WO2004087577A1 - 表面改質二酸化チタン微粒子とその分散液、およびその製造方法 - Google Patents

表面改質二酸化チタン微粒子とその分散液、およびその製造方法 Download PDF

Info

Publication number
WO2004087577A1
WO2004087577A1 PCT/JP2004/004635 JP2004004635W WO2004087577A1 WO 2004087577 A1 WO2004087577 A1 WO 2004087577A1 JP 2004004635 W JP2004004635 W JP 2004004635W WO 2004087577 A1 WO2004087577 A1 WO 2004087577A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium dioxide
fine particles
modified titanium
dioxide fine
modified
Prior art date
Application number
PCT/JP2004/004635
Other languages
English (en)
French (fr)
Inventor
Shuji Sonezaki
Toshiaki Banzai
Koki Kanehira
Shinichi Yagi
Yumi Ogami
Original Assignee
Toto Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd. filed Critical Toto Ltd.
Priority to US10/551,071 priority Critical patent/US20060264520A1/en
Priority to EP04724741A priority patent/EP1630136B1/en
Priority to AU2004226052A priority patent/AU2004226052B2/en
Priority to JP2005504273A priority patent/JP3775432B2/ja
Publication of WO2004087577A1 publication Critical patent/WO2004087577A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0081Composite particulate pigments or fillers, i.e. containing at least two solid phases, except those consisting of coated particles of one compound
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3676Treatment with macro-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Definitions

