WO2014148260A1 - タイヤ - Google Patents

タイヤ Download PDF

Info

Publication number
WO2014148260A1
WO2014148260A1 PCT/JP2014/055642 JP2014055642W WO2014148260A1 WO 2014148260 A1 WO2014148260 A1 WO 2014148260A1 JP 2014055642 W JP2014055642 W JP 2014055642W WO 2014148260 A1 WO2014148260 A1 WO 2014148260A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
width direction
land
block
curvature
Prior art date
Application number
PCT/JP2014/055642
Other languages
English (en)
French (fr)
Inventor
史貴 小林
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013055380A external-priority patent/JP5635145B2/ja
Priority claimed from JP2013095913A external-priority patent/JP2014213840A/ja
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to CN201480016471.XA priority Critical patent/CN105142932B/zh
Priority to US14/771,063 priority patent/US20160009143A1/en
Priority to EP14768083.9A priority patent/EP2977230B1/en
Publication of WO2014148260A1 publication Critical patent/WO2014148260A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/11Tread patterns in which the raised area of the pattern consists only of isolated elements, e.g. blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0327Tread patterns characterised by special properties of the tread pattern
    • B60C11/0332Tread patterns characterised by special properties of the tread pattern by the footprint-ground contacting area of the tyre tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1353Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove bottom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1369Tie bars for linking block elements and bridging the groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1376Three dimensional block surfaces departing from the enveloping tread contour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1353Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove bottom
    • B60C2011/1361Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove bottom with protrusions extending from the groove bottom

