WO2014142147A1 - 半導体レーザ装置 - Google Patents
半導体レーザ装置 Download PDFInfo
- Publication number
- WO2014142147A1 WO2014142147A1 PCT/JP2014/056418 JP2014056418W WO2014142147A1 WO 2014142147 A1 WO2014142147 A1 WO 2014142147A1 JP 2014056418 W JP2014056418 W JP 2014056418W WO 2014142147 A1 WO2014142147 A1 WO 2014142147A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor laser
- light
- incident
- condensing lens
- arrays
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/005—Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
- H01S5/0071—Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/30—Collimators
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
- G02B6/4206—Optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
- G02B6/4212—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element being a coupling medium interposed therebetween, e.g. epoxy resin, refractive index matching material, index grease, matching liquid or gel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/023—Mount members, e.g. sub-mount members
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4012—Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
- G02B6/4214—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4296—Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/0225—Out-coupling of light
- H01S5/02251—Out-coupling of light using optical fibres
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/0225—Out-coupling of light
- H01S5/02253—Out-coupling of light using lenses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/0225—Out-coupling of light
- H01S5/02255—Out-coupling of light using beam deflecting elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/0233—Mounting configuration of laser chips
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/0235—Method for mounting laser chips
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4025—Array arrangements, e.g. constituted by discrete laser diodes or laser bar
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4025—Array arrangements, e.g. constituted by discrete laser diodes or laser bar
- H01S5/4031—Edge-emitting structures
- H01S5/4043—Edge-emitting structures with vertically stacked active layers
- H01S5/405—Two-dimensional arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4025—Array arrangements, e.g. constituted by discrete laser diodes or laser bar
- H01S5/4031—Edge-emitting structures
- H01S5/4056—Edge-emitting structures emitting light in more than one direction
Definitions
- the present invention relates to a semiconductor laser device, and more particularly to, for example, a semiconductor laser device configured such that laser light from a plurality of semiconductor laser arrays is incident on an optical fiber.
- a semiconductor laser array having a plurality of light emitting portions arranged in a straight line is used as a laser light source, and laser light from the semiconductor laser array is guided by an optical fiber to the outside.
- emits is known (for example, refer patent document 1).
- a semiconductor laser device a plurality of semiconductor laser arrays are used for one optical fiber in order to increase the optical output per optical fiber in response to a request for higher output. It has been proposed to make the laser light from the semiconductor laser array as dense as possible and enter the optical fiber via a condenser lens (see, for example, Patent Document 1).
- FIG. 8 there is known a semiconductor laser device in which a plurality of semiconductor laser arrays 11a to 11f are stacked and arranged in a straight line in the fast axis direction of the semiconductor laser arrays 11a to 11f. It has been.
- a condensing lens 19 is provided in front of the light emitting direction of the plurality of semiconductor laser arrays 11a to 11f (right side in FIG. 8).
- a slow axis collimating lens array 17a and a fast axis collimating lens array 17b are located between each of the plurality of semiconductor laser arrays 11a to 11f and the condensing lens 19 at positions close to the semiconductor laser arrays 11a to 11f.
- the collimating member which consists of is arrange
- 80 is a heat sink
- 15 is an optical fiber holding member for holding the optical fiber 14.
- the semiconductor laser device has a configuration in which a plurality of semiconductor laser arrays 11a to 11f are stacked on the surface of the heat sink 50 so as to be arranged stepwise in the fast axis direction.
- a semiconductor laser device since the semiconductor laser arrays adjacent to each other can be largely separated from each other, it is possible to suppress each of the plurality of semiconductor laser arrays 11a to 11f from becoming high temperature.
- the problem that laser beams from the plurality of semiconductor laser arrays 11a to 11f cannot be effectively used becomes significant.
- This problem is caused by using a semiconductor laser array as a laser light source instead of a single emitter semiconductor element. More specifically, in the semiconductor laser arrays 11a to 11f, a plurality of light emitting portions are arranged in a straight line, and the interval between the light emitting portions is generally as narrow as about several tens ⁇ m to several tens of ⁇ m. Therefore, it is difficult to obtain a sufficiently parallel state in the slow axis direction. For this reason, collimated light from the collimating member generally has a spread of several mrad to several tens of mrad in the slow axis direction.
- collimated light can be regarded as substantially parallel light. Therefore, as the distance between the semiconductor laser arrays 11a to 11f and the condensing lens 19 increases, the light beam width in the slow axis direction of the laser light at the position where the condensing lens 19 is disposed (hereinafter referred to as “slow axis light beam width”). Also known as).
- the slow-axis direction light width w1 of the laser light (collimated light) incident on the condenser lens 19 is the slow-axis direction light width of the collimated light emitted from the collimator member as shown in the following formula (1).
- This value is obtained by adding the product of the divergence angle ⁇ of the collimated light and the propagation distance L of the collimated light to the condenser lens 19 to w0.
- a part of the laser beam having a large light beam width in the slow axis direction is not incident on the condenser lens 19 or the optical fiber 14, so that a so-called kicking phenomenon occurs and is lost, and is emitted to the outside from the optical fiber 14. There is no. Therefore, in the semiconductor laser device, the fiber coupling efficiency is reduced.
- the “fiber coupling efficiency” is a value indicating the ratio (intensity) of the laser light incident on the optical fiber among the laser light from the plurality of semiconductor laser arrays constituting the laser light source.
- the laser light from the semiconductor laser array 11a having the longest separation distance from the condenser lens 19 is the laser light from the other semiconductor laser arrays 11b to 11f.
- the longest laser light passes through the peripheral side of the light incident surface 19 a of the condenser lens 19. That is, as shown in FIG. 10, since the laser beams from the plurality of semiconductor laser arrays 11a to 11f are incident on the light incident surface 19a in parallel, the laser beams from the plurality of semiconductor laser arrays 11a to 11f are input.
- the longest laser light is incident on the outermost side.
- the light incident column 31 is formed by projecting each of the laser beams from the plurality of semiconductor laser arrays 11a to 11f in parallel on the light incident surface 19a.
- light receiving regions 31a to 31f having substantially rectangular shapes by the laser beams from the semiconductor laser arrays 11a to 11f are arranged in parallel.
- the longest laser light having the largest light beam width in the slow axis direction is incident on the most peripheral side of the light incident surface formed by the circular end surface 14a of the optical fiber 14, and a part of the longest laser light is incident on the optical fiber. 14 and is likely to be lost.
- La to Lf indicate the optical paths of the laser beams from the semiconductor laser arrays 11a to 11f, respectively.
- an arrow F indicates the fast axis direction of the semiconductor laser arrays 11a to 11f
- an arrow S indicates the slow axis direction of the semiconductor laser arrays 11a to 11f.
- the present invention has been made based on the circumstances as described above, and the object of the present invention is to provide a plurality of light beams from a plurality of semiconductor laser arrays, even when the condensing lens incident optical path lengths are different. It is an object of the present invention to provide a semiconductor laser device capable of allowing light from the semiconductor laser array to be incident on an optical fiber with high efficiency and thus obtaining high light output.
- the semiconductor laser device of the present invention includes a plurality of semiconductor laser arrays having a plurality of light emitting units arranged in a straight line, and a condenser lens into which light from the plurality of semiconductor laser arrays is incident through a collimator member, and the collecting lens.
- each light from the plurality of semiconductor laser arrays is projected in parallel on the light incident surface of the condensing lens to form a light incident column
- At least one semiconductor laser array of the plurality of semiconductor laser arrays has a relatively long condensing lens incident optical path length which is a length of an optical path from the light from the semiconductor laser array to the condensing lens.
- the light from the semiconductor laser array having the longest condensing lens incident optical path length is incident on a position other than the outermost side of the light incident column on the light incident surface of the condensing lens.
- the light from the semiconductor laser array having a long condenser lens incident optical path length among the semiconductor laser arrays having different condenser lens incident optical path lengths is shorter than the condenser lens incident optical path length. It is preferable that the light is incident on the center side of the light incident row on the light incident surface of the condenser lens as compared with the light from the semiconductor laser array according to the above.
- the condensing lens incident optical path lengths of the light from these three or more semiconductor laser arrays are different, and the longest condensing lens incident optical path.
- the light from the semiconductor laser array according to the length is closer to the center of the light incident column on the light incident surface of the condenser lens than the light from at least one of the other semiconductor laser arrays. It is preferably incident.
- the plurality of semiconductor laser arrays are installed on each of the plurality of element installation surfaces in a stepped installation surface having a plurality of element installation surfaces in a step shape. It is preferable that the lens incident optical path lengths are different from each other.
- the stepped installation surface is preferably formed by the surface of a heat sink.
- the semiconductor laser array is installed on each of a plurality of element installation surfaces in two stepped installation surfaces arranged opposite to each other, and between the two stepped installation surfaces. It is preferable that a folding mirror is disposed on the optical axis, and light from a plurality of semiconductor laser arrays folded by the folding mirror is incident on the condenser lens.
- the light from the condensing lens is used for light having the longest condensing lens incident optical path length.
- the incident position on the incident surface is controlled. Therefore, the light having the longest incident light path length of the condensing lens, that is, the light having the largest light beam width in the slow axis direction is incident on the center side of the light incident surface of the condensing lens, and further, the light incident on the substantially optical fiber The light can be incident on the center side of the surface.
- the semiconductor laser device of the present invention light from a plurality of semiconductor laser arrays can be incident on the optical fiber with high efficiency, and thus high light output can be obtained.
- FIG. 2 is an explanatory diagram showing a light incident row formed on a light incident surface of a condenser lens in the semiconductor laser device of FIG. 1. It is explanatory drawing which shows the outline
- FIG. 6 is an explanatory projection view showing the semiconductor laser device of FIG. 5 from above in FIG. 5. It is explanatory drawing which shows the outline
- FIG. 1 is an explanatory diagram showing an outline of an example of the configuration of the semiconductor laser device of the present invention.
- the semiconductor laser device 10 includes a plurality of semiconductor laser arrays 11a to 11f having a plurality of light emitting portions arranged in a straight line as a laser light source, and laser light from the plurality of semiconductor laser arrays 11a to 11f is received. It has a configuration that emits to the outside through the optical fiber 14.
- the semiconductor laser arrays 11a to 11f face each other on the upper surface (upper surface in FIG. 1) of the heat sink 20 made of metal such as copper and aluminum, for example. It is arranged like this.
- a submount member made of, for example, copper tungsten (CuW), aluminum nitride (AlN), or the like is interposed between each of the plurality of semiconductor laser arrays 11a to 11f and the heat sink 20.
- the semiconductor laser device 10 includes a folding mirror 18 made of, for example, a triangular prism that bends the laser beams from the plurality of semiconductor laser arrays 11a to 11f in the same direction, and a laser bent by the folding mirror 18.
- a condensing lens 19 for condensing light is provided.
- the optical fiber 14 has a circular one end surface 14a as a light incident surface and a circular other end surface 14b as a light emitting surface, and the laser light condensed by the condensing lens 19 is a light incident surface. It arrange
- the condensing lens 19 has a substantially disc-like appearance.
- La to Lf indicate the optical paths of the laser beams from the semiconductor laser arrays 11a to 11f, respectively.
- a collimating member for collimating is provided.
- the collimating member includes a slow axis collimating lens array 17a and a fast axis collimating lens array 17b.
- Each of the slow axis collimating lens array 17a and the fast axis collimating lens array 17b has a lens cell corresponding to each of the plurality of light emitting portions in the semiconductor laser arrays 11a to 11f. That is, each of the slow axis collimating lens array 17a and the fast axis collimating lens array 17b has a plurality of lens cells arranged in a straight line.
- the collimating member is disposed at a position close to the semiconductor laser arrays 11a to 11f.
- the laser light from the semiconductor laser arrays 11a to 11f can be incident on the collimating member with high efficiency.
- the laser light (collimated light) collimated by the collimating member has a spread of several tens of mrad in the slow axis direction.
- FIGS. 2 and 3 are explanatory projection views showing a state in which laser light is emitted from the light emitting portion 13 of the semiconductor laser array 11 toward the collimating member, from a direction perpendicular to the direction in which the plurality of light emitting portions 13 are arranged. .
- FIG. 2 and 3 are explanatory projection views showing a state in which laser light is emitted from the light emitting portion 13 of the semiconductor laser array 11 toward the collimating member, from a direction perpendicular to the direction in which the plurality of light emitting portions 13 are arranged.
- FIG. 2 is a schematic diagram for explaining a case where the collimating member is disposed at an approach position close to the semiconductor laser array 11
- FIG. 3 is a diagram in which the collimating member is greatly separated from the semiconductor laser array 11. It is an explanatory schematic diagram showing a case where it is arranged at a distant position.
- collimated light from the collimating member collimating lens
- the interval between the plurality of light emitting units 13 is generally about several tens ⁇ m to several hundreds of ⁇ m (specifically, the interval between the plurality of light emitting units 13 is about 0.5 mm or less).
- the size of each lens cell 16 a constituting the collimating lens array 16 (the length in the direction in which the plurality of light emitting units 13 are arranged in the semiconductor laser array 11). Be constrained. Therefore, it is difficult to obtain a sufficiently parallel state in the slow axis direction by collimation by the collimating lens array 16, and therefore the collimated light generally has a spread of several mrad to several tens of mrad in the slow axis direction.
- each lens cell 16a is limited, and the resulting collimated light has a spread, so that the separation distance between the semiconductor laser array 11 and the collimating lens array 16 is the laser light in the collimating lens array 16. It will be restricted from the viewpoint of the incident efficiency. More specifically, as shown in FIG. 2, when the collimating lens array 16 is disposed at a position close to the semiconductor laser array 11, the focal length of the lens cell 16 a is determined by the width of the light emitting unit 13 (multiple The length of the light emitting unit 13 in the direction in which the light emitting units 13 are arranged) is approximate, and therefore the light emitting unit 13 cannot be regarded as a point light source.
- an angle (divergence angle) ⁇ 1 formed by the laser beam L2 from the end portion 13b and the laser beam L1 from the center portion 13a is several tens of mrad.
- the focal length of the lens cell 16a is longer than that when the collimating lens array 16 is arranged at the approaching position.
- the angle (divergence angle) ⁇ 2 formed by the laser beam L2 from the end portion 13b and the laser beam L1 from the center portion 13a is smaller than the divergence angle ⁇ 1 related to the arrangement at the approach position.
- the laser light from the light emitting portion 13 protrudes from the light incident surface of the lens cell 16a corresponding to the light emitting portion 13, and is lost without being incident.
- the collimating lens array 16 by arranging the collimating lens array 16 at a position close to the semiconductor laser array 11, the laser light from the semiconductor laser array 11 can be incident on the collimating lens array 16 with high efficiency.
- the collimated light from the collimating lens array 16 has a spread of several tens of mrad in the slow axis direction. 2 and 3, the laser beam from the central portion 13a of the light emitting unit 13 is indicated by a solid line, and the laser beam from the end portion 13b is indicated by a broken line.
- Each of the plurality of semiconductor laser arrays 11a to 11f has a rectangular flat plate-like appearance, and one surface 12 having a plurality of light emitting portions arranged in a straight line is used as a light emitting surface. On the light emitting surface (one surface 12), the plurality of light emitting portions are arranged at a specific interval (for example, an equal interval of about 0.5 mm or less) in the longitudinal direction (the direction perpendicular to the paper surface in FIG. 1). Yes.
- the plurality of semiconductor laser arrays 11a to 11f preferably have the same length in the direction in which the plurality of light emitting portions are arranged. In the example of this figure, the plurality of semiconductor laser arrays 11a to 11f have the same standard.
- the semiconductor laser arrays 11a to 11f may be array type semiconductor laser elements, and a configuration in which a plurality of single emitter semiconductor elements are arranged in a straight line at intervals of about 0.5 mm or less. It may be.
- the heat sink 20 has a rectangular parallelepiped outer shape, and a groove 21 is formed on the upper surface.
- the groove 21 extends linearly in the short direction (direction perpendicular to the paper surface of FIG. 1) on the upper surface of the heat sink 20 and has a substantially trapezoidal cross-sectional shape.
- the side surfaces 23 and 24 facing each other are inclined stepwise in a direction approaching each other toward the bottom surface 26.
- a stepped installation surface (hereinafter referred to as “hereinafter referred to as“ stepped installation surface ”) for arranging the semiconductor laser arrays 11a to 11c is formed by the peripheral surface 21a on one side of the groove 21 on the upper surface of the heat sink 20 and the side surface 23 of the groove 21 continuous to the peripheral surface 21a.
- first staircase installation surface 27 is configured.
- a stepped installation surface (hereinafter referred to as “a”) for arranging the semiconductor laser arrays 11d to 11f by the peripheral surface 21b on the other side of the groove 21 on the upper surface of the heat sink 20 and the side surface 24 of the groove 21 continuous to the peripheral surface 21b. It is also referred to as a “second stepped installation surface”).
- the side surface 23 has a two-step staircase shape having two step surfaces 23a and 23b. These two step surfaces 23a and 23b are rectangular and have a peripheral surface 21a and Parallel to the bottom surface 26. Further, the side surface 24 has the same configuration as the side surface 23.
- the side surface 24 has a two-step staircase shape having two step surfaces 24 a and 24 b, and these two step surfaces 24 a and 24 b are rectangular and parallel to the peripheral surface 21 b and the bottom surface 26. It is. Further, the first staircase-shaped installation surface 27 and the second staircase-shaped installation surface 28 that face each other are mirror-symmetric with respect to the optical axis of the condenser lens 19.
- the height of one step is determined by the laser light (collimated light) collimated by the laser light from the semiconductor laser arrays 11 a to 11 f or the collimating member from the viewpoint of laser light utilization. It is determined appropriately according to the light beam width in the fast axis direction.
- the height of one step in each of the stepped installation surfaces 27 and 28 means that in the first stepped installation surface 27, the difference in position level between the peripheral surface 21a and the step surface 23a, and the step surface 23a and the step surface. This is a difference in position level from 23b.
- the 2nd step-shaped installation surface 28 it is the difference of the position level of the peripheral surface 21b and the step surface 24a, and the difference of the position level of the step surface 24a and the step surface 24b.
- the peripheral surfaces 21a and 21b and the step surfaces 23a, 23b, 24a, and 24b are large enough to contact the entire lower surface (the lower surface in FIG. 1) of the semiconductor laser arrays 11a to 11f from the viewpoint of heat exhaustion. It is preferable.
- each of the peripheral surfaces 21a and 21b and the step surfaces 23a, 23b, 24a, and 24b is an element installation surface.
- One semiconductor laser array is disposed on each of the plurality of element mounting surfaces. Specifically, the semiconductor laser arrays 11a to 11c are stacked on the element installation surface of the first staircase installation surface 27 so as to be arranged stepwise in the fast axis direction. On the element installation surface of the second staircase installation surface 28, the semiconductor laser arrays 11d to 11f are stacked and arranged in a staircase pattern in the fast axis direction. The semiconductor laser arrays 11a to 11c and the semiconductor laser arrays 11d to 11f are arranged so that the light emission surfaces (one surface 12) face each other.