  • the present invention provides surface-modified titanium dioxide fine particles in which the surface of titanium dioxide is modified with a hydrophilic polymer having a carboxyl group, wherein the carboxyl group of the hydrophilic polymer and titanium dioxide are bonded by an ester bond.
  • the present invention relates to a surface-modified titanium dioxide fine particle, a dispersion thereof, and a method for producing the same. Background art
  • the isoelectric point of titanium dioxide is said to be around pH 6, so that titanium dioxide particles aggregate in an aqueous solvent near neutrality, making it extremely difficult to disperse them uniformly. . Therefore, various attempts have been made to date to uniformly disperse the titanium dioxide particles in an aqueous dispersion medium.
  • a nitric acid-oxidized titanium dioxide sol has been proposed in which a precipitate of titanium hydroxide is formed from titanium isopropoxide and peptized at high temperature under nitric acidity (eg, Chr i stophe, Barbeb: Journal).
  • H10-667516 by dispersing and stabilizing the titanium dioxide particles under a strong force by coating the surface of the particles with a porous silicon force.
  • a method for obtaining a dispersion of composite titanium dioxide fine particles for example, see Japanese Patent Application Laid-Open No. 11-13977
  • a method for improving dispersibility by containing a polycarboxylic acid or a salt thereof as a dispersant for example, a method of obtaining an aqueous solution of titanium dioxide (see, for example, Japanese Patent Application Laid-Open No. H02-212123) has been proposed.
  • particles in which a magnetic material and titanium dioxide are combined have been proposed.
  • particles having a surface coated with titanium alkoxide dissolved in an organic solvent using iron powder as a carrier see, for example, Japanese Patent Application Laid-Open No. H09-29980
  • iron oxide / silicone carrier Preparation of magnetic material and titanium dioxide composite particles by directly depositing amorphous or crystalline titanium dioxide by high temperature treatment (eg. Watson, Beydoun et al .: Journal of Photochemistry and Photobio Iogy A: Chemistry, 148, 303-313 (2002)).
  • the dispersant may be decomposed by the activity of the photocatalyst, and on the contrary, the activity of the photocatalyst may decrease.
  • problems such as aggregation and precipitation. Similar phenomena also occurred in composite particles with the above-mentioned magnetic material in which titanium dioxide was present on a part of the surface, and reagglomeration and sedimentation had become a problem.
  • titanium dioxide having a strong photoactivity resolution to a drug delivery system (DDS)
  • DDS drug delivery system
  • metal particles such as gold carrying titanium dioxide are shot into target cancer cells and taken in, and then irradiated with light such as ultraviolet rays to kill the cancer cells.
  • light such as ultraviolet rays to kill the cancer cells.
  • the activation of titanium dioxide can be controlled by turning light on and off, so its application to DDS for cancer treatment and the like is expected.
  • titanium dioxide is around pH 6 as described above. Under physiological conditions near neutrality, titanium dioxide particles still have a problem. For this reason, it has not been possible to directly administer the titanium dioxide dispersion as an injection solution into a blood vessel or use titanium dioxide particles as they are as a carrier for DDS. Disclosure of the invention
  • the present inventors have conducted intensive studies in order to solve the above-mentioned problems, and chemically modified a hydrophilic polymer on the surface of titanium dioxide fine particles to modify the surface.
  • the present inventors have found that the dispersibility in an aqueous solvent is extremely good even in the H region, and have completed the present invention. That is, the surface-modified titanium dioxide fine particles of the present invention have a hydrophilic polymer through an ester bond on the surface thereof, and are extremely good even in an aqueous solvent having a wide pH range as well as near neutrality. It shows excellent dispersibility.
  • a dispersion of surface-modified titanium dioxide particles utilizing this characteristic can be used as a solvent with various pH buffers containing water or salt, and is a stable dispersion having extremely good dispersibility.
  • the method for producing the surface-modified titanium dioxide fine particles of the present invention comprises mixing a titanium dioxide particle dispersion of 2 to 200 nm and a water-soluble polymer solution. The mixture is heated at 80 to 220 ° C. It is characterized by purifying surface-modified titanium dioxide particles by removing unbound water-soluble polymers after ester-bonding both.
  • the resulting surface-modified titanium dioxide fine particles of the present invention can be dispersed in an aqueous solvent not only neutral but also in a wide pH range, and are extremely stable against pH fluctuation and salt addition. It is.
  • it is easy to form a composite with other functional substances it is effective for producing particles having a new function.
  • the surface-modified titanium dioxide fine particles of the present invention are directly introduced into a lesion in the body and irradiated with light such as ultraviolet rays, so that cancer tissue and the like can be efficiently destroyed because aggregation does not occur.
  • various organic substances and microorganisms can be decomposed by irradiating ultraviolet rays or sunlight to induce a redox effect of the photocatalytic ability.
  • FIG. 1 is a schematic view showing the surface-modified titanium dioxide fine particles of the present invention.
  • FIG. 2 shows the photocatalytic activity of the surface-modified titanium dioxide fine particles of the present invention (methylenebutane).
  • FIG. 6 is a diagram showing the results of measurement of the absorbance due to the decomposition of roux (displayed as a decrease in absorbance).
  • ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ represent the polyacrylic acid-bound titanium dioxide fine particles (anatase type) prepared in Examples 1 to 5, respectively.
  • FIG. 3 is a graph showing the cell killing of cancer cells by the photocatalytic activity of the surface-modified titanium dioxide particles of the present invention.
  • FIG. 1 is a schematic view showing the surface-modified titanium dioxide fine particles of the present invention.
  • the surface-modified titanium dioxide fine particles 1 of the present invention have a hydrophilic polymer 2 on the surface of titanium dioxide fine particles, and the carboxyl group of the hydrophilic polymer 2 and titanium dioxide are bonded by an ester bond. It is assumed that. In other words, the titanium dioxide on the surface of the titanium dioxide fine particles 1 is hydrated by water in the reaction system to form hydroxyl groups, and the hydroxyl groups react with the carboxyl groups of the hydrophilic polymer to form ester bonds.
  • Ru can be applied various analytical methods, for example by infrared spectroscopy in the presence or absence of the infrared absorption of 1 7 0 0 ⁇ 1 8 0 0 cm _ 1 near the absorption bands of the ester bond It is possible to confirm.
  • the isoelectric point of the surface-modified titanium dioxide particles becomes close to the isoelectric point (pH 2.8 to 2.9) of the carboxyl residue of the hydrophilic polymer, Even in a solvent, an electric repulsion acts between the particles, so that the particles exhibit good dispersibility.
  • the titanium dioxide particles used in the present invention may have an anadase type or a rutile type crystal system. This is because even if the crystal systems are different, the surface modification is possible if the chemical properties of hydration and generation of hydroxyl groups are the same. If a strong photocatalytic activity is desired, the anatase type can be suitably selected, and if a property such as a high refractive index such as a cosmetic is desired, the rutile type can be suitably selected. For the same reason, not only single titanium dioxide particles but also composite titanium dioxide particles composed of titanium dioxide and a magnetic material are preferably used. Further, from the viewpoint of the degree of freedom of the form of use, it is desirable that these dispersed particle diameters are 2 to 200 nm. This is because when the particle size is larger than 200 n, the effect of the gravity acting on the fine particles increases, and the particles are more likely to settle.
  • the surface-modified titanium dioxide fine particles of the present invention are characterized in that the hydrophilic polymer is a water-soluble high molecule.
  • the hydrophilic polymer is a water-soluble high molecule.
  • a water-soluble polymer is preferable as the hydrophilic polymer used in the present invention. That's why.
  • Any water-soluble polymer having a plurality of carboxyl groups can be used.Examples include carboxymethyl starch, carboxymethyl dextran, carboxymethyl cellulose, polycarboxylic acids, and copolymers having a carboxyl group unit. (Copolymer) and the like.
  • a copolymer of polycarboxylic acids such as polyacrylic acid and polymaleic acid
  • a copolymer of acrylic acid / maleic acid / acrylic acid / nosulfonate monomer Is more preferably used.
  • the dispersion liquid of the surface-modified titanium dioxide particles of the present invention is characterized in that the surface-modified titanium dioxide particles are dispersed in an aqueous solvent. This is because, in an aqueous dispersion medium, the protons of the carboxyl residues present on the surface of the surface-modified titanium dioxide fine particles are in a dissociated state. By being stable for a long time without doing Moreover, it is basically extremely stable against pH fluctuation and addition of inorganic salts. Further, the isoelectric point of the surface-modified titanium dioxide fine particles of the present invention is determined by the carboxyl residue of the hydrophilic polymer. Is near the isoelectric point (PH 2.8 to 2.9).
  • Suitable buffers that can be used here include glycine buffer, acetate buffer, phosphate buffer (including PBS), carbonate buffer, pine quinbaine buffer, good buffer, boric acid. Buffers and the like can be mentioned. The ability to use near neutral buffers is extremely advantageous for applications in the biotechnology and pharmaceutical and medical fields.
  • the carboxyl group / titanium dioxide content ratio (m 0 I / g) of the surface-modified titanium dioxide fine particles in the dispersion varies depending on the reaction conditions, but is generally about 2 ⁇ 1 0 3 or more at which the is not preferable.
  • the method for producing surface-modified titanium dioxide fine particles of the present invention comprises: (1) a step of dispersing a titanium dioxide sol in a solvent in a reaction of binding a hydrophilic polymer to the surface of titanium dioxide fine particles; (3) a step of mixing these dispersions, (4) a step of heating this mixture, and (5) a step of dissolving the surface-modified titanium dioxide fine particles. It is characterized by comprising a step of separating the hydrophilic polymer and a step of purifying the surface-modified titanium dioxide fine particles.
  • the solvent used in (1) and (2) is preferably a solvent that can dissolve both the titanium dioxide sol and the hydrophilic polymer. This is because, when titanium dioxide aggregates in a solvent, the surface area where a binding reaction with a hydrophilic polymer can occur is reduced, so that the dispersion particle diameter in an aqueous solvent after the reaction is increased and the dispersibility is also deteriorated. is there. Further, a solvent having reactivity with the surface of the titanium dioxide particles is not suitable as the solvent used here.
  • alcohols containing a hydroxyl group form an ether bond with the surface of the titanium dioxide particles when heated, and thus inhibit the bonding reaction with the desired hydrophilic polymer.
  • the surface characteristics of the titanium dioxide particles depend on the characteristics of the alcohol used, and the dispersibility of the titanium dioxide particles in an aqueous dispersion medium is significantly reduced.
  • the solvent used in the present invention is preferably a non-protonic polar solvent such as dimethylformamide, dioxane, or dimethylsulfoxide from the above-mentioned reactivity point of view, but from the viewpoint of the volatility of the solvent. More preferably, dimethylformamide is used.
  • a titanium dioxide dispersion of the solvent and a hydrophilic polymer dispersion are mixed and stirred to prepare a dispersion in which titanium dioxide and the hydrophilic polymer are uniformly dispersed.
  • a hydrophilic polymer is directly added to the titanium dioxide dispersion, aggregation of the titanium dioxide may be caused. Therefore, it is preferable that each dispersion is prepared and then mixed.
  • the mixed solution is heated to perform a binding reaction.
  • the reaction proceeds without applying pressure.
  • polyacrylic acid plain
  • the final concentration of polyacrylic acid is preferably set to 0.4 mg ZmI or more in order to improve the dispersibility.
  • the heating temperature is 80 to 220 ° C.
  • the heating temperature is 80 ° less than a C dispersibility in an aqueous solvent bonding of the hydrophilic polymer is lowered is lowered.
  • the reaction is performed under pressure, if the heating temperature exceeds 220 ° C., it is unsuitable due to the problem of the tightness of the reaction vessel.
  • the reaction proceeds at a temperature equal to or higher than the boiling point of water, the titanium dioxide aggregates when the water contained in the titanium dioxide sol is completely volatilized out of the reaction system. Is desirable.
  • the water content in the reaction solution is too high, the reaction may be adversely affected. Therefore, the water content in the reaction solution depends on the reaction conditions, but is preferably approximately 4% or less.
  • the generated surface-modified titanium dioxide fine particles and the unbound hydrophilic polymer are separated.
  • a dialysis method, an ultrafiltration method, a gel filtration chromatography method, a precipitation method, or the like can be suitably used, but when the separation is performed by a dialysis method or an ultrafiltration method, the hydrophilicity used is high. It is necessary to use a dialysis or ultrafiltration membrane that matches the molecular weight of the molecule. That is, although separation can be performed by any of the above methods, it is desirable to use a precipitation method because of the simplicity of the operation.
  • the precipitation method includes a method using an isoelectric point and a method using salting out. Any of them can be suitably used.
  • the reaction solvent is removed under reduced pressure in an evaporator, water is added, and the mixture is stirred to disperse the surface-modified titanium dioxide fine particles.
  • an inorganic acid is added to the dispersion to lower the pH of the dispersion to 2.8 or less.
  • the surface-modified titanium dioxide loses negative charges on the surface and agglomerates.
  • the hydrophilic polymer that is not bonded to the particles remains in the dispersion without aggregating. It is possible to remove unbound hydrophilic polymer with care.
  • the reaction solution is collected in a separating funnel after completion of the reaction.
  • An organic solvent which separates with water is added, followed by stirring and mixing.
  • the aqueous layer contains the surface-modified titanium dioxide
  • the organic solvent layer contains the non-protonic organic solvent used in the reaction.
  • the precipitated surface-modified titanium dioxide fine particles are washed with water, and then the surface-modified titanium dioxide fine particles are dissolved in an aqueous solvent having a pH of 3 to 13, preferably pH 5 to 12. Suspend.
  • an aqueous solvent having a pH of 3 to 13, preferably pH 5 to 12.
  • water, a desired pH buffer, or an alkaline aqueous solution can be suitably used.
