 15 is not limited to irradiation from below the microchip 100.
  • the electrophoresis unit 15 is attached to the lid 16, the laser is irradiated from above the microchip 100. In this case, the measurement hole 152 provided in the heat transfer plate 151 is not necessary.
  • FIG. 11 is a diagram illustrating an example of a plan view of the PTC heater 153.
  • the PTC heater 153 is a planar heating element in which a PTC element 157, a positive electrode wiring 158a, and a negative electrode wiring 158b are arranged on a resin 156 having the same shape as the heat transfer plate 151.
  • the PTC heater 153 is arranged to supply heat to the capillary 116 and make the temperature of the capillary 116 uniform.
  • the resin 156 has a size suitable for the electrophoretic part 115 of the microchip 100 and is substantially the same size as the electrophoretic part 115.
  • a PTC element 157 and electrode wirings 158 a and 158 b are arranged on one side of the resin 156 on the side in contact with the heat transfer plate 151.
  • a current flows through the PTC element 157 by applying a DC voltage to the electrode wirings 158a and 158b.
  • the PTC element 157 generates heat and supplies heat to the capillary 116 via the heat transfer plate 151.
  • the PTC element 157 has a characteristic that when the PTC element 157 reaches a specific temperature due to the flow of current, the electric resistance rapidly decreases. That is, the PTC element 157 functions as a current limiting element having such a property that when a current flows, the resistance value increases due to self-heating, and the soot current hardly flows. If the current flowing through the PTC element 157 decreases, the power consumption in the PTC element 157 also decreases, and as a result, the heat generation temperature decreases. As described above, the PTC heater 153 using the PTC element 157 has a self-temperature control function for maintaining a predetermined temperature.
  • the electrode wirings 158a and 158b of the PTC heater 153 are connected to the power supply unit 27, respectively.
  • the controller 25 controls the operation of the PTC heater 153 via the power supply unit 27.
  • the controller 25 instructs the power supply unit 27 to supply power to the PTC heater 153 when it is desired to maintain the electrophoresis unit 115 at a predetermined temperature using the PTC heater 153.
  • the PTC heater 153 has a self-temperature control function, and the electrophoresis unit 115 of the microchip 100 is maintained at a predetermined temperature via the heat transfer plate 151.
  • the PTC element 157 and the electrode wirings 158a and 158b are arranged on the side of the resin 156 in contact with the heat transfer plate 151. More specifically, a positive electrode wiring 158a to which a positive voltage is applied and a negative electrode wiring 158b to which a ground voltage is applied are wired in a first direction (longitudinal direction) in which the capillary 116 extends inside the microchip 100. These electrode wirings are alternately wired on the resin.
  • FIG. 12 is a diagram for explaining the positional relationship between the electrode wirings 158 a and 158 b of the PTC heater 153 and the capillary 116 inside the microchip 100.
  • FIG. 12 is an enlarged view of a region 159 shown in FIG. In FIG. 12, the capillary 116 is illustrated by a dotted line.
  • the positive electrode wiring 158a and the negative electrode wiring 158b are wired so that the capillary 116 is located approximately in the middle thereof. In this way, by adopting a configuration in which the capillary 116 is sandwiched between the positive electrode wiring 158a and the negative electrode wiring 158b, the temperature in the first direction of the capillary 116 positioned thereabove can be made uniform.
  • the PTC element 157 has a self-temperature control function. Furthermore, since the PTC element 157 is disposed over the entire surface in the region between the electrode wirings 158a and 158b sandwiching the capillary 116, it can be considered that the temperature in this region is substantially the same. This is because the heat supplied to the capillary 116 via the heat transfer plate 151 can be regarded as the same if the temperature of the region sandwiching the capillary 116 is the same. That is, the temperature unevenness of the capillary 116 in the first direction can be eliminated.
  • the heat transfer plate 151 and the PTC heater 153 are provided with measurement holes 152. Then, heat diffusion occurs around the measurement hole 152. Therefore, instead of using the PTC heater 153 as a heat source, for example, when a nichrome wire is used as a heat source, there arises a problem that the temperature around the measurement hole 152 becomes lower than other regions. However, if the PTC heater 153 is used as a heat source, the self-temperature control function of the PTC element 157 works, and the presence of the measurement hole 152 operates to compensate for the decrease in the ambient temperature. . That is, the temperature around the measurement hole 152 and the temperature in other regions can be made substantially the same, and the temperature unevenness of the capillary 116 can be eliminated.
  • the wiring of the electrode wirings 158a and 158b is not limited to the aspect of FIG.
  • the electrode wirings 158a and 158b may be wired in the second direction (short direction) of the resin 156.
  • a pair of electrode wirings 158 a and 158 b may be wired at both ends of the resin 156, and the electrode wirings 158 a and 158 b may not be wired in the center region of the resin 156.
  • the shapes of the microchip 100 and the PTC heater 153 are designed so that the capillary 116 and the electrode wirings 158a and 158b do not overlap (the capillary 116 is in the middle of the electrode wirings 158a and 158b).
  • the configuration shown in FIG. 13 does not require attention when designing the shapes of the microchip 100 and the PTC heater 153.
  • the widths of the electrode wirings 158a and 158b extending in the second direction are narrowed, the influence on the temperature distribution of the capillary 116 can be almost ignored.
  • the arrangement of the PTC element 157 and the electrode wirings 158a and 158b has disadvantages and advantages. Therefore, it is desirable to determine how to arrange the PTC element 157 and the electrode wirings 158a and 158b in consideration of a power supply for supplying power to the PTC element 157, ease of design, and the like.
  • the user injects each solution into the sample solution injection unit 101, the washing buffer injection unit 102, the PCR reagent injection unit 103, the formamide injection unit 104, and the electrophoresis polymer injection unit 105, and sets the microchip 100 in the DNA analyzer 10. Then, the user drives the DNA analysis device 10 to start DNA analysis.
  • FIG. 15 is a flowchart showing an example of the operation of the DNA analysis apparatus 10.
  • the DNA analyzer 10 performs a preparation operation (step S01). Specifically, the DNA analyzer 10 holds the denaturing unit 114 at a preset temperature (for example, 60 ° C.) by the temperature adjustment unit 13, and the electrophoresis unit 115 (particularly the capillary 116) by the electrophoresis unit 15. ) At a preset temperature (for example, 50 ° C.). Then, the DNA analyzer 10 fills the capillary 116 with the polymer in the migration polymer injection unit 105.
  • a preset temperature for example, 60 ° C.
  • the DNA analysis apparatus 10 executes a DNA extraction process (step S02). Specifically, the DNA analyzer 10 moves the sample solution injected into the sample solution injection unit 101 to the DNA extraction unit 111 and adsorbs the sample DNA to magnetic beads (silica) sealed in the DNA extraction unit 111. Let Then, the template DNA is extracted by washing the magnetic beads with the washing buffer in the washing buffer injection unit 102. Subsequently, the DNA analyzer 10 moves the PCR reagent injected into the PCR reagent injection unit 103 to the DNA extraction unit 111 to elute the sample DNA.
  • a DNA extraction process step S02. Specifically, the DNA analyzer 10 moves the sample solution injected into the sample solution injection unit 101 to the DNA extraction unit 111 and adsorbs the sample DNA to magnetic beads (silica) sealed in the DNA extraction unit 111. Let Then, the template DNA is extracted by washing the magnetic beads with the washing buffer in the washing buffer injection unit 102. Subsequently, the DNA analyzer 10 moves the PCR reagent injected
  • the DNA analyzer 10 executes PCR (step S03). Specifically, the DNA analysis apparatus 10 moves the PCR reagent including the template DNA from the DNA extraction unit 111 to the plurality of PCR units 112, as programmed in advance via the heat transfer material 131 of the temperature adjustment unit 13. The temperature of the PCR unit 112 is controlled.
  • the DNA analyzer 10 performs a weighing process (step S04). Specifically, the DNA analyzer 10 moves the PCR reagent including the amplicon (referred to as a reaction sample) from the PCR unit 112 to the weighing unit 113 until the weighing unit 113 is full, and drains the remaining PCR reagents. Drain from the mouth 106.
  • a reaction sample referred to as a reaction sample
  • the DNA analyzer 10 executes a denaturing process (step S05). Specifically, the DNA analysis apparatus 10 moves the formamide injected into the formamide injection unit 104 via the PCR unit 112 and the weighing unit 113 to the denaturation unit 114, thereby mixing the reaction sample and formamide. Move to the denaturing unit 114. Then, the DNA analyzer 10 holds the reaction sample for a preset reaction time and the reaction sample in the weighing unit 113 and executes the denaturation process.
  • the DNA analyzer 10 performs an electrophoresis process (step S06). Specifically, the DNA analysis apparatus 10 moves the reaction sample from the denaturing unit 114 to the electrophoresis unit 115 and injects the reaction sample into each capillary 116. Then, the DNA analyzer 10 starts the peak detection by the light receiving unit 155 included in the electrophoresis unit, and executes the electrophoresis process by applying a DC voltage to the capillary 116.
  • the DNA analysis apparatus analyzes the DNA length using the DNA analysis unit 28 and outputs the analysis result (step S07).
  • the electrophoresis is performed after the denaturation treatment, the analysis accuracy is improved. That is, since the amplicon includes a repeat sequence, the amplicon may have a cross-linked structure (FIG. 1 (b)) or a bulge loop structure (FIG. 1 (c)) if it remains double-stranded. Even if it is single-stranded, it may have a hairpin structure (FIG. 1 (d)). These structures cause ghost bands because they have different migration speeds from linear single-stranded amplicons. However, since the modification process is performed in the first embodiment, the generation of such a ghost band can be avoided, and as a result, the analysis accuracy is improved.
  • a PTC heater 153 is used to control the temperature of the capillary. As a result, temperature unevenness occurring in the heat transfer plate 151 in contact with the PTC heater 135 can be suppressed. If the ambient temperature of the capillary is low, DNA may be migrated at a low speed, and if the ambient temperature of the capillary is high, a phenomenon that DNA is migrated at a high speed, so-called smiley, may occur. At that time, even if the peaks of the sample and the size marker coincide with each other, if the smile is generated, the peak is detected by being shifted due to the difference in the migration speed. On the contrary, if the ambient temperature of the capillary 116 is substantially the same, the smile is suppressed, so that the peak shift due to the difference in the migration speed is eliminated, and the analysis accuracy can be further improved.
  • the above-described embodiment is only a preferred embodiment, and can be variously modified as necessary.
  • denaturation treatment conditions temperature, treatment time, reagent, liquid volume, etc.
  • various reaction conditions can be applied to the DNA denaturation treatment.
  • the denaturing unit 114 mixes a PCR reagent containing an amplicon and a holding agent (formamide) at a mixing ratio of about 1: 2 to 1: 9.
  • a sufficient denaturation treatment result can be obtained if the mixing ratio of the reaction sample and formamide is 1: 9 (1 microliter: 9 microliter) and 60 ° C. ing.
  • the temperature of the denaturation treatment is not limited to 60 ° C., and any temperature can be applied as long as the amplicon that is a double-stranded DNA is denatured into a single-stranded DNA. That is, the temperature of the denaturation treatment is corrected according to the amplicon sequence (Tm value) and the mixing ratio of formamide and the reaction sample, but is about 50 ° C. to 98 ° C.
  • the processing time of the denaturation processing is at least 30 seconds, for example, but it is desirable that the processing time is as long as the user allows.
  • the DNA denaturing agent is not limited to formamide, and urea or the like may be used.
  • the amount of the reaction sample measured by the weighing process that is, the volume of the weighing unit 113 is small as long as it does not adversely affect the peak detection. That is, the larger the mixing ratio of formamide to the reaction sample, the better the denaturation efficiency, but the smaller the detected peak, the more necessary modification is required. It has been found that if the temperature of the modification treatment is high, a sufficient modification treatment result can be obtained even if the mixing ratio of the reaction sample and formamide is 1: 2.
  • a configuration for purifying an amplicon can be provided in the DNA analyzer 10 and the microchip 100.
  • the amplicon may be purified using a DNA extraction process using the above magnetic beads.
  • the DNA analyzer 10 may control the temperature so that the denaturing part 114 is kept at 98 ° C. and then rapidly cooled to 0 ° C.
  • the temperature adjustment unit 14 may perform temperature control independently. Or you may provide separately the cavity structure and temperature control unit for heating to 98 degreeC, and the cavity structure and temperature adjustment unit for rapidly cooling to 0 degreeC.
  • the denaturing process can be executed by the PCR unit 112 without executing the weighing process.
  • formamide may be added after the completion of PCR, and the temperature may be controlled so that the PCR unit 112 is kept at 98 ° C. and then rapidly cooled to 0 ° C.
  • the temperature adjustment unit 14 the weighing unit 113, and the denaturing unit 114 are not required, the DNA analysis apparatus 10 can be expected to be downsized.
  • the electrophoresis apparatus used for DNA analysis has been described.
  • the use of the electrophoresis apparatus is not limited to DNA analysis.
  • the analyte may be an ion or a low molecular compound.
  • DNA analysis is not limited to individual identification for criminal investigation, and can be applied to, for example, detection of gene deficiency.
  • microchip according to any one of forms 1 to 5, wherein the holding agent is formamide.
  • the holding agent is formamide.
  • [Form 7] This is the same as the DNA analysis method according to the second aspect described above.
  • [Form 8] This is the same as the DNA analysis system according to the third aspect described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Clinical Laboratory Science (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

