WO2014148206A1 - 金属酸化物膜及びその製造方法、薄膜トランジスタ、表示装置、イメージセンサ並びにx線センサ - Google Patents

金属酸化物膜及びその製造方法、薄膜トランジスタ、表示装置、イメージセンサ並びにx線センサ Download PDF

Info

Publication number
WO2014148206A1
WO2014148206A1 PCT/JP2014/054363 JP2014054363W WO2014148206A1 WO 2014148206 A1 WO2014148206 A1 WO 2014148206A1 JP 2014054363 W JP2014054363 W JP 2014054363W WO 2014148206 A1 WO2014148206 A1 WO 2014148206A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide semiconductor
semiconductor film
film
peak
nitrate
Prior art date
Application number
PCT/JP2014/054363
Other languages
English (en)
French (fr)
Inventor
真宏 高田
田中 淳
鈴木 真之
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020157025431A priority Critical patent/KR20150119360A/ko
Publication of WO2014148206A1 publication Critical patent/WO2014148206A1/ja
Priority to US14/856,047 priority patent/US9515193B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • C01G15/006Compounds containing, besides gallium, indium, or thallium, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02614Transformation of metal, e.g. oxidation, nitridation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Definitions

  • the present invention relates to a metal oxide film and a manufacturing method thereof, a thin film transistor, a display device, an image sensor, and an X-ray sensor.
  • a metal oxide film as an oxide semiconductor film or an oxide conductor film has been put into practical use in production by a vacuum film forming method, and is currently attracting attention.
  • research and development have been actively conducted on the production of oxide semiconductor films by a liquid phase process for the purpose of easily forming oxide semiconductor films having high semiconductor characteristics at low temperature and atmospheric pressure. ing.
  • Recently, a method of manufacturing a thin film transistor (TFT: Thin Film Transistor) having a high transport property at a low temperature of 150 ° C. or lower by applying a solution on a substrate and using ultraviolet rays has been reported (Nature, 489 (2012)). 128.).
  • the thin film containing the precursor of the metal oxide semiconductor is formed by heating at about 150 ° C. to volatilize the solvent, and then in the presence of oxygen.
  • a method for producing a metal oxide semiconductor by irradiating with ultraviolet light has been disclosed (see International Publication WO2009 / 011224).
  • a metal oxide semiconductor precursor aqueous solution containing nitrate or the like is applied onto a base material, and a solvent is volatilized and dried at about 80 to 100 ° C. to form a metal oxide semiconductor precursor film.
  • a method for producing a metal oxide semiconductor in which the metal oxide semiconductor precursor film is converted to a metal oxide semiconductor by oxygen plasma method, thermal oxidation method, UV ozone method, or microwave heating after heating at 200 ° C. See Japanese Patent Application Laid-Open No. 2010-258057).
  • a heating step is required between the drying step and the oxidation step by the UV ozone method in the presence of oxygen, and the method disclosed in Japanese Patent Application Laid-Open No. 2010-258057. Then, a heating process is required between the drying process and the conversion process.
  • the present invention provides a metal oxide film that can be manufactured at a relatively low temperature and under atmospheric pressure, a method for manufacturing the metal oxide film, an oxide semiconductor film, a thin film transistor, a display device, an image sensor, and an X-ray sensor. For the purpose.
  • ⁇ 1> In an XPS spectrum obtained by X-ray photoelectron spectroscopic analysis, a component having a peak position in the range where the binding energy is 402 eV or more and 405 eV or less is included, and the intensity of peak energy attributed to 1s electrons of nitrogen is determined by peak separation.
  • A represents the peak area of a component having a peak position in the range where the binding energy is 402 eV or more and 405 eV or less
  • B is the peak of the component having a peak position in the range where the binding energy is 406 eV or more and 408 eV or less. Represents the area.
  • ⁇ 5> The metal oxide film according to any one of ⁇ 1> to ⁇ 4>, containing indium.
  • ⁇ 6> The metal oxide film according to ⁇ 5>, comprising indium and at least one selected from the group consisting of Zn, Sn, Ga, and Al.
  • ⁇ 7> The metal oxide film according to ⁇ 5> or ⁇ 6>, wherein the indium content is 50 atom% or more of all metal elements contained in the metal oxide film.
  • ⁇ 8> a precursor film forming step of forming a precursor film of an oxide semiconductor by applying a solution containing nitrate on the substrate; A drying step of drying the precursor film by heating the substrate to a temperature of 35 ° C. or higher and 100 ° C.
  • ⁇ 9> The method for producing an oxide semiconductor film according to ⁇ 8>, wherein the temperature of the substrate in the drying step is 35 ° C. or higher and 90 ° C. or lower.
  • ⁇ 10> The method for producing an oxide semiconductor film according to ⁇ 8> or ⁇ 9>, wherein the substrate temperature in the oxide semiconductor film forming step is 200 ° C. or lower.
  • a peak energy that includes a component having a peak position in a range of 402 eV or more and 405 eV or less and that belongs to 1s electrons of nitrogen
  • A represents the peak area of a component having a peak position in the range where the binding energy is 402 eV or more and 405 eV or less
  • B is the peak of the component having a peak position in the range of binding energy 406 eV or more and 408 eV or less. Represents the area.
  • ⁇ 12> The oxide semiconductor film according to any one of ⁇ 8> to ⁇ 11>, wherein in the oxide semiconductor film formation step, the precursor film is irradiated with ultraviolet light having a wavelength of 254 nm or less at an intensity of 10 mW / cm 2 or more. Manufacturing method.
  • ⁇ 13> The method for producing an oxide semiconductor film according to any one of ⁇ 8> to ⁇ 12>, wherein the solution containing nitrate contains at least indium nitrate as nitrate.
  • the solution containing indium nitrate further contains one or more metal atoms selected from the group consisting of Zn, Sn, Ga, and Al.
  • the oxide semiconductor film formation step is performed in a non-oxidizing atmosphere.
  • ⁇ 16> The method for producing an oxide semiconductor film according to any one of ⁇ 8> to ⁇ 15>, wherein the ultraviolet light source in the oxide semiconductor film forming step is a low-pressure mercury lamp.
  • ⁇ 17> The method for producing an oxide semiconductor film according to any one of ⁇ 8> to ⁇ 16>, wherein the solution containing nitrate contains methanol or methoxyethanol.
  • ⁇ 18> The method for producing an oxide semiconductor film according to any one of ⁇ 8> to ⁇ 17>, wherein drying of the precursor film is started within 5 minutes after the precursor film forming step.
  • a solution containing nitrate is applied to the substrate by at least one coating method selected from an ink jet method, a dispenser method, a relief printing method, and an intaglio printing method to form a precursor film.
  • ⁇ 22> An oxide selected from the group consisting of an oxide semiconductor film that is a metal oxide film according to any one of ⁇ 1> or ⁇ 3> to ⁇ 7>, and an oxide semiconductor film according to ⁇ 21>
  • a display device comprising the thin film transistor according to ⁇ 22>.
  • ⁇ 24> An image sensor comprising the thin film transistor according to ⁇ 22>.
  • ⁇ 25> An X-ray sensor comprising the thin film transistor according to ⁇ 22>.
  • a metal oxide film that can be manufactured at a relatively low temperature and under atmospheric pressure, a method for manufacturing the metal oxide film, an oxide semiconductor film, a thin film transistor, a display device, an image sensor, and an X-ray sensor are provided. Is done.
  • FIG. 1 is a schematic view showing a configuration of an example (bottom gate-bottom contact type) thin film transistor manufactured according to the present invention.
  • FIG. It is a schematic sectional drawing which shows a part of liquid crystal display device of embodiment. It is a schematic block diagram of the electrical wiring of the liquid crystal display device of FIG. It is a schematic sectional drawing which shows a part of organic EL display apparatus of embodiment.
  • FIG. 11B is a cross-sectional view of the simplified TFT shown in FIG. 11A along the line AA. It is a diagram showing, V g -I d characteristics of the TFT manufactured in Example 1. It is a diagram showing, V g -I d characteristics of the TFT manufactured in Example 2. It is a diagram showing, V g -I d characteristics of the TFT manufactured in Example 3.
  • FIG. 4 is a graph showing XPS spectra of oxide semiconductor layers manufactured in Examples 1 to 4 and Comparative Example 1.
  • FIG. 6 is a graph showing a relationship between mobility and the ratio A / (A + B) of binding energy peak areas in XPS spectra for the oxide semiconductor layers manufactured in Examples 1 to 4 and Comparative Example 1. It is a figure which shows the ultraviolet light absorption spectrum of the solution in a reference example.
  • a metal oxide film of the present invention a method for manufacturing the metal oxide film, a thin film transistor having an oxide semiconductor film manufactured according to the present invention, a display device, an X-ray sensor, and the like will be specifically described.
  • members (components) having the same or corresponding functions are denoted by the same reference numerals and description thereof is omitted as appropriate.
  • a numerical range is indicated by the symbol “ ⁇ ”, a lower limit value and an upper limit value are included.
  • the conductivity of the metal oxide film according to the present invention is not limited, and the present invention can be applied to the manufacture of an oxide semiconductor film, an oxide conductive film, or an oxide insulating film. An oxide semiconductor film and a manufacturing method thereof will be mainly described.
  • the present inventors can realize uniform film formation by applying an appropriate drying process in the formation of an oxide semiconductor film using a nitrate solution having poor coatability and difficult to form a uniform film.
  • an oxide semiconductor film having high semiconductor characteristics can be obtained by appropriately selecting the treatment temperature in the drying step and absorbing the ultraviolet rays in the oxide semiconductor precursor film to decompose nitrate. That is, after a solution containing a nitrate containing metal atoms constituting the oxide semiconductor film is applied on the substrate to form a precursor film of the oxide semiconductor, the precursor film is dried at 35 ° C. or higher and 100 ° C. or lower. Then, by irradiating the precursor film with ultraviolet rays and absorbing it, the nitrate bonds in the precursor film are decomposed to obtain an oxide semiconductor film.
  • the manufacturing method of the oxide semiconductor film of the present invention includes a precursor film forming step of forming a precursor film of an oxide semiconductor by applying a solution containing nitrate on the substrate, and a temperature of 35 ° C. to 100 ° C.
  • the maximum temperature reached by the substrate in the oxide semiconductor film forming step is 120 ° C. or higher.
  • the XPS spectrum obtained by X-ray photoelectron spectroscopy of the oxide semiconductor film includes a component having a peak position in the range of 402 eV to 405 eV. And when the intensity
  • A represents the peak area of a component having a peak position in the range where the binding energy is 402 eV or more and 405 eV or less
  • B is the peak of the component having a peak position in the range where the binding energy is 406 eV or more and 408 eV or less. Represents the area.
  • Precursor film forming step First, a solution containing a nitrate and a substrate for forming an oxide semiconductor film are prepared, and a solution containing a nitrate is applied onto the substrate to form an oxide semiconductor precursor film.
  • the structure of the substrate may be a single layer structure or a laminated structure.
  • the material constituting the substrate is not particularly limited, and glass, an inorganic substrate such as YSZ (Yttria-Stabilized Zirconia), a resin substrate, a composite material thereof, or the like can be used. Among these, a resin substrate or a composite material thereof is preferable from the viewpoint of light weight and flexibility.
  • the resin substrate is preferably excellent in heat resistance, dimensional stability, solvent resistance, electrical insulation, workability, low air permeability, low moisture absorption, and the like.
  • the resin substrate may include a gas barrier layer for preventing permeation of moisture and oxygen, an undercoat layer for improving the flatness of the resin substrate and adhesion with the lower electrode, and the like.
  • the thickness of the substrate used in the present invention is not particularly limited, but is preferably 50 ⁇ m or more and 500 ⁇ m or less.
  • the thickness of the substrate is 50 ⁇ m or more, the flatness of the substrate itself is further improved.
  • the thickness of the substrate is 500 ⁇ m or less, the flexibility of the substrate itself is further improved, and the use as a substrate for a flexible device becomes easier.
  • a solution containing nitrate is obtained by weighing a solute such as nitrate containing a metal atom forming an oxide semiconductor so that the solution has a desired nitrate concentration, and stirring and dissolving in a solvent.
  • the temperature and time for stirring are not particularly limited as long as the solute is sufficiently dissolved.
  • the nitrate may be a hydrate.
  • the concentration of nitrate in the solution containing nitrate can be selected according to the viscosity of the solution and the target film thickness, but from the viewpoint of film flatness and productivity, 0.01 mol / L to 0.5 mol / L. It is preferable that it is 0.05 mol / L to 0.2 mol / L.
  • the solution containing nitrate may contain another metal atom-containing compound depending on the target oxide semiconductor.
  • the metal atom-containing compound include metal salts other than nitrates, metal halides, and organometallic compounds.
  • metal salts other than nitrates include sulfates, phosphates, carbonates, acetates and oxalates, metal halides such as chlorides, iodides and bromides, and organometallic compounds such as metal alkoxides and organic acids. Examples thereof include salts and metal ⁇ -diketonates.
  • the solution containing nitrate preferably contains indium nitrate as the nitrate.
  • indium nitrate the film can efficiently absorb ultraviolet light in the subsequent oxide semiconductor film forming step, an indium-containing oxide can be easily formed, and high electrical conductivity can be obtained.
  • the solution containing nitrate preferably contains one or more metal components selected from the group consisting of Zn, Sn, Ga, and Al as a metal element other than indium.
  • the threshold voltage of the obtained oxide semiconductor film can be controlled to a desired value, and the electrical stability of the film is also improved. improves.
  • oxide semiconductors containing indium and other metal elements include In—Ga—Zn—O, In—Zn—O, In—Ga—O, In—Sn—O, and In—Sn—Zn—O. Can be mentioned.
  • the solvent used for the solution containing nitrate is not particularly limited as long as a solute such as nitrate is dissolved.
  • examples thereof include water, alcohol solvents (methanol, ethanol, propanol, ethylene glycol, etc.), amide solvents (N N-dimethylformamide, N, N-dimethylacetamide, etc.), ketone solvents (acetone, N-methylpyrrolidone, sulfolane, N, N-dimethylimidazolidinone, acetylacetone, etc.), ether solvents (tetrahydrofuran, methoxyethanol, etc.), Examples include nitrile solvents (acetonitrile, etc.) and other heteroatom-containing solvents other than the above. In particular, it is preferable to use methanol or methoxyethanol from the viewpoint of solubility and paintability.
  • a method for forming a precursor film of an oxide semiconductor by applying a solution containing nitrate on a substrate is not particularly limited, and examples thereof include spray coating, spin coating, blade coating, and dip coating. , Casting method, roll coating method, bar coating method, die coating method, mist method, ink jet method, dispenser method, screen printing method, letterpress printing method, and intaglio printing method.
  • the substrate is heated to a temperature of 35 ° C. to 100 ° C. to dry the precursor film.
  • a drying temperature 35 ° C. or higher and 100 ° C. or lower.
  • the method of heat treatment in the drying step is not particularly limited, and can be selected from hot plate heating, electric furnace heating, infrared heating, microwave heating, and the like.
  • the drying step heat treatment
  • the drying process is preferably started within 5 minutes. If the drying process is started within 5 minutes after the oxide semiconductor precursor film is formed, the flatness of the film can be kept substantially uniform.
  • the substrate temperature in the drying step is preferably controlled to 35 ° C. or higher and 100 ° C. or lower, and preferably controlled to 35 ° C. or higher and 90 ° C. or lower. If it is 35 ° C. or higher, the flatness of the film is kept uniform, and if it is 100 ° C. or lower, preferably 90 ° C. or lower, an oxide semiconductor film having high semiconductor characteristics can be obtained more reliably.
  • the time for the heat treatment is not particularly limited, but is preferably 15 seconds or longer and 10 minutes or shorter from the viewpoint of film uniformity and productivity. Moreover, although there is no restriction
  • the dried precursor film absorbs ultraviolet rays to decompose nitrate, thereby forming an oxide semiconductor film.
  • UV irradiation examples of the light source used for irradiating the precursor film with ultraviolet rays include a UV lamp and a laser.
  • UV lamps are preferred.
  • UV lamps include, for example, excimer lamps, deuterium lamps, low pressure mercury lamps, high pressure mercury lamps, ultra high pressure mercury lamps, metal halide lamps, helium lamps, carbon arc lamps, cadmium lamps, electrodeless discharge lamps, and the like.
  • a low-pressure mercury lamp is preferable because a high ultraviolet illuminance can be easily obtained.
  • the oxide semiconductor film forming step it is preferable to irradiate the precursor film surface with ultraviolet light having a wavelength of 254 nm or less with an illuminance of 10 mW / cm 2 or more.
  • the illuminance of ultraviolet light having a wavelength of 254 nm or less is 10 mW / cm 2 or more, an oxide semiconductor film having high semiconductor characteristics can be obtained, and the oxide semiconductor film can be formed in a short time.
  • the UV ozone method is used as a method for oxidizing a precursor thin film of a metal oxide semiconductor using ultraviolet rays (see International Publication WO2009 / 011224).
  • the UV ozone method irradiates ultraviolet light in the presence of oxygen and absorbs it into oxygen to generate ozone.
  • the precursor thin film is obtained by the action of active oxygen having strong oxidizing power obtained by decomposing ozone. This is an oxidation method.
  • the generation of ozone becomes a factor that lowers the intensity of ultraviolet light applied to the precursor film.
  • the method of forming an oxide semiconductor film from a precursor film is not a technique using the oxidizing power of active oxygen, but ultraviolet rays are directly absorbed into the precursor film to decompose nitrate, It is a technique to form.
  • the oxygen concentration in the atmosphere is preferably low, and more preferably in a non-oxidizing atmosphere such as a nitrogen atmosphere or an argon atmosphere.
