WO2014141992A1 - 酸化チタン分散液、酸化チタン塗布液、及び光触媒塗膜 - Google Patents

酸化チタン分散液、酸化チタン塗布液、及び光触媒塗膜 Download PDF

Info

Publication number
WO2014141992A1
WO2014141992A1 PCT/JP2014/055741 JP2014055741W WO2014141992A1 WO 2014141992 A1 WO2014141992 A1 WO 2014141992A1 JP 2014055741 W JP2014055741 W JP 2014055741W WO 2014141992 A1 WO2014141992 A1 WO 2014141992A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
oxide particles
transition metal
supported
metal compound
Prior art date
Application number
PCT/JP2014/055741
Other languages
English (en)
French (fr)
Inventor
小嶋良太
福井直之
渡邊仁志
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to KR1020157023900A priority Critical patent/KR102180235B1/ko
Priority to JP2015505431A priority patent/JP6231550B2/ja
Priority to EP14764090.8A priority patent/EP2974793A4/en
Priority to US14/769,211 priority patent/US9440221B2/en
Priority to CN201480015735.XA priority patent/CN105073258A/zh
Publication of WO2014141992A1 publication Critical patent/WO2014141992A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/45Anti-settling agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/306Organic sulfur compounds, e.g. mercaptans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/90Odorous compounds not provided for in groups B01D2257/00 - B01D2257/708
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/91Bacteria; Microorganisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4508Gas separation or purification devices adapted for specific applications for cleaning air in buildings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4591Construction elements containing cleaning material, e.g. catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/804UV light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g