 DNAを用いた個人識別は犯罪捜査にも使用されることも多いため、高い解析精度が要求される。そのため、DNAの解析精度向上に寄与するマイクロチップを提供する。マイクロチップは、PCR部と、変性部と、電気泳動部と、を備える。PCR部は、DNA内の所望の領域を増幅する。変性部は、二本鎖DNAであるPCRアンプリコンを一本鎖DNAに変性する。電気泳動部は、PCRアンプリコンを塩基配列長に応じて分離する。

Description

マイクロチップ、DNA解析方法及びDNA解析システム
 [関連出願についての記載]
 本発明は、日本国特許出願:特願2013-059106号(2013年 3月21日出願)に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
 本発明は、マイクロチップ、DNA解析方法及びDNA解析システムに関する。特に、反応槽の間を微細な流路で連通したマイクロチップ、そのマイクロチップを使用したDNA解析方法及びDNA解析システムに関する。
 DNA(デオキシリボ核酸)、イオン、低分子化合物等を解析の対象とした電気泳動が行われている。とりわけ、DNAを用いた個人識別は、犯罪捜査において、効率的に捜査対象を絞り込む際に有効な手段であることから、DNAを対象とした電気泳動の必要性が増している。
 ここで、特許文献1~5において、一枚のチップ上に充填容器や微細流路を設けたマイクロチップが開示されている。特許文献1~5が開示するマイクロチップは複数のプレートを積層して構成される多層構造を備え、複数のプレートの一部を貫通させることで試料槽や反応槽を形成する。さらに、これらの試料槽や反応槽に対して、外部から圧力を加え、試料槽と反応槽の間の微細流路に液体を押し出すことで、液体の移送を制御する。
 また、非特許文献1において、マイクロチップ上でDNA解析に必要な工程を実施するDNA解析装置が開示されている。
国際公開第2008/108481号 国際公開第2009/035061号 国際公開第2009/035062号 国際公開第2009/038203号 国際公開第2009/119698号
日本電気株式会社、"DNAを用いた個人識別とその技術"、2010年9月、[online]、[平成25年1月23日検索]、インターネット〈URL:http://www.nec.co.jp/techrep/ja/journal/g10/n03/100307.pdf〉
 なお、上記先行技術文献の各開示を、本書に引用をもって繰り込むものとする。以下の分析は、本発明者らによってなされたものである。
 上記の先行技術文献に開示の技術には解析精度が低いという問題点があった。すなわち、DNAを用いた個人識別は犯罪捜査にも使用されるため、高い解析精度が要求される。しかしながら、上記先行技術文献に開示の技術では、ゴーストピークを検出してしまい、要求される解析精度を満足できないことがあった。
 本発明は、DNAの解析精度向上に寄与するマイクロチップ、DNA解析方法及びDNA解析システムを提供することを目的とする。
 本発明の第1の視点によれば、テンプレートDNA内の所望の領域を増幅するPCR部と、PCR部で増幅したアンプリコンを二本鎖DNAから一本鎖DNAに変性する変性部と、前記アンプリコンを塩基配列長に応じて分離する電気泳動部と、を備えたマイクロチップが提供される。
 本発明の第2の視点によれば、マイクロチップ上で、テンプレートDNA内の所望の領域を増幅し、増幅したアンプリコンを二本鎖DNAから一本鎖DNAに変性し、そして前記アンプリコンを塩基配列長に応じて分離するDNA解析方法が提供される。
 本発明の第3の視点によれば、テンプレートDNA内の所望の領域を増幅するPCR部と、PCR部で増幅したアンプリコンを二本鎖DNAから一本鎖DNAに変性する変性部と、前記アンプリコンを塩基配列長に応じて分離する電気泳動部と、を備えたマイクロチップと、前記PCR部におけるPCRと、前記変性部における変性処理と、前記電気泳動部における電気泳動処理を制御して、DNA解析を実行するDNA解析装置と、を含むDNA解析システムが提供される。
 本発明の各視点によれば、DNAの解析精度向上に寄与するマイクロチップ、DNA解析方法及びDNA解析システムが、提供される。
一実施形態の概要を説明するための図である。 第1の実施形態に係るDNA解析装置10の構成を示す斜視図である。 マイクロチップ100の構成の一例を示す図である。 図3に示すA-A間の断面図の一例である。 PCRのプログラムの一例を示すフローチャートである。 テーブル12の領域であって、温度調整ユニット13を含む領域の平面図の一例である。 図6に示すB-B間の断面図の一例である。 テーブル12の領域であって、温度調整ユニット14を含む領域の平面図の一例である。 テーブル12の領域であって、電気泳動ユニット15を含む領域の平面図の一例である。 図9に示すC-C間の断面図の一例である。 PTCヒータ153の平面図の一例を示す図である。 PTCヒータ153の電極配線158a及び158bとマイクロチップ100内部のキャピラリ116との位置関係を説明するための図である。 PTCヒータ153の平面図の一例を示す図である。 PTCヒータ153の平面図の一例を示す図である。 DNA解析装置10の動作の一例を示すフローチャートである。
 初めに、図1を用いて一実施形態の概要について説明する。なお、この概要に付記した図面参照符号は、理解を助けるための一例として各要素に便宜上付記したものであり、この概要の記載はなんらの限定を意図するものではない。
 一実施形態に係るマイクロチップは、テンプレートDNA内の所望の領域を増幅するPCR部112と、増幅したアンプリコンを二本鎖DNAから一本鎖DNAに変性する変性部114と、アンプリコンを塩基配列長に応じて分離する電気泳動部115とを備える。
 すなわち、図1に示すように、DNAの変性処理を行った後に電気泳動を行っているので架橋構造(図1(b))、バルジループ構造(図1(c))、ヘアピン構造(図1(d))の発生に起因するゴーストピークの発生が解消され、解析精度が向上する。
 以下に具体的な実施の形態について、さらに詳しく説明する。
[第1の実施形態]
 第1の実施形態について、図面を用いてより詳細に説明する。
 図2は、本実施形態に係るDNA解析装置10の構成を示す斜視図である。
 図2を参照すると、台座11にテーブル12が配置され、テーブル12には温度調整ユニット13及び14が埋め込まれている。なお、温度調整ユニット14は温度調整部とも称される。また、テーブル12には電気泳動ユニット15が配置されている。さらに、台座11と蓋16は、ヒンジ17を介して接続されており、蓋16の開閉が可能である。
 本実施形態に係るDNA解析装置10が使用するマイクロチップ100は、特許文献5が開示するように、複数のプレートを積層して構成される多層構造を備えている。マイクロチップ100は、複数のプレートの一部を貫通させることで試料槽や反応槽を形成する。DNAの解析に使用するマイクロチップ100は、テーブル12に設けられたピン18aとピン18bに、マイクロチップ100に設けられたピン穴19aと19bを合致させることで、所定の位置に設置される。マイクロチップ100をテーブル12に配置した状態で、蓋16を閉じると、マイクロチップ100の所定の領域が、温度調整ユニット13及び14と接触する。また、蓋16を閉じることで、マイクロチップ100の所定の領域が電気泳動ユニット15の表面と接触すると共に、電極20がマイクロチップ100に設けられた電極槽に挿入される。
 蓋16には、複数の加圧穴21が設けられている。これらの加圧穴21に対応する蓋16の領域は貫通しており、蓋16に設けられた加圧穴21はチューブ22を介して電磁弁23に接続されている。また、蓋16を閉じることで、蓋16に設けられた加圧穴21と、マイクロチップ100上の所定の領域が接触する。