  • the substrate temperature at the time of ultraviolet treatment (at the time of ultraviolet irradiation treatment) (the maximum temperature reached by the substrate at the time of ultraviolet treatment, the same applies hereinafter) is 120 ° C. or higher, but is preferably 120 ° C. or higher and 200 ° C. or lower.
  • the temperature is 120 ° C. or higher, an oxide semiconductor film having high semiconductor characteristics can be obtained.
  • the temperature is 200 ° C. or lower, application to a resin substrate with low heat resistance is facilitated.
  • the ratio A / (A + B) in the formula (1) (A / (A + B) ⁇ 0.39) tends to increase.
  • the ratio of (A + B) can be adjusted by the substrate temperature during the ultraviolet treatment.
  • the substrate temperature during the ultraviolet treatment can be controlled, for example, by adjusting the lamp output and the lamp-substrate distance. Further, the substrate temperature may be controlled by a heater or the like.
  • the ultraviolet irradiation time depends on the illuminance of ultraviolet rays, it is preferably 5 seconds or more and 120 minutes or less from the viewpoint of productivity.
  • the oxide semiconductor film manufactured through the above process becomes a film containing NO 2 components (nitrite ions and / or nitrite gas) in addition to the oxide semiconductor by decomposition of nitrate by ultraviolet rays.
  • NO 2 component can be confirmed by X-ray photoelectron spectroscopy (XPS) analysis of the film.
  • XPS X-ray photoelectron spectroscopy
  • binding energy component having a peak position is confirmed 405eV below the range of 402 eV, which contains NO 3 components
  • a component having a peak position in an energy range of 406 eV to 408 eV is confirmed (see J. Phys. Chem. B, 104 (2000) 319.).
  • the present invention in the XPS spectrum obtained by X-ray photoelectron spectroscopic analysis of an oxide semiconductor film, when the intensity of peak energy attributed to 1s electrons of nitrogen is obtained by peak separation, the relationship of the following formula (1) An oxide semiconductor film satisfying the above condition is obtained, but the oxide semiconductor film preferably further satisfies the relationship of the formula (2).
  • Formula (1) A / (A + B) ⁇ 0.39
  • Formula (2) A / (A + B) ⁇ 0.73
  • A represents a peak area of a component having a peak position in the range of the binding energy from 402 eV to 405 eV
  • B represents a peak position in the range of the binding energy from 406 eV to 408 eV. This represents the peak area of the component.
  • Higher mobility is obtained as A / (A + B) is larger.
  • a / (A + B) can be controlled by the solution concentration in the precursor film forming process, the precursor film thickness, the substrate temperature in the drying process, the ultraviolet illuminance in the oxide semiconductor film forming process, the substrate temperature, the processing time, and the like.
  • the substrate temperature in the oxide semiconductor film forming step substrate temperature at the time of ultraviolet treatment
  • the substrate temperature in the drying step substrate temperature in the drying step.
  • the method of increasing the value of A / (A + B) is not particularly limited, and a method of decomposing nitrate by plasma treatment or the like other than the ultraviolet irradiation treatment may be used. Note that defining the value of A / (A + B) within a specific range as described above is particularly useful when an oxide semiconductor film is applied as an active layer (oxide semiconductor layer) of a thin film transistor described later.
  • the oxide semiconductor film manufactured according to the embodiment of the present invention exhibits high semiconductor characteristics
  • the oxide semiconductor film can be preferably used for an active layer (oxide semiconductor layer) of a thin film transistor (TFT).
  • TFT thin film transistor
  • the element structure of the TFT according to the present invention is not particularly limited, and is either a so-called reverse stagger structure (also referred to as a bottom gate type) or a stagger structure (also referred to as a top gate type) based on the position of the gate electrode. Also good. Further, based on the contact portion between the active layer and the source and drain electrodes (referred to as “source / drain electrodes” as appropriate), either a so-called top contact type or bottom contact type may be used.
  • the top gate type is a form in which a gate electrode is disposed on the upper side of the gate insulating film and an active layer is formed on the lower side of the gate insulating film when the substrate on which the TFT is formed is the lowermost layer.
  • the bottom gate type is a form in which a gate electrode is disposed below the gate insulating film and an active layer is formed above the gate insulating film.
  • the bottom contact type is a mode in which the source / drain electrodes are formed before the active layer and the lower surface of the active layer is in contact with the source / drain electrodes.
  • the top contact type is the type in which the active layer is the source / drain. In this embodiment, the upper surface of the active layer is in contact with the source / drain electrodes.
  • FIG. 1 is a schematic diagram showing an example of a top contact type TFT according to the present invention having a top gate structure.
  • the above-described oxide semiconductor film is stacked as an active layer 14 on one main surface of the substrate 12.
  • a source electrode 16 and a drain electrode 18 are disposed on the active layer 14 so as to be spaced apart from each other, and a gate insulating film 20 and a gate electrode 22 are sequentially stacked thereon.
  • FIG. 2 is a schematic view showing an example of a bottom contact type TFT according to the present invention having a top gate structure.
  • the source electrode 16 and the drain electrode 18 are disposed on one main surface of the substrate 12 so as to be separated from each other. Then, the above-described oxide semiconductor film, the gate insulating film 20, and the gate electrode 22 are sequentially stacked as the active layer.
  • FIG. 3 is a schematic view showing an example of a TFT according to the present invention having a bottom gate structure and a top contact type.
  • the gate electrode 22, the gate insulating film 20, and the above-described oxide semiconductor film as the active layer 14 are sequentially stacked on one main surface of the substrate 12.
  • a source electrode 16 and a drain electrode 18 are spaced apart from each other on the surface of the active layer 14.
  • FIG. 4 is a schematic view showing an example of a bottom contact type TFT according to the present invention having a bottom gate structure.
  • the gate electrode 22 and the gate insulating film 20 are sequentially stacked on one main surface of the substrate 12.
  • a source electrode 16 and a drain electrode 18 are disposed on the surface of the gate insulating film 20 so as to be spaced apart from each other, and the above-described oxide semiconductor film is stacked thereon as the active layer 14.
  • the top gate type thin film transistor 10 shown in FIG. 1 will be mainly described.
  • the thin film transistor of the present invention is not limited to the top gate type and may be a bottom gate type thin film transistor.
  • an oxide semiconductor film is formed on the substrate 12 through the precursor film forming process, the drying process, and the oxide semiconductor film forming process described above.
  • the oxide semiconductor film may be patterned before the oxide semiconductor film forming step is performed by the above-described inkjet method, dispenser method, relief printing method, or intaglio printing method. Patterning may be performed later by photolithography and etching.
  • a technique in which a pattern is directly formed by an inkjet method or the like before the oxide semiconductor film forming step is preferable in that it is not necessary to perform photolithography and an etching step, and the process cost can be reduced.
  • a resist pattern is formed by photolithography on a portion to be left as the active layer 14, and then an acid solution such as hydrochloric acid, nitric acid, dilute sulfuric acid, or a mixed solution of phosphoric acid, nitric acid and acetic acid.
  • the pattern of the active layer 14 is formed by etching.
  • the thickness of the active layer 14 is preferably 5 nm or more and 40 nm or less, and more preferably 5 nm or more and 20 nm or less, from the viewpoint of efficient film flatness, elimination of unnecessary components from the film, and efficient decomposition of nitrate by ultraviolet irradiation.
  • the indium content in the active layer 14 is preferably 50 atom% or more of the total metal elements contained in the active layer 14, and more preferably 80 atom% or more.
  • a protective layer (not shown) for protecting the active layer 14 is preferably formed on the active layer 14 when the source / drain electrodes 16 and 18 are etched.
  • the protective layer may be formed before the oxide semiconductor film formation step or after the oxide semiconductor film formation step. Further, the active layer 14 may be formed before patterning or may be formed later.
  • the protective layer may be a metal oxide layer or an organic material such as a resin. The protective layer may be removed after the source electrode 15 and the drain electrode 18 (referred to as “source / drain electrodes” as appropriate) are formed.
  • Source / drain electrodes 16 and 18 are formed on the active layer 14.
  • the source / drain electrodes 16 and 18 have high conductivity so as to function as electrodes, respectively, and metals such as Al, Mo, Cr, Ta, Ti, Ag, Au, Al—Nd, Ag alloy, tin oxide
  • metal oxide conductive film such as zinc oxide, indium oxide, indium tin oxide (ITO), zinc indium oxide (IZO), or In—Ga—Zn—O can be used.
  • a wet method such as a printing method and a coating method, a physical method such as a vacuum deposition method, a sputtering method, and an ion plating method, a chemical method such as a CVD method and a plasma CVD method, etc.
  • the film may be formed according to a method appropriately selected in consideration of suitability with the material to be used.
  • the film thickness of the source / drain electrodes 16 and 18 is preferably 10 nm or more and 1000 nm or less, preferably 50 nm or more and 100 nm or less in consideration of film forming properties, patterning properties by etching or lift-off methods, conductivity, and the like. More preferred.
  • the source / drain electrodes 16 and 18 may be formed by patterning into a predetermined shape by, for example, etching or a lift-off method after forming a conductive film, or may be directly formed by an inkjet method or the like. At this time, it is preferable to pattern the source / drain electrodes 16 and 18 and wiring (not shown) connected to these electrodes simultaneously.
  • the gate insulating film 20 preferably has a high insulating property.
  • an insulating film such as SiO 2 , SiN x , SiON, Al 2 O 3 , Y 2 O 3 , Ta 2 O 5 , HfO 2 , or a compound thereof is used.
  • An insulating film including two or more kinds may be used.
  • the gate insulating film 20 can be formed from a printing method, a wet method such as a coating method, a physical method such as a vacuum deposition method, a sputtering method or an ion plating method, or a chemical method such as a CVD or plasma CVD method.
  • the film may be formed according to a method appropriately selected in consideration of suitability with the material to be used.
  • the gate insulating film 20 needs to have a thickness for reducing leakage current and improving voltage resistance. On the other hand, if the gate insulating film 20 is too thick, the driving voltage is increased. Although depending on the material, the thickness of the gate insulating film 20 is preferably 10 nm to 10 ⁇ m, more preferably 50 nm to 1000 nm, and particularly preferably 100 nm to 400 nm.
  • the gate electrode 22 is made of a highly conductive metal such as Al, Mo, Cr, Ta, Ti, Ag, Au, Al—Nd, Ag alloy, tin oxide, zinc oxide, indium oxide, indium tin oxide ( It can be formed using a metal oxide conductive film such as ITO), indium zinc oxide (IZO), or IGZO. As the gate electrode 22, these conductive films can be used as a single layer structure or a stacked structure of two or more layers.
  • the gate electrode 22 is made of a material used from a wet method such as a printing method or a coating method, a physical method such as a vacuum deposition method, a sputtering method or an ion plating method, or a chemical method such as a CVD or plasma CVD method.
  • the film is formed according to a method appropriately selected in consideration of the suitability of the above.
  • the film thickness of the metal film for forming the gate electrode 22 is preferably 10 nm or more and 1000 nm or less, preferably 50 nm or more and 200 nm or less in consideration of film forming properties, patterning properties by etching or lift-off methods, conductivity, and the like. More preferably.
  • the gate electrode 22 may be formed by patterning into a predetermined shape by an etching or lift-off method, or the pattern may be directly formed by an inkjet method or the like. At this time, it is preferable to pattern the gate electrode 22 and the gate wiring (not shown) at the same time.
  • the thin-film transistor 10 of this embodiment shows a high transport characteristic
  • display apparatuses such as a liquid crystal display device, an organic EL (Electro Luminescence) display device, and an inorganic EL display device.
  • a driving element driving circuit
  • various electronic devices such as various sensors such as an X-ray sensor and an image sensor, and a micro electro mechanical system (MEMS).
  • MEMS micro electro mechanical system
  • FIG. 5 shows a schematic sectional view of a part of a liquid crystal display device according to an embodiment of the present invention
  • FIG. 6 shows a schematic configuration diagram of electrical wiring.
  • the liquid crystal display device 100 includes a top contact type TFT 10 having the top gate structure shown in FIG. 1 and a pixel lower electrode on the gate electrode 22 protected by the passivation layer 102 of the TFT 10. 104 and a liquid crystal layer 108 sandwiched between the counter upper electrode 106 and an R (red) G (green) B (blue) color filter 110 for developing different colors corresponding to each pixel.
  • the polarizing plate 112a and 112b are provided on the substrate 12 side and the RGB color filter 110, respectively.
  • the liquid crystal display device 100 of the present embodiment includes a plurality of gate wirings 112 parallel to each other and data wirings 114 intersecting with the gate wirings 112 and parallel to each other.
  • the gate wiring 112 and the data wiring 114 are electrically insulated.
  • the TFT 10 is provided in the vicinity of the intersection between the gate wiring 112 and the data wiring 114.
  • the gate electrode 22 of the TFT 10 is connected to the gate wiring 112, and the source electrode 16 of the TFT 10 is connected to the data wiring 114.
  • the drain electrode 18 of the TFT 10 is connected to the pixel lower electrode 104 through a contact hole 116 provided in the gate insulating film 20 (a conductor is embedded in the contact hole 116).
  • the pixel lower electrode 104 forms a capacitor 118 together with the grounded counter upper electrode 106.
  • FIG. 7 shows a schematic sectional view of a part of an active matrix organic EL display device according to an embodiment of the present invention
  • FIG. 8 shows a schematic configuration diagram of electrical wiring.
  • the active matrix organic EL display device 200 of the present embodiment includes the TFT 10 having the top gate structure shown in FIG. 1 as a driving TFT 10a and a switching TFT 10b on a substrate 12 having a passivation layer 202.
  • 10b is provided with an organic EL light emitting element 214 composed of an organic light emitting layer 212 sandwiched between a lower electrode 208 and an upper electrode 210, and the upper surface is also protected by a passivation layer 216.
  • the organic EL display device 200 includes a plurality of gate wirings 220 that are parallel to each other, and a data wiring 222 and a driving wiring 224 that are parallel to each other and intersect the gate wiring 220.
  • the gate wiring 220, the data wiring 222, and the drive wiring 224 are electrically insulated.
  • the gate electrode 22 of the switching TFT 10 b is connected to the gate wiring 220, and the source electrode 16 of the switching TFT 10 b is connected to the data wiring 222.
  • the drain electrode 18 of the switching TFT 10b is connected to the gate electrode 22 of the driving TFT 10a, and the driving TFT 10a is kept on by using the capacitor 226.
  • the source electrode 16 of the driving TFT 10 a is connected to the driving wiring 224, and the drain electrode 18 is connected to the organic EL light emitting element 214.
  • the upper electrode 210 may be a top emission type using a transparent electrode, or the bottom electrode 208 and each TFT electrode may be a transparent electrode.
  • FIG. 9 shows a schematic sectional view of a part of an X-ray sensor according to an embodiment of the present invention
  • FIG. 10 shows a schematic configuration diagram of its electrical wiring.
  • the X-ray sensor 300 of this embodiment includes the TFT 10 and the capacitor 310 formed on the substrate 12, the charge collection electrode 302 formed on the capacitor 310, the X-ray conversion layer 304, and the upper electrode 306. Composed.
  • a passivation film 308 is provided on the TFT 10.
  • the capacitor 310 has a structure in which an insulating film 316 is sandwiched between a capacitor lower electrode 312 and a capacitor upper electrode 314.
  • the capacitor upper electrode 314 is connected to one of the source electrode 16 and the drain electrode 18 (the drain electrode 18 in FIG. 9) of the TFT 10 through a contact hole 318 provided in the insulating film 316.
  • the charge collection electrode 302 is provided on the capacitor upper electrode 314 in the capacitor 310 and is in contact with the capacitor upper electrode 314.
  • the X-ray conversion layer 304 is a layer made of amorphous selenium, and is provided so as to cover the TFT 10 and the capacitor 310.
  • the upper electrode 306 is provided on the X-ray conversion layer 304 and is in contact with the X-ray conversion layer 304.
  • the X-ray sensor 300 of this embodiment includes a plurality of gate wirings 320 that are parallel to each other and a plurality of data wirings 322 that intersect with the gate wirings 320 and are parallel to each other.
  • the gate wiring 320 and the data wiring 322 are electrically insulated.
  • the TFT 10 is provided in the vicinity of the intersection between the gate wiring 320 and the data wiring 322.
  • the gate electrode 22 of the TFT 10 is connected to the gate wiring 320, and the source electrode 16 of the TFT 10 is connected to the data wiring 322.
  • the drain electrode 18 of the TFT 10 is connected to the charge collecting electrode 302, and the charge collecting electrode 302 is connected to the capacitor 310.
  • X-rays enter from the upper electrode 306 side in FIG. 9 and generate electron-hole pairs in the X-ray conversion layer 304.
  • the generated charge is accumulated in the capacitor 310 and read out by sequentially scanning the TFT 10.
  • a TFT having a top gate structure is provided in the liquid crystal display device 100, the organic EL display device 200, and the X-ray sensor 300 of the above embodiment.
  • the TFT is not limited to this, and FIGS. A TFT having the structure shown in FIG.
  • FIG. 11A shows a schematic plane of a simplified TFT for evaluation
  • FIG. 11B shows a cross section taken along line AA in FIG. 11A.
  • indium nitrate In (NO 3 ) 3 xH 2 O, 4N, manufactured by High Purity Chemical Laboratory Co., Ltd.
  • 2-methoxyethanol special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.
