JP2008017779A - ラボオンチップ - Google Patents

ラボオンチップ Download PDF

Info

Publication number
JP2008017779A
JP2008017779A JP2006193076A JP2006193076A JP2008017779A JP 2008017779 A JP2008017779 A JP 2008017779A JP 2006193076 A JP2006193076 A JP 2006193076A JP 2006193076 A JP2006193076 A JP 2006193076A JP 2008017779 A JP2008017779 A JP 2008017779A
Authority
JP
Japan
Prior art keywords
nucleic acid
reaction
electrode
chip
lab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006193076A
Other languages
English (en)
Inventor
Ryota Tsurumi
亮太 鶴見
Toshito Shiotani
俊人 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2006193076A priority Critical patent/JP2008017779A/ja
Publication of JP2008017779A publication Critical patent/JP2008017779A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】核酸の複製や合成、反応及び検出等を行う流路部と、流路部における反応を制御する回路部を一つのチップ上に設け、全ての機能が一つの基板上に設けられたラボオンチップの提供。
【解決手段】第1の電極9を具備する核酸調製部3と、該核酸調製部に試料流体を流入するための試料流入部1と、該核酸調製部と流路によって連通した第2の電極8を具備する反応部5と、該反応部に薬液を流入するための薬液流入部7と、該反応部から流体を流出させる流出部と、前記第一及び第2の電極と接続した制御回路30と、前記第2の電極と接続した検出回路40とを、一つの基板100上に具備するラボオンチップ。
【選択図】図1