 畜圧器24には圧縮空気等が封入されており、コントローラ25が電磁弁23を制御することで、蓋16に設置された加圧穴21から圧縮空気等が放出される。なお、畜圧器24の内部圧力は、図示しない圧力センサ及びポンプ等により、所定の圧力を維持するように制御される。なお、本実施形態に係るマイクロチップ100は、例えば、特許文献5が開示する流路開閉機能を備えている。コントローラ25は、電磁弁23を制御することで、蓋16の加圧穴21からマイクロチップ100の一部を加圧することで、マイクロチップ100が備える反応槽から流路に液体を押しだし、目的とする反応槽に移送する。例えば、反応槽Aから反応槽Bへ液体を移送する場合には、反応槽Bから先の流路の一部には圧力を加え、反応槽A及びBの間の流路には圧力を加えない。このような状態で、反応槽Aに圧力を加えれば、反応槽Aが蓄えている液体は反応槽Aと反応槽Bを繋ぐ流路に押し出される。反応槽Bから先の流路には圧力が加わっているため、押し出された液体は反応槽Bに留まる。このようにして、反応槽間の液体移送を実現する。
 さらに、蓋16には電磁石26が配置されており、電磁石26は電源部27から電力の供給を受けることで、マイクロチップ100上の所定の領域に磁場を発生させることができる。なお、コントローラ25は、電源部27に対して、電磁石26への電力の供給及びその停止を指示することで、電磁石26の励磁を制御する。
 温度調整ユニット13及び14は、予め定めたマイクロチップ100の所定の領域の温度を制御する。温度調整ユニット13及び14の詳細は、後述する。
 電極20及び電気泳動ユニット15は、マイクロチップ100における電気泳動を実施する際に用いられる。より詳細には、コントローラ25は、マイクロチップ100において電気泳動を実施する工程において、電源部27を介して電極20に直流電圧を印加する。電極20に直流電圧が印加されると、帯電したDNAはキャピラリ内を移動する。また、電気泳動ユニット15には、レーザを照射する手段と当該レーザ照射による励起によって発光した蛍光を受光する手段と、が含まれる。電気泳動ユニット15に含まれるレーザ受光手段の出力は、DNA解析部28に送られ、DNA解析部28によるDNA長の解析(判別)に使用される。なお、電気泳動ユニット15の詳細は、後述する。
 次に、マイクロチップ100の構成について説明する。図3は、マイクロチップ100の構成の一例を示す図である。
[マイクロチップの構成]
 図3に示すように、マイクロチップ100は、サンプル溶液注入部101、洗浄バッファ注入部102、PCR試薬注入部103、ホルムアミド注入部104、泳動ポリマ注入部105、排水口106、DNA抽出部111、PCR部112、秤量部113、変性部114、電気泳動部115、キャピラリ116及び各部分を連通する流路200を有する。
 キャピラリ116はマイクロチップ100の内部に設けられ、図3に示す第1の方向に延伸する。図4は、図3に示すA-A間の断面図の一例である。図4に示すように、複数のキャピラリ116が、マイクロチップ100の内部を延伸する。また、マイクロチップ100は、平面形状を有しており、マイクロチップ100の厚みは、その幅や奥行きに対して薄い。さらに、電気泳動部115は、電極槽117を備えており、DNAの解析時に、蓋16に取り付けられた電極20が電極槽117に挿入される。電極槽117は、正電極の挿入を受ける電極槽と、負電極の挿入を受ける電極槽と、が存在し、いずれもキャピラリ116と接続されている。
 サンプル溶液注入部101は窪み状の構造を有し、ユーザによってサンプル溶液が注入される。サンプル溶液は、リシスバッファ(例えば、SDS/LiOAc溶液(ドデシル硫酸ナトリウム/酢酸リチウム溶液))に被験者から採取した細胞(例えば、口腔内粘膜、血液、体液など)を懸濁した溶液である。
 洗浄バッファ注入部102も窪み状の構造を有し、ユーザによって洗浄バッファが注入される。洗浄バッファは、例えば、Trisバッファであり、DNAのシリカへの結合を維持するために高塩濃度に調製される。
 PCR試薬注入部103も窪み状の構造を有し、ユーザによってPCR試薬が注入される。PCR試薬は、ポリメラーゼ、dNTPs、マグネシウムなどを含み、シリカからDNAを溶出する溶出バッファとしての役割も果たすため、低塩濃度に調製される。
 ホルムアミド注入部104も窪み状の構造を有し、ユーザによってホルムアミド溶液が注入される。ホルムアミド溶液は、DNAを一本鎖状態に保持する保持剤である。すなわち、変性処理中のDNAは、二本鎖状態から一本鎖状態に変性するデナチュレーション(融解、乖離とも称される)と、一本鎖状態から二本鎖状態に変性するハイブリダイゼーション(アニーリング、結合とも称される)とを繰り返す。ここで、ホルムアミドはDNAを一本鎖状態に保持するため、結果的にホルムアミドは二本鎖DNAを一本鎖DNAに変性させるように作用する。このように、本願において、「保持」と「変性」とは互換的に使用される場合がある。また、ホルムアミド溶液は、蛍光色素で標識されたssDNA(一本鎖DNA)サイズマーカーも含む。
 泳動ポリマ注入部105も窪み状の構造を有し、ユーザによって電気泳動のためのポリマが注入される。
 なお、リシスバッファ、洗浄バッファ、PCR試薬、ホルムアミド、ssDNAサイズマーカー及びポリマは商業的に入手可能であるし、必要に応じて組成を改変して調製することもできる。また、洗浄バッファ、PCR試薬、ホルムアミド溶液及びポリマはユーザが注入するのでは無く、マイクロチップ100に予め封入しておくこともできる。
 DNA抽出部111は、サンプル溶液からDNAを抽出するために設けられた反応槽である。なお以下では、サンプル溶液から抽出されるDNAを、テンプレートDNAとも称する。
 DNA抽出処理について具体的に説明すると、DNA解析装置10は、DNA抽出部111に対向するように電磁石26を有し、DNA抽出部111にはシリカでコーティングされた磁性ビーズが予め封入される。DNA解析装置10は、サンプル溶液注入部101に注入されたサンプル溶液をDNA抽出部111に移動させて、DNA抽出部111に封入された磁性ビーズ(シリカ)にサンプルDNAを吸着させる。そして、洗浄バッファ注入部102内の洗浄バッファで磁性ビーズを洗浄することでテンプレートDNAを抽出する。なお、DNA解析装置10は、サンプル溶液及び洗浄バッファを排水口106から排出するが、その際に電磁石26に磁性ビーズを吸着させることで、サンプル溶液及び洗浄バッファと一緒に磁性ビーズが排出されることを防止する。
 なお、磁性ビーズを用いたDNA抽出方法としては、例えば、東洋紡社:MagExtractor(登録商標)、タカラバイオ株式会社:NucleoMag(登録商標)などが知られている。また、DNA抽出方法のプロトコルは、例えば、洗浄の回数を増やすなど、必要に応じて改変することもできる。また、DNA抽出方法は、磁性ビーズを用いた方法に限定されるものでは無く、シリカビーズカラムを用いてテンプレートDNAを抽出しても良い(例えば、キアゲン社:QIAampなどを参照)。
 PCR部112は、テンプレートDNA内の所望の領域を増幅するPCRを実行するために間に設けられた単数又は複数の反応槽であり、各々、温度調整ユニット13と当接するように配置される。そして、各PCR部112には、テンプレートDNA内の所望の領域を増幅するように設計されたプライマーセットが封入される。
 プライマーセットは、例えば、マイクロサテライト(TPOXやFGAなど)を含む領域をPCR増幅するためのフォワードプライマー及びリバースプライマーであり、各プライマーの何れか又は両方は蛍光色素(フルオレセインなど)の標識を有する。このようなプライマーはプロメガ(登録商標)社などから商業的に入手可能であるし、必要に応じて設計することもできる。なお、1つのPCR部112に、複数のプライマーセットを封入することもできる。
 PCR(ポリメラーゼ連鎖反応:polymerase chain reaction)について具体的に説明すると、DNA解析装置10は、テンプレートDNAを含むPCR試薬をDNA抽出部111から複数のPCR部112に移動させ、温度調整ユニット13の伝熱材を介して予めプログラムされたようにPCR部112を温度制御する。PCRのプログラムの一例を挙げると、DNA解析装置10は、図5に示す温度、時間設定の温度制御によってPCRを実行する。なお、PCRの温度条件やサイクル数は、Tm値(melting temperature)や単位複製配列の長さに基づいて変更可能である。以下では、PCRによって増幅されたDNAをアンプリコンと称し、アンプリコンを含むPCR試薬を反応サンプルと称する。