  • a simple TFT 500 using a p-type Si substrate 502 with a thermal oxide film (100 nm) 504 as a substrate, using the Si substrate 502 as a gate electrode, and the thermal oxide film 504 as a gate insulating film was manufactured.
  • the indium nitrate solution prepared above was spin-coated at a rotational speed of 1500 rpm for 30 seconds on the p-type Si 1-inch square substrate with thermal oxide film, and then dried for 1 minute on a hot plate heated to 60 ° C. .
  • an oxide semiconductor precursor film was obtained.
  • the obtained oxide semiconductor precursor film was subjected to ultraviolet irradiation treatment under the following conditions to obtain an oxide semiconductor film.
  • an ultraviolet irradiation device a UV ozone cleaner (manufactured by Filgen, UV253H) using a low-pressure mercury lamp was used.
  • the sample was set on a glass plate having a thickness of 40 mm, and the distance between the lamp and the sample was 10 mm.
  • the ultraviolet illuminance at the sample position with a wavelength of 254 nm was measured using an ultraviolet light meter (manufactured by Oak Manufacturing Co., Ltd., UV-M10, photoreceiver UV-25). The maximum value was reached in 3 minutes after the lamp was turned on, and was 15 mW / cm 2 .
  • the ultraviolet illuminance at a wavelength of 254 nm in the following examples and comparative examples was also measured using an ultraviolet light meter (manufactured by Oak Manufacturing Co., Ltd., UV-M10, photoreceiver UV-25).
  • ultraviolet irradiation was performed for 90 minutes. During UV irradiation, nitrogen was always flowed at 6 L / min.
  • the substrate temperature at the time of the ultraviolet irradiation treatment (the maximum temperature of the substrate at the time of the ultraviolet irradiation treatment, the same applies hereinafter) was monitored with a thermolabel, it was 135 ° C.
  • the source / drain electrodes 510 and 512 were formed on the oxide semiconductor film 506 obtained above by vapor deposition.
  • the source / drain electrodes 510 and 512 were formed by pattern film formation using a metal mask, and Ti was formed to a thickness of 50 nm.
  • the size of the source / drain electrodes 510 and 512 was 1 mm square, and the distance between the electrodes was 0.2 mm. Thereby, a simple TFT 500 was produced.
  • Examples 2 to 4 Comparative Examples 1 and 2> A simple TFT was produced in the same manner as in Example 1 except that the drying temperature of the coating film of the indium nitrate solution in Example 1 was changed to the temperature shown in Table 1 below.
  • Figure 12 to Figure 16 shows a, V g -I d characteristics of the Examples 1 to 4 and Comparative Example 1, showing the relationship between the drying temperature and the mobility of forming the oxide semiconductor layer in FIG. 17.
  • Comparative Example 2 the coating film was repelled, it was difficult to form a uniform film, and the transistor evaluation could not be performed. The results are shown in Table 2 below.
  • Example 1-3 By drying the substrate at a substrate temperature in the range of 35 ° C. or higher and 100 ° C. or lower in the drying step, film formation can be easily performed, and high transistor characteristics exceeding mobility 0.1 cm 2 / Vs were confirmed. Further, in Example 1-3 in which the substrate temperature was dried in the range of 35 ° C. or higher and 90 ° C. or lower in the drying step, high transistor operation exceeding a mobility of 1 cm 2 / Vs was confirmed.
  • Example 1 drying temperature 60 ° C.
  • Example 2 drying temperature 35 ° C.
  • Example 3 drying temperature 90 ° C.
  • Example 4 drying temperature 100 ° C.
  • Comparative Example 1 drying temperature 140 ° C.
  • X-ray photoelectron spectroscopy (XPS) analysis was performed on each of the manufactured oxide semiconductor films.
  • the measurement apparatus was QUANTERA SXM manufactured by ULVAC PHI.
  • the measurement conditions were an X-ray source of monochromatic AlK ⁇ (100 ⁇ m ⁇ , 25 W, 15 kV), an analysis diameter of 100 ⁇ m ⁇ , and a photoelectron extraction angle of 45 ° C.
  • the NO 2 -derived component is detected around 402 to 405 eV, and the NO 3 -derived component is detected around 406 to 408 eV.
  • the X-ray photoelectron spectroscopic analysis in the following examples and comparative examples was also performed in the same manner as described above.
  • FIG. 18 shows the result of X-ray photoelectron spectroscopy (XPS) analysis
  • Table 3 shows the peak area ratio of A / (A + B) obtained by smoothing the spectrum obtained.
  • the relationship between the obtained peak area ratio and mobility is shown in FIG.
  • the intensity of the peak energy attributed to 1s electrons of nitrogen is determined by peak separation
  • A represents the peak area of the component having a peak position in the range of 402 eV to 405 eV
  • B represents the bond energy of 406 eV to 408 eV.
  • a / (A + B) is 0.39 or more, a thin film transistor exhibiting a high transport property of 0.1 or more can be obtained, and if it is 0.73 or more, the mobility is 1 or more. More preferable.
  • a simple TFT using a p-type Si substrate with a thermal oxide film as a substrate and using the thermal oxide film as a gate insulating film was fabricated.
  • the prepared indium nitrate solution was spin-coated on a p-type Si 1-inch square substrate with a thermal oxide film at a rotational speed of 1500 rpm for 30 seconds, and then dried on a hot plate heated to 60 ° C. for 1 minute.
  • the obtained oxide semiconductor precursor thin film was subjected to ultraviolet irradiation treatment to obtain a treated film.
  • a UV ozone cleaner manufactured by Filgen, UV253H
  • a low-pressure mercury lamp was used as an ultraviolet irradiation device.
  • the sample was set on a glass plate having a thickness of 40 mm, and the ultraviolet irradiation time was 90 minutes.
  • the distance between the lamp and the sample and the gas to be flowed during the ultraviolet irradiation are as shown in Table 4 below, and the ultraviolet illuminance after 3 minutes from the lamp lighting under each condition is also shown.
  • the ultraviolet illuminance in Table 4 is the ultraviolet illuminance at a wavelength of 254 nm measured in the same manner as the measurement of the ultraviolet illuminance in Example 1.
  • Comparative Examples 3 and 4 the transistor operation was not confirmed, and the behavior of the insulator was shown.
  • Example 5 good transistor operation with a linear mobility of 1.3 and a threshold voltage of 4.1 was confirmed.
  • Table 5 shows the linear mobility of Comparative Examples 3 and 4 and Example 5 and the value of A / (A + B) obtained by X-ray photoelectron spectroscopy (XPS) analysis of the treated film.
  • XPS X-ray photoelectron spectroscopy
  • Example 5 shows a high value of A / (A + B), and it can be seen that high transistor characteristics were obtained as a result.
  • ⁇ Comparative Examples 5 to 9 Precursor films not subjected to ultraviolet irradiation> Using the indium nitrate solution used in Example 1, a p-type Si substrate with a thermal oxide film was used as a substrate, and a simple TFT using a thermal oxide film as a gate insulating film was fabricated. The prepared indium nitrate solution was spin-coated on a p-type Si 1-inch square substrate with a thermal oxide film at a rotational speed of 1500 rpm for 30 seconds, and then dried on a hot plate for 1 minute to form an oxide semiconductor precursor film. Obtained. The hot plate top plate temperature was 35 ° C. (Comparative Example 5), 60 ° C. (Comparative Example 6), 90 ° C. (Comparative Example 7), 100 ° C. (Comparative Example 8), and 140 ° C. (Comparative Example 9). .
  • Source / drain electrodes were formed by vapor deposition on the oxide semiconductor precursor film obtained above.
  • the source / drain electrodes were formed by pattern formation using a metal mask, and Ti was formed to a thickness of 50 nm.
  • the size of the source / drain electrodes was 1 mm square, and the distance between the electrodes was 0.2 mm. This produced a simple TFT.
  • Comparative Examples 5 to 9 the transistor operation was not confirmed, and the behavior of the insulator was shown.
  • XPS analysis was performed on Comparative Examples 5 to 9 under the same conditions as in Example 1, only a peak derived from NO 3 was confirmed, and A / (A + B) was 0.
  • the obtained oxide semiconductor precursor film was annealed with a hot plate.
  • the hot plate top plate temperature was 140 ° C. (Comparative Example 10) and 200 ° C. (Comparative Example 11), and a treated film was obtained by annealing for 1 hour.
  • the source / drain electrodes were formed on the treated film obtained above by vapor deposition.
  • the source / drain electrodes were formed by pattern formation using a metal mask, and Ti was formed to a thickness of 50 nm.
  • the size of the source / drain electrodes was 1 mm square, and the distance between the electrodes was 0.2 mm. This produced a simple TFT.
  • Comparative Examples 10 and 11 the transistor operation was not confirmed, and the behavior of the insulator was shown. In addition, only the peak derived from NO 3 of Comparative Example 10 was confirmed, A / (A + B) was 0, and the nitrate was not sufficiently decomposed. In Comparative Example 11, neither a peak derived from NO 2 nor a peak derived from NO 3 was confirmed.
  • Example 6A the solvent is methanol>
  • indium nitrate was dissolved in methanol (reagent special grade, manufactured by Wako Pure Chemical Industries, Ltd.) by stirring for 30 minutes at room temperature to prepare an indium nitrate solution having a concentration of 0.1 mol / L.
  • methanol solvent special grade, manufactured by Wako Pure Chemical Industries, Ltd.
  • a simple TFT using a p-type Si substrate with a thermal oxide film as a substrate and using the thermal oxide film as a gate insulating film was fabricated.
  • the prepared indium nitrate solution was spin-coated for 5 seconds at a rotational speed of 5000 rpm on a p-type Si 1 inch square substrate with a thermal oxide film, and then dried on a hot plate heated to 60 ° C. for 1 minute.
  • an oxide semiconductor precursor film was obtained.
  • the obtained oxide semiconductor precursor film was subjected to ultraviolet irradiation treatment under the following conditions to obtain an oxide semiconductor film.
  • an ultraviolet irradiation device a UV ozone cleaner (manufactured by Filgen, UV253H) using a low-pressure mercury lamp was used.
  • the sample was set on a glass plate having a thickness of 40 mm, and the distance between the lamp and the sample was 10 mm. After flowing nitrogen at 6 L / min for 10 minutes in the ultraviolet irradiation treatment chamber, ultraviolet irradiation was performed for 90 minutes. During UV irradiation, nitrogen was always flowed at 6 L / min.
  • the ultraviolet illuminance at the sample position with a wavelength of 254 nm was measured using an ultraviolet light meter (Oak Seisakusho, UV-M10, photoreceiver UV-25). The value reached 15 mW / cm 2 .
  • the substrate temperature during the ultraviolet irradiation treatment was the same as in Example 1.
  • the source / drain electrodes were formed by vapor deposition on the obtained oxide semiconductor film.
  • the source / drain electrodes were formed by pattern formation using a metal mask, and Ti was formed to a thickness of 50 nm.
  • the size of the source / drain electrodes was 1 mm square, and the distance between the electrodes was 0.2 mm. This produced a simple TFT.
  • the value of A / (A + B) obtained by X-ray photoelectron spectroscopy (XPS) analysis of the oxide semiconductor film was 0.90.
  • Example 6B Solvent is N, N-dimethylacetamide>
  • indium nitrate was dissolved in N, N-dimethylacetamide (Wako Special Grade, manufactured by Wako Pure Chemical Industries, Ltd.) by stirring at room temperature for 30 minutes to prepare an indium nitrate solution having a concentration of 0.2 mol / L.
  • a simple TFT using a p-type Si substrate with a thermal oxide film as a substrate and using the thermal oxide film as a gate insulating film was fabricated.
  • the prepared indium nitrate solution was spin-coated on a p-type Si 1-inch square substrate with a thermal oxide film at a rotational speed of 1500 rpm for 30 seconds, and then dried on a hot plate heated to 60 ° C. for 1 minute. Thus, an oxide semiconductor precursor film was obtained.
  • the obtained oxide semiconductor precursor film was subjected to ultraviolet irradiation treatment under the following conditions to obtain an oxide semiconductor film.
  • an ultraviolet irradiation device a UV ozone cleaner (manufactured by Filgen, UV253H) using a low-pressure mercury lamp was used.
  • the sample was set on a glass plate having a thickness of 40 mm, and the distance between the lamp and the sample was 10 mm. After flowing nitrogen at 6 L / min for 10 minutes in the ultraviolet irradiation treatment chamber, ultraviolet irradiation was performed for 90 minutes. During UV irradiation, nitrogen was always flowed at 6 L / min.
  • the ultraviolet illuminance at the sample position with a wavelength of 254 nm was measured using an ultraviolet light meter (Oak Seisakusho, UV-M10, photoreceiver UV-25). The value reached 15 mW / cm 2 .
  • the substrate temperature during the ultraviolet irradiation treatment was the same as in Example 1.
  • the source / drain electrodes were formed by vapor deposition on the obtained oxide semiconductor film.
  • the source / drain electrodes were formed by pattern formation using a metal mask, and Ti was formed to a thickness of 50 nm.
  • the size of the source / drain electrodes was 1 mm square, and the distance between the electrodes was 0.2 mm. This produced a simple TFT.
  • the value of A / (A + B) obtained by X-ray photoelectron spectroscopy (XPS) analysis of the oxide semiconductor film was 0.87.
  • Example 7 Composition containing zinc> First, indium nitrate and zinc acetate (Zn (CH 3 CO 2 ) 2 ⁇ 2H 2 O, manufactured by Kojundo Chemical Laboratory Co., Ltd.) were dissolved in methoxyethanol by stirring at room temperature for 30 minutes, and the indium nitrate concentration was 0 A mixed solution of indium nitrate and zinc acetate having a concentration of 0.08 mol / L and a zinc acetate concentration of 0.02 mol / L was prepared. A simple TFT using a p-type Si substrate with a thermal oxide film as a substrate and using the thermal oxide film as a gate insulating film was fabricated.
  • Zn (CH 3 CO 2 ) 2 ⁇ 2H 2 O manufactured by Kojundo Chemical Laboratory Co., Ltd.
  • the prepared mixed solution was spin coated on a p-type Si 1 inch square substrate with a thermal oxide film at a rotational speed of 1500 rpm for 30 seconds, and then dried on a hot plate heated to 60 ° C. for 1 minute. Thus, an oxide semiconductor precursor film was obtained.
  • the obtained oxide semiconductor precursor film was subjected to ultraviolet irradiation treatment under the following conditions to obtain an oxide semiconductor film.
  • an ultraviolet irradiation device a UV ozone cleaner (manufactured by Filgen, UV253H) using a low-pressure mercury lamp was used.
  • the sample was set on a glass plate having a thickness of 40 mm, and the distance between the lamp and the sample was 10 mm. After flowing nitrogen at 6 L / min for 10 minutes in the ultraviolet irradiation treatment chamber, ultraviolet irradiation was performed for 90 minutes. During UV irradiation, nitrogen was always flowed at 6 L / min.
  • the ultraviolet illuminance at the sample position with a wavelength of 254 nm was measured using an ultraviolet light meter (Oak Seisakusho, UV-M10, photoreceiver UV-25). The value reached 15 mW / cm 2 .
  • the substrate temperature during the ultraviolet irradiation treatment was the same as in Example 1.
  • Source / drain electrodes 510 and 512 were formed on the obtained oxide semiconductor film 506 by vapor deposition.
  • the source / drain electrodes 510 and 512 were formed by pattern film formation using a metal mask, and Ti was formed to a thickness of 50 nm.
  • the size of the source / drain electrodes 510 and 512 was 1 mm square, and the distance between the electrodes was 0.2 mm. Thereby, a simple TFT 500 was produced.
  • the value of A / (A + B) obtained by X-ray photoelectron spectroscopy (XPS) analysis of the oxide semiconductor film was 0.80. As a result, transistor characteristics with a high mobility of 1.4 cm 2 / Vs were obtained.
  • Example 8 Composition containing gallium and zinc>
  • indium nitrate, zinc acetate, and gallium nitrate Ga (NO 3 ) 3 .xH 2 O, 5N, manufactured by Kojundo Chemical Laboratory Co., Ltd.
  • gallium nitrate Ga (NO 3 ) 3 .xH 2 O, 5N, manufactured by Kojundo Chemical Laboratory Co., Ltd.
  • methoxyethanol methoxyethanol
  • a mixed solution of indium nitrate / zinc acetate / gallium nitrate having an indium concentration of 0.08 mol / L, a zinc acetate concentration of 0.01 mol / L, and gallium nitrate of 0.01 mol / L was prepared.
  • a simple TFT using a p-type Si substrate with a thermal oxide film as a substrate and using the thermal oxide film as a gate insulating film was fabricated.
  • the prepared mixed solution was spin-coated on a p-type Si 1-inch square substrate with a thermal oxide film at a rotational speed of 1500 rpm for 30 seconds, and then dried on a hot plate heated to 60 ° C. for 1 minute.
  • an oxide semiconductor precursor film was obtained.
  • the obtained oxide semiconductor precursor film was subjected to ultraviolet irradiation treatment under the following conditions to obtain an oxide semiconductor film.
  • an ultraviolet irradiation device a UV ozone cleaner (manufactured by Filgen, UV253H) using a low-pressure mercury lamp was used.
  • the sample was set on a glass plate having a thickness of 40 mm, and the distance between the lamp and the sample was 10 mm. After flowing nitrogen at 6 L / min for 10 minutes in the ultraviolet irradiation treatment chamber, ultraviolet irradiation was performed for 90 minutes. During UV irradiation, nitrogen was always flowed at 6 L / min.
  • the ultraviolet illuminance at the sample position with a wavelength of 254 nm was measured using an ultraviolet light meter (Oak Seisakusho, UV-M10, photoreceiver UV-25). The value reached 15 mW / cm 2 .
  • the substrate temperature during the ultraviolet irradiation treatment was the same as in Example 1.
  • Source / drain electrodes 510 and 512 were formed on the obtained oxide semiconductor film 506 by vapor deposition.
  • the source / drain electrodes 510 and 512 were formed by pattern film formation using a metal mask, and Ti was formed to a thickness of 50 nm.
  • the size of the source / drain electrodes 510 and 512 was 1 mm square, and the distance between the electrodes was 0.2 mm. Thereby, a simple TFT 500 was produced.
  • the value of A / (A + B) obtained by X-ray photoelectron spectroscopy (XPS) analysis of the oxide semiconductor film was 0.81. As a result, transistor characteristics with high mobility of 1.2 cm 2 / Vs were obtained.
  • the oxide semiconductor film and the manufacturing method thereof are mainly described as the metal oxide film.
  • the metal oxide film and the manufacturing method are not limited to the oxide semiconductor film, and may be other types. It can also be used effectively for an oxide film (conductive film, insulating film).
  • a conductive film having high electrical conductivity can be obtained, which can be preferably used.
  • FIG. 20 shows an ultraviolet absorption spectrum of a solution in which indium nitrate is dissolved in 2-methoxyethanol.
  • a double beam spectrophotometer U-2910 manufactured by Hitachi High-Technologies Corporation was used.
  • the ultraviolet light absorption spectrum of 2-methoxyethanol is also shown.
  • 2-methoxyethanol has no absorption in the wavelength range of about 254 nm, which is the main wavelength of a low-pressure mercury lamp, but a solution of indium nitrate dissolved in 2-methoxyethanol has strong absorption in the wavelength range of about 254 nm. It can be seen that deep ultraviolet light can directly contribute to the film.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Electroluminescent Light Sources (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Electromagnetism (AREA)