Definitions

  • the present invention relates to a titanium oxide dispersion liquid for forming a coating film having photocatalytic activity, a titanium oxide coating liquid containing the titanium oxide dispersion liquid, a photocatalytic coating film formed using the titanium oxide coating liquid, and a photocatalyst coating.
  • a titanium oxide dispersion liquid for forming a coating film having photocatalytic activity
  • a titanium oxide coating liquid containing the titanium oxide dispersion liquid a photocatalytic coating film formed using the titanium oxide coating liquid
  • a photocatalyst coating is about the body.
  • titanium oxide particles exhibit a strong oxidizing action when they absorb ultraviolet rays, they have recently been used as photocatalysts in various applications (for example, (1) to (5) below).
  • Air purification by decomposing environmental pollutants such as nitrogen oxides (NOx) and sulfur oxides (SOx) emitted from automobile exhaust gas, etc.
  • Deodorization by decomposing the malodorous substances of (3) Purified water by decomposing organochlorine compounds such as tetrachloroethylene and trihalomethane (4) Sterilization, and further by decomposing the carcass (5) By decomposing oil Antifouling to prevent dirt caused by sand and dirt adhering to oil
  • the titanium oxide photocatalyst may be used in a state of being suspended in a solution or in a state of being supported on a substrate.
  • the former is more active because the size of the surface area is proportional to the photocatalytic ability, but the latter is often adopted from the viewpoint of practicality.
  • a method of mainly adhering a highly dispersed titanium oxide photocatalyst using a dispersant to a substrate using a binder component is employed.
  • dispersants use organic polymer compounds such as polycarboxylates, naphthalenesulfonic acid formalin condensate salts, polyethylene glycol, and inorganic compounds such as hexametaphosphate, pyrophosphate, phosphate, oxalate, etc.
  • organic polymer compounds such as polycarboxylates, naphthalenesulfonic acid formalin condensate salts, polyethylene glycol, and inorganic compounds such as hexametaphosphate, pyrophosphate, phosphate, oxalate, etc.
  • Patent Documents 1 to 3 When a dispersant is used, the titanium oxide photocatalyst is highly dispersed, and the specific surface area is increased to improve the photocatalytic performance.
  • the surface of the titanium oxide photocatalyst is Oxidation acts preferentially on the dispersant in the covering portion, and the apparent photocatalytic effect is reduced.
  • the original photocatalytic effect cannot be exhibited.
  • the initial dispersibility is excellent, but it is difficult to maintain a high dispersion state for a long time, and the dispersion stability is low.
  • the dispersant present on the surface of the titanium oxide photocatalyst is preferentially decomposed, so an amount of the organic polymer compound sufficient to highly disperse the titanium oxide photocatalyst is used. Then, it was a problem that it took a long time to develop the original photocatalytic effect. Further, when the molecular weight of the organic polymer compound is reduced, it is possible to shorten the waiting time until the photocatalytic activity is exhibited, but it is a problem that it is difficult to obtain the effect as a dispersant.
  • Patent Document 4 a titanium peroxide and a polysaccharide such as chitosan or cellulose are used as the binder component.
  • the polysaccharides such as chitosan and cellulose are insoluble in water, it is necessary to dissolve in a large amount of hydrogen peroxide at a high temperature when preparing the binder solution, the coating solution becomes acidic, It was a problem to be limited.
  • the present inventors have formulated a transition metal compound-supported titanium oxide particle with a solvent and a specific dispersant. Dispersion of titanium oxide that can easily form a photocatalyst coating film that is excellent in dispersibility and dispersion stability, and that exhibits excellent photocatalytic activity quickly by coating and drying in the vicinity of a neutral region. It has been found that a liquid can be obtained. The present invention has been completed based on these findings.
  • the present invention provides a titanium oxide dispersion containing transition metal compound-supported titanium oxide particles (A), a dispersant (B) made of polyacrylic acid or a salt thereof, and a solvent (C).
  • the present invention also provides the titanium oxide dispersion, wherein the polyacrylic acid or a salt thereof in the dispersant (B) is a polyacrylic acid alkali metal salt.
  • the present invention also provides the above-mentioned titanium oxide dispersion in which the weight average molecular weight of polyacrylic acid or a salt thereof in the dispersant (B) is in the range of 1,000 to 100,000.
  • the present invention also provides the above-described titanium oxide dispersion in which the transition metal compound-supported titanium oxide particles (A) are iron compound-supported titanium oxide particles.
  • the present invention also provides the above-described titanium oxide dispersion in which the transition metal compound-supported titanium oxide particles (A) are particles that support the transition metal compound on the oxidation reaction surface of the titanium oxide particles.
  • the present invention also provides the above-mentioned titanium oxide dispersion, wherein the titanium oxide particles in the transition metal compound-supported titanium oxide particles (A) are rutile type titanium oxide particles.
  • the present invention also provides a titanium oxide coating liquid containing the above titanium oxide dispersion and at least one binder component (D) selected from titanium peroxide, a silicon compound, and a fluorine resin.
  • D binder component selected from titanium peroxide, a silicon compound, and a fluorine resin.
  • the present invention also provides the above-described titanium oxide coating solution in which the binder component (D) contains at least titanium peroxide.
  • the present invention also provides a photocatalytic coating film formed using the titanium oxide coating solution.
  • the present invention also provides a photocatalyst-coated body in which the photocatalyst coating film is provided on the surface of a substrate.
  • the present invention relates to the following.
  • the titanium oxide dispersion according to (1) or (2), wherein the polyacrylic acid or a salt thereof in the dispersant (B) has a weight average molecular weight in the range of 1,000 to 100,000.
  • the transition metal compound-supported titanium oxide particles (A) have a (110) (111) plane, and the rutile titanium oxide in which an iron compound is supported on the (111) plane, and / or (110)
  • the titanium oxide according to any one of (1) to (6) which is a rutile type titanium oxide particle having a (111) (001) plane and having an iron compound supported on the (001) (111) plane Dispersion.
  • (11) A photocatalyst-coated body in which the photocatalyst coating film according to (10) is provided on the surface of a substrate.
  • the titanium oxide dispersion of the present invention uses polyacrylic acid or a salt thereof as a dispersant, it can be easily dissolved in a near-neutral region near room temperature without being dissolved in a large amount of hydrogen peroxide at a high temperature. It can be prepared, has excellent dispersion stability, and can maintain a highly dispersed state over a long period of time. Further, the standby time until the titanium oxide photocatalyst decomposes the dispersant and the original photocatalytic performance is exhibited can be shortened, and the immediate effect of the photocatalytic performance can be ensured.
  • the titanium oxide coating liquid of this invention contains the said titanium oxide dispersion liquid, it can prepare in the area
  • transition metal compound-supported titanium oxide particles (A) are used as a photocatalyst.
  • the photocatalytic coating film formed using the titanium oxide coating solution of the present invention has responsiveness over a wide wavelength range from the ultraviolet region to the visible light region, and is usually used for sunlight, incandescent lamps, fluorescent lamps and the like. High catalytic activity even under light source in living space.
  • transition metal compound-supported titanium oxide particles (A) examples include rutile type, anatase type, brookite type titanium oxide particles, and the like.
  • rutile-type titanium oxide particles are particularly preferable in that they have a shape with a large aspect ratio.
  • the transition metal compound may be supported on the titanium oxide particles in any state such as a transition metal ion, a transition metal simple substance, a transition metal salt, a transition metal oxide, a transition metal hydroxide, or a transition metal complex.
  • transition metal compound those having an absorption spectrum in the visible light region and capable of injecting electrons into the conduction band in an excited state are preferable.
  • compounds of Group 3 to Group 11 elements of the periodic table, especially Table 8 to Group 11 element compounds are preferred, and iron compounds [especially trivalent iron compounds] are particularly preferred.
  • trivalent iron compounds are easy to adsorb and divalent iron compounds are difficult to adsorb. This is because a metal compound can be supported.
  • “supporting a transition metal compound in a surface selective manner” means an amount exceeding 50% (preferably 70% or more, particularly preferably) of the transition metal compound supported on titanium oxide particles having an exposed crystal face. 80% or more) is supported on a specific surface (for example, one specific surface or two surfaces) instead of all of the two or more exposed crystal surfaces.
  • the loading of the transition metal compound can be determined by confirming a signal derived from the transition metal compound on the exposed crystal plane using a transmission electron microscope (TEM) or an energy dispersive X-ray fluorescence spectrometer (EDX).
  • the amount of the transition metal compound supported is, for example, 50 ppm or more, preferably 100 ppm or more, more preferably 200 ppm or more, particularly preferably 300 ppm or more, and most preferably 500 ppm or more, based on the weight of the titanium oxide particles.
  • the upper limit of the loading amount of the transition metal compound is, for example, about 5000 ppm, preferably 3000 ppm, particularly preferably 2000 ppm.
  • the transition metal compound is selectively supported on one of the oxidation reaction surface or the reduction reaction surface (especially the oxidation reaction surface) of the exposed crystal surface of the titanium oxide particles.
  • the separation of excited electrons and holes can be improved, the recombination of excited electrons and holes and the progress of reverse reaction can be suppressed to a very low level, and higher photocatalytic activity can be exhibited. It is preferable in that it can be performed.
  • examples of the main exposed crystal plane of the rutile type titanium oxide particles include (110) (001) (111) (011) planes.
  • examples of rutile type titanium oxide particles include rutile type titanium oxide particles having a (110) (111) plane, rutile type titanium oxide particles having a (110) (011) plane, and (001) (110) (111) plane.
  • rutile-type titanium oxide particles having in particular, the reaction fields of the oxidation reaction and the reduction reaction can be separated more spatially, and the recombination of excited electrons and holes and the progress of the reverse reaction can be suppressed (110 )
  • Rutile type titanium oxide particles having a (111) plane and rutile type titanium oxide particles having a (001) (110) (111) plane are preferred.
  • the (111) plane and the (001) plane are oxidation reaction planes, and the (110) plane is a reduction reaction plane.
  • transition metal compound-supported titanium oxide particles in the present invention among others, rutile-type titanium oxide having (110) (111) faces and iron compounds supported on the (111) faces, and / or ( The rutile-type titanium oxide particles having (110) (111) (001) planes and an iron compound supported on the (001) (111) planes are preferable.
  • titanium oxide particles those produced by a known method can be used.
  • rutile-type titanium oxide particles having (110) (111) faces and rutile-type titanium oxide particles having (001) (110) (111) faces include, for example, a titanium compound and an aqueous medium. It can be synthesized by hydrothermal treatment [for example, 100 to 200 ° C., 3 to 48 hours (preferably 6 to 12 hours)] (for example, water or a mixture of water and a water-soluble organic solvent).
  • titanium compound examples include a trivalent titanium compound and a tetravalent titanium compound.
  • examples of the trivalent titanium compound include titanium trihalides such as titanium trichloride and titanium tribromide.
  • titanium trichloride TiCl 3
  • TiCl 3 titanium trichloride
  • Examples of the tetravalent titanium compound include a compound represented by the following formula (1).
  • Ti (OR) t X 4-t (1) (Wherein R represents a hydrocarbon group, X represents a halogen atom, t represents an integer of 0 to 3)
  • hydrocarbon group for R examples include C 1-4 aliphatic hydrocarbon groups such as methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, and the like.
  • halogen atom in X examples include chlorine, bromine and iodine atoms.
  • titanium tetrahalides such as TiCl 4 , TiBr 4 , and TiI 4 ; Ti (OCH 3 ) Cl 3 , Ti (OC 2 H 5 ) Cl 3 , and Ti (OC 4).
  • titanium tetravalent titanium compound in the present invention titanium tetrahalide is preferable, and titanium tetrachloride (TiCl 4 ) is particularly preferable because it is inexpensive and easily available.
  • the reaction temperature is 110 to 220 ° C. (preferably 130 to 220 ° C.), and the reaction temperature is higher than the saturated vapor pressure for 2 hours in an aqueous medium.
  • Rutile-type titanium oxide particles having (110) (111) faces and / or rutile-type titanium oxide particles having (001) (110) (111) faces by hydrothermal treatment as described above (preferably 5 to 15 hours) can be synthesized.
  • the rutile type titanium oxide having (001) (110) (111) plane is obtained by converting rutile type titanium oxide particles having (110) (111) plane into sulfuric acid (preferably sulfuric acid having a high concentration of 50% by weight or more, particularly It is also possible to synthesize by eroding (dissolving) the ridges or apexes of the titanium oxide particles by adding them into concentrated sulfuric acid (preferably concentrated sulfuric acid) and stirring them under heating.
  • sulfuric acid preferably sulfuric acid having a high concentration of 50% by weight or more
  • the titanium oxide particles obtained by the above method can be separated and purified by separation means such as filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography and the like, or separation means combining these.
  • the specific surface area of the titanium oxide particles is, for example, 10 m 2 / g or more, preferably 10 to 200 m 2 / g, more preferably 10 to 150 m 2 / g, still more preferably 30 to 150 m 2 / g, particularly preferably 50 to 100 m 2 / g, most preferably 60 to 100 m 2 / g.
  • the specific surface area of the titanium oxide particles is less than the above range, the ability to adsorb the reactant tends to decrease and the photocatalytic ability tends to decrease, while when the specific surface area of the titanium oxide particles exceeds the above range, There is a tendency that the separability of holes is lowered and the photocatalytic ability is lowered.
  • the shape of the titanium oxide particles is not particularly limited, but is preferably rod-shaped or needle-shaped, and the average aspect ratio (major axis / minor axis) of the titanium oxide particles is, for example, 1.5 or more, preferably 1.5 to 100, and more preferably. It is 1.5 to 50, particularly preferably 1.5 to 20, and most preferably 2 to 15.
  • the average aspect ratio is lower than the above range (that is, when the shape of the titanium oxide particles becomes more spherical)
  • the pores are formed in the photocatalyst coating film because it is packed more densely.
  • the surface area is reduced, and the exposure amount of the photocatalyst to the surface of the coating film is reduced.
  • the photocatalytic ability tends to be reduced.
  • the average aspect ratio is a value obtained by the following measuring method for a sample obtained by the following adjusting method.
  • sample preparation method 1. Put a small amount (about half of the earpick size spatula) of titanium oxide particles into a 9 mL glass sample bottle, add 7 mL of ethanol, and disperse the ultrasonic wave in ethanol over 5 minutes using an ultrasonic cleaner. Get. 2. One drop of the obtained ethanol dispersion is taken with a glass spoid, dropped on a sample stage for SEM and allowed to dry naturally, and then platinum deposition is performed for 30 seconds.
  • ⁇ Measurement method> Use a field emission scanning electron microscope (trade name “FE-SEM JSM-6700F”, manufactured by JEOL Ltd., acceleration voltage: 15 kV, WD: about 3 mm, magnification: 200,000 times) to randomly crystallize particles Observe, extract three representative points, and 30 particles that are not extremely large or small in appearance in the entire extracted SEM photograph and have a clear outline centered on average-sized particles Extracted and copied to OHP sheet, and for each of these particles, find each short diameter (width orthogonal to the maximum long diameter) using image analysis software (trade name “WinROOF Version5.6”, manufactured by Mitani Corp.) These values were averaged to obtain an average minor axis. Further, the average major axis (maximum major axis) was determined by the same method, and the ratio (average major axis / average minor axis) was taken as the average aspect ratio.
  • the transition metal compound can be supported on the titanium oxide particles by, for example, an impregnation method in which the titanium oxide particles are impregnated with the transition metal compound.
  • the impregnation can be performed by adding a transition metal compound to the aqueous dispersion of titanium oxide particles.
  • a transition metal compound for example, when a trivalent iron compound is used as the transition metal compound, an iron compound ( For example, it can be performed by adding iron nitrate (III), iron sulfate (III), iron chloride (III) and the like.
  • the impregnation time is, for example, about 30 minutes to 24 hours, preferably 1 to 10 hours.
  • the excitation light when impregnating the titanium oxide particles with the transition metal compound.
  • the electrons in the valence band of the titanium oxide particles are excited in the conduction band, holes are generated in the valence band, and excited electrons are generated in the conduction band, which are diffused to the particle surface. Excited electrons and holes are separated according to the characteristics to form an oxidation reaction surface and a reduction reaction surface.
  • a trivalent iron compound is impregnated as a transition metal compound in this state, for example, the trivalent iron compound is adsorbed on the oxidation reaction surface, but on the reduction reaction surface, the trivalent iron compound is a divalent iron compound.
  • the divalent iron compound Since the divalent iron compound has the property of being difficult to adsorb, it can be eluted in the solution, and as a result, transition metal compound-supported titanium oxide particles can be obtained in which the iron compound is selectively supported on the oxidation reaction surface. it can.
  • the excitation light As a method for irradiating the excitation light, it is only necessary to irradiate light having energy equal to or higher than the band gap energy. For example, it can be performed by irradiating ultraviolet rays.
  • the ultraviolet irradiation means for example, an ultraviolet exposure apparatus using a light source that efficiently generates ultraviolet rays such as a medium / high pressure mercury lamp, a UV laser, a UV-LED, and a black light can be used.
  • the irradiation amount of the excitation light is, for example, about 0.1 to 300 mW / cm 2 , preferably 1 to 5 mW / cm 2 .
  • a sacrificial agent may be added during the impregnation.
  • the transition metal compound can be supported with high selectivity on a specific exposed crystal plane on the surface of the titanium oxide particles.
  • the sacrificial agent it is preferable to use an organic compound that easily emits electrons.
  • alcohols such as methanol and ethanol
  • carboxylic acids such as acetic acid
  • EDTA ethylenediaminetetraacetic acid
  • TAA triethanolamine
  • the addition amount of the sacrificial agent can be adjusted as appropriate, and is, for example, about 0.5 to 5.0% by weight, preferably 1.0 to 2.0% by weight of the titanium oxide solution. An excessive amount of the sacrificial agent may be used.
  • the transition metal compound-supported titanium oxide particles obtained by the above method can be separated and purified by separation means such as filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, etc., or a combination means combining these. .
  • Dispersant (B) polyacrylic acid or a salt thereof is used as a dispersant. Since polyacrylic acid and polyacrylate are dissolved in water, a titanium oxide dispersion and a titanium oxide coating solution can be easily prepared by a simple operation. Moreover, since the aqueous solution of polyacrylic acid or its salt (especially polyacrylic acid salt) is near neutrality, the use application of the titanium oxide dispersion liquid and titanium oxide coating liquid containing this is excellent and versatility is excellent.