  • the surface-modified titanium dioxide fine particles are uniformly dispersed by stirring or ultrasonic irradiation of this suspension, and then dried after desalting to obtain a dry powder of the surface-modified fine titanium dioxide particles.
  • the ability to produce stable powders that are easy to handle is extremely advantageous when applying surface-modified titanium dioxide fine particles to various uses.
  • composite titanium dioxide fine particles composed of titanium dioxide and a magnetic material
  • the characteristics in a solvent are similar to a single titanium dioxide.
  • the same production method and purification method as described above can be applied. Since the surface-modified composite titanium dioxide fine particles have magnetism, they are extremely useful because they can be easily recovered by a magnet after the treatment, for example, when applied to the decomposition treatment of harmful substances in water.
  • This dispersion was placed in a 100-ml vial, and sonicated at 200 Hz for 30 minutes.
  • the average dispersed particle diameters before and after the ultrasonic treatment were 36.4 nm and 20.2 nm, respectively.
  • the solution was concentrated to prepare a titanium dioxide sol having a solid component of 20%.
  • the resulting titanium dioxide sol, 0-75 mI was dispersed in 20 mI of dimethylformamide (DMF), and polyacrylic acid (average molecular weight: 500,000, Wako Pure Chemical Industries) 0.3 After adding 10 ml of DMF in which g was dissolved, the mixture was stirred and mixed.
  • DMF dimethylformamide
  • polyacrylic acid average molecular weight: 500,000, Wako Pure Chemical Industries
  • the solution was transferred to a hydrothermal reaction vessel (HU-50, San-ai Science), and synthesis was performed at 180 ° C for 6 hours. After the completion of the reaction, the reaction vessel was cooled to a temperature of 50 ° C. or less, and after taking out the solution, 120 ml of water was added and mixed with stirring. After removing DMF and water by evaporation, 20 ml of water was added again to obtain a polyacrylic acid-bound titanium dioxide aqueous solution. Unreacted polyacrylic acid was separated by adding 1 ml of 2N hydrochloric acid to precipitate polyacrylic acid-bound titanium dioxide fine particles and removing the supernatant after centrifugation.
  • a hydrothermal reaction vessel HU-50, San-ai Science
  • Polyacrylic acid-bonded titanium dioxide fine particles were produced in exactly the same manner as in Example 1, except that STS-01 of nitric acid anatase sol (Ishihara Industrial Co., Ltd., solid content: 20%) was used as the titanium dioxide sol.
  • STS-01 of nitric acid anatase sol Ishihara Industrial Co., Ltd., solid content: 20%
  • the dispersion particle diameter of the prepared polyacrylic acid-bound titanium dioxide fine particles was measured and found to be 66.6 nm.
  • the obtained aqueous solution of polyacrylic acid-bound titanium dioxide was desalted with a desalting column PD 10 and then dried at 100 ° C. to obtain polyacrylic acid-bound titanium dioxide fine particles (anatase type).
  • polyacrylic acid-bound titanium dioxide fine particles were synthesized in exactly the same manner as in Example 2 to obtain an aqueous solution of polyacrylic acid-bound titanium dioxide having a solid content of 1.5%. .
  • the dispersion particle size of the prepared polyacrylic acid-bonded titanium dioxide fine particles was measured and found to be 66. 6 nm.
  • the obtained aqueous solution of polyacrylic acid-bound titanium dioxide is desalted with a desalting column PD 10 and then dried at 100 ° C. to obtain polyacrylic acid-bound titanium dioxide fine particles (Anarose type). Got.
  • Polyacrylic acid-bonded titanium dioxide fine particles were synthesized in exactly the same manner as in Example 2 except that the synthesis temperature was set to 130 ° C., to obtain an aqueous solution of polyacrylic acid-bonded titanium dioxide having a solid content of 5.5%. .
  • the dispersion particle size of the prepared polyacrylic acid-bonded titanium dioxide fine particles was measured to be 67.4 nm.
  • the obtained aqueous solution of polyacrylic acid-bound titanium dioxide was desalted with a desalting column PD 10 and dried at 100 ° C. to obtain polyacrylic acid-bound titanium dioxide fine particles (anatase type).
  • Polyacrylic acid-bonded titanium dioxide fine particles were synthesized in exactly the same manner as in Example 2 except that the synthesis temperature was set to 80 ° C., to obtain a 1.5% solid component aqueous solution of polyacrylic acid-bound titanium dioxide.
  • the dispersion particle size of the prepared polyacrylic acid-bonded titanium dioxide fine particles was measured to be 67.9 nm.
  • the obtained aqueous solution of polyacrylic acid-bound titanium dioxide was desalted with a desalting column PD 10 and dried at 100 ° C. to obtain polyacrylic acid-bound titanium dioxide fine particles (anatase type).
  • a mixture of 3.6 g of titanium tetraisopropoxide and 3.6 g of isopropanol was added dropwise to 60 ml of ultrapure water under ice cooling to carry out hydrolysis. After the dropwise addition, the mixture was stirred at room temperature for 30 minutes. After stirring, 12 ml of 1N nitric acid was added dropwise at 80 ° C for 8 hours. The mixture was stirred for a while, and the mixture was subjected to a petition. After completion of the filtration, the solution was filtered through a 0.45 m filter, and the solution was exchanged using a desalting column PD10 to prepare a titanium dioxide sol having a solid content of 1%.
  • This dispersion was placed in a 100 ml vial and sonicated at 200 Hz for 30 minutes.
  • the average dispersed particle diameters before and after sonication were 36.4 nm and 20.2 nm, respectively.
  • the solution was concentrated to prepare a titanium dioxide sol having a solid component of 20%. 0.75 mI of the obtained titanium dioxide sol is dispersed in 20 mI of dimethylformamide (DMF), and 0.3 g of polyacrylic acid (average molecular weight: 500, Wako Pure Chemical Industries) is dissolved. After adding 10 mI of DMF, the mixture was stirred and mixed.
  • DMF dimethylformamide
  • polyacrylic acid average molecular weight: 500, Wako Pure Chemical Industries
  • the solution was transferred to a hydrothermal reactor (HU-50, San-ai Science), and synthesis was performed at 180 ° C for 6 hours. After the completion of the reaction, the reaction vessel was cooled to a temperature of 50 ° C. or lower, and the solution was taken out into a separating funnel. Next, 40 ml of porcine mouth was added, and the mixture was stirred and mixed. Then, the lower layer was removed, and the upper layer was recovered. This step was repeated twice to remove DMF. To 10 ml of this solution was added 10 ml of 1.5 M NaCI and 20% (w / v) polyethylene glycol 600 (Wako Pure Chemical Industries, Ltd.). Removed.
  • This dispersion was placed in a 100 ml vial and sonicated at 200 Hz for 30 minutes.
  • the average dispersed particle diameters before and after sonication were 36.4 nm and 20.2 nm, respectively.
  • the solution was concentrated to prepare a titanium dioxide sol having a solid component of 20%. 0.75 mI of the obtained titanium dioxide sol was dispersed in 20 mI of dimethylformamide (DMF), and 0.3 g of polyacrylic acid (average molecular weight: 500, Wako Pure Chemical Industries) was dissolved. After adding 10 mI of DMF, the mixture was stirred and mixed.
  • DMF dimethylformamide
  • the solution was transferred to a hydrothermal reactor (HU-50, San-ai Science), and synthesis was performed at 150 ° C for 5 hours. After the completion of the reaction, the reaction solution was cooled until the temperature of the reaction vessel became 50 ° C or less. To the reaction solution, twice the amount of isopropanol (Wako Pure Chemical Industries) was added. After standing at room temperature for 30 minutes, the precipitate was recovered by centrifugation. After the collected precipitate was was washed with 70% ethanol, 2.5 ml of water was added to obtain a dispersion of polyacrylic acid-bound titanium dioxide fine particles (anatase type).
  • Polyacrylic acid-bonded titanium dioxide fine particles were synthesized in exactly the same manner as in Example 7, except that polyacrylic acids having average molecular weights of 2000 and 350 were used. Even when polyacrylic acids having average molecular weights of 2000 and 350 were used, the dispersions of the polyacrylic acid-bound titanium dioxide fine particles (anatase type) were both favorable and showed good dispersibility.
  • titanium tetraisopropoxide (Wako Pure Chemical Industries) was added to a final concentration of 5 mM.
  • the aqueous solution was centrifuged and the precipitate was calcined at 350 ° C for 2 hours. After firing, the mixture was dispersed in a 1 OmM aqueous solution of nitric acid, sonicated, and filtered through a 0.1 / Im filter.
  • Example 7 0.75 ml of a 20% titanium dioxide sol having a solid content obtained in the process of Example 7 was dispersed in 1 O ml of DMF, and different weights of polyacrylic acid (average molecular weight: 500,000 After adding 5 ml of a DMF solution containing (Koujunyaku), the mixture was stirred and mixed. The solution was transferred to a hydrothermal reaction vessel (HU-50, San-ai Science), and synthesis was performed at 150 ° C for 5 hours. After completion of the reaction, the properties of each solution were observed However, when the final concentration of polyacrylic acid was 0.4 mgZml or more, a dispersion of well-dispersed polyacrylic acid-bound titanium dioxide fine particles was obtained.
  • the concentration of polyacrylic acid was lower than this, the dispersion was opaque but opaque and the particle size was large. Therefore, it was found that under the above reaction conditions, the final concentration of polyacrylic acid was required to be 0.4 mg / mI or more.
  • the water content during the reaction is preferably 4% or less as the final concentration.
  • a solution (A) of 1 g of polyacrylic acid dissolved in 1 O ml of DMF was used. Titanium dioxide sol with a solid content of 20% obtained in the process of Example 7. A solution in which 25 ml was dispersed in 1 O ml of DMF was used as a solution (B). Further, 0.25 mI of a 20% solid component titanium dioxide sol obtained in the process of Example 7 and 1 g of 20% (w / V) polyacrylic acid were dispersed in 1 OmI DMF. This was used as a solution (C). Furthermore, a dispersion of polyacrylic acid-bound titanium dioxide fine particles obtained by reacting the solution (C) at 150 ° C.
  • solution (D) since the surface of titanium dioxide is modified with numerous carboxyl residues, the isoelectric point of the whole fine particles is around pH 2.8, and they are uniformly dispersed even in a neutral solution. The state is kept. That is, from the results of Examples 13 and 14 in the comparison between the solutions (C) and (D), the polyacrylic acid-bonded silicon dioxide fine particles were in a state where the dispersibility was simply increased by the addition of polyacrylic acid. It was found that the titanium dioxide particles showed completely different physical properties.
  • the polyacrylic acid-bound titanium dioxide fine particles obtained in Examples 1 to 7 were dispersed in water, and the pH of the solution was changed from pH 3 to pH 13 in steps of pH 1 using hydrochloric acid and sodium hydroxide. Then, it was observed whether aggregation or precipitation of the polyacrylic acid titanium dioxide fine particles occurred.
  • the aqueous solution with the changed pH was centrifuged at 400 rpm to confirm the presence or absence of aggregation, but no aggregation or precipitation of each particle was observed at any pH.
  • FT-IR Infrared spectroscopy
  • Example 7 The polyacrylic acid-bound titanium dioxide fine particle dispersion obtained in Example 7 was heated and dried at 110 ° C. for 1 hour, and then slightly more than 4 hours. Heated to complete incineration. This was cooled in a silica gel desiccator, and the mass was measured as the net amount of titanium dioxide in the dispersion. The results indicated that the dispersion contained 8.82% (w / V) titanium dioxide.
  • the polyacrylic acid-bound titanium dioxide fine particles (anatase type) obtained in Examples 1 to 5 were mixed with 50 mM phosphate buffer (pH 7.0) so that the solid content was 0.02%. Diluted. Methylene blue trihydrate (Wako Pure Chemical Industries) was added to the aqueous solution to a concentration of 40M. While stirring, this aqueous solution was irradiated with ultraviolet light having a wavelength of 340 nm to 1.5 mW / cm 2, and the absorption at a wavelength of 580 nm was measured with an ultraviolet-visible light spectrophotometer. . The results are shown in FIG.
  • the polyacrylic acid-bound titanium dioxide fine particles (anatase type) obtained in Example 1 were adjusted with 50 mM phosphate buffer (pH 7.0) so that the solid content was 1.0%. After inoculating Escherichia coli and culturing overnight at 37 ° C in B broth, the culture is centrifuged, and the cells are washed with 50 mM phosphate buffer (pH 7.0). The suspension was suspended in an amount of 50 mM phosphate buffer (pH 7.0). This was further diluted 100-fold with a 50-m phosphate buffer (pH 7.0) and used as the test bacterial solution. ⁇ The polyacrylic acid-bound titanium dioxide fine particles were added to the test bacterial solution at the final concentration.
  • test solution Place a mixture of the test bacterial solution and polyacrylic acid-bound titanium dioxide fine particles in a small petri dish to a depth of 3 mm. The plate was allowed to stand at room temperature under black light irradiation (dose: 900 / W / cm 2 ). In addition, a sample to which no polyacrylic acid-bound titanium dioxide fine particles were added was irradiated with black light similarly as Control 1. A part of the test solution was collected before irradiation, 2 hours after irradiation, and 4 hours after irradiation, and the number of bacteria was counted according to a conventional method using LB agar medium.
  • the polyacrylic acid-bound titanium dioxide fine particles (anatase type) obtained in Example 1 were adjusted with a PBS buffer (pH 6.8) so that the solid content was 1.0%.
  • Two types of cultured cancer cells (Raj ⁇ , Jurkat) were cultured in RPMI 1640 medium (manufactured by GIBCO) containing 10% serum at 37 ° C and 5% carbon dioxide atmosphere. 5. to prepare a cell solution of 8 X 1 0 5. This was cultured again under the same conditions for 20 hours to obtain a test cell solution.
  • the above polyacrylic acid-bound titanium dioxide fine particle dispersion was added to a final concentration of 0.1%. And used as a test solution.
  • test solution was poured into a small petri dish so as to have a liquid depth of 3 mm, and allowed to stand at room temperature under irradiation with black light (UV) (dose: 900 W / cm 2 ).
  • UV black light
  • blanks (untreated) that did not add polyacrylic acid-bound titanium dioxide fine particles and did not irradiate UV, those that did not irradiate UV after adding polyacrylic acid-bound titanium dioxide fine particles, and those that did not irradiate UV The test was performed at the same time, with the control simply irradiated with UV light without adding fine particles. Six hours later, each test solution was collected, and the number of each cell was counted.
  • Figure 3 shows the results. In the system where polyacrylic acid-bound titanium dioxide particles were added and the cells were irradiated with UV light, the number of cells decreased drastically, indicating that the polyacrylic acid-bound titanium dioxide particles have cell killing properties against cancer cells. Admitted. Industrial applicability
  • surface-modified titanium dioxide fine particles having excellent dispersibility in a neutral aqueous solvent suitable for various applications, and having long-term stable dispersibility even in a wide pH range, and a dispersion thereof, And a method for manufacturing the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Epidemiology (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Environmental & Geological Engineering (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Catalysts (AREA)
  • Medicinal Preparation (AREA)
  • Radiation-Therapy Devices (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Cosmetics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