Abstract

X線光電子分光分析によって得られるXPSスペクトルにおいて、結合エネルギーが402eV以上405eV以下の範囲にピーク位置を持つ成分が含まれ、且つ窒素の1s電子に帰属するピークエネルギーの強度をピーク分離によって求めたとき、式(1):A/(A+B)≧0.39の関係を満足する、金属酸化物膜及びその製造方法、並びに、酸化物半導体膜、薄膜トランジスタ、表示装置、イメージセンサ及びX線センサを提供する。式(1)中、Aは、結合エネルギーが402eV以上405eV以下の範囲にピーク位置を持つ成分のピーク面積を表し、Bは、結合エネルギーが406eV以上408eV以下の範囲にピーク位置を持つ成分のピーク面積を表す。

Description

金属酸化物膜及びその製造方法、薄膜トランジスタ、表示装置、イメージセンサ並びにX線センサ
 本発明は、金属酸化物膜及びその製造方法、薄膜トランジスタ、表示装置、イメージセンサ並びにX線センサに関する。
 酸化物半導体膜又は酸化物導体膜としての金属酸化物膜は真空成膜法による製造において実用化がなされ、現在注目を集めている。
 一方で、簡便に、低温で、かつ大気圧下で高い半導体特性を有する酸化物半導体膜を形成することを目的とした、液相プロセスによる酸化物半導体膜の作製に関して研究開発が盛んに行われている。最近では、溶液を基板上に塗布し、紫外線を用いることで150℃以下の低温で高い輸送特性を有する薄膜トランジスタ(TFT:Thin Film Transistorを製造する手法が報告されている(Nature, 489 (2012) 128.参照)。
 一方、安価な硝酸塩や酢酸塩等の溶液を用いて酸化物半導体前駆体膜を形成する手法が開示されている(国際公開WO2009/081862参照)。
 また、硝酸塩や酢酸塩等の溶液を用いて酸化物半導体の前駆体膜を形成し、酸素存在下で電磁波を照射することによって酸化物半導体膜を製造する方法が開示されている(国際公開WO2009/031381)。
 また、硝酸塩等を含む溶液を基材上に塗布した後、150℃程度で加熱して溶媒を揮発させることにより金属酸化物半導体の前駆体を含む薄膜を形成し、その後、酸素の存在下で紫外光を照射することにより、金属酸化物半導体を製造する方法が開示されている(国際公開WO2009/011224参照)。
 また、硝酸塩等を含む金属酸化物半導体前駆体水溶液を基材上に塗布して80~100℃程度で溶媒を揮発させて乾燥させることにより金属酸化物半導体前駆体膜を形成し、さらに50~200℃で加熱した後、該金属酸化物半導体前駆体膜を酸素プラズマ法、熱酸化法、UVオゾン法、又はマイクロ波加熱によって金属酸化物半導体に転化する金属酸化物半導体の製造方法が開示されている(特開2010-258057参照)。
 しかしながら、Nature, 489 (2012) 128.に記載されている手法では硝酸塩や酢酸塩を溶媒中で75℃-12時間加熱攪拌を施して金属メトキシエトキシドを作製するため、溶液合成における手間とコストの上昇といったデメリットが存在する。又、アルコキシドを形成するため、大気中では加水分解を起こしやすく、安定性に問題がある。
 また、硝酸塩を含む溶液は塗れ性が悪いため、均一な膜厚を得ることが難しく、特性のバラツキが発生しやすい。加えて200℃以下の低温で高い輸送特性を得ることが困難である。
 国際公開WO2009/031381では、酸化物半導体の前駆体膜にマイクロ波を照射して、膜のみを高温で加熱する旨の記載がなされているが、膜厚が100nm以下の膜では、熱伝導の観点から膜のみを加熱することは極めて困難であり、耐熱性の低い樹脂基板に酸化物半導体膜を安定的に形成することは難しい。
 国際公開WO2009/011224に開示されている方法では乾燥工程と酸素存在下でのUVオゾン法による酸化工程との間に加熱工程が必要であり、また、特開2010-258057に開示されている方法では乾燥工程と転化工程との間に加熱工程が必要である。
 本発明は、比較的低温で、かつ、大気圧下で製造することができる金属酸化物膜及びその製造方法、並びに、酸化物半導体膜、薄膜トランジスタ、表示装置、イメージセンサ及びX線センサを提供することを目的とする。
 上記目的を達成するため、以下の発明が提供される。
<1> X線光電子分光分析によって得られるXPSスペクトルにおいて、結合エネルギーが402eV以上405eV以下の範囲にピーク位置を持つ成分が含まれ、且つ窒素の1s電子に帰属するピークエネルギーの強度をピーク分離によって求めたとき、以下の式(1)の関係を満足する、金属酸化物膜。
  A/(A+B)≧0.39  (1) 
 式(1)中、Aは、結合エネルギーが402eV以上405eV以下の範囲にピーク位置を持つ成分のピーク面積を表し、Bは、結合エネルギーが406eV以上408eV以下の範囲にピーク位置を持つ成分のピーク面積を表す。
<2> 酸化物導電膜である<1>に記載の金属酸化物膜。
<3> 酸化物半導体膜である<1>に記載の金属酸化物膜。
<4> 前記X線光電子分光分析によって得られるXPSスペクトルにおいて、窒素の1s電子に帰属するピークエネルギーの強度をピーク分離によって求めたとき、以下の式(2)の関係を満足する<1>~<3>のいずれかに記載の金属酸化物膜。
 A/(A+B)≧0.73   (2)
(式(2)中、Aは、結合エネルギーが402eV以上405eV以下の範囲にピーク位置を持つ成分のピーク面積を表し、Bは、結合エネルギーが406eV以上408eV以下の範囲にピーク位置を持つ成分のピーク面積を表す。)
<5> インジウムを含む<1>~<4>のいずれかに記載の金属酸化物膜。
<6> インジウムと、Zn,Sn,Ga,及びAlからなる群から選ばれる少なくとも1種とを含む<5>に記載の金属酸化物膜。
<7> インジウムの含有量が、前記金属酸化物膜に含まれる全金属元素の50atom%以上である<5>又は<6>に記載の金属酸化物膜。
<8> 硝酸塩を含む溶液を基板上に付与して酸化物半導体の前駆体膜を形成する前駆体膜形成工程と、
 基板を35℃以上100℃以下の温度に加熱して前駆体膜を乾燥させる乾燥工程と、
 乾燥させた前駆体膜に紫外線を吸収させて硝酸塩を分解することにより、酸化物半導体膜を形成する酸化物半導体膜形成工程と、
 を含み、
 前記酸化物半導体膜形成工程における前記基板の最高到達温度が120℃以上である、酸化物半導体膜の製造方法。
<9> 乾燥工程における基板の温度が35℃以上90℃以下である<8>に記載の酸化物半導体膜の製造方法。
<10> 酸化物半導体膜形成工程における基板の温度が200℃以下である<8>又は<9>に記載の酸化物半導体膜の製造方法。
<11> 前記酸化物半導体膜のX線光電子分光分析によって得られるXPSスペクトルにおいて、結合エネルギーが402eV以上405eV以下の範囲にピーク位置を持つ成分が含まれ、且つ窒素の1s電子に帰属するピークエネルギーの強度をピーク分離によって求めたとき、以下の式(1)の関係が満たされる、<8>~<10>のいずれかに記載の酸化物半導体膜の製造方法。
  A/(A+B)≧0.39  (1) 
 式(1)中、Aは、結合エネルギーが402eV以上405eV以下の範囲にピーク位置を持つ成分のピーク面積を表し、Bは、結合エネルギーが406eV以上408eV以下の範囲にピーク位置を持つ成分のピーク面積を表す。
<12> 酸化物半導体膜形成工程において、前駆体膜に対し、波長254nm以下の紫外線を10mW/cm以上の強度で照射する<8>~<11>のいずれかに記載の酸化物半導体膜の製造方法。
<13> 硝酸塩を含む溶液が、硝酸塩として少なくとも硝酸インジウムを含む<8>~<12>のいずれかに記載の酸化物半導体膜の製造方法。
<14> 硝酸インジウムを含む溶液が、さらにZn、Sn、Ga、及びAlからなる群から選ばれる1つ以上の金属原子を含む<13>に記載の酸化物半導体膜の製造方法。
<15> 酸化物半導体膜形成工程を非酸化性雰囲気中で行う<8>~<14>のいずれかに記載の酸化物半導体膜の製造方法。
<16> 酸化物半導体膜形成工程における紫外線の光源が、低圧水銀ランプである<8>~<15>のいずれかに記載の酸化物半導体膜の製造方法。
<17> 硝酸塩を含む溶液が、メタノール又はメトキシエタノールを含む<8>~<16>のいずれかに記載の酸化物半導体膜の製造方法。
<18> 前駆体膜形成工程後、5分以内に前駆体膜の乾燥を開始する<8>~<17>のいずれかに記載の酸化物半導体膜の製造方法。
<19> 硝酸塩を含む溶液中の硝酸塩の濃度が、0.01mol/L~0.5mol/Lである<8>~<18>のいずれかに記載の酸化物半導体膜の製造方法。
<20> 前駆体膜形成工程において、硝酸塩を含む溶液を、インクジェット法、ディスペンサー法、凸版印刷法、及び凹版印刷法から選択される少なくとも一種の塗布法により基板上に付与して前駆体膜を形成する<8>~<19>のいずれかに記載の酸化物半導体膜の製造方法。
<21> <8>~<20>のいずれかに記載の酸化物半導体膜の製造方法により製造された酸化物半導体膜。
<22> <1>又は<3>~<7>のいずれかに記載の金属酸化物膜である酸化物半導体膜、並びに、<21>に記載の酸化物半導体膜からなる群から選ばれる酸化物半導体膜を含む活性層と、ソース電極と、ドレイン電極と、ゲート絶縁膜と、ゲート電極とを有する薄膜トランジスタ。
<23> <22>に記載の薄膜トランジスタを備えた表示装置。
<24> <22>に記載の薄膜トランジスタを備えたイメージセンサ。
<25> <22>に記載の薄膜トランジスタを備えたX線センサ。
 本発明によれば、比較的低温で、かつ大気圧下で製造することができる金属酸化物膜及びその製造方法、並びに、酸化物半導体膜、薄膜トランジスタ、表示装置、イメージセンサ及びX線センサが提供される。
本発明により製造される薄膜トランジスタの一例(トップゲート-トップコンタクト型)の構成を示す概略図である。 本発明により製造される薄膜トランジスタの一例(トップゲート-ボトムコンタクト型)の構成を示す概略図である。 本発明により製造される薄膜トランジスタの一例(ボトムゲート-トップコンタクト型)の構成を示す概略図である。 本発明により製造される薄膜トランジスタの一例(ボトムゲート-ボトムコンタクト型)の構成を示す概略図である。 実施形態の液晶表示装置の一部分を示す概略断面図である。 図5の液晶表示装置の電気配線の概略構成図である。 実施形態の有機EL表示装置の一部分を示す概略断面図である。 図7の有機EL表示装置の電気配線の概略構成図である。 実施形態のX線センサアレイの一部分を示す概略断面図である。 図9のX線センサアレイの電気配線の概略構成図である。 実施例及び比較例で作製した簡易型TFTの概略平面図である。 図11Aに示す簡易型TFTのA-A線断面図である。 実施例1で作製したTFTのV-I特性を示す図である。 実施例2で作製したTFTのV-I特性を示す図である。 実施例3で作製したTFTのV-I特性を示す図である。 実施例4で作製したTFTのV-I特性を示す図である。 比較例1で作製したTFTのV-I特性を示す図である。 実施例及び比較例におけるTFTの酸化物半導体層を形成する際の乾燥温度と移動度との関係を示す図である。 実施例1~4及び比較例1で作製した酸化物半導体層についてXPSスペクトルを示す図である。 実施例1~4及び比較例1で作製した酸化物半導体層についてXPSスペクトルにおける結合エネルギーのピーク面積の比A/(A+B)と移動度との関係を示す図である。 参考例における溶液の紫外光吸収スペクトルを示す図である。
 以下、添付の図面を参照しながら、本発明の金属酸化物膜及びその製造方法、並びに本発明により製造される酸化物半導体膜を有する薄膜トランジスタ、表示装置、X線センサ等について具体的に説明する。
 なお、図中、同一又は対応する機能を有する部材(構成要素)には同じ符号を付して適宜説明を省略する。また、本明細書において「~」の記号により数値範囲を示す場合、下限値及び上限値が含まれる。
 また、本発明に係る金属酸化物膜の導電性は限定されず、本発明は、酸化物半導体膜、酸化物導電膜、又は酸化物絶縁膜の製造に適用することができるが、代表例として、酸化物半導体膜及びその製造方法について主に説明する。
 本発明者らは、塗れ性が悪く均一な膜形成が困難な硝酸塩溶液を用いた酸化物半導体膜の形成において、適切な乾燥工程を適用することにより均一な膜形成を実現することができ、特に乾燥工程の処理温度を適切に選択し、酸化物半導体の前駆体膜に紫外線を吸収させて硝酸塩を分解することにより、高い半導体特性を有する酸化物半導体膜が得られることを見出した。すなわち、酸化物半導体膜を構成する金属原子を含む硝酸塩を含む溶液を基板上に塗布し、酸化物半導体の前駆体膜を形成した後、前駆体膜を35℃以上100℃以下で乾燥を施し、その後、前駆体膜に対して紫外線を照射して吸収させることにより、前駆体膜中の硝酸塩の結合を分解し、酸化物半導体膜を得るものである。
<酸化物半導体膜の製造方法>
 本発明の酸化物半導体膜の製造方法は、硝酸塩を含む溶液を基板上に付与して酸化物半導体の前駆体膜を形成する前駆体膜形成工程と、基板を35℃以上100℃以下の温度に加熱して前駆体膜を乾燥させる乾燥工程と、乾燥させた前駆体膜に紫外線を吸収させて硝酸塩を分解することにより、酸化物半導体膜を形成する酸化物半導体膜形成工程と、を含み、酸化物半導体膜形成工程における基板の最高到達温度が120℃以上である。本発明の酸化物半導体膜の製造方法を用いることにより、酸化物半導体膜のX線光電子分光分析によって得られるXPSスペクトルに、結合エネルギーが402eV以上405eV以下の範囲にピーク位置を持つ成分が含まれ、且つ窒素の1s電子に帰属するピークエネルギーの強度をピーク分離によって求めたとき、以下の式(1)の関係が満たされる、酸化物半導体膜が得られる。
  A/(A+B)≧0.39  (1) 
 式(1)中、Aは、結合エネルギーが402eV以上405eV以下の範囲にピーク位置を持つ成分のピーク面積を表し、Bは、結合エネルギーが406eV以上408eV以下の範囲にピーク位置を持つ成分のピーク面積を表す。
 以下、各工程について具体的に説明する。なお、以下の説明では、薄膜トランジスタの半導体層(活性層)の形成に、本発明の酸化物半導体膜の製造方法を適用する場合について主に説明するが、本発明の酸化物半導体膜の製造方法はこれに限定されるものではない。
[前駆体膜形成工程]
 まず、酸化物半導体膜を形成するための硝酸塩を含む溶液と基板を用意し、硝酸塩を含む溶液を基板上に付与して酸化物半導体の前駆体膜を形成する。
(基板)
 基板の形状、構造、大きさ等については特に制限はなく、目的に応じて適宜選択することが出来る。基板の構造は単層構造であってもよいし、積層構造であってもよい。