 秤量部113は、反応サンプルの一部を廃棄するために設けられた反応槽、特に、PCR部112よりも容量が小さい反応槽である。秤量処理について具体的に説明すると、DNA解析装置10は、秤量部が満杯になるまで反応サンプルをPCR部112から秤量部113へ移動させて、残りのPCR試薬を排水口106から排出する。
 変性部114は、アンプリコンを二本鎖DNA(dsDNA)から一本鎖DNA(ssDNA)に変性するために設けられた反応槽であり、温度調整ユニット14と当接するように配置される。変性処理について具体的に説明すると、DNA解析装置10は、温度調整ユニット14を介して変性部114を予め設定された温度(例えば60℃)に保持する。そして、DNA解析装置10は、ホルムアミド注入部104に注入されたホルムアミドをPCR部112及び秤量部113を経由させて変性部114へ移動させる。そのため、PCR部112で増幅したアンプリコンが保持剤(ホルムアミド)と共に変性部114へ流入するので、アンプリコンと保持剤を別々に変性部114に流入させるよりも、アンプリコンと保持剤とをよりよく混合させることができる。そして、DNA解析装置10は、予め設定された反応時間、反応サンプルを変性部114に保持する。
 電気泳動部115は、分子ふるい効果によって、アンプリコンを塩基配列長に応じて分離するための構成であり、後述するPTCヒータに当接するように配置される。具体的には、電気泳動部115はキャピラリ116を含み、特にキャピラリ116の温度が一定に保たれるようにPTCヒータに対して当接する。
 電気泳動処理について具体的に説明すると、DNA解析装置10は、泳動ポリマ注入部105内のポリマをキャピラリ116に充填し、PTCヒータによって電気泳動部115を予め設定された温度(例えば、50℃)に保持する。そして、DNA解析装置10は、変性部114から電気泳動部115へ反応サンプルを移動させて、各キャピラリ116に反応サンプルをインジェクションする。インジェクション方法としては、いわゆるクロスインジェクション法(特開2002-310858号などを参照)を採用することができる。そして、DNA解析装置10は、受光手段によるピーク検出を開始する際に、キャピラリ116に接続された電極槽117を介して直流電圧を印加する。
 続いて、温度調整ユニット13及び14について説明する。
 温度調整ユニット13は、コントローラ25からの指示に基づいて、マイクロチップ100上のPCR部112の温度制御を担う手段である。
 図6は、テーブル12の領域であって、温度調整ユニット13を含む領域の平面図の一例である。図7は、図6に示すB-B間の断面図の一例である。
 上述したように、温度調整ユニット13はテーブル12の領域に埋め込まれて配置されている。図6を参照すると、テーブル12の表面に伝熱材131が露出し、伝熱材131の中心に温度センサ132が配置されている。
 図7を参照すると、温度センサ132は、コントローラ25に接続されている。また、伝熱材131の一面と、ペルチェ素子133の温度印加面と、が接触している。さらに、ペルチェ素子133の温度放熱面と、放熱板134の一面と、が接触している。ペルチェ素子133の電源線は、コントローラ25に接続されている。コントローラ25は、温度センサ132からPCR部112の温度を取得し、取得した温度に基づいてペルチェ素子133に供給する電流の方向を決定することで、ペルチェ素子133の発熱又は冷却を制御し、PCR部112の温度制御を実現する。
 温度調整ユニット14は、コントローラ25からの指示に基づいて、マイクロチップ100上の変性部114の温度を一定に保持する手段である。図8は、テーブル12の領域であって、温度調整ユニット14を含む領域の平面図の一例である。図8に示すように、温度調整ユニット14の構成は、温度調整ユニット13の構成と同一とすることができる。但し、温度調整ユニット14の構造を限定する趣旨ではなく、ヒータ等を用いて温度調整ユニット14を構成することも可能である。
 続いて、電気泳動ユニット15について説明する。
 図9は、テーブル12の領域であって、電気泳動ユニット15を含む領域の平面図の一例である。図10は、図9に示すC-C間の断面図の一例である。なお、図9において点線で示すキャピラリ116は、電気泳動ユニット15に存在するのではなく、マイクロチップ100の内部に位置するものである。また、電極20を挿入するための電極槽117(図9におて点線の円により図示)もマイクロチップ100に設けられている。これらは、理解の容易のため、図9に図示している。
 図9を参照すると、電気泳動ユニット15は、伝熱板151を含んで構成されており、伝熱板151には、DNA長の測定に使用するレーザを通す測定用穴152が設けられている。さらに、図10を参照すると、伝熱板151の底面に、伝熱板151と貼り合わせるようにPTC(Positive Temperature Coefficient;正温度係数)ヒータ153が配置されている。なお、PTCヒータ153にも測定用穴152が設けられている。
 レーザ出力部154は、レーザダイオードを含んで構成され、測定用穴152に向かってレーザ光を照射する。レーザ出力部154によるレーザ光の照射は、コントローラ25からの指示に従い、そのオン/オフが制御される。また、受光部155は、電気泳動部115の測定用穴152に相当する箇所を通過するDNAが発光した蛍光を受光する。受光部155は、例えば、光電子倍増管(フォトマルチプライヤー)を含んで構成される。受光部155は、電気泳動により、DNAがキャピラリを移動し、測定用穴152の上に到達した際にDNAにより反射した光を電気信号に変換して、DNA解析部28に出力する。あるいは、受光部155は、CCD(Charge Coupled Device)のような撮像素子を含み、反射光の輝度を測定し、DNAが測定用穴152の上方を通過するのを検出してもよい。
 なお、図9に図示する電気泳動ユニット15は、マイクロチップ100の下方からレーザを照射する構成(図2のテーブル12から蓋16に向かう方向にレーザを照射する構成)である。しかし、電気泳動ユニット15のレーザ照射は、マイクロチップ100の下方からの照射に限定されない。例えば、蓋16に電気泳動ユニット15を装着すれば、マイクロチップ100の上方からレーザを照射することになる。この場合には、伝熱板151に設けた測定用穴152は不要である。
 図11は、PTCヒータ153の平面図の一例を示す図である。PTCヒータ153は、伝熱板151と同一形状を持つ樹脂156の上に、PTC素子157、正電極配線158a及び負電極配線158bを配する面状発熱体である。PTCヒータ153は、キャピラリ116に熱を供給し、且つ、キャピラリ116の温度を均一にするように配置されている。また、樹脂156は、マイクロチップ100の電気泳動部115に適合する大きさとなっており、電気泳動部115と実質的に同じ大きさである。この樹脂156の一面であって、伝熱板151と接する側にPTC素子157と電極配線158a及び158bが配置されている。電極配線158a及び158bに直流電圧を印加することで、PTC素子157に電流が流れる。PTC素子157に電流が流れると、PTC素子157が発熱し、伝熱板151を介して、キャピラリ116に熱を供給する。
 ここで、PTC素子157は、電流が流れることでPTC素子157が特定の温度に達すると電気抵抗が急激に低下する特性を備えている。即ち、PTC素子157は、電流が流れると、自己発熱によって抵抗値が増大し、 電流が流れにくくなる性質を持つ電流制限素子として機能する。PTC素子157に流れる電流が低下すれば、PTC素子157での消費電力もまた低下し、結果として発熱温度が低下する。このように、PTC素子157を利用したPTCヒータ153は、予め定めた所定の温度を維持する自己温度制御機能を備えている。PTCヒータ153の電極配線158a及び158bは、それぞれ電源部27に接続される。コントローラ25は、電源部27を介して、PTCヒータ153の動作を制御する。コントローラ25は、PTCヒータ153を利用して電気泳動部115を所定の温度に維持したい場合に、電源部27に対し、PTCヒータ153への電力供給を指示する。上述したように、PTCヒータ153には自己温度制御機能が備わっており、マイクロチップ100の電気泳動部115は伝熱板151を介して所定の温度に維持される。