- a folding mirror 18 is disposed on the bottom surface 26.
- each of the plurality of semiconductor laser arrays 11a to 11f has a light emission surface (one surface 12) on the outer edges 22a and 22b of the peripheral surfaces 21a and 21b or the outer edges of the step surfaces 23a, 23b, 24a and 24b. They are arranged so as to be located on 25a to 25d.
- the collimating members corresponding to the respective semiconductor laser arrays 11a to 11f are disposed above the step surface or bottom surface 26, which is one step lower than the peripheral surface or step surface on which the corresponding semiconductor laser arrays 11a to 11f are disposed.
- the folding mirror 18 is located at the center of the groove 21, and a collecting mirror 19 is disposed in the vicinity of the light emitting direction of the folding mirror 18 (upward in FIG. 1).
- the light incident surface (one end surface 14 a) of the optical fiber 14 is positioned at the focal position 19.
- the laser beams from the plurality of semiconductor laser arrays 11a to 11c can be collected.
- the length of the optical path up to 19 (the condensing lens incident optical path length) is controlled. That is, by arranging the semiconductor laser arrays 11a to 11c on each of the element installation surfaces in the first stepped installation surface 27, the converging lens incident optical path lengths of the laser beams from these semiconductor laser arrays 11a to 11c are relatively It is in a different state.
- the converging lens incident optical path lengths of the laser beams from these semiconductor laser arrays 11d to 11f are relatively long. It is in a different state.
- the laser light from the semiconductor laser array 11a, the laser light from the semiconductor laser array 11b, and the laser light from the semiconductor laser array 11c have longer condensing lens incident optical path lengths in this order.
- the laser light from the semiconductor laser array 11d, the laser light from the semiconductor laser array 11e, and the laser light from the semiconductor laser array 11f have longer condensing lens incident optical path lengths in this order.
- the laser light from the semiconductor laser array arranged oppositely has the same condensing lens incident optical path length.
- the condensing lens incident optical path length related to the semiconductor laser array 11a and the condensing lens incident optical path length related to the semiconductor laser array 11d are the same, and the condensing lens incident optical path length related to the semiconductor laser array 11b and the semiconductor laser array 11e.
- the condensing lens incident optical path length is the same.
- the condensing lens incident optical path length related to the semiconductor laser array 11c and the condensing lens incident optical path length related to the semiconductor laser array 11f are the same.
- the folding mirror 18 between the first step-like installation surface 27 and the second step-like installation surface 28, a plurality of semiconductors incident in parallel on the light incident surface 19a of the condenser lens 19
- the incident positions of the laser beams from the laser arrays 11a to 11f are controlled. That is, as shown in FIG. 4, in the light incident row 31 formed on the light incident surface 19a, the laser beams from the semiconductor laser arrays 11a and 11d having the longest condensing lens incident optical path length are positioned at positions other than the outermost side. It is supposed to be in a state of being incident on.
- the light incident column 31 is formed by projecting each of the laser beams from the plurality of semiconductor laser arrays 11a to 11f side by side on the light incident surface 19a.
- light receiving regions 31a to 31f having substantially rectangular shapes by the laser beams from the semiconductor laser arrays 11a to 11f are arranged in parallel.
- the plurality of light incident areas 31a to 31f have the same dimension in the direction in which the light incident areas 31a to 31f are arranged (the vertical direction in FIG. 4 and hereinafter also referred to as “light incident column parallel direction”).
- the dimensions (hereinafter also referred to as “incident area width”) in the direction perpendicular to the light incident column parallel direction (left and right direction in FIG. 4) are different. Since this light incident area width is due to the light beam width in the slow axis direction of the laser beam (light beam width in the slow axis direction), it increases as the condensing lens incident light path length increases.
- the laser beams from the semiconductor laser arrays 11a to 11c arranged on the first stepped installation surface 27 are emitted from the semiconductor laser array 11a and from the semiconductor laser array 11b in the light incident column 31, respectively.
- the laser beam and the laser beam from the semiconductor laser array 11c are incident on the center side in the order. That is, the laser light from the semiconductor laser array 11a having the longest condensing lens incident optical path length is incident on the position closest to the center of the light incident surface 19a (position near the center), while the shortest condensing lens.
- the laser beam from the semiconductor laser array 11c related to the incident optical path length is incident on a position (periphery side position) that is farthest from the center of the light incident surface 19a.
- the laser beams from the semiconductor laser arrays 11d to 11f arranged on the second stepped installation surface 28 are laser beams from the semiconductor laser array 11d and laser beams from the semiconductor laser array 11e in the light incident column 31, respectively.
- the light is incident on the center side in the order of the laser light from the semiconductor laser array 11f. That is, the laser light from the semiconductor laser array 11d having the longest condensing lens incident optical path length enters the position closest to the center of the light incident surface 19a (position near the center), while the shortest condensing lens.
- the laser beam from the semiconductor laser array 11f related to the incident optical path length is incident on a position (periphery side position) farthest from the center of the light incident surface 19a.
- the laser light from the semiconductor laser array arranged oppositely has an incident position on the light incident surface 19a symmetrical with respect to the central portion of the light incident surface 19a.
- the center of the light incident column 31 is positioned on the center of the light incident surface 19a, and the light incident column parallel direction with respect to the center of the light incident column 31, that is, the center of the light incident surface 19a.
- the shape is symmetric in a direction perpendicular to the light incident column parallel direction.
- the optical fiber 14 has a cylindrical core portion and a clad portion provided on the peripheral surface of the core portion. On the light incident surface (one end surface 14a), the core portion effectively takes a circular shape. A region is formed.
- the optical fiber 14 for example, a quartz fiber is used.
- a cylindrical optical fiber holding member 15 having an inner diameter that matches the outer diameter of the optical fiber 14 is attached to the end of the optical fiber 14 on one end surface side.
- the laser beams from the plurality of semiconductor laser arrays 11a to 11f are collimated by the collimating members (slow axis collimating lens 17a and fast axis collimating lens 17b). Thereafter, the laser light collimated by the collimating member is reflected toward the condenser lens 19 by the folding mirror 18. Then, the laser light reflected by the folding mirror 18 is collected by the condenser lens 19 and enters the light incident surface (one end surface 14 a) of the optical fiber 14.
- the laser beams from the plurality of semiconductor laser arrays 11a to 11f are incident on the effective capturing area on the light incident surface of the optical fiber 14, and are guided by the optical fiber 14 to be the light emitting surface (the other end surface 14b). ) To the outside and used as light source light of a projector device, for example.
- the plurality of semiconductor laser arrays 11a to 11f are stacked in a stepped manner in the fast axis direction on the surface of the heat sink 20 (stepped installation surfaces 27 and 28). For this reason, since the semiconductor laser arrays adjacent to each other are in a state of being largely separated from each other, high heat exhaustion can be obtained. As a result, high reliability and high output can be obtained for each of the plurality of semiconductor laser arrays 11a to 11f. Further, the laser beams from the plurality of semiconductor laser arrays 11a to 11f are closer to the center of the light incident surface 19a as the condensing lens incident optical path length is longer on the circular light incident surface 19a of the condensing lens 19.
- a light incident row 31 is formed by entering the position. That is, the laser light having a larger light beam width in the slow axis direction approaches the central portion of the light incident surface 19a, and the laser light having a smaller light beam width in the slow axis direction approaches the peripheral portion of the light incident surface 19a in parallel.
- the light incident rows 31 are formed by being projected side by side.
- the light incident row 31 has an overall shape approximating a circular shape having a smaller diameter than the light incident surface 19a. Therefore, the laser beams from the plurality of semiconductor laser arrays 11a to 11f can be incident on the circular light incident surface 19a through the collimating member with high efficiency.
- the laser light emitted from the condensing lens 19 can be incident with high efficiency into the circular effective capturing region of the optical fiber 14 with high efficiency.
- the occurrence of a kick phenomenon in each of the condenser lens 19 and the optical fiber 14 is suppressed, and thus the fiber coupling efficiency is increased. Therefore, according to the semiconductor laser device 10, a high light output can be obtained.
- the light incident column 31 is symmetrical with respect to the central portion of the light incident surface 19 a in the light incident parallel direction and the direction perpendicular to the light incident column parallel direction.
- the entire row 31 has a shape that more closely approximates a circular shape. Therefore, the laser light emitted from the condensing lens 19 and entering the effective capture region in the optical fiber 14 has uniformity. As a result, high uniformity can be obtained in the laser light emitted from the light emitting surface of the optical fiber 14.
- the semiconductor laser device 10 since the common heat sink 20 is used for the plurality of semiconductor laser arrays 11a to 11f, a cooling mechanism for cooling the plurality of semiconductor laser arrays 11a to 11f can be simplified. It can be of a configuration. Therefore, the semiconductor laser device 10 can have a simple configuration.
- FIG. 5 is an explanatory view showing the outline of another example of the configuration of the semiconductor laser device of the present invention
- FIG. 6 is an explanatory projection view showing the semiconductor laser device of FIG. 5 from above in FIG.
- the semiconductor laser device 40 has a configuration in which laser beams from a plurality of semiconductor laser arrays 11a to 11f are emitted to the outside through an optical fiber 14.
- the plurality of semiconductor laser arrays 11a to 11f are arranged on the surface of the heat sink 50 so that the light emission surface (one surface 12) faces the same direction (rightward in FIGS. 5 and 6). .
- a submount member (not shown) is interposed between each of the plurality of semiconductor laser arrays 11 a to 11 f and the heat sink 50.
- the semiconductor laser device 40 is provided with collimating members (specifically, the slow axis collimating lens array 17a and the fast axis collimating lens array 17b) corresponding to each of the plurality of semiconductor laser arrays 11a to 11f. ing.
- a condensing lens 19 for condensing the laser light collimated by the plurality of collimating members is provided so as to face the light emitting surfaces (one surface 12) of the semiconductor laser arrays 11d to 11f.
- a light bending mechanism for bending the laser light (collimated light) from the plurality of semiconductor laser arrays 11a to 11c is provided in front of the light emission of the plurality of collimating members (to the right in FIGS. 5 and 6). ing.
- the light bending mechanism includes a first folding mirror 42 and a second folding mirror 43, and the first folding mirror 42 and the second folding mirror 43 include, for example, a triangular prism.
- the semiconductor laser arrays 11a to 11f, the collimating members (slow axis collimating lens array 17a and fast axis collimating lens array 17b), the optical fiber 14 and the condenser lens 19 are the same as those shown in FIG.
- the laser device 10 has the same configuration as each member.
- the heat sink 50 has one step-like installation surface 56, and each element installation surface of the step-like installation surface 56 is sized so that two semiconductor laser arrays can be arranged.
- the semiconductor laser device 10 has the same configuration as the heat sink 20 of the semiconductor laser device 10 of FIG.
- La to Lf indicate the optical paths of the laser beams from the semiconductor laser arrays 11a to 11f, respectively. In FIG. 6, only the optical path of the laser beam from the semiconductor laser array 11c is shown.
- the heat sink 50 has a substantially quadrangular pyramid shape, and one of the four side surfaces 52 is stepped in a direction away from the opposing side surface 57 as it goes from the upper surface 51a to the lower surface 51b.
- the other four side surfaces are perpendicular to the upper surface 51a and the lower surface 51b.
- the upper surface 51a and the side surface 52 constitute a stepped installation surface 56 for arranging the semiconductor laser arrays 11a to 11f.
- the side surface 52 has a three-step staircase shape having three step surfaces 52a to 52c. Each of these three step surfaces 52a to 52c is rectangular and has an upper surface 51a. And parallel to the lower surface 51b.
- the upper surface 51a and the step surfaces 52a and 52b have such a size that two semiconductor laser arrays can be arranged.
- the upper surface 51a and the step surfaces 52a and 52b can be brought into contact with the entire area of the lower surface (the lower surface in FIG. 6) of the two semiconductor laser arrays from the viewpoint of exhaust heat, and the two semiconductor laser arrays.
- the size is such that can be sufficiently separated.
- the separation distance between the two semiconductor laser arrays is, for example, 2 mm.
- each of the upper surface 51a and the step surfaces 52a and 52b is an element installation surface.
- Two semiconductor laser arrays are disposed on each of the plurality of element mounting surfaces.
- the semiconductor laser arrays 11a to 11c are stacked on one side (the lower side in FIG. 6) of the heat sink 50 so as to be arranged stepwise in the fast axis direction.
- the semiconductor laser arrays 11d to 11f are stacked on the other side (the upper side in FIG. 6) of the heat sink 50 so as to be arranged stepwise in the fast axis direction.
- the semiconductor laser arrays 11a to 11f have a light emitting surface (one surface 12) whose boundary is the outer edge 53 associated with the boundary with the side surface 52 on the upper surface 51a or the step surface one step below the step surface. It is located so that it may extend along the outer edges 54a and 54b which concern.
- each of the semiconductor laser arrays 11a to 11f is arranged such that the light emitting surface (one surface 12) is positioned on the outer edge 53 of the upper surface 51a or the outer edges 54a and 54b of the step surfaces 52a and 52b.
- the collimating members corresponding to the respective semiconductor laser arrays 11a to 11f are arranged above the upper surface 51a on which the corresponding semiconductor laser arrays 11a to 11f are arranged or the step surface one step below the step surface.
- the laser light from the semiconductor laser arrays 11a to 11c is incident through the collimating member, the laser light emitted from the light bending mechanism is incident on the condenser lens 19, and the semiconductor laser array 11d. It is positioned so that the laser beams from ⁇ 11f are not incident.
- the first folding mirror 42 and the second folding mirror 43 are configured such that the laser light from the semiconductor laser arrays 11a to 11c passes through the first folding mirror 42 and the second folding mirror 43 in this order. After that, it is arranged so as to be incident on the condenser lens 19.
- the laser beams from the semiconductor laser arrays 11a to 11c are first incident on the first folding mirror 42, bent and emitted, and then incident on the second folding mirror 43, and this second folding mirror.
- the light is bent and emitted by 43 and enters the condenser lens 19.
- the semiconductor laser arrays 11a to 11c and the semiconductor laser arrays 11d to 11f are stacked in a stepped manner, and the optical path of the laser light from the semiconductor laser arrays 11a to 11c is bent by the optical bending mechanism.
- the condensing lens incident optical path length of the laser light from the plurality of semiconductor laser arrays 11a to 11f and the incident position on the incident surface 19a are controlled.
- the semiconductor laser arrays 11a to 11c are arranged on each of the element installation surfaces of the stepped installation surface 56, and each of the optical paths of the laser beams of the semiconductor laser arrays 11a to 11c is bent by an optical bending mechanism.
- the laser light from the semiconductor laser array 11a, the laser light from the semiconductor laser array 11b, and the laser light from the semiconductor laser array 11c have a condensing lens incident optical path length in this order.
- the semiconductor laser arrays 11d to 11f on each of the element installation surfaces of the stepped installation surface 56, the laser light from the semiconductor laser array 11d, the laser light from the semiconductor laser array 11e, and the semiconductor laser array 11f The laser beam has a longer condensing lens incident optical path length in this order.
- the laser beams from the semiconductor laser arrays 11a to 11f have a relatively different condensing lens incident optical path length, and the condensing lens incident optical path length with the longest laser light from the semiconductor laser array 11a is set. have.
- the laser beams from the semiconductor laser arrays 11a to 11c are emitted from the semiconductor laser array 11a, the laser beam from the semiconductor laser array 11b, and the semiconductor laser array 11c in a light incident column formed on the light incident surface 19a. Are incident on the center side in the order of the laser beams from the laser beam.
- the laser light from the semiconductor laser array 11a having the longest condensing lens incident optical path length is incident on the position closest to the center of the light incident surface 19a (position near the center), while the shortest condensing lens.
- the laser beam from the semiconductor laser array 11c related to the incident optical path length is incident on a position (periphery side position) that is farthest from the center of the light incident surface 19a.
- the laser beams from the semiconductor laser arrays 11d to 11f are emitted from the laser beam from the semiconductor laser array 11d, the laser beam from the semiconductor laser array 11e, and the semiconductor laser array 11f in the light incident column formed on the light incident surface 19a. Are incident on the center side in the order of the laser beams.
- the laser light from the semiconductor laser array 11d having the longest condensing lens incident optical path length enters the position closest to the center of the light incident surface 19a (position near the center), while the shortest condensing lens.
- the laser beam from the semiconductor laser array 11f related to the incident optical path length is incident on a position (periphery side position) farthest from the center of the light incident surface 19a.
- the laser light from the semiconductor laser array 11a having the longest condensing lens incident optical path length is incident on the condensing lens 19 as compared with the laser light from the semiconductor laser arrays 11b, 11c, 11e, and 11f. Incident to the center of the row.
- the laser light from the laser arrays arranged on the same element installation surface has an incident position on the light incident surface 19a that is symmetric with respect to the central portion of the light incident surface 19a.
- the center of the light incident column formed on the light incident surface 19a is located on the center of the light incident surface 19a, and the center of the light incident column, that is, the center of the light incident surface 19a.
- the shape is symmetric in the direction perpendicular to the light incident column parallel direction.
- the laser beams from the plurality of semiconductor laser arrays 11a to 11f are collimated by the collimating members (slow axis collimating lens 17a and fast axis collimating lens 17b). Thereafter, the laser beams from the semiconductor laser arrays 11 d to 11 f collimated by the collimating member are directed to the condenser lens 19. On the other hand, the laser beams from the semiconductor laser arrays 11a to 11c collimated by the collimating member are bent toward the condenser lens 19 by the light bending mechanism.
- Laser light (collimated light) from the semiconductor laser arrays 11a to 11f is condensed by the condenser lens 19 and enters the light incident surface (one end surface 14a) of the optical fiber 14. In this manner, the laser beams from the plurality of semiconductor laser arrays 11a to 11f are incident on the effective capturing area on the light incident surface of the optical fiber 14, and are guided by the optical fiber 14 to be the light emitting surface (the other end surface 14b). ) To the outside and used as light source light of a projector device, for example.
- the semiconductor laser arrays 11a to 11c and the semiconductor laser arrays 11d to 11f are stacked in a stepped manner in the fast axis direction on the surface of the heat sink 50 (stepped installation surface 56).
- stepped installation surface 56 has been.
- the semiconductor laser arrays adjacent to each other are in a state of being largely separated from each other, high heat exhaustion can be obtained.
- high reliability and high output can be obtained for each of the plurality of semiconductor laser arrays 11a to 11f.
- the laser light from the semiconductor laser arrays 11a to 11c is closer to the center of the light incident surface 19a as the condensing lens incident optical path length is longer. Is incident.
- the laser beams from the semiconductor laser arrays 11d to 11f are incident on a position closer to the center of the light incident surface 19a as the condensing lens incident optical path length is longer.
- the laser beams having a larger beam width in the slow axis direction approach the central portion of the light incident surface 19a, respectively.
- Laser light having a small beam width in the slow axis direction is projected side by side so as to approach the peripheral edge of the light incident surface 19a to form a light incident row.
- the light incident row has an overall shape approximating a circular shape having a smaller diameter than the light incident surface 19a.