  • polyacrylic acid or a salt thereof has a small molecular weight per carboxyl group or a salt thereof (—COOM; M is a hydrogen atom, a metal atom, an ammonium ion, etc.), and an addition amount necessary for dispersing titanium oxide particles can be reduced. Can be reduced. Therefore, the amount (concentration) of organic groups in the photocatalyst coating film formed from the titanium oxide coating solution can be reduced, and the waiting time until the photocatalyst decomposes the dispersant and the original photocatalytic performance is exhibited can be shortened. That is, the immediate effect of the photocatalytic performance can be secured.
  • the generation amount of VOC volatile organic compounds
  • the generation amount of VOC such as acetaldehyde due to the decomposition of the dispersant
  • the generation of odor can be suppressed.
  • the photocatalyst coating film formed from the titanium oxide coating liquid using polyacrylic acid or a salt thereof as a dispersant has high hardness, there is an advantage that the coating film is hardly damaged.
  • polyacrylic acid or its salt well-known polyacrylic acid and polyacrylate can be used, for example, polyacrylic acid; lithium polyacrylate, sodium polyacrylate, potassium polyacrylate, polyacrylic acid Examples include alkali metal salts of polyacrylic acid such as cesium; ammonium polyacrylate. Among these, sodium polyacrylate, potassium polyacrylate, and ammonium polyacrylate are preferable in that coloring can be suppressed, and sodium polyacrylate and potassium polyacrylate are particularly preferable.
  • the weight average molecular weight of the polyacrylic acid or a salt thereof is not particularly limited, but for example, it is appropriately selected from the range of 1000 to 100,000, preferably 1200 to 50000, more preferably 1500 to 30000, and particularly preferably 6000 to 20000. it can.
  • the transition metal compound-supported titanium oxide particles can be stably dispersed by using a small amount.
  • the weight average molecular weight of polyacrylic acid or a salt thereof is below the above range, it tends to be difficult to obtain dispersion stability with a small amount of addition.
  • the weight average molecular weight of polyacrylic acid or a salt thereof exceeds the above range, the addition of the transition metal compound-supported titanium oxide may be promoted by addition.
  • solvent (C) water, an organic solvent, or a mixed solvent thereof can be used.
  • the organic solvent include methanol, ethanol, propanol, isopropyl alcohol, butanol, isobutyl alcohol, diacetone alcohol, furfuryl alcohol, ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, Alcohols such as 1,6-hexanediol and glycerin; esters such as methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, ethylene glycol methyl ether acetate, propylene glycol methyl ether acetate; diethyl ether, diisopropyl ether, dibutyl ether , Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl
  • Titanium peroxide is considered to be a binuclear complex represented by the following formula. Ti 2 O 5 (OH) x (2-x) (Wherein x represents an integer of 1 to 6)
  • Titanium peroxide can be synthesized, for example, by adding hydrogen peroxide to an aqueous solution of a titanium compound such as TiCl 4 in the presence of a basic substance (eg, ammonia water, sodium hydroxide, etc.).
  • a basic substance eg, ammonia water, sodium hydroxide, etc.
  • silicon compounds include tetrabromosilane, tetrachlorosilane, tribromosilane, trichlorosilane, dibromosilane, dichlorosilane, monobromosilane, monochlorosilane, dichlorodimethylsilane, dichlorodiethylsilane, dichloromethylsilane, and dichloroethylsilane.
  • Halogenated silane compounds such as chlorotrimethylsilane, chlorotriethylsilane, chlorodimethylsilane, chlorodiethylsilane, chloromethylsilane, chloroethylsilane, t-butylchlorodimethylsilane, t-butylchlorodiethylsilane; tetramethoxysilane, tetra Ethoxysilane, trimethoxysilane, triethoxysilane, dimethoxysilane, diethoxysilane, methoxysilane, ethoxysilane, dimethoxymethylsilane DEMS, dimethoxyethyl silane, diethoxy ethyl silane, methoxy dimethylsilane, ethoxy dimethyl silane, methoxy diethyl silane, can be mentioned alkoxysilane compounds such as ethoxy diethyl silane.
  • fluorine resin examples include polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, polychlorotrifluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, ethylene-tetrafluoroethylene copolymer, and ethylene-chlorotrifluoroethylene copolymer.
  • the binder component at least titanium peroxide is preferably used, and the proportion of titanium peroxide in the total amount of the binder component (D) is preferably 10% by weight or more, more preferably 20% by weight or more. It is preferably 30% by weight or more, particularly preferably 50% by weight or more, and most preferably 75% by weight or more.
  • Titanium peroxide may be used alone or in combination with titanium peroxide and a silicon-based compound or fluorine-based resin. Titanium peroxide has high film-forming properties, and can be rapidly formed by coating and drying, and can be decomposed by the photocatalytic action of titanium oxide particles. Therefore, it is excellent in durability, and the titanium oxide particles can be fixed to the surface of the base material (object to be coated) over a long period of time.
  • the titanium oxide dispersion of the present invention contains transition metal compound-supported titanium oxide particles (A), a dispersant (B) made of polyacrylic acid or a salt thereof, and a solvent (C).
  • the amount of the dispersant (B) made of polyacrylate is, for example, 1 to 50 parts by weight with respect to 100 parts by weight of the transition metal compound-supported titanium oxide particles (A) in the dispersion.
  • the amount is preferably 3 to 40 parts by weight, more preferably 5 to 30 parts by weight. If the amount of the dispersant (B) made of polyacrylate is too small, the dispersibility of titanium oxide tends to be lowered, and conversely if too large, aggregates of titanium oxide tend to be generated.
  • the titanium oxide dispersion of the present invention may contain a dispersant other than the dispersant (B) made of polyacrylic acid or a salt thereof, but the total dispersant contained in the titanium oxide dispersion of the present invention
  • the proportion of the dispersing agent (B) comprising polyacrylic acid or a salt thereof is 25% by weight or more, preferably 50% by weight or more, and particularly preferably 75% by weight or more.
  • the total solid concentration in the titanium oxide dispersion can be appropriately selected, and is, for example, 0.1 to 50% by weight, preferably 0.2 to 40% by weight, and more preferably 1 to 30% by weight. Further, the content of the transition metal compound-supported titanium oxide particles (A) in the titanium oxide dispersion is, for example, 0.1 to 15% by weight, preferably 1 to 10% by weight.
  • the method for preparing the titanium oxide dispersion is not particularly limited, and can be prepared by mixing the transition metal compound-supported titanium oxide particles (A), the dispersant (B), and the solvent (C).
  • the order of addition of each component is not particularly limited.
  • the dispersant (B) is added to the slurry solution containing the transition metal compound-supported titanium oxide particles (A) and the solvent (C), and the beads mill, jet mill, roll mill, hammer
  • a titanium oxide dispersion can be prepared by mixing using a disperser (particularly a media stirring disperser) such as a mill, vibration mill, ball mill, sand mill, pearl mill, spike mill, agitator mill, or coball mill.
  • the titanium oxide coating liquid of the present invention contains the above titanium oxide dispersion, and at least one binder component (D) selected from titanium peroxide, a silicon compound, and a fluorine resin.
  • the blending ratio [former: latter (weight ratio)] of the transition metal compound-supported titanium oxide particles (A) and the binder component (D) is, for example, 1: 6 to 30: 1, preferably 1: 1 to 15: 1, particularly preferably 1.5: 1 to 13: 1.
  • the photocatalytic activity tends to decrease, whereas when the blending amount of the transition metal compound-carrying titanium oxide particles (A) exceeds the above range.
  • the adhesiveness to the base material (the body to be coated) and the deterioration preventing property of the base material (the body to be coated) are lowered.
  • the total solid content concentration in the titanium oxide coating solution can be appropriately selected within a range not impairing the coating workability and the like, for example, 0.1 to 50% by weight, preferably 0.2 to 40% by weight, and more preferably 1 to 30%. % By weight.
  • the content of the transition metal compound-supported titanium oxide particles (A) in the titanium oxide coating solution is, for example, 0.1 to 15% by weight, preferably 1 to 10% by weight.
  • the method for preparing the titanium oxide coating solution is not particularly limited.
  • the binder component (D) is added to the titanium oxide dispersion, and a bead mill, jet mill, roll mill, hammer mill, vibration mill, ball mill, sand mill, pearl mill, It can prepare by mixing using dispersers (especially media stirring type dispersers), such as a spike mill, an agitator mill, and a coball mill.
  • dispersers especially media stirring type dispersers
  • titanium oxide dispersion and binder component (D) In addition to the above-mentioned titanium oxide dispersion and binder component (D), other components (for example, components blended in ordinary photocatalyst paints such as coating aids) are appropriately added to the titanium oxide coating liquid of the present invention as necessary. Can be blended.
  • the blending amount of the other components may be within a range not impairing the effects of the present invention, and is, for example, about 10% by weight or less (for example, 0.01 to 10% by weight) of the total amount of the titanium oxide coating solution.
  • the photocatalyst coating film of the present invention is formed using the titanium oxide coating solution. Moreover, the photocatalyst coating body of this invention is provided with the said photocatalyst coating film on the surface of a base material (to-be-coated body).
  • the photocatalyst coating film and the photocatalyst-coated body of the present invention are produced, for example, by applying the titanium oxide coating solution on the surface of a base material (at least one surface in the case of a sheet-like base material) and drying it. Can do.
  • the base material constituting the photocatalyst-coated body of the present invention is not particularly limited, and various plastic materials [eg, polyethylene (PE), polypropylene (PP), ethylene-propylene copolymer, ethylene-acetic acid] Olefin resins containing ⁇ -olefin as monomer component such as vinyl copolymer (EVA); Polyester resins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT); Polyvinyl chloride ( PVC); vinyl acetate resin; polyphenylene sulfide (PPS); polyamide resin such as polyamide (nylon), wholly aromatic polyamide (aramid); polyimide resin; polyether ether ketone (PEEK) etc.], rubber material (for example, , Natural rubber, synthetic rubber Silicon rubber, etc.), metal materials (eg, aluminum, copper, iron, stainless steel, etc.), paper materials (eg, paper, paper-like substances, etc.),
  • the base material there are no particular restrictions on the base material from the viewpoint of use, for example, lenses (for example, glasses and camera lenses), prisms, vehicle members such as automobiles and railway vehicles (window glass, lamp covers, rearview mirrors, etc.) ), Building materials (eg, outer wall materials, inner wall materials, window frames, window glass, etc.), machine components, various display devices such as traffic signs, advertising towers, sound insulation walls (for roads, railways, etc.), bridges, guard rails Tunnel, insulator, solar battery cover, solar water heater heat collection cover, lighting fixture, bathroom article, bathroom member (eg, mirror, bathtub, etc.), kitchen article, kitchen member (eg, kitchen panel, sink, range hood, For attachment to antibacterial / antifungal, deodorizing, air purification, water purification, antifouling effects such as ventilation fans, air conditioners, toilet articles, toilet members (eg toilets), etc. Mention may be made of films, sheets, seals and the like.
  • Application of the titanium oxide coating solution to the substrate can be performed by, for example, spraying, brushing, roller, gravure printing, or the like.
  • a coating film can be formed quickly by drying (evaporating the solvent). As a drying method, it may be dried at room temperature or may be dried by heating.
  • the coating amount of the titanium oxide coating solution is such that the content of the transition metal compound-supported titanium oxide particles (A) is, for example, 0.1 g / m 2 or more (preferably 0.1 to 5.0 g / m 2 , particularly preferably 0). .1 to 3.0 g / m 2 ).
  • the coating amount of the titanium oxide coating solution is less than the above range, the photocatalytic ability tends to decrease.
  • the titanium oxide coating solution may be applied directly to the surface of the base material, and an undercoat layer is provided on the surface of the base material in advance by applying a coating agent containing a binder component (particularly titanium peroxide), on which titanium oxide is provided.
  • a coating solution may be applied.
  • the base material and the photocatalyst coating film are completely separated by the undercoat layer, so even if a base material made of an organic material is used as the base material, the photocatalytic action is completely blocked, Can be protected from damage.
  • the thickness thereof is, for example, 0.01 to 5.0 ⁇ m, preferably 0.1 to 2.0 ⁇ m.
  • the photocatalyst coating film and the photocatalyst-coated body thus formed can exhibit a high photocatalytic activity, and can decompose harmful chemical substances into water and carbon dioxide by irradiation with light. Therefore, it can be used for various applications such as antibacterial / mold prevention, deodorization, air purification, water purification, and antifouling.
  • titanium oxide particles are used, it has responsiveness over a wide wavelength range from the ultraviolet range to the visible light range, and absorbs light in normal living spaces such as sunlight, incandescent lamps, fluorescent lamps, etc., and has high catalytic activity It exhibits high gas decomposition performance and antibacterial action even in low-light environments such as indoors, cleans the environment in homes, hospitals, schools, and other public facilities, home appliances It can be applied to a wide range of functions such as
  • Preparation Example 1 (Preparation of crude titanium oxide aqueous dispersion) At room temperature (25 ° C.), titanium tetrachloride aqueous solution (Ti concentration: 16.5 wt% ⁇ 0.5 wt%, chloride ion concentration: 31 wt% ⁇ 2 wt%, manufactured by Toho Titanium Co., Ltd.) Ti concentration was diluted with pure water so as to be 5.6% by weight.
  • the diluted titanium tetrachloride aqueous solution 5650 g was placed in a 10 L tantalum-lined autoclave and sealed. Using a heat medium, the temperature inside the autoclave was raised to 140 ° C. over 2 hours.
  • a portion of the resulting purified iron compound-supported titanium oxide aqueous dispersion was dried at 105 ° C. for 1 hour under normal pressure to obtain an iron compound-supported titanium oxide (specific surface area: 78 m 2 / g, average aspect ratio: 3). Obtained.
  • the iron compound content in the obtained iron compound-supported titanium oxide was 830 ppm.
  • the obtained iron compound-supported titanium oxide has (110) (111) (001) and a rod-shaped rutile type titanium oxide in which an iron compound is supported on the (111) surface, and (110) (111) (001). ) Surface, and a mixture of rod-shaped rutile type titanium oxide in which an iron compound is supported on the (001) (111) surface.
  • Example 1 (Preparation of titanium oxide dispersion) To 200 g of the purified iron compound-supported titanium oxide aqueous dispersion (concentration of iron compound-supported titanium oxide: 10 wt%) obtained in Preparation Example 1, a sodium polyacrylate aqueous solution (trade name “Aron T-50”, solid content 43 10% by weight, weight average molecular weight of sodium polyacrylate: 6000, manufactured by Toagosei Co., Ltd., 190 g of ion-exchanged water, and a wet medium stirring mill (trade name “Ultra Apex Mill UAM-015”, manufactured by Kotobuki Kogyo Co., Ltd.) Thus, a titanium oxide sol (titanium oxide dispersion) having an iron compound-supported titanium oxide concentration of 5% by weight was obtained.
  • a sodium polyacrylate aqueous solution trade name “Aron T-50”, solid content 43 10% by weight, weight average molecular weight of sodium polyacrylate: 6000, manufactured by Toagosei Co
  • titanium oxide coating solution To this titanium oxide sol, 170 g of an aqueous solution of titanium peroxide as a binder (trade name “Tio Sky Coat C”, manufactured by Tio Techno Co., Ltd., titanium peroxide concentration: 1% by weight) was further added and mixed.
  • the resulting titanium oxide coating solution (1) was applied onto a glass plate by a spray coating method so that the coating amount (dry weight) was 1.5 g / m 2 to obtain a photocatalyst coating film (1). (Thickness: 1 ⁇ m). The following evaluation test was done about the obtained photocatalyst coating film (1).
  • VOC decomposition test By irradiating the photocatalyst coating film (1) with light, methyl mercaptan as VOC in the gas phase was decomposed, and the photocatalytic performance was evaluated from the amount of decomposition.
  • Photocatalyst coating film (1) 5 cm ⁇ 10 cm is put in a reaction vessel (Tedlar bag, material: vinyl fluoride resin), 1 L of 70 ppm methyl mercaptan gas is blown into the reaction vessel, and light is irradiated at room temperature (25 ° C.) (fluorescence) Light 1000 lux).
  • the remaining amount of methyl mercaptan in the reaction vessel 24 hours after the start of light irradiation was measured using a gas chromatograph with a flame photometric detector (trade name “GC-2010”, manufactured by Shimadzu Corporation), and the difference from the initial concentration
  • the amount of decomposition (%) was calculated from As a result, the degradation amount (%) of methyl mercaptan after 24 hours was 100%.
  • the surface hardness of the photocatalyst coating film (1) was evaluated using a pencil hardness meter (manufactured by Nippon Rigaku Corporation). The evaluation criteria were in accordance with JIS 5600-5-4. As a result, the pencil hardness was HB.
  • Example 2 (Preparation of titanium oxide coating solution) At room temperature (25 ° C.), 500 g of the purified iron compound-supported titanium oxide aqueous dispersion (concentration of iron compound-supported titanium oxide: 10% by weight) obtained in Preparation Example 1 was added to a sodium polyacrylate aqueous solution (trade name “Nopcos Perth”). 44C ", solid content 40% by weight, manufactured by San Nopco Co., Ltd.) 5.87 g, and dispersed using a wet medium stirring mill (trade name” Ultra Apex Mill UAM-015 "manufactured by Kotobuki Kogyo Co., Ltd.) A titanium oxide sol having a supported titanium oxide concentration of 9.9% by weight was obtained.
  • the resulting titanium oxide coating solution (2) was applied onto a glass plate by a spray coating method so that the coating amount (dry weight) was 1.5 g / m 2 to obtain a photocatalyst coating film (2). (Thickness: 1 ⁇ m). The following evaluation test was done about the obtained photocatalyst coating film (2).
  • VOC decomposition test The photocatalyst coating film (2) was irradiated with light to decompose acetaldehyde, which is VOC in the gas phase, and the photocatalytic performance was evaluated from the amount of decomposition.
  • Photocatalyst coating film (2) 5 cm ⁇ 10 cm is put in a reaction container (smart bag, material: vinylidene fluoride resin), 1 L of 16 ppm acetaldehyde gas is blown into the reaction container, and light is irradiated at room temperature (25 ° C.) (fluorescence) Lamp 6000 lux).
  • the remaining amount of acetaldehyde in the reaction vessel 24 hours after the start of light irradiation was measured using a gas chromatograph with a flame ionization detector (trade name “GC-14B”, manufactured by Shimadzu Corporation). The amount of degradation (%) was calculated. As a result, the decomposition amount (%) of acetaldehyde after 24 hours was 100%.
  • Comparative Example 1 200 g of ion-exchanged water was added to 200 g of the purified iron compound-supported titanium oxide aqueous dispersion (concentration of iron compound-supported titanium oxide: 10% by weight) obtained in Preparation Example 1, and a wet medium stirring mill (trade name “Ultra Apex Mill”) was added.
  • UAM-015 (manufactured by Kotobuki Kogyo Co., Ltd.) was used to obtain a titanium oxide sol having an iron compound-supported titanium oxide concentration of 5 wt%.
  • titanium oxide sol 170 g of an aqueous solution of titanium peroxide as a binder (trade name “Tio Sky Coat C”, manufactured by Tio Techno Co., Ltd., titanium peroxide concentration: 1% by weight) was further added and mixed.
  • the titanium oxide dispersion of the present invention can be easily prepared in the vicinity of room temperature and close to neutrality without being dissolved in a large amount of hydrogen peroxide at a high temperature, has excellent dispersion stability, and is long. A highly dispersed state can be maintained over a period of time. Further, the standby time until the titanium oxide photocatalyst decomposes the dispersant and the original photocatalytic performance is exhibited can be shortened, and the immediate effect of the photocatalytic performance can be ensured. Moreover, the titanium oxide coating liquid of the present invention containing the titanium oxide dispersion liquid can be prepared in a region close to neutrality and is excellent in versatility. Moreover, the dispersibility and dispersion stability are high, and the coating property is excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Paints Or Removers (AREA)