Definitions

  • the present invention relates to a tire having a land portion formed in a tread portion.
  • Patent Document 1 a tire having a flat table portion and a peripheral portion surrounding the table portion in the land portion block is known (see Patent Document 1).
  • the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to improve the exercise performance on a dry road surface of a tire provided with a land portion, and increase the drainage performance of the land portion to increase the tire on a wet road surface. It is to improve the exercise performance.
  • the present invention is a tire having a land portion formed in a tread portion. Further, the ground contact surface of the land portion is formed in a convex shape in which a plurality of curved portions having a predetermined curvature are smoothly connected at least in a cross section of the land portion in the tire width direction.
  • Rc is the curvature of the central curved portion including the center portion of the ground plane and Re is the curvature of the end curved portion including the end portion of the ground plane.
  • the curvature of the curved portion located between the central curved portion and the end curved portion is within the range of Rc to Re.
  • the present invention it is possible to improve the kinematic performance on a dry road surface of a tire provided with a land portion, and to increase the drainage performance of the land portion, thereby improving the kinematic performance of a tire on a wet road surface.
  • the tire of this embodiment is a pneumatic tire for vehicles (for example, for passenger cars), and is formed in a well-known structure with a general tire constituent member. That is, the tire includes a pair of bead portions, a tread portion, and a pair of sidewall portions positioned between the bead portion and the tread portion.
  • the tire includes a pair of bead cores, a carcass disposed between the pair of bead cores, a belt disposed on the outer peripheral side of the carcass, and a tread rubber having a predetermined tread pattern.
  • FIG. 1 is a plan view showing a tread pattern of the tire 1 of the first embodiment, and schematically shows a part of the tire circumferential direction S of the tread portion 2. As illustrated, the tread portion 2 of the tire 1 is formed symmetrically with respect to the center line CL in the tire width direction H.
  • the tire 1 also includes a plurality of circumferential grooves 10 to 12, a plurality of land portions 20 to 23, and a plurality of widthwise grooves 13 and 14 formed in the tread portion 2. A plurality (three in FIG.
  • circumferential grooves 10 to 12 are main grooves extending in the tire circumferential direction S, and the central circumferential groove 10 located on the center line CL and the tire circumferential direction of the central circumferential groove 10 It consists of two outer circumferential grooves 11 and 12 located outside H.
  • the tread portion 2 is partitioned in the tire width direction H by the plurality of circumferential grooves 10 to 12, and a plurality (four in FIG. 1) of land portions 20 to 23 are formed along the tire circumferential direction S.
  • the land portions 20 to 23 are ribs (continuous land portions) continuously extending in the tire circumferential direction S, or block rows (intermittent land portions) including a plurality of blocks arranged in the tire circumferential direction S.
  • the land portions 20 to 23 are block rows having a plurality of blocks 20A to 23A, and are composed of two central land portions 20 and 21 and two shoulder land portions 22 and 23.
  • the tire 1 includes a plurality of blocks 20A to 23A in the tread portion 2 and the land portions 20 to 23.
  • the central land portions 20 and 21 have a plurality of width direction grooves 13 and are formed on both sides of the center line CL of the tread portion 2.
  • the shoulder land portions 22 and 23 have a plurality of width direction grooves 14 and are formed on the outer side (the shoulder portion side) of the central land portions 20 and 21 in the tire width direction H.
  • the width direction grooves 13 and 14 are lateral grooves extending in the tire width direction H, and are formed in the land portions 20 to 23 along the tire width direction H so as to cross the land portions 20 to 23 in the tire width direction H.
  • the land portions 20 to 23 are divided in the tire circumferential direction S by the plurality of widthwise grooves 13 and 14, and a plurality of blocks 20A to 23A are formed in the land portions 20 to 23.
  • the blocks 20A to 23A are formed in the land portions 20 to 23 by the circumferential grooves 10 to 12 and the width direction grooves 13 and 14. Further, the blocks 20A to 23A are partitioned by the circumferential grooves 10 to 12 and the width direction grooves 13 and 14, and are formed in a rectangular shape (rectangular shape in FIG. 1) in the land portions 20 to 23 in plan view. Yes.
  • the plurality of land portions 20 to 23 and the plurality of blocks 20A to 23A are formed on the ground contact surface of the tread portion 2. Further, the ground contact surfaces of the land portions 20 to 23 are formed in a convex shape at least in the cross section of the land portions 20 to 23 in the tire width direction H.
  • the ground planes of the land portions 20 to 23 are the ground planes of the plurality of blocks 20A to 23A, respectively.
  • the entire contact surfaces of the land portions 20 to 23 are each formed in a convex shape that rises outward in the tire radial direction.
  • the ground contact surfaces of the land portions 20 to 23 are convex curved surfaces.
  • a single land portion 20 (central land portion) is taken as an example, and the ground contact surface of the land portion 20 will be described in detail.
  • FIG. 2 is a cross-sectional view of the land portion 20 in the tire width direction H.
  • the ground contact surface 30 of the land portion 20 (block 20A) has a convex shape in which a plurality of curved portions (curved surface portions) 31 to 33 are smoothly connected in the cross section of the land portion 20 in the tire width direction H. Is formed. That is, the ground contact surface 30 is smoothly curved at the boundaries (shown by dotted lines in FIG. 2) of the plurality of curved portions 31 to 33, and the entire ground contact surface 30 is formed into a smoothly curved curved surface (convex curved surface). ing.
  • the plurality of curved portions 31 to 33 each have a predetermined curvature Rc, Re, Rm and are formed in an arc shape.
  • the ground contact surface 30 is composed of two or more (five in FIG. 2) curved portions 31 to 33, and the curvature of the ground contact surface 30 is between the end portions 34 of the ground contact surface 30 in the tire width direction H. Change.
  • the convex shape of the ground contact surface 30 is a convex curve in which a plurality of curved portions 31 to 33 are smoothly connected in the cross section of the land portion 20 in the tire width direction H.
  • the plurality of curved portions 31 to 33 are a central curved portion 31 including a center portion 35 in the tire width direction H of the ground contact surface 30 (land portion 20) and an end curved portion including an end portion 34 in the tire width direction H of the ground contact surface 30. 32 and an intermediate curve portion 33 located between the central curve portion 31 and the end curve portion 32.
  • the curvature of the central curve portion 31 is Rc
  • the curvature of the end curve portion 32 is Re
  • the curvature of the intermediate curve portion 33 is Rm.
  • Rc and Re satisfy the relationship (Rc ⁇ Re), and Re is larger than Rc.
  • the curvature Rm of the intermediate curve portion 33 is in the range of Rc to Re, and the curvatures Rc, Re, and Rm of the plurality of curve portions 31 to 33 are gradually increased from the central curve portion 31 toward the end curve portion 32. Become.
  • the center curve part 31 is formed in the center area
  • the end curve portion 32 is formed in the end region of the land portion 20 in the tire width direction H, and the curvature Re is the curvature of the ground contact surface 30 in the end region.
  • the intermediate curved portion 33 is formed in the intermediate region of the land portion 20 located between the central region and the end region, and the curvature Rm is the curvature of the ground contact surface 30 in the intermediate region.
  • the center portion 35 of the ground contact surface 30 is the top of the ground contact surface 30 that protrudes most outward in the tire radial direction.
  • the ground contact surface 30 is formed in a convex shape in which the plurality of curved portions 31 to 33 are smoothly connected, and the curvatures Rc, Re, and Rm are the central curved portions. It gradually increases from 31 toward the end curve portion 32.
  • the ground pressure of the land portion 20 increases on the center portion 35 side of the ground surface 30 and gradually decreases toward the end portion 34 of the ground surface 30. Accordingly, local deformation of the tread rubber at the end portion 34 is suppressed, and slippage between the road surface and the tread rubber is reduced.
  • the contact area of the land portion 20 can be sufficiently secured, the exercise performance of the tire 1 on the dry road surface can be improved.
  • the convex ground contact surface 30 can efficiently drain the water on the ground contact surface 30 around the land portion 20.
  • the plurality of curved portions 31 to 33 are smoothly connected, local deformation of the tread rubber in the ground contact surface 30 and an increase in the contact pressure can be prevented.
  • water can be smoothly discharged from the ground contact surface 30 around the land portion 20, and the water between the ground contact surface 30 and the road surface can be reliably removed.
  • the curvature Rc of the central curved portion 31 is preferably in the range of 2.5 to 5 (1 / m), and the curvature Re of the end curved portion 32 is in the range of 50 to 200 (1 / m). Is preferred. Further, the ratio of Re to Rc (Re / Rc) is preferably in the range of 15 to 60, and more preferably in the range of 20 to 45. When the width in the tire width direction H of the land portion 20 is W and the width in the tire width direction H of the end curve portion 32 is We, the ratio of We to W (We / W) is 0.05 to 0.2. It is preferable to be within the range. By doing so, Rc, Re, Re / Rc, and We / W can be optimized respectively.
  • the ground contact area of the land portion 20 may be reduced without grounding to the end of the land portion 20.
  • a corner portion (edge portion) is formed at the end portion of the land portion 20 by the ground surface 30 and the side wall without smoothly connecting the ground surface 30 and the side wall of the land portion 20.
  • the ground contact surfaces of one or more land portions 20 to 23 into convex ground contact surfaces 30.
  • the ground contact surfaces of all the land portions 20 to 23 may be convex ground surfaces 30, and the ground surfaces of one or more land portions 20 to 23 may be convex ground surfaces 30.
  • the ground contact surface 30 may be formed in a convex shape only in the cross section in the tire width direction H of the blocks 20A to 23A.
  • the ground plane 30 may be formed in a convex shape in cross sections in all directions passing through the centers of the blocks 20A to 23A.
  • the ground contact surface 30 is formed in a convex shape only in the cross section in the tire width direction H.
  • the present invention may be applied only to the inner portion in the tire width direction H.
  • Two or more curved portions may be provided between the central curved portion 31 and the end curved portion 32 of the ground plane 30.
  • the present invention has been described by taking a pneumatic tire as an example, but the present invention can also be applied to a tire filled with a gas other than air and other tires. Further, the tread portion 2 may be formed with sipes or grooves other than those described above.
  • Each tire is a passenger car tire and was manufactured under the following conditions.
  • Width direction grooves 13 of the central land portions 20 and 21 width 1 mm in the tire circumferential direction S, depth 7 mm, 140 pieces spaced apart in the tire circumferential direction S
  • Width direction grooves 14 of the shoulder land portions 22 and 23 tire circumferential direction 70 pieces with a width of S of 4 mm, a depth of 7 mm, and an interval in the tire circumferential direction S.
  • Each tire was formed such that only the ground contact surfaces of the two central land portions 20 and 21 were different.
  • FIG. 3 is a diagram showing a land portion (block) 40 of a conventional product, and shows one block.
  • 3A is a perspective view of the land portion 40
  • FIG. 3B is a cross-sectional view of the land portion 40.
  • the conventional land portion 40 has a planar table portion 41 and a peripheral portion 42 surrounding the table portion 41.
  • the peripheral part 42 consists of a curved surface formed between the table part 41 and the end part of the land part 40.