 基板を構成する材料としては特に限定はなく、ガラス、YSZ(Yttria-Stabilized Zirconia;イットリウム安定化ジルコニウム)等の無機基板、樹脂基板、その複合材料等を用いることが出来る。中でも軽量である点、可撓性を有する点から樹脂基板又はその複合材料が好ましい。具体的には、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリスチレン、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリアリレート、アリルジグリコールカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリベンズアゾール、ポリフェニレンサルファイド、ポリシクロオレフィン、ノルボルネン樹脂、ポリクロロトリフルオロエチレン等のフッ素樹脂、液晶ポリマー、アクリル樹脂、エポキシ樹脂、シリコーン樹脂、アイオノマー樹脂、シアネート樹脂、架橋フマル酸ジエステル、環状ポリオレフィン、芳香族エーテル、マレイミド・オレフィン、セルロース、エピスルフィド化合物等の合成樹脂基板、酸化珪素粒子との複合プラスチック材料、金属ナノ粒子、無機酸化物ナノ粒子、無機窒化物ナノ粒子等との複合プラスチック材料、カーボン繊維、カーボンナノチューブとの複合プラスチック材料、ガラスフレーク、ガラスファイバー、ガラスビーズとの複合プラスチック材料、粘土鉱物や雲母派生結晶構造を有する粒子との複合プラスチック材料、薄いガラスと上記単独有機材料との間に少なくとも1つの接合界面を有する積層プラスチック材料、無機層と有機層を交互に積層することで、少なくとも1つ以上の接合界面を有するバリア性能を有する複合材料、ステンレス基板或いはステンレスと異種金属を積層した金属多層基板、アルミニウム基板或いは表面に酸化処理(例えば陽極酸化処理)を施すことで表面の絶縁性を向上させた酸化皮膜付きのアルミニウム基板等を用いることが出来る。又、樹脂基板は耐熱性、寸法安定性、耐溶剤性、電気絶縁性、加工性、低通気性、又は低吸湿性等に優れていることが好ましい。樹脂基板は、水分や酸素の透過を防止するためのガスバリア層や、樹脂基板の平坦性や下部電極との密着性を向上するためのアンダーコート層等を備えていてもよい。
 本発明で用いる基板の厚みに特に制限はないが、50μm以上500μm以下であることが好ましい。基板の厚みが50μm以上であると、基板自体の平坦性がより向上する。又、基板の厚みが500μm以下であると、基板自体の可撓性がより向上し、フレキシブルデバイス用基板としての使用がより容易となる。
(硝酸塩を含む溶液)
 硝酸塩を含む溶液は、酸化物半導体を形成する金属原子を含む硝酸塩等の溶質を、溶液が所望の硝酸塩濃度となるように秤量し、溶媒中で攪拌、溶解させて得られる。攪拌を行う温度、時間は溶質が十分に溶解されれば特に制限はない。硝酸塩は水和物であってもよい。
 硝酸塩を含む溶液中の硝酸塩の濃度は、溶液の粘度や目標の膜厚に応じて選択することが出来るが、膜の平坦性及び生産性の観点から0.01mol/L~0.5mol/Lであることが好ましく、0.05mol/L~0.2mol/Lであることがより好ましい。
 硝酸塩を含む溶液は、目的とする酸化物半導体に応じて他の金属原子含有化合物を含んでいてもよい。金属原子含有化合物の例としては硝酸塩以外の金属塩、金属ハロゲン化物、有機金属化合物を挙げることが出来る。
 硝酸塩以外の金属塩の例としては、硫酸塩、燐酸塩、炭酸塩、酢酸塩、蓚酸塩等、金属ハロゲン化物としては塩化物、ヨウ化物、臭化物等、有機金属化合物としては金属アルコキシド、有機酸塩、金属βジケトネート等が挙げられる。
 硝酸塩を含む溶液は、硝酸塩として硝酸インジウムを含むことが好ましい。硝酸インジウムを用いることで、後の酸化物半導体膜形成工程における紫外光を膜が効率よく吸収することができ、容易にインジウム含有酸化物を形成することが出来、且つ高い電気伝導性が得られる。
 硝酸塩を含む溶液は、インジウム以外の金属元素として、Zn、Sn、Ga、及びAlからなる群から選ばれる1つ以上の金属成分を含むことが好ましい。硝酸塩を含む溶液がインジウム以外に金属原子含有化合物として上記金属元素を適量含むことにより、得られる酸化物半導体膜の閾値電圧を所望の値に制御することができ、且つ膜の電気的安定性も向上する。インジウムと他の金属元素を含む酸化物半導体の例として、In-Ga-Zn-O、In-Zn-O、In-Ga-O、In-Sn-O、In-Sn-Zn-O等が挙げられる。
 硝酸塩を含む溶液に用いる溶媒は、硝酸塩等の溶質が溶解するものであれば特に制限されず、その例としては、水、アルコール溶媒(メタノール、エタノール、プロパノール、エチレングリコール等)、アミド溶媒(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等)、ケトン溶媒(アセトン、N-メチルピロリドン、スルホラン、N,N-ジメチルイミダゾリジノン、アセチルアセトン等)、エーテル溶媒(テトラヒドロフラン、メトキシエタノール等)、ニトリル溶媒(アセトニトリル等)、その他上記以外のヘテロ原子含有溶媒等が挙げられる。特に溶解性、塗れ性の観点からメタノール又はメトキシエタノールを用いることが好ましい。
 硝酸塩を含む溶液を基板上に付与して酸化物半導体の前駆体膜を形成する方法としては、特に限定されず、その例としては、スプレーコート法、スピンコート法、ブレードコート法、ディップコート法、キャスト法、ロールコート法、バーコート法、ダイコート法、ミスト法、インクジェット法、ディスペンサー法、スクリーン印刷法、凸版印刷法、及び凹版印刷法等が挙げられる。特に、微細パターンを容易に形成する観点から、インクジェット法、ディスペンサー法、凸版印刷法、及び凹版印刷法からなる群から選択される少なくとも一種の塗布法を用いることが好ましい。
[乾燥工程]
 基板上に酸化物半導体の前駆体膜を形成した後、基板を35℃以上100℃以下の温度に加熱して前駆体膜を乾燥させる。
 乾燥工程によって、塗布膜の流動性を低減させ、最終的に得られる酸化物半導体膜の平坦性を向上させることが出来る。又、適切な乾燥温度(35℃以上100℃以下)を選択することにより、高い半導体特性を有する酸化物半導体膜を得ることが出来る。
 乾燥工程における加熱処理の方法は特に限定されず、ホットプレート加熱、電気炉加熱、赤外線加熱、マイクロ波加熱等から選択することができる。
 酸化物半導体の前駆体膜を形成した後、乾燥工程(加熱処理)が5分以内に開始されることが好ましい。酸化物半導体の前駆体膜を形成した後、5分以内で乾燥工程を開始すれば膜の平坦性をほぼ均一に保つことが出来る。
 乾燥工程における基板温度は35℃以上100℃以下に制御し、35℃以上90℃以下に制御することが好ましい。35℃以上であれば膜の平坦性が均一に保たれ、且つ100℃以下、好ましくは90℃以下であれば高い半導体特性を有する酸化物半導体膜をより確実に得ることができる。
 又、加熱処理の時間は特に制限はないが、膜の均一性、生産性の観点から15秒以上10分以下であることが好ましい。
 又、乾燥工程における雰囲気に特に制限はないが、製造コスト等の観点から大気圧下、大気中で行うことが好ましい。
[酸化物半導体膜形成工程]
 乾燥させた前駆体膜に紫外線を吸収させて硝酸塩を分解することにより、酸化物半導体膜を形成する。
(紫外線照射)
 前駆体膜への紫外線照射に用いる光源の例としては、UVランプやレーザーが挙げられるが、大面積に均一に紫外線を照射し、大面積に非常に高い紫外線照度を容易に得ることが出来る観点からUVランプが好ましい。UVランプの例としては、例えば、エキシマランプ、重水素ランプ、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、ヘリウムランプ、カーボンアークランプ、カドミウムランプ、無電極放電ランプ等が挙げられ、特に低圧水銀ランプが高い紫外線照度を容易に得ることが出来ることから好ましい。
 酸化物半導体膜形成工程において、前駆体膜面には波長254nm以下の紫外光を10mW/cm以上の照度で照射することが好ましい。波長254nm以下の紫外光の照度が10mW/cm以上であれば高い半導体特性を有する酸化物半導体膜が得られ、且つ短時間で酸化物半導体膜を形成することが出来る。
 なお、金属酸化物半導体の前駆体薄膜を紫外線を用いて酸化する方法としてUVオゾン法を用いることが知られている(国際公開WO2009/011224参照)。UVオゾン法は、酸素の存在下で、紫外光を照射し、酸素に吸収させることで、オゾンを発生させ、オゾンの分解によって得られる、強い酸化力を有する活性酸素の働きによって前駆体薄膜を酸化させる手法である。UVオゾン法においては、オゾンの発生は前駆体膜に照射される紫外光強度を低下させる要因となる。
 一方、本発明において前駆体膜から酸化物半導体膜を形成する手法は活性酸素による酸化力を用いた手法ではなく、紫外線を直接前駆体膜に吸収させて硝酸塩を分解させ、酸化物半導体膜を形成する手法である。本手法では、オゾンの発生による紫外線強度の低下が低減されているため、UVオゾン法に比べて、安価な低照度ランプでの処理が可能となり、より容易に硝酸塩を分解することが出来る。かかる観点から、雰囲気中の酸素濃度は低いことが好ましく、窒素雰囲気、アルゴン雰囲気などの非酸化性雰囲気で行うことがより好ましい。
 紫外線処理時(紫外線照射処理時)の基板温度(紫外線処理時の基板の最高到達温度、以下同様)は120℃以上であるが、120℃以上200℃以下であることが好ましい。120℃以上であれば高い半導体特性を有する酸化物半導体膜を得ることができ、200℃以下であれば耐熱性の低い樹脂基板への適用が容易となる。より具体的には、紫外線処理時の基板温度が上がると、式(1)(A/(A+B)≧0.39)における比、A/(A+B)、が増大する傾向にあるので、A/(A+B)の比は紫外線処理時の基板温度で調整しうる。
 紫外線処理時の基板温度は、例えばランプ出力及びランプ-基板間距離を調整することで制御することができる。又、ヒーター等によって基板温度を制御してもよい。
 紫外線照射時間は紫外線の照度にもよるが、生産性の観点から、5秒以上120分以下であることが好ましい。
<酸化物半導体膜>
 上記工程を経て製造された酸化物半導体膜は、紫外線による硝酸塩の分解により酸化物半導体のほかに、NO成分(亜硝酸イオン及び又は亜硝酸ガス)を含む膜となり、該酸化物半導体膜中にNO成分が含まれることは膜のX線光電子分光(XPS)分析によって確認することが出来る。又、該酸化物半導体膜中に硝酸イオン等のNO成分が含まれる場合も併せてXPS分析によって確認することが出来る。具体的にはNO成分が含まれる場合は、XPS分析によって得られるXPSスペクトルにおいて、結合エネルギーが402eV以上405eV以下の範囲にピーク位置を持つ成分が確認され、NO成分が含まれる場合は結合エネルギーが406eV以上408eV以下の範囲にピーク位置を持つ成分が確認される(J.Phys.Chem.B, 104 (2000) 319.参照)。
 本発明によれば、酸化物半導体膜のX線光電子分光分析によって得られるXPSスペクトルにおいて、窒素の1s電子に帰属するピークエネルギーの強度をピーク分離によって求めたとき、以下の式(1)の関係を満たす酸化物半導体膜が得られるが、酸化物半導体膜はさらに式(2)の関係も満たすことが好ましい。
 式(1) A/(A+B)≧0.39
 式(2) A/(A+B)≧0.73
 式(1)及び(2)中、Aは、結合エネルギーが402eV以上405eV以下の範囲にピーク位置を持つ成分のピーク面積を表し、Bは、結合エネルギーが406eV以上408eV以下の範囲にピーク位置を持つ成分のピーク面積を表す。
 A/(A+B)が大きいほど高い移動度が得られる。A/(A+B)は前駆体膜形成工程における溶液濃度、前駆体膜厚、乾燥工程における基板温度、酸化物半導体膜形成工程における紫外線照度、基板温度、処理時間等によって制御することが可能であり、特に酸化物半導体膜形成工程における基板温度(紫外線処理時の基板温度)や乾燥工程における基板温度によって容易に所望の値に調整することができる。
 尚、A/(A+B)の値を大きくする方法は特に限定されず、紫外線照射処理以外の例えばプラズマ処理等によって硝酸塩を分解する方法であってもよい。なお、A/(A+B)の値を上述のように特定の範囲に規定することは、酸化物半導体膜を後述する薄膜トランジスタの活性層(酸化物半導体層)として適用する場合に特に有用である。
<薄膜トランジスタ>
 本発明の実施形態により作製された酸化物半導体膜は高い半導体特性を示すことから、薄膜トランジスタ(TFT)の活性層(酸化物半導体層)に好適に用いることが出来る。以下、本発明の製造方法により作製された酸化物半導体膜を薄膜トランジスタの活性層として用いる場合の実施形態について説明する。
 本発明に係るTFTの素子構造は特に限定されず、ゲート電極の位置に基づいた、いわゆる逆スタガ構造(ボトムゲート型とも呼ばれる)及びスタガ構造(トップゲート型とも呼ばれる)のいずれの態様であってもよい。また、活性層とソース電極及びドレイン電極(適宜、「ソース・ドレイン電極」という。)との接触部分に基づき、いわゆるトップコンタクト型、ボトムコンタクト型のいずれの態様であってもよい。
 トップゲート型とは、TFTが形成されている基板を最下層としたときに、ゲート絶縁膜の上側にゲート電極が配置され、ゲート絶縁膜の下側に活性層が形成された形態であり、ボトムゲート型とは、ゲート絶縁膜の下側にゲート電極が配置され、ゲート絶縁膜の上側に活性層が形成された形態である。また、ボトムコンタクト型とは、ソース・ドレイン電極が活性層よりも先に形成されて活性層の下面がソース・ドレイン電極に接触する形態であり、トップコンタクト型とは、活性層がソース・ドレイン電極よりも先に形成されて活性層の上面がソース・ドレイン電極に接触する形態である。
 図1は、トップゲート構造でトップコンタクト型の本発明に係るTFTの一例を示す模式図である。図1に示すTFT10では、基板12の一方の主面上に活性層14として上述の酸化物半導体膜が積層されている。そして、この活性層14上にソース電極16及びドレイン電極18が互いに離間して設置され、更にこれらの上にゲート絶縁膜20と、ゲート電極22とが順に積層されている。
 図2は、トップゲート構造でボトムコンタクト型の本発明に係るTFTの一例を示す模式図である。図2に示すTFT30では、基板12の一方の主面上にソース電極16及びドレイン電極18が互いに離間して設置されている。そして、活性層14として上述の酸化物半導体膜と、ゲート絶縁膜20と、ゲート電極22と、が順に積層されている。
 図3は、ボトムゲート構造でトップコンタクト型の本発明に係るTFTの一例を示す模式図である。図3に示すTFT40では、基板12の一方の主面上にゲート電極22と、ゲート絶縁膜20と、活性層14として上述の酸化物半導体膜と、が順に積層されている。そして、この活性層14の表面上にソース電極16及びドレイン電極18が互いに離間して設置されている。
 図4は、ボトムゲート構造でボトムコンタクト型の本発明に係るTFTの一例を示す模式図である。図4に示すTFT50では、基板12の一方の主面上にゲート電極22と、ゲート絶縁膜20と、が順に積層されている。そして、このゲート絶縁膜20の表面上にソース電極16及びドレイン電極18が互いに離間して設置され、更にこれらの上に、活性層14として上述の酸化物半導体膜が積層されている。