- the laser beams from the plurality of semiconductor laser arrays 11a to 11f can be incident on the circular light incident surface 19a through the collimating member with high efficiency.
- the laser light emitted from the condensing lens 19 can be incident with high efficiency into the circular effective capturing region of the optical fiber 14 with high efficiency.
- the occurrence of a kick phenomenon in each of the condenser lens 19 and the optical fiber 14 is suppressed, and thus the fiber coupling efficiency is increased. Therefore, according to the semiconductor laser device 40, a high light output can be obtained.
- the light incident column formed on the light incident surface 19a is substantially symmetric in the light incident parallel direction with respect to the central portion of the light incident column, and is perpendicular to the light incident column parallel direction. Therefore, the entire light incident row has a shape that approximates a circular shape. Therefore, the laser light emitted from the condensing lens 19 and entering the effective capture region in the optical fiber 14 has uniformity. As a result, high uniformity can be obtained in the laser light emitted from the light emitting surface of the optical fiber 14.
- the semiconductor laser device 40 since the common heat sink 50 is used for the plurality of semiconductor laser arrays 11a to 11f, a cooling mechanism for cooling the plurality of semiconductor laser arrays 11a to 11f is simplified. It can be of a configuration. Therefore, the semiconductor laser device 40 can have a simple configuration.
- FIG. 7 is an explanatory view showing the outline of still another example of the configuration of the semiconductor laser device of the present invention.
- This semiconductor laser device 60 has a configuration in which laser beams from a plurality of semiconductor laser arrays 11a to 11f are emitted to the outside via an optical fiber 14.
- the plurality of semiconductor laser arrays 11a to 11f are arranged such that the light emission surfaces (one surface 12) face the same direction (rightward in FIG. 7).
- the plurality of semiconductor laser arrays 11a to 11f are arranged on the surfaces of the two heat sinks 50 and 50 with a submount member interposed between the two heat sinks 50 and 50.
- the heat sinks 50 and 50 are arranged so that the element installation surfaces constituting the stepped installation surfaces 56 and 56 face each other.
- the semiconductor laser device 60 is provided with collimating members (specifically, the slow axis collimating lens array 17a and the fast axis collimating lens array 17b) corresponding to each of the plurality of semiconductor laser arrays 11a to 11f. ing.
- a condensing lens 19 for condensing the laser light collimated by the plurality of collimating members is provided so as to face the light emitting surfaces (one surface 12) of the plurality of semiconductor laser arrays 11a to 11f. Yes.
- the semiconductor laser arrays 11a to 11f, the collimating members (slow axis collimating lens array 17a and fast axis collimating lens array 17b), optical fiber 14 and condenser lens 19 are the same as those in FIG.
- the laser device 10 has the same configuration as each component member.
- the two heat sinks 50 and 50 are the same as those shown in FIGS. 5 and 6 except that each of the element mounting surfaces of the stepped mounting surface 56 is sized so that one semiconductor laser array can be disposed.
- the laser device 40 has the same configuration as the heat sink 50.
- the two heat sinks 50, 50 have the same structure, and the stepped installation surfaces 56, 56 face each other, and each element constituting the stepped installation surfaces 56, 56 is installed. They are arranged mirror-symmetrically with respect to the optical axis of the condenser lens 19 so that the surfaces face each other.
- one semiconductor laser array is arranged on each of the element installation surfaces constituting the stepped installation surface 56.
- the semiconductor laser arrays 11a to 11c are stacked in a stepwise manner in the fast axis direction on one (downward in FIG. 7) heat sink 50.
- the semiconductor laser arrays 11d to 11f are stacked in a stepwise manner in the fast axis direction on the other heat sink 50 (upper side in FIG. 7). In this way, the semiconductor laser arrays 11a to 11f are stacked in a V shape in the fast axis direction so as to be mirror-symmetric with respect to the optical axis of the condenser lens 19.
- the semiconductor laser arrays 11a to 11f have a light emitting surface (one surface 12) whose boundary is the outer edge 53 associated with the boundary with the side surface 52 on the upper surface 51a or the step surface one step below the step surface. It is located so that it may extend along the outer edges 54a and 54b which concern.
- the light emission surface one surface 12
- the collimating members corresponding to the respective semiconductor laser arrays 11a to 11f are arranged above the upper surface 51a on which the corresponding semiconductor laser arrays 11a to 11f are arranged or the step surface one step below the step surface.
- the upper surface 51a and the step surfaces 52a and 52b are the lower surfaces of the semiconductor laser arrays 11a to 11f, respectively, from the viewpoint of heat exhaustion, like the element installation surface in the semiconductor laser device 10 of FIG. It is preferable that the size is such that the entire region (the lower surface in FIG. 7) can be brought into contact.
- the plurality of semiconductor laser arrays 11a to 11f are stacked in a V shape in the fast axis direction so as to be mirror-symmetrical with respect to the optical axis of the condenser lens 19, so that the plurality of semiconductor laser arrays 11a to 11f are separated.
- the incident light path length of the condensing lens and the light incident position on the light incident surface 19a are controlled.
- the semiconductor laser arrays 11a to 11c are arranged on each of the element installation surfaces of the stepped installation surface 56 of one heat sink 50, so that the laser light from the semiconductor laser array 11a, the semiconductor laser array 11b
- the laser light and the laser light from the semiconductor laser array 11c have a longer condensing lens incident optical path length in this order.
- the semiconductor laser arrays 11d to 11f are arranged on each of the element installation surfaces of the stepped installation surface 56 of the other heat sink 50, so that the laser light from the semiconductor laser array 11d, the laser light from the semiconductor laser array 11e, and The laser beam from the semiconductor laser array 11f has a condensing lens incident optical path length in this order.
- the laser beams from the semiconductor laser arrays 11a to 11c and the laser beams from the semiconductor laser arrays 11d to 11f are in a state where the condensing lens incident optical path lengths are relatively different from each other.
- the laser beams from the semiconductor laser arrays 11a to 11c are centered on the light incident surface 19a in the order of the laser beam from the semiconductor laser array 11a, the laser beam from the semiconductor laser array 11b, and the laser beam from the semiconductor laser array 11c. It is incident on the side. That is, the laser light from the semiconductor laser array 11a having the longest condensing lens incident optical path length is incident on the position closest to the center of the light incident surface 19a (position near the center), while the condensing lens incident optical path length is The laser beam from the shortest semiconductor laser array 11c is incident on a position (periphery side position) farthest from the center of the light incident surface 19a.
- the laser beams from the semiconductor laser arrays 11d to 11f are centered on the light incident surface 19a in the order of the laser beam from the semiconductor laser array 11d, the laser beam from the semiconductor laser array 11e, and the laser beam from the semiconductor laser array 11f. It is incident on the side. That is, the laser beam from the semiconductor laser array 11d having the longest condensing lens incident optical path length is incident on the position closest to the central portion of the light incident surface 19a (position near the center), while the condensing lens incident optical path length is The laser beam from the shortest semiconductor laser array 11f is incident on a position (periphery side position) farthest from the center of the light incident surface 19a.
- the laser light from the semiconductor laser array arranged oppositely has the same condensing lens incident optical path length. That is, the condensing lens incident optical path length related to the semiconductor laser array 11a and the condensing lens incident optical path length related to the semiconductor laser array 11d are the same, and the condensing lens incident optical path length related to the semiconductor laser array 11b and the semiconductor laser array 11e.
- the condensing lens incident optical path length is the same.
- the condensing lens incident optical path length related to the semiconductor laser array 11c and the condensing lens incident optical path length related to the semiconductor laser array 11f are the same.
- the laser light from the semiconductor laser array arranged in opposition has the incident position on the light incident surface 19a symmetric with respect to the central portion of the light incident surface 19a.
- the center of the light incident column formed on the light incident surface 19a is located on the center of the light incident surface 19a, and the center of the light incident column, that is, the center of the light incident surface 19a.
- the light incident column parallel direction and the shape perpendicular to the light incident column parallel direction are symmetrical.
- the laser beams from the plurality of semiconductor laser arrays 11a to 11f are collimated by the collimating members (slow axis collimating lens 17a and fast axis collimating lens 17b). Thereafter, the laser light collimated by the collimating member is condensed by the condenser lens 19 and enters the light incident surface (one end surface 14a) of the optical fiber 14. In this manner, the laser beams from the plurality of semiconductor laser arrays 11a to 11f are incident on the effective capturing area on the light incident surface of the optical fiber 14, and are guided by the optical fiber 14 to be the light emitting surface (the other end surface 14b). ) To the outside and used as light source light of a projector device, for example.