  • the ground contact surface 43 of the land portion 40 is formed in a convex shape in which a portion of the table portion 41 forms a planar shape.
  • the ratio of m to M (m / M) is 0.5.
  • the width of the table portion 41 in the tire circumferential direction S is l and the width of the land portion 40 in the tire circumferential direction S is L, the ratio of l to L (l / L) is 0.5.
  • FIG. 4 to 6 are cross-sectional views showing the land portions 44, 45, and 46 of the comparative products 1 to 3, and show cross sections in the tire width direction H.
  • FIG. 4 In the comparative product 1, as shown in FIG. 4, the ground contact surface 44A of the land portion 44 is formed in a flat shape.
  • the ground contact surface 45 ⁇ / b> A of the land portion 45 is formed with a single curvature Ra.
  • the curvature Ra is 3.3 (1 / m).
  • the ground contact surface 46A of the land portion 46 is formed in a flat shape. However, only a part of the end face side of the grounding surface 46A was formed with the curvature Rb.
  • the curvature Rb is 100 (1 / m).
  • the width Ne of the Rb portion in the tire width direction H is 2 mm, which is 8% of the width N of the land portion 46 in the tire width direction H.
  • the curvature Rc of the central curved portion 31 is 3.3 (1 / m)
  • the curvature Re of the end curved portion 32 is 100 (1 / m).
  • the ratio of We to W (We / W) is 0.08, and We is 8% of W. Further, We is 2 mm.
  • each tire was assembled to a rim (6J15), and the internal pressure was adjusted to 180 kPa.
  • driving on a test course with a vehicle equipped with each tire, and driver's sensory evaluation steering stability performance on dry road surface (dry steering stability performance) and steering stability performance on wet road surface (water depth 1mm) (wet steering stability) Performance).
  • dry steering stability performance dry road surface
  • wet steering stability performance wet road surface
  • water depth 10 mm wet steering stability
  • Table 1 shows the evaluation results.
  • the evaluation results are expressed as an index with the conventional product as 100, and the larger the value, the higher the performance.
  • the higher the dry steering stability performance the higher the motion performance (dry performance) of the tire on the dry road surface.
  • the higher the wet steering stability performance and the larger the hydroplaning generation speed the higher the motion performance (wet performance) of the tire on the wet road surface.
  • the hydroplaning generation speed the speed increases as the numerical value increases. As the numerical value increases, hydroplaning is less likely to occur.
  • each performance of the conventional product was higher than that of the comparative product 1, and the wet performance of the conventional product was greatly improved over the dry performance based on the comparative product 1.
  • the wet performance is higher than that of the conventional product.
  • the dry performance is higher than that of the comparative product 2.
  • Comparative Product 3 the dry performance was higher than that of the conventional product, but the wet performance was lower than that of the conventional product. This is because local deformation of the tread rubber occurs in the ground contact surface 46A.
  • the factors that increase each performance are synergistic, and the factors that lower each performance are offset, and both the dry performance and the wet performance are improved.
  • Table 2 shows the evaluation results when the curvature Rc of the central curved portion 31 is changed.
  • Table 2 in addition to the evaluation results of the implementation product A described above, the evaluation results of 6 implementation products 1-1 to 1-6 having different Rc are shown.
  • Table 2 (the same applies to Tables 3 and 4 below), the ratio of We to W (We / W) is expressed as% by multiplying We / W by 100.
  • the curvature Rc of the central curved portion 31 is in the range of 2.5 to 5 (1 / m)
  • the dry performance and the wet performance become higher and are surely improved.
  • the performance of the implementation product A is the highest, and the conditions of the implementation product A are optimal.
  • Table 3 shows the evaluation results when the curvature Re of the end curve portion 32 is changed.
  • Table 3 shows the evaluation results of the six execution products 2-1 to 2-6 having different Re in addition to the evaluation result of the execution product A described above.
  • the curvature Re of the end curve portion 32 is in the range of 50 to 200 (1 / m)
  • the dry performance and the wet performance become higher and are surely improved.
  • the performance of the implementation product A is the highest, and the conditions of the implementation product A are optimal.
  • Table 4 shows the evaluation results when We / W was changed.
  • Table 3 shows the evaluation results of the six implementation products 3-1 to 3-6 having different We / Ws in addition to the evaluation results of the implementation product A described above.
  • We is 5 to 20% of W, that is, when We / W is in the range of 0.05 to 0.2, dry performance and wet performance become higher, Will definitely improve.
  • the performance of the implementation product A is the highest, and the conditions of the implementation product A are optimal.
  • the tire of the second embodiment basically has the same configuration as that of the tire 1 of the first embodiment, and exhibits the same effects as the tire 1 of the first embodiment.
  • the same name as the structure of the tire 1 is used for the structure corresponding to the structure of the tire 1 of the first embodiment.
  • FIG. 7 is a plan view showing a tread pattern of the tire 51 of the second embodiment, and schematically shows a part of the tread portion 52 in the tire circumferential direction S.
  • the tread portion 52 of the tire 51 is formed symmetrically with respect to the center line CL in the tire width direction H.
  • the tire 51 includes a plurality of circumferential grooves 60 to 62, a plurality of width grooves 63 and 64, a plurality of land portions 70 to 73, and a plurality of land portions 70 to 73 formed in the tread portion 52.
  • Blocks 70A to 73A Blocks 70A to 73A.
  • a plurality (three in FIG. 7) of circumferential grooves 60 to 62 are main grooves extending in the tire circumferential direction S, and the central circumferential groove 60 located on the center line CL and the tire circumferential direction of the central circumferential groove 60 It consists of two outer circumferential grooves 61 and 62 located outside H.
  • the tread portion 52 is partitioned in the tire width direction H by the plurality of circumferential grooves 60 to 62, and a plurality (four in FIG. 7) of land portions 70 to 73 are formed along the tire circumferential direction S.
  • the land portions 70 to 73 are block rows (intermittent land portions) composed of a plurality of blocks 70A to 73A arranged in the tire circumferential direction S, and each have a plurality of blocks 70A to 73A.
  • the land portions 70 to 73 include two central land portions 70 and 71 and two shoulder land portions 72 and 73.
  • the central land portions 70 and 71 have a plurality of width direction grooves 63 and are formed on both sides of the center line CL of the tread portion 52.
  • the shoulder land portions 72 and 73 have a plurality of width direction grooves 64 and are formed outside the center land portions 70 and 71 in the tire width direction H (the shoulder portion side).
  • the width direction grooves 63 and 64 are lateral grooves extending in the tire width direction H, and are formed in the land portions 70 to 73 along the tire width direction H so as to cross the land portions 70 to 73 in the tire width direction H.
  • the land portions 70 to 73 are divided in the tire circumferential direction S by the plurality of widthwise grooves 63 and 64, and a plurality of blocks 70 A to 73 A are formed in the land portions 70 to 73.
  • the blocks 70A to 73A are formed in the land portions 70 to 73 by circumferential grooves 60 to 62 and width direction grooves 63, 64.
  • the blocks 70A to 73A are partitioned by circumferential grooves 60 to 62 and width direction grooves 63 and 64, and are formed in the land portions 70 to 73 in a rectangular shape (rectangular shape in FIG. 7) in plan view. Yes.
  • the plurality of land portions 70 to 73 and the plurality of blocks 70A to 73A are formed on the ground contact surface of the tread portion 52.
  • the contact surfaces of the land portions 70 to 73 are the contact surfaces of the plurality of blocks 70A to 73A, respectively.
  • the contact surfaces of the blocks 70A to 73A are formed in a convex shape in the cross section of the blocks 70A to 73A in the tire width direction H. Yes. Further, the contact surfaces of the blocks 70A to 73A are formed in a flat shape in the cross section of the blocks 70A to 73A in the tire circumferential direction S.
  • the entire contact surfaces of the blocks 70A to 73A are formed in a convex shape that rises outward in the tire radial direction.
  • the ground contact surfaces of the blocks 70A to 73A are convex curved surfaces.
  • Each block 70A to 73A has a pair of width direction edges formed by a pair of width direction grooves 63 and 64.
  • the depth of the widthwise grooves 63 and 64 (the depth in the tire radial direction) is more central than both ends of the widthwise edges. It is shallow in the department.
  • the grounding surface of the block 70A and the width direction groove 63 will be described in detail.
  • FIG. 8 is a perspective view of one block 70 ⁇ / b> A defined by the circumferential grooves 60 and 61 and the width direction groove 63.
  • the width direction edge portion 80 is an edge portion extending in the tire width direction H of the block 70A, and is formed at the end portion (both ends) of the block 70A in the tire circumferential direction S by the width direction groove 63. Yes.
  • the depth of the width direction groove 63 is larger than both end portions 81 of the width direction edge 80. It becomes shallow at the central part 82 of the edge 80 in the width direction.
  • An end portion 81 of the width direction edge portion 80 is an end portion of the width direction edge portion 80 in the tire width direction H, and a center portion 82 of the width direction edge portion 80 is a center of the width direction edge portion 80 in the tire width direction H. Part.
  • the convex portion 65 is formed in the width direction groove 63 and protrudes from the bottom of the width direction groove 63 toward the outer side in the tire radial direction.
  • the convex portion 65 has a rectangular parallelepiped shape, is located at the center portion 82 of the width direction edge portion 80, and is integrally formed on the side walls of the two blocks 70A adjacent to the tire circumferential direction S.
  • at least one (at least one) width direction groove 63 has a convex portion 65, and the convex portion 65 causes at least one width direction groove 63 to be larger than both end portions 81 of the width direction edge 80. It is formed so as to be shallow at the central portion 82. Further, the depth of the width direction groove 63 is discontinuously changed by the convex portion 65, and the depth of the width direction groove 63 at the center portion 82 becomes shallower than the depth of the width direction groove 63 at the both end portions 81. .
  • the tire 51 includes corner portions 83 that extend in the tire circumferential direction S at the ends (both ends) in the tire width direction H of the block 70A.
  • the corner 83 is an obtuse edge formed by the side wall 84 (wall surface of the circumferential grooves 60 and 61) of the block 70A and the grounding surface 90 of the block 70A, and between the side wall 84 and the grounding surface 90 of the block 70A. To position.
  • the land portion 70 of the tire 51 is configured by a plurality of blocks 70A, and the ground contact surface 90 of the block 70A of the land portion 70 is formed in the same manner as the ground contact surface 30 of the land portion 20 (block 20A) of the first embodiment.
  • the ground contact surface 90 of the block 70A is formed in a convex shape in which a plurality of curved portions (curved portions) 91 to 93 are smoothly connected in the cross section of the block 70A in the tire width direction H. That is, the grounding surface 90 is smoothly curved at the boundary between the plurality of curved portions 91 to 93 (a part of the boundary is shown by a dotted line in FIG.
  • the entire grounding surface 90 is a curved surface (convex) that is smoothly curved. Curved surface).
  • the plurality of curved portions 91 to 93 each have predetermined curvatures Rc, Re, and Rm, and are formed in an arc shape.
  • the ground contact surface 90 is composed of two or more (five in FIG. 8) curved portions 91 to 93, and the curvature of the ground contact surface 90 is between the end portions 94 of the ground contact surface 90 in the tire width direction H. Change.
  • the convex shape of the ground contact surface 90 is a convex curve in which a plurality of curved portions 91 to 93 are smoothly connected in the cross section of the block 70A in the tire width direction H.