Description

本発明は、DNA等の微量物質の複製、反応及び検出等の操作を一つのチップ上で行うラボオンチップに関し、より詳細には、反応部の電極を制御する回路を一体として備えるラボオンチップに関する。
近年、ラボオンチップ、集積化マイクロチップ、μ-TAS等と称するチップ上で各種の混合、反応、分離精製、検出を行うチップが実用化され始めている。このラボオンチップの利点は、サンプルが少量ですむことから、血液を採取するときの患者のストレスを低減できること、試薬にかかるコストを抑えられることなどにある。また、反応液が少量であるために反応が速く進み、検出結果が出るまでの時間も短縮できるとされている。
これまでのラボオンチップは、ガラスやプラスチック基板上に流路等の反応部を集積したものであり(例えば特許文献1)、それを制御する回路と組み合わせて使用するものであった。
特開2002−296234号公報
本発明では、核酸の複製や合成、反応及び検出のための流路と共に、その反応を制御する回路をチップ上に設け、全ての機能が一つの基板上に設けられたチップを提供することを目的とする。
本願発明によれば、第1の電極を具備する核酸調製部と、該核酸調製部に試料流体を流入するための試料流入部と、該核酸調製部と流路によって連通した第2の電極を具備する反応部と、該反応部に薬液を流入するための薬液流入部と、該反応部から流体を流出させる流出部と、前記第一及び第2の電極と接続した制御回路と、前記第2の電極と接続した検出回路とを、一つの基板上に具備するラボオンチップが提供される。
試料の反応等を行う流路と制御回路を一つの基板上に設けることにより、チップの製造を簡便且つ迅速にすることが可能である。
図1に、本発明のラボオンチップの概念図を示す。本発明のラボオンチップは、基板100上に流路部10及び回路部20を備える。ここで、基板100は、ガラス、プラスチック、シリコン等から構成されてよいが、特にシリコンが好ましい。
流路部10は、第1の電極9を具備する核酸調製部3と、該核酸調製部3に試料流体を流入するための試料流入部1と、該核酸調製部3と流路によって連通した第2の電極8を具備する反応部5と、該反応部5に薬液を流入するための薬液流入部7と、該反応部から流体を流出させる流路とを具備する。
核酸調製部3は、試料核酸をPCR法によって増幅するためのスペースであり、任意の形状であってよい。核酸は、DNA又はRNAであってよいが、DNAが好ましい。核酸調製部3は、その内部の好ましくは底面に第1の電極9を具備する。この第1の電極9は、後述する制御回路30に接続されており、電流又は電圧が印加されて加熱され、或いは、逆印加されて冷却される。これによって、核酸調製部3内部の溶液の温度が加熱又は冷却され、試料核酸の増幅が実施される。
核酸調製部3には、血液や毛根、口腔粘膜等の検体から抽出した核酸抽出液を注入するための試料流入部1が設けられる。試料流入部1は、核酸調製部3の上面に垂直に設けられた貫通孔であってもよいが、流路によって核酸調製部3と連通した貯留槽として構成されてもよい。この場合、試料流入部1に蓄えられた核酸抽出液は流路を通って核酸調製部3に注入される。核酸増幅反応に必要な試薬は、核酸調製部3に貫通孔を設けて直接注入してもよく、或いは試料流入部を介して注入してもよい。
さらに、試料流入部1に検体から核酸試料を抽出する機能を具備させてもよい。核酸抽出の機能を包含することにより、本発明のラボオンチップ上で核酸抽出から検出までの反応を行うことができる。
反応部5は、試料核酸とプローブ核酸とのハイブリダイゼーションを行うためのスペースであり、任意の形状であってよい。この反応部5は、その内部の好ましくは底面に第2の電極8を具備する。この第2の電極8は、後述する制御回路30に接続されており、電流又は電圧が印加されることができる。
この反応部5では、まず核酸プローブの合成及び固定化を行う。反応部5には、核酸プローブ合成用の塩基等を含有する合成液を注入するための合成液流入部7が設けられる。合成液流入部7は、反応部5の上面に垂直に設けられた貫通孔であってもよいが、流路によって反応部5と連通した貯留槽として構成されてもよい。この場合、合成液流入部7に蓄えられた合成液は流路を通って反応部5に注入される。
核酸プローブの合成及び固定化は、当該分野で周知の方法を用いて行えばよく、例えば第2の電極8に電流を印加することによって電極上で直接核酸プローブを合成してもよい。また、インクジェット法等により電極上に核酸プローブを固定化してもよい。ここで、合成反応に用いた液は、流路を通って排出される。任意に廃液を溜める廃液槽をチップ上に備えてもよい。
反応部5内の電極に核酸プローブが合成及び/又は固定化された後、核酸調製部3で複製された試料核酸が流路を通って反応部5に流入される。ここで、核酸プローブと試料核酸とのハイブリダイゼーション反応が行われる。ハイブリダイゼーション反応に必要な薬液は、反応部5の上面に垂直に設けられた貫通孔から注入してもよく、また或いは、合成液流入部7から注入してもよい。
ハイブリダイゼーション反応によって生成した二本鎖核酸は、二本鎖核酸と特異的に結合するインターカレータ等の電気化学的応答性を有する化合物を結合させる。これによって生じた電流を第2の電極8に接続された電圧電流検出回路40によって検出し、二本鎖核酸の存在の有無を測定する。
以上に記載した種々の流体の移動は、ポンプ等の手段を用いて行ってもよく、また、流路の何れかの位置から過圧・減圧をすることによって行ってもよい。
次に、回路部20を説明する。回路部20は、制御回路30と、検出回路40とを具備する。制御回路30は、第1の電極及び第2の電極と接続している。制御回路30は、これらの電極に電流又は電圧を印加・逆印加する回路である。その一つの機能として、第1の電極9に電流又は電圧を印加して電極を加熱する。また、電流又は電圧を逆印加して電極を冷却する。このように、電極を加熱・冷却することにより、核酸調製部3内の溶液の温度を制御し、核酸の調製反応、例えばPCRを進行させることができる。
制御回路30はさらに、第2の電極8に電流又は電圧を印加して、該電極上で核酸プローブの合成を行う。また、ハイブリダイゼーション反応を行う際に、第2の電極8に電流又は電圧を印加・逆印加して反応部5内の溶液の温度を制御し、反応を促進させてもよい。
次に、制御回路30の実施形態の例を示す。図2に示す第1の実施形態では、制御回路30は、第1の電極9に電流を印加するための第1のカレントミラー回路(Source機能)、第1の電極9に電流を逆印加するための第2のカレントミラー回路(Sink機能)、及び第2の電極8に電流を印加するための第3のカレントミラー回路(Source機能)から構成される。この第1の実施形態では、それぞれのカレントミラー回路に個々に信号となる電流を入力することによって、電極に電流を印加・逆印加することができる。
図3に示す第2の実施形態は、上記第1の実施形態と同じ3つのカレントミラー回路から構成されることができる。この第2の実施形態では、制御信号をインバータ回路に入力し反転信号を生成する。制御信号によって3つのカレントミラー回路のうちの1つに電流が入力され、入力されたカレントミラー回路からのみ電流が出力される。
図4に示す第3の実施形態では、制御回路30は、第1の電極9に直接プラス電圧を印加して電極を加熱し、或いはマイナス電圧を印加して電極を冷却することができる。第2の電極も同様に電圧を印加され、これによって電極上で核酸プローブが合成される。
図5に示す第4の実施形態では、制御信号Aをインバータ回路に入力し反転信号を生成し、これによって、第1の電極と第2の電極の何れかに電圧が印加される。さらに、制御信号Bをインバータ回路に入力し反転信号を生成し、これによって、第1の電極にプラス電圧が印加されるか又はマイナス電圧が印加される。
次に、検出回路40について説明する。検出回路40は積分回路であり、第2の電極8と接続されている。検出回路40は、第2の電極8を介して、反応部5内の溶液中の電流値を検出し、電流値又は電圧値を出力する。図6に、検出回路40の一つの実施形態を示した。制御信号Aが入力されて、検出された電流値がそのまま出力される。制御信号をインバータ回路に入力し反転信号を生成すると、検出された電流値が積分回路に入力され、制御信号Bを入力することで電流が電圧に変化されて出力される。
検出回路40から出力された値を読み取り、ハイブリダイゼーション反応によって二本鎖が生じたか否かを決定する、即ち、試料核酸中に、所望の核酸配列が存在したか否かを決定することができる。
以上説明したように、本発明に従って、核酸の複製、合成、反応、検出等を一つのチップ上で行う際の制御回路をチップ上に形成することにより、ラボオンチップの製造を簡便且つ迅速にすることができる。
本発明のラボオンチップの概念図を示す。 制御回路の一実施形態を示す。 制御回路の一実施形態を示す。 制御回路の一実施形態を示す。 制御回路の一実施形態を示す。 検出回路の一実施形態を示す。
符号の説明
1…試料流入部、3…核酸調製部、5…反応部、7…薬液流入部、8…第2の電極、9…第1の電極、10…流路部、20…回路部、30…制御回路、40…検出回路、100…基板。