 次に、PTCヒータ153の構成について説明する。
 上述のように、PTCヒータ153は、樹脂156の一面の伝熱板151と接する側にPTC素子157と電極配線158a及び158bが配置されている。より詳細には、マイクロチップ100の内部をキャピラリ116が延伸する第1の方向(長手方向)に、正電圧が印加される正電極配線158aと接地電圧が印加される負電極配線158bが配線され、これらの電極配線は、樹脂の上を交互に配線される。
 図12は、PTCヒータ153の電極配線158a及び158bとマイクロチップ100内部のキャピラリ116との位置関係を説明するための図である。図12は、図11に示す領域159を切り出し、拡大した図である。また、図12には、キャピラリ116を点線により図示している。図12を参照すると、正電極配線158aと負電極配線158bは、これらのほぼ中間に、キャピラリ116が位置するように配線されていることが理解できる。このように、正電極配線158aと負電極配線158bでキャピラリ116を挟む構成とすることで、その上方に位置するキャピラリ116の第1の方向の温度を均一にできる。上述したように、PTC素子157は自己温度制御機能を備えている。さらに、キャピラリ116を挟む電極配線158a及び158bの間の領域には、一面に渡り、PTC素子157が配置されているため、この領域の温度は実質的に同じであるとみなせる。キャピラリ116を挟む領域の温度が同じであれば、伝熱板151を介してキャピラリ116に供給する熱も同じとみなせるためである。即ち、第1の方向におけるキャピラリ116の温度むらが解消できる。
 また、伝熱板151及びPTCヒータ153には測定用穴152が設けられている。すると、測定用穴152の周囲では、熱の拡散が生じる。そのため、PTCヒータ153を熱源として用いるのではなく、例えば、ニクロム線を熱源として用いると、測定用穴152の周囲の温度が、他の領域よりも低くなる問題が生じる。しかし、熱源としてPTCヒータ153を用いれば、PTC素子157の自己温度制御機能が働き、測定用穴152が存在することで、その周囲の温度が低下したとしても、その低下を補うように動作する。即ち、測定用穴152の周囲の温度と、他の領域の温度と、を実質的に同一にすることが可能であり、キャピラリ116の温度むらを解消できる。
 なお、電極配線158a及び158bの配線は、図11の態様に限定されない。例えば、図13に示すように、樹脂156の第2の方向(短手方向)に電極配線158a及び158bを配線してもよい。あるいは、図14に示すように、対となる電極配線158a及び158bを樹脂156の両端に配線し、樹脂156の中心領域には電極配線158a及び158bを配線しない形態であってもよい。
 ここで、キャピラリの温度を一定にするという目的を鑑みれば、図11に示す構成も図14に示す構成も、その効果には大差がない。しかし、図14に示す構成では、図11に示す構成と比較して、高い電圧を正電源配線158aに印加する必要がある。一方、図11に示す構成では、PTC素子157が存在する領域が電源配線158a及び158bにより細分化されているため、正電源配線158aに印加する電圧を抑えることができる。このように、電源配線158a及び158bの配線形態により、PTCヒータ153に印加する電圧が異なる。
 また、図13に示す構成では、図11に構成と異なり、PTCヒータ153を上方から視認した場合に、キャピラリ116と電極配線158a及び158bが交差している。キャピラリ116と電極配線158a及び158bが交差する領域には、PTC素子157は配置されていないので、当該領域から熱が供給されない。従って、この領域とその周辺の領域とでは温度むらが生じ、結果としてキャピラリ116の温度を一定にできない可能性がある。しかし、図11に示す構成では、キャピラリ116と電極配線158a及び158bが重ならないように(キャピラリ116が電極配線158a及び158bの中間となるように)、マイクロチップ100やPTCヒータ153の形状を設計する必要がある。一方、図13に示す構成では、マイクロチップ100やPTCヒータ153の形状を設計する際に注意を要することもない。さらに、図13に示す構成において、第2の方向に延伸する電極配線158a及び158bの幅を細くすれば、キャピラリ116の温度分布に与える影響はほぼ無視できると考える。このように、PTC素子157と電極配線158a及び158bの配置の形態には短所及び長所が存在する。そのため、PTC素子157と電極配線158a及び158bをどのように配置するかは、PTC素子157に電力を供給する電源や設計の容易さ等を総合的に考慮し、決定するのが望ましい。
 次に、DNA解析を実行する際のユーザによる操作と、DNA解析装置の動作について説明する。
[ユーザによる操作]
 ユーザは、サンプル溶液注入部101、洗浄バッファ注入部102、PCR試薬注入部103、ホルムアミド注入部104及び泳動ポリマ注入部105に各溶液を注入し、マイクロチップ100をDNA解析装置10にセットする。そして、ユーザは、DNA解析装置10を駆動してDNA解析を開始させる。
[DNA解析装置による一連の動作]
 図15は、DNA解析装置10の動作の一例を示すフローチャートである。ユーザによってマイクロチップ100がセットされ、処理開始指示を受け付けると、DNA解析装置10は準備動作を実行する(ステップS01)。具体的には、DNA解析装置10は、温度調整ユニット13によって変性部114を予め設定された温度(例えば、60℃)に保持し、そして、電気泳動ユニット15によって電気泳動部115(特にキャピラリ116)を予め設定された温度(例えば、50℃)に保持する。そして、DNA解析装置10は泳動ポリマ注入部105内のポリマをキャピラリ116に充填する。
 続いて、DNA解析装置10は、DNA抽出処理を実行する(ステップS02)。具体的には、DNA解析装置10は、サンプル溶液注入部101に注入されたサンプル溶液をDNA抽出部111に移動させて、DNA抽出部111に封入された磁性ビーズ(シリカ)にサンプルDNAを吸着させる。そして、洗浄バッファ注入部102内の洗浄バッファで磁性ビーズを洗浄することでテンプレートDNAを抽出する。続いて、DNA解析装置10は、PCR試薬注入部103に注入されたPCR試薬をDNA抽出部111に移動させてサンプルDNAを溶出する。
 次に、DNA解析装置10は、PCRを実行する(ステップS03)。具体的には、DNA解析装置10は、テンプレートDNAを含むPCR試薬をDNA抽出部111から複数のPCR部112に移動させ、温度調整ユニット13の伝熱材131を介して予めプログラムされたようにPCR部112を温度制御する。
 PCRが終了した後に、DNA解析装置10は秤量処理を実行する(ステップS04)。具体的には、DNA解析装置10は、秤量部113が満杯になるまでアンプリコンを含むPCR試薬(反応サンプルと称する)をPCR部112から秤量部113へ移動させて、残りのPCR試薬を排水口106から排出する。
 次に、DNA解析装置10は、変性処理を実行する(ステップS05)。具体的には、DNA解析装置10は、PCR部112及び秤量部113を経由させてホルムアミド注入部104に注入されたホルムアミドを変性部114へ移動させることで、反応サンプルとホルムアミドとを混合しつつ変性部114へ移動させる。そして、DNA解析装置10は、予め設定された反応時間、反応サンプルを秤量部113に保持して変性処理を実行する。
 そして、DNA解析装置10は、電気泳動処理を実行する(ステップS06)。具体的には、DNA解析装置10は、変性部114から電気泳動部115へ反応サンプルを移動させて、各キャピラリ116に反応サンプルをインジェクションする。そして、DNA解析装置10は、電気泳動ユニットに含まれる受光部155によるピーク検出を開始し、そして、キャピラリ116に直流電圧を印加して電気泳動処理を実行する。