 以下の実施形態としては図1に示すトップゲート型の薄膜トランジスタ10について主に説明するが、本発明の薄膜トランジスタはトップゲート型に限定されることなく、ボトムゲート型の薄膜トランジスタであってもよい。
(活性層)
 本実施形態の薄膜トランジスタ10を製造する場合、まず、基板12上に、前述した前駆体膜形成工程、乾燥工程、及び酸化物半導体膜形成工程を経て酸化物半導体膜を形成する。又、酸化物半導体膜のパターンニングは前述したインクジェット法、ディスペンサー法、凸版印刷法、又は凹版印刷法によって酸化物半導体膜形成工程を施す前にパターンニングしてもよく、酸化物半導体膜形成工程後にフォトリソグラフィー及びエッチングによりパターニングを行ってもよい。インクジェット法等により、酸化物半導体膜形成工程前に直接パターンを形成する手法であれば、フォトリソグラフィー及びエッチング工程を行う必要がなく、プロセスコストを低減させることが出来るという点で好ましい。
 フォトリソグラフィー及びエッチングによりパターン形成を行うには、活性層14として残存させる部分にフォトリソグラフィーによりレジストパターンを形成した後、塩酸、硝酸、希硫酸、又は燐酸、硝酸及び酢酸の混合液等の酸溶液によりエッチングすることにより活性層14のパターンを形成する。
 活性層14の厚みは、膜の平坦性、膜からの不要成分脱離、紫外線照射による硝酸塩分解を効率よく行う観点から、5nm以上40nm以下であることが好ましく、5nm以上20nm以下がより好ましい。
 また、高い移動度を得る観点から、活性層14におけるインジウムの含有量は、活性層14に含まれる全金属元素の50atom%以上であることが好ましく、80atom%以上であることがより好ましい。
(保護層)
 活性層14上にはソース・ドレイン電極16,18のエッチング時に活性層14を保護するための保護層(不図示)を形成することが好ましい。保護層の成膜方法に特に限定はなく、酸化物半導体膜形成工程前に成膜してもよいし、酸化物半導体膜形成工程後に成膜してもよい。又、活性層14のパターンニング前に形成してもよく、後に形成してもよい。
 保護層としては金属酸化物層であってもよく、樹脂のような有機材料であってもよい。なお、保護層はソース電極15及びドレイン電極18(適宜「ソース・ドレイン電極」と記す)の形成後に除去しても構わない。
(ソース・ドレイン電極)
 活性層14上にソース・ドレイン電極16,18を形成する。ソース・ドレイン電極16,18はそれぞれ電極として機能するように高い導電性を有するものを用い、Al,Mo,Cr,Ta,Ti,Ag,Au等の金属、Al-Nd、Ag合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)、In-Ga-Zn-O等の金属酸化物導電膜等を用いて形成することが出来る。
 ソース・ドレイン電極16,18を形成する場合、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式等の中から使用する材料との適性を考慮して適宜選択した方法に従って成膜すればよい。
 ソース・ドレイン電極16,18の膜厚は、成膜性、エッチング又はリフトオフ法によるパターンニング性、導電性等を考慮すると、10nm以上1000nm以下とすることが好ましく、50nm以上100nm以下とすることがより好ましい。
 ソース・ドレイン電極16,18は、導電膜を形成した後、例えば、エッチング又はリフトオフ法により所定の形状にパターンニングして形成してもよく、インクジェット法等により直接パターン形成してもよい。この際、ソース・ドレイン電極16,18及びこれらの電極に接続する配線(不図示)を同時にパターンニングすることが好ましい。
(ゲート絶縁膜)
 ソース・ドレイン電極16,18及び配線(不図示)を形成した後、ゲート絶縁膜20を形成する。ゲート絶縁膜20は高い絶縁性を有するものが好ましく、例えばSiO、SiN、SiON、Al、Y、Ta、HfO等の絶縁膜、又はこれらの化合物を2種以上含む絶縁膜としてもよい。
 ゲート絶縁膜20の形成は、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式等の中から使用する材料との適性を考慮して適宜選択した方法に従って成膜すればよい。
 尚、ゲート絶縁膜20はリーク電流の低下及び電圧耐性の向上のための厚みを有する必要がある一方、ゲート絶縁膜20の厚みが大きすぎると駆動電圧の上昇を招いてしまう。ゲート絶縁膜20は材質にもよるが、ゲート絶縁膜20の厚みは10nm~10μmが好ましく、50nm~1000nmがより好ましく、100nm~400nmが特に好ましい。
(ゲート電極)
 ゲート絶縁膜20を形成した後、ゲート電極22を形成する。ゲート電極22は高い導電性を有するものを用い、Al,Mo,Cr,Ta,Ti,Ag,Au等の金属、Al-Nd、Ag合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)、IGZO等の金属酸化物導電膜等を用いて形成することが出来る。ゲート電極22としてはこれらの導電膜を単層構造又は2層以上の積層構造として用いることが出来る。
 ゲート電極22は、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式等の中から使用する材料との適性を考慮して適宜選択した方法に従って成膜する。
 ゲート電極22を形成するための金属膜の膜厚は、成膜性、エッチングやリフトオフ法によるパターンニング性、導電性等を考慮すると、10nm以上1000nm以下とすることが好ましく、50nm以上200nm以下とすることがより好ましい。
 成膜後、エッチング又はリフトオフ法により所定の形状にパターンニングすることにより、ゲート電極22を形成してもよく、インクジェット法等により直接パターン形成してもよい。この際、ゲート電極22及びゲート配線(不図示)を同時にパターンニングすることが好ましい。
 以上で説明した本実施形態の薄膜トランジスタ10の用途には特に限定はないが、高い輸送特性を示すことから、液晶表示装置、有機EL(Electro Luminescence)表示装置、無機EL表示装置等の表示装置における駆動素子、耐熱性の低い樹脂基板を用いたフレキシブルディスプレイの作製に好適である。
 更に本発明により製造される薄膜トランジスタは、X線センサ、イメージセンサ等の各種センサ、MEMS(Micro Electro Mechanical System)等、種々の電子デバイスにおける駆動素子(駆動回路)として好適に用いられる。
<液晶表示装置>
 本発明の一実施形態である液晶表示装置について、図5にその一部分の概略断面図を示し、図6に電気配線の概略構成図を示す。
 図5に示すように、本実施形態の液晶表示装置100は、図1に示したトップゲート構造でトップコンタクト型のTFT10と、TFT10のパッシベーション層102で保護されたゲート電極22上に画素下部電極104およびその対向上部電極106で挟まれた液晶層108と、各画素に対応させて異なる色を発色させるためのR(赤)G(緑)B(青)のカラーフィルタ110とを備え、TFT10の基板12側およびRGBカラーフィルタ110上にそれぞれ偏光板112a、112bを備えた構成である。
 また、図6に示すように、本実施形態の液晶表示装置100は、互いに平行な複数のゲート配線112と、該ゲート配線112と交差する、互いに平行なデータ配線114とを備えている。ここでゲート配線112とデータ配線114は電気的に絶縁されている。ゲート配線112とデータ配線114との交差部付近に、TFT10が備えられている。
 TFT10のゲート電極22は、ゲート配線112に接続されており、TFT10のソース電極16はデータ配線114に接続されている。また、TFT10のドレイン電極18はゲート絶縁膜20に設けられたコンタクトホール116を介して(コンタクトホール116に導電体が埋め込まれて)画素下部電極104に接続されている。この画素下部電極104は、接地された対向上部電極106とともにキャパシタ118を構成している。
<有機EL表示装置>
 本発明の一実施形態に係るアクティブマトリックス方式の有機EL表示装置について、図7に一部分の概略断面図を示し、図8に電気配線の概略構成図を示す。
 本実施形態のアクティブマトリックス方式の有機EL表示装置200は、図1に示したトップゲート構造のTFT10が、パッシベーション層202を備えた基板12上に、駆動用TFT10aおよびスイッチング用TFT10bとして備えられ、TFT10a,10b上に下部電極208および上部電極210に挟まれた有機発光層212からなる有機EL発光素子214を備え、上面もパッシベーション層216により保護された構成となっている。
 また、図8に示すように、本実施形態の有機EL表示装置200は、互いに平行な複数のゲート配線220と、該ゲート配線220と交差する、互いに平行なデータ配線222および駆動配線224とを備えている。ここで、ゲート配線220とデータ配線222、駆動配線224とは電気的に絶縁されている。スイッチング用TFT10bのゲート電極22は、ゲート配線220に接続されており、スイッチング用TFT10bのソース電極16はデータ配線222に接続されている。また、スイッチング用TFT10bのドレイン電極18は駆動用TFT10aのゲート電極22に接続されるとともに、キャパシタ226を用いることで駆動用TFT10aをオン状態に保つ。駆動用TFT10aのソース電極16は駆動配線224に接続され、ドレイン電極18は有機EL発光素子214に接続される。
 なお、図7に示した有機EL表示装置において、上部電極210を透明電極としてトップエミッション型としてもよいし、下部電極208およびTFTの各電極を透明電極とすることによりボトムエミッション型としてもよい。
<X線センサ>
 本発明の一実施形態であるX線センサについて、図9にその一部分の概略断面図を示し、図10にその電気配線の概略構成図を示す。
 本実施形態のX線センサ300は基板12上に形成されたTFT10およびキャパシタ310と、キャパシタ310上に形成された電荷収集用電極302と、X線変換層304と、上部電極306とを備えて構成される。TFT10上にはパッシベーション膜308が設けられている。
 キャパシタ310は、キャパシタ用下部電極312とキャパシタ用上部電極314とで絶縁膜316を挟んだ構造となっている。キャパシタ用上部電極314は絶縁膜316に設けられたコンタクトホール318を介し、TFT10のソース電極16およびドレイン電極18のいずれか一方(図9においてはドレイン電極18)と接続されている。
 電荷収集用電極302は、キャパシタ310におけるキャパシタ用上部電極314上に設けられており、キャパシタ用上部電極314に接している。
 X線変換層304はアモルファスセレンからなる層であり、TFT10およびキャパシタ310を覆うように設けられている。
 上部電極306はX線変換層304上に設けられており、X線変換層304に接している。
 図10に示すように、本実施形態のX線センサ300は、互いに平行な複数のゲート配線320と、ゲート配線320と交差する、互いに平行な複数のデータ配線322とを備えている。ここでゲート配線320とデータ配線322は電気的に絶縁されている。ゲート配線320とデータ配線322との交差部付近に、TFT10が備えられている。
 TFT10のゲート電極22は、ゲート配線320に接続されており、TFT10のソース電極16はデータ配線322に接続されている。また、TFT10のドレイン電極18は電荷収集用電極302に接続されており、さらにこの電荷収集用電極302は、キャパシタ310に接続されている。
 本実施形態のX線センサ300において、X線は図9中、上部電極306側から入射してX線変換層304で電子-正孔対を生成する。X線変換層304に上部電極306によって高電界を印加しておくことにより、生成した電荷はキャパシタ310に蓄積され、TFT10を順次走査することによって読み出される。
 なお、上記実施形態の液晶表示装置100、有機EL表示装置200、及びX線センサ300においては、トップゲート構造のTFTを備えるものとしたが、TFTはこれに限定されず、図2~図4に示す構造のTFTであってもよい。
 以下に実施例を説明するが、本発明はこれら実施例により何ら限定されるものではない。
<実施例1>
 以下のような評価用デバイスを作製し、評価を行った。図11Aは評価用の簡易型TFTの概略平面を、図11Bは図11AにおけるA-A線断面を示している。
 まず、硝酸インジウム(In(NO・xHO、4N、高純度化学研究所社製)を2-メトキシエタノール(試薬特級、和光純薬工業社製)中に室温で30分間攪拌することで溶解させ、0.1mol/Lの濃度の硝酸インジウム溶液を作製した。
 基板として熱酸化膜(100nm)504付p型Si基板502を用い、Si基板502をゲート電極、熱酸化膜504をゲート絶縁膜として用いる簡易型のTFT500を作製した。
 この熱酸化膜付p型Si 1インチ角基板上に、上記作製した硝酸インジウム溶液を1500rpmの回転速度で30秒間スピンコートした後、60℃に加熱されたホットプレート上で1分間乾燥を行った。これにより酸化物半導体の前駆体膜を得た。
 得られた酸化物半導体の前駆体膜を、下記条件で紫外線照射処理を行うことで酸化物半導体膜を得た。紫外線照射装置としては、低圧水銀ランプを用いたUVオゾンクリーナー(フィルジェン社製、UV253H)を用いた。
 試料は厚さ40mmのガラス板上にセットし、ランプ-試料間距離を10mmとした。試料位置での波長254nmの紫外線照度は、紫外線光量計(オーク製作所製、UV-M10、受光器UV-25)を用いて測定した。ランプ点灯から3分間で最大値に達し、15mW/cmであった。なお、以降の実施例および比較例における波長254nmの紫外線照度も、紫外線光量計(オーク製作所製、UV-M10、受光器UV-25)を用いて測定した。
 紫外線照射処理室内に窒素を6L/minで10分間フローさせた後、90分間、紫外線照射を行った。紫外線照射中は常に6L/minで窒素をフローさせた。紫外線照射処理時の基板温度(紫外線照射処理時の基板の最高到達温度、以下同様)をサーモラベルでモニターしたところ、135℃を示した。
 上記得られた酸化物半導体膜506上にソース・ドレイン電極510,512を蒸着により成膜した。ソース・ドレイン電極510,512の成膜はメタルマスクを用いたパターン成膜にて行い、Tiを50nmの厚みで成膜した。ソース・ドレイン電極510,512のサイズは各々1mm角とし、電極間距離は0.2mmとした。これにより簡易型TFT500を作製した。
<実施例2~4、比較例1~2>
 実施例1における硝酸インジウム溶液の塗膜の乾燥温度を下記表1に示す温度に変更したこと以外は実施例1と同様の手法で簡易型TFTを作製した。
Figure JPOXMLDOC01-appb-T000001