Abstract

 分散性及び分散安定性に優れ、塗布・乾燥することにより速やかに且つ優れた光触媒能を発現する光触媒塗膜を形成することができる酸化チタン分散液を提供する。 本発明の酸化チタン分散液は、遷移金属化合物担持酸化チタン粒子(A)、ポリアクリル酸又はその塩からなる分散剤(B)、及び溶媒(C)を含む。前記分散剤(B)におけるポリアクリル酸又はその塩としてはポリアクリル酸アルカリ金属塩が好ましい。また、前記分散剤(B)におけるポリアクリル酸又はその塩の重量平均分子量は1000~100000の範囲内であることが好ましい。

Description

酸化チタン分散液、酸化チタン塗布液、及び光触媒塗膜
 本発明は、光触媒能を有する塗膜を形成するための酸化チタン分散液と、前記酸化チタン分散液を含む酸化チタン塗布液、前記酸化チタン塗布液を用いて形成された光触媒塗膜及び光触媒塗装体に関する。本願は、2013年3月15日に日本に出願した、特願2013-053082号の優先権を主張し、その内容をここに援用する。
 酸化チタン粒子は紫外線を吸収すると強い酸化作用を発揮するため、近年、様々な用途に光触媒として利用されている(例えば、下記(1)~(5))。
(1)自動車の排気ガス等から排出される窒素酸化物(NOx)や硫黄酸化物(SOx)等の環境汚染物質を分解することによる大気浄化
(2)アンモニア、アセトアルデヒド、硫化水素、メチルメルカプタン等の悪臭物質を分解することによる脱臭
(3)テトラクロロエチレンやトリハロメタン等の有機塩素化合物を分解することによる浄水
(4)殺菌し、更にその死骸を分解することによる抗菌
(5)油分を分解することにより、油分に砂や垢が付着して生じる汚れを防止する防汚
 酸化チタン光触媒は溶液に懸濁させて用いる場合と、基材に担持した状態で用いる場合がある。一般的に、その表面積の大きさが光触媒能に比例するため前者の方がより活性が高いが、実用性の観点から後者が採用される場合が多い。後者を採用する場合は、主に、分散剤を使用して高分散した酸化チタン光触媒をバインダー成分を使用して基材に密着させる方法が採用される。
 分散剤としては、ポリカルボン酸塩、ナフタレンスルホン酸ホルマリン縮合物塩、ポリエチレングリコール等の有機高分子化合物や、ヘキサメタリン酸塩、ピロリン酸塩、リン酸塩、蓚酸塩等の無機化合物を使用することが知られている(特許文献1~3)。分散剤を使用すると酸化チタン光触媒を高分散し、その比表面積を大きくすることにより光触媒能を向上させる効果が得られるが、酸化チタン光触媒の表面に分散剤が存在すると、酸化チタン光触媒の表面を覆う部分の分散剤に優先的に酸化作用が働き、見かけ上の光触媒効果が低減される。特に、酸化チタン光触媒の光触媒作用によって分解されにくい無機化合物を分散剤として使用した場合は、本来の光触媒効果を発現することができなくなることが問題であった。更に、分散剤として無機化合物を使用すると、初期の分散性には優れるが、長時間にわたって高分散状態を維持することは困難であり、分散安定性が低いことが問題であった。
 一方、分散剤として有機高分子化合物を使用すると、酸化チタン光触媒表面に存在する分散剤が優先的に分解されるため、酸化チタン光触媒を高分散するのに十分な量の有機高分子化合物を使用すると本来の光触媒効果を発現するまでの待機時間が長くかかることが問題であった。また、有機高分子化合物の分子量を小さくすると光触媒能を発現するまでの待機時間を短縮することは可能であるが、分散剤としての効果が得難くなることが問題であった。
 また、バインダー成分としては、チタン過酸化物とキトサンやセルロース等の多糖類を使用することが記載されている(特許文献4)。しかし、前記キトサンやセルロース等の多糖類は水に不溶であるため、バインダー液を調製する際に多量の過酸化水素水に高温で溶解させる必要があること、塗布液が酸性になり、用途が限定されることが問題であった。
特開2007-252987号公報 特開2009-056348号公報 特開2010-222444号公報 特許第3755852号公報
 従って、本発明の目的は、分散性及び分散安定性に優れ、塗布・乾燥することにより速やかに且つ優れた光触媒能を発現する光触媒塗膜を形成することができる酸化チタン分散液を提供することにある。
 本発明の他の目的は、多量の過酸化水素水に高温で溶解させる必要がなく、簡易な操作で調製でき、コストを低減できるとともに、分散性、分散安定性及び塗工性に優れた酸化チタン塗布液を提供することにある。
 本発明の更に他の目的は、中性に近い領域で調製できるとともに、分散性、分散安定性及び塗工性に優れた酸化チタン塗布液を提供することにある。
 本発明の更に他の目的は、前記酸化チタン塗布液を用いて形成された光触媒塗膜、及び基材表面に前記光触媒塗膜が設けられた光触媒塗装体を提供することにある。
 本発明者等は上記目的を達成するため鋭意検討した結果、遷移金属化合物担持酸化チタン粒子に溶媒と特定の分散剤を配合すると、多量の過酸化水素水に高温で溶解させなくても、室温付近で、しかも中性に近い領域で簡易に、分散性及び分散安定性に優れ、塗布・乾燥することにより速やかに且つ優れた光触媒能を発現する光触媒塗膜を形成することができる酸化チタン分散液を得ることができることを見出した。本発明はこれらの知見に基づいて完成させたものである。
 すなわち、本発明は、遷移金属化合物担持酸化チタン粒子(A)、ポリアクリル酸又はその塩からなる分散剤(B)、及び溶媒(C)を含む酸化チタン分散液を提供する。
 本発明は、また、分散剤(B)におけるポリアクリル酸又はその塩がポリアクリル酸アルカリ金属塩である前記の酸化チタン分散液を提供する。
 本発明は、また、分散剤(B)におけるポリアクリル酸又はその塩の重量平均分子量が1000~100000の範囲内である前記の酸化チタン分散液を提供する。
 本発明は、また、遷移金属化合物担持酸化チタン粒子(A)が、鉄化合物担持酸化チタン粒子である前記の酸化チタン分散液を提供する。
 本発明は、また、遷移金属化合物担持酸化チタン粒子(A)が、酸化チタン粒子の酸化反応面に遷移金属化合物を担持する粒子である前記の酸化チタン分散液を提供する。
 本発明は、また、遷移金属化合物担持酸化チタン粒子(A)における酸化チタン粒子が、ルチル型酸化チタン粒子である前記の酸化チタン分散液を提供する。
 本発明は、また、前記の酸化チタン分散液と、過酸化チタン、ケイ素系化合物、及びフッ素系樹脂から選択される少なくとも1種のバインダー成分(D)を含む酸化チタン塗布液を提供する。
 本発明は、また、バインダー成分(D)が過酸化チタンを少なくとも含有する前記の酸化チタン塗布液を提供する。
 本発明は、また、前記の酸化チタン塗布液を用いて形成された光触媒塗膜を提供する。
 本発明は、また、基材の表面に前記の光触媒塗膜が設けられた光触媒塗装体を提供する。
 すなわち、本発明は以下に関する。
(1) 遷移金属化合物担持酸化チタン粒子(A)、ポリアクリル酸又はその塩からなる分散剤(B)、及び溶媒(C)を含む酸化チタン分散液。
(2) 分散剤(B)におけるポリアクリル酸又はその塩がポリアクリル酸アルカリ金属塩である(1)に記載の酸化チタン分散液。
(3) 分散剤(B)におけるポリアクリル酸又はその塩の重量平均分子量が1000~100000の範囲内である(1)又は(2)に記載の酸化チタン分散液。
(4) 遷移金属化合物担持酸化チタン粒子(A)が、鉄化合物担持酸化チタン粒子である(1)~(3)の何れか1つに記載の酸化チタン分散液。
(5) 遷移金属化合物担持酸化チタン粒子(A)が、酸化チタン粒子の酸化反応面に遷移金属化合物を担持する粒子である(1)~(4)の何れか1つに記載の酸化チタン分散液。
(6) 遷移金属化合物担持酸化チタン粒子(A)における酸化チタン粒子が、ルチル型酸化チタン粒子である(1)~(5)の何れか1つに記載の酸化チタン分散液。
(7) 遷移金属化合物担持酸化チタン粒子(A)が、(110)(111)面を有し、前記(111)面に鉄化合物が担持されたルチル型酸化チタン、及び/又は(110)(111)(001)面を有し、及び前記(001)(111)面に鉄化合物が担持されたルチル型酸化チタン粒子である(1)~(6)の何れか1つに記載の酸化チタン分散液。
(8) (1)~(7)の何れか1つに記載の酸化チタン分散液と、過酸化チタン、ケイ素系化合物、及びフッ素系樹脂から選択される少なくとも1種のバインダー成分(D)を含む酸化チタン塗布液。
(9) バインダー成分(D)が過酸化チタンを少なくとも含有する(8)記載の酸化チタン塗布液。
(10) (8)又は(9)に記載の酸化チタン塗布液を用いて形成された光触媒塗膜。
(11) 基材の表面に(10)記載の光触媒塗膜が設けられた光触媒塗装体。
 本発明の酸化チタン分散液は分散剤としてポリアクリル酸又はその塩を使用するため、多量の過酸化水素水に高温で溶解させなくても、室温付近で、しかも中性に近い領域で簡易に調製することができ、分散安定性に優れ、長期間に亘って高分散状態を維持することができる。また、酸化チタン光触媒が分散剤を分解して本来の光触媒性能が発現するまでの待機時間を短くすることができ、光触媒性能の即効性を担保することができる。また、本発明の酸化チタン塗布液は、前記酸化チタン分散液を含有するので、中性に近い領域で調製することができ、汎用性に優れる。しかも、本発明の酸化チタン塗布液は、分散性及び分散安定性が高く、塗工性に優れる。
 [遷移金属化合物担持酸化チタン粒子(A)]
 本発明では、光触媒として遷移金属化合物担持酸化チタン粒子(A)を用いる。このため、本発明の酸化チタン塗布液を用いて形成された光触媒塗膜は、紫外線域から可視光線域までの広い波長範囲に応答性を有し、太陽光や白熱灯、蛍光灯等の通常の生活空間における光源下でも高い触媒活性を発揮する。
 遷移金属化合物担持酸化チタン粒子(A)における「酸化チタン粒子」としては、例えば、ルチル型、アナターゼ型、ブルッカイト型酸化チタン粒子等を挙げることができる。本発明においては、なかでも、アスペクト比が大きい形状を有する点でルチル型酸化チタン粒子が好ましい。
 前記遷移金属化合物は、遷移金属イオン、遷移金属単体、遷移金属塩、遷移金属酸化物、遷移金属水酸化物、遷移金属錯体等のいずれの状態で酸化チタン粒子に担持されていてもよい。
 前記遷移金属化合物としては、可視光領域に吸収スペクトルを有し、励起状態で伝導帯に電子を注入することができるものが好ましく、例えば、周期表第3~第11族元素化合物、なかでも周期表第8~第11族元素化合物が好ましく、特に鉄化合物[とりわけ、三価の鉄化合物]が好ましい。鉄化合物の酸化チタン粒子への担持においては、三価の鉄化合物は吸着しやすく、二価の鉄化合物は吸着しにくい特性を有するため、その特性を利用することにより容易に面選択的に遷移金属化合物を担持することができるからである。
 なお、本発明において、「面選択的に遷移金属化合物を担持」とは、露出結晶面を有する酸化チタン粒子に担持する遷移金属化合物の50%を超える量(好ましくは70%以上、特に好ましくは80%以上)が2面以上の露出結晶面のうち、全ての面ではなく、特定の面(例えば、特定の1面又は2面等)に担持されていることをいう。遷移金属化合物の担持は、透過型電子顕微鏡(TEM)やエネルギー分散型蛍光X線分析装置(EDX)を使用し、露出結晶面上の遷移金属化合物由来のシグナルを確認することで判定できる。
 遷移金属化合物の担持量としては、酸化チタン粒子に対して重量基準で、例えば50ppm以上、好ましくは100ppm以上、更に好ましくは200ppm以上、特に好ましくは300ppm以上、最も好ましくは500ppm以上である。遷移金属化合物の担持量の上限は、例えば5000ppm程度、好ましくは3000ppm、特に好ましくは2000ppmである。遷移金属化合物の担持量が上記範囲を上回ると、励起電子が有効に作用せず、光触媒能が低下する傾向がある。一方、遷移金属化合物の担持量が少なすぎると、可視光線応答性が低下する傾向がある。
 遷移金属化合物は、酸化チタン粒子の露出結晶面における酸化反応面又は還元反応面のうち一方の面(特に、酸化反応面)に選択的に担持されることが、酸化反応と還元反応の反応場を空間的により大きく引き離すことができ、励起電子とホールの分離性を高め、励起電子とホールの再結合及び逆反応の進行を極めて低いレベルにまで抑制することができ、より高い光触媒活性を発揮することができる点で好ましい。
 酸化チタン粒子のうち、ルチル型酸化チタン粒子の主な露出結晶面としては、例えば、(110)(001)(111)(011)面等を挙げることができる。ルチル型酸化チタン粒子としては、例えば、(110)(111)面を有するルチル型酸化チタン粒子、(110)(011)面を有するルチル型酸化チタン粒子、(001)(110)(111)面を有するルチル型酸化チタン粒子等を挙げることができる。本発明においては、なかでも、酸化反応と還元反応の反応場を空間的により大きく引き離すことができ、励起電子とホールとの再結合及び逆反応の進行を抑制することができる点で、(110)(111)面を有するルチル型酸化チタン粒子、(001)(110)(111)面を有するルチル型酸化チタン粒子が好ましい。前記(111)面と(001)面は酸化反応面であり、(110)面は還元反応面である。
 従って、本発明における遷移金属化合物担持酸化チタン粒子としては、なかでも、(110)(111)面を有し、前記(111)面に鉄化合物が担持されたルチル型酸化チタン、及び/又は(110)(111)(001)面を有し、及び前記(001)(111)面に鉄化合物が担持されたルチル型酸化チタン粒子が好ましい。
 酸化チタン粒子としては、公知の方法により製造されたものを使用することができる。
 また、酸化チタン粒子のうち、(110)(111)面を有するルチル型酸化チタン粒子や(001)(110)(111)面を有するルチル型酸化チタン粒子は、例えば、チタン化合物を、水性媒体(例えば水、又は水と水溶性有機溶媒との混合液)中で水熱処理[例えば100~200℃、3~48時間(好ましくは6~12時間)]することにより合成することができる。
 前記チタン化合物としては、例えば、3価のチタン化合物、4価のチタン化合物を挙げることができる。3価のチタン化合物としては、例えば、三塩化チタンや三臭化チタン等のトリハロゲン化チタン等を挙げることができる。3価のチタン化合物としては、なかでも安価で、入手が容易な点で三塩化チタン(TiCl3)が好ましい。
 また、4価のチタン化合物は、例えば、下記式(1)で表される化合物等を挙げることができる。
 Ti(OR)t4-t   (1)
(式中、Rは炭化水素基を示し、Xはハロゲン原子を示す。tは0~3の整数を示す)
 Rにおける炭化水素基としては、例えば、メチル、エチル、プロピル、イソプロピル、n-ブチル、sec-ブチル、tert-ブチル等のC1-4脂肪族炭化水素基等を挙げることができる。
 Xにおけるハロゲン原子としては、塩素、臭素、ヨウ素原子等を挙げることができる。
 このような4価のチタン化合物としては、例えば、TiCl4、TiBr4、TiI4等のテトラハロゲン化チタン;Ti(OCH3)Cl3、Ti(OC25)Cl3、Ti(OC49)Cl3、Ti(OC25)Br3、Ti(OC49)Br3等のトリハロゲン化アルコキシチタン;Ti(OCH32Cl2、Ti(OC252Cl2、Ti(OC492Cl2、Ti(OC252Br2等のジハロゲン化ジアルコキシチタン;Ti(OCH33Cl、Ti(OC253Cl、Ti(OC493Cl、Ti(OC253Br等のモノハロゲン化トリアルコキシチタン等を挙げることができる。本発明における4価のチタン化合物としては、なかでも安価で、入手が容易な点で、テトラハロゲン化チタンが好ましく、特に四塩化チタン(TiCl4)が好ましい。