  • the plurality of curved portions 91 to 93 include a central curved portion 91 including a center portion 95 in the tire width direction H of the ground contact surface 90 (block 70A), and an end curved portion 92 including an end portion 94 in the tire width direction H of the ground contact surface 90. And an intermediate curve portion 93 located between the central curve portion 91 and the end curve portion 92.
  • the curvature of the central curve portion 91 is Rc
  • the curvature of the end curve portion 92 is Re
  • the curvature of the intermediate curve portion 93 is Rm.
  • Rc and Re satisfy the relationship (Rc ⁇ Re), and Re is larger than Rc.
  • the curvature Rm of the intermediate curve portion 93 is in the range of Rc to Re, and the curvatures Rc, Re, Rm of the plurality of curve portions 91 to 93 are gradually increased from the central curve portion 91 toward the end curve portion 92. Become.
  • the central curved portion 91 is formed in the central region in the tire width direction H of the block 70A (land portion 70), and the curvature Rc is the curvature of the ground contact surface 90 in the central region.
  • the end curve portion 92 is formed in the end region in the tire width direction H of the block 70A, and the curvature Re is the curvature of the ground contact surface 90 in the end region.
  • the intermediate curved portion 93 is formed in the intermediate region of the block 70A located between the central region and the end region, and the curvature Rm is the curvature of the ground contact surface 90 in the intermediate region.
  • the center portion 95 of the ground contact surface 90 is the top of the ground contact surface 90 that protrudes most outward in the tire radial direction.
  • the ground contact surface 90 of the block 70A (land portion 70) is formed in the same manner as the ground contact surface 30 of the land portion 20 in the tire 1 of the first embodiment. . Therefore, the tire 51 exhibits the same effect as the tire 1 of the first embodiment described above.
  • the convex ground contact surface 90 allows the water on the ground contact surface 90 to be efficiently discharged around the block 70A, and sufficient drainage performance can be ensured for the block 70A. Further, the water between the ground contact surface 90 and the road surface can be removed smoothly, and the actual contact area of the block 70A on the wet road surface can be increased.
  • the drainage performance of the block 70A can be increased, and the motion performance of the tire 51 on the wet road surface can be improved.
  • the ground contact surface 90 in a convex shape, local deformation of rubber at the end 94 of the ground contact surface 90 is suppressed, and slippage between the road surface and the block 70A is reduced.
  • each block 70A the depth of at least one width direction groove 63 is made shallower at the central portion 82 than the end portion 81 of the width direction edge 80. Thereby, the rigidity with respect to compression of the center part of block 70A becomes high, and a deformation
  • a longitudinal or lateral force of the tire 51 is applied to the block 70A, the deformation of the block 70A is suppressed, and the ground contact performance and grip performance of the block 70A are enhanced. Therefore, the ground contact performance of the block 70A can be increased, and the motion performance of the tire 51 on the dry road surface can be improved.
  • both the ground contact performance and the drainage performance of the block 70A can be enhanced, and the motion performance of the tire 51 on the dry road surface and the wet road surface can be further improved.
  • the ground contact surface 90 having a convex shape increases the ground pressure of the block 70 ⁇ / b> A on the center portion 95 side of the ground surface 90 and gradually decreases toward the end portion 94 of the ground surface 90.
  • the water on the ground contact surface 90 can be smoothly discharged around the block 70A, so that the drainage performance of the block 70A can be further enhanced.
  • the contact area of the actual block 70A on the wet road surface can also be increased.
  • the curvature Rc of the central curve portion 91 is preferably in the range of 2.5 to 5 (1 / m), and the curvature Re of the end curve portion 92 is 50 to It is preferable to be within the range of 200 (1 / m).
  • the ratio of Re to Rc (Re / Rc) is preferably in the range of 15-60.
  • the ratio of We to W is in the range of 0.05 to 0.2. It is preferable to be inside. By doing so, it is possible to optimize the We / W and to ensure a sufficient ground contact area in the block 70A while improving the drainage performance of the block 70A.
  • the grounding area of the block 70A may be reduced without grounding to the end of the block 70A.
  • the side wall 84 and the ground contact surface 90 of the block 70A are not smoothly connected, and the corner portion 83 is formed at the end in the tire width direction H of the block 70A by the side wall 84 and the ground contact surface 90. To do. As a result, the end of the block 70A is grounded, so that the grounding area of the block 70A can be ensured.
  • each block 70A by changing the depth of at least one width direction groove 63 so as to be shallower at the center portion 82 than at the end portion 81, the above-described effect by the width direction groove 63 can be obtained. Therefore, the depth of both of the width direction grooves 63 of the pair of width direction grooves 63 that define each block 70A may be changed, or the depth of one of the width direction grooves 63 may be changed. . However, when the depths of both the width direction grooves 63 are changed, the above-described effect by the width direction grooves 63 can be further improved.
  • the above-described effects of the tire 51 can be obtained by forming the blocks 70A to 73A of the one or more land portions 70 to 73 and the width direction grooves 63 and 64 as described above. Accordingly, the blocks 70A to 73A and the width direction grooves 63 and 64 of all the land portions 70 to 73 may be formed as described above, and the blocks 70A to 73A and the width direction grooves of one or more land portions 70 to 73 may be formed. 63 and 64 may be formed as described above. Further, the tread portion 52 may be formed with sipes or grooves other than those described above.
  • Each tire is a passenger car tire and was manufactured under the following conditions. Size: 195 / 65R15 (JATMA YEAR BOOK (2013, Japan Automobile Tire Association Standard)) Circumferential groove: 3 (see FIG. 7), width 9 mm, depth 7.5 mm Arrangement of circumferential grooves: one central circumferential groove 60 on the center line CL in the tire width direction H, and two outer circumferential grooves 61 and 62 outside the tire width direction H of the central land portions 70 and 71 (width 25 mm).
  • Width direction grooves 63 of the central land portions 70, 71 width 2mm in the tire circumferential direction S, depth 7.5mm, 140 spaced in the tire circumferential direction S
  • width direction grooves 64 of the shoulder land portions 72, 73 tire 70 tires having a width of 4 mm in the circumferential direction S, a depth of 7.5 mm, and an interval in the tire circumferential direction S.
  • Each tire was formed so that only the block of the two central land portions 70 and 71 and the width direction groove 63 were different. .
  • FIG. 9 to 11 are front views showing the blocks 100, 101, and 110 of the central land portions 70 and 71 of the comparative products 4 to 6, and show the blocks 100, 101, and 110 viewed from the tire circumferential direction S.
  • the ground contact surface 100A of the block 100 is formed in a planar shape.
  • channel 63 is formed so that a depth may not change.
  • the ground contact surface 101A of the block 101 is formed in a flat shape.
  • the convex part 65 is formed in the width direction groove
  • the height of the convex portion 65 in the tire radial direction is 3 mm, and the length of the convex portion 65 in the tire width direction H is 12 mm.
  • the ground contact surface 111 of the block 110 is formed in a convex shape in which a plurality of curved portions having a predetermined curvature are smoothly connected in the cross section of the block 110 in the tire width direction H.
  • the curvature Rg of the central curve portion 112 including the center portion of the ground surface 111 is 3.3 (1 / m)
  • the curvature Rh of the end curve portion 113 including the end portion of the ground surface 111 is 100 (1 / m). is there.
  • the width Qe of the end curve portion 113 in the tire width direction H is 2 mm, which is 8% of the width Q of the block 110 in the tire width direction H. Further, there is no convex portion 65 in the width direction groove 63.
  • the blocks 70A and 71A of the implementation product B are formed in a shape in which the comparison product 5 and the comparison product 6 are combined. That is, the curvature Rc of the central curved portion 91 is 3.3 (1 / m), and the curvature Re of the end curved portion 92 is 100 (1 / m). Further, a convex portion 65 similar to that of the comparative product 5 is formed in the width direction groove 63. The ratio of We to W (We / W) is 0.08, and We is 8% of W. We is 2 mm.
  • the conventional product has the same land portion (block) 40 as the conventional product (see FIG. 3) described in the first embodiment.
  • each tire was assembled to a rim (6J15), and the internal pressure was adjusted to 180 kPa.
  • driving on a test course with a vehicle equipped with each tire, and driver's sensory evaluation steering stability performance on dry road surface (dry steering stability performance) and steering stability performance on wet road surface (water depth 1mm) (wet steering stability) Performance).
  • dry steering stability performance dry road surface
  • wet steering stability performance wet road surface
  • water depth 10 mm wet steering stability
  • Table 5 shows the evaluation results.
  • the evaluation results are expressed as an index with the conventional product as 100, and the larger the value, the higher the performance.
  • Each performance of the conventional product was higher than that of the comparative product 4, and the wet performance of the conventional product was greatly improved over the dry performance based on the comparative product 4.
  • the rigidity of the block 101 is increased, and the grounding performance of the block 101 is improved. Therefore, the dry performance is higher than that of the conventional product and the comparative product 4.
  • the ground pressure at the center of the block 101 does not become higher than that of the conventional product, so the drainage performance and the wet performance are lower than the conventional product.
  • the comparative product 6 since the water on the ground contact surface 111 can be efficiently discharged by the convex ground contact surface 111, the wet performance is higher than that of the conventional product.
  • the dry performance is equivalent to the conventional product.
  • the ground contact performance and the drainage performance can be improved by the convex ground contact surface 90 and the width direction groove 63, so that both the dry performance and the wet performance are improved.
  • Table 6 shows the evaluation results when the curvature Rc of the central curved portion 91 is changed.
  • Table 6 shows the evaluation results of the six execution products 4-1 to 4-6 having different Rc in addition to the evaluation result of the execution product B described above.
  • the ratio of We to W (We / W) is expressed as% by multiplying We / W by 100.
  • the curvature Rc of the central curved portion 91 is in the range of 2.5 to 5 (1 / m)
  • the dry performance and the wet performance become higher and surely improve.
  • the performance of the implementation product B is the highest, and the conditions of the implementation product B are optimal.
  • Table 7 shows the evaluation results when the curvature Re of the end curve portion 92 is changed.
  • Table 7 shows the evaluation results of the six execution products 5-1 to 5-6 having different Re in addition to the evaluation result of the execution product B described above.
  • the curvature Re of the end curve portion 92 is in the range of 50 to 200 (1 / m)
  • the dry performance and the wet performance become higher and surely improve.
  • the performance of the implementation product B is the highest, and the conditions of the implementation product B are optimal. From Tables 6 and 7, it was also found that when Re / Rc is in the range of 15 to 60, the dry performance and wet performance are higher and are reliably improved.
  • Table 8 shows the evaluation results when We / W was changed.
  • Table 8 shows the evaluation results of the six implementation products 6-1 to 6-6 having different We / Ws in addition to the evaluation result of the implementation product B described above.
  • We is 5 to 20% of W, that is, when We / W is in the range of 0.05 to 0.2, the dry performance and wet performance become higher, Will definitely improve.
  • the performance of the implementation product B is the highest, and the conditions of the implementation product B are optimal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