 最後に、DNA解析装置は、DNA解析部28を用いてDNA長の解析を行い、その解析結果を出力する(ステップS07)。
 以上のように、本実施形態に係るDNA解析装置10では、変性処理をした後に電気泳動を行っているので解析精度が向上する。つまり、アンプリコンはリピート配列を含むため、2本鎖のままではアンプリコンは架橋構造(図1(b))や、バルジループ構造(図1(c))を有する可能性がある。また、1本鎖であったとしてもヘアピン構造(図1(d))を有する可能性がある。これらの構造は、直線状の1本鎖アンプリコンと泳動速度が異なるので、ゴーストバンドの発生の原因となる。しかしながら、第1の実施形態では変性処理を行っているので、このようなゴーストバンドの発生を回避することができ、結果として解析精度が向上する。
 また、DNA解析装置10では、キャピラリの温度を制御するためにPTCヒータ153を使用している。その結果、PTCヒータ135に接触する伝熱板151に生じる温度むらを抑制できる。キャピラリの周辺温度が低いと、DNAが低速に泳動され、キャピラリの周辺温度が高いと、DNAが高速に泳動されるという現象、いわゆるスマイリングが生じる可能性がある。その際、サンプル及びサイズマーカーのピークが一致する状況であったとしても、スマイリングが発生していれば、泳動速度の差によってピークがずれて検出される。これとは反対に、キャピラリ116の周辺温度が実質的に同じであれば、スマイリングが抑制されるので、泳動速度の差によるピークのずれが解消され、より解析精度を高めることができる。
[他の実施形態]
 上記の実施形態は、好ましい一実施形態に過ぎず、必要に応じて様々に改変することができる。例えば、変性処理の条件(温度、処理時間、試薬、液量など)は任意に変更可能である。すなわち、DNAの変性処理は、様々な反応条件を適用することができる。例えば、変性部114は、アンプリコンを含むPCR試薬と保持剤(ホルムアミド)を、約1:2~1:9の混合比で混合する。なお、本願発明者らの研究により、少なくとも反応サンプルとホルムアミドの混合比が1:9(1マイクロリットル:9マイクロリットル)で、60℃であれば、十分な変性処理結果が得られることが分かっている。
 ここで、変性処理の温度は、60℃に限定されるものでは無く、二本鎖DNAであるアンプリコンが一本鎖DNAに変性する温度であれば適用可能である。すなわち、変性処理の温度は、アンプリコンの配列(Tm値)や、ホルムアミドと反応サンプルの混合比に応じて修正されるが、およそ50℃~98℃である。
 変性処理の処理時間は、例えば、少なくとも30秒であるが、ユーザが許容する限度の長時間であることが望ましい。
 また、DNA変性剤は、ホルムアミドに限定されるものではなく、尿素などを使用しても良い。
 また、秤量処理によって計測される反応サンプルの量、すなわち、秤量部113の容量は、ピーク検出に悪影響を及ぼさない限り少量であることが望ましい。すなわち、反応サンプルに対するホルムアミドの混合比が大きければ大きいほど変性処理の効率は向上するが、検出されるピークは小さくなるので必要に応じて改変が必要である。なお、変性処理の温度が高ければ、反応サンプルとホルムアミドの混合比が1:2であっても十分な変性処理結果が得られることが分かっている。
 また、例えば、研究室で行う手作業では、エタノール沈殿を実行してアンプリコンを精製し、アンプリコンをホルムアミドに溶解し、アンプリコンを含むサンプルを98℃に加熱して0℃に急冷するプロトコルが知られている。このようなプロトコルを参照して、例えば、アンプリコンを精製するための構成をDNA解析装置10及びマイクロチップ100に設けることができる。例えば、上記の磁性ビーズを用いたDNA抽出処理を利用して、アンプリコンを精製するようにしても良い。また、DNA解析装置10が、変性部114を98℃に保持した後に、0℃に急冷するように温度制御するようにしても良い。このとき、温度調整ユニット14が単独で温度制御を実行するようにしても良い。あるいは、98℃に加熱するための空洞構造及び温度調整ユニットと、0℃に急冷するための空洞構造及び温度調整ユニットとを、別途設けても良い。
 また、例えば、秤量処理を実行せずにPCR部112で変性処理を実行することもできる。例えば、PCRの終了後にホルムアミドを添加して、更に、PCR部112を98℃に保持した後に、0℃に急冷するように温度制御するようにしても良い。その場合には、ホルムアミドに対する反応サンプルの混合比が大きくなるため、変性効率の低下が懸念されるが、アンプリコンを精製する処理を追加することによって、変性効率の低下を改善できると考えられる。なお、このような実施形態では、温度調整ユニット14、秤量部113、及び、変性部114が不要になるので、DNA解析装置10の小型化を期待することができる。
 また、ホルムアミドと反応サンプルの混合が不十分であると、変性処理効率が低下することが分かっている。そのため、必要に応じて、PCR部112と変性部114との間で混合溶液を行き来させるなど、ホルムアミドと反応サンプルの混合処理を加えることもできる。
 上記実施形態においては、DNAの解析に用いる電気泳動装置について説明したが、電気泳動装置の使用をDNAの解析に限定する趣旨ではない。例えば、被解析物がイオンや低分子化合物等であってもよい。また、DNA解析は、犯罪捜査のための個人識別に限定されるものでは無く、例えば、遺伝子欠損症の検出にも応用することができる。
 上記の実施形態の一部又は全部は、以下の形態のようにも記載され得るが、以下には限られない。
[形態1]
 上述の第1の視点に係るマイクロチップのとおりである。
[形態2]
 前記PCR部で増幅したアンプリコンは、保持剤と共に前記変性部へ流入することを特徴とする形態1に記載のマイクロチップ。
[形態3]
 前記変性部は、予め設定された温度に保持されることを特徴とする形態1又は2に記載のマイクロチップ。
[形態4]
 前記PCR部よりも容量が小さい秤量部を備えたことを特徴とする形態1~3の何れか一つに記載のマイクロチップ。
[形態5]
 前記変性部は前記アンプリコンを含むPCR試薬と保持剤を、約1:2~1:9の混合比で混合することを特徴とする形態1~4の何れか一つに記載のマイクロチップ。
[形態6]
 前記保持剤がホルムアミドであることを特徴とする形態1~5の何れか一つに記載のマイクロチップ。
[形態7]
 上述の第2の視点に係るDNA解析方法のとおりである。
[形態8]
 上述の第3の視点に係るDNA解析システムのとおりである。
 なお、引用した上記の特許文献等の各開示は、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の全開示の枠内において種々の開示要素(各請求項の各要素、各実施形態ないし実施例の各要素、各図面の各要素等を含む)の多様な組み合わせ、ないし、選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。特に、本書に記載した数値範囲については、当該範囲内に含まれる任意の数値ないし小範囲が、別段の記載のない場合でも具体的に記載されているものと解釈されるべきである。
10 DNA解析装置
11 台座
12 テーブル
13、14 温度調整ユニット
15 電気泳動ユニット
16 蓋
17 ヒンジ
18a、18b ピン
19a、19b ピン穴
20 電極
21 加圧穴
22 チューブ
23 電磁弁
24 畜圧器
25 コントローラ
26 電磁石
27 電源部
28 DNA解析部
100 マイクロチップ
101 サンプル溶液注入部
102 洗浄バッファ注入部
103 PCR試薬注入部
104 ホルムアミド注入部
105 泳動ポリマ注入部
106 排水口
111 DNA抽出部
112 PCR部
113 秤量部
114 変性部
115 電気泳動部
116 キャピラリ
117 電極槽
131、131a 伝熱材
132、132a 温度センサ
133 ペルチェ素子
134 放熱板
151 伝熱板
152 測定用穴
153 PTCヒータ
154 レーザ出力部
155 受光部
156 樹脂
157 PTC素子
158a 正電極配線
158b 負電極配線
159 PTCヒータの一領域
200 流路