 特に、前記チタン化合物として4価のチタン化合物を使用する場合は、反応温度110~220℃(好ましくは130~220℃)、その反応温度における飽和蒸気圧以上の圧力下、水性媒体中で2時間以上(好ましくは5~15時間)水熱処理を施すことにより(110)(111)面を有するルチル型酸化チタン粒子、及び/又は(001)(110)(111)面を有するルチル型酸化チタン粒子を合成することができる。
 (001)(110)(111)面を有するルチル型酸化チタンは、その他、(110)(111)面を有するルチル型酸化チタン粒子を硫酸(好ましくは50重量%以上の高濃度の硫酸、特に好ましくは濃硫酸)中に投入し、加熱下で撹拌することにより、酸化チタン粒子の稜又は頂点の部位を浸食(溶解)して合成することもできる。
 上記方法により得られた酸化チタン粒子は、例えば、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段により分離精製できる。
 酸化チタン粒子の比表面積としては、例えば10m2/g以上、好ましくは10~200m2/g、より好ましくは10~150m2/g、更に好ましくは30~150m2/g、特に好ましくは50~100m2/g、最も好ましくは60~100m2/gである。酸化チタン粒子の比表面積が上記範囲を下回ると、反応物質を吸着する能力が低下して光触媒能が低下する傾向があり、一方、酸化チタン粒子の比表面積が上記範囲を上回ると、励起電子とホールの分離性が低下し、光触媒能が低下する傾向がある。
 酸化チタン粒子の形状は、特に限定されないが、棒状或いは針状が好ましく、酸化チタン粒子の平均アスペクト比(長径/短径)は例えば1.5以上、好ましくは1.5~100、より好ましくは1.5~50、特に好ましくは1.5~20、最も好ましくは2~15である。平均アスペクト比が上記範囲を下回ると(すなわち、酸化チタン粒子の形状がより球形に近くなると)、バインダー成分と混合した際に、より密に充填されるため、光触媒塗膜に細孔を形成することが困難となり、表面積が低下し、塗膜表面への光触媒の露出量が低下する結果、光触媒能が低下する傾向がある。
 尚、本発明において平均アスペクト比は下記調整方法で得られたサンプルについて、下記測定方法で求めた値である。
 <サンプル調製方法>
 1.少量(耳かきサイズのスパチュラで半分程度)の酸化チタン粒子を9mLのガラス製サンプル瓶に入れ、エタノールを7mL入れ、超音波洗浄器にて超音波を5分間かけてエタノール中に分散させエタノール分散液を得る。
 2.得られたエタノール分散液をガラス製スポイドで1滴取り、SEM用試料台の上に落として自然乾燥させた後、30秒間白金蒸着を行う。
 <測定方法>
 電界放出型走査電子顕微鏡(商品名「FE-SEM JSM-6700F」、日本電子(株)製、加速電圧:15kV、WD:約3mm、倍率:20万倍)を使用して結晶粒子をランダムに観察し、代表的な3カ所を抽出し、抽出されたSEM写真全体の中で、見た目に極端に大きく又は小さくなく、平均的な大きさの粒子を中心に輪郭がはっきりしている粒子30個を抽出してOHPシートに写し、それらの粒子について、画像解析ソフトウェア(商品名「WinROOF Version5.6」、三谷商事(株)製)を用いて各短径(最大長径に直交する幅)を求め、それらの値を平均して平均短径とした。また、同様の方法で平均長径(最大長径)を求め、これらの比(平均長径/平均短径)を平均アスペクト比とした。
 遷移金属化合物の酸化チタン粒子への担持は、例えば、酸化チタン粒子に遷移金属化合物を含浸する含浸法により行うことができる。
 含浸は、具体的には、酸化チタン粒子の水分散液中に遷移金属化合物を添加することにより行うことができ、例えば、遷移金属化合物として三価の鉄化合物を使用する場合は、鉄化合物(例えば、硝酸鉄(III)、硫酸鉄(III)、塩化鉄(III)等)を添加することにより行うことができる。
 含浸時間としては、例えば30分から24時間程度、好ましくは1~10時間である。
 そして、酸化チタン粒子に遷移金属化合物を含浸する際には励起光を照射することが好ましい。励起光を照射すると、酸化チタン粒子の価電子帯の電子が伝導帯に励起し、価電子帯にホール、伝導帯に励起電子が生成し、これらは粒子表面へ拡散し、各露出結晶面の特性に従って励起電子とホールとが分離されて酸化反応面と還元反応面とを形成する。この状態で遷移金属化合物として、例えば三価の鉄化合物の含浸を行うと、三価の鉄化合物は酸化反応面には吸着するが、還元反応面では三価の鉄化合物は二価の鉄化合物に還元され、二価の鉄化合物は吸着しにくい特性を有するため、溶液中に溶出し、結果として酸化反応面に選択的に鉄化合物が担持された遷移金属化合物担持酸化チタン粒子を得ることができる。
 励起光の照射方法としては、バンドギャップエネルギー以上のエネルギーを有する光を照射することができればよく、例えば、紫外線を照射することにより行うことができる。紫外線照射手段としては、例えば、中・高圧水銀灯、UVレーザー、UV-LED、ブラックライト等の紫外線を効率よく生成する光源を使用した紫外線露光装置等を使用することができる。励起光の照射量としては、例えば0.1~300mW/cm2程度、好ましくは1~5mW/cm2である。
 さらに、本発明においては、含浸の際に犠牲剤を添加してもよい。犠牲剤を添加することにより、酸化チタン粒子表面において、特定の露出結晶面に高い選択率で遷移金属化合物を担持することができる。犠牲剤としては、それ自体が電子を放出しやすい有機化合物を使用することが好ましく、例えば、メタノール、エタノール等のアルコール;酢酸等のカルボン酸;エチレンジアミン四酢酸(EDTA)、トリエタノールアミン(TEA)等のアミン等を挙げることができる。
 犠牲剤の添加量としては、適宜調整することができ、例えば、酸化チタン溶液の0.5~5.0重量%程度、好ましくは1.0~2.0重量%である。犠牲剤は過剰量を使用してもよい。
 上記方法により得られた遷移金属化合物担持酸化チタン粒子は、例えば、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段により分離精製できる。
 [分散剤(B)]
 本発明では、分散剤として、ポリアクリル酸又はその塩を用いる。ポリアクリル酸、ポリアクリル酸塩は水に溶解するので、簡易な操作で容易に酸化チタン分散液や酸化チタン塗布液を調製することができる。また、ポリアクリル酸又はその塩(特に、ポリアクリル酸塩)の水溶液は中性に近いので、これを含む酸化チタン分散液や酸化チタン塗布液は使用用途が限定されず、汎用性に優れる。さらに、ポリアクリル酸又はその塩は、カルボキシル基又はその塩(-COOM;Mは水素原子、金属原子、アンモニウムイオン等)1個当たりの分子量が小さく、酸化チタン粒子の分散に必要な添加量を少なくすることができる。そのため、酸化チタン塗布液から形成される光触媒塗膜中の有機基の量(濃度)を低減でき、光触媒が分散剤を分解して本来の光触媒性能が発現するまでの待機時間を短くできる。すなわち、光触媒性能の即効性を担保できる。また、該分散剤の分解によるアセトアルデヒド等のVOC(=揮発性有機化合物)の発生量を低減できるので、臭気の発生を抑制できる。さらに、分散剤としてポリアクリル酸又はその塩を使用する酸化チタン塗布液から形成される光触媒塗膜は高い硬度を有するので、塗膜に傷が付きにくい利点がある。
 ポリアクリル酸又はその塩としては、公知のポリアクリル酸、ポリアクリル酸塩を使用することができ、例えば、ポリアクリル酸;ポリアクリル酸リチウム、ポリアクリル酸ナトリウム、ポリアクリル酸カリウム、ポリアクリル酸セシウム等のポリアクリル酸アルカリ金属塩;ポリアクリル酸アンモニウムなどが挙げられる。これらの中でも、着色を抑制できる点で、ポリアクリル酸ナトリウム、ポリアクリル酸カリウム、ポリアクリル酸アンモニウムが好ましく、とりわけ、ポリアクリル酸ナトリウム、ポリアクリル酸カリウムが好ましい。本発明においては、例えば、商品名「アロンT-50」、「アロンA-210」、「アロンA-30L」(以上、東亞合成社製)、商品名「アクアリックDL」(日本触媒社製)、商品名「ノプコスパース44C」(サンノプコ(株)製)などの市販品を用いることができる。
 ポリアクリル酸又はその塩の重量平均分子量としては、特に限定されないが、例えば1000~100000、好ましくは1200~50000、さらに好ましくは1500~30000、特に好ましくは6000~20000の範囲から適宜選択して使用できる。上記範囲の重量平均分子量を有するポリアクリル酸又はその塩を使用すると、少量の使用により遷移金属化合物担持酸化チタン粒子を安定的に分散することができる。ポリアクリル酸又はその塩の重量平均分子量が上記範囲を下回ると、少量の添加で分散安定性を得ることが困難となる傾向がある。一方、ポリアクリル酸又はその塩の重量平均分子量が上記範囲を上回ると、添加することでかえって遷移金属化合物担持酸化チタンの凝集を促進させる場合がある。
 [溶媒(C)]
 溶媒(C)としては、水、有機溶媒、又はこれらの混合溶媒を使用できる。前記有機溶媒としては、例えば、メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノール、イソブチルアルコール、ジアセトンアルコール、フルフリルアルコール、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、グリセリンなどのアルコール;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、プロピレングリコールメチルエーテルアセテートなどのエステル;ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、テトラヒドロフラン、ジオキサンなどの鎖状又は環状エーテル;アセトン、メチルエチルケトン、アセチルアセトン、アセト酢酸エチルなどのケトンなどが挙げられる。有機溶媒は1種単独で用いてもよく、2種以上を併用してもよい。
 [バインダー成分(D)]
 本発明におけるバインダー成分(D)は、上記酸化チタン粒子を基材(被塗装体)に固定する働きを有するものであり、過酸化チタン(=ペルオキソチタン酸)、ケイ素系化合物、フッ素系樹脂から選択される少なくとも1種を使用することができる。
 過酸化チタンは、下記式で表される二核錯体であると考えられる。
  Ti25(OH)x (2-x)   
(式中、xは1~6の整数を示す)
 過酸化チタンは、例えば、塩基性物質(例えば、アンモニア水、水酸化ナトリウム等)の存在下で、TiCl4等のチタン化合物の水溶液に過酸化水素水を添加することにより合成することができる。
 ケイ素系化合物としては、例えば、テトラブロモシラン、テトラクロロシラン、トリブロモシラン、トリクロロシラン、ジブロモシラン、ジクロロシラン、モノブロモシラン、モノクロロシラン、ジクロロジメチルシラン、ジクロロジエチルシラン、ジクロロメチルシラン、ジクロロエチルシラン、クロロトリメチルシラン、クロロトリエチルシラン、クロロジメチルシラン、クロロジエチルシラン、クロロメチルシラン、クロロエチルシラン、t-ブチルクロロジメチルシラン、t-ブチルクロロジエチルシラン等のハロゲン化シラン化合物;テトラメトキシシラン、テトラエトキシシラン、トリメトキシシラン、トリエトキシシラン、ジメトキシシラン、ジエトキシシラン、メトキシシラン、エトキシシラン、ジメトキシメチルシラン、ジエトキシメチルシラン、ジメトキシエチルシラン、ジエトキシエチルシラン、メトキシジメチルシラン、エトキシジメチルシラン、メトキシジエチルシラン、エトキシジエチルシラン等のアルコキシシラン化合物等を挙げることができる。
 フッ素系樹脂としては、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル、ポリクロロトリフルオロエチレン、テトラフルオロエチレン-ヘキサフルオロプロピレンコポリマー、エチレン-テトラフルオロエチレンコポリマー、エチレン-クロロトリフルオロエチレンコポリマー、テトラフルオロエチレン-パーフルオロアルキルビニルエーテルコポリマー、パーフルオロシクロポリマー、ビニルエーテル-フルオロオレフィンコポリマー、ビニルエステル-フルオロオレフィンコポリマー、テトラフルオロエチレン-ビニルエーテルコポリマー、クロロトリフルオロエチレン-ビニルエーテルコポリマー、テトラフルオロエチレンウレタン架橋体、テトラフルオロエチレンエポキシ架橋体、テトラフルオロエチレンアクリル架橋体、テトラフルオロエチレンメラミン架橋体等を挙げることができる。
 前記バインダー成分としては、少なくとも過酸化チタンを用いることが好ましく、バインダー成分(D)全量に占める過酸化チタンの割合は、10重量%以上であることが好ましく、より好ましくは20重量%以上、更に好ましくは30重量%以上、特に好ましくは50重量%以上、最も好ましくは75重量%以上である。過酸化チタンは単独で使用してもよく、過酸化チタンとケイ素系化合物若しくはフッ素系樹脂を併用して使用してもよい。過酸化チタンは、成膜性が高く、塗布、乾燥することにより、優れた接着性を有する塗膜を速やかに形成することができ、しかも、酸化チタン粒子の光触媒作用によっても分解されることがないため、耐久性に優れ、長期に亘って、基材(被塗装体)表面に酸化チタン粒子を固定することができる。
 [酸化チタン分散液]
 本発明の酸化チタン分散液は、遷移金属化合物担持酸化チタン粒子(A)、ポリアクリル酸又はその塩からなる分散剤(B)、及び溶媒(C)を含む。
 ポリアクリル酸塩からなる分散剤(B)の使用量(固形分換算)は、例えば、分散液中の遷移金属化合物担持酸化チタン粒子(A)100重量部に対して、例えば1~50重量部、好ましくは3~40重量部、さらに好ましくは5~30重量部である。ポリアクリル酸塩からなる分散剤(B)の使用量が少なすぎると、酸化チタンの分散性が低下しやすくなり、逆に多すぎると、酸化チタンの凝集体が発生しやすくなる。
 また、本発明の酸化チタン分散液はポリアクリル酸又はその塩からなる分散剤(B)以外の分散剤を含有していてもよいが、本発明の酸化チタン分散液に含まれる全分散剤に占めるポリアクリル酸又はその塩からなる分散剤(B)の割合は、25重量%以上、好ましくは50重量%以上、特に好ましくは75重量%以上である。
 酸化チタン分散液中の全固形分濃度は適宜選択でき、例えば0.1~50重量%、好ましくは0.2~40重量%、さらに好ましくは1~30重量%である。また、酸化チタン分散液中の遷移金属化合物担持酸化チタン粒子(A)の含有量は、例えば、0.1~15重量%、好ましくは1~10重量%である。
 酸化チタン分散液の調製方法としては、特に限定されず、遷移金属化合物担持酸化チタン粒子(A)と分散剤(B)と溶媒(C)とを混合することにより調製できる。各成分の添加順序は特に制限はないが、例えば、遷移金属化合物担持酸化チタン粒子(A)と溶媒(C)を含むスラリー溶液に分散剤(B)を加え、ビーズミル、ジェットミル、ロールミル、ハンマーミル、振動ミル、ボールミル、サンドミル、パールミル、スパイクミル、アジテータミル、コボールミル等の分散機(特に、メディア撹拌型分散機)を用いて混合することにより、酸化チタン分散液を調製することができる。