二酸化チタンと、親水性高分子のカルボキシル基とをエステル結合で化学的に修飾することにより、中性付近はもとより幅広いpH領域の水系溶媒への分散性と安定性に優れた、表面改質二酸化チタン微粒子とその分散液を得る。また、本発明の表面改質二酸化チタン微粒子の製造方法は、2~200nmの二酸化チタン粒子分散液と水溶性高分子溶液を混合し、80~220℃の加熱により両者をエステル結合させた後、未結合水溶性高分子を除去して、表面改質二酸化チタン微粒子を精製する。

Description

明細書 表面改質ニ酸化チタン微粒子とその分散液、 およびその製造方法 技術分野
本発明は、 二酸化チタンの表面が、 カルボキシル基を有する親水性高分子 により修飾された表面改質ニ酸化チタン微粒子であって、該親水性高分子の カルボキシル基と二酸化チタンがエステル結合で結合していることを特徴 とする、 表面改質ニ酸化チタン微粒子とその分散液、 およびその製造方法に 関する。 背景技術
従来、 二酸化チタンの等電点は p H 6前後といわれており、 そのため中性 付近の水系溶媒中では二酸化チタン粒子は凝集を生じてしまい、 これを均一 に分散させることは極めて困難であった。 それ故、 二酸化チタン粒子を水系 の分散媒に均一分散させるため、 現在までに種々の工夫がなされてきた。 例 えば、 チタンイソプロポキシドから水酸化チタンの沈殿を生成させ、 これを 硝酸酸性下において高温で解膠した硝酸酸性の二酸化チタンゾルが提案さ れている (例えば、 Chr i stophe, Barbe b: Journal of the American Ceramics Society, 80, 3157-3171 (1997)、 および、 Dan ij el a, Vorkap i cら : Jou rna I of the American Ceramics Society, 81, 2815-2820 (1998)参照)。 また、 四塩化チタン水溶液にアンモニア水を滴下して水酸化チタンの沈殿を生成 させた後、 過酸化水素水を添加して 1 0 0 °Cで 6時間反応させ、 二酸化チタ ン粒子表面をペルォキソ基で修飾したペルォキソ基修飾二酸化チタンゾル を得る方法 (例えば、 特開平 1 0 — 6 7 5 1 6号公報参照)、 二酸化チタン 粒子表面を多孔質シリ力により表面被覆することにより、アル力リ条件下に 分散させて安定化させた複合型二酸化チタン微粒子の分散液を得る方法(例 えば、 特開平 1 1一 3 1 9 5 7 7号公報参照)、 分散剤としてポリカルボン 酸またはその塩を含有することによって、分散性を高めた二酸化チタンの水 溶液を得る方法 (例えば、 特開平 0 2 — 2 1 2 3 1 5号公報参照) 等が提案 されている。
また、 光触媒粒子を水処理に用いる場合の分離 ·濃縮を容易にする目的で. 磁性材とニ酸化チタンを複合させた粒子も提案されている。 たとえば、 鉄粉 を担体として有機溶媒に溶解したチタンアルコキシドを表面に被覆したよ うな粒子 (例えば、 特開平 0 9 — 2 9 9 8 1 0号公報参照) や、 酸化鉄 · シ リ力担体に高温処理によってアモルファスあるいは結晶性の二酸化チタン を直接沈着させて、 磁性材とニ酸化チタン複合粒子を調製する方法 (例えば. Watson, Beydoun ら : Journal of Photochemistry and Photob i o I ogy A: Chemistry, 148, 303-313 (2002)参照) が提案されている。
しかしながら、硝酸酸性の二酸化チタンゾルの場合ではゾルの p Hを中性 あるいはアル力リ性にした時に、凝集あるいは沈殿が生じるなどの問題があ つた。ペル才キソ基修飾二酸化チタンゾルの場合でもゾルの p Hは中性であ るものの、 ゾルに無機塩類を添加すると凝集あるいは沈殿が生じるなどの問 題があった。 また、 多孔質シリカを表面被覆した二酸化チタン微粒子分散液 の場合では、分散液の p Hを中性あるいは酸性にするとやはり凝集あるいは 沈殿が生じるなどの問題があった。 さらに、 分散剤を添加して分散性を高め た二酸化チタン水溶液でも、 分散剤が光触媒の活性により分解されたリ、 逆 に光触媒の活性が低下する場合があリ、また塩が共存すると二酸化チタンが 凝集あるいは沈殿を生じるなどの問題点があった。表面の一部に二酸化チタ ンが存在する上記磁性材との複合粒子においても、同様の現象が生じてしま い、 やはリ凝集 , 沈殿が問題となっていた。
一方、 強い光活性分解能を有する二酸化チタンを、 ドラッグデリバリーシ ステ厶 ( D D S ) に応用しょうとする試みがなされている (例えば、 特開 2 0 0 2 - 3 1 6 9 4 6号公報、 特開 2 0 0 2 — 3 1 6 9 5 0号公報、 R. Cai ら : Cancer Research, 52, 2346-2348 (1992)参照)。 これは、 標的とするガ ン細胞に二酸化チタンを担持した金などの金属粒子を撃ち込んで取り込ま せた後、紫外線等の光を照射してガン細胞を死滅させようとするものである, 二酸化チタンは、 大気中や溶液中でも極めて安定な物質であり、 かつ (遮光 された) 動物体内では毒性もなく安全なことが知られている。 しかも、 二酸 化チタンの活性化を光のオン ·オフで制御することが可能なため、 ガン治療 等に向けての D D Sへの応用が期待される。
しかしながら、二酸化チタンの等電点は上述したように p H 6前後であり . 中性付近の生理的条件下ではやはり二酸化チタン粒子が凝集してしまう問 題点があった。 このため、 二酸化チタン分散液を注射液として直接血管内に 投与したり、二酸化チタン粒子そのままを D D Sの担体として用いることは 不可能であった。 発明の開示
本発明者らは上記課題を解決するために鋭意検討を行い、二酸化チタン微 粒子表面に親水性高分子を化学的に結合させて表面改質することによリ、中 性付近はもとより幅広い p H領域においても水系溶媒への分散性が極めて 良好となることを見い出し、 本発明を完成した。 すなわち、 本発明の表面改質ニ酸化チタン微粒子は、 その表面にエステル 結合を介して親水性高分子を有しており、中性付近はもとより幅広い p H領 域の水系溶媒中においても極めて良好な分散性を示すものである。さらに、 この特質を利用した表面改質ニ酸化チタン微粒子の分散液は、水または塩を 含む各種 p H緩衝液を溶媒として利用可能であリ、分散性が極めて良好で安 定な分散液である。 また、 本発明の表面改質ニ酸化チタン微粒子の製造方法 は、 2〜 2 0 0 n mの二酸化チタン粒子分散液と水溶性高分子溶液を混合し. 8 0〜 2 2 0 °Cの加熱により両者をエステル結合させた後、未結合水溶性高 分子を除去して、表面改質ニ酸化チタン微粒子を精製することを特徴とする ものである。
結果として得られた本発明の表面改質ニ酸化チタン微粒子は、中性に限ら ず広範囲の p H領域で水系溶媒に分散できる上に、 p Hの変動や塩の添加に 対しても極めて安定である。 また、 他の機能性物質との複合化が容易である ため、 新規な機能を付与した粒子を作製するのに有効である。 例えば、 本発 明の表面改質ニ酸化チタン微粒子に抗ガン剤を担持し、光スィツチにょリ抗 ガン剤を放出する D D Sの開発が可能である。 あるいは、 体内の病変部に本 発明の表面改質ニ酸化チタン微粒子を直接導入して紫外線等の光を照射す れぱ、凝集が起こらないため効率的にガン組織等を破壊することも可能とな る。 さらに、 紫外線や太陽光などを照射して光触媒能の酸化還元作用を誘起 することにより、 種々の有機物や微生物を分解することができる。 図面の簡単な説明
図 1 は、 本発明の表面改質ニ酸化チタン微粒子を示す模式図である。
図 2は、 本発明の表面改質ニ酸化チタン微粒子の光触媒活性 (メチレンブ ルーの分解にともなう吸光度の減少として表示)を測定した結果を示す図で ある。 図中〇、 拿、 口、 画、 △は、 それぞれ実施例 1 〜 5で作製したポリア ク リル酸結合二酸化チタン微粒子 (アナターゼ型) を表している。
図 3は、 本発明の表面改質ニ酸化チタン微粒子の光触媒活性による、 ガン 細胞に対する殺細胞性を示すグラフである。 発明を実施するための最良の形態
本発明の実施の形態を図面に基づいて具体的に説明する。図 1 は本発明の 表面改質ニ酸化チタン微粒子を示す模式図である。本発明の表面改質ニ酸化 チタン微粒子 1 は、 二酸化チダン微粒子表面に親水性高分子 2を有し、 該親 水性高分子 2のカルボキシル基と二酸化チタンはエステル結合で結合して いることを特徴とするものである。 ςれは、 二酸化チタン微粒子 1 表面の二 酸化チタンが反応系中の水に水和されて水酸基が生成し、その水酸基と親水 性高分子のカルボキシル基とが反応してエステル結合を形成することによ るものである。エステル結合の確認方法としては種々の分析方法が適用でき るが、例えば赤外分光法によりエステル結合の吸収帯である 1 7 0 0〜 1 8 0 0 c m _ 1付近の赤外吸収の有無で確認することが可能である。 この表面 改質により、 表面改質ニ酸化チタン微粒子の等電点は、 親水性高分子のカル ボキシル残基の等電点 ( p H 2 . 8〜 2 . 9 ) 付近となり、 中性の水系溶媒 中においても粒子間に電気的斥力が働くため良好な分散性を示すものであ る。
本発明で用いる二酸化チタン粒子としては、結晶系がアナダーゼ型でもル チル型であっても良い。 これは、 結晶系が異なっていても水和されて水酸基 が生成するという化学的性質が同一であれば表面改質が可能なためである。 強い光触媒能が所望であればアナターゼ型を、あるいは化粧料のように高屈 折率等の性質が所望であればルチル型を、 適宜好適に選択できる。 また、 同 様な理由から、 単一の二酸化チタン粒子だけでなく、 二酸化チタンと磁性材 とからなる複合二酸化チタン粒子も好適に使用される。 さらに、 その使用形 態の自由度の観点から、 これらの分散粒経は 2 ~ 2 0 0 n mであることが望 ましい。 これは、 粒径が 2 0 0 n よりも大きくなると微粒子に作用する重 力の効果も大きくなるため、 より沈降しやすくなるためである。
また、 本発明の表面改質ニ酸化チタン微粒子は、 親水性高分子が水溶性高 分子であることを特徴としている。 これは、 本発明が表面改質ニ酸化チタン 微粒子を水溶液中に分散した状態で使用することを想定しており、 したがつ て本発明で用いる親水性高分子としては水溶性高分子が望ましいためであ る。水溶性高分子としては複数のカルボキシル基を有するものであれぱいず れも使用可能であるが、 例えばカルボキシメチルデンプン、 カルポキシメチ ルデキストラン、 カルボキシメチルセルロース、 ポリカルボン酸類、 および カルボキシル基単位を有する共重合体 (コポリマー) などが挙げられる。 具 体的には、 水溶性高分子の加水分解性および溶解度の観点から、 ポリアクリ ル酸、 ポリマレイン酸等のポリカルボン酸類、 およびァクリル酸/マレイン 酸ゃァクリル酸ノスルフォン酸系モノマーの共重合体 (コポリマー) がより 好適に使用される。
また、 本発明の表面改質ニ酸化チタン微粒子の分散液は、 前記表面改質ニ 酸化チタン微粒子が水系溶媒に分散していることを特徴とする。 これは、 水 系の分散媒体中では、表面改質ニ酸化チタン微粒子表面上に存在するカルボ キシル残基のプロ トンが解離した状態になっており、粒子間に電気的斥力が 働くために凝集することなく、長期間にわたって安定に存在することによる, しかも、基本的に p Hの変動や無機塩類の添加に対しても極めて安定である, さらに、 本発明の表面改質ニ酸化チタン微粒子の等電点は、 該親水性高分子 のカルボキシル残基の等電点 ( P H 2. 8〜 2. 9 ) 付近となっている。 し たがって、 P H 3以上の水系分散媒中では p Hが上昇するにつれて粒子間に 働く電気的斥力が増大するため、 p Hが 3〜 1 3の水系分散媒中で極めて良 好な分散性を示すものである。 これらのことから、 本分散液は前記水系溶媒 として p H緩衝液を利用することが可能である。 すなわち、 本発明の表面改 質二酸化チタン微粒子は、 卩 が3 ~ 1 3の範囲であればいかなる緩衝成分 が水系分散媒に含有されていても良好な分散性を示すものである。 ここで使 用され得る好適な緩衝液としては、 グリシン緩衝液、 酢酸緩衝液、 リン酸緩 衝液 ( P B Sを含む)、 炭酸緩衝液、 マツキルべインの緩衝液、 グッ ドの緩 衝液、 ホウ酸緩衝液などが挙げられる。 中性付近の緩衝液が使用できるとい うことは、バイオテクノ口ジー分野 医薬医療分野における応用に対して極 めて有利である。 なお、 上記の良好な分散性を維持するために、 分散液中の 表面改質ニ酸化チタン微粒子のカルボキシル基/二酸化チタン量比(m 0 I / g ) は、 反応条件により異なるが概ね 2 X 1 0—3以上であるのが好まし い。