 
[評価]
<トランジスタ特性>
 上記で得られた簡易型TFTについて、半導体パラメータ・アナライザー4156C(アジレントテクノロジー社製)を用い、トランジスタ特性(V-I特性)の測定を行った。
 V-I特性の測定は、ドレイン電圧(V)を+1Vに固定し、ゲート電圧(V)を-15V~+15Vの範囲内で変化させ、各ゲート電圧(V)におけるドレイン電流(I)を測定することにより行った。なお、以降の実施例および比較例におけるトランジスタ特性の測定も、上記と同様にして行った。
 図12~図16に実施例1~4及び比較例1のV-I特性を示し、図17に酸化物半導体層を形成する際の乾燥温度と移動度との関係を示す。尚、比較例2に関しては、塗布膜のはじきが発生し、均一な膜形成が困難であり、トランジスタ評価が行えなかった。結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000002

 
 乾燥工程において基板温度を35℃以上100℃以下の範囲で乾燥を行うことにより、膜形成を容易に行うことができ、且つ移動度0.1cm/Vsを超える高いトランジスタ特性が確認された。また、乾燥工程において基板温度を35℃以上90℃以下の範囲で乾燥した実施例1-3では移動度1cm/Vsを超える高いトランジスタ動作が確認された。
<X線光電子分光分析>
 実施例1(乾燥温度60℃)、実施例2(乾燥温度35℃)、実施例3(乾燥温度90℃)、実施例4(乾燥温度100℃)、比較例1(乾燥温度140℃)でそれぞれ作製した酸化物半導体膜について、X線光電子分光(XPS)分析を行った。測定装置はULVAC PHI製QUANTERA SXM、測定条件としては、X線源は単色化AlKα(100μmφ、25W、15kV)、分析径100μmφ、光電子取り出し角45℃とした。
 N1sのピークにおいて、NO由来の成分はおおむね402~405eV付近に検出され、NO由来の成分は406~408eV付近に検出される。なお、以降の実施例および比較例におけるX線光電子分光分析も上記と同様に行った。
 図18にX線光電子分光(XPS)分析の結果を示し、表3に得られたスペクトルを平滑化処理した、A/(A+B)のピーク面積比を示す。得られたピーク面積比と移動度の関係を図19に示す。窒素の1s電子に帰属するピークエネルギーの強度をピーク分離によって求め、Aは結合エネルギーが402eV以上405eV以下の範囲にピーク位置を持つ成分のピーク面積を表し、Bは結合エネルギーが406eV以上408eV以下の範囲にピーク位置を持つ成分のピーク面積を表す。累乗近似による近似曲線からA/(A+B)が0.39以上であれば移動度で0.1以上の高い輸送特性を示す薄膜トランジスタが得られ、0.73以上であれば移動度が1以上となり、より好ましい。
Figure JPOXMLDOC01-appb-T000003

 
<紫外線照射時の紫外線照度及び雰囲気による依存性>
 基板として熱酸化膜付p型Si基板を用い、熱酸化膜をゲート絶縁膜として用いる簡易型のTFTを作製した。熱酸化膜付p型Si 1インチ角基板上に、作製した硝酸インジウム溶液を1500rpmの回転速度で30秒スピンコートした後、60℃に加熱されたホットプレート上で1分間乾燥を行った。
 得られた酸化物半導体の前駆体薄膜を、紫外線照射処理を行うことで処理膜を得た。紫外線照射装置としては、低圧水銀ランプを用いたUVオゾンクリーナー(フィルジェン社製、UV253H)を用いた。試料は厚さ40mmのガラス板上にセットし、紫外線照射時間は90分とした。ランプ-試料間距離、紫外線照射中はフローさせるガスを下記表4に示す条件とし、それぞれの条件下でのランプ点灯から3分後の紫外線照度を併せて示す。なお、表4中の紫外線照度は実施例1における紫外線照度の測定と同様にして測定した波長254nmにおける紫外線照度である。
Figure JPOXMLDOC01-appb-T000004

 
 比較例3,4においてはトランジスタ動作が確認されず、絶縁体の振る舞いを見せた。一方、実施例5においては線形移動度1.3、閾値電圧4.1の良好なトランジスタ動作が確認された。
 表5に比較例3、4、実施例5の線形移動度および処理膜のX線光電子分光(XPS)分析により得られたA/(A+B)の値を示す。比較例3、4に関してはA/(A+B)の値が小さく、紫外線による硝酸塩の分解が十分起こっていないことが伺える。一方、実施例5はA/(A+B)が高い値を示しており、その結果高いトランジスタ特性が得られたことが伺える。
Figure JPOXMLDOC01-appb-T000005

 
<比較例5~9:紫外線照射を行っていない前駆体膜>
 実施例1で用いた硝酸インジウム溶液を用い、基板として熱酸化膜付p型Si基板を用い、熱酸化膜をゲート絶縁膜として用いる簡易型のTFTを作製した。熱酸化膜付p型Si 1インチ角基板上に、作製した硝酸インジウム溶液を1500rpmの回転速度で30秒スピンコートした後、ホットプレート上で1分間乾燥を行い、酸化物半導体の前駆体膜を得た。その際のホットプレート天板温度は35℃(比較例5)、60℃(比較例6)、90℃(比較例7)、100℃(比較例8)、140℃(比較例9)とした。
 上記得られた酸化物半導体の前駆体膜上にソース・ドレイン電極を蒸着により成膜した。ソース・ドレイン電極の成膜はメタルマスクを用いたパターン成膜にて行い、Tiを50nmの厚みで成膜した。ソース・ドレイン電極のサイズは各々1mm角とし、電極間距離は0.2mmとした。これにより簡易型TFTを作製した。
 比較例5~9ともにトランジスタ動作は確認されず、絶縁体の振る舞いを見せた。尚、比較例5~9を実施例1と同様の条件にてXPS分析を行ったところ、NO由来のピークのみが確認され、A/(A+B)は0であった。
<比較例10,11:紫外線照射を行わず基板加熱>
 実施例1で用いた硝酸インジウム溶液を用い、基板として熱酸化膜付p型Si基板を用い、熱酸化膜をゲート絶縁膜として用いる簡易型のTFTを作製した。熱酸化膜付p型Si 1インチ角基板上に、作製した硝酸インジウム溶液を1500rpmの回転速度で30秒スピンコートした後、60℃に加熱されたホットプレート上で1分間乾燥を行った。これにより酸化物半導体の前駆体膜を得た。
 得られた酸化物半導体の前駆体膜を、ホットプレートにてアニール処理を施した。ホットプレート天板温度を140℃(比較例10)、200℃(比較例11)とし、1時間のアニール処理により処理膜を得た。
 上記得られた処理膜上にソース・ドレイン電極を蒸着により成膜した。ソース・ドレイン電極の成膜はメタルマスクを用いたパターン成膜にて行い、Tiを50nmの厚みで成膜した。ソース・ドレイン電極のサイズは各々1mm角とし、電極間距離は0.2mmとした。これにより簡易型TFTを作製した。
 比較例10,11ともにトランジスタ動作は確認されず、絶縁体の振る舞いを見せた。尚、比較例10のNO由来のピークのみが確認され、A/(A+B)は0であり、硝酸塩の分解が十分起こっていない。比較例11においてはNO由来のピーク及びNO由来のピークがともに確認されなかった。
<実施例6A:溶媒がメタノール>
 まず、硝酸インジウムをメタノール(試薬特級、和光純薬工業社製)中に室温で30分間攪拌することで溶解させ、0.1mol/Lの濃度の硝酸インジウム溶液を作製した。
 基板として熱酸化膜付p型Si基板を用い、熱酸化膜をゲート絶縁膜として用いる簡易型のTFTを作製した。熱酸化膜付p型Si 1インチ角基板上に、作製した硝酸インジウム溶液を5000rpmの回転速度で5秒スピンコートした後、60℃に加熱されたホットプレート上で1分間乾燥を行った。これにより酸化物半導体の前駆体膜を得た。
 得られた酸化物半導体の前駆体膜を、下記条件で紫外線照射処理を行うことで酸化物半導体膜を得た。紫外線照射装置としては、低圧水銀ランプを用いたUVオゾンクリーナー(フィルジェン社製、UV253H)を用いた。
 試料は厚さ40mmのガラス板上にセットし、ランプ-試料間距離を10mmとした。紫外線照射処理室内に窒素を6L/minで10分間フローさせた後、90分間、紫外線照射を行った。紫外線照射中は常に6L/minで窒素をフローさせた。試料位置での波長254nmの紫外線照度を、紫外線光量計(オーク製作所製、UV-M10、受光器UV-25)を用いて測定したところ、実施例1と同様に、ランプ点灯から3分間で最大値に達し、15mW/cmであった。紫外線照射処理時の基板温度も実施例1と同様であった。
 上記得られた酸化物半導体膜上にソース・ドレイン電極を蒸着により成膜した。ソース・ドレイン電極の成膜はメタルマスクを用いたパターン成膜にて行い、Tiを50nmの厚みで成膜した。ソース・ドレイン電極のサイズは各々1mm角とし、電極間距離は0.2mmとした。これにより簡易型TFTを作製した。酸化物半導体膜のX線光電子分光(XPS)分析により得られたA/(A+B)の値は0.90であった。
<実施例6B:溶媒がN,N-ジメチルアセトアミド>
 まず、硝酸インジウムをN,N-ジメチルアセトアミド(和光特級、和光純薬工業社製)中に室温で30分間攪拌させることで溶解させ、0.2mol/Lの濃度の硝酸インジウム溶液を作製した。
 基板として熱酸化膜付p型Si基板を用い、熱酸化膜をゲート絶縁膜として用いる簡易型のTFTを作製した。熱酸化膜付p型Si 1インチ角基板上に、作製した硝酸インジウム溶液を1500rpmの回転速度で30秒スピンコートした後、60℃に加熱されたホットプレート上で1分間乾燥を行った。これにより酸化物半導体の前駆体膜を得た。
 得られた酸化物半導体の前駆体膜を、下記条件で紫外線照射処理を行うことで酸化物半導体膜を得た。紫外線照射装置としては、低圧水銀ランプを用いたUVオゾンクリーナー(フィルジェン社製、UV253H)を用いた。
 試料は厚さ40mmのガラス板上にセットし、ランプ-試料間距離を10mmとした。紫外線照射処理室内に窒素を6L/minで10分間フローさせた後、90分間、紫外線照射を行った。紫外線照射中は常に6L/minで窒素をフローさせた。試料位置での波長254nmの紫外線照度を、紫外線光量計(オーク製作所製、UV-M10、受光器UV-25)を用いて測定したところ、実施例1と同様に、ランプ点灯から3分間で最大値に達し、15mW/cmであった。紫外線照射処理時の基板温度も実施例1と同様であった。
 上記得られた酸化物半導体膜上にソース・ドレイン電極を蒸着により成膜した。ソース・ドレイン電極の成膜はメタルマスクを用いたパターン成膜にて行い、Tiを50nmの厚みで成膜した。ソース・ドレイン電極のサイズは各々1mm角とし、電極間距離は0.2mmとした。これにより簡易型TFTを作製した。酸化物半導体膜のX線光電子分光(XPS)分析により得られたA/(A+B)の値は0.87であった。
 実施例1と同様の手法でVg-Id特性を評価したところ、実施例6A、6Bともに実施例1と同等、移動度2~3cm/Vsの高いトランジスタ特性が得られた。
<実施例7:亜鉛を含む組成>
 まず、硝酸インジウムと酢酸亜鉛(Zn(CHCO・2HO、高純度化学研究所社製)をメトキシエタノール中に室温で30分間攪拌することで溶解させ、硝酸インジウム濃度が0.08mol/L、酢酸亜鉛濃度が0.02mol/Lの硝酸インジウム・酢酸亜鉛混合溶液を作製した。
 基板として熱酸化膜付p型Si基板を用い、熱酸化膜をゲート絶縁膜として用いる簡易型のTFTを作製した。熱酸化膜付p型Si 1インチ角基板上に、作製した混合溶液を1500rpmの回転速度で30秒スピンコートした後、60℃に加熱されたホットプレート上で1分間乾燥を行った。これにより酸化物半導体の前駆体膜を得た。
 得られた酸化物半導体の前駆体膜を、下記条件で紫外線照射処理を行うことで酸化物半導体膜を得た。紫外線照射装置としては、低圧水銀ランプを用いたUVオゾンクリーナー(フィルジェン社製、UV253H)を用いた。
 試料は厚さ40mmのガラス板上にセットし、ランプ-試料間距離を10mmとした。紫外線照射処理室内に窒素を6L/minで10分間フローさせた後、90分間、紫外線照射を行った。紫外線照射中は常に6L/minで窒素をフローさせた。試料位置での波長254nmの紫外線照度を、紫外線光量計(オーク製作所製、UV-M10、受光器UV-25)を用いて測定したところ、実施例1と同様に、ランプ点灯から3分間で最大値に達し、15mW/cmであった。紫外線照射処理時の基板温度も実施例1と同様であった。
 上記得られた酸化物半導体膜506上にソース・ドレイン電極510,512を蒸着により成膜した。ソース・ドレイン電極510,512の成膜はメタルマスクを用いたパターン成膜にて行い、Tiを50nmの厚みで成膜した。ソース・ドレイン電極510,512のサイズは各々1mm角とし、電極間距離は0.2mmとした。これにより簡易型TFT500を作製した。酸化物半導体膜のX線光電子分光(XPS)分析により得られたA/(A+B)の値は0.80であった。
 これにより移動度1.4cm2/Vsの高いトランジスタ特性が得られた。
<実施例8:ガリウム、亜鉛を含む組成>
 まず、硝酸インジウムと酢酸亜鉛と、硝酸ガリウム(Ga(NO・xHO、5N、高純度化学研究所社製)をメトキシエタノール中に室温で30分間攪拌することで溶解させ、硝酸インジウム濃度が0.08mol/L、酢酸亜鉛濃度が0.01mol/L、硝酸ガリウムが0.01mol/Lの硝酸インジウム・酢酸亜鉛・硝酸ガリウム混合溶液を作製した。
 基板として熱酸化膜付p型Si基板を用い、熱酸化膜をゲート絶縁膜として用いる簡易型のTFTを作製した。熱酸化膜付p型Si 1インチ角基板上に、作製した混合溶液を1500rpmの回転速度で30秒スピンコートした後、60℃に加熱されたホットプレート上で1分間乾燥を行った。これにより酸化物半導体の前駆体膜を得た。
 得られた酸化物半導体の前駆体膜を、下記条件で紫外線照射処理を行うことで酸化物半導体膜を得た。紫外線照射装置としては、低圧水銀ランプを用いたUVオゾンクリーナー(フィルジェン社製、UV253H)を用いた。
 試料は厚さ40mmのガラス板上にセットし、ランプ-試料間距離を10mmとした。紫外線照射処理室内に窒素を6L/minで10分間フローさせた後、90分間、紫外線照射を行った。紫外線照射中は常に6L/minで窒素をフローさせた。試料位置での波長254nmの紫外線照度を、紫外線光量計(オーク製作所製、UV-M10、受光器UV-25)を用いて測定したところ、実施例1と同様に、ランプ点灯から3分間で最大値に達し、15mW/cmであった。紫外線照射処理時の基板温度も実施例1と同様であった。
 上記得られた酸化物半導体膜506上にソース・ドレイン電極510,512を蒸着により成膜した。ソース・ドレイン電極510,512の成膜はメタルマスクを用いたパターン成膜にて行い、Tiを50nmの厚みで成膜した。ソース・ドレイン電極510,512のサイズは各々1mm角とし、電極間距離は0.2mmとした。これにより簡易型TFT500を作製した。酸化物半導体膜のX線光電子分光(XPS)分析により得たA/(A+B)の値は0.81であった。
 これにより移動度1.2cm/Vsの高いトランジスタ特性が得られた。
 尚、上記実施形態及び実施例では、金属酸化物膜として主に酸化物半導体膜及びその製造方法に関して説明したが、上記金属酸化物膜及びその製造方法は酸化物半導体膜に限らず、他の酸化物膜(導電膜、絶縁膜)にも有効に用いることが出来る。特に導電膜に適用すれば、高い電気伝導性を有する導電膜を得ることが出来るために好適に用いることが出来る。
<参考例>
 図20に硝酸インジウムを2-メトキシエタノール中に溶解させた溶液の紫外光吸収スペクトルを示す。測定においては、日立ハイテクノロジーズ社製ダブルビーム分光光度計U-2910を用いた。比較として2-メトキシエタノールの紫外光吸収スペクトルを併せて示す。2-メトキシエタノールは低圧水銀ランプのメインの波長である254nm程度の波長域に吸収を持たないが、2-メトキシエタノールに硝酸インジウムを溶解した溶液には254nm程度の波長域に強い吸収を持ち、深紫外光が直接膜に寄与し得ることがわかる。
 2013年3月19日に出願された日本国特許出願2013-057281号の開示および2014年1月29日に出願された日本国特許出願2014-14679号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (25)