 タイヤのドライ路面における運動性能を向上するとともに、陸部の排水性能を高くして、ウエット路面におけるタイヤの運動性能を向上する。 タイヤ(1)は、トレッド部(2)に形成された陸部(20)を備えている。陸部(20)の接地面(30)は、少なくともタイヤ幅方向Hの陸部(20)の断面において、所定の曲率Rc、Re、Rmを有する複数の曲線部(31~33)が滑らかに接続された凸形状に形成されている。接地面(30)の中央部(35)を含む中央曲線部(31)の曲率をRc、接地面(30)の端部(34)を含む端曲線部(32)の曲率をReとしたとき、Rc<Reである。中央曲線部(31)と端曲線部(32)の間に位置する曲線部(33)の曲率Rmは、Rc~Reの範囲内にある。

Description

タイヤ
 本発明は、トレッド部に形成された陸部を備えたタイヤに関する。
 陸部を備えたタイヤにおいては、陸部の接地面積を大きくすることで、ドライ路面での運動性能が向上する。また、陸部の端部で生じるトレッドゴムの局所的なせん断変形を抑制することで、路面とトレッドゴムの間の滑りが低減して、タイヤの運動性能が向上する。これらに加えて、陸部の接地面と路面の間の水を除去することで、実際の陸部の接地面積が大きくなり、ウエット路面におけるタイヤの運動性能が向上する。
 接地面の水を効率的に除去するためには、トレッド部の溝による排水に加えて、陸部の接地面から溝へ水を確実に排出する必要がある。この陸部の排水性能に関連して、従来、陸部のブロックに、平面状のテーブル部と、テーブル部を囲む周辺部を有するタイヤが知られている(特許文献1参照)。
 特許文献1に記載された従来のタイヤでは、水がテーブル部から全方向に排出されるため、陸部の排水性能が高くなる。ところが、テーブル部と周辺部の境界部で、トレッドゴムの局所的な変形が生じ、境界部が路面に押し付けられる虞がある。この場合には、境界部の接地圧が上昇するため、テーブル部の水が周辺部に排出され難くなり、陸部の排水性能に影響が生じる虞がある。また、実際の陸部の接地面積が変化して、タイヤの運動性能に影響が生じる虞もある。従って、従来のタイヤに関しては、ドライ路面とウエット路面におけるタイヤの運動性能を、より向上する観点から、改良の余地がある。加えて、この従来のタイヤでは、接地に伴う変形と負担がブロックのテーブル部に集中するため、ブロックの接地性能に影響が生じる虞がある。テーブル部と周辺部の境界部にゴムの局所的な変形が集中することで、ブロックの接地性能と排水性能に影響が生じる虞もある。
特開2004-58810号公報
 本発明は、前記従来の問題に鑑みなされたもので、その目的は、陸部を備えたタイヤのドライ路面における運動性能を向上するとともに、陸部の排水性能を高くして、ウエット路面におけるタイヤの運動性能を向上することである。
 本発明は、トレッド部に形成された陸部を備えたタイヤである。また、陸部の接地面が、少なくともタイヤ幅方向の陸部の断面において、所定の曲率を有する複数の曲線部が滑らかに接続された凸形状に形成されている。接地面の中央部を含む中央曲線部の曲率をRc、接地面の端部を含む端曲線部の曲率をReとしたとき、Rc<Reである。中央曲線部と端曲線部の間に位置する曲線部の曲率が、Rc~Reの範囲内にある。
 本発明によれば、陸部を備えたタイヤのドライ路面における運動性能を向上できるとともに、陸部の排水性能を高くして、ウエット路面におけるタイヤの運動性能を向上することができる。
第1実施形態のタイヤのトレッドパターンを示す平面図である。 陸部のタイヤ幅方向の断面図である。 従来品の陸部を示す図である。 比較品の陸部を示す断面図である。 比較品の陸部を示す断面図である。 比較品の陸部を示す断面図である。 第2実施形態のタイヤのトレッドパターンを示す平面図である。 1つのブロックの斜視図である。 比較品の中央陸部のブロックを示す正面図である。 比較品の中央陸部のブロックを示す正面図である。 比較品の中央陸部のブロックを示す正面図である。
 本発明のタイヤの一実施形態について、図面を参照して説明する。
 本実施形態のタイヤは、車両用(例えば乗用車用)の空気入りタイヤであり、一般的なタイヤ構成部材により周知の構造に形成されている。即ち、タイヤは、一対のビード部と、トレッド部と、ビード部とトレッド部の間に位置する一対のサイドウォール部を備えている。また、タイヤは、一対のビードコアと、一対のビードコアの間に配置されたカーカスと、カーカスの外周側に配置されたベルトと、所定のトレッドパターンを有するトレッドゴムを備えている。
 (第1実施形態)
 図1は、第1実施形態のタイヤ1のトレッドパターンを示す平面図であり、トレッド部2のタイヤ周方向Sの一部を模式的に示している。
 図示のように、タイヤ1のトレッド部2は、タイヤ幅方向Hの中央線CLに関して対称に形成されている。また、タイヤ1は、トレッド部2に形成された、複数の周方向溝10~12、複数の陸部20~23、及び、複数の幅方向溝13、14を備えている。複数(図1では3つ)の周方向溝10~12は、タイヤ周方向Sに延びる主溝であり、中央線CLに位置する中央周方向溝10と、中央周方向溝10のタイヤ幅方向Hの外側に位置する2つの外側周方向溝11、12からなる。
 複数の周方向溝10~12により、トレッド部2がタイヤ幅方向Hに区画されて、複数(図1では4つ)の陸部20~23がタイヤ周方向Sに沿って形成されている。陸部20~23は、タイヤ周方向Sに連続して延びるリブ(連続陸部)、又は、タイヤ周方向Sに並ぶ複数のブロックからなるブロック列(断続陸部)である。ここでは、陸部20~23は、複数のブロック20A~23Aを有するブロック列であり、2つの中央陸部20、21と2つのショルダ陸部22、23からなる。タイヤ1は、トレッド部2及び陸部20~23に、複数のブロック20A~23Aを備えている。
 中央陸部20、21は、複数の幅方向溝13を有し、トレッド部2の中央線CLの両側に形成されている。ショルダ陸部22、23は、複数の幅方向溝14を有し、中央陸部20、21のタイヤ幅方向Hの外側(ショルダ部側)に形成されている。幅方向溝13、14は、タイヤ幅方向Hに延びる横溝であり、陸部20~23内にタイヤ幅方向Hに沿って形成されて、陸部20~23をタイヤ幅方向Hに横断する。複数の幅方向溝13、14により、陸部20~23がタイヤ周方向Sに分断されて、複数のブロック20A~23Aが陸部20~23に形成される。ブロック20A~23Aは、周方向溝10~12と幅方向溝13、14により陸部20~23内に形成されている。また、ブロック20A~23Aは、周方向溝10~12と幅方向溝13、14により区画されて、陸部20~23内に、平面視で四角形状(図1では矩形状)に形成されている。
 複数の陸部20~23及び複数のブロック20A~23Aは、トレッド部2の接地面に形成されている。また、陸部20~23の接地面は、少なくともタイヤ幅方向Hの陸部20~23の断面において、凸形状に形成されている。ここでは、陸部20~23の接地面は、それぞれ複数のブロック20A~23Aの接地面である。タイヤ幅方向Hの陸部20~23(ブロック20A~23A)の断面において、陸部20~23の接地面の全体が、それぞれタイヤ半径方向外側に盛り上がる凸形状に形成されている。その結果、陸部20~23の接地面が、凸状の湾曲面になっている。以下、1つの陸部20(中央陸部)を例に採り、陸部20の接地面について、詳しく説明する。
 図2は、陸部20のタイヤ幅方向Hの断面図である。
 図示のように、陸部20(ブロック20A)の接地面30は、タイヤ幅方向Hの陸部20の断面において、複数の曲線部(曲面部)31~33が滑らかに接続された凸形状に形成されている。即ち、接地面30が、複数の曲線部31~33の境界(図2では点線で示す)で滑らかに湾曲し、接地面30の全体が、滑らかに湾曲する湾曲面(凸曲面)に形成されている。複数の曲線部31~33は、それぞれ所定の曲率Rc、Re、Rmを有し、円弧状に形成されている。このように、接地面30は、2つ以上(図2では5つ)の曲線部31~33からなり、接地面30の曲率は、接地面30のタイヤ幅方向Hの両端部34の間で変化する。また、接地面30の凸形状は、タイヤ幅方向Hの陸部20の断面において、複数の曲線部31~33が滑らかに接続された凸曲線からなる。
 複数の曲線部31~33は、接地面30(陸部20)のタイヤ幅方向Hの中央部35を含む中央曲線部31、接地面30のタイヤ幅方向Hの端部34を含む端曲線部32、及び、中央曲線部31と端曲線部32の間に位置する中間曲線部33からなる。中央曲線部31の曲率をRc、端曲線部32の曲率をRe、中間曲線部33の曲率をRmとする。この場合に、RcとReが(Rc<Re)の関係を満たし、ReがRcよりも大きくなる。また、中間曲線部33の曲率Rmが、Rc~Reの範囲内にあり、複数の曲線部31~33の曲率Rc、Re、Rmが、中央曲線部31から端曲線部32に向かって次第に大きくなる。
 なお、中央曲線部31は、陸部20のタイヤ幅方向Hの中央領域に形成されており、曲率Rcは、中央領域における接地面30の曲率である。端曲線部32は、陸部20のタイヤ幅方向Hの端部領域に形成されており、曲率Reは、端部領域における接地面30の曲率である。中間曲線部33は、中央領域と端部領域の間に位置する陸部20の中間領域に形成されており、曲率Rmは、中間領域における接地面30の曲率である。接地面30の中央部35は、タイヤ半径方向外側に最も突出する接地面30の頂部である。
 以上説明したように、第1実施形態のタイヤ1では、接地面30が複数の曲線部31~33が滑らかに接続された凸形状に形成されるとともに、曲率Rc、Re、Rmが中央曲線部31から端曲線部32に向かって次第に大きくなる。その結果、陸部20の接地圧が、接地面30の中央部35側で高くなり、接地面30の端部34に向かって徐々に低下する。これに伴い、端部34におけるトレッドゴムの局所的な変形が抑制されて、路面とトレッドゴムの間の滑りが低減する。加えて、陸部20の接地面積も充分に確保できるため、タイヤ1のドライ路面における運動性能を向上することができる。
 ウエット路面では、凸形状の接地面30により、接地面30の水を陸部20の周囲に効率的に排出できる。また、複数の曲線部31~33が滑らかに接続するため、接地面30内でのトレッドゴムの局所的な変形と、接地圧の上昇を防止できる。その結果、水を接地面30から陸部20の周囲に円滑に排出でき、接地面30と路面の間の水を確実に除去できる。ウエット路面での実際の陸部20の接地面積を大きくすることもできる。従って、陸部20の排水性能を高くして、ウエット路面におけるタイヤ1の運動性能を向上することができる。
 中央曲線部31の曲率Rcは、2.5~5(1/m)の範囲内にするのが好ましく、端曲線部32の曲率Reは、50~200(1/m)の範囲内にするのが好ましい。また、ReのRcに対する比(Re/Rc)は、15~60の範囲内にするのが好ましく、特に、20~45の範囲内にするのが好ましい。陸部20のタイヤ幅方向Hの幅をW、端曲線部32のタイヤ幅方向Hの幅をWeとしたとき、WeのWに対する比(We/W)は、0.05~0.2の範囲内にするのが好ましい。このようにすることで、Rc、Re、Re/Rc、We/Wを、それぞれ最適化することができる。
 ここで、接地面30と陸部20の側壁を、曲線により滑らかに接続する場合には、陸部20の端部まで接地せずに、陸部20の接地面積が減少する虞がある。これに対し、このタイヤ1では、接地面30と陸部20の側壁を滑らかに接続せずに、接地面30と側壁により、陸部20の端部に角部(エッジ部)を形成する。これにより、陸部20の端部まで接地するため、陸部20の接地面積を確実に確保できる。
 1つ以上の陸部20~23の接地面を凸形状の接地面30にすることで、上記した効果を得ることができる。従って、全ての陸部20~23の接地面を凸形状の接地面30にしてもよく、1つ以上の陸部20~23の接地面を凸形状の接地面30にしてもよい。また、陸部20~23のブロック20A~23Aを凸形状に形成するときに、接地面30を、ブロック20A~23Aのタイヤ幅方向Hの断面のみにおいて凸形状に形成してもよい。接地面30を、ブロック20A~23Aの中心を通る全ての方向の断面において凸形状に形成してもよい。
 陸部20~23がリブである場合には、接地面30は、タイヤ幅方向Hの断面のみにおいて凸形状に形成される。ショルダ陸部22、23の接地面30では、タイヤ幅方向Hの内側部分のみに、本発明を適用してもよい。接地面30の中央曲線部31と端曲線部32の間に、2つ以上の曲線部を設けるようにしてもよい。
 以上、本発明について、空気入りタイヤを例に説明したが、本発明は、空気以外の気体を充填したタイヤや、その他のタイヤにも適用できる。また、トレッド部2には、サイプや、上記した溝以外の溝を形成してもよい。
 (第1実施形態のタイヤ1に関するタイヤ試験)