また、 本発明の表面改質ニ酸化チタン微粒子の製造方法は、 二酸化チタン 微粒子表面に親水性高分子を結合させる反応において、 ( 1 ) 二酸化チタン ゾルを溶媒に分散させる工程と、 ( 2 ) 親水性高分子を溶媒に分散させるェ 程と、 ( 3 ) これらの分散液を混合する工程と、 ( 4 ) この混合液を加熱する 工程と、 (5 ) 表面改質ニ酸化チタン微粒子と未結合親水性高分子とを分離 する工程と、 ( 6 ) 表面改質ニ酸化チタン微粒子を精製する工程とからなる ことを特徴とする。 本発明で用いる二酸化チタンゾルとしては、チタンテトライソプロポキシ ド等を原料として合成することも、無機酸で解膠した既存の酸性二酸化チタ ンゾルを使用することも可能である。 一方、 ( 1 )、 ( 2 ) で用いる溶媒は、 二酸化チタンゾルおよび親水性高分子共に溶解できるものが好適である。 こ れは、二酸化チタンが溶媒中で凝集すると親水性高分子との結合反応が起こ リうる表面積が減少するため、反応終了後の水系溶媒に対する分散粒径が増 大して分散性も悪化するからである。 さらに、 ここで用いる溶媒として二酸 化チタン粒子表面と反応性を有するものは不適である。 特に、 水酸基を含有 するアルコール類は加熱すると二酸化チタン粒子表面とエーテル結合を形 成するため、 目的とする親水性高分子との結合反応を阻害する。 この場合、 二酸化チタン粒子の表面特性は使用するアルコールの特性に依存し、水系の 分散媒に対する分散性が著しく低下する。本発明で使用する溶媒は上記反応 性の点から、 非プロ トン性極性溶媒であるジメチルホルムアミ ド、 ジ才キサ ン、 もしくはジメチルスルホキシドを使用することが好ましいが、 溶媒の揮 発性の観点からジメチルホルムアミ ドを使用することがより好適である。 次に、 ( 3 ) 前記溶媒の二酸化チタン分散液と、 親水性高分子分散液とを 混合して攪拌を行い、二酸化チタンと親水性高分子が均一に分散した分散液 を作製する。 この際、 二酸化チタン分散液に直接親水性高分子を添加すると 二酸化チタンの凝集を引き起こす場合があるので、各分散液をそれぞれ作製 してから混合することが望ましい。
次いで、 ( 4 ) この混合液を加熱して結合反応を行うが、 この際二酸化チ タンと親水性高分子との比率を適宜選択すれば加圧しなくとも反応は進行 する。 しかしながら、 加圧すると反応がより促進されるため、 加圧下で反応 を進行させる方が望ましい。この際、親水性高分子としてポリアクリル酸(平 均分子量: 5 0 0 0 ) を用いた場合では、 分散性をよリ好適にするためポリ アクリル酸の終濃度を 0 . 4 m g Z m I 以上とするのが好ましい。 本発明の 製造方法においては、前記加熱温度が 8 0〜 2 2 0 °Cであることを特徴とし ている。加熱温度が 8 0 aCよりも低い場合は親水性高分子の結合量が低下し て水系溶媒への分散性が低下する。 また、 加圧下で反応を行う場合では、 加 熱温度が 2 2 0 °Cを超えると反応容器の密閉性の問題から不適である。 さら に、 水の沸点以上の温度で反応を進行させる場合では、 二酸化チタンゾルに 含まれる水分が完全に反応系外に揮散されると二酸化チタンが凝集するの で、 加圧下で反応を進行させる方が望ましい。 一方、 反応液中の水分含量が 高すぎると逆に反応を阻害する場合があることから、反応液中の水分含量は 反応条件によって異なるが概ね 4 %以下が望ましい。
次に、 ( 5 ) 生成した表面改質ニ酸化チタン微粒子と未結合親水性高分子 を分離する。 分離する手段としては、 透析法、 限外濾過法、 ゲル濾過クロマ 卜グラフィ一法、 あるいは沈殿法などが好適に使用できるが、 透析法や限外 濾過法で分離する場合では使用した親水性高分子の分子量に合致した透析 膜または限外濾過膜を使用する必要がある。 すなわち、 上記のいずれの方法 でも分離可能であるが、操作の簡便性から沈殿法を利用することが望ましい, 沈殿法には、 等電点を利用する方法と塩析を利用する方法があり、 いずれも 好適に用いることができる。
等電点沈殿を利用する場合には、反応終了後にエバポレー夕で反応溶媒を 減圧除去した後、水を添加して攪拌すると表面改質ニ酸化チタン微粒子は分 散する。 この分散液に無機酸を添加して分散液の p Hを 2 . 8以下にすると. 表面改質ニ酸化チタンは表面の負電荷を失い凝集する。 一方、 粒子と結合し ていない親水性高分子は凝集せずに分散液中に残存するため、 この溶液を遠 心して未結合親水性高分子を除去することが可能となる。
また、 塩析を利用する場合には、 反応終了後に反応液を分液漏斗に回収し. 水と層分離する有機溶媒を添加して攪拌混合を行う。層分離が完了すると、 水層には表面改質ニ酸化チタンが含まれ、有機溶媒層には反応に用いた非プ 口 トン系有機溶媒が含まれる。 水層を分離した後、 塩強度を高く してポリェ チレンダリコール等の高分子を適当量添加すると、塩析により表面改質ニ酸 化チタンの沈殿が生じる。 この溶液を遠心して上清を除去すれば、 表面改質 二酸化チタン微粒子が得られる。
次いで、 ( 6 )沈殿した表面改質ニ酸化チタン微粒子を水を用いて洗浄後、 表面改質ニ酸化チタン微粒子を P H 3〜 1 3、ょリ好ましくは p H 5〜 1 2 の水系溶媒に懸濁する。 ここで使用する水系溶媒としては、 水、 所望の P H 緩衝液、 またはアルカリ性水溶液を好適に利用できる。 また、 この懸濁液を 攪拌または超音波照射により表面改質ニ酸化チタン微粒子を均一に分散さ せ、脱塩後乾燥すると表面改質ニ酸化チタン微粒子の乾燥粉体を得ることが できる。 取扱いが簡便で安定な粉体を製造出来ることは、 表面改質ニ酸化チ タン微粒子を種々の用途に応用する際極めて有利である。
さらに、二酸化チタンと磁性材とからなる複合二酸化チタン微粒子の場合 も、 二酸化チタンが微粒子の表面に露出していれば、 溶媒中での特性は単一 の二酸化チタンと近似しているために、 上記と同一の製造法、 精製法を適用 することができる。この表面改質複合二酸化チタン微粒子は磁性を有してい るため、 例えば水中の有害物質の分解処理等への応用に際し、 処理後に磁石 によって該微粒子を容易に回収できるため、 極めて有用である。
以下、 本発明を以下の実施例により更に詳細に説明するが、 本発明はこれ らに限定されるものではない。 (実施例 1 )
二酸化チタン粒子へのポリアクリル酸の導入 (その 1 )
チタンテ卜ライソプロポキシド 3. 6 gとイソプロパノール 3. 6 gを混 合し、 氷冷下で 6 0 m I の超純水に滴下して加水分解を行った。 滴下後に室 温で 3 0分間攪拌した。 攪拌後、 1 2 N硝酸 1 m I を滴下して 8 0 °Cで 8時 間攪拌を行い、 ぺプチゼ一ションした。 ぺプチゼ一ション終了後 0. 4 5 mのフィルターで濾過し、 さらに脱塩カラム ( P D 1 0 ; アマシャム . ファ ルマシア 'バイオサイエンス) を用いて溶液交換して固形成分 1 %の二酸化 チタンゾルを調製した。 この分散液を 1 0 0 m l 容のバイアル瓶に入れ、 2 0 0 H zで 3 0分間超音波処理を行った。超音波処理を行う前後の平均分散 粒経はそれぞれ、 3 6. 4 n m、 2 0. 2 n mであった。 超音波処理後、 溶 液を濃縮して固形成分 2 0 %の二酸化チタンゾルを調製した。得られた二酸 化チタンゾル 0 - 7 5 m I を 2 0 m I のジメチルホルムアミ ド ( D M F )に分 散させ、 ポリアクリル酸 (平均分子量: 5 0 0 0、 和光純薬) 0. 3 gを溶 解した D M F 1 0 m I を添加後、 攪.样して混合した。 水熱反応容器 ( H U— 5 0、 三愛科学) に溶液を移し変え、 1 8 0 °Cで 6時間合成を行った。 反応 終了後、 反応容器温度が 5 0 °C以下になるまで冷却し、 溶液を取り出した後 に水 1 2 0 m l を添加して攪拌混合した。エバポレー夕で D M Fおよび水を 除去した後に、 再度、 水 2 0 m I を添加してポリアクリル酸結合二酸化チタ ン水溶液とした。 2 Nの塩酸 1 m I を添加してポリアクリル酸結合二酸化チ タン微粒子を沈殿させ、遠心後に上清を除去することによリ未反応のポリァ クリル酸を分離した。 再度水を添加して洗浄を行い、 遠心後に水を除去した < 5 0 m Mリン酸緩衝液 ( p H 7. 0 ) を 1 0 m l 添加後、 2 0 0 H zで 3 0 分間超音波処理を行い、ポリアクリル酸結合二酸化チタン微粒子を分散させ た。超音波処理後、 0 . 4 5 j mのフィルターで濾過して、 固形成分 1 . 5 % のポリアクリル酸結合二酸化チタン水溶液を得た。作製したポリアクリル酸 結合二酸化チタン微粒子の分散粒径を測定したところ、 4 5 . 9 n mであつ た。得られたポリアクリル酸結合二酸化チタン水溶液を脱塩カラム P D 1 0 で脱塩後 1 0 0 °Cで乾燥して、 ポリアクリル酸結合二酸化チタン微粒子 (ァ ナターゼ型) を得た。
(実施例 2 )
二酸化チタン粒子へのポリアクリル酸の導入 (その 2 )
二酸化チタンゾルとして硝酸酸性アナターゼゾルの S T S— 0 1 (石原産 業株式会社、 固形分濃度 : 2 0 % ) を使用したこと以外、 実施例 1 と全く同 様の方法でポリアクリル酸結合二酸化チタン微粒子を合成し、固形成分 1 . 5 %のポリアクリル酸結合二酸化チタン水溶液を得た。作製したポリァクリ ル酸結合二酸化チタン微粒子の分散粒径を測定したところ、 6 6 . 6 n mで あった。得られたポリアクリル酸結合二酸化チタン水溶液を脱塩カラム P D 1 0で脱塩後 1 0 0 °Cで乾燥して、ポリアクリル酸結合二酸化チタン微粒子 (アナターゼ型) を得た。
(実施例 3 )
二酸化チタン粒子へのポリアクリル酸の導入 (その 3 )
合成温度を 2 2 0 °Cにしたこと以外、実施例 2と全く同様の方法でポリア クリル酸結合二酸化チタン微粒子を合成し、 固形成分 1 . 5 %のポリアクリ ル酸結合二酸化チタン水溶液を得た。作製したポリアクリル酸結合二酸化チ タン微粒子の分散粒径を測定したところ、 6 6 . Ί n mであった。 得られた ポリアク リル酸結合二酸化チタン水溶液を脱塩カラム P D 1 0で脱塩後 1 0 0 °Cで乾燥して、ポリアクリル酸結合二酸化チタン微粒子(アナ夕ーゼ型) を得た。
(実施例 4 )
二酸化チタン粒子へのポリアクリル酸の導入 (その 4 )
合成温度を 1 3 0 °Cにしたこと以外、実施例 2と全く同様の方法でポリァ クリル酸結合二酸化チタン微粒子を合成し、 固形成分 Ί . 5 %のポリアクリ ル酸結合二酸化チタン水溶液を得た。作製したポリアクリル酸結合二酸化チ タン微粒子の分散粒径を測定したところ、 6 7 . 4 n mであった。 得られた ポリアク リル酸結合二酸化チタン水溶液を脱塩カラム P D 1 0で脱塩後 1 0 0 °Cで乾燥して、ポリアク リル酸結合二酸化チタン微粒子(アナターゼ型) を得た。
(実施例 5 )
二酸化チタン粒子へのポリアクリル酸の導入 (その 5 )