 [酸化チタン塗布液]
 本発明の酸化チタン塗布液は、上記酸化チタン分散液と、過酸化チタン、ケイ素系化合物、及びフッ素系樹脂から選択される少なくとも1種のバインダー成分(D)を含む。
 本発明の酸化チタン塗布液において、遷移金属化合物担持酸化チタン粒子(A)とバインダー成分(D)の配合比率[前者:後者(重量比)]は、例えば1:6~30:1、好ましくは1:1~15:1、特に好ましくは1.5:1~13:1である。遷移金属化合物担持酸化チタン粒子(A)の配合量が上記範囲を下回ると、光触媒能が低下する傾向があり、一方、遷移金属化合物担持酸化チタン粒子(A)の配合量が上記範囲を上回ると、基材(被塗装体)に対する接着性、基材(被塗装体)の劣化防止性が低下する傾向がある。
 酸化チタン塗布液中の全固形分濃度は、塗布作業性等を損なわない範囲で適宜選択でき、例えば0.1~50重量%、好ましくは0.2~40重量%、さらに好ましくは1~30重量%である。また、酸化チタン塗布液中の遷移金属化合物担持酸化チタン粒子(A)の含有量は、例えば0.1~15重量%、好ましくは1~10重量%である。
 酸化チタン塗布液の調製方法としては、特に限定されず、例えば、上記酸化チタン分散液にバインダー成分(D)を加え、ビーズミル、ジェットミル、ロールミル、ハンマーミル、振動ミル、ボールミル、サンドミル、パールミル、スパイクミル、アジテータミル、コボールミル等の分散機(特に、メディア撹拌型分散機)を用いて混合することにより、調製することができる。
 本発明の酸化チタン塗布液には、上記酸化チタン分散液、バインダー成分(D)以外に、他の成分(例えば、塗布助剤等の通常光触媒塗料に配合される成分)を必要に応じて適宜配合することができる。他の成分の配合量としては、本発明の効果を損なわない範囲内であればよく、例えば、酸化チタン塗布液全量の10重量%以下程度(例えば0.01~10重量%)である。
 [光触媒塗膜及び光触媒塗装体]
 本発明の光触媒塗膜は前記酸化チタン塗布液を用いて形成される。また、本発明の光触媒塗装体は、基材(被塗装体)の表面に前記光触媒塗膜が設けられている。本発明の光触媒塗膜及び光触媒塗装体は、例えば、基材の表面(シート状の基材の場合は、少なくとも一方の表面)に前記酸化チタン塗布液を塗布し、乾燥することにより製造することができる。
 本発明の光触媒塗装体を構成する基材の素材としては、特に限定されることがなく、各種プラスチック材料[例えば、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体(EVA)等のα-オレフィンをモノマー成分とするオレフィン系樹脂;ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)等のポリエステル系樹脂;ポリ塩化ビニル(PVC);酢酸ビニル系樹脂;ポリフェニレンスルフィド(PPS);ポリアミド(ナイロン)、全芳香族ポリアミド(アラミド)等のポリアミド系樹脂;ポリイミド系樹脂;ポリエーテルエーテルケトン(PEEK)等]、ゴム材料(例えば、天然ゴム、合成ゴム、シリコンゴム等)、金属材料(例えば、アルミニウム、銅、鉄、ステンレス等)、紙質材料(例えば、紙、紙類似物質等)、木質材料(例えば、木材、MDF等の木質ボード、合板等)、繊維材料(例えば、不織布、織布等)、革材料、無機材料(例えば、石、コンクリート等)、ガラス材料、磁器材料等の各種の素材を挙げることができる。これらのなかでも、前記基材として、プラスチック製基材(プラスチック製シート等)が好ましい。
 用途からみた基材としては特に制限されることがなく、例えば、レンズ(例えば、眼鏡やカメラのレンズ等)、プリズム、自動車や鉄道車両等の乗物部材(窓ガラス、照明灯カバー、バックミラー等)、建築部材(例えば、外壁材、内壁材、窓枠、窓ガラス等)、機械構成部材、交通標識等の各種表示装置、広告塔、遮音壁(道路用、鉄道用等)、橋梁、ガードレ-ル、トンネル、碍子、太陽電池カバー、太陽熱温水器集熱カバー、照明器具、浴室用品、浴室部材(例えば、鏡、浴槽等)、台所用品、台所部材(例えば、キッチンパネル、流し台、レンジフード、換気扇等)、空調、トイレ用品、トイレ部材(例えば、便器等)等の抗菌・防カビ、脱臭、大気浄化、水質浄化、防汚効果が期待される物品や、前記物品表面に貼着させるためのフィルム、シート、シール等を挙げることができる。
 基材への酸化チタン塗布液の塗布は、例えば、スプレー、刷毛、ローラー、グラビア印刷等により行うことができる。基材表面に塗布した後は、乾燥(溶媒を蒸発)させることよって、速やかに塗膜を形成することができる。乾燥方法としては、室温で乾燥させてもよく、加熱して乾燥させてもよい。
 酸化チタン塗布液の塗布量は、遷移金属化合物担持酸化チタン粒子(A)の含有量が、例えば0.1g/m2以上(好ましくは0.1~5.0g/m2、特に好ましくは0.1~3.0g/m2)となる範囲である。酸化チタン塗布液の塗布量が上記範囲を下回ると、光触媒能が低下する傾向がある。
 酸化チタン塗布液は、基材表面に直接塗布してもよく、基材表面に予めバインダー成分(特に、過酸化チタン)を含むコーティング剤を塗布することにより下塗り層を設け、その上に酸化チタン塗布液を塗布してもよい。下塗り層を設けた場合、基材と光触媒塗膜とが下塗り層により完全に隔てられるため、基材として有機素材からなる基材を使用しても、光触媒作用が完全にブロックされ、基材を損傷から保護することができる。基材表面に下塗り層を設ける場合、その厚みとしては、例えば0.01~5.0μm、好ましくは0.1~2.0μmである。
 こうして形成された光触媒塗膜及び光触媒塗装体は、高い光触媒能を発揮することができ、光の照射によって有害化学物質を水や二酸化炭素にまで分解することが可能である。そのため、抗菌・防カビ、脱臭、大気浄化、水質浄化、防汚等の様々な用途に使用することができる。
 また、従来の酸化チタン光触媒は紫外線が必要なため、紫外線の少ない室内では機能が充分に発揮できず、室内用途への応用はなかなか進まなかったが、本発明においては、光触媒として遷移金属化合物担持酸化チタン粒子を使用するので、紫外線域から可視光線域までの広い波長範囲に応答性を有し、太陽光や白熱灯、蛍光灯等の通常の生活空間における光を吸収して、高い触媒活性を発揮することができるため、室内等の低照度環境でも高いガス分解性能や抗菌作用を示し、室内の壁紙や家具をはじめ家庭内や病院、学校等の公共施設内での環境浄化、家電製品の高機能化等、広範囲への応用が可能である。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。
 調製例1
(粗酸化チタン水分散液の調製)
 室温(25℃)にて、四塩化チタン水溶液(Ti濃度:16.5重量%±0.5重量%、塩素イオン濃度:31重量%±2重量%、東邦チタニウム(株)製)をTi濃度が5.6重量%になるように純水で希釈した。希釈後の四塩化チタン水溶液5650gを容量10Lのタンタルライニングのオートクレーブに入れ密閉した。熱媒を用い、2時間かけて上記オートクレーブ内温度を140℃まで昇温した。その後、撹拌しつつ、温度:140℃、圧力:その温度における蒸気圧の条件下で10時間保持した後、熱媒を冷却することによりオートクレーブを冷却した。オートクレーブ内温度が40℃以下になったことを確認して、粗酸化チタン水分散液5650gを取り出した。
 (クロスフロー方式による膜濾過処理(1))
 得られた粗酸化チタン水分散液を、中空糸型限外濾過膜(商品名「FS03-FC-FUS03C1」、材質:PES、公称分画分子量:3万、ダイセン・メンブレン・システムズ(株)製)を用い、室温(25℃)、濾過圧力0.02MPaにて、透過液量と同量の純水を加えながらクロスフロー方式による濾過処理を行うことにより、酸化チタン水分散液を得た。酸化チタン水分散液の一部を常圧下、105℃で1時間乾燥したところ、(110)(111)面を有する棒状ルチル型酸化チタンと、(110)(111)(001)面を有する棒状ルチル型酸化チタンの混合物であった。
 (鉄化合物担持処理)
 上記で得られた酸化チタン水分散液に塩化鉄水溶液(35重量%)7.5gを添加し、室温(25℃)にて30分撹拌した。その後、メタノール95g(酸化チタン水分散液の1.7重量%)を添加し、100Wの高圧水銀ランプを用いて紫外線(UV)を3時間照射して(UV照射量:5mW/cm2)、粗鉄化合物担持酸化チタン水分散液を得た。
 (クロスフロー方式による膜濾過処理(2))
 粗鉄化合物担持酸化チタン水分散液を、中空糸型限外濾過膜(商品名「FS03-FC-FUS03C1」、材質:PES、公称分画分子量:3万、ダイセン・メンブレン・システムズ(株)製)を用い、室温(25℃)、濾過圧力0.02MPaにて、透過液量と同量の純水を加えながらクロスフロー方式による濾過処理を行い、精製鉄化合物担持酸化チタン水分散液を得た。
 得られた精製鉄化合物担持酸化チタン水分散液の一部を、常圧下、105℃で1時間乾燥して、鉄化合物担持酸化チタン(比表面積:78m2/g、平均アスペクト比:3)を得た。得られた鉄化合物担持酸化チタンの鉄化合物の含有量は830ppmであった。また、得られた鉄化合物担持酸化チタンは、(110)(111)面を有し、前記(111)面に鉄化合物が担持された棒状ルチル型酸化チタンと、(110)(111)(001)面を有し、前記(001)(111)面に鉄化合物が担持された棒状ルチル型酸化チタンの混合物であった。
 実施例1
 (酸化チタン分散液の調製)
 調製例1で得られた精製鉄化合物担持酸化チタン水分散液(鉄化合物担持酸化チタンの濃度:10重量%)200gに、ポリアクリル酸ナトリウム水溶液(商品名「アロンT-50」、固形分43重量%、ポリアクリル酸ナトリウムの重量平均分子量:6000、東亞合成社製)10g、イオン交換水190gを加え、湿式媒体撹拌ミル(商品名「ウルトラアペックスミル UAM-015」、寿工業社製)を用いて分散させ、鉄化合物担持酸化チタン濃度5重量%の酸化チタンゾル(酸化チタン分散液)を得た。
 (酸化チタン塗布液の調製)
 この酸化チタンゾルに、さらに、バインダーとしての過酸化チタンの水溶液(商品名「ティオスカイコートC」、(株)ティオテクノ製、過酸化チタン濃度:1重量%)170gを加えて混合し、酸化チタン塗布液(1)(光触媒塗布液)[鉄化合物担持酸化チタン/過酸化チタン(重量比)=12/1]を調製した。
 (光触媒塗膜の調製)
 スプレーコート法により、得られた酸化チタン塗布液(1)をガラス板上に塗布量(乾燥重量)が1.5g/m2になるように塗布して、光触媒塗膜(1)を得た(膜厚:1μm)。得られた光触媒塗膜(1)について、以下の評価試験を行った。
(1)VOC分解試験
 光触媒塗膜(1)に光照射することで気相中のVOCであるメチルメルカプタンを分解させ、その分解量から光触媒性能を評価した。
 光触媒塗膜(1)5cm×10cmを反応容器(テドラーバッグ、材質:フッ化ビニル樹脂)の中に入れ、70ppmのメチルメルカプタンガス1Lを反応容器内に吹き込み、室温(25℃)で光照射(蛍光灯1000ルクス)を行った。光照射開始から24時間後の反応容器中のメチルメルカプタン残量を炎光光度検出器付きガスクロマトグラフ(商品名「GC-2010」、島津製作所製)を使用して測定し、初期濃度との差から分解量(%)を算出した。その結果、メチルメルカプタンの24時間後の分解量(%)は100%であった。
(2)塗膜表面硬度
 光触媒塗膜(1)の表面硬度を鉛筆硬度計(日本理学工業製)を用いて評価した。評価基準は、JIS5600-5-4に従った。その結果、鉛筆硬度HBであった。
(3)塗膜密着性
 光触媒塗膜(1)のガラス板との密着性をクロスカット法により評価した。評価基準は、JIS5600-5-6に従った。その結果、剥がれはほとんど見られなかった(JIS5600-5-6における分類0に相当)。
(4)塗膜透明性
 光触媒塗膜(1)の透明性をヘーズメーター(商品名「NDH5000W」、日本電色工業製)を用いて、曇り度(ヘーズ)、全光線透過率値により評価した。その結果、曇り度が43%、全光線透過率は84%であった。
 実施例2
 (酸化チタン塗布液の調製)
 室温(25℃)にて、調製例1で得られた精製鉄化合物担持酸化チタン水分散液(鉄化合物担持酸化チタンの濃度:10重量%)500gに、ポリアクリル酸ナトリウム水溶液(商品名「ノプコスパース44C」、固形分40重量%、サンノプコ(株)製)5.87gを加え、湿式媒体撹拌ミル(商品名「ウルトラアペックスミル UAM-015」、寿工業社製)を用いて分散させ、鉄化合物担持酸化チタン濃度9.9重量%の酸化チタンゾルを得た。この酸化チタンゾルに、さらに、イオン交換水14.4g、バインダーとしての過酸化チタンの水溶液(商品名「ティオスカイコートC」、(株)ティオテクノ製、過酸化チタン濃度:1重量%)8.5gを加えて混合し、酸化チタン塗布液(2)(光触媒塗布液)[鉄化合物担持酸化チタン/過酸化チタン(重量比)=8/1]を調製した。
 (光触媒塗膜の調製)
 スプレーコート法により、得られた酸化チタン塗布液(2)をガラス板上に塗布量(乾燥重量)が1.5g/m2になるように塗布して、光触媒塗膜(2)を得た(膜厚:1μm)。得られた光触媒塗膜(2)について、以下の評価試験を行った。
(1)VOC分解試験
 光触媒塗膜(2)に光照射することで気相中のVOCであるアセトアルデヒドを分解させ、その分解量から光触媒性能を評価した。
 光触媒塗膜(2)5cm×10cmを反応容器(スマートバッグ、材質:フッ化ビニリデン樹脂)の中に入れ、16ppmのアセトアルデヒドガス1Lを反応容器内に吹き込み、室温(25℃)で光照射(蛍光灯6000ルクス)を行った。光照射開始から24時間後の反応容器中のアセトアルデヒド残量を水素炎イオン化検出器付きガスクロマトグラフ(商品名「GC-14B」、島津製作所製)を使用して測定し、初期濃度との差から分解量(%)を算出した。その結果、アセトアルデヒドの24時間後の分解量(%)は100%であった。
 比較例1
 調製例1で得られた精製鉄化合物担持酸化チタン水分散液(鉄化合物担持酸化チタンの濃度:10重量%)200gに、イオン交換水200gを加え、湿式媒体撹拌ミル(商品名「ウルトラアペックスミル UAM-015」、寿工業社製)を用いて分散させ、鉄化合物担持酸化チタン濃度5重量%の酸化チタンゾルを得た。この酸化チタンゾルに、さらに、バインダーとしての過酸化チタンの水溶液(商品名「ティオスカイコートC」、(株)ティオテクノ製、過酸化チタン濃度:1重量%)170gを加えて混合し、酸化チタン塗布液(3)(光触媒塗布液)[鉄化合物担持酸化チタン/過酸化チタン(重量比)=12/1]を調製した。しかし、しばらくすると、鉄化合物担持酸化チタン粒子同士が凝集した凝集物が見られるとともに、透明性も低下した。
 本発明の酸化チタン分散液は、多量の過酸化水素水に高温で溶解させなくても、室温付近で、しかも中性に近い領域で簡易に調製することができ、分散安定性に優れ、長期間に亘って高分散状態を維持することができる。また、酸化チタン光触媒が分散剤を分解して本来の光触媒性能が発現するまでの待機時間を短くすることができ、光触媒性能の即効性を担保することができる。また、前記酸化チタン分散液を含有する本発明の酸化チタン塗布液は、中性に近い領域で調製することができ、汎用性に優れる。しかも、分散性及び分散安定性が高く、塗工性に優れる。