 第1実施形態のタイヤ1の効果を確認するため、タイヤ1に対応する実施例のタイヤ(実施品Aという)、1つの従来例のタイヤ(従来品という)、及び、3つの比較例のタイヤ(比較品1~3という)を作製して、それらの性能を評価した。
 各タイヤは、乗用車用タイヤであり、以下の条件で作製した。
 サイズ:195/65R15(JATMA YEAR BOOK(2012、日本自動車タイヤ協会規格))
 周方向溝:3つ(図1参照)、幅10mm、深さ7mm
 周方向溝の配置:タイヤ幅方向Hの中央線CLに1つの中央周方向溝10、中央陸部20、21(幅25mm)のタイヤ幅方向Hの外側に2つの外側周方向溝11、12
 中央陸部20、21の幅方向溝13:タイヤ周方向Sの幅1mm、深さ7mm、タイヤ周方向Sに間隔を開けて140個
 ショルダ陸部22、23の幅方向溝14:タイヤ周方向Sの幅4mm、深さ7mm、タイヤ周方向Sに間隔を開けて70個
 各タイヤは、2つの中央陸部20、21の接地面のみが異なるように形成した。
 図3は、従来品の陸部(ブロック)40を示す図であり、1つのブロックを示している。また、図3Aは陸部40の斜視図、図3Bは陸部40の断面図である。
 図示のように、従来品の陸部40は、平面状のテーブル部41と、テーブル部41を囲む周辺部42を有する。周辺部42は、テーブル部41と陸部40の端部の間に形成された湾曲面からなる。陸部40の接地面43は、テーブル部41の部分が平面状をなす凸形状に形成されている。テーブル部41のタイヤ幅方向Hの幅をm、陸部40のタイヤ幅方向Hの幅をMとしたとき、mのMに対する比(m/M)は0.5である。テーブル部41のタイヤ周方向Sの幅をl、陸部40のタイヤ周方向Sの幅をLとしたとき、lのLに対する比(l/L)は0.5である。
 図4~図6は、比較品1~3の陸部44、45、46を示す断面図であり、タイヤ幅方向Hの断面を示している。
 比較品1では、図4に示すように、陸部44の接地面44Aが平面状に形成されている。
 比較品2では、図5に示すように、陸部45の接地面45Aが単一の曲率Raに形成されている。曲率Raは、3.3(1/m)である。
 比較品3では、図6に示すように、陸部46の接地面46Aが平面状に形成されている。ただし、接地面46Aの端部側の一部のみ、曲率Rbに形成した。曲率Rbは、100(1/m)である。Rb部分のタイヤ幅方向Hの幅Neは、2mmであり、陸部46のタイヤ幅方向Hの幅Nの8%になっている。
 実施品A(図2参照)では、中央曲線部31の曲率Rcが3.3(1/m)であり、端曲線部32の曲率Reが100(1/m)である。WeのWに対する比(We/W)は0.08であり、WeはWの8%になっている。また、Weは2mmである。
 試験では、各タイヤをリム(6J15)に組み付けて、内圧を180kPaに調整した。また、各タイヤを装着した車両によりテストコースを走行し、ドライバーの官能評価により、ドライ路面での操縦安定性能(ドライ操縦安定性能)とウエット路面(水深1mm)での操縦安定性能(ウエット操縦安定性能)を評価した。ウエット路面(水深10mm)での走行により、ハイドロプレーニングが発生する速度(ハイドロプレーニング発生速度)も実測して定量的に評価した。
Figure JPOXMLDOC01-appb-T000001
 表1に評価結果を示す。
 評価結果は従来品を100とした指数で表し、数値が大きいほど性能が高いことを示している。また、ドライ操縦安定性能が高いほど、タイヤのドライ路面における運動性能(ドライ性能)が高い。ウエット操縦安定性能が高く、ハイドロプレーニング発生速度の数値が大きいほど、タイヤのウエット路面における運動性能(ウエット性能)が高い。ハイドロプレーニング発生速度に関しては、数値が大きくなるのに伴い速度が速くなり、数値が大きくなるほど、ハイドロプレーニングが発生し難くなる。
 従来品の各性能は比較品1よりも高くなり、かつ、比較品1を基準にして、従来品のウエット性能はドライ性能よりも大きく向上していた。
 比較品2では、接地面45A内でのトレッドゴムの局所的な変形を抑制できるため、ウエット性能が従来品よりも高くなった。従来品では、陸部40の端部におけるトレッドゴムの局所的な変形をより抑制できるため、ドライ性能が比較品2よりも高くなった。
 比較品3では、ドライ性能が従来品よりも高くなるものの、ウエット性能が従来品よりも低くなった。これは、接地面46A内でトレッドゴムの局所的な変形が生じるためである。
 実施品Aでは、各性能を高くする要因が相乗し、かつ、各性能を低くする要因が相殺されて、ドライ性能とウエット性能がともに向上した。
Figure JPOXMLDOC01-appb-T000002
 表2は、中央曲線部31の曲率Rcを変化させたときの評価結果を示している。表2には、上記した実施品Aの評価結果に加えて、Rcが異なる6つの実施品1-1~1-6の評価結果を示す。なお、表2(以下の表3、表4でも同様)では、WeのWに対する比(We/W)は、We/Wを100倍して%で示している。
 表2に示すように、中央曲線部31の曲率Rcが2.5~5(1/m)の範囲内にあるときに、ドライ性能とウエット性能が、より高くなり、確実に向上する。また、実施品Aの性能が最も高く、実施品Aの条件が最適であることが分かった。
Figure JPOXMLDOC01-appb-T000003
 表3は、端曲線部32の曲率Reを変化させたときの評価結果を示している。表3には、上記した実施品Aの評価結果に加えて、Reが異なる6つの実施品2-1~2-6の評価結果を示す。
 表3に示すように、端曲線部32の曲率Reが50~200(1/m)の範囲内にあるときに、ドライ性能とウエット性能が、より高くなり、確実に向上する。また、実施品Aの性能が最も高く、実施品Aの条件が最適であることが分かった。
Figure JPOXMLDOC01-appb-T000004
 表4は、We/Wを変化させたときの評価結果を示している。表3には、上記した実施品Aの評価結果に加えて、We/Wが異なる6つの実施品3-1~3-6の評価結果を示す。
 表4に示すように、WeがWの5~20%である、即ち、We/Wが0.05~0.2の範囲内にあるときに、ドライ性能とウエット性能が、より高くなり、確実に向上する。また、実施品Aの性能が最も高く、実施品Aの条件が最適であることが分かった。
 (第2実施形態)
 次に、第2実施形態のタイヤについて説明する。第2実施形態のタイヤは、基本的には、第1実施形態のタイヤ1と同様の構成を備え、第1実施形態のタイヤ1と同様の効果を発揮する。第2実施形態のタイヤに関して、第1実施形態のタイヤ1の構成に相当する構成には、タイヤ1の構成と同じ名称を用いる。
 図7は、第2実施形態のタイヤ51のトレッドパターンを示す平面図であり、トレッド部52のタイヤ周方向Sの一部を模式的に示している。
 図示のように、タイヤ51のトレッド部52は、タイヤ幅方向Hの中央線CLに関して対称に形成されている。また、タイヤ51は、トレッド部52に、複数の周方向溝60~62と、複数の幅方向溝63、64と、複数の陸部70~73と、陸部70~73に形成された複数のブロック70A~73Aを備えている。
 複数(図7では3つ)の周方向溝60~62は、タイヤ周方向Sに延びる主溝であり、中央線CLに位置する中央周方向溝60と、中央周方向溝60のタイヤ幅方向Hの外側に位置する2つの外側周方向溝61、62からなる。複数の周方向溝60~62により、トレッド部52がタイヤ幅方向Hに区画されて、複数(図7では4つ)の陸部70~73がタイヤ周方向Sに沿って形成されている。陸部70~73は、タイヤ周方向Sに並ぶ複数のブロック70A~73Aからなるブロック列(断続陸部)であり、それぞれ複数のブロック70A~73Aを有する。また、陸部70~73は、2つの中央陸部70、71と2つのショルダ陸部72、73からなる。
 中央陸部70、71は、複数の幅方向溝63を有し、トレッド部52の中央線CLの両側に形成されている。ショルダ陸部72、73は、複数の幅方向溝64を有し、中央陸部70、71のタイヤ幅方向Hの外側(ショルダ部側)に形成されている。幅方向溝63、64は、タイヤ幅方向Hに延びる横溝であり、陸部70~73内にタイヤ幅方向Hに沿って形成されて、陸部70~73をタイヤ幅方向Hに横断する。複数の幅方向溝63、64により、陸部70~73がタイヤ周方向Sに分断されて、複数のブロック70A~73Aが陸部70~73に形成される。ブロック70A~73Aは、周方向溝60~62と幅方向溝63、64により陸部70~73内に形成されている。また、ブロック70A~73Aは、周方向溝60~62と幅方向溝63、64により区画されて、陸部70~73内に、平面視で四角形状(図7では矩形状)に形成されている。
 複数の陸部70~73及び複数のブロック70A~73Aは、トレッド部52の接地面に形成されている。陸部70~73の接地面は、それぞれ複数のブロック70A~73Aの接地面であり、ブロック70A~73Aの接地面は、タイヤ幅方向Hのブロック70A~73Aの断面において凸形状に形成されている。また、ブロック70A~73Aの接地面は、タイヤ周方向Sのブロック70A~73Aの断面において平坦な形状に形成されている。ここでは、タイヤ幅方向Hのブロック70A~73Aの断面において、ブロック70A~73Aの接地面の全体が、タイヤ半径方向外側に盛り上がる凸形状に形成されている。その結果、ブロック70A~73Aの接地面が、凸状の湾曲面になっている。
 各ブロック70A~73Aは、一対の幅方向溝63、64により形成された一対の幅方向縁部を有する。一対の幅方向縁部を形成する一方又は両方の幅方向溝63、64において、幅方向溝63、64の深さ(タイヤ半径方向の深さ)が、幅方向縁部の両端部よりも中央部で浅くなっている。以下、中央陸部70に形成された1つのブロック70Aを例に採り、ブロック70Aの接地面と幅方向溝63について、詳しく説明する。
 図8は、周方向溝60、61と幅方向溝63により区画された1つのブロック70Aの斜視図である。
 図示のように、幅方向縁部80は、ブロック70Aのタイヤ幅方向Hに延びる縁部であり、幅方向溝63により、ブロック70Aのタイヤ周方向Sの端部(両端部)に形成されている。また、各ブロック70Aに幅方向縁部80を形成する幅方向溝63の内の少なくとも1つの幅方向溝63では、幅方向溝63の深さが、幅方向縁部80の両端部81よりも幅方向縁部80の中央部82で浅くなる。幅方向縁部80の端部81は、幅方向縁部80のタイヤ幅方向Hの端部であり、幅方向縁部80の中央部82は、幅方向縁部80のタイヤ幅方向Hの中央部である。
 ここでは、凸部65が、幅方向溝63内に形成されており、幅方向溝63の底部からタイヤ半径方向外側に向かって突出する。凸部65は、直方体形状をなし、幅方向縁部80の中央部82に位置するとともに、タイヤ周方向Sに隣接する2つのブロック70Aの側壁に一体に形成されている。各ブロック70Aにおいて、少なくとも1つ(少なくとも一方)の幅方向溝63に凸部65が形成され、凸部65により、少なくとも1つの幅方向溝63が、幅方向縁部80の両端部81よりも中央部82で浅くなるように形成される。また、凸部65により、幅方向溝63の深さが不連続に変化して、中央部82での幅方向溝63の深さが両端部81での幅方向溝63の深さよりも浅くなる。
 タイヤ51は、ブロック70Aのタイヤ幅方向Hの端部(両端部)に、タイヤ周方向Sに延びる角部83を備えている。角部83は、ブロック70Aの側壁84(周方向溝60、61の壁面)とブロック70Aの接地面90により形成された鈍角な縁部であり、ブロック70Aの側壁84と接地面90の間に位置する。
 タイヤ51の陸部70は、複数のブロック70Aにより構成されており、陸部70のブロック70Aの接地面90は、第1実施形態の陸部20(ブロック20A)の接地面30と同様に形成されている。具体的には、ブロック70Aの接地面90は、タイヤ幅方向Hのブロック70Aの断面において、複数の曲線部(曲面部)91~93が滑らかに接続された凸形状に形成されている。即ち、接地面90が、複数の曲線部91~93の境界(図8では境界の一部を点線で示す)で滑らかに湾曲し、接地面90の全体が、滑らかに湾曲する湾曲面(凸曲面)に形成されている。複数の曲線部91~93は、それぞれ所定の曲率Rc、Re、Rmを有し、円弧状に形成されている。このように、接地面90は、2つ以上(図8では5つ)の曲線部91~93からなり、接地面90の曲率は、接地面90のタイヤ幅方向Hの両端部94の間で変化する。また、接地面90の凸形状は、タイヤ幅方向Hのブロック70Aの断面において、複数の曲線部91~93が滑らかに接続された凸曲線からなる。