合成温度を 8 0 °Cにしたこと以外、実施例 2と全く同様の方法でポリアク リル酸結合二酸化チタン微粒子を合成し、 固形成分 1 . 5 %のポリアクリル 酸結合二酸化チタン水溶液を得た。作製したポリアクリル酸結合二酸化チタ ン微粒子の分散粒径を測定したところ、 6 7 . 9 n mであった。 得られたポ リアクリル酸結合二酸化チタン水溶液を脱塩カラム P D 1 0で脱塩後 1 0 0 °Cで乾燥して、 ポリアクリル酸結合二酸化チタン微粒子 (アナターゼ型) を得た。
(実施例 6 )
二酸化チタン粒子へのポリアクリル酸の導入 (その 6 )
チタンテ卜ライソプロボキシド 3 . 6 gとイソプロパノール 3 . 6 gを混 合し、 氷冷下で 6 0 m I の超純水に滴下して加水分解を行った。 滴下後に室 温で 3 0分間攪拌した。 攪拌後、 1 2 N硝酸を 1 m I 滴下して 8 0 °Cで 8時 間攪拌を行い、 ぺプチゼーシヨンした。 ぺプチゼーシヨン終了後、 0. 4 5 mのフィルターで濾過し、脱塩カラム P D 1 0を用いて溶液交換して固形 成分 1 %の二酸化チタンゾルを調製した。 この分散液を 1 0 0 m l 容のバイ アル瓶に入れ、 2 0 0 H zで 3 0分間超音波処理を行った。 超音波処理を行 う前と後での平均分散粒経はそれぞれ、 3 6. 4 n m、 2 0. 2 n mであつ た。 超音波処理後、 溶液を濃縮して固形成分 2 0 %の二酸化チタンゾルを調 製した。 得られた二酸化チタンゾル 0. 7 5 m I を 2 0 m I のジメチルホル 厶アミ ド (D M F)に分散させ、 ポリアクリル酸 (平均分子量: 5 0 0 0、 和 光純薬) 0. 3 gを溶解した D M F 1 0 m I を添加後、 攪拌して混合した。 水熱反応容器 (H U— 5 0、 三愛科学) に溶液を移し変え、 1 8 0 °Cで 6時 間合成を行った。 反応終了後、 反応容器温度が 5 0 °C以下になるまで冷却し 分液ロー卜に溶液を取り出した後、 水 1 O m l を添加して攪拌混合した。 次 いで、 ク口口ホルムを 4 0 m l 加え、 攪拌混合した後下層を除去し、 上層を 回収した。 このステップを 2回繰り返し、 D M Fを除去した。 この溶液 1 0 m I に 1 . 5 Mの N a C I を 1 0 m I 、 2 0 % (w/ v)ポリエチレングリコ ール 6 0 0 0 (和光純薬) を加え、 遠心後に上清を除去した。 沈殿に 2. 5 m l の水を加え、 S e p h a d e x G— 2 5カラム (アマシャム ' フアルマ シァ 'バイオサイエンス) によるゲルろ過を行い、 ポリアクリル酸結合二酸 化チタン微粒子 (アナターゼ型) の分散液を得た。
(実施例 7 )
二酸化チタン粒子へのポリアクリル酸の導入 (その 7 )
チタンテ卜ライソプロボキシド 3. 6 gとイソプロパノール 3. 6 gを混 合し、 氷冷下で 6 0 m I の超純水に滴下して加水分解を行った。 滴下後に室 温で 3 0分間攪拌した。 攪拌後、 1 2 N硝酸を 1 m I 滴下して 8 0 °Cで 8時 間攪拌を行い、 ぺプチゼーシヨンした。 ぺプチゼーシヨン終了後、 0. 4 5 mのフィル夕一で濾過し、脱塩カラム P D 1 0を用いて溶液交換して固形 成分 1 %の二酸化チタンゾルを調製した。 この分散液を 1 0 0 m l 容のバイ アル瓶に入れ、 2 0 0 H zで 3 0分間超音波処理を行った。 超音波処理を行 う前と後での平均分散粒経はそれぞれ、 3 6. 4 n m、 2 0. 2 n mであつ た。 超音波処理後、 溶液を濃縮して固形成分 2 0 %の二酸化チタンゾルを調 製した。 得られた二酸化チタンゾル 0. 7 5 m I を 2 0 m I のジメチルホル 厶アミ ド(D M F)に分散させ、 ポリァクリル酸 (平均分子量: 5 0 0 0、 和 光純薬) 0. 3 gを溶解した D M F 1 0 m I を添加後、 攪拌して混合した。 水熱反応容器 ( H U— 5 0、 三愛科学) に溶液を移し変え、 1 5 0 °Cで 5時 間合成を行った。 反応終了後、 反応容器温度が 5 0 °C以下になるまで冷却し. 反応液に対して 2倍量のイソプロパノール (和光純薬) を添加した。 室温で 3 0分間静置後、 遠心分離によリ沈殿を回収した。 回収した沈殿を 7 0 %ェ タノ一ルで洗浄後、 2. 5 m I の水を加えてポリアクリル酸結合二酸化チタ ン微粒子 (アナターゼ型) の分散液を得た。
(実施例 8 )
二酸化チタン粒子へのポリアクリル酸の導入 (その 8 )
平均分子量 2 0 0 0および 3 5 0 0のポリアクリル酸を用いたこと以外、 実施例 7と全く同様の方法でポリアクリル酸結合二酸化チタン微粒子を合 成した。平均分子量 2 0 0 0および 3 5 0 0のポリアクリル酸を用いた場合 でも、 ポリアクリル酸結合二酸化チタン微粒子 (アナターゼ型) の分散液は いずれも良好な分散性を示し好適であった。
(実施例 9 )
磁性材 酸化チタン複合微粒子へのポリアクリル酸の導入 セパラプルフラスコ内にポリオキシエチレン(1 5 )セチルエーテル(C一 1 5 : 日本サ一ファクタン卜工業)を 4 5 . 1 6 gを溶解させて 5分間窒素 置換した後、 シクロへキセン (和光純薬) 7 5 m l を添加、 0. 6 7 Mの F e C I 2 (和光純薬) 水溶液 3 . 6 m I を添加し、 2 5 0 r p mで攪拌しな がら 3 0 %アンモニア水溶液 5 . 4 m l を添加し、 1 時間反応させた。 その 後、 5 0 m Mテ卜ラエチルオルソシリケィ 卜水溶液 (和光純薬工業) を 0 . 4 m I 滴下して 1 時間反応させた。 その後、 チタンテ卜ライソプロポキシド (和光純薬工業) を最終濃度 5 m Mになるように加えた。 5 0 % (w/ v ) ェタノール水溶液 1 0 m I を 1 m I ずつ 1 0分間隔で添加した。水溶液を遠 心^離し、 沈殿物を 3 5 0 °Cで 2時間焼成した。 焼成後、 1 O m M硝酸水溶 液に分散させて超音波処理後、 0 . 1 /I mのフィルターでろ過した。 得られ た磁性材 /酸化チタン複合体ゾル 0 . 7 5 m l を 2 0 m l のジメチルホルム アミ ド (D M F )に分散させ、 ポリアクリル酸 (平均分子量: 5 0 0 0、 和光 純薬) 0 . 3 gを溶解した D M F 1 O m l を添加後、 攪拌して混合した。 水 熱反応容器 ( H U — 5 0、 三愛科学) に溶液を移し変え、 1 8 0 °Cで 6時間 合成を行った。 反応終了後、 反応容器温度が 5 0 °C以下になるまで冷却し、 分液ロートに溶液を取り出した後、 水 1 O m l を添加して攪拌混合した。 次 いで、 クロロホルムを 4 0 m I 加え、 攪拌混合した後下層を除去し、 上層を 回収した。 このステップを 2回繰り返し、 D M Fを除去した。 この溶液 1 0 m l に 1 . 5 Mの N a C I を 1 O m l 、 2 0 % ( w/ v ) ポリエチレングリ コール 6 0 0 0 (和光純薬) を加え、 遠心後に上清を除去した。 沈殿に 2 . 5 m l の水を加え、 S e p h a d e x G— 2 5カラム (アマシャム ' フアル マシア 'バイオサイエンス) によるゲルろ過を行い、 ポリアクリル酸結合磁 性材 ニ酸化チタン複合微粒子 (アナターゼ型) の分散液を得た。 本分散液 は白濁も生ぜず、微粒子が良好に分散しておリ単一の二酸化チタンの場合と 同様に好適な分散液であった。
(実施例 1 0 )
二酸化チタン粒子へのァクリル酸ノスルフォン酸共重合体の導入
実施例 7の工程中で得られた固形成分 2 0 %の二酸化チタンゾル 0. 7 5 m l を 1 0 m l の D M Fに分散させ、ァクリル酸/スルフ才ン酸系モノマー 共重合体 (日本触媒製 G L 3 8 6、 平均分子量: 5 0 0 0、 陽イオン交換樹 脂によりナトリウムをプロ トンに置換して凍結乾燥した標品) 0. 3 gを溶 解した D M F I O m l を添加した後、 撹拌して混合した。 水熱反応容器 ( H U— 5 0、 三愛科学) に混合液を移し変え、 1 5 0 °Cで 5時間合成を行った, 反応終了後、反応容器が室温になるまで冷却して反応液に対して 2倍量のィ ソプロパノール (和光純薬) を添加した。 室温で 3 0分間静置後、 遠心分離 により沈殿を回収した。 沈殿を 7 0 %エタノールで洗浄後、 2. 5 m l の水 を加えてァクリル酸 Zスルフ才ン酸共重合体結合二酸化チタン微粒子(アナ ターゼ型) の分散液を得た。 本分散液は白濁も生ぜず、 微粒子が良好に分散 しておリポリアクリル酸の場合と同様に好適な分散液であった。
(実施例 1 1 )
ポリアクリル酸結合二酸化チタン微粒子の分散性に及ぼすポリアクリル 酸濃度の影響
実施例 7の工程中で得られた固形成分 2 0 %の二酸化チタンゾル 0. 7 5 m l を 1 O m l の D M Fに分散させて、 異なる重量のポリアクリル酸 (平均 分子量: 5 0 0 0、 和光純薬) を含む D M F溶液 5 m I を添加後、 撹拌して 混合した。 水熱反応容器 (H U— 5 0、 三愛科学) に溶液を移し変え、 1 5 0°Cで 5時間合成を行った。 反応終了後、 それぞれの溶液の性状を観察した ところ、 ポリアクリル酸の終濃度として 0. 4 m gZm l 以上の場合は、 良 好に分散したポリァクリル酸結合二酸化チタン微粒子の分散液が得られた。 —方、 これ以下のポリアクリル酸濃度の場合は、 一応分散はしているものの 白濁しており粒子径も大きい分散液となった。 したがって、 上記反応条件下 では、 ポリアクリル酸は終濃度として 0. 4 m g /m I 以上が必要であるこ とが分かった。
(実施例 1 2 )
ポリアクリル酸結合二酸化チタン微粒子の分散性に及ぼす水分含量の影 m 実施例 7の工程中で得られた固形成分 2 0 %の二酸化チタンゾル 0. 7 5 m l を 1 0 m l の D M Fに分散させて、異なる水分量を含む 3 0 m g / m I のポリァクリル酸 (平均分子量: 5 0 0 0、 和光純薬) D M F溶液 5 m I を 添加後、 撹拌して混合した。 混合液を水熱反応容器( H U— 5 0、 三愛科学) に移し変え、 1 5 0 °Cで 5時間合成を行った。 反応終了後、 それぞれの溶液 の性状を観察したところ、 水分量が最終的に 4 %以下の場合は、 良好に分散 したポリアク リル酸結合二酸化チタン微粒子の分散液が得られた。 一方、 5 %以上の水分量の場合は、一応分散はしているものの白濁しており粒子径 も大きい分散液となった。 したがって、 上記反応条件下では、 反応時の水分 量は終濃度として 4 %以下が好ましいことが分かった。
(実施例 1 3 )
ポリアクリル酸結合二酸化チタン微粒子のイソプロパノールに対する溶 解性
ポリアクリル酸 1 gを 1 O m l の D M Fに溶解したものを、 溶液 ( A ) と した。実施例 7の工程中で得られた固形成分 2 0 %の二酸化チタンゾル 0. 2 5 m l を 1 O m l の D M Fに分散させたものを、 溶液 ( B ) とした。 また. 実施例 7の工程中で得られた固形成分 2 0 %の二酸化チタンゾル 0. 2 5 m I と 2 0 % ( w/ V ) ポリアクリル酸 1 gを 1 O m I の D M Fに分散させた ものを、 溶液 ( C ) とした。 さらに、 溶液 ( C ) を 1 5 0 °Cで 5時間反応さ せたポリアクリル酸結合二酸化チタン微粒子の分散液を、 溶液 ( D) とした, ( A) 〜 (D) の各溶液に 2倍量のイソプロパノールを添加して撹拌後静置 し、 沈殿の生成を確認した。 その結果、 溶液 (A) 〜 (C) はいずれもイソ プロパノールに可溶性であつたが、 溶液 ( D) のみが沈殿を生じた。 このこ とは、 ポリアクリル酸 (A)、 二酸化チタンゾル ( B)、 ポリアクリル酸と二 酸化チタンゾルの混合液 ( C) はいずれもイソプロパノールに可溶であるが, ポリアク リル酸結合二酸化チタン微粒子 ( D) は不溶であることを示してい る。 すなわち、 溶液 (C) と ( D) の比較において、 二酸化チタンゾルに分 散剤としてのポリァクリル酸を単に添加した系 (C) では、 両者は化学的に 反応しておらず、それぞれ独立にイソプロパノールに対して溶解性を示した ものと考えられる。 一方、 溶液 (D) では二酸化チタンとポリアクリル酸は 水和反応により化学的にエステル結合しておリ、酸化チタン微粒子表面に結 合したポリアクリル酸の無数のカルボキシル残基の親水性により、イソプロ パノールに対して不溶性を示したものと考えられる。