- a plurality of semiconductor laser arrays 11a to 11f are stacked in a V shape in the fast axis direction on the surfaces of the two heat sinks 50 and 50 (stepped installation surfaces 56 and 56). Therefore, since the semiconductor laser arrays adjacent to each other are largely separated from each other, a high heat exhaust property can be obtained. As a result, high reliability and high output can be obtained for each of the plurality of semiconductor laser arrays 11a to 11f. Further, the laser beams from the plurality of semiconductor laser arrays 11a to 11f are closer to the center of the light incident surface 19a as the condensing lens incident optical path length is longer on the circular light incident surface 19a of the condensing lens 19. A light incident row is formed by entering the position.
- the laser light having a larger light beam width in the slow axis direction approaches the central portion of the light incident surface 19a, and the laser light having a smaller light beam width in the slow axis direction approaches the peripheral portion of the light incident surface 19a in parallel. It is projected side by side to form a light incident row.
- the light incident row has an overall shape approximating a circular shape having a smaller diameter than the light incident surface 19a. Therefore, the laser beams from the plurality of semiconductor laser arrays 11a to 11f can be incident on the circular light incident surface 19a through the collimating member with high efficiency.
- the laser light emitted from the condensing lens 19 can be incident with high efficiency into the circular effective capturing region of the optical fiber 14 with high efficiency. As a result, the occurrence of a kick phenomenon in each of the condenser lens 19 and the optical fiber 14 is suppressed, and thus the fiber coupling efficiency is increased. Therefore, according to the semiconductor laser device 60, a high light output can be obtained.
- the light incident columns formed on the light incident surface 19a are symmetric in the direction in which the light incident regions are aligned and the direction perpendicular to the direction in which the light incident regions are aligned with respect to the central portion of the light incident columns. Therefore, the entire light incident row has a shape that approximates a circular shape. Therefore, the laser light emitted from the condensing lens 19 and entering the effective capture region in the optical fiber 14 has uniformity. As a result, high uniformity can be obtained in the laser light emitted from the light emitting surface of the optical fiber 14.
- the semiconductor laser device of the present invention is not limited to the above embodiment, and the plurality of semiconductor laser arrays have relatively different condensing lens incident optical path lengths of laser beams from at least one of the semiconductor laser arrays.
- the laser beam from the semiconductor laser array having the longest condensing lens incident optical path length is incident on a position other than the outermost side of the light incident column formed on the light incident surface of the condensing lens. I just need it.
- the laser light from the semiconductor laser array having the longest condensing lens incident optical path length is incident on a position other than the outermost side of the light incident column in the condensing lens. It only has to be done.
- laser light from other semiconductor laser arrays may be incident on any position of the light incident column.
- the laser beam from the semiconductor laser array having the longest condensing lens incident optical path length is higher than the laser beam from at least one of the other semiconductor laser arrays. Then, it is only necessary to be incident on the central position of the light incident row in the condenser lens. Therefore, there may be laser light incident on the central position of the light incident column in the condensing lens as compared with the laser light from the semiconductor laser array having the longest condensing lens incident optical path length.
- the semiconductor laser device is not limited to the first embodiment, the second embodiment, and the third embodiment, and a light incident column formed on the light incident surface of the condenser lens or a plurality of semiconductor laser arrays
- the condensing lens incident optical path length of the laser beam from the laser beam may be controlled by various conventionally known optical members.
- semiconductor laser device (1) A semiconductor laser device having the following structure (hereinafter also referred to as “semiconductor laser device (1)”) was manufactured.
- semiconductor laser device (1) four semiconductor laser arrays were arranged at equal intervals on each of the two stepped installation surfaces. As for the arrangement interval of these four semiconductor laser arrays, the interval in the optical axis direction of the semiconductor laser array is 15 mm, and the interval in the direction perpendicular to the optical axis is 1 mm.
- the shortest condensing lens incident optical path length is 150 mm.
- the eight semiconductor laser arrays have a semiconductor laser array length (length in a direction in which a plurality of light emitting portions are arranged) of 4 mm.
- the condenser lens has a focal length of 20 mm.
- the optical fiber has a core diameter of 0.8 mm and a numerical aperture (NA) of 0.22.
- the laser light emitted from the collimating member has a wavelength of 640 nm, and the light beam size is 0.8 mm in length in the fast axis direction (light beam width in the fast axis direction).
- the slow axis length (light beam width in the slow axis direction) is 4 mm
- the divergence angle half width in the fast axis direction is 2 mrad
- the divergence angle half width in the slow axis direction is 50 mrad.
- the fiber coupling efficiency was confirmed to be 98%.
- the heat sink has one step-like installation surface, and eight semiconductor laser arrays are stacked on each of the element installation surfaces on the one step-like installation surface. Except for this, the semiconductor laser device (1) has the same configuration. The fiber coupling efficiency of this comparative semiconductor laser device (1) was confirmed to be 92%.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Semiconductor Lasers (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
本発明は、複数の半導体レーザアレイからの光において、集光レンズ入射光路長が異なる場合であっても、これらの複数の半導体レーザアレイからの光を高い効率で光ファイバに入射させることができ、従って高い光の出力が得られる半導体レーザ装置を提供することを目的とするものである。 本発明の半導体レーザ装置は、複数の半導体レーザアレイからの光がコリメート部材を介して入射される集光レンズと、集光レンズからの光が入射される光ファイバとが設けられており、集光レンズの光入射面には、複数の半導体レーザアレイからの光の各々によって光入射列が形成され、複数の半導体レーザアレイのうちの少なくとも1個は、半導体レーザアレイからの光が集光レンズに至るまでの光路の長さである集光レンズ入射光路長が相対的に異なり、最も長い集光レンズ入射光路長に係る半導体レーザアレイからの光が、光入射列の最外側以外の位置に入射されることを特徴とする。
Description
本発明は、半導体レーザ装置に関し、更に詳しくは、例えば、複数の半導体レーザアレイからのレーザ光が光ファイバに入射される構成の半導体レーザ装置に関する。
従来、半導体レーザ装置の或る種のものとしては、直線状に並ぶ複数の発光部を有する半導体レーザアレイをレーザ光源とし、この半導体レーザアレイからのレーザ光が光ファイバによって導光されて外部に出射される構成のものが知られている(例えば、特許文献1参照。)。
このような半導体レーザ装置においては、高出力化の要請に応じて、光ファイバ1本当たりの光出力を大きくするため、1本の光ファイバに対して複数の半導体レーザアレイを用い、これらの複数の半導体レーザアレイからのレーザ光をできるだけ密にし、集光レンズを介して光ファイバに入射させることが提案されている(例えば、特許文献1参照。)。
このような半導体レーザ装置においては、高出力化の要請に応じて、光ファイバ1本当たりの光出力を大きくするため、1本の光ファイバに対して複数の半導体レーザアレイを用い、これらの複数の半導体レーザアレイからのレーザ光をできるだけ密にし、集光レンズを介して光ファイバに入射させることが提案されている(例えば、特許文献1参照。)。
具体的には、例えば図8に示すように、複数の半導体レーザアレイ11a~11fが、半導体レーザアレイ11a~11fの速軸方向に直線状に並ぶように積層配置されてなる半導体レーザ装置が知られている。
この半導体レーザ装置において、複数の半導体レーザアレイ11a~11fの光出射方向前方(図8における右方)には、集光レンズ19が設けられている。また、複数の半導体レーザアレイ11a~11fの各々と集光レンズ19との間における当該半導体レーザアレイ11a~11fに接近した位置には、遅軸用コリメートレンズアレイ17aおよび速軸用コリメートレンズアレイ17bよりなるコリメート部材が配置されている。
図8において、80は、ヒートシンクであり、15は、光ファイバ14を保持するための光ファイバ保持部材である。
この半導体レーザ装置において、複数の半導体レーザアレイ11a~11fの光出射方向前方(図8における右方)には、集光レンズ19が設けられている。また、複数の半導体レーザアレイ11a~11fの各々と集光レンズ19との間における当該半導体レーザアレイ11a~11fに接近した位置には、遅軸用コリメートレンズアレイ17aおよび速軸用コリメートレンズアレイ17bよりなるコリメート部材が配置されている。
図8において、80は、ヒートシンクであり、15は、光ファイバ14を保持するための光ファイバ保持部材である。
このような半導体レーザ装置においては、半導体レーザアレイ間の間隔が狭くなることから、十分な排熱性が得られず、複数の半導体レーザアレイ11a~11fの各々が高温となってしまう。そして、半導体レーザアレイ11a~11fは、一般に温度が高くなるに従って出力が低下すると共に信頼性が低下するものである。そのため、半導体レーザ装置に十分な出力および信頼性が得られない、という問題がある。
而して、半導体レーザ装置としては、図9に示すように、複数の半導体レーザアレイ11a~11fが、ヒートシンク50の表面において、速軸方向に階段状に並ぶよう積層配置されてなる構成のものが提案されている(例えば、特許文献2参照。)。
このような半導体レーザ装置においては、互いに隣接する半導体レーザアレイを大きく離間した状態とすることができることから、複数の半導体レーザアレイ11a~11fの各々が高温となることを抑制できる。
このような半導体レーザ装置においては、互いに隣接する半導体レーザアレイを大きく離間した状態とすることができることから、複数の半導体レーザアレイ11a~11fの各々が高温となることを抑制できる。
しかしながら、このような半導体レーザ装置においては、複数の半導体レーザアレイ11a~11fからのレーザ光を有効に利用することができない、という問題が顕著となる。この問題は、レーザ光源として、発光部が1つのシングルエミッタ半導体素子ではなく、半導体レーザアレイを用いたことに起因して生じるものである。
具体的に説明すると、半導体レーザアレイ11a~11fは、複数の発光部が直線状に並んだものであり、発光部間の間隔が一般に数十μm~百数十μm程度と狭いことから、コリメートによって遅軸方向に十分な平行状態を得ることが難しい。このため、コリメート部材によるコリメート光は一般に遅軸方向に数mrad~数十mradの広がりを有するものとなる。なお、シングルエミッタ半導体素子においては、コリメート光は略平行光と見なせるものとなる。そのため、半導体レーザアレイ11a~11fと集光レンズ19との間の距離が長くなるに従って、集光レンズ19の配置位置におけるレーザ光の遅軸方向の光線幅(以下、「遅軸方向光線幅」ともいう。)が大きくなる。ここに、集光レンズ19に入射するレーザ光(コリメート光)の遅軸方向光線幅w1は、下記の数式(1)で示されるように、コリメート部材から出射したコリメート光の遅軸方向光線幅w0に、コリメート光の発散角θと、コリメート光の集光レンズ19までの伝播距離Lとの積を加えることによって求められる値である。そして、遅軸方向光線幅の大きなレーザ光は、その一部が集光レンズ19あるいは光ファイバ14に入射されず、いわゆる蹴られ現象が生じて損失となり、光ファイバ14から外部に出射されることがない。従って、半導体レーザ装置においては、ファイバ結合効率が小さくなってしまう。ここに、「ファイバ結合効率」とは、レーザ光源を構成する複数の半導体レーザアレイからのレーザ光のうちの光ファイバに入射されるレーザ光の割合(強度)を示す値である。
具体的に説明すると、半導体レーザアレイ11a~11fは、複数の発光部が直線状に並んだものであり、発光部間の間隔が一般に数十μm~百数十μm程度と狭いことから、コリメートによって遅軸方向に十分な平行状態を得ることが難しい。このため、コリメート部材によるコリメート光は一般に遅軸方向に数mrad~数十mradの広がりを有するものとなる。なお、シングルエミッタ半導体素子においては、コリメート光は略平行光と見なせるものとなる。そのため、半導体レーザアレイ11a~11fと集光レンズ19との間の距離が長くなるに従って、集光レンズ19の配置位置におけるレーザ光の遅軸方向の光線幅(以下、「遅軸方向光線幅」ともいう。)が大きくなる。ここに、集光レンズ19に入射するレーザ光(コリメート光)の遅軸方向光線幅w1は、下記の数式(1)で示されるように、コリメート部材から出射したコリメート光の遅軸方向光線幅w0に、コリメート光の発散角θと、コリメート光の集光レンズ19までの伝播距離Lとの積を加えることによって求められる値である。そして、遅軸方向光線幅の大きなレーザ光は、その一部が集光レンズ19あるいは光ファイバ14に入射されず、いわゆる蹴られ現象が生じて損失となり、光ファイバ14から外部に出射されることがない。従って、半導体レーザ装置においては、ファイバ結合効率が小さくなってしまう。ここに、「ファイバ結合効率」とは、レーザ光源を構成する複数の半導体レーザアレイからのレーザ光のうちの光ファイバに入射されるレーザ光の割合(強度)を示す値である。
数式(1):
w1=w0+θ・L
w1=w0+θ・L
而して、集光レンズ19との離間距離が最も長くなる半導体レーザアレイ11aからのレーザ光(以下、「最長レーザ光」ともいう。)は、その他の半導体レーザアレイ11b~11fからのレーザ光に比して、集光レンズ19の配置位置における遅軸方向光線幅が大きくなる。また、最長レーザ光は、集光レンズ19の光入射面19aにおける周縁側を通過することになる。すなわち、図10に示すように、複数の半導体レーザアレイ11a~11fからのレーザ光は、光入射面19aに、並列に並んで入射されることから、この複数の半導体レーザアレイ11a~11fからのレーザ光の光入射列31において、最長レーザ光が最外側に入射されることとなる。ここに、光入射列31とは、光入射面19aにおいて、複数の半導体レーザアレイ11a~11fからのレーザ光の各々が並列に並んで投影されて形成されるものである。この光入射列31においては、半導体レーザアレイ11a~11fからのレーザ光による略矩形状の光入射領域31a~31fが並列に並んでいる。その結果、最も遅軸方向光線幅の大きい最長レーザ光が、光ファイバ14の円形状の一端面14aよりなる光入射面の最も周縁側に入射されることとなるため、その一部が光ファイバ14に入射されずに損失となりやすい。
図9において、La~Lfは、各々、半導体レーザアレイ11a~11fからのレーザ光の光路を示す。
また、図10において、矢印Fは、半導体レーザアレイ11a~11fの速軸方向を示し、また矢印Sは、半導体レーザアレイ11a~11fの遅軸方向を示す。
図9において、La~Lfは、各々、半導体レーザアレイ11a~11fからのレーザ光の光路を示す。
また、図10において、矢印Fは、半導体レーザアレイ11a~11fの速軸方向を示し、また矢印Sは、半導体レーザアレイ11a~11fの遅軸方向を示す。
本発明は、以上のような事情に基づいてなされたものであって、その目的は、複数の半導体レーザアレイからの光において、集光レンズ入射光路長が異なる場合であっても、これらの複数の半導体レーザアレイからの光を高い効率で光ファイバに入射させることができ、従って高い光の出力が得られる半導体レーザ装置を提供することにある。
本発明の半導体レーザ装置は、直線状に並ぶ複数の発光部を有する半導体レーザアレイを複数備え、当該複数の半導体レーザアレイからの光がコリメート部材を介して入射される集光レンズと、当該集光レンズからの光が略円形状の端面よりなる光入射面から入射される光ファイバとが設けられてなる半導体レーザ装置において、