  1.  X線光電子分光分析によって得られるXPSスペクトルにおいて、結合エネルギーが402eV以上405eV以下の範囲にピーク位置を持つ成分が含まれ、且つ窒素の1s電子に帰属するピークエネルギーの強度をピーク分離によって求めたとき、以下の式(1)の関係を満足する、金属酸化物膜。
      A/(A+B)≧0.39  (1) 
     式(1)中、Aは、結合エネルギーが402eV以上405eV以下の範囲にピーク位置を持つ成分のピーク面積を表し、Bは、結合エネルギーが406eV以上408eV以下の範囲にピーク位置を持つ成分のピーク面積を表す。
  2.  酸化物導電膜である請求項1に記載の金属酸化物膜。
  3.  酸化物半導体膜である請求項1に記載の金属酸化物膜。
  4.  前記X線光電子分光分析によって得られるXPSスペクトルにおいて、窒素の1s電子に帰属するピークエネルギーの強度をピーク分離によって求めたとき、以下の式(2)の関係を満足する請求項1~請求項3のいずれか一項に記載の金属酸化物膜。
     A/(A+B)≧0.73   (2)
    (式(2)中、Aは、結合エネルギーが402eV以上405eV以下の範囲にピーク位置を持つ成分のピーク面積を表し、Bは、結合エネルギーが406eV以上408eV以下の範囲にピーク位置を持つ成分のピーク面積を表す。)
  5.  インジウムを含む請求項1~請求項4のいずれか一項に記載の金属酸化物膜。
  6.  インジウムと、Zn,Sn,Ga,及びAlからなる群から選ばれる少なくとも1種とを含む請求項5に記載の金属酸化物膜。
  7.  インジウムの含有量が、前記金属酸化物膜に含まれる全金属元素の50atom%以上である請求項5又は請求項6に記載の金属酸化物膜。
  8.  硝酸塩を含む溶液を基板上に付与して酸化物半導体の前駆体膜を形成する前駆体膜形成工程と、
     前記基板を35℃以上100℃以下の温度に加熱して前記前駆体膜を乾燥させる乾燥工程と、
     前記乾燥させた前駆体膜に紫外線を吸収させて前記硝酸塩を分解することにより、酸化物半導体膜を形成する酸化物半導体膜形成工程と、
     を含み、
     前記酸化物半導体膜形成工程における前記基板の最高到達温度が120℃以上である、酸化物半導体膜の製造方法。
  9.  前記乾燥工程における前記基板の温度が35℃以上90℃以下である請求項8に記載の酸化物半導体膜の製造方法。
  10.  前記酸化物半導体膜形成工程における前記基板の温度が200℃以下である請求項8又は請求項9に記載の酸化物半導体膜の製造方法。
  11.  前記酸化物半導体膜のX線光電子分光分析によって得られるXPSスペクトルにおいて、結合エネルギーが402eV以上405eV以下の範囲にピーク位置を持つ成分が含まれ、且つ窒素の1s電子に帰属するピークエネルギーの強度をピーク分離によって求めたとき、以下の式(1)の関係が満たされる、請求項8~請求項10のいずれか一項に記載の酸化物半導体膜の製造方法。
      A/(A+B)≧0.39  (1) 
     式(1)中、Aは、結合エネルギーが402eV以上405eV以下の範囲にピーク位置を持つ成分のピーク面積を表し、Bは、結合エネルギーが406eV以上408eV以下の範囲にピーク位置を持つ成分のピーク面積を表す。
  12.  前記酸化物半導体膜形成工程において、前記前駆体膜に対し、波長254nm以下の紫外線を10mW/cm以上の強度で照射する請求項8~請求項11のいずれか一項に記載の酸化物半導体膜の製造方法。
  13.  前記硝酸塩を含む溶液が、前記硝酸塩として少なくとも硝酸インジウムを含む請求項8~請求項12のいずれか一項に記載の酸化物半導体膜の製造方法。
  14.  前記硝酸インジウムを含む溶液が、さらにZn、Sn、Ga、及びAlからなる群から選ばれる1つ以上の金属成分を含む請求項13に記載の酸化物半導体膜の製造方法。
  15.  前記酸化物半導体膜形成工程を非酸化性雰囲気中で行う請求項8~請求項14のいずれか一項に記載の酸化物半導体膜の製造方法。
  16.  前記酸化物半導体膜形成工程における紫外線の光源が、低圧水銀ランプである請求項8~請求項15のいずれか一項に記載の酸化物半導体膜の製造方法。
  17.  前記硝酸塩を含む溶液が、メタノール又はメトキシエタノールを含む請求項8~請求項16のいずれか一項に記載の酸化物半導体膜の製造方法。
  18.  前記前駆体膜形成工程後、5分以内に前記前駆体膜の乾燥を開始する請求項8~請求項17のいずれか一項に記載の酸化物半導体膜の製造方法。
  19.  前記硝酸塩を含む溶液中の硝酸塩の濃度が、0.01mol/L~0.5mol/Lである請求項8~請求項18のいずれか一項に記載の酸化物半導体膜の製造方法。
  20.  前記前駆体膜形成工程において、前記硝酸塩を含む溶液を、インクジェット法、ディスペンサー法、凸版印刷法、及び凹版印刷法からなる群から選択される少なくとも一種の塗布法により基板上に付与して前記前駆体膜を形成する請求項8~請求項19のいずれか一項に記載の酸化物半導体膜の製造方法。
  21.  請求項8~請求項20のいずれか一項に記載の酸化物半導体膜の製造方法により製造された酸化物半導体膜。
  22.  請求項1又は請求項3~請求項7のいずれか一項に記載の金属酸化物膜である酸化物半導体膜、並びに、請求項21に記載の酸化物半導体膜からなる群から選ばれる酸化物半導体膜を含む活性層と、ソース電極と、ドレイン電極と、ゲート絶縁膜と、ゲート電極を有する薄膜トランジスタ。
  23.  請求項22に記載の薄膜トランジスタを備えた表示装置。
  24.  請求項22に記載の薄膜トランジスタを備えたイメージセンサ。
  25.  請求項22に記載の薄膜トランジスタを備えたX線センサ。
PCT/JP2014/054363 2013-03-19 2014-02-24 金属酸化物膜及びその製造方法、薄膜トランジスタ、表示装置、イメージセンサ並びにx線センサ WO2014148206A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157025431A KR20150119360A (ko) 2013-03-19 2014-02-24 금속 산화물막 및 그 제조 방법, 박막 트랜지스터, 표시 장치, 이미지 센서 그리고 x 선 센서
US14/856,047 US9515193B2 (en) 2013-03-19 2015-09-16 Metal oxide film, method for manufacturing same, thin film transistor, display apparatus, image sensor, and X-ray sensor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013057281 2013-03-19
JP2013-057281 2013-03-19
JP2014-014679 2014-01-29
JP2014014679A JP6117124B2 (ja) 2013-03-19 2014-01-29 酸化物半導体膜及びその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/856,047 Continuation US9515193B2 (en) 2013-03-19 2015-09-16 Metal oxide film, method for manufacturing same, thin film transistor, display apparatus, image sensor, and X-ray sensor

Publications (1)

Publication Number Publication Date
WO2014148206A1 true WO2014148206A1 (ja) 2014-09-25

Family

ID=51579898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054363 WO2014148206A1 (ja) 2013-03-19 2014-02-24 金属酸化物膜及びその製造方法、薄膜トランジスタ、表示装置、イメージセンサ並びにx線センサ

Country Status (5)

Country Link
US (1) US9515193B2 (ja)
JP (1) JP6117124B2 (ja)
KR (1) KR20150119360A (ja)
TW (1) TWI613800B (ja)
WO (1) WO2014148206A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083500A1 (ja) * 2013-12-06 2015-06-11 富士フイルム株式会社 金属酸化物膜の製造方法、金属酸化物膜、薄膜トランジスタ、表示装置、イメージセンサ及びx線センサ
WO2022259519A1 (en) * 2021-06-11 2022-12-15 National Institute Of Advanced Industrial Science And Technology Metal oxide precursor composition

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5972065B2 (ja) * 2012-06-20 2016-08-17 富士フイルム株式会社 薄膜トランジスタの製造方法
JP6271760B2 (ja) * 2014-12-05 2018-01-31 富士フイルム株式会社 金属酸化物膜の製造方法及び薄膜トランジスタの製造方法
JP6449026B2 (ja) * 2015-01-23 2019-01-09 国立研究開発法人産業技術総合研究所 半導体製造装置および半導体製造方法
JP5790893B1 (ja) * 2015-02-13 2015-10-07 日新電機株式会社 膜形成方法および薄膜トランジスタの作製方法
JP6746557B2 (ja) * 2016-12-06 2020-08-26 旭化成株式会社 半導体膜、及びそれを用いた半導体素子
KR20200047533A (ko) * 2017-07-20 2020-05-07 클릭 머티리얼스 코포레이션 전기 변색 디바이스용 금속 산화물의 광퇴적

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4350745B2 (ja) * 2003-05-23 2009-10-21 エルジー・ケム・リミテッド 窒素プラズマ処理されたitoフィルム及びこれを陽極として使用した有機発光素子
WO2010044332A1 (ja) * 2008-10-14 2010-04-22 コニカミノルタホールディングス株式会社 薄膜トランジスタ及びその製造方法
JP2010182852A (ja) * 2009-02-05 2010-08-19 Konica Minolta Holdings Inc 金属酸化物半導体、その製造方法及び薄膜トランジスタ
JP2011199291A (ja) * 2010-03-22 2011-10-06 Samsung Electronics Co Ltd 薄膜トランジスタ及びその製造方法並びにそれを含む表示装置
JP2012212874A (ja) * 2011-03-18 2012-11-01 Semiconductor Energy Lab Co Ltd 酸化物半導体膜、半導体装置および半導体装置の作製方法
JP2012228859A (ja) * 2011-04-27 2012-11-22 Konica Minolta Holdings Inc ガスバリア性フィルム及びガスバリア性フィルムの製造方法
US20120313096A1 (en) * 2011-06-09 2012-12-13 Industry-Academics Cooperation Foundation, Yonsei University Oxide semiconductor composition and preparation method thereof, method of forming oxide semiconductor thin film, method of fabricating electronic device and electronic device fabricated thereby
US20130059414A1 (en) * 2011-09-02 2013-03-07 Industry-Academic Cooperation Foundation, Yonsei University Compositions used in formation of oxide material layers, methods of forming an oxide material layer using the same, and methods of fabricating a thin film transistor using same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070098902A1 (en) * 2005-06-17 2007-05-03 Cornell Research Foundation, Inc. Fabricating inorganic-on-organic interfaces for molecular electronics employing a titanium coordination complex and thiophene self-assembled monolayers
US8679587B2 (en) * 2005-11-29 2014-03-25 State of Oregon acting by and through the State Board of Higher Education action on Behalf of Oregon State University Solution deposition of inorganic materials and electronic devices made comprising the inorganic materials
JPWO2009011224A1 (ja) 2007-07-18 2010-09-16 コニカミノルタホールディングス株式会社 金属酸化物半導体の製造方法、それにより得られた薄膜トランジスタ
JPWO2009031381A1 (ja) 2007-09-07 2010-12-09 コニカミノルタホールディングス株式会社 金属酸化物半導体の製造方法、及びその方法により得られた薄膜トランジスタ
JP5644111B2 (ja) 2007-12-26 2014-12-24 コニカミノルタ株式会社 金属酸化物半導体およびその製造方法、半導体素子、薄膜トランジスタ
JP2010258057A (ja) 2009-04-22 2010-11-11 Konica Minolta Holdings Inc 金属酸化物半導体、その製造方法、及びそれを用いた薄膜トランジスタ
CN102549816B (zh) * 2009-10-22 2015-09-02 日本电气硝子株式会社 蓄电器件用负极活性物质及其制造方法
CA2791928C (en) * 2010-03-05 2020-06-30 University Of Regina Catalysts for feedstock-flexible and process-flexible hydrogen production
KR102052293B1 (ko) * 2010-07-26 2019-12-04 닛산 가가쿠 가부시키가이샤 아모르퍼스 금속 산화물 반도체층 형성용 전구체 조성물, 아모르퍼스 금속 산화물 반도체층 및 그 제조 방법 그리고 반도체 디바이스
JP6064314B2 (ja) * 2010-11-29 2017-01-25 株式会社リコー 金属酸化物薄膜形成用塗布液、金属酸化物薄膜の製造方法、及び電界効果型トランジスタの製造方法
JP5871263B2 (ja) * 2011-06-14 2016-03-01 富士フイルム株式会社 非晶質酸化物薄膜の製造方法
GB201110117D0 (en) * 2011-06-16 2011-07-27 Fujifilm Mfg Europe Bv method and device for manufacturing a barrie layer on a flexible substrate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4350745B2 (ja) * 2003-05-23 2009-10-21 エルジー・ケム・リミテッド 窒素プラズマ処理されたitoフィルム及びこれを陽極として使用した有機発光素子
WO2010044332A1 (ja) * 2008-10-14 2010-04-22 コニカミノルタホールディングス株式会社 薄膜トランジスタ及びその製造方法
JP2010182852A (ja) * 2009-02-05 2010-08-19 Konica Minolta Holdings Inc 金属酸化物半導体、その製造方法及び薄膜トランジスタ
JP2011199291A (ja) * 2010-03-22 2011-10-06 Samsung Electronics Co Ltd 薄膜トランジスタ及びその製造方法並びにそれを含む表示装置
JP2012212874A (ja) * 2011-03-18 2012-11-01 Semiconductor Energy Lab Co Ltd 酸化物半導体膜、半導体装置および半導体装置の作製方法
JP2012228859A (ja) * 2011-04-27 2012-11-22 Konica Minolta Holdings Inc ガスバリア性フィルム及びガスバリア性フィルムの製造方法
US20120313096A1 (en) * 2011-06-09 2012-12-13 Industry-Academics Cooperation Foundation, Yonsei University Oxide semiconductor composition and preparation method thereof, method of forming oxide semiconductor thin film, method of fabricating electronic device and electronic device fabricated thereby
US20130059414A1 (en) * 2011-09-02 2013-03-07 Industry-Academic Cooperation Foundation, Yonsei University Compositions used in formation of oxide material layers, methods of forming an oxide material layer using the same, and methods of fabricating a thin film transistor using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083500A1 (ja) * 2013-12-06 2015-06-11 富士フイルム株式会社 金属酸化物膜の製造方法、金属酸化物膜、薄膜トランジスタ、表示装置、イメージセンサ及びx線センサ
WO2022259519A1 (en) * 2021-06-11 2022-12-15 National Institute Of Advanced Industrial Science And Technology Metal oxide precursor composition

Also Published As

Publication number Publication date
TW201438210A (zh) 2014-10-01
KR20150119360A (ko) 2015-10-23
TWI613800B (zh) 2018-02-01
US9515193B2 (en) 2016-12-06
JP2014207431A (ja) 2014-10-30
JP6117124B2 (ja) 2017-04-19
US20160005879A1 (en) 2016-01-07

Similar Documents

Publication Publication Date Title
JP6117124B2 (ja) 酸化物半導体膜及びその製造方法
JP6180908B2 (ja) 金属酸化物半導体膜、薄膜トランジスタ、表示装置、イメージセンサ及びx線センサ
JP6181306B2 (ja) 金属酸化物膜の製造方法
US9779938B2 (en) Metal oxide thin film, method of producing same, and coating solution for forming metal oxide thin film used in said method
JP6096102B2 (ja) 金属酸化物半導体膜の製造方法
JP6177711B2 (ja) 金属酸化物膜の製造方法、金属酸化物膜、薄膜トランジスタ、及び電子デバイス
JP6061831B2 (ja) 金属酸化物膜の製造方法及び薄膜トランジスタの製造方法
JP6257799B2 (ja) 金属酸化物半導体膜、薄膜トランジスタおよび電子デバイス
JP6271760B2 (ja) 金属酸化物膜の製造方法及び薄膜トランジスタの製造方法
JP6250481B2 (ja) 金属酸化物膜、金属酸化物膜の製造方法、薄膜トランジスタ、及び電子デバイス
JP6086854B2 (ja) 金属酸化物膜の製造方法、金属酸化物膜、薄膜トランジスタ、表示装置、イメージセンサ及びx線センサ
TW201603112A (zh) 金屬氧化物膜的製造方法、金屬氧化物膜、薄膜電晶體、薄膜電晶體的製造方法及電子元件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14769532

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157025431

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14769532

Country of ref document: EP

Kind code of ref document: A1