Claims (3)

  1. 核酸の複製反応、プローブ核酸の合成及び/又は固定化、及び、ハイブリダイゼーション反応を行う流路部と、該流路部に備えられた電極を制御するための回路部とを一つの基板上に具備するラボオンチップ。
  2. 前記流路部が、第1の電極を具備する核酸調製部と、該核酸調製部に試料流体を流入するための試料流入部と、該核酸調製部と流路によって連通した第2の電極を具備する反応部と、該反応部に薬液を流入するための薬液流入部と、該反応部から流体を流出させる流出部とを具備する、請求項1に記載のラボオンチップ。
  3. 前記回路部が、前記第1及び第2の電極と接続した制御回路と、前記第2の電極と接続した検出回路を具備する、請求項1又は2に記載のラボオンチップ。
JP2006193076A 2006-07-13 2006-07-13 ラボオンチップ Pending JP2008017779A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006193076A JP2008017779A (ja) 2006-07-13 2006-07-13 ラボオンチップ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006193076A JP2008017779A (ja) 2006-07-13 2006-07-13 ラボオンチップ

Publications (1)

Publication Number Publication Date
JP2008017779A true JP2008017779A (ja) 2008-01-31

Family

ID=39074249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006193076A Pending JP2008017779A (ja) 2006-07-13 2006-07-13 ラボオンチップ

Country Status (1)

Country Link
JP (1) JP2008017779A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2284521A2 (en) 2009-08-12 2011-02-16 Sony Corporation Light detecting chip and light detecting device provided with light detecting chip
US8324597B2 (en) 2009-08-12 2012-12-04 Sony Corporation Light detection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2284521A2 (en) 2009-08-12 2011-02-16 Sony Corporation Light detecting chip and light detecting device provided with light detecting chip
US8324597B2 (en) 2009-08-12 2012-12-04 Sony Corporation Light detection device
US8466475B2 (en) 2009-08-12 2013-06-18 Sony Corporation Light detecting chip and light detecting device provided with light detecting chip

Similar Documents

Publication Publication Date Title
Bousse et al. Electrokinetically controlled microfluidic analysis systems
JP5523327B2 (ja) 統合型マイクロ流体デバイスおよび方法
McCalla et al. Microfluidic reactors for diagnostics applications
Wu et al. Fast detection of genetic information by an optimized PCR in an interchangeable chip
JP2010519914A (ja) 固相pH検出を用いたqPCR
WO2016065300A1 (en) Microfluidic cartridge
US20080166770A1 (en) Method and apparatus for amplifying and synthesisizing nucleic acid with denaturant
US10100352B2 (en) DNA chip with micro-channel for DNA analysis
US20130130267A1 (en) Reaction vessel for pcr device and method of performing pcr
JP2008148690A (ja) マイクロチップを用いた核酸増幅方法およびマイクロチップ、それを用いた核酸増幅システム
Kulkarni et al. A review on recent advancements in chamber-based microfluidic PCR devices
JP2008017779A (ja) ラボオンチップ
JP2007244389A (ja) 核酸増幅基板
KR100438821B1 (ko) 멀티채널 pcr과 전기영동을 이용한 소형 유전자 분석장치
US9580747B2 (en) DNA chip with micro-channel for DNA analysis
Felbel et al. Technical Concept of a Flow‐through Microreactor for In‐situ RT‐PCR
Cornelis et al. Silicon µPCR chip for forensic STR profiling with hybeacon probe melting curves
CN109289954A (zh) 一种用于单细胞分析的阵列式pdms-纸基复合微流控芯片及其控制方法
Walsh et al. Influence of segmenting fluids on efficiency, crossing point and fluorescence level in real time quantitative PCR
US20210340595A1 (en) Blood Sample Processing and Nucleic Acid Amplification Systems, Devices, and Methods
Becker et al. Continuous-flow PCR using segmented flow and integrating sample preparation
Lagally et al. Monolithic integrated PCR reactor-CE system for DNA amplification and analysis to the single molecule limit
Keller Microfluidic Apps for centrifugal thermocyclers at constant rotational frequency
Münchow et al. Nucleic acid amplification in microsystems
Kong Fully Integrated Molecular Diagnostic CD Platform Based on Thermal Control