前記集光レンズには、当該集光レンズの光入射面に、前記複数の半導体レーザアレイからの光の各々が並列に並んで投影されて光入射列が形成され、
前記複数の半導体レーザアレイのうちの少なくとも1個の半導体レーザアレイは、当該半導体レーザアレイからの光が前記集光レンズに至るまでの光路の長さである集光レンズ入射光路長が相対的に異なり、最も長い集光レンズ入射光路長に係る半導体レーザアレイからの光が、前記集光レンズの光入射面における光入射列の最外側以外の位置に入射されることを特徴とする。
前記集光レンズには、当該集光レンズの光入射面に、前記複数の半導体レーザアレイからの光の各々が並列に並んで投影されて光入射列が形成され、
前記複数の半導体レーザアレイのうちの少なくとも1個の半導体レーザアレイは、当該半導体レーザアレイからの光が前記集光レンズに至るまでの光路の長さである集光レンズ入射光路長が相対的に異なり、最も長い集光レンズ入射光路長に係る半導体レーザアレイからの光が、前記集光レンズの光入射面における光入射列の最外側以外の位置に入射されることを特徴とする。
本発明の半導体レーザ装置においては、前記集光レンズ入射光路長が互いに異なる半導体レーザアレイのうちの、長い集光レンズ入射光路長に係る半導体レーザアレイからの光が、短い集光レンズ入射光路長に係る半導体レーザアレイからの光に比して、前記集光レンズの光入射面における光入射列の中央側に入射されることが好ましい。
本発明の半導体レーザ装置においては、前記半導体レーザアレイを3個以上備えており、これらの3個以上の半導体レーザアレイからの光の集光レンズ入射光路長が異なり、最も長い集光レンズ入射光路長に係る半導体レーザアレイからの光が、他の半導体レーザアレイのうちの少なくとも1個の半導体レーザアレイからの光に比して、前記集光レンズの光入射面における光入射列の中央側に入射されることが好ましい。
本発明の半導体レーザ装置においては、前記複数の半導体レーザアレイが、複数の素子設置面を階段状に有する階段状設置面における当該複数の素子設置面の各々に設置されることにより、前記集光レンズ入射光路長が互いに異なる状態とされていることが好ましい。
このような本発明の半導体レーザ装置においては、前記階段状設置面は、ヒートシンクの表面により形成されていることが好ましい。
また、このような本発明の半導体レーザ装置においては、対向配置された2つの階段状設置面における複数の素子設置面の各々に前記半導体レーザアレイが設置され、この2つの階段状設置面の間に折り返しミラーが配置されており、当該折り返しミラーによって折り返された複数の半導体レーザアレイからの光が前記集光レンズに入射されることが好ましい。
このような本発明の半導体レーザ装置においては、前記階段状設置面は、ヒートシンクの表面により形成されていることが好ましい。
また、このような本発明の半導体レーザ装置においては、対向配置された2つの階段状設置面における複数の素子設置面の各々に前記半導体レーザアレイが設置され、この2つの階段状設置面の間に折り返しミラーが配置されており、当該折り返しミラーによって折り返された複数の半導体レーザアレイからの光が前記集光レンズに入射されることが好ましい。
本発明の半導体レーザ装置においては、複数の半導体レーザアレイからの光において、集光レンズ入射光路長が異なる場合であっても、集光レンズ入射光路長が最も長い光について、集光レンズの光入射面における入射位置が制御されている。そのため、集光レンズ入射光路長が最も長い光、すなわち遅軸方向の光線幅が最も大きい光を、集光レンズの光入射面の中央側に入射させ、更に光ファイバの略円形状の光入射面の中心側に入射させることができる。これにより、集光レンズおよび光ファイバの各々において蹴られ現象の発生が抑制され、よってファイバ結合効率が大きくなる。
従って、本発明の半導体レーザ装置によれば、複数の半導体レーザアレイからの光を高い効率で光ファイバに入射させることができ、よって高い光の出力が得られる。
従って、本発明の半導体レーザ装置によれば、複数の半導体レーザアレイからの光を高い効率で光ファイバに入射させることができ、よって高い光の出力が得られる。
以下、本発明の実施の形態について説明する。
(第1の実施形態)
図1は、本発明の半導体レーザ装置の構成の一例の概要を示す説明図である。
この半導体レーザ装置10は、レーザ光源として、直線状に並ぶ複数の発光部を有する、複数の半導体レーザアレイ11a~11fを備えており、これらの複数の半導体レーザアレイ11a~11fからのレーザ光が光ファイバ14を介して外部に出射される構成を有するものである。
複数の半導体レーザアレイ11a~11fは、例えば銅およびアルミニウムなどの金属よりなるヒートシンク20の上面(図1における上面)において、半導体レーザアレイ11a~11cと半導体レーザアレイ11d~11fとが、それぞれ対向するように配設されている。この複数の半導体レーザアレイ11a~11fの各々と、ヒートシンク20との間には、例えば銅タングステン(CuW)や窒化アルミニウム(AlN)などからなるサブマウント部材(図示省略)が介在している。
また、半導体レーザ装置10には、複数の半導体レーザアレイ11a~11fからのレーザ光を同一方向に進むように屈曲する、例えば三角プリズムよりなる折り返しミラー18と、この折り返しミラー18によって屈曲されたレーザ光を集光する集光レンズ19とが設けられている。
また、光ファイバ14は、円形状の一端面14aが光入射面とされ、円形状の他端面14bが光出射面とされており、集光レンズ19によって集光されたレーザ光が光入射面(一端面14a)に入射されるように配置されている。
この図の例において、集光レンズ19は、略円板形状の外観形状を有している。
また、図1において、La~Lfは、各々、半導体レーザアレイ11a~11fからのレーザ光の光路を示す。
図1は、本発明の半導体レーザ装置の構成の一例の概要を示す説明図である。
この半導体レーザ装置10は、レーザ光源として、直線状に並ぶ複数の発光部を有する、複数の半導体レーザアレイ11a~11fを備えており、これらの複数の半導体レーザアレイ11a~11fからのレーザ光が光ファイバ14を介して外部に出射される構成を有するものである。
複数の半導体レーザアレイ11a~11fは、例えば銅およびアルミニウムなどの金属よりなるヒートシンク20の上面(図1における上面)において、半導体レーザアレイ11a~11cと半導体レーザアレイ11d~11fとが、それぞれ対向するように配設されている。この複数の半導体レーザアレイ11a~11fの各々と、ヒートシンク20との間には、例えば銅タングステン(CuW)や窒化アルミニウム(AlN)などからなるサブマウント部材(図示省略)が介在している。
また、半導体レーザ装置10には、複数の半導体レーザアレイ11a~11fからのレーザ光を同一方向に進むように屈曲する、例えば三角プリズムよりなる折り返しミラー18と、この折り返しミラー18によって屈曲されたレーザ光を集光する集光レンズ19とが設けられている。
また、光ファイバ14は、円形状の一端面14aが光入射面とされ、円形状の他端面14bが光出射面とされており、集光レンズ19によって集光されたレーザ光が光入射面(一端面14a)に入射されるように配置されている。
この図の例において、集光レンズ19は、略円板形状の外観形状を有している。
また、図1において、La~Lfは、各々、半導体レーザアレイ11a~11fからのレーザ光の光路を示す。
また、複数の半導体レーザアレイ11a~11fからのレーザ光が折り返しミラー18に至るまでの光路上には、各半導体レーザアレイ11a~11fに対応して、当該半導体レーザアレイ11a~11fからのレーザ光をコリメートするためのコリメート部材が設けられている。このコリメート部材は、遅軸用コリメートレンズアレイ17aと、速軸用コリメートレンズアレイ17bとよりなる。
遅軸用コリメートレンズアレイ17aおよび速軸用コリメートレンズアレイ17bは、各々、半導体レーザアレイ11a~11fにおける複数の発光部の各々に対応するレンズセルを有するものである。すなわち、遅軸用コリメートレンズアレイ17aおよび速軸用コリメートレンズアレイ17bは、各々、直線状に並んだ複数のレンズセルを有するものである。
遅軸用コリメートレンズアレイ17aおよび速軸用コリメートレンズアレイ17bは、各々、半導体レーザアレイ11a~11fにおける複数の発光部の各々に対応するレンズセルを有するものである。すなわち、遅軸用コリメートレンズアレイ17aおよび速軸用コリメートレンズアレイ17bは、各々、直線状に並んだ複数のレンズセルを有するものである。
また、コリメート部材は、半導体レーザアレイ11a~11fに接近した位置に配置されている。
コリメート部材を半導体レーザアレイ11a~11fに接近した位置に配置することにより、半導体レーザアレイ11a~11fからのレーザ光を高い効率でコリメート部材に入射させることができる。しかしながら、その一方でコリメート部材によってコリメートされたレーザ光(コリメート光)が遅軸方向に数十mradの広がりを有するものとなる。
コリメート部材を半導体レーザアレイ11a~11fに接近した位置に配置することにより、半導体レーザアレイ11a~11fからのレーザ光を高い効率でコリメート部材に入射させることができる。しかしながら、その一方でコリメート部材によってコリメートされたレーザ光(コリメート光)が遅軸方向に数十mradの広がりを有するものとなる。
ここに、コリメート部材を半導体レーザアレイ11a~11fに接近した位置に配置することにより、半導体レーザアレイ11a~11fからのレーザ光を高い効率でコリメート部材に入射させることができる理由、およびコリメート部材によるコリメート光が広がりを有するものとなる理由について、図2および図3を用いて具体的に説明する。
図2および図3は、半導体レーザアレイ11の発光部13からコリメート部材に向かってレーザ光が出射された状態を、複数の発光部13の並ぶ方向に垂直な方向から示す説明用投影図である。具体的には、図2は、コリメート部材が半導体レーザアレイ11に接近した接近位置に配置された場合を示す説明用模式図であり、図3は、コリメート部材が半導体レーザアレイ11から大きく離間した遠方位置に配置された場合を示す説明用模式図である。
レーザ光源としてシングルエミッタ半導体素子を用いた場合には、当該シングルエミッタ半導体素子の発光部が1つであることから、コリメート部材(コリメートレンズ)によるコリメート光は略平行光となる。
然るに、半導体レーザアレイ11においては、複数の発光部13の間隔が一般に数十μm~百数十μm程度(具体的には、複数の発光部13の間隔が0.5mm程度、あるいはそれ以下)である。そのため、コリメート部材、具体的にはコリメートレンズアレイ16においては、当該コリメートレンズアレイ16を構成する各レンズセル16aの大きさ(半導体レーザアレイ11における複数の発光部13の並ぶ方向の長さ)が制約される。それゆえ、コリメートレンズアレイ16によるコリメートによって遅軸方向に十分な平行状態を得ることが難しく、よってコリメート光は一般に遅軸方向に数mrad~数十mradの広がりを有するものとなる。しかも、各レンズセル16aの大きさが制限され、また得られるコリメート光が広がりを有することに起因して、半導体レーザアレイ11とコリメートレンズアレイ16との離間距離が、コリメートレンズアレイ16におけるレーザ光の入射効率の観点から制約されることとなる。
具体的に説明すると、図2に示されているように、コリメートレンズアレイ16を半導体レーザアレイ11の接近位置に配置した場合には、レンズセル16aの焦点距離が、発光部13の幅(複数の発光部13の並ぶ方向の長さ)と近似した値となり、よって発光部13は点光源と見なせなくなる。そのため、発光部13において、端部13bからのレーザ光L2と中心部13aからのレーザ光L1とのなす角(発散角)θ1は、数十mradの大きさとなる。
一方、図3に示されているように、コリメートレンズアレイ16を半導体レーザアレイ11の遠方位置に配置した場合には、接近位置に配置した場合に比して、レンズセル16aの焦点距離が長くなる。そのため、端部13bからのレーザ光L2と中心部13aからのレーザ光L1とのなす角(発散角)θ2は、接近位置に配置した場合に係る発散角θ1よりも小さくなる。しかしながら、発光部13からのレーザ光は、その一部L11が当該発光部13に対応するレンズセル16aの光入射面から食み出し、入射されずに損失となる。
このように、コリメートレンズアレイ16を半導体レーザアレイ11の接近位置に配置することによれば、半導体レーザアレイ11からのレーザ光を高い効率でコリメートレンズアレイ16に入射させることができるが、その一方でコリメートレンズアレイ16によるコリメート光が遅軸方向に数十mradの広がりを有するものとなる。
図2および図3においては、発光部13の中心部13aからのレーザ光を実線で示し、端部13bからのレーザ光を破線で示す。
図2および図3は、半導体レーザアレイ11の発光部13からコリメート部材に向かってレーザ光が出射された状態を、複数の発光部13の並ぶ方向に垂直な方向から示す説明用投影図である。具体的には、図2は、コリメート部材が半導体レーザアレイ11に接近した接近位置に配置された場合を示す説明用模式図であり、図3は、コリメート部材が半導体レーザアレイ11から大きく離間した遠方位置に配置された場合を示す説明用模式図である。
レーザ光源としてシングルエミッタ半導体素子を用いた場合には、当該シングルエミッタ半導体素子の発光部が1つであることから、コリメート部材(コリメートレンズ)によるコリメート光は略平行光となる。
然るに、半導体レーザアレイ11においては、複数の発光部13の間隔が一般に数十μm~百数十μm程度(具体的には、複数の発光部13の間隔が0.5mm程度、あるいはそれ以下)である。そのため、コリメート部材、具体的にはコリメートレンズアレイ16においては、当該コリメートレンズアレイ16を構成する各レンズセル16aの大きさ(半導体レーザアレイ11における複数の発光部13の並ぶ方向の長さ)が制約される。それゆえ、コリメートレンズアレイ16によるコリメートによって遅軸方向に十分な平行状態を得ることが難しく、よってコリメート光は一般に遅軸方向に数mrad~数十mradの広がりを有するものとなる。しかも、各レンズセル16aの大きさが制限され、また得られるコリメート光が広がりを有することに起因して、半導体レーザアレイ11とコリメートレンズアレイ16との離間距離が、コリメートレンズアレイ16におけるレーザ光の入射効率の観点から制約されることとなる。
具体的に説明すると、図2に示されているように、コリメートレンズアレイ16を半導体レーザアレイ11の接近位置に配置した場合には、レンズセル16aの焦点距離が、発光部13の幅(複数の発光部13の並ぶ方向の長さ)と近似した値となり、よって発光部13は点光源と見なせなくなる。そのため、発光部13において、端部13bからのレーザ光L2と中心部13aからのレーザ光L1とのなす角(発散角)θ1は、数十mradの大きさとなる。
一方、図3に示されているように、コリメートレンズアレイ16を半導体レーザアレイ11の遠方位置に配置した場合には、接近位置に配置した場合に比して、レンズセル16aの焦点距離が長くなる。そのため、端部13bからのレーザ光L2と中心部13aからのレーザ光L1とのなす角(発散角)θ2は、接近位置に配置した場合に係る発散角θ1よりも小さくなる。しかしながら、発光部13からのレーザ光は、その一部L11が当該発光部13に対応するレンズセル16aの光入射面から食み出し、入射されずに損失となる。
このように、コリメートレンズアレイ16を半導体レーザアレイ11の接近位置に配置することによれば、半導体レーザアレイ11からのレーザ光を高い効率でコリメートレンズアレイ16に入射させることができるが、その一方でコリメートレンズアレイ16によるコリメート光が遅軸方向に数十mradの広がりを有するものとなる。
図2および図3においては、発光部13の中心部13aからのレーザ光を実線で示し、端部13bからのレーザ光を破線で示す。
複数の半導体レーザアレイ11a~11fは、各々、矩形平板状の外観形状を有しており、直線状に並ぶ複数の発光部を有する一面12が光出射面とされたものである。この光出射面(一面12)において、複数の発光部は、長手方向(図1における紙面に垂直な方向)に特定の間隔(例えば0.5mm程度、あるいはそれ以下の等間隔)で配列されている。
また、これらの複数の半導体レーザアレイ11a~11fは、複数の発光部が並ぶ方向の長さが同一のものであることが好ましい。
この図の例において、複数の半導体レーザアレイ11a~11fは、同一の規格を有するものである。
また、これらの複数の半導体レーザアレイ11a~11fは、複数の発光部が並ぶ方向の長さが同一のものであることが好ましい。
この図の例において、複数の半導体レーザアレイ11a~11fは、同一の規格を有するものである。
半導体レーザアレイ11a~11fは、アレイ型半導体レーザ素子であってもよく、また複数のシングルエミッタ半導体素子が、0.5mm程度、あるいはそれ以下の間隔で直線状に並ぶように配置されてなる構成のものであってもよい。
ヒートシンク20は、長方体状の外観形状を有しており、上面には溝21が形成されている。この溝21は、ヒートシンク20の上面における短手方向(図1の紙面に垂直な方向)に直線状に伸び、断面形状が略台形状のものである。この溝21において、互いに対向する側面23,24は、底面26に向かうに従って互いに接近する方向に、階段状に傾斜している。そして、ヒートシンク20の上面における溝21の一方側の周縁面21aおよび当該周縁面21aに連続する溝21の側面23により、半導体レーザアレイ11a~11cを配置するための階段状設置面(以下、「第1階段状設置面」ともいう。)27が構成されている。また、ヒートシンク20の上面における溝21の他方側の周縁面21bおよび当該周縁面21bに連続する溝21の側面24により、半導体レーザアレイ11d~11fを配置するための階段状設置面(以下、「第2階段状設置面」ともいう。)28が構成されている。
この図の例において、側面23は、2つのステップ面23a,23bを有する2段の階段形状を有しており、これらの2つのステップ面23a,23bは、矩形状であって周縁面21aおよび底面26に平行である。また、側面24は、側面23と同様の構成を有している。すなわち、側面24は、2つのステップ面24a,24bを有する2段の階段形状を有しており、これらの2つのステップ面24a,24bは、矩形状であって周縁面21bおよび底面26に平行である。また、対向配置された第1階段状設置面27および第2階段状設置面28は、集光レンズ19の光軸に関して鏡面対称である。
この図の例において、側面23は、2つのステップ面23a,23bを有する2段の階段形状を有しており、これらの2つのステップ面23a,23bは、矩形状であって周縁面21aおよび底面26に平行である。また、側面24は、側面23と同様の構成を有している。すなわち、側面24は、2つのステップ面24a,24bを有する2段の階段形状を有しており、これらの2つのステップ面24a,24bは、矩形状であって周縁面21bおよび底面26に平行である。また、対向配置された第1階段状設置面27および第2階段状設置面28は、集光レンズ19の光軸に関して鏡面対称である。
階段状設置面27,28の各々において、一段の高さは、レーザ光利用性の観点から、半導レーザアレイ11a~11fからのレーザ光あるいはコリメート部材によってコリメートされたレーザ光(コリメート光)の速軸方向の光線幅に応じて適宜に定められる。ここに、階段状設置面27,28の各々における一段の高さとは、第1階段状設置面27においては、周縁面21aとステップ面23aとの位置レベルの差、およびステップ面23aとステップ面23bとの位置レベルの差である。また、第2階段状設置面28においては、周縁面21bとステップ面24aとの位置レベルの差、およびステップ面24aとステップ面24bとの位置レベルの差である。
また、周縁面21a,21bおよびステップ面23a,23b,24a,24bは、排熱性の観点から、半導体レーザアレイ11a~11fの下面(図1における下面)の全域を接触させることのできるような大きさであることが好ましい。
また、周縁面21a,21bおよびステップ面23a,23b,24a,24bは、排熱性の観点から、半導体レーザアレイ11a~11fの下面(図1における下面)の全域を接触させることのできるような大きさであることが好ましい。
ヒートシンク20においては、周縁面21a,21bおよびステップ面23a,23b,24a,24bの各々が素子設置面とされている。これらの複数の素子設置面には、各々、1個の半導体レーザアレイが配置されている。具体的には、第1階段状設置面27における素子設置面には、半導体レーザアレイ11a~11cが、速軸方向に階段状に並ぶように積層配置されている。また、第2階段状設置面28における素子設置面には、半導体レーザアレイ11d~11fが、速軸方向に階段状に並ぶように積層配置されている。
そして、半導体レーザアレイ11a~11cと、半導体レーザアレイ11d~11fとは、各々、光出射面(一面12)が対向するように配置されている。
また、底面26には、折り返しミラー18が配置されている。この折り返しミラー18は、複数の半導体レーザアレイ11a~11fからのレーザ光(コリメート光)が入射されると共に、この折り返しミラー18で反射されることによって直角に屈曲したレーザ光が集光レンズ19に入射されるように位置されている。
この図の例において、複数の半導体レーザアレイ11a~11fは、各々、光出射面(一面12)が、周縁面21a,21bの外縁22a,22b上またはステップ面23a,23b,24a,24bの外縁25a~25d上に位置するように配置されている。また、各半導体レーザアレイ11a~11fに対応するコリメート部材は、対応する半導体レーザアレイ11a~11fが配置されている周縁面またはステップ面よりも1段下のステップ面または底面26の上方に配置されている。
また、折り返しミラー18は、溝21の中央部分に位置されており、この折り返しミラー18の光出射方向(図1における上方)の近傍には、集光ミラー19が配置され、またこの集光ミラー19の焦点位置には、光ファイバ14の光入射面(一端面14a)が位置されている。
そして、半導体レーザアレイ11a~11cと、半導体レーザアレイ11d~11fとは、各々、光出射面(一面12)が対向するように配置されている。
また、底面26には、折り返しミラー18が配置されている。この折り返しミラー18は、複数の半導体レーザアレイ11a~11fからのレーザ光(コリメート光)が入射されると共に、この折り返しミラー18で反射されることによって直角に屈曲したレーザ光が集光レンズ19に入射されるように位置されている。
この図の例において、複数の半導体レーザアレイ11a~11fは、各々、光出射面(一面12)が、周縁面21a,21bの外縁22a,22b上またはステップ面23a,23b,24a,24bの外縁25a~25d上に位置するように配置されている。また、各半導体レーザアレイ11a~11fに対応するコリメート部材は、対応する半導体レーザアレイ11a~11fが配置されている周縁面またはステップ面よりも1段下のステップ面または底面26の上方に配置されている。
また、折り返しミラー18は、溝21の中央部分に位置されており、この折り返しミラー18の光出射方向(図1における上方)の近傍には、集光ミラー19が配置され、またこの集光ミラー19の焦点位置には、光ファイバ14の光入射面(一端面14a)が位置されている。
以上のように、複数の半導体レーザアレイ11a~11fを階段状設置面27,28における素子設置面の各々に配置することにより、当該複数の半導体レーザアレイ11a~11cからのレーザ光が集光レンズ19に至るまでの光路の長さ(集光レンズ入射光路長)が制御されている。
すなわち、半導体レーザアレイ11a~11cを第1階段状設置面27における素子設置面の各々に配置することにより、これらの半導体レーザアレイ11a~11cからのレーザ光の集光レンズ入射光路長が相対的に異なる状態とされている。また、半導体レーザアレイ11d~11fを第2階段状設置面28における素子設置面の各々に配置することにより、これらの半導体レーザアレイ11d~11fからのレーザ光の集光レンズ入射光路長が相対的に異なる状態とされている。
すなわち、半導体レーザアレイ11a~11cを第1階段状設置面27における素子設置面の各々に配置することにより、これらの半導体レーザアレイ11a~11cからのレーザ光の集光レンズ入射光路長が相対的に異なる状態とされている。また、半導体レーザアレイ11d~11fを第2階段状設置面28における素子設置面の各々に配置することにより、これらの半導体レーザアレイ11d~11fからのレーザ光の集光レンズ入射光路長が相対的に異なる状態とされている。