 複数の曲線部91~93は、接地面90(ブロック70A)のタイヤ幅方向Hの中央部95を含む中央曲線部91、接地面90のタイヤ幅方向Hの端部94を含む端曲線部92、及び、中央曲線部91と端曲線部92の間に位置する中間曲線部93からなる。中央曲線部91の曲率をRc、端曲線部92の曲率をRe、中間曲線部93の曲率をRmとする。この場合に、RcとReが(Rc<Re)の関係を満たし、ReがRcよりも大きくなる。また、中間曲線部93の曲率Rmが、Rc~Reの範囲内にあり、複数の曲線部91~93の曲率Rc、Re、Rmが、中央曲線部91から端曲線部92に向かって次第に大きくなる。
 なお、中央曲線部91は、ブロック70A(陸部70)のタイヤ幅方向Hの中央領域に形成されており、曲率Rcは、中央領域における接地面90の曲率である。端曲線部92は、ブロック70Aのタイヤ幅方向Hの端部領域に形成されており、曲率Reは、端部領域における接地面90の曲率である。中間曲線部93は、中央領域と端部領域の間に位置するブロック70Aの中間領域に形成されており、曲率Rmは、中間領域における接地面90の曲率である。接地面90の中央部95は、タイヤ半径方向外側に最も突出する接地面90の頂部である。
 以上説明したように、第2実施形態のタイヤ51では、ブロック70A(陸部70)の接地面90が、第1実施形態のタイヤ1における陸部20の接地面30と同様に形成されている。そのため、タイヤ51は、上記した第1実施形態のタイヤ1と同様の効果を発揮する。加えて、ウエット路面では、凸形状の接地面90により、接地面90の水をブロック70Aの周囲に効率的に排出でき、ブロック70Aに充分な排水性能を確保できる。また、接地面90と路面の間の水を円滑に除去でき、ウエット路面での実際のブロック70Aの接地面積を大きくすることができる。従って、ブロック70Aの排水性能を高くして、ウエット路面におけるタイヤ51の運動性能を向上することができる。接地面90を凸形状に形成することで、接地面90の端部94におけるゴムの局所的な変形が抑制されて、路面とブロック70Aの間の滑りが低減する。また、ブロック70Aの接地面積も充分に確保できるとともに、接地に伴う変形と負担がブロック70Aの中央部に集中するのを抑制することができる。
 各ブロック70Aにおいて、少なくとも1つの幅方向溝63の深さを、幅方向縁部80の端部81よりも中央部82で浅くする。これにより、ブロック70Aの中央部の圧縮に対する剛性が高くなり、ブロック70Aの変形が抑制される。タイヤ51の前後方向又は横方向の力がブロック70Aに加えられたときには、ブロック70Aの変形が抑制されて、ブロック70Aの接地性能とグリップ性能が高くなる。従って、ブロック70Aの接地性能を高くして、タイヤ51のドライ路面における運動性能を向上することができる。この幅方向溝63が設けられたブロック70Aの凸形状の接地面90が接地する際には、ブロック70Aの中央部の接地圧が高くなり、接地面90の水が円滑に排出されて、高い排水性能が確実に確保される。
 このように、第2実施形態のタイヤ51では、ブロック70Aの接地性能と排水性能をともに高くして、ドライ路面とウエット路面におけるタイヤ51の運動性能をより向上することができる。また、凸形状(凸曲線)の接地面90により、ブロック70Aの接地圧が、接地面90の中央部95側で高くなり、接地面90の端部94に向かって徐々に低下する。これに伴い、接地面90内での局所的なゴムの変形と接地圧の上昇を防止することができ、ブロック70Aの接地性能を、より高くすることができる。ウエット路面では、接地面90の水をブロック70Aの周囲に円滑に排出できるため、ブロック70Aの排水性能を、より高くすることができる。ウエット路面での実際のブロック70Aの接地面積を、より大きくすることもできる。
 第1実施形態のタイヤ1と同様に、中央曲線部91の曲率Rcは、2.5~5(1/m)の範囲内にするのが好ましく、端曲線部92の曲率Reは、50~200(1/m)の範囲内にするのが好ましい。また、ReのRcに対する比(Re/Rc)は、15~60の範囲内にするのが好ましい。このようにすることで、Rc、Re、Re/Rcを最適化して、ブロック70Aの排水性能をより高くしつつ、充分な接地面積をブロック70Aに確実に確保できる。ブロック70Aのタイヤ幅方向Hの幅をW、端曲線部92のタイヤ幅方向Hの幅をWeとしたとき、WeのWに対する比(We/W)は、0.05~0.2の範囲内にするのが好ましい。このようにすることで、We/Wを最適化して、ブロック70Aの排水性能をより高くしつつ、充分な接地面積をブロック70Aに確実に確保できる。
 ここで、ブロック70Aの側壁84と接地面90を、曲線により滑らかに接続する場合には、ブロック70Aの端部まで接地せずに、ブロック70Aの接地面積が減少する虞がある。これに対し、このタイヤ51では、ブロック70Aの側壁84と接地面90を滑らかに接続せずに、側壁84と接地面90により、ブロック70Aのタイヤ幅方向Hの端部に角部83を形成する。これにより、ブロック70Aの端部まで接地するため、ブロック70Aの接地面積を確実に確保できる。
 各ブロック70Aにおいて、少なくとも1つの幅方向溝63の深さを端部81よりも中央部82で浅くなるように変化させることで、幅方向溝63による上記した効果を得ることができる。従って、各ブロック70Aを区画する一対の幅方向溝63の内、両方の幅方向溝63の深さを変化させてもよく、いずれか一方の幅方向溝63の深さを変化させてもよい。ただし、両方の幅方向溝63の深さを変化させるときには、幅方向溝63による上記した効果を、より向上させることができる。
 1つ以上の陸部70~73のブロック70A~73Aと幅方向溝63、64を上記したように形成することで、タイヤ51の上記した効果を得ることができる。従って、全ての陸部70~73のブロック70A~73Aと幅方向溝63、64を上記したように形成してもよく、1つ以上の陸部70~73のブロック70A~73Aと幅方向溝63、64を上記したように形成してもよい。また、トレッド部52には、サイプや、上記した溝以外の溝を形成してもよい。
 (第2実施形態のタイヤ51に関するタイヤ試験)
 第2実施形態のタイヤ51の効果を確認するため、タイヤ51に対応する実施例のタイヤ(実施品Bという)、1つの従来例のタイヤ(従来品という)、及び、3つの比較例のタイヤ(比較品4~6という)を作製して、それらの性能を評価した。
 各タイヤは、乗用車用タイヤであり、以下の条件で作製した。
 サイズ:195/65R15(JATMA YEAR BOOK(2013、日本自動車タイヤ協会規格))
 周方向溝:3つ(図7参照)、幅9mm、深さ7.5mm
 周方向溝の配置:タイヤ幅方向Hの中央線CLに1つの中央周方向溝60、中央陸部70、71(幅25mm)のタイヤ幅方向Hの外側に2つの外側周方向溝61、62
 中央陸部70、71の幅方向溝63:タイヤ周方向Sの幅2mm、深さ7.5mm、タイヤ周方向Sに間隔を開けて140個
 ショルダ陸部72、73の幅方向溝64:タイヤ周方向Sの幅4mm、深さ7.5mm、タイヤ周方向Sに間隔を開けて70個
 各タイヤは、2つの中央陸部70、71のブロックと幅方向溝63のみが異なるように形成した。
 図9~図11は、比較品4~6の中央陸部70、71のブロック100、101、110を示す正面図であり、タイヤ周方向Sからみたブロック100、101、110を示している。
 比較品4では、図9に示すように、ブロック100の接地面100Aが平面状に形成されている。また、幅方向溝63は、深さが変化しないように形成されている。
 比較品5では、図10に示すように、ブロック101の接地面101Aが平面状に形成されている。また、凸部65が幅方向溝63内に形成され、幅方向溝63の深さが、実施品Bと同様に変化する。凸部65のタイヤ半径方向の高さは3mmであり、凸部65のタイヤ幅方向Hの長さは12mmである。
 比較品6では、図11に示すように、ブロック110の接地面111が、タイヤ幅方向Hのブロック110の断面において、所定の曲率を有する複数の曲線部が滑らかに接続された凸形状に形成されている。接地面111の中央部を含む中央曲線部112の曲率Rgは3.3(1/m)であり、接地面111の端部を含む端曲線部113の曲率Rhは100(1/m)である。端曲線部113のタイヤ幅方向Hの幅Qeは、2mmであり、ブロック110のタイヤ幅方向Hの幅Qの8%になっている。また、幅方向溝63内に凸部65はない。
 実施品B(図8参照)のブロック70A、71Aは、比較品5と比較品6を組み合わせた形状に形成されている。即ち、中央曲線部91の曲率Rcは3.3(1/m)であり、端曲線部92の曲率Reは100(1/m)である。また、比較品5と同様の凸部65が幅方向溝63内に形成されている。WeのWに対する比(We/W)は0.08であり、WeはWの8%になっている。Weは2mmである。従来品は、第1実施形態で説明した従来品(図3参照)と同一の陸部(ブロック)40を有する。
 試験では、各タイヤをリム(6J15)に組み付けて、内圧を180kPaに調整した。また、各タイヤを装着した車両によりテストコースを走行し、ドライバーの官能評価により、ドライ路面での操縦安定性能(ドライ操縦安定性能)とウエット路面(水深1mm)での操縦安定性能(ウエット操縦安定性能)を評価した。ウエット路面(水深10mm)での走行により、ハイドロプレーニングが発生する速度(ハイドロプレーニング発生速度)も実測して定量的に評価した。
Figure JPOXMLDOC01-appb-T000005
 表5に評価結果を示す。評価結果は従来品を100とした指数で表し、数値が大きいほど性能が高いことを示している。
 従来品の各性能は比較品4よりも高くなり、かつ、比較品4を基準にして、従来品のウエット性能はドライ性能よりも大きく向上していた。
 比較品5では、ブロック101の剛性が高くなり、ブロック101の接地性能が向上するため、ドライ性能が従来品及び比較品4よりも高くなった。しかしながら、比較品5では、ブロック101の中央部の接地圧が従来品よりも高くならないため、従来品よりも排水性能及びウエット性能が低くなった。
 比較品6では、凸形状の接地面111により、接地面111の水を効率的に排出できるため、ウエット性能が従来品よりも高くなった。ただし、ドライ性能は従来品と同等である。
 実施品Bでは、凸形状の接地面90と幅方向溝63により、接地性能と排水性能をともに高くできるため、ドライ性能とウエット性能がともに向上した。
Figure JPOXMLDOC01-appb-T000006
 表6は、中央曲線部91の曲率Rcを変化させたときの評価結果を示している。表6には、上記した実施品Bの評価結果に加えて、Rcが異なる6つの実施品4-1~4-6の評価結果を示す。なお、表6(以下の表7、表8でも同様)では、WeのWに対する比(We/W)は、We/Wを100倍して%で示している。
 表6に示すように、中央曲線部91の曲率Rcが2.5~5(1/m)の範囲内にあるときに、ドライ性能とウエット性能が、より高くなり、確実に向上する。また、実施品Bの性能が最も高く、実施品Bの条件が最適であることが分かった。
Figure JPOXMLDOC01-appb-T000007
 表7は、端曲線部92の曲率Reを変化させたときの評価結果を示している。表7には、上記した実施品Bの評価結果に加えて、Reが異なる6つの実施品5-1~5-6の評価結果を示す。
 表7に示すように、端曲線部92の曲率Reが50~200(1/m)の範囲内にあるときに、ドライ性能とウエット性能が、より高くなり、確実に向上する。また、実施品Bの性能が最も高く、実施品Bの条件が最適であることが分かった。表6、表7より、Re/Rcが15~60の範囲内にあるときに、ドライ性能とウエット性能が、より高くなり、確実に向上することも分かった。
Figure JPOXMLDOC01-appb-T000008
 表8は、We/Wを変化させたときの評価結果を示している。表8には、上記した実施品Bの評価結果に加えて、We/Wが異なる6つの実施品6-1~6-6の評価結果を示す。
 表8に示すように、WeがWの5~20%である、即ち、We/Wが0.05~0.2の範囲内にあるときに、ドライ性能とウエット性能が、より高くなり、確実に向上する。また、実施品Bの性能が最も高く、実施品Bの条件が最適であることが分かった。
 1・・・タイヤ、2・・・トレッド部、10~12・・・周方向溝、13、14・・・幅方向溝、20~23・・・陸部、20A~23A・・・ブロック、30・・・接地面、31~33・・・曲線部、34・・・端部、35・・・中央部、51・・・タイヤ、52・・・トレッド部、60~62・・・周方向溝、63、64・・・幅方向溝、65・・・凸部、70~73・・・陸部、70A~73A・・・ブロック、80・・・幅方向縁部、81・・・端部、82・・・中央部、83・・・角部、84・・・側壁、90・・・接地面、91~93・・・曲線部、94・・・端部、95・・・中央部、CL・・・中央線。