(実施例 1 4 )
ポリアクリル酸結合二酸化チタン微粒子の中性溶液における安定性 実施例 1 3で用いた (A) 〜 (D) と同組成の各溶液を用いて、 中性溶液 におけるそれぞれめ安定性を評価した。 すなわち、 (A) 〜 ( D) の各溶液 を 2 0 0 m Mリン酸緩衝液 ( p H 7. 0 ) で 1 0倍に希釈して撹拌後静置し. 沈殿生成の有無を観察した。 その結果、 二酸化チタンゾルを含む溶液 ( B ) と (C) は沈殿を生じたが、 溶液 (A) と ( D ) では沈殿を生じなかった。 これは二酸化チタンの等電点が中性付近にあるため、 溶液 ( B ) と (C ) で は二酸化チタンが凝集してしまい沈殿を生じたと考えられる。 一方、 溶液 ( D) では、 二酸化チタン表面は無数のカルボキシル残基により修飾されて いるため、 微粒子全体の等電点は p H 2. 8前後となっており、 中性溶液中 でも均一に分散された状態を保持している。 すなわち、 溶液 (C ) と ( D) の比較において実施例 1 3と 1 4の結果から、ポリアクリル酸結合二酸化チ 夕ン微粒子は、ポリアクリル酸の添加で単に分散性を高められた状態の二酸 化チタン微粒子とは、 全く異なる物性を示すことが分かった。
(実施例 1 5 )
ポリアクリル酸二酸化チタン微粒子の p H安定性の評価
実施例 1 〜 7で得られたポリアクリル酸結合二酸化チタン微粒子を水に 分散させ、溶液の P Hを塩酸と水酸化ナトリウムを使用して p H 3から p H 1 3まで p H 1 刻みで変化させて、ポリアクリル酸ニ酸化チタン微粒子の凝 集あるいは沈殿が生じるかを観察した。 p Hを変化させた水溶液を 4 0 0 0 r p mで遠心を行い凝集の有無を確認したが、 いずれの p Hにおいても各粒 子の凝集あるいは沈殿は観察されなかった。
(実施例 1 6 )
ポリアクリル酸結合二酸化チタン微粒子の赤外分光 ( F T— I R ) 分析 遊離のポリアク リル酸を完全に除去した精製ポリアクリル酸結合二酸化 チタン微粒子の分散液を凍結乾燥し、常法にしたがい K B r錠を作製した。 赤外分光光度計 ( F T S — 6 5 A、 日本バイオラッ ド · ラボラ卜リーズ社) を用いて、 これの F T— I Rを測定した。 表 1 にポリアクリル酸結合二酸化 チタン微粒子の特徴的な吸収を示す。 表 1 において、 a . 分子間水素結合し た O— H伸縮振動による大きくプロ一ドな吸収が 2 5 0 0〜3 5 0 0 c m一 1に認められる、 b . (二酸化チタンには無い) メチレンの伸縮振動による 2 9 0 0 c m— 1付近の吸収がある、 c . (二酸化チタンには無い) エステル結 合の C == 0伸縮振動による 1 7 2 0 c m— 1の吸収がある、 d . 低波数側に (二酸化チタンには無い)ポリアクリル酸由来の変角振動の吸収がある等か ら、合成したポリァクリル酸結合二酸化チタン微粒子は確かに二酸化チタン とポリアクリル酸がエステル結合を介して化学結合していることが確認さ れた。 なお、 カルボン酸の C == 0伸縮振動による吸収ピークはエステルよリ 低波数側に出るため、 1 6 5 0 c m— 1の大きな二酸化チタンの吸収ピーク と重複しているものと考えられる。 一方、 水熱反応を行わずに二酸化チタン ゾルに単に分散剤としてポリアクリル酸を添加した系から、ポリアクリル酸 を完全に除去して凍結乾燥したものの F T— I Rスぺク トルは、二酸化チタ ン自体のスペク トルとほぼ同一であった。 すなわち、 実施例 1 3 ~ 1 5およ び本実施例の F T— I Rの分析結果から、本発明のポリアクリル酸結合二酸 化チタン微粒子は二酸化チタンとポリアクリル酸とがエステル結合によリ 強固に結合しているのに対し、二酸化チタンに単に分散剤としてポリアクリ ル酸を添加したものは、 両者が化学的に結合しておらず、 単に静電気的な相 互作用により分散性を改善しているにすぎないことが判明した。
表 1 ポリアクリル酸結合二酸化チタン微粒子の赤外分光分析
吸収波数 (cm -1)
-3386- 2931 1720 1650 1454 1393 1256 1171 1106 1059
0- H C-H C = 0 二酸化 C-H 二酸化 ポリア ポリア ポリア ポリア 伸縮 伸縮 伸縮 チタン 変角 チタン クリル クリル クリル クリル
(プロ エステ 由来 由来 酸由来 酸由来 酸由来 酸由来 ード) ル結合 (実施例 1 7 )
ポリアクリル酸結合二酸化チタン微粒子分散液の二酸化チタン含量の測 実施例 7で得られたポリアクリル酸結合二酸化チタン微粒子の分散液を 1 1 0 °C'で 1 時間加熱乾燥し、 さらに 4時間強熱して完全に灰化した。 これ をシリカゲルデシケータ中で冷却し、前記分散液中の正味の二酸化チタン量 として質量を測定した。 その結果、 前記分散液は、 8. 8 2 % ( w/ V ) の 二酸化チタンを含むことが示された。
(実施例 1 8 )
ポリアクリル酸結合二酸化チタン微粒子分散液のカルボン酸含量の測定 実施例 7で得られたポリァクリル酸結合二酸化チタン微粒子の分散液 1 m l に、 水 1 0 0 m l と 0. 1 Mの N a O H標準液 2 0 m l を添加した。 充 分に撹拌混合した後、 0. 1 Mの H C I 標準液により残余の N a 0 Hを逆滴 定し、ポリアクリル酸結合二酸化チタン微粒子のカルボキシル基含量を求め た。 その結果、 前記分散液 1 m l は 3. 0 8 X 1 0— 4m o l のカルボキシ ル基を含むことが示された。 実施例 1 6および 1 7の結果から、 前記分散液 のカルボキシル基 ニ酸化チタン量比は、 3. 0 8 X 1 0 -2 (m o I / g ) であった。 同様に、 実施例 8で得られた分子量 2 0 0 0のポリアクリル酸を 用いて合成したポリアクリル酸結合二酸化チタン微粒子の分散液の場合で は、 カルボキシル基 ニ酸化チタン量比は 2. 6 4 X 1 0 -2 (m o l /g ) であった。 さらに検討を重ねた結果、 ポリアクリル酸結合二酸化チタン微粒 子分散液の均一な分散性を確保するためには、前記カルボキシル基 Z二酸化 チタン量比は 2 X 1 0 - 3 (m o I / g ) 以上が好ましいことが判明した。 (実施例 1 9 ) ポリアクリル酸結合二酸化チタン微粒子 (アナターゼ型) の光触媒活性の 評価
実施例 1 〜 5で得られたポリアクリル酸結合二酸化チタン微粒子(アナタ ーゼ型) を固形成分が 0 . 0 2 %になる様に 5 0 m Mリン酸緩衝液 ( p H 7 . 0 ) で希釈した。 メチレンブルー三水和物 (和光純薬) を 4 0 Mになる様 に水溶液に添加した。 攪拌しながら、 本水溶液に波長 3 4 0 n mの紫外光を 1 . 5 m W / c m 2 になるように照射し、 5 8 0 n mにおける波長の吸収を 紫外一可視光分光光度計により測定した。 結果を図 2に示した。 全ての試料 で紫外線照射時間の経過と共にメチレンブルーの分解にともなう吸光度の 減少が認められることから、実施例 1 〜 5で得られたポリアクリル酸結合二 酸化チタン微粒子 (アナターゼ型) が光触媒活性を保持していることは明ら かである。
(実施例 2 0 )
ポリアクリル酸結合二酸化チタン微粒子 (アナタ一ゼ型) の殺菌活性の評 価
実施例 1 で得られたポリアクリル酸結合二酸化チタン微粒子(アナターゼ 型) を固形成分が 1 . 0 %になるように 5 0 m Mリン酸緩衝液 ( p H 7 . 0 ) で調整した。 大腸菌をし Bブロスで 3 7 °C、 一晩培養した後、 培養液を遠心 分離し、 菌体を 5 0 m Mリン酸緩衝液 ( p H 7 . 0 ) で洗浄し、 培養液と等 量の 5 0 m Mリン酸緩衝液 ( p H 7 . 0 ) に懸濁した。 これをさらに 5 0 m リン酸緩衝液 ( p H 7 . 0 ) で 1 0 0倍希釈したものを試験用菌液とした < この試験用菌液に上記ポリアク リル酸結合二酸化チタン微粒子を最終濃度 が 0 . 1 %になるように添加した。 試験用菌液とポリアクリル酸結合二酸化 チタン微粒子の混合液を液深 3 m mになるように小型シャーレに入れ、 ブラ ックライ 卜照射 (線量 : 9 0 0 / W/c m 2 ) 下、 室温で静置した。 また、 ポリアク リル酸結合二酸化チタン微粒子を添加しないものを対照 1 として 同様にブラックライ 卜照射した。 照射前、 照射 2時間後、 4時間後に上記試 験液の一部を採取し、 L B寒天培地を用いた常法に従って菌数を計数した。 また、 ポリアクリル酸結合二酸化チタン微粒子を最終濃度 0. 1 %となるよ うに試験溶菌液に加え、 遮光して静置したものを対照 2とし、 上記と同様の 時間で菌数計数を行った。 その結果を表 2に示す。 ポリアクリル酸結合二酸 化チタン微粒子 (アナターゼ型) を添加してブラックライ 卜を照射した系で は経時的な菌数減少が認められ、本微粒子が光触媒活性に付随する抗菌性を 保持していることは明らかである。 表 2 ポリアクリル酸結合二酸化チタン微粒子の殺菌活性の評価 (CFS/ml)
Figure imgf000026_0001
(実施例 2 1 )
ガン細胞に対する殺細胞性の評価
実施例 1 で得られたポリアクリル酸結合二酸化チタン微粒子(アナターゼ 型) を、 固形分が 1 . 0 %になるように P B S緩衝液 ( p H 6. 8 ) で調整 した。 2種類の培養ガン細胞 ( R a j ί 、 J u r k a t ) を、 1 0 %血清を 含む R P M I 1 6 4 0培地 ( G I B C O社製) で 3 7 °C、 5 %二酸化炭素雰 囲気下で培養し、 5. 8 X 1 0 5の細胞液を調製した。 これを再度 2 0時間 同条件で培養し、 試験用細胞液とした。 この試験用細胞液に、 上記ポリアク リル酸結合二酸化チタン微粒子分散液を終濃度で 0. 1 %になるように添加 し、 試験液とした。 この試験液を液深 3 m mになるように小型シャーレに注 ぎ、 ブラックライ 卜 ( U V ) 照射下 (線量 : 9 0 0 W / c m 2 ) 室温で静 置した。 また、 ポリアクリル酸結合二酸化チタン微粒子を添加せず U Vも照 射しないものをブランク (未処理)、 ポリアクリル酸結合二酸化チタン微粒 子を添加後 U Vを照射しないもの、およびポリアクリル酸結合二酸化チタン 微粒子を添加せず単に U Vを照射したものを対照として、同時に試験を行つ た。 6時間後に各試験液を採取し、 それぞれの細胞数を計測した。 その結果 を図 3に示す。 ポリアクリル酸結合二酸化チタン微粒子を添加し、 かつ U V を照射した系では細胞数が激減していることから、ポリアクリル酸結合二酸 化チタン微粒子がガン細胞に対して殺細胞性を有することが認められた。 産業上の利用可能性
本発明により、 各種応用に好適な中性の水系溶媒への分散性に優れ、 かつ 広範囲の p H領域においても長期間安定な分散性を有する、表面改質ニ酸化 チタン微粒子とその分散液、 およびその製造方法を提供することができる。