具体的には、半導体レーザアレイ11aからのレーザ光、半導体レーザアレイ11bからのレーザ光および半導体レーザアレイ11cからのレーザ光は、この順に集光レンズ入射光路長が長くなっている。また、半導体レーザアレイ11dからのレーザ光、半導体レーザアレイ11eからのレーザ光および半導体レーザアレイ11fからのレーザ光は、この順に集光レンズ入射光路長が長くなっている。
この図の例において、対向配置された半導体レーザアレイからのレーザ光は、集光レンズ入射光路長が同一である。すなわち、半導体レーザアレイ11aに係る集光レンズ入射光路長と半導体レーザアレイ11dに係る集光レンズ入射光路長とは同一であり、半導体レーザアレイ11bに係る集光レンズ入射光路長と半導体レーザアレイ11eに係る集光レンズ入射光路長とは同一である。また、半導体レーザアレイ11cに係る集光レンズ入射光路長と半導体レーザアレイ11fに係る集光レンズ入射光路長とは同一である。
この図の例において、対向配置された半導体レーザアレイからのレーザ光は、集光レンズ入射光路長が同一である。すなわち、半導体レーザアレイ11aに係る集光レンズ入射光路長と半導体レーザアレイ11dに係る集光レンズ入射光路長とは同一であり、半導体レーザアレイ11bに係る集光レンズ入射光路長と半導体レーザアレイ11eに係る集光レンズ入射光路長とは同一である。また、半導体レーザアレイ11cに係る集光レンズ入射光路長と半導体レーザアレイ11fに係る集光レンズ入射光路長とは同一である。
また、第1階段状設置面27と第2階段状設置面28との間に折り返しミラー18を配置することにより、集光レンズ19の光入射面19aに並列に並んで入射される複数の半導体レーザアレイ11a~11fからのレーザ光の入射位置が制御される。すなわち、図4に示すように、光入射面19aに形成される光入射列31において、最も長い集光レンズ入射光路長に係る半導体レーザアレイ11a,11dからのレーザ光が、最外側以外の位置に入射する状態とされている。
ここに、光入射列31は、複数の半導体レーザアレイ11a~11fからのレーザ光の各々が、光入射面19aに、並列に並んで投影されることによって形成されるものである。この光入射列31においては、半導体レーザアレイ11a~11fからのレーザ光による略矩形状の光入射領域31a~31fが並列に並んでいる。複数の光入射領域31a~31fは、これらの光入射領域31a~31fが並ぶ方向(図4における上下方向であって、以下、「光入射列並列方向」ともいう。)の寸法は同一であるが、光入射列並列方向に垂直な方向(図4における左右方向)の寸法(以下、「入射領域幅」ともいう。)は異なるものである。この光入射領域幅は、レーザ光の遅軸方向の光線幅(遅軸方向光線幅)によるものであることから、集光レンズ入射光路長が長くなるに従って大きくなる。
ここに、光入射列31は、複数の半導体レーザアレイ11a~11fからのレーザ光の各々が、光入射面19aに、並列に並んで投影されることによって形成されるものである。この光入射列31においては、半導体レーザアレイ11a~11fからのレーザ光による略矩形状の光入射領域31a~31fが並列に並んでいる。複数の光入射領域31a~31fは、これらの光入射領域31a~31fが並ぶ方向(図4における上下方向であって、以下、「光入射列並列方向」ともいう。)の寸法は同一であるが、光入射列並列方向に垂直な方向(図4における左右方向)の寸法(以下、「入射領域幅」ともいう。)は異なるものである。この光入射領域幅は、レーザ光の遅軸方向の光線幅(遅軸方向光線幅)によるものであることから、集光レンズ入射光路長が長くなるに従って大きくなる。
具体的には、第1階段状設置面27に配置されている半導体レーザアレイ11a~11cからのレーザ光は、光入射列31において、半導体レーザアレイ11aからのレーザ光、半導体レーザアレイ11bからのレーザ光および半導体レーザアレイ11cからのレーザ光の順により中心側に入射している。すなわち、最も長い集光レンズ入射光路長に係る半導体レーザアレイ11aからのレーザ光は、光入射面19aの中心部に最も接近した位置(中心近傍位置)に入射し、一方、最も短い集光レンズ入射光路長に係る半導体レーザアレイ11cからのレーザ光は、光入射面19aの中心部から最も離間した位置(周縁側位置)に入射している。また、第2階段状設置面28に配置されている半導体レーザアレイ11d~11fからのレーザ光は、光入射列31おいて、半導体レーザアレイ11dからのレーザ光、半導体レーザアレイ11eからのレーザ光および半導体レーザアレイ11fからのレーザ光の順により中心側に入射している。すなわち、最も長い集光レンズ入射光路長に係る半導体レーザアレイ11dからのレーザ光は、光入射面19aの中心部に最も接近した位置(中心近傍位置)に入射し、一方、最も短い集光レンズ入射光路長に係る半導体レーザアレイ11fからのレーザ光は、光入射面19aの中心部から最も離間した位置(周縁側位置)に入射している。
この図の例において、対向配置された半導体レーザアレイからのレーザ光は、光入射面19aにおける入射位置が、当該光入射面19aの中心部に関して対称となっている。そして、光入射列31は、その中心部が光入射面19aの中心部上に位置しており、当該光入射列31の中心部、すなわち光入射面19aの中心部に関して、光入射列並列方向および当該光入射列並列方向に垂直な方向に対称な形状である。
この図の例において、対向配置された半導体レーザアレイからのレーザ光は、光入射面19aにおける入射位置が、当該光入射面19aの中心部に関して対称となっている。そして、光入射列31は、その中心部が光入射面19aの中心部上に位置しており、当該光入射列31の中心部、すなわち光入射面19aの中心部に関して、光入射列並列方向および当該光入射列並列方向に垂直な方向に対称な形状である。
光ファイバ14は、円筒状のコア部分と、当該コア部分の周面に設けられたクラッド部分とを有するものであり、光入射面(一端面14a)においては、コア部分によって円形状の有効取り込み領域が形成されている。
光ファイバ14としては、例えば石英ファイバなどが用いられる。
図の例においては、光ファイバ14の一端面側の端部には、光ファイバ14の外径に適合した内径を有する円筒状の光ファイバ保持部材15が装着されている。
光ファイバ14としては、例えば石英ファイバなどが用いられる。
図の例においては、光ファイバ14の一端面側の端部には、光ファイバ14の外径に適合した内径を有する円筒状の光ファイバ保持部材15が装着されている。
以上の半導体レーザ装置10においては、複数の半導体レーザアレイ11a~11fからのレーザ光は、コリメート部材(遅軸用コリメートレンズ17aおよび速軸用コリメートレンズ17b)によってコリメートされる。その後、このコリメート部材によってコリメートされたレーザ光は、折り返しミラー18によって集光レンズ19に向かって反射される。そして、折り返しミラー18によって反射されたレーザ光が集光レンズ19によって集光されて、光ファイバ14における光入射面(一端面14a)に入射する。このようにして、複数の半導体レーザアレイ11a~11fからのレーザ光が、光ファイバ14の光入射面における有効取り込み領域に入射し、この光ファイバ14によって導光されて光出射面(他端面14b)から外部に出射され、例えばプロジェクター装置の光源光として利用される。
而して、半導体レーザ装置10においては、複数の半導体レーザアレイ11a~11fが、ヒートシンク20の表面(階段状設置面27,28)において、速軸方向に階段状に積層配置されている。そのため、互いに隣接する半導体レーザアレイが大きく離間した状態とされていることから、高い排熱性が得られる。その結果、複数の半導体レーザアレイ11a~11fの各々に高い信頼性および高い出力が得られる。
また、複数の半導体レーザアレイ11a~11fからのレーザ光は、集光レンズ19の円形状の光入射面19aにおいて、集光レンズ入射光路長が長いものほど光入射面19aの中心部に接近した位置に入射して光入射列31を形成する。すなわち、より遅軸方向光線幅の大きいレーザ光が、光入射面19aの中心部に接近し、より遅軸方向光線幅の小さいレーザ光が光入射面19aの周縁部に接近するように並列に並んで投影されて光入射列31を形成している。そして、光入射列31は、その全体形状が、光入射面19aより小径の円形状に近似したものとなる。そのため、複数の半導体レーザアレイ11a~11fからのレーザ光をコリメート部材を介して円形状の光入射面19aに高い効率で入射させることができる。また、集光レンズ19から出射されたレーザ光を高い効率で光ファイバ14における円形状の有効取り込み領域に高い効率で入射させることができる。その結果、集光レンズ19および光ファイバ14の各々において蹴られ現象の発生が抑制され、よってファイバ結合効率が大きくなる。
従って、半導体レーザ装置10によれば、高い光の出力が得られる。
また、複数の半導体レーザアレイ11a~11fからのレーザ光は、集光レンズ19の円形状の光入射面19aにおいて、集光レンズ入射光路長が長いものほど光入射面19aの中心部に接近した位置に入射して光入射列31を形成する。すなわち、より遅軸方向光線幅の大きいレーザ光が、光入射面19aの中心部に接近し、より遅軸方向光線幅の小さいレーザ光が光入射面19aの周縁部に接近するように並列に並んで投影されて光入射列31を形成している。そして、光入射列31は、その全体形状が、光入射面19aより小径の円形状に近似したものとなる。そのため、複数の半導体レーザアレイ11a~11fからのレーザ光をコリメート部材を介して円形状の光入射面19aに高い効率で入射させることができる。また、集光レンズ19から出射されたレーザ光を高い効率で光ファイバ14における円形状の有効取り込み領域に高い効率で入射させることができる。その結果、集光レンズ19および光ファイバ14の各々において蹴られ現象の発生が抑制され、よってファイバ結合効率が大きくなる。
従って、半導体レーザ装置10によれば、高い光の出力が得られる。
また、半導体レーザ装置10においては、光入射列31が、光入射面19aの中心部に関して、光入射並列方向および当該光入射列並列方向に垂直な方向に対称な形状であることから、光入射列31の全体がより円形状に近似した形状となる。そのため、集光レンズ19から出射されて光ファイバ14における有効取り込み領域に入射するレーザ光が均一性を有するものとなる。その結果、光ファイバ14の光出射面から出射されるレーザ光に高い均一性が得られる。
また、半導体レーザ装置10においては、複数の半導体レーザアレイ11a~11fに共通のヒートシンク20が用いられていることから、これらの複数の半導体レーザアレイ11a~11fを冷却するための冷却機構を簡易な構成のものとすることができる。従って、半導体レーザ装置10を簡易な構成のものとすることができる。
(第2の実施形態)
図5は、本発明の半導体レーザ装置の構成の他の例の概要を示す説明図であり、図6は、図5の半導体レーザ装置を、当該図5における上方から示す説明用投影図である。
この半導体レーザ装置40は、複数の半導体レーザアレイ11a~11fからのレーザ光が光ファイバ14を介して外部に出射される構成を有するものである。
半導体レーザ装置40において、複数の半導体レーザアレイ11a~11fは、ヒートシンク50の表面に、光出射面(一面12)が同一方向(図5および図6における右方)を向くように配置されている。これらの複数の半導体レーザアレイ11a~11fの各々と、ヒートシンク50との間には、サブマウント部材(図示省略)が介在している。
また、半導体レーザ装置40には、複数の半導体レーザアレイ11a~11fの各々に対応してコリメート部材(具体的には、遅軸用コリメートレンズアレイ17aおよび速軸用コリメートレンズアレイ17b)が設けられている。また、これら複数のコリメート部材によってコリメートされたレーザ光を集光するための集光レンズ19が、半導体レーザアレイ11d~11fの光出射面(一面12)に対向するように設けられている。また、複数のコリメート部材の光出射前方(図5および図6における右方)には、複数の半導体レーザアレイ11a~11cからのレーザ光(コリメート光)を屈曲させるための光屈曲機構が設けられている。この光屈曲機構は、第1の折り返しミラー42と第2の折り返しミラー43とよりなり、これらの第1の折り返しミラー42および第2の折り返しミラー43は、例えば三角プリズムよりなる。
また、この半導体レーザ装置40において、半導体レーザアレイ11a~11f、コリメート部材(遅軸用コリメートレンズアレイ17aおよび速軸用コリメートレンズアレイ17b)、光ファイバ14および集光レンズ19は、図1の半導体レーザ装置10における各部材と同様の構成を有するものである。
また、ヒートシンク50は、1つの階段状設置面56を有しており、この階段状設置面56における素子設置面の各々が2個の半導体レーザアレイを配置することのできる大きさとされていること以外は、図1の半導体レーザ装置10のヒートシンク20と同様の構成を有するものである。
図5および図6において、La~Lfは、各々、半導体レーザアレイ11a~11fからのレーザ光の光路を示す。また、図6においては、半導体レーザアレイ11cからのレーザ光の光路のみを示す。
図5は、本発明の半導体レーザ装置の構成の他の例の概要を示す説明図であり、図6は、図5の半導体レーザ装置を、当該図5における上方から示す説明用投影図である。
この半導体レーザ装置40は、複数の半導体レーザアレイ11a~11fからのレーザ光が光ファイバ14を介して外部に出射される構成を有するものである。
半導体レーザ装置40において、複数の半導体レーザアレイ11a~11fは、ヒートシンク50の表面に、光出射面(一面12)が同一方向(図5および図6における右方)を向くように配置されている。これらの複数の半導体レーザアレイ11a~11fの各々と、ヒートシンク50との間には、サブマウント部材(図示省略)が介在している。
また、半導体レーザ装置40には、複数の半導体レーザアレイ11a~11fの各々に対応してコリメート部材(具体的には、遅軸用コリメートレンズアレイ17aおよび速軸用コリメートレンズアレイ17b)が設けられている。また、これら複数のコリメート部材によってコリメートされたレーザ光を集光するための集光レンズ19が、半導体レーザアレイ11d~11fの光出射面(一面12)に対向するように設けられている。また、複数のコリメート部材の光出射前方(図5および図6における右方)には、複数の半導体レーザアレイ11a~11cからのレーザ光(コリメート光)を屈曲させるための光屈曲機構が設けられている。この光屈曲機構は、第1の折り返しミラー42と第2の折り返しミラー43とよりなり、これらの第1の折り返しミラー42および第2の折り返しミラー43は、例えば三角プリズムよりなる。
また、この半導体レーザ装置40において、半導体レーザアレイ11a~11f、コリメート部材(遅軸用コリメートレンズアレイ17aおよび速軸用コリメートレンズアレイ17b)、光ファイバ14および集光レンズ19は、図1の半導体レーザ装置10における各部材と同様の構成を有するものである。
また、ヒートシンク50は、1つの階段状設置面56を有しており、この階段状設置面56における素子設置面の各々が2個の半導体レーザアレイを配置することのできる大きさとされていること以外は、図1の半導体レーザ装置10のヒートシンク20と同様の構成を有するものである。
図5および図6において、La~Lfは、各々、半導体レーザアレイ11a~11fからのレーザ光の光路を示す。また、図6においては、半導体レーザアレイ11cからのレーザ光の光路のみを示す。
このヒートシンク50は、外観形状が略四角錐台状であって、4つの側面のうちの1つの側面52が、上面51aから下面51bに向かうに従って、対向する側面57から離間する方向に、階段状に傾斜しており、他の4つの側面が上面51aおよび下面51bに垂直なものである。そして、上面51aおよび側面52により、半導体レーザアレイ11a~11fを配置するための階段状設置面56が構成されている。
この図の例において、側面52は、3つのステップ面52a~52cを有する3段の階段形状を有しており、これらの3つのステップ面52a~52cは、各々、矩形状であって上面51aおよび下面51bに平行である。
この図の例において、側面52は、3つのステップ面52a~52cを有する3段の階段形状を有しており、これらの3つのステップ面52a~52cは、各々、矩形状であって上面51aおよび下面51bに平行である。
階段状設置面56において、上面51aおよびステップ面52a,52bは、2個の半導体レーザアレイを配置することのできる大きさである。また、上面51aおよびステップ面52a,52bは、排熱性の観点からは、2個の半導体レーザアレイの下面(図6における下面)の全域を接触させることができると共に、当該2個の半導体レーザアレイを十分に離間した状態とすることのできるような大きさであることが好ましい。ここに、2個の半導体レーザアレイの間の離間距離は、例えば2mmである。
ヒートシンク50においては、上面51aおよびステップ面52a,52bの各々が素子設置面とされている。これらの複数の素子設置面には、各々、2個の半導体レーザアレイが配置されている。そして、半導体レーザアレイ11a~11cは、ヒートシンク50の一方側(図6における下方側)において、速軸方向に階段状に並ぶように積層配置されている。また、半導体レーザアレイ11d~11fは、ヒートシンク50の他方側(図6における上方側)において、速軸方向に階段状に並ぶように積層配置されている。
また、各素子設置面において、半導体レーザアレイ11a~11fは、光出射面(一面12)が、上面51aにおける側面52との境界に係る外縁53、またはステップ面における一段下のステップ面との境界に係る外縁54a,54bに沿って伸びるように位置されている。
この図の例において、半導体レーザアレイ11a~11fは、各々、光出射面(一面12)が、上面51aの外縁53またはステップ面52a,52bの外縁54a,54b上に位置するように配置されている。また、各半導体レーザアレイ11a~11fに対応するコリメート部材は、対応する半導体レーザアレイ11a~11fが配置されている上面51aまたはステップ面よりも1段下のステップ面の上方に配置されている。
また、各素子設置面において、半導体レーザアレイ11a~11fは、光出射面(一面12)が、上面51aにおける側面52との境界に係る外縁53、またはステップ面における一段下のステップ面との境界に係る外縁54a,54bに沿って伸びるように位置されている。
この図の例において、半導体レーザアレイ11a~11fは、各々、光出射面(一面12)が、上面51aの外縁53またはステップ面52a,52bの外縁54a,54b上に位置するように配置されている。また、各半導体レーザアレイ11a~11fに対応するコリメート部材は、対応する半導体レーザアレイ11a~11fが配置されている上面51aまたはステップ面よりも1段下のステップ面の上方に配置されている。
光屈曲機構は、半導体レーザアレイ11a~11cからのレーザ光がコリメート部材を介して入射されると共に、当該光屈曲機構から出射されたレーザ光が集光レンズ19に入射され、かつ半導体レーザアレイ11d~11fからのレーザ光が入射されることのないように位置されている。
この光屈曲機構において、第1の折り返しミラー42と第2の折り返しミラー43とは、半導体レーザアレイ11a~11cからのレーザ光が、第1の折り返しミラー42および第2の折り返しミラー43をこの順に経ることによって集光レンズ19に入射されるように配置されている。すなわち、半導体レーザアレイ11a~11cからのレーザ光は、先ず、第1の折り返しミラー42に入射して屈曲されて出射された後、第2の折り返しミラー43に入射し、この第2の折り返しミラー43によって屈曲されて出射されて集光レンズ19に入射することとなる。
この光屈曲機構において、第1の折り返しミラー42と第2の折り返しミラー43とは、半導体レーザアレイ11a~11cからのレーザ光が、第1の折り返しミラー42および第2の折り返しミラー43をこの順に経ることによって集光レンズ19に入射されるように配置されている。すなわち、半導体レーザアレイ11a~11cからのレーザ光は、先ず、第1の折り返しミラー42に入射して屈曲されて出射された後、第2の折り返しミラー43に入射し、この第2の折り返しミラー43によって屈曲されて出射されて集光レンズ19に入射することとなる。
このように、半導体レーザアレイ11a~11cおよび半導体レーザアレイ11d~11fを、それぞれ階段状に積層配置すると共に、半導体レーザアレイ11a~11cからのレーザ光の光路を光屈曲機構によって屈曲したものとすることにより、複数の半導体レーザアレイ11a~11fからのレーザ光の集光レンズ入射光路長、および入射面19aにおける入射位置が制御されている。
具体的には、半導体レーザアレイ11a~11cを階段状設置面56における素子設置面の各々に配置すると共に、当該半導体レーザアレイ11a~11cのレーザ光の光路の各々を光屈曲機構によって屈曲することにより、半導体レーザアレイ11aからのレーザ光、半導体レーザアレイ11bからのレーザ光および半導体レーザアレイ11cからのレーザ光は、この順に集光レンズ入射光路長が長くなっている。また、半導体レーザアレイ11d~11fを階段状設置面56における素子設置面の各々に配置することにより、半導体レーザアレイ11dからのレーザ光、半導体レーザアレイ11eからのレーザ光および半導体レーザアレイ11fからのレーザ光は、この順に集光レンズ入射光路長が長くなっている。而して、半導体レーザアレイ11a~11fからのレーザ光は、集光レンズ入射光路長が相対的に異なる状態とされており、半導体レーザアレイ11aからのレーザ光が最も長い集光レンズ入射光路長を有している。
そして、半導体レーザアレイ11a~11cからのレーザ光は、光入射面19aに形成される光入射列おいて、半導体レーザアレイ11aからのレーザ光、半導体レーザアレイ11bからのレーザ光および半導体レーザアレイ11cからのレーザ光の順により中心側に入射している。すなわち、最も長い集光レンズ入射光路長に係る半導体レーザアレイ11aからのレーザ光は、光入射面19aの中心部に最も接近した位置(中心近傍位置)に入射し、一方、最も短い集光レンズ入射光路長に係る半導体レーザアレイ11cからのレーザ光は、光入射面19aの中心部から最も離間した位置(周縁側位置)に入射している。また、半導体レーザアレイ11d~11fからのレーザ光は、光入射面19aに形成される光入射列において、半導体レーザアレイ11dからのレーザ光、半導体レーザアレイ11eからのレーザ光および半導体レーザアレイ11fからのレーザ光の順により中心側に入射している。すなわち、最も長い集光レンズ入射光路長に係る半導体レーザアレイ11dからのレーザ光は、光入射面19aの中心部に最も接近した位置(中心近傍位置)に入射し、一方、最も短い集光レンズ入射光路長に係る半導体レーザアレイ11fからのレーザ光は、光入射面19aの中心部から最も離間した位置(周縁側位置)に入射している。而して、最も長い集光レンズ入射光路長に係る半導体レーザアレイ11aからのレーザ光は、半導体レーザアレイ11b,11c,11e,11fからのレーザ光に比して、集光レンズ19における光入射列の中心側に入射している。
この図の例において、同一の素子設置面に配置されたレーザアレイからのレーザ光は、光入射面19aにおける入射位置が、当該光入射面19aの中心部に関して対称となっている。そして、光入射面19aに形成される光入射列は、その中心部が光入射面19aの中心部上に位置しており、当該光入射列の中心部、すなわち光入射面19aの中心部に関して、光入射列並列方向に垂直な方向に対称な形状である。
そして、半導体レーザアレイ11a~11cからのレーザ光は、光入射面19aに形成される光入射列おいて、半導体レーザアレイ11aからのレーザ光、半導体レーザアレイ11bからのレーザ光および半導体レーザアレイ11cからのレーザ光の順により中心側に入射している。すなわち、最も長い集光レンズ入射光路長に係る半導体レーザアレイ11aからのレーザ光は、光入射面19aの中心部に最も接近した位置(中心近傍位置)に入射し、一方、最も短い集光レンズ入射光路長に係る半導体レーザアレイ11cからのレーザ光は、光入射面19aの中心部から最も離間した位置(周縁側位置)に入射している。また、半導体レーザアレイ11d~11fからのレーザ光は、光入射面19aに形成される光入射列において、半導体レーザアレイ11dからのレーザ光、半導体レーザアレイ11eからのレーザ光および半導体レーザアレイ11fからのレーザ光の順により中心側に入射している。すなわち、最も長い集光レンズ入射光路長に係る半導体レーザアレイ11dからのレーザ光は、光入射面19aの中心部に最も接近した位置(中心近傍位置)に入射し、一方、最も短い集光レンズ入射光路長に係る半導体レーザアレイ11fからのレーザ光は、光入射面19aの中心部から最も離間した位置(周縁側位置)に入射している。而して、最も長い集光レンズ入射光路長に係る半導体レーザアレイ11aからのレーザ光は、半導体レーザアレイ11b,11c,11e,11fからのレーザ光に比して、集光レンズ19における光入射列の中心側に入射している。