Claims (10)

  1.  遷移金属化合物担持酸化チタン粒子(A)、ポリアクリル酸又はその塩からなる分散剤(B)、及び溶媒(C)を含む酸化チタン分散液。
  2.  分散剤(B)におけるポリアクリル酸又はその塩がポリアクリル酸アルカリ金属塩である請求項1に記載の酸化チタン分散液。
  3.  分散剤(B)におけるポリアクリル酸又はその塩の重量平均分子量が1000~100000の範囲内である請求項1又は2に記載の酸化チタン分散液。
  4.  遷移金属化合物担持酸化チタン粒子(A)が、鉄化合物担持酸化チタン粒子である請求項1~3の何れか1項に記載の酸化チタン分散液。
  5.  遷移金属化合物担持酸化チタン粒子(A)が、酸化チタン粒子の酸化反応面に遷移金属化合物を担持する粒子である請求項1~4の何れか1項に記載の酸化チタン分散液。
  6.  遷移金属化合物担持酸化チタン粒子(A)における酸化チタン粒子が、ルチル型酸化チタン粒子である請求項1~5の何れか1項に記載の酸化チタン分散液。
  7.  請求項1~6の何れか1項に記載の酸化チタン分散液と、過酸化チタン、ケイ素系化合物、及びフッ素系樹脂から選択される少なくとも1種のバインダー成分(D)を含む酸化チタン塗布液。
  8.  バインダー成分(D)が過酸化チタンを少なくとも含有する請求項7記載の酸化チタン塗布液。
  9.  請求項7又は8に記載の酸化チタン塗布液を用いて形成された光触媒塗膜。
  10.  基材の表面に請求項9記載の光触媒塗膜が設けられた光触媒塗装体。
PCT/JP2014/055741 2013-03-15 2014-03-06 酸化チタン分散液、酸化チタン塗布液、及び光触媒塗膜 WO2014141992A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020157023900A KR102180235B1 (ko) 2013-03-15 2014-03-06 산화티타늄 분산액, 산화티타늄 도포액 및 광촉매 도막
JP2015505431A JP6231550B2 (ja) 2013-03-15 2014-03-06 酸化チタン分散液、酸化チタン塗布液、及び光触媒塗膜
EP14764090.8A EP2974793A4 (en) 2013-03-15 2014-03-06 LIQUID TITANIUM OXIDE DISPERSION, TITANIUM OXIDE LIQUID COATING, AND PHOTOCATALYST COATING FILM
US14/769,211 US9440221B2 (en) 2013-03-15 2014-03-06 Titanium oxide dispersion liquid, titanium oxide coating liquid, and photocatalyst coating film
CN201480015735.XA CN105073258A (zh) 2013-03-15 2014-03-06 氧化钛分散液、氧化钛涂布液及光催化剂涂膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013053082 2013-03-15
JP2013-053082 2013-03-15