Claims (8)

  1.  DNA内の所望の領域を増幅するPCR部と、
     前記PCR部で増幅したアンプリコンを二本鎖DNAから一本鎖DNAに変性する変性部と、
     前記アンプリコンを塩基配列長に応じて分離する電気泳動部と、
     を備えたマイクロチップ。
  2.  前記PCR部で増幅したアンプリコンは、保持剤と共に前記変性部へ流入することを特徴とする請求項1に記載のマイクロチップ。
  3.  前記変性部は、予め設定された温度に保持されることを特徴とする請求項1又は2に記載のマイクロチップ。
  4.  前記PCR部よりも容量が小さい秤量部を備えたことを特徴とする請求項1~3の何れか一つに記載のマイクロチップ。
  5.  前記変性部は前記アンプリコンを含むPCR試薬と保持剤を、1:2~1:9の混合比で混合することを特徴とする請求項1~4の何れか一つに記載のマイクロチップ。
  6.  前記保持剤がホルムアミドであることを特徴とする請求項1~5の何れか一つに記載のマイクロチップ。
  7.  マイクロチップ上で、
     テンプレートDNA内の所望の領域を増幅し、
     増幅したアンプリコンを二本鎖DNAから一本鎖DNAに変性し、そして
     前記アンプリコンを塩基配列長に応じて分離するDNA解析方法。
  8.  テンプレートDNA内の所望の領域を増幅するPCR部と、前記PCR部で増幅したアンプリコンを二本鎖DNAから一本鎖DNAに変性する変性部と、前記アンプリコンを塩基配列長に応じて分離する電気泳動部と、を備えたマイクロチップと、
     前記PCR部におけるPCRと、前記変性部における変性処理と、前記電気泳動部における電気泳動処理を制御して、DNA解析を実行するDNA解析装置と、
     を含むDNA解析システム。
PCT/JP2014/055721 2013-03-21 2014-03-06 マイクロチップ、dna解析方法及びdna解析システム WO2014148265A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/778,260 US10195607B2 (en) 2013-03-21 2014-03-06 Microchip, DNA analysis method and DNA analysis system
JP2015506693A JP6137301B2 (ja) 2013-03-21 2014-03-06 マイクロチップ、dna解析方法及びdna解析システム
EP14769006.9A EP2977438A4 (en) 2013-03-21 2014-03-06 MICROCHIP, METHOD FOR DNA ANALYSIS AND SYSTEM FOR DNA ANALYSIS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013059106 2013-03-21
JP2013-059106 2013-03-21

Publications (1)

Publication Number Publication Date
WO2014148265A1 true WO2014148265A1 (ja) 2014-09-25

Family

ID=51579953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055721 WO2014148265A1 (ja) 2013-03-21 2014-03-06 マイクロチップ、dna解析方法及びdna解析システム

Country Status (4)