この図の例において、同一の素子設置面に配置されたレーザアレイからのレーザ光は、光入射面19aにおける入射位置が、当該光入射面19aの中心部に関して対称となっている。そして、光入射面19aに形成される光入射列は、その中心部が光入射面19aの中心部上に位置しており、当該光入射列の中心部、すなわち光入射面19aの中心部に関して、光入射列並列方向に垂直な方向に対称な形状である。
以上の半導体レーザ装置40においては、複数の半導体レーザアレイ11a~11fからのレーザ光は、コリメート部材(遅軸用コリメートレンズ17aおよび速軸用コリメートレンズ17b)によってコリメートされる。その後、このコリメート部材によってコリメートされた半導体レーザアレイ11d~11fからのレーザ光は、集光レンズ19に向かう。一方、コリメート部材によってコリメートされた半導体レーザアレイ11a~11cからのレーザ光は、光屈曲機構によって集光レンズ19に向かうように屈曲される。そして、半導体レーザアレイ11a~11fからのレーザ光(コリメート光)が集光レンズ19によって集光されて、光ファイバ14における光入射面(一端面14a)に入射する。このようにして、複数の半導体レーザアレイ11a~11fからのレーザ光が、光ファイバ14の光入射面における有効取り込み領域に入射し、この光ファイバ14によって導光されて光出射面(他端面14b)から外部に出射され、例えばプロジェクター装置の光源光として利用される。
而して、この半導体レーザ装置40においては、半導体レーザアレイ11a~11cおよび半導体レーザアレイ11d~11fが、ヒートシンク50の表面(階段状設置面56)において、それぞれ速軸方向に階段状に積層配置されている。そのため、互いに隣接する半導体レーザアレイが大きく離間した状態とされていることから、高い排熱性が得られる。その結果、複数の半導体レーザアレイ11a~11fの各々に高い信頼性および高い出力が得られる。
また、集光レンズ19の円形状の光入射面19aにおいては、半導体レーザアレイ11a~11cからのレーザ光は、集光レンズ入射光路長が長いものほど光入射面19aの中心部に接近した位置に入射している。一方、半導体レーザアレイ11d~11fからのレーザ光は、集光レンズ入射光路長が長いものほど光入射面19aの中心部に接近した位置に入射している。このように、半導体レーザアレイ11a~11cからのレーザ光、および半導体レーザアレイ11d~11fにおいて、各々、より遅軸方向光線幅の大きいレーザ光が、光入射面19aの中心部に接近し、より遅軸方向光線幅の小さいレーザ光が光入射面19aの周縁部に接近するように並列に並んで投影されて光入射列を形成している。そして、光入射列は、その全体形状が、光入射面19aより小径の円形状に近似したものとなる。そのため、複数の半導体レーザアレイ11a~11fからのレーザ光をコリメート部材を介して円形状の光入射面19aに高い効率で入射させることができる。また、集光レンズ19から出射されたレーザ光を高い効率で光ファイバ14における円形状の有効取り込み領域に高い効率で入射させることができる。その結果、集光レンズ19および光ファイバ14の各々において蹴られ現象の発生が抑制され、よってファイバ結合効率が大きくなる。
従って、半導体レーザ装置40によれば、高い光の出力が得られる。
また、集光レンズ19の円形状の光入射面19aにおいては、半導体レーザアレイ11a~11cからのレーザ光は、集光レンズ入射光路長が長いものほど光入射面19aの中心部に接近した位置に入射している。一方、半導体レーザアレイ11d~11fからのレーザ光は、集光レンズ入射光路長が長いものほど光入射面19aの中心部に接近した位置に入射している。このように、半導体レーザアレイ11a~11cからのレーザ光、および半導体レーザアレイ11d~11fにおいて、各々、より遅軸方向光線幅の大きいレーザ光が、光入射面19aの中心部に接近し、より遅軸方向光線幅の小さいレーザ光が光入射面19aの周縁部に接近するように並列に並んで投影されて光入射列を形成している。そして、光入射列は、その全体形状が、光入射面19aより小径の円形状に近似したものとなる。そのため、複数の半導体レーザアレイ11a~11fからのレーザ光をコリメート部材を介して円形状の光入射面19aに高い効率で入射させることができる。また、集光レンズ19から出射されたレーザ光を高い効率で光ファイバ14における円形状の有効取り込み領域に高い効率で入射させることができる。その結果、集光レンズ19および光ファイバ14の各々において蹴られ現象の発生が抑制され、よってファイバ結合効率が大きくなる。
従って、半導体レーザ装置40によれば、高い光の出力が得られる。
また、半導体レーザ装置40においては、光入射面19aに形成される光入射列が、当該光入射列の中心部に関して、光入射並列方向に略対称であって光入射列並列方向に垂直な方向に対称な形状であることから、光入射列の全体がより円形状に近似した形状となる。そのため、集光レンズ19から出射されて光ファイバ14における有効取り込み領域に入射するレーザ光が均一性を有するものとなる。その結果、光ファイバ14の光出射面から出射されるレーザ光に高い均一性が得られる。
また、半導体レーザ装置40においては、複数の半導体レーザアレイ11a~11fに共通のヒートシンク50が用いられていることから、これらの複数の半導体レーザアレイ11a~11fを冷却するための冷却機構を簡易な構成のものとすることができる。従って、半導体レーザ装置40を簡易な構成のものとすることができる。
(第3の実施形態)
図7は、本発明の半導体レーザ装置の構成の更に他の例の概要を示す説明図である。
この半導体レーザ装置60は、複数の半導体レーザアレイ11a~11fからのレーザ光が光ファイバ14を介して外部に出射される構成を有するものである。
半導体レーザ装置60において、複数の半導体レーザアレイ11a~11fは、光出射面(一面12)が同一方向(図7における右方)を向くように配置されている。また、これらの複数の半導体レーザアレイ11a~11fは、2つのヒートシンク50,50の表面上において、当該ヒートシンク50,50との間にサブマウント部材を介在した状態で配置されており、この2つのヒートシンク50,50は、階段状設置面56,56を構成する素子設置面が対向するように配置されている。
また、半導体レーザ装置60には、複数の半導体レーザアレイ11a~11fの各々に対応してコリメート部材(具体的には、遅軸用コリメートレンズアレイ17aおよび速軸用コリメートレンズアレイ17b)が設けられている。また、これらの複数のコリメート部材によってコリメートされたレーザ光を集光するための集光レンズ19が、複数の半導体レーザアレイ11a~11fの光出射面(一面12)に対向するように設けられている。
また、この半導体レーザ装置60において、半導体レーザアレイ11a~11f、コリメート部材(遅軸用コリメートレンズアレイ17aおよび速軸用コリメートレンズアレイ17b)、光ファイバ14および集光レンズ19は、図1の半導体レーザ装置10における各構成部材と同様の構成を有するものである。
図7は、本発明の半導体レーザ装置の構成の更に他の例の概要を示す説明図である。
この半導体レーザ装置60は、複数の半導体レーザアレイ11a~11fからのレーザ光が光ファイバ14を介して外部に出射される構成を有するものである。
半導体レーザ装置60において、複数の半導体レーザアレイ11a~11fは、光出射面(一面12)が同一方向(図7における右方)を向くように配置されている。また、これらの複数の半導体レーザアレイ11a~11fは、2つのヒートシンク50,50の表面上において、当該ヒートシンク50,50との間にサブマウント部材を介在した状態で配置されており、この2つのヒートシンク50,50は、階段状設置面56,56を構成する素子設置面が対向するように配置されている。
また、半導体レーザ装置60には、複数の半導体レーザアレイ11a~11fの各々に対応してコリメート部材(具体的には、遅軸用コリメートレンズアレイ17aおよび速軸用コリメートレンズアレイ17b)が設けられている。また、これらの複数のコリメート部材によってコリメートされたレーザ光を集光するための集光レンズ19が、複数の半導体レーザアレイ11a~11fの光出射面(一面12)に対向するように設けられている。
また、この半導体レーザ装置60において、半導体レーザアレイ11a~11f、コリメート部材(遅軸用コリメートレンズアレイ17aおよび速軸用コリメートレンズアレイ17b)、光ファイバ14および集光レンズ19は、図1の半導体レーザ装置10における各構成部材と同様の構成を有するものである。
2つのヒートシンク50,50は、各々、階段状設置面56における素子設置面の各々が1個の半導体レーザアレイを配置することのできる大きさとされていること以外は、図5および図6の半導体レーザ装置40のヒートシンク50と同様の構成を有するものである。
この半導体レーザ装置60において、2つのヒートシンク50,50は、同一構造を有しており、階段状設置面56,56が互いに対向すると共に、この階段状設置面56,56を構成する各素子設置面が対向するよう、集光レンズ19の光軸に関して鏡面対称に配置されている。
この半導体レーザ装置60において、2つのヒートシンク50,50は、同一構造を有しており、階段状設置面56,56が互いに対向すると共に、この階段状設置面56,56を構成する各素子設置面が対向するよう、集光レンズ19の光軸に関して鏡面対称に配置されている。
2つのヒートシンク50,50においては、各々、階段状設置面56を構成する素子設置面の各々に、1個の半導体レーザアレイが配置されている。そして、半導体レーザアレイ11a~11cは、一方(図7において下方)のヒートシンク50において、速軸方向に階段状に並ぶように積層配置されている。また、半導体レーザアレイ11d~11fは、他方(図7における上方)のヒートシンク50において、速軸方向に階段状に並ぶように積層配置されている。このようにして、半導体レーザアレイ11a~11fは、集光レンズ19の光軸に関して鏡面対称となるように速軸方向にV字状に積層配置されている。
また、各素子設置面において、半導体レーザアレイ11a~11fは、光出射面(一面12)が、上面51aにおける側面52との境界に係る外縁53、またはステップ面における一段下のステップ面との境界に係る外縁54a,54bに沿って伸びるように位置されている。
この図の例において、複数の半導体レーザアレイ11a~11fは、各々、光出射面(一面12)が、上面51aの外縁53上、またはステップ面52a,52bの外縁54a,54b上に位置するように配置されている。また、各半導体レーザアレイ11a~11fに対応するコリメート部材は、対応する半導体レーザアレイ11a~11fが配置されている上面51aまたはステップ面よりも1段下のステップ面の上方に配置されている。
また、各素子設置面において、半導体レーザアレイ11a~11fは、光出射面(一面12)が、上面51aにおける側面52との境界に係る外縁53、またはステップ面における一段下のステップ面との境界に係る外縁54a,54bに沿って伸びるように位置されている。
この図の例において、複数の半導体レーザアレイ11a~11fは、各々、光出射面(一面12)が、上面51aの外縁53上、またはステップ面52a,52bの外縁54a,54b上に位置するように配置されている。また、各半導体レーザアレイ11a~11fに対応するコリメート部材は、対応する半導体レーザアレイ11a~11fが配置されている上面51aまたはステップ面よりも1段下のステップ面の上方に配置されている。
2つのヒートシンク50,50においては、各々、上面51aおよびステップ面52a,52bは、図1の半導体レーザ装置10における素子設置面と同様に、排熱性の観点から、半導体レーザアレイ11a~11fの下面(図7における下面)の全域を接触させることのできるような大きさであることが好ましい。
このように、複数の半導体レーザアレイ11a~11fを集光レンズ19の光軸に関して鏡面対称となるように速軸方向にV字状に積層配置することにより、複数の半導体レーザアレイ11a~11fからのレーザ光の集光レンズ入射光路長、および光入射面19aにおける光入射位置が制御されている。
具体的には、半導体レーザアレイ11a~11cが一方のヒートシンク50の階段状設置面56における素子設置面の各々に配置されることにより、半導体レーザアレイ11aからのレーザ光、半導体レーザアレイ11bからのレーザ光および半導体レーザアレイ11cからのレーザ光は、この順に集光レンズ入射光路長が長くなっている。また、半導体レーザアレイ11d~11fが他方のヒートシンク50の階段状設置面56における素子設置面の各々に配置されることにより、半導体レーザアレイ11dからのレーザ光、半導体レーザアレイ11eからのレーザ光および半導体レーザアレイ11fからのレーザ光は、この順に集光レンズ入射光路長が長くなっている。而して、半導体レーザアレイ11a~11cからのレーザ光、および半導体レーザアレイ11d~11fからのレーザ光は、各々、集光レンズ入射光路長が相対的に異なる状態とされている。
そして、半導体レーザアレイ11a~11cからのレーザ光は、光入射面19aにおいて、半導体レーザアレイ11aからのレーザ光、半導体レーザアレイ11bからのレーザ光および半導体レーザアレイ11cからのレーザ光の順により中心側に入射している。すなわち、集光レンズ入射光路長の最も長い半導体レーザアレイ11aからのレーザ光は、光入射面19aの中心部に最も近傍した位置(中心近傍位置)に入射し、一方、集光レンズ入射光路長の最も短い半導体レーザアレイ11cからのレーザ光は、光入射面19aの中心部から最も離間した位置(周縁側位置)に入射している。また、半導体レーザアレイ11d~11fからのレーザ光は、光入射面19aにおいて、半導体レーザアレイ11dからのレーザ光、半導体レーザアレイ11eからのレーザ光および半導体レーザアレイ11fからのレーザ光の順により中心側に入射している。すなわち、集光レンズ入射光路長の最も長い半導体レーザアレイ11dからのレーザ光は、光入射面19aの中心部に最も近傍した位置(中心近傍位置)に入射し、一方、集光レンズ入射光路長の最も短い半導体レーザアレイ11fからのレーザ光は、光入射面19aの中心部から最も離間した位置(周縁側位置)に入射している。
この図の例において、対向配置された半導体レーザアレイからのレーザ光は、集光レンズ入射光路長が同一である。すなわち、半導体レーザアレイ11aに係る集光レンズ入射光路長と半導体レーザアレイ11dに係る集光レンズ入射光路長とは同一であり、半導体レーザアレイ11bに係る集光レンズ入射光路長と半導体レーザアレイ11eに係る集光レンズ入射光路長とは同一である。また、半導体レーザアレイ11cに係る集光レンズ入射光路長と半導体レーザアレイ11fに係る集光レンズ入射光路長とは同一である。
また、対向配置された半導体レーザアレイからのレーザ光は、光入射面19aにおける入射位置が、当該光入射面19aの中心部に関して対称となっている。そして、光入射面19aに形成される光入射列は、その中心部が光入射面19aの中心部上に位置しており、当該光入射列の中心部、すなわち光入射面19aの中心部に関して、光入射列並列方向および当該光入射列並列方向に垂直な方向に対称な形状である。
具体的には、半導体レーザアレイ11a~11cが一方のヒートシンク50の階段状設置面56における素子設置面の各々に配置されることにより、半導体レーザアレイ11aからのレーザ光、半導体レーザアレイ11bからのレーザ光および半導体レーザアレイ11cからのレーザ光は、この順に集光レンズ入射光路長が長くなっている。また、半導体レーザアレイ11d~11fが他方のヒートシンク50の階段状設置面56における素子設置面の各々に配置されることにより、半導体レーザアレイ11dからのレーザ光、半導体レーザアレイ11eからのレーザ光および半導体レーザアレイ11fからのレーザ光は、この順に集光レンズ入射光路長が長くなっている。而して、半導体レーザアレイ11a~11cからのレーザ光、および半導体レーザアレイ11d~11fからのレーザ光は、各々、集光レンズ入射光路長が相対的に異なる状態とされている。
そして、半導体レーザアレイ11a~11cからのレーザ光は、光入射面19aにおいて、半導体レーザアレイ11aからのレーザ光、半導体レーザアレイ11bからのレーザ光および半導体レーザアレイ11cからのレーザ光の順により中心側に入射している。すなわち、集光レンズ入射光路長の最も長い半導体レーザアレイ11aからのレーザ光は、光入射面19aの中心部に最も近傍した位置(中心近傍位置)に入射し、一方、集光レンズ入射光路長の最も短い半導体レーザアレイ11cからのレーザ光は、光入射面19aの中心部から最も離間した位置(周縁側位置)に入射している。また、半導体レーザアレイ11d~11fからのレーザ光は、光入射面19aにおいて、半導体レーザアレイ11dからのレーザ光、半導体レーザアレイ11eからのレーザ光および半導体レーザアレイ11fからのレーザ光の順により中心側に入射している。すなわち、集光レンズ入射光路長の最も長い半導体レーザアレイ11dからのレーザ光は、光入射面19aの中心部に最も近傍した位置(中心近傍位置)に入射し、一方、集光レンズ入射光路長の最も短い半導体レーザアレイ11fからのレーザ光は、光入射面19aの中心部から最も離間した位置(周縁側位置)に入射している。
この図の例において、対向配置された半導体レーザアレイからのレーザ光は、集光レンズ入射光路長が同一である。すなわち、半導体レーザアレイ11aに係る集光レンズ入射光路長と半導体レーザアレイ11dに係る集光レンズ入射光路長とは同一であり、半導体レーザアレイ11bに係る集光レンズ入射光路長と半導体レーザアレイ11eに係る集光レンズ入射光路長とは同一である。また、半導体レーザアレイ11cに係る集光レンズ入射光路長と半導体レーザアレイ11fに係る集光レンズ入射光路長とは同一である。
また、対向配置された半導体レーザアレイからのレーザ光は、光入射面19aにおける入射位置が、当該光入射面19aの中心部に関して対称となっている。そして、光入射面19aに形成される光入射列は、その中心部が光入射面19aの中心部上に位置しており、当該光入射列の中心部、すなわち光入射面19aの中心部に関して、光入射列並列方向および当該光入射列並列方向に垂直な方向に対称な形状である。
以上の半導体レーザ装置60においては、複数の半導体レーザアレイ11a~11fからのレーザ光は、コリメート部材(遅軸用コリメートレンズ17aおよび速軸用コリメートレンズ17b)によってコリメートされる。その後、このコリメート部材によってコリメートされたレーザ光は、集光レンズ19によって集光されて、光ファイバ14における光入射面(一端面14a)に入射する。このようにして、複数の半導体レーザアレイ11a~11fからのレーザ光が、光ファイバ14の光入射面における有効取り込み領域に入射し、この光ファイバ14によって導光されて光出射面(他端面14b)から外部に出射され、例えばプロジェクター装置の光源光として利用される。
而して、この半導体レーザ装置60においては、複数の半導体レーザアレイ11a~11fが、2つのヒートシンク50,50の表面(階段状設置面56,56)において、速軸方向にV字状に積層配置されており、よって互いに隣接する半導体レーザアレイが大きく離間した状態とされているため、高い排熱性が得られる。その結果、複数の半導体レーザアレイ11a~11fの各々に高い信頼性および高い出力が得られる。
また、複数の半導体レーザアレイ11a~11fからのレーザ光は、集光レンズ19の円形状の光入射面19aにおいて、集光レンズ入射光路長が長いものほど光入射面19aの中心部に接近した位置に入射して光入射列を形成する。すなわち、より遅軸方向光線幅の大きいレーザ光が、光入射面19aの中心部に接近し、より遅軸方向光線幅の小さいレーザ光が光入射面19aの周縁部に接近するように並列に並んで投影されて光入射列を形成している。そして、光入射列は、その全体形状が、光入射面19aより小径の円形状に近似したものとなる。そのため、複数の半導体レーザアレイ11a~11fからのレーザ光をコリメート部材を介して円形状の光入射面19aに高い効率で入射させることができる。また、集光レンズ19から出射されたレーザ光を高い効率で光ファイバ14における円形状の有効取り込み領域に高い効率で入射させることができる。その結果、集光レンズ19および光ファイバ14の各々において蹴られ現象の発生が抑制され、よってファイバ結合効率が大きくなる。
従って、半導体レーザ装置60によれば、高い光の出力が得られる。
また、複数の半導体レーザアレイ11a~11fからのレーザ光は、集光レンズ19の円形状の光入射面19aにおいて、集光レンズ入射光路長が長いものほど光入射面19aの中心部に接近した位置に入射して光入射列を形成する。すなわち、より遅軸方向光線幅の大きいレーザ光が、光入射面19aの中心部に接近し、より遅軸方向光線幅の小さいレーザ光が光入射面19aの周縁部に接近するように並列に並んで投影されて光入射列を形成している。そして、光入射列は、その全体形状が、光入射面19aより小径の円形状に近似したものとなる。そのため、複数の半導体レーザアレイ11a~11fからのレーザ光をコリメート部材を介して円形状の光入射面19aに高い効率で入射させることができる。また、集光レンズ19から出射されたレーザ光を高い効率で光ファイバ14における円形状の有効取り込み領域に高い効率で入射させることができる。その結果、集光レンズ19および光ファイバ14の各々において蹴られ現象の発生が抑制され、よってファイバ結合効率が大きくなる。
従って、半導体レーザ装置60によれば、高い光の出力が得られる。
また、半導体レーザ装置60においては、光入射面19aに形成される光入射列が、当該光入射列の中心部に関して光入射領域が並ぶ方向および当該光入射領域が並ぶ方向に垂直な方向に対称な形状であることから、光入射列の全体がより円形状に近似した形状となる。そのため、集光レンズ19から出射されて光ファイバ14における有効取り込み領域に入射するレーザ光が均一性を有するものとなる。その結果、光ファイバ14の光出射面から出射されるレーザ光に高い均一性が得られる。
本発明の半導体レーザ装置は、上記の実施の形態に限定されず、複数の半導体レーザアレイは、そのうちの少なくとも1個の半導体レーザアレイからのレーザ光の集光レンズ入射光路長が相対的に異なっており、最も長い集光レンズ入射光路長に係る半導体レーザアレイからのレーザ光が、集光レンズの光入射面において形成される光入射列の最外側以外の位置に入射される構成のものであればよい。
例えば、第1の実施形態および第3の実施形態においては、最も長い集光レンズ入射光路長に係る半導体レーザアレイからのレーザ光が、集光レンズにおける光入射列の最外側以外の位置に入射されていればよい。よって、その他の半導体レーザアレイからのレーザ光が当該光入射列のいずれの位置に入射されていてもよい。
また、第2の実施形態においては、最も長い集光レンズ入射光路長に係る半導体レーザアレイからのレーザ光が、他の半導体レーザアレイのうちの少なくとも1個の半導体レーザアレイからのレーザ光に比して、集光レンズにおける光入射列の中央側の位置に入射されていればよい。よって、最も長い集光レンズ入射光路長に係る半導体レーザアレイからのレーザ光に比して、集光レンズにおける光入射列の中央側の位置に入射されるレーザ光があってもよい。
更に、半導体レーザ装置は、第1の実施形態、第2の実施形態および第3の実施形態に限定されず、集光レンズの光入射面に形成される光入射列、あるいは複数の半導体レーザアレイからのレーザ光の集光レンズ入射光路長が、従来公知の種々光学部材によって制御されてなる構成を有するものであってもよい。
例えば、第1の実施形態および第3の実施形態においては、最も長い集光レンズ入射光路長に係る半導体レーザアレイからのレーザ光が、集光レンズにおける光入射列の最外側以外の位置に入射されていればよい。よって、その他の半導体レーザアレイからのレーザ光が当該光入射列のいずれの位置に入射されていてもよい。
また、第2の実施形態においては、最も長い集光レンズ入射光路長に係る半導体レーザアレイからのレーザ光が、他の半導体レーザアレイのうちの少なくとも1個の半導体レーザアレイからのレーザ光に比して、集光レンズにおける光入射列の中央側の位置に入射されていればよい。よって、最も長い集光レンズ入射光路長に係る半導体レーザアレイからのレーザ光に比して、集光レンズにおける光入射列の中央側の位置に入射されるレーザ光があってもよい。