Claims (7)

  1.  トレッド部に形成された陸部を備えたタイヤであって、
     陸部の接地面が、少なくともタイヤ幅方向の陸部の断面において、所定の曲率を有する複数の曲線部が滑らかに接続された凸形状に形成され、
     接地面の中央部を含む中央曲線部の曲率をRc、接地面の端部を含む端曲線部の曲率をReとしたとき、Rc<Reであり、
     中央曲線部と端曲線部の間に位置する曲線部の曲率が、Rc~Reの範囲内にあるタイヤ。
  2.  請求項1に記載されたタイヤにおいて、
     中央曲線部の曲率Rcが、2.5~5(1/m)の範囲内にあるタイヤ。
  3.  請求項1又は2に記載されたタイヤにおいて、
     端曲線部の曲率Reが、50~200(1/m)の範囲内にあるタイヤ。
  4.  請求項1ないし3のいずれかに記載されたタイヤにおいて、
     陸部のタイヤ幅方向の幅をW、端曲線部のタイヤ幅方向の幅をWeとしたとき、We/Wが、0.05~0.2の範囲内にあるタイヤ。
  5.  請求項1ないし4のいずれかに記載されたタイヤにおいて、
     陸部が、タイヤ幅方向に延びる複数の幅方向溝と、幅方向溝によりタイヤ幅方向に延びる幅方向縁部が形成された複数のブロックと、を有し、
     陸部のブロックの接地面が、タイヤ幅方向のブロックの断面において凸形状に形成され、
     各ブロックに幅方向縁部を形成する少なくとも1つの幅方向溝の深さが、幅方向縁部の両端部よりも幅方向縁部の中央部で浅くなるタイヤ。
  6.  請求項5に記載されたタイヤにおいて、
     ブロックのタイヤ幅方向の端部に、ブロックの側壁と接地面により形成された角部を備えたタイヤ。
  7.  請求項5又は6に記載されたタイヤにおいて、
     幅方向溝内に、幅方向溝の底部からタイヤ半径方向外側に向かって突出する凸部が形成され、
     凸部が、直方体形状をなし、幅方向縁部の中央部に位置するとともに、タイヤ周方向に隣接する2つのブロックの側壁に一体に形成されたタイヤ。
PCT/JP2014/055642 2013-03-18 2014-03-05 タイヤ WO2014148260A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480016471.XA CN105142932B (zh) 2013-03-18 2014-03-05 轮胎
US14/771,063 US20160009143A1 (en) 2013-03-18 2014-03-05 Tire
EP14768083.9A EP2977230B1 (en) 2013-03-18 2014-03-05 Tire

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-055380 2013-03-18
JP2013055380A JP5635145B2 (ja) 2013-03-18 2013-03-18 タイヤ
JP2013-095913 2013-04-30
JP2013095913A JP2014213840A (ja) 2013-04-30 2013-04-30 タイヤ

Publications (1)

Publication Number Publication Date
WO2014148260A1 true WO2014148260A1 (ja) 2014-09-25

Family

ID=51579949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055642 WO2014148260A1 (ja) 2013-03-18 2014-03-05 タイヤ

Country Status (4)

Country Link
US (1) US20160009143A1 (ja)
EP (1) EP2977230B1 (ja)
CN (1) CN105142932B (ja)
WO (1) WO2014148260A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016154221A1 (en) * 2015-03-23 2016-09-29 Cooper Tire & Rubber Company Dual dome convex tire tread block or tread rib
US20170297377A1 (en) * 2014-10-27 2017-10-19 Bridgestone Corporation Pneumatic tire
WO2017217425A1 (ja) * 2016-06-13 2017-12-21 株式会社ブリヂストン タイヤ

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150306917A1 (en) * 2012-12-19 2015-10-29 Bridgestone Americas Tire Operations, Llc Tire with rounded tread elements
JP6834291B2 (ja) * 2016-09-21 2021-02-24 住友ゴム工業株式会社 空気入りタイヤ
EP4065389B1 (en) * 2019-11-27 2023-08-16 Compagnie Generale Des Etablissements Michelin A tread for improving snow performance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000050252A1 (fr) * 1999-02-22 2000-08-31 Bridgestone Corporation Pneumatique
JP2004058810A (ja) 2002-07-29 2004-02-26 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2009023601A (ja) * 2007-07-23 2009-02-05 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2012201253A (ja) * 2011-03-25 2012-10-22 Sumitomo Rubber Ind Ltd 重荷重用空気入りタイヤ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4722378A (en) * 1986-05-19 1988-02-02 The Goodyear Tire & Rubber Company Tire treads with convex elements
JP3001220B2 (ja) * 1990-02-23 2000-01-24 株式会社ブリヂストン 空気入りタイヤ
JP3533246B2 (ja) * 1993-11-05 2004-05-31 株式会社ブリヂストン 空気入りタイヤ
US7478657B2 (en) * 2002-09-10 2009-01-20 The Yokohama Rubber Co., Ltd. Pneumatic tire with ground contact surface of land portion having circular arcs
DE102010000484A1 (de) * 2010-02-19 2011-08-25 Continental Reifen Deutschland GmbH, 30165 Fahrzeugluftreifen
JP5753375B2 (ja) * 2010-12-02 2015-07-22 住友ゴム工業株式会社 空気入りタイヤ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000050252A1 (fr) * 1999-02-22 2000-08-31 Bridgestone Corporation Pneumatique
JP2004058810A (ja) 2002-07-29 2004-02-26 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2009023601A (ja) * 2007-07-23 2009-02-05 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2012201253A (ja) * 2011-03-25 2012-10-22 Sumitomo Rubber Ind Ltd 重荷重用空気入りタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2977230A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170297377A1 (en) * 2014-10-27 2017-10-19 Bridgestone Corporation Pneumatic tire
US10647158B2 (en) * 2014-10-27 2020-05-12 Bridgestone Corporation Pneumatic tire
WO2016154221A1 (en) * 2015-03-23 2016-09-29 Cooper Tire & Rubber Company Dual dome convex tire tread block or tread rib
US11077720B2 (en) 2015-03-23 2021-08-03 Cooper Tire & Rubber Company Dual dome convex tire tread block or tread rib
WO2017217425A1 (ja) * 2016-06-13 2017-12-21 株式会社ブリヂストン タイヤ
JP2017222208A (ja) * 2016-06-13 2017-12-21 株式会社ブリヂストン タイヤ

Also Published As

Publication number Publication date
CN105142932A (zh) 2015-12-09
EP2977230A4 (en) 2016-03-02
EP2977230B1 (en) 2017-05-03
EP2977230A1 (en) 2016-01-27
US20160009143A1 (en) 2016-01-14
CN105142932B (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
US10688830B2 (en) Pneumatic tire
JP5981952B2 (ja) 空気入りタイヤ
JP5971280B2 (ja) 空気入りタイヤ
JP6834291B2 (ja) 空気入りタイヤ
US20160368326A1 (en) Pneumatic tire
JP6047123B2 (ja) 空気入りタイヤ
KR102565115B1 (ko) 공기 타이어
JP4156018B1 (ja) 空気入りタイヤ
WO2014148260A1 (ja) タイヤ
EP2933120B1 (en) Pneumatic tire
JP7035769B2 (ja) タイヤ
JP6819110B2 (ja) タイヤ
JP5781566B2 (ja) 空気入りタイヤ
JP6139843B2 (ja) 空気入りタイヤ
JP5386032B2 (ja) 空気入りタイヤ
KR102569782B1 (ko) 타이어
KR20180001439A (ko) 타이어
JP2010126076A (ja) タイヤ
WO2017043071A1 (ja) タイヤ
JP2012086599A (ja) 空気入りタイヤ
JP6902335B2 (ja) タイヤ
JP5200123B2 (ja) 重荷重用空気入りタイヤ
JP6416024B2 (ja) 空気入りタイヤ
JP2013039871A (ja) 空気入りタイヤ
CN104349914A (zh) 轮胎

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480016471.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14768083

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14771063

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014768083

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014768083

Country of ref document: EP