Country Link
US (1) US10195607B2 (ja)
EP (1) EP2977438A4 (ja)
JP (1) JP6137301B2 (ja)
WO (1) WO2014148265A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019207217A (ja) * 2018-05-29 2019-12-05 邵潘英 情報記憶装置
JP2019205422A (ja) * 2018-05-29 2019-12-05 邵潘英 緑の無公害の情報記憶装置
JP2022502644A (ja) * 2018-09-28 2022-01-11 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレイテッド 実験室診断機器の正温度係数加熱
US11311880B2 (en) 2017-03-28 2022-04-26 Nec Corporation Microchip controlling system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2019211356B2 (en) * 2018-01-24 2023-08-17 Revvity Health Sciences, Inc. Purification of nucleic acids in a microfluidic chip by separation

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322881A (ja) * 1994-05-31 1995-12-12 S R L:Kk オリゴヌクレオチド、それから成るc型肝炎診断試薬及びそれを用いたc型肝炎の診断方法
JP2002529734A (ja) * 1998-11-10 2002-09-10 キュラゲン コーポレイション 生物学的高分子を分離するための方法および処方物
JP2002310858A (ja) 2001-04-09 2002-10-23 Shimadzu Corp マイクロチップ電気泳動におけるサンプル導入方法
WO2005049196A1 (ja) * 2003-11-21 2005-06-02 Ebara Corporation 液体を用いたマイクロチップ装置
WO2008108481A1 (ja) 2007-03-05 2008-09-12 Nec Corporation マイクロチップの流体制御機構
WO2009035061A1 (ja) 2007-09-10 2009-03-19 Nec Corporation マイクロチップの試料処理装置
WO2009035062A1 (ja) 2007-09-10 2009-03-19 Nec Corporation 試料充填装置
WO2009038203A1 (ja) 2007-09-21 2009-03-26 Nec Corporation 温度制御方法及びシステム
WO2009119698A1 (ja) 2008-03-24 2009-10-01 日本電気株式会社 マイクロチップの流路制御機構

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020068357A1 (en) 1995-09-28 2002-06-06 Mathies Richard A. Miniaturized integrated nucleic acid processing and analysis device and method
US20090294287A1 (en) * 2005-05-24 2009-12-03 Ebara Corporation Microchip electrophoresis method and device
US8720036B2 (en) * 2010-03-09 2014-05-13 Netbio, Inc. Unitary biochip providing sample-in to results-out processing and methods of manufacture
EP2486978A1 (de) * 2010-10-28 2012-08-15 Roche Diagnostics GmbH Mikrofluidischer Testträger zum Aufteilen einer Flüssigkeitsmenge in Teilmengen

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322881A (ja) * 1994-05-31 1995-12-12 S R L:Kk オリゴヌクレオチド、それから成るc型肝炎診断試薬及びそれを用いたc型肝炎の診断方法
JP2002529734A (ja) * 1998-11-10 2002-09-10 キュラゲン コーポレイション 生物学的高分子を分離するための方法および処方物
JP2002310858A (ja) 2001-04-09 2002-10-23 Shimadzu Corp マイクロチップ電気泳動におけるサンプル導入方法
WO2005049196A1 (ja) * 2003-11-21 2005-06-02 Ebara Corporation 液体を用いたマイクロチップ装置
WO2008108481A1 (ja) 2007-03-05 2008-09-12 Nec Corporation マイクロチップの流体制御機構
WO2009035061A1 (ja) 2007-09-10 2009-03-19 Nec Corporation マイクロチップの試料処理装置
WO2009035062A1 (ja) 2007-09-10 2009-03-19 Nec Corporation 試料充填装置
WO2009038203A1 (ja) 2007-09-21 2009-03-26 Nec Corporation 温度制御方法及びシステム
WO2009119698A1 (ja) 2008-03-24 2009-10-01 日本電気株式会社 マイクロチップの流路制御機構

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
INDIVIDUAL IDENTIFICATION WITH DNA AND TECHNOLOGY THEREOF, September 2010 (2010-09-01), Retrieved from the Internet <URL:http://www.nec.co.jp/techrep/ja/journal/gIO/nO3/100307.pdf>>
MINORU ASOGAWA: "DNA o Mochiita Kojin Shikibetsu to sono Gijutsu", NEC TECHNICAL JOURNAL, vol. 63, no. 3, 2010, pages 31 - 34, XP055284001, Retrieved from the Internet <URL:http://jpn.nec.com/techrep/journal/g10/n03/pdf/100307.pdf> [retrieved on 20140602] *
See also references of EP2977438A4
TIAN HUIJUN ET AL.: "Single-Strand Conformation Polymorphism Analysis by Capillary and Microchip Electrophoresis: A Fast, Simple Method for Detection of Common Mutations in BRCA1 and BRCA2", GENOMICS, vol. 63, 2000, pages 25 - 34, XP004439453 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11311880B2 (en) 2017-03-28 2022-04-26 Nec Corporation Microchip controlling system
JP2019207217A (ja) * 2018-05-29 2019-12-05 邵潘英 情報記憶装置
JP2019205422A (ja) * 2018-05-29 2019-12-05 邵潘英 緑の無公害の情報記憶装置
JP2022502644A (ja) * 2018-09-28 2022-01-11 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレイテッド 実験室診断機器の正温度係数加熱

Also Published As

Publication number Publication date
EP2977438A4 (en) 2016-12-14
US20160288119A1 (en) 2016-10-06
US10195607B2 (en) 2019-02-05
JPWO2014148265A1 (ja) 2017-02-16
EP2977438A1 (en) 2016-01-27
JP6137301B2 (ja) 2017-05-31

Similar Documents

Publication Publication Date Title
JP6137301B2 (ja) マイクロチップ、dna解析方法及びdna解析システム
JP3899360B2 (ja) Dna増幅装置
Liu et al. Integrated DNA purification, PCR, sample cleanup, and capillary electrophoresis microchip for forensic human identification
CA2865250C (en) Microfluidic cartridge
WO2005094981A1 (en) Cyclic pcr system
CN104745446A (zh) 一种pcr和毛细管电泳集成的微流控芯片及采用该芯片的病原菌快速检测装置
JP2017504348A (ja) 一方向の摺動駆動手段を備えるポリメラーゼ連鎖反応(pcr)装置及びそのポリメラーゼ連鎖反応(pcr)方法
JP6424885B2 (ja) 増幅装置、増幅方法及び増幅システム
KR102198870B1 (ko) Pcr 장치
JP2018500035A (ja) 繰り返し摺動駆動手段を備えるポリメラーゼ連鎖反応(pcr)装置及びこれを用いるポリメラーゼ連鎖反応(pcr)方法
JP6222221B2 (ja) 電気泳動装置及び電気泳動方法
CN203807475U (zh) 一种基于微流控芯片的细菌快速检测装置
US10227634B2 (en) Isotachophoresis enhanced isothermal nucleic acid amplification
EP1950555A2 (en) Microchip inspection system, microchip inspection apparatus and a computer readable medium
CA3148775A1 (en) Systems and modules for nucleic acid amplification testing
JP2007244389A (ja) 核酸増幅基板
WO2015041282A1 (ja) マイクロチップ及びサンプル注入方法
KR101950210B1 (ko) 히터 유닛이 반복 배치된 열 블록을 포함하는 전기화학적 신호를 검출하기 위한 실시간 pcr 장치, 및 이를 이용한 실시간 pcr 방법
US20230302446A1 (en) Cartridge for detecting target analyte
US20240139738A1 (en) Cartridge for detecting target analyte
US20240139726A1 (en) Cartridge for detecting target analyte
US20240139740A1 (en) Cartridge for detecting target analyte
JP2008017779A (ja) ラボオンチップ
Kubicki et al. Preliminary studies on cell-free fetal DNA separation and extraction in glass lab-on-a-chip for capillary gel electrophoresis
JP2009153422A (ja) 生体サンプルプレート及びそれを用いた生体サンプル分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14769006

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015506693

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14778260

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014769006

Country of ref document: EP