更に、半導体レーザ装置は、第1の実施形態、第2の実施形態および第3の実施形態に限定されず、集光レンズの光入射面に形成される光入射列、あるいは複数の半導体レーザアレイからのレーザ光の集光レンズ入射光路長が、従来公知の種々光学部材によって制御されてなる構成を有するものであってもよい。
以下、本発明の作用効果を確認するために行った実験例について説明する。
〔実験例1〕
先ず、図1の構成に基づいて、ヒートシンクの表面に対向するように形成された2つの階段状設置面における素子設置面の各々に、同一の規格を有する8個の半導体レーザアレイが配置されてなる構成の半導体レーザ装置(以下、「半導体レーザ装置(1)」ともいう。)を作製した。
半導体レーザ装置(1)において、2つの階段状設置面の各々には4個の半導体レーザアレイを等間隔で配置した。これらの4個の半導体レーザアレイの配置間隔は、半導体レーザアレイの光軸方向の間隔が15mmであって、当該光軸に垂直な方向の間隔が1mmである。また、最も短い集光レンズ入射光路長は150mmである。
8個の半導体レーザアレイは、半導体レーザアレイ長さ(複数の発光部が並ぶ方向の長さ)が4mmのものである。集光レンズは、焦点距離が20mmのものである。光ファイバは、コア径が0.8mmであって開口数(NA)が0.22のものである。
また、この半導体レーザ装置(1)において、コリメート部材から出射されるレーザ光は、波長640nmであり、またその光線サイズは、速軸方向の長さ(速軸方向の光線幅)が0.8mmであって遅軸方向の長さ(遅軸方向の光線幅)が4mmであり、速軸方向の発散角半値幅が2mradであって遅軸方向の発散角半値幅が50mradである。
先ず、図1の構成に基づいて、ヒートシンクの表面に対向するように形成された2つの階段状設置面における素子設置面の各々に、同一の規格を有する8個の半導体レーザアレイが配置されてなる構成の半導体レーザ装置(以下、「半導体レーザ装置(1)」ともいう。)を作製した。
半導体レーザ装置(1)において、2つの階段状設置面の各々には4個の半導体レーザアレイを等間隔で配置した。これらの4個の半導体レーザアレイの配置間隔は、半導体レーザアレイの光軸方向の間隔が15mmであって、当該光軸に垂直な方向の間隔が1mmである。また、最も短い集光レンズ入射光路長は150mmである。
8個の半導体レーザアレイは、半導体レーザアレイ長さ(複数の発光部が並ぶ方向の長さ)が4mmのものである。集光レンズは、焦点距離が20mmのものである。光ファイバは、コア径が0.8mmであって開口数(NA)が0.22のものである。
また、この半導体レーザ装置(1)において、コリメート部材から出射されるレーザ光は、波長640nmであり、またその光線サイズは、速軸方向の長さ(速軸方向の光線幅)が0.8mmであって遅軸方向の長さ(遅軸方向の光線幅)が4mmであり、速軸方向の発散角半値幅が2mradであって遅軸方向の発散角半値幅が50mradである。
この半導体レーザ装置(1)について、ファイバ結合効率を確認したところ、98%であった。
次いで、図9の構成に基づいて、同一の規格を有する8個の半導体レーザアレイが、ヒートシンクの表面に形成された階段状設置面における素子設置面の各々に配置されてなる構成の半導体レーザ装置(以下、「比較用半導体レーザ装置(1)」ともいう。)を作製した。
比較用半導体レーザ装置(1)は、ヒートシンクが1つの階段状設置面を有するものであり、この1つの階段状設置面における素子設置面の各々に8個の半導体レーザアレイが積層配置されていること以外は、半導体レーザ装置(1)と同様の構成を有するものである。
この比較用半導体レーザ装置(1)について、ファイバ結合効率を確認したところ、92%であった。
比較用半導体レーザ装置(1)は、ヒートシンクが1つの階段状設置面を有するものであり、この1つの階段状設置面における素子設置面の各々に8個の半導体レーザアレイが積層配置されていること以外は、半導体レーザ装置(1)と同様の構成を有するものである。
この比較用半導体レーザ装置(1)について、ファイバ結合効率を確認したところ、92%であった。
10 半導体レーザ装置
11,11a~11f 半導体レーザアレイ
12 一面
13 発光部
13a 中心部
13b 端部
14 光ファイバ
14a 一端面
14b 他端面
15 光ファイバ保持部材
16 コリメートレンズアレイ
16a レンズセル
17a 遅軸用コリメートレンズアレイ
17b 速軸用コリメートレンズアレイ
18 折り返しミラー
19 集光レンズ
19a 光入射面
20 ヒートシンク
21 溝
21a,21b 周縁面
22a,22b 外縁
23 側面
23a,23b ステップ面
24 側面
24a,24b ステップ面
25a~25d 外縁
26 底面
27 第1階段状設置面
28 第2階段状設置面
31 光入射列
31a~31f 光入射領域
40 半導体レーザ装置
42 第1の折り返しミラー
43 第2の折り返しミラー
50 ヒートシンク
51a 上面
51b 下面
52 側面
52a~52c ステップ面
53,54a,54b 外縁
56 階段状設置面
57 側面
60 半導体レーザ装置
80 ヒートシンク
11,11a~11f 半導体レーザアレイ
12 一面
13 発光部
13a 中心部
13b 端部
14 光ファイバ
14a 一端面
14b 他端面
15 光ファイバ保持部材
16 コリメートレンズアレイ
16a レンズセル
17a 遅軸用コリメートレンズアレイ
17b 速軸用コリメートレンズアレイ
18 折り返しミラー
19 集光レンズ
19a 光入射面
20 ヒートシンク
21 溝
21a,21b 周縁面
22a,22b 外縁
23 側面
23a,23b ステップ面
24 側面
24a,24b ステップ面
25a~25d 外縁
26 底面
27 第1階段状設置面
28 第2階段状設置面
31 光入射列
31a~31f 光入射領域
40 半導体レーザ装置
42 第1の折り返しミラー
43 第2の折り返しミラー
50 ヒートシンク
51a 上面
51b 下面
52 側面
52a~52c ステップ面
53,54a,54b 外縁
56 階段状設置面
57 側面
60 半導体レーザ装置
80 ヒートシンク
Claims (6)
- 直線状に並ぶ複数の発光部を有する半導体レーザアレイを複数備え、当該複数の半導体レーザアレイからの光がコリメート部材を介して入射される集光レンズと、当該集光レンズからの光が略円形状の端面よりなる光入射面から入射される光ファイバとが設けられてなる半導体レーザ装置において、
前記集光レンズには、当該集光レンズの光入射面に、前記複数の半導体レーザアレイからの光の各々が並列に並んで投影されて光入射列が形成され、
前記複数の半導体レーザアレイのうちの少なくとも1個の半導体レーザアレイは、当該半導体レーザアレイからの光が前記集光レンズに至るまでの光路の長さである集光レンズ入射光路長が相対的に異なり、最も長い集光レンズ入射光路長に係る半導体レーザアレイからの光が、前記集光レンズの光入射面における光入射列の最外側以外の位置に入射されることを特徴とする半導体レーザ装置。 - 前記集光レンズ入射光路長が互いに異なる半導体レーザアレイのうちの、長い集光レンズ入射光路長に係る半導体レーザアレイからの光が、短い集光レンズ入射光路長に係る半導体レーザアレイからの光に比して、前記集光レンズの光入射面における光入射列の中央側に入射されることを特徴とする請求項1に記載の半導体レーザ装置。
- 前記半導体レーザアレイを3個以上備えており、これらの3個以上の半導体レーザアレイからの光の集光レンズ入射光路長が異なり、最も長い集光レンズ入射光路長に係る半導体レーザアレイからの光が、他の半導体レーザアレイのうちの少なくとも1個の半導体レーザアレイからの光に比して、前記集光レンズの光入射面における光入射列の中央側に入射されることを特徴とする請求項1に記載の半導体レーザ装置。
- 前記複数の半導体レーザアレイが、複数の素子設置面を階段状に有する階段状設置面における当該複数の素子設置面の各々に設置されることにより、前記集光レンズ入射光路長が互いに異なる状態とされていることを特徴とする請求項1~請求項3のいずれかに記載の半導体レーザ装置。
- 前記階段状設置面は、ヒートシンクの表面により形成されていることを特徴とする請求項4に記載の半導体レーザ装置。
- 対向配置された2つの階段状設置面における複数の素子設置面の各々に前記半導体レーザアレイが設置され、この2つの階段状設置面の間に折り返しミラーが配置されており、当該折り返しミラーによって折り返された複数の半導体レーザアレイからの光が前記集光レンズに入射されることを特徴とする請求項4または請求項5に記載の半導体レーザ装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480006900.5A CN104956555B (zh) | 2013-03-13 | 2014-03-12 | 半导体激光器装置 |
US14/852,141 US9484710B2 (en) | 2013-03-13 | 2015-09-11 | Semiconductor laser device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-049772 | 2013-03-13 | ||
JP2013049772A JP5920254B2 (ja) | 2013-03-13 | 2013-03-13 | 半導体レーザ装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/852,141 Continuation US9484710B2 (en) | 2013-03-13 | 2015-09-11 | Semiconductor laser device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014142147A1 true WO2014142147A1 (ja) | 2014-09-18 |
Family
ID=51536798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/056418 WO2014142147A1 (ja) | 2013-03-13 | 2014-03-12 | 半導体レーザ装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9484710B2 (ja) |
JP (1) | JP5920254B2 (ja) |
CN (1) | CN104956555B (ja) |
WO (1) | WO2014142147A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105406353A (zh) * | 2015-12-11 | 2016-03-16 | 长春理工大学 | 基于光栅等腰三棱镜的多单管合束半导体激光器 |
CN106443906A (zh) * | 2016-09-22 | 2017-02-22 | 苏州长光华芯光电技术有限公司 | 基于宏通道冷却的激光列阵光纤耦合装置及其耦合方法 |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6189638B2 (ja) * | 2013-05-24 | 2017-08-30 | シャープ株式会社 | 光学系 |
KR101611748B1 (ko) | 2014-11-05 | 2016-04-11 | 한국광기술원 | 반도체 광원모듈 |
US10355441B2 (en) | 2015-05-27 | 2019-07-16 | Mitsubishi Electric Corporation | Laser module and laser processing apparatus |
CN105207058A (zh) * | 2015-10-10 | 2015-12-30 | 杭州虹视科技有限公司 | 白光激光模组、激光显示系统和激光投影系统 |
CN105207054B (zh) * | 2015-10-14 | 2018-01-02 | 苏州大学 | 多单管半导体激光器光纤耦合模块 |
CN105449523A (zh) * | 2015-12-21 | 2016-03-30 | 长春理工大学 | 多对具有各自分光镜阶梯排布单管合束半导体激光器 |
CN105449513A (zh) * | 2015-12-21 | 2016-03-30 | 长春理工大学 | 多对各具有分光镜组阶梯排布单管合束半导体激光器 |
CN105449524A (zh) * | 2015-12-21 | 2016-03-30 | 长春理工大学 | 多对共用多组分光镜平面排布单管合束半导体激光器 |
WO2017122792A1 (ja) * | 2016-01-14 | 2017-07-20 | 古河電気工業株式会社 | 半導体レーザモジュール、半導体レーザモジュール製造方法 |
CN109154704A (zh) * | 2016-05-23 | 2019-01-04 | 奥林巴斯株式会社 | 光信号发送组件 |
IT201600108735A1 (it) * | 2016-10-27 | 2018-04-27 | Opi Photonics S R L | Modulo ottico multiemettitore con dissipazione termica migliorata |
JP2019015769A (ja) * | 2017-07-04 | 2019-01-31 | 株式会社島津製作所 | 光結合モジュール |
WO2020017214A1 (ja) * | 2018-07-20 | 2020-01-23 | パナソニック株式会社 | 発光装置、光学装置及び波長合成方法 |
JP7241168B2 (ja) * | 2019-04-04 | 2023-03-16 | 株式会社アマダ | レーザダイオード装置 |
DE102019110189A1 (de) * | 2019-04-17 | 2020-10-22 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Halbleiterlaser und materialbearbeitungsverfahren mit einem halbleiterlaser |
CN112636160B (zh) * | 2019-09-20 | 2022-04-26 | 青岛海信激光显示股份有限公司 | 激光器 |
JP2021132150A (ja) * | 2020-02-20 | 2021-09-09 | 三菱電機株式会社 | 光モジュール及び光モジュールの製造方法 |
CN111969416A (zh) * | 2020-08-28 | 2020-11-20 | 南京镭芯光电有限公司 | 半导体激光器装置 |
CN112952549B (zh) * | 2021-03-17 | 2022-11-04 | 深圳市星汉激光科技股份有限公司 | 一种半导体激光耦合系统 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5418880A (en) * | 1994-07-29 | 1995-05-23 | Polaroid Corporation | High-power optical fiber amplifier or laser device |
JP2000251308A (ja) * | 1999-02-24 | 2000-09-14 | Sony Corp | 集積光学素子及び光学ヘッド並びに記録及び/又は再生装置 |
JP2003103389A (ja) * | 2001-09-27 | 2003-04-08 | Toyoda Mach Works Ltd | 半導体レーザ集光装置 |
JP2004179607A (ja) * | 2002-09-30 | 2004-06-24 | Fuji Photo Film Co Ltd | レーザー装置 |
JP2005300954A (ja) * | 2004-04-13 | 2005-10-27 | Ricoh Co Ltd | 双方向光通信装置 |
JP2007286481A (ja) * | 2006-04-19 | 2007-11-01 | Jtekt Corp | 分割合波ユニット及び半導体レーザ集光装置 |
JP2009204871A (ja) * | 2008-02-27 | 2009-09-10 | Sanyo Electric Co Ltd | 照明装置および投写型映像表示装置 |
US20120019909A1 (en) * | 2009-03-26 | 2012-01-26 | Ding-Rong Qian | Beam Shaping Device for Focusing Light Beams from Semiconductor Laser |
JP2012118129A (ja) * | 2010-11-29 | 2012-06-21 | Sanyo Electric Co Ltd | 照明装置及び投写型映像表示装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101411346B1 (ko) * | 2004-07-14 | 2014-06-25 | 아사히 가세이 이-매터리얼즈 가부시키가이샤 | 감광성 조성물, 패턴형성재료, 감광성 적층체, 및 패턴형성장치 및 패턴형성방법 |
EP2003484B1 (en) * | 2007-06-12 | 2018-04-11 | Lumentum Operations LLC | A Light Source |
JP5479924B2 (ja) * | 2010-01-27 | 2014-04-23 | 浜松ホトニクス株式会社 | レーザ加工方法 |
CN101833150B (zh) * | 2010-05-18 | 2011-06-29 | 中国科学院长春光学精密机械与物理研究所 | 一种大功率半导体激光器光纤耦合模块 |
CN202472125U (zh) * | 2011-11-22 | 2012-10-03 | 北京凯普林光电科技有限公司 | 一种将多路分立半导体激光耦合入单根光纤的耦合系统 |
-
2013
- 2013-03-13 JP JP2013049772A patent/JP5920254B2/ja active Active
-
2014
- 2014-03-12 WO PCT/JP2014/056418 patent/WO2014142147A1/ja active Application Filing
- 2014-03-12 CN CN201480006900.5A patent/CN104956555B/zh not_active Expired - Fee Related
-
2015
- 2015-09-11 US US14/852,141 patent/US9484710B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5418880A (en) * | 1994-07-29 | 1995-05-23 | Polaroid Corporation | High-power optical fiber amplifier or laser device |
JP2000251308A (ja) * | 1999-02-24 | 2000-09-14 | Sony Corp | 集積光学素子及び光学ヘッド並びに記録及び/又は再生装置 |
JP2003103389A (ja) * | 2001-09-27 | 2003-04-08 | Toyoda Mach Works Ltd | 半導体レーザ集光装置 |
JP2004179607A (ja) * | 2002-09-30 | 2004-06-24 | Fuji Photo Film Co Ltd | レーザー装置 |
JP2005300954A (ja) * | 2004-04-13 | 2005-10-27 | Ricoh Co Ltd | 双方向光通信装置 |
JP2007286481A (ja) * | 2006-04-19 | 2007-11-01 | Jtekt Corp | 分割合波ユニット及び半導体レーザ集光装置 |
JP2009204871A (ja) * | 2008-02-27 | 2009-09-10 | Sanyo Electric Co Ltd | 照明装置および投写型映像表示装置 |
US20120019909A1 (en) * | 2009-03-26 | 2012-01-26 | Ding-Rong Qian | Beam Shaping Device for Focusing Light Beams from Semiconductor Laser |
JP2012118129A (ja) * | 2010-11-29 | 2012-06-21 | Sanyo Electric Co Ltd | 照明装置及び投写型映像表示装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105406353A (zh) * | 2015-12-11 | 2016-03-16 | 长春理工大学 | 基于光栅等腰三棱镜的多单管合束半导体激光器 |
CN106443906A (zh) * | 2016-09-22 | 2017-02-22 | 苏州长光华芯光电技术有限公司 | 基于宏通道冷却的激光列阵光纤耦合装置及其耦合方法 |
Also Published As
Publication number | Publication date |
---|---|
US9484710B2 (en) | 2016-11-01 |
JP2014175626A (ja) | 2014-09-22 |
CN104956555A (zh) | 2015-09-30 |
JP5920254B2 (ja) | 2016-05-18 |
US20150380894A1 (en) | 2015-12-31 |
CN104956555B (zh) | 2017-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5920254B2 (ja) | 半導体レーザ装置 | |
JP6036479B2 (ja) | 半導体レーザ装置 | |
US7668214B2 (en) | Light source | |
JP6935337B2 (ja) | 半導体レーザモジュール、半導体レーザモジュール製造方法 | |
JP6157194B2 (ja) | レーザ装置および光ビームの波長結合方法 | |
US10310280B2 (en) | Offset laser array with beam combining optical element | |
EP3147701B1 (en) | Light source module and projection device | |
JP6393466B2 (ja) | 発光装置 | |
EP3018776B1 (en) | Laser device | |
JP2008501144A (ja) | 光ファイバへの2次元のレーザアレイスタックの出力の最適な整合 | |
WO2018037663A1 (ja) | レーザモジュール | |
JP2011076092A (ja) | レーザビームを形成するための装置 | |
JP2013214651A (ja) | 半導体レーザ光学装置 | |
JP2011107723A5 (ja) | ||
US10359584B2 (en) | Light source device | |
US20140049830A1 (en) | Arrangement For Shaping Laser Radiation | |
JPWO2015145608A1 (ja) | レーザ装置 | |
JP2015173194A (ja) | 半導体レーザ装置 | |
JP7069677B2 (ja) | 発光装置 | |
JP6662460B2 (ja) | 発光装置 | |
JP2016092319A (ja) | 面発光型光源およびレーザー装置 | |
JP2014120621A (ja) | 半導体レーザ装置 | |
US20170292679A1 (en) | Light-emitting device | |
US9857673B2 (en) | Projector | |
JP2020194799A5 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14765413 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14765413 Country of ref document: EP Kind code of ref document: A1 |