Publications (1)

Publication Number Publication Date
WO2014141992A1 true WO2014141992A1 (ja) 2014-09-18

Family

ID=51536656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055741 WO2014141992A1 (ja) 2013-03-15 2014-03-06 酸化チタン分散液、酸化チタン塗布液、及び光触媒塗膜

Country Status (7)

Country Link
US (1) US9440221B2 (ja)
EP (1) EP2974793A4 (ja)
JP (1) JP6231550B2 (ja)
KR (1) KR102180235B1 (ja)
CN (1) CN105073258A (ja)
TW (1) TWI617350B (ja)
WO (1) WO2014141992A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020084072A (ja) * 2018-11-28 2020-06-04 東洋インキScホールディングス株式会社 顔料分散体、およびインクジェット用インク
CN113231106A (zh) * 2021-05-11 2021-08-10 浙江理工大学 一种将二氧化钛纳米花负载于涤纶纤维上的制备方法
JP6925669B1 (ja) * 2020-08-06 2021-08-25 Fkk株式会社 照明装置、便器および便座装置
JP2021154233A (ja) * 2020-03-27 2021-10-07 大阪瓦斯株式会社 金属ナノ粒子担持チタニアナノ粒子及びそれを用いた光触媒
WO2024106401A1 (ja) * 2022-11-16 2024-05-23 日揮触媒化成株式会社 酸化チタン粒子、分散液、塗膜形成用塗布液、塗膜および塗膜付基材

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUA20162473A1 (it) * 2016-04-11 2017-10-11 Noka S R L Sistema per illuminare ambienti e purificarne l’aria mediante fotocatalisi
CN106010057A (zh) * 2016-06-29 2016-10-12 季红军 一种除甲醛涂料的制备方法
JP6010718B1 (ja) * 2016-07-01 2016-10-19 株式会社ダイセル 鉄化合物担持酸化チタン光触媒
EP3486399B1 (en) * 2016-07-14 2021-03-17 Shin-Etsu Chemical Co., Ltd. Interior material having surface layer having visible light-responsive photocatalytic activity, and method for manufacturing same
JP6807629B2 (ja) * 2016-11-17 2021-01-06 株式会社ダイセル 鉄化合物担持酸化チタン光触媒
CN107649108B (zh) * 2017-09-26 2020-02-14 大连交通大学 一种可见光光触媒及其制备方法
JP7326683B2 (ja) * 2019-09-18 2023-08-16 株式会社Screenホールディングス 顔料組成物、化粧品組成物及びインクジェット用インク組成物
JP6963202B1 (ja) * 2019-11-29 2021-11-05 石原産業株式会社 二酸化チタン微粒子の有機溶剤分散体及びその製造方法、並びにその用途
CN112812640A (zh) * 2021-01-14 2021-05-18 浙江枫翎环保科技有限公司 一种光催化抗菌抗病毒除甲醛除异味清漆
JP2022136674A (ja) * 2021-03-08 2022-09-21 シャープ株式会社 光触媒塗布液、光触媒スプレー、光触媒コーティング方法及び光触媒被覆物

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11188270A (ja) * 1997-12-26 1999-07-13 Catalysts & Chem Ind Co Ltd 光触媒活性を有する透明被膜形成用塗布液および透明被膜付基材
JP2004143453A (ja) * 2002-10-02 2004-05-20 Mitsubishi Materials Corp 光触媒塗料及びその製造方法並びに該塗料を塗布して得られた光触媒機能を有する光触媒塗膜、多層光触媒塗膜
WO2004087577A1 (ja) * 2003-03-31 2004-10-14 Toto Ltd. 表面改質二酸化チタン微粒子とその分散液、およびその製造方法
JP2005194176A (ja) * 2003-12-09 2005-07-21 Inoac Corp 炭素球状粒子およびその製造方法
JP2005314409A (ja) * 2004-03-31 2005-11-10 Toto Ltd 分子識別能を有する二酸化チタン複合体を含む分散液
JP2007252987A (ja) 2006-03-20 2007-10-04 Fujifilm Corp 無機微粒子及びその製造方法
WO2007125998A1 (ja) * 2006-04-28 2007-11-08 Ishihara Sangyo Kaisha, Ltd. 光触媒及びその製造方法並びにそれを用いた光触媒コート剤、光触媒分散体、光触媒体
JP2009056348A (ja) 2007-08-30 2009-03-19 Sumitomo Chemical Co Ltd 光触媒分散液
JP2009114030A (ja) * 2007-11-07 2009-05-28 Bridgestone Corp 光触媒コーティング剤用バインダー及びその製造方法、光触媒コーティング剤及びその製造方法
JP2009227515A (ja) * 2008-03-24 2009-10-08 Teruhisa Yokono 酸化チタン粒子の製造方法及び酸化チタン粒子
JP2010222444A (ja) 2009-03-23 2010-10-07 Sekisui Plastics Co Ltd 球状複合粒子、その製造方法及びそれを含む化粧料

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8829402D0 (en) * 1988-12-16 1989-02-01 Tioxide Group Plc Dispersion
CN100497181C (zh) * 2003-03-31 2009-06-10 Toto株式会社 表面改性二氧化钛微粒和其分散液及其制备方法
CN1281308C (zh) * 2004-06-14 2006-10-25 深圳清华大学研究院 一种光催化液及其制备工艺
JP4523344B2 (ja) * 2004-06-16 2010-08-11 東邦チタニウム株式会社 酸化チタン分散体の製造方法
TW200706247A (en) * 2005-02-15 2007-02-16 Mitsui Chemicals Inc Photo catalyst with a silicon oxide coverage and manufacturing method therefor
WO2007105705A1 (ja) * 2006-03-14 2007-09-20 Ishihara Sangyo Kaisha, Ltd. 可視光応答型光触媒及びその製造方法並びにそれを用いた光触媒コート剤、光触媒分散体
JP2009091345A (ja) * 2007-02-08 2009-04-30 Toto Ltd 酸化チタン機能性分子複合体粒子
CN101418151B (zh) * 2008-12-12 2011-04-27 南京工业大学 具有高效抗菌和空气净化功能的纳米介孔二氧化钛涂料
JP2011020033A (ja) * 2009-07-14 2011-02-03 Ishihara Sangyo Kaisha Ltd 可視光応答型光触媒およびその製造方法並びにそれを用いた光触媒コート剤、光触媒分散体
JP5461099B2 (ja) * 2009-08-05 2014-04-02 株式会社ダイセル 新規な露出結晶面を有するルチル型二酸化チタンナノ粒子とその製造方法
JP5591683B2 (ja) * 2010-01-09 2014-09-17 株式会社ダイセル 露出結晶面を有する金属イオン担持酸化チタン粒子及びその製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11188270A (ja) * 1997-12-26 1999-07-13 Catalysts & Chem Ind Co Ltd 光触媒活性を有する透明被膜形成用塗布液および透明被膜付基材
JP3755852B2 (ja) 1997-12-26 2006-03-15 触媒化成工業株式会社 光触媒活性を有する透明被膜形成用塗布液および透明被膜付基材
JP2004143453A (ja) * 2002-10-02 2004-05-20 Mitsubishi Materials Corp 光触媒塗料及びその製造方法並びに該塗料を塗布して得られた光触媒機能を有する光触媒塗膜、多層光触媒塗膜
WO2004087577A1 (ja) * 2003-03-31 2004-10-14 Toto Ltd. 表面改質二酸化チタン微粒子とその分散液、およびその製造方法
JP2005194176A (ja) * 2003-12-09 2005-07-21 Inoac Corp 炭素球状粒子およびその製造方法
JP2005314409A (ja) * 2004-03-31 2005-11-10 Toto Ltd 分子識別能を有する二酸化チタン複合体を含む分散液
JP2007252987A (ja) 2006-03-20 2007-10-04 Fujifilm Corp 無機微粒子及びその製造方法
WO2007125998A1 (ja) * 2006-04-28 2007-11-08 Ishihara Sangyo Kaisha, Ltd. 光触媒及びその製造方法並びにそれを用いた光触媒コート剤、光触媒分散体、光触媒体
JP2009056348A (ja) 2007-08-30 2009-03-19 Sumitomo Chemical Co Ltd 光触媒分散液
JP2009114030A (ja) * 2007-11-07 2009-05-28 Bridgestone Corp 光触媒コーティング剤用バインダー及びその製造方法、光触媒コーティング剤及びその製造方法
JP2009227515A (ja) * 2008-03-24 2009-10-08 Teruhisa Yokono 酸化チタン粒子の製造方法及び酸化チタン粒子
JP2010222444A (ja) 2009-03-23 2010-10-07 Sekisui Plastics Co Ltd 球状複合粒子、その製造方法及びそれを含む化粧料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2974793A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020084072A (ja) * 2018-11-28 2020-06-04 東洋インキScホールディングス株式会社 顔料分散体、およびインクジェット用インク
JP7263744B2 (ja) 2018-11-28 2023-04-25 東洋インキScホールディングス株式会社 顔料分散体、およびインクジェット用インク
JP2021154233A (ja) * 2020-03-27 2021-10-07 大阪瓦斯株式会社 金属ナノ粒子担持チタニアナノ粒子及びそれを用いた光触媒
JP7539780B2 (ja) 2020-03-27 2024-08-26 大阪瓦斯株式会社 金属ナノ粒子担持チタニアナノ粒子及びそれを用いた光触媒
JP6925669B1 (ja) * 2020-08-06 2021-08-25 Fkk株式会社 照明装置、便器および便座装置
JP2022031077A (ja) * 2020-08-06 2022-02-18 Fkk株式会社 照明装置、便器および便座装置
CN113231106A (zh) * 2021-05-11 2021-08-10 浙江理工大学 一种将二氧化钛纳米花负载于涤纶纤维上的制备方法
WO2024106401A1 (ja) * 2022-11-16 2024-05-23 日揮触媒化成株式会社 酸化チタン粒子、分散液、塗膜形成用塗布液、塗膜および塗膜付基材

Also Published As

Publication number Publication date
TW201442780A (zh) 2014-11-16
US20160001266A1 (en) 2016-01-07
KR102180235B1 (ko) 2020-11-18
TWI617350B (zh) 2018-03-11
KR20150126842A (ko) 2015-11-13
EP2974793A4 (en) 2016-11-30
EP2974793A1 (en) 2016-01-20
US9440221B2 (en) 2016-09-13
JPWO2014141992A1 (ja) 2017-02-16
CN105073258A (zh) 2015-11-18
JP6231550B2 (ja) 2017-11-15

Similar Documents

Publication Publication Date Title
JP6231550B2 (ja) 酸化チタン分散液、酸化チタン塗布液、及び光触媒塗膜
JP6053676B2 (ja) 光触媒塗膜、及びその製造方法
JP2012250134A (ja) 光触媒塗装体およびそのための光触媒コーティング液
JP3291563B2 (ja) 光触媒塗料とその製造方法および用途
TWI627999B (zh) Titanium oxide carrying a transition metal compound
JP6143168B2 (ja) 光触媒塗布体
JP6010718B1 (ja) 鉄化合物担持酸化チタン光触媒
TW201420183A (zh) 載有過渡金屬化合物之氧化鈦懸浮液
JP2014177384A (ja) 酸化チタン分散液、酸化チタン塗布液、及び光触媒塗膜
JP2016150329A (ja) 光触媒層を有する有機系基材
JP2009263651A (ja) 光触媒コーティング組成物
JP5209009B2 (ja) 光触媒体、および光触媒分散体
JP2006136782A (ja) 光触媒アルミニウム部材
JP5919019B2 (ja) 可視光応答型光触媒部材及び装置
JP5869846B2 (ja) 酸化チタン塗布液
JP2010005610A (ja) 光触媒塗装体
JP2008043848A (ja) 光半導体微粒子
JP2005137977A (ja) 透明光触媒層形成組成物
JP2004263182A (ja) 防汚被覆用組成物
JP2011079980A (ja) 外構および外構用コーティング液
JP2004002091A (ja) 変性チタニアゾル組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480015735.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14764090

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015505431

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14769211

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157023900

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014764090

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014764090

Country of ref document: EP