Claims

請求の範囲
1 . 二酸化チタンの表面が、 カルボキシル基を有する親水性高分子にょリ修 飾された表面改質ニ酸化チタン微粒子であって、該親水性高分子のカルボキ シル基と二酸化チタンがエステル結合で結合していることを特徴とする、表 面改質ニ酸化チタン微粒子。
2 . 前記二酸化チタンが、 アナタ一ゼ型、 またはルチル型である、 請求項 1 に記載の表面改質ニ酸化チタン微粒子。
3 . 前記二酸化チタンの粒径が、 2〜 2 0 0 n mであることを特徴とする. 請求項 1 または 2に記載の表面改質ニ酸化チタン微粒子。
4 . 前記二酸化チタンが、 二酸化チタンと磁性材とからなる複合二酸化チ 夕ンであることを特徴とする、請求項 1 ~ 3何れか一項に記載の表面改質ニ 酸化チタン微粒子。
5 . 前記親水性高分子が、 水溶性高分子であることを特徴とする、 請求項 1 〜 4何れか一項に記載の表面改質ニ酸化チタン微粒子。
6 . 前記水溶性高分子が、 ポリカルボン酸を含むことを特徴とする、 請求 項 5に記載の表面改質ニ酸化チタン微粒子。
7 . 前記水溶性高分子が、 分子中に複数のカルボキシル基単位を有する共 重合体を含むことを特徴とする、請求項 5に記載の表面改質ニ酸化チタン微 粒子。
8 . 請求項 1 ~ 7のいずれか一項に記載の表面改質ニ酸化チタン微粒子が, 水系溶媒に分散していることを特徴とする、表面改質ニ酸化チタン微粒子の 分散液。
9 . 前記水系溶媒の p Hが、 3〜 1 3であることを特徴とする、 請求項 8 に記載の表面改質ニ酸化チタン微粒子の分散液。
1 0 . 前記水系溶媒が、 p H緩衝液であることを特徴とする、 請求項 9に 記載の表面改質ニ酸化チタン微粒子の分散液。
1 1 . 前記水系溶媒が、 生理食塩水であることを特徴とする、 請求項 9に 記載の表面改質ニ酸化チタン微粒子の分散液。
1 2 . 体内の病変部に導入した後、 紫外線等の光を照射して該病変部を破 壊する光療法の補強剤として用いる、請求項 9〜 1 1 のいずれか一項に記載 の表面改質ニ酸化チタン微粒子の分散液。
1 3 . 前記病変部がガン組織であることを特徴とする、 請求項 1 2に記載 の表面改質ニ酸化チタン微粒子の分散液。
1 4 . 二酸化チタン微粒子表面に親水性高分子を結合させる反応において. ( 1 ) 二酸化チタンゾルを溶媒に分散させる第 1 工程と、 ( 2 ) 親水性高分 子を溶媒に分散させる第 2工程と、 ( 3 ) これらの分散液を混合する第 3ェ 程と、 ( 4 ) この混合液を加熱する第 4工程と、 ( 5 ) 表面改質ニ酸化チタン 微粒子と未結合親水性高分子とを分離する第 5工程と、 ( 6 ) 表面改質ニ酸 化チタン微粒子を精製する第 6工程とからなる、表面改質ニ酸化チタン微粒 子の製造方法。
1 5 . 前記第 1 工程および第 2工程の溶媒が、 非プロ 卜ン系溶媒であるこ とを特徴とする、請求項 1 4に記載の表面改質ニ酸化チタン微粒子の製造方 法。
1 6 . 前記非プロ 卜ン系溶媒が、 ジメチルホルムアミ ド, ジ才キサン、 ジ メチルスルホキシドいずれかであることを特徴とする、請求項 1 5に記載の 表面改質ニ酸化チタン微粒子の製造方法。
1 7 . 前記第 4工程の加熱温度が、 8 0〜 2 2 0 °Cであることを特徴とす る、請求項 1 4〜 1 6のいずれか一項に記載の表面改質ニ酸化チタン微粒子 の製造方法。
1 8 . 前記第 5工程の分離する工程が、 溶液の p Hを 2 . 8以下にして表 面改質ニ酸化チタン微粒子のみを等電点凝集させることにより、上清の未結 合親水性高分子を除去する工程を含むことを特徴とする、請求項 1 4〜 1 7 のいずれか一項に記載の表面改質ニ酸化チタン微粒子の製造方法。
1 9 . 前記第 5工程の分離する工程が、 分子ふるいにより未結合親水性分 子を除去する工程を含むことを特徴とする、請求項 1 4〜 1 7のいずれか一 項に記載の表面改質ニ酸化チタン微粒子の製造方法。
2 0 . 前記第 6工程の精製する工程が、 表面改質ニ酸化チタン微粒子を水 系溶媒に分散させた後に、微粒子を乾燥する工程を含むことを特徴とする、 請求項 1 4〜 1 9のいずれか一項に記載の表面改質ニ酸化チタン微粒子の , 製造方法。
2 1 . 前記第 6工程の精製する工程が、 表面改質ニ酸化チタン微粒子を水 系溶媒に分散させた後に、塩析により表面改質ニ酸化チタンを沈降させるェ 程を含むことを特徴とする、請求項 1 4〜 1 9のいずれか一項に記載の表面 改質ニ酸化チタン微粒子の製造方法。
2 2 . 前記弟 6工程の精製する工程が、 表面改質ニ酸化チタン微粒子を水 系溶媒に分散させた後に、有機溶媒沈殿により表面改質ニ酸化チタン微粒子 を沈降させる工程を含むことを特徴とする、請求項 1 4〜 1 9のいずれか一 項に記載の表面改質ニ酸化チタン微粒子の製造方法。
PCT/JP2004/004635 2003-03-31 2004-03-31 表面改質二酸化チタン微粒子とその分散液、およびその製造方法 WO2004087577A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/551,071 US20060264520A1 (en) 2003-03-31 2004-03-31 Surface-modified titanium dioxide fine particles and dispersion comprising the same, and method for producing the same
EP04724741A EP1630136B1 (en) 2003-03-31 2004-03-31 Surface-modified titanium dioxide fine particles and dispersion comprising the same, and method for producing the same
AU2004226052A AU2004226052B2 (en) 2003-03-31 2004-03-31 Surface-modified titanium dioxide fine particles and dispersion comprising the same, and method for producing the same
JP2005504273A JP3775432B2 (ja) 2003-03-31 2004-03-31 表面改質二酸化チタン微粒子とその分散液、およびその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-94430 2003-03-31
JP2003094430 2003-03-31
JP2003-340228 2003-09-30
JP2003340228 2003-09-30

Publications (1)

Publication Number Publication Date
WO2004087577A1 true WO2004087577A1 (ja) 2004-10-14

Family

ID=33134317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004635 WO2004087577A1 (ja) 2003-03-31 2004-03-31 表面改質二酸化チタン微粒子とその分散液、およびその製造方法

Country Status (5)

Country Link
US (1) US20060264520A1 (ja)
EP (1) EP1630136B1 (ja)
JP (1) JP3775432B2 (ja)
AU (1) AU2004226052B2 (ja)
WO (1) WO2004087577A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213592A (ja) * 2005-01-06 2006-08-17 Hitachi Software Eng Co Ltd 半導体ナノ粒子表面修飾方法
WO2007018147A1 (ja) * 2005-08-05 2007-02-15 Toto Ltd. 光照射により薬効を消失させる医薬二酸化チタン複合材
WO2007034586A1 (ja) * 2005-09-22 2007-03-29 Toto Ltd. 光触媒性二酸化チタン微粒子、その分散液、およびその製造方法
WO2007122956A1 (ja) * 2006-03-24 2007-11-01 Toto Ltd. 酸化チタン複合体粒子、その分散液、およびそれらの製造方法
WO2009144775A1 (ja) 2008-05-29 2009-12-03 Toto株式会社 抗腫瘍剤
WO2011058084A1 (en) 2009-11-14 2011-05-19 F. Hoffmann-La Roche Ag Biomarkers for predicting rapid response to hcv treatment
WO2011067195A1 (en) 2009-12-02 2011-06-09 F. Hoffmann-La Roche Ag Biomarkers for predicting sustained response to hcv treatment
JP2012056793A (ja) * 2010-09-09 2012-03-22 Seiko Epson Corp 有機修飾無機微粒子の製造方法
US8182786B2 (en) 2003-12-11 2012-05-22 The Trustees Of Columbia University In The City Of New York Nano-sized particles, processes of making, compositions and uses thereof
JP2013104004A (ja) * 2011-11-15 2013-05-30 Toyota Industries Corp フィラーおよびその製造方法
WO2014141992A1 (ja) * 2013-03-15 2014-09-18 株式会社ダイセル 酸化チタン分散液、酸化チタン塗布液、及び光触媒塗膜
WO2014148949A1 (ru) 2013-03-22 2014-09-25 Асави, Ллс Алкил 2-{[(2r,3s,5r)-5-(4-амино-2-оксо-2н-пиримидин-1-ил)-3-гидрокси-тетрагидро-фуран-2-илметокси]-фенокси-фосфориламино}-пропионаты, нуклеозидные ингибиторы рнк-полимеразы hcv ns5b, способы их получения и применения
CN104688773A (zh) * 2005-10-26 2015-06-10 Toto株式会社 杀细胞剂

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007019428A1 (de) * 2006-07-07 2008-10-30 Henkel Ag & Co. Kgaa Wasch-, Reinigungs- und Pflegemittel 2
MX2009001983A (es) * 2006-08-25 2009-07-22 Sachtleben Chemie Gmbh Compuesto que contiene dioxido de titanio.
US20090297626A1 (en) * 2006-11-03 2009-12-03 The Trustees Of Columbia University In The City Of New York Methods for preparing metal oxides
US8017247B2 (en) * 2007-03-30 2011-09-13 Alcoa Inc. Self cleaning aluminum alloy substrates
US7910220B2 (en) * 2007-07-25 2011-03-22 Alcoa Inc. Surfaces and coatings for the removal of carbon dioxide
DE102007058674A1 (de) * 2007-12-06 2009-07-02 Süd-Chemie AG Nanopartikuläre Zusammensetzung und Verfahren zu deren Herstellung
GB0801836D0 (en) * 2008-01-31 2008-03-05 Glaxo Group Ltd Novel composition
US9474769B2 (en) * 2008-02-08 2016-10-25 Yeu-Kuang Hwu Methods of treating cancers
JP5624460B2 (ja) * 2008-05-02 2014-11-12 ポーラ化成工業株式会社 チタニア微粒子複合体及び該チタニア微粒子複合体を含有する組成物
US20110137235A1 (en) * 2008-08-08 2011-06-09 Toto Ltd. Ultrasonic cancer therapy accelerator
WO2010026102A1 (de) 2008-09-04 2010-03-11 Basf Se Modifizierte partikel und diese enthaltende dispersionen
DE102008061048A1 (de) * 2008-12-11 2010-06-17 Henkel Ag & Co. Kgaa Selbstabscheidende wässrige, partikuläre Zusammensetzung enthaltend Pigment-Bindemittel-Partikel
US8617665B2 (en) * 2009-08-03 2013-12-31 Alcoa, Inc. Self-cleaning substrates and methods for making the same
JP5895557B2 (ja) * 2012-01-26 2016-03-30 堺化学工業株式会社 粒子状組成物、粒子状組成物の製造方法、及び、粒子状組成物分散体
KR101427630B1 (ko) * 2012-10-22 2014-08-11 한국표준과학연구원 이산화티타늄 일차나노입자의 수성 현탁액 제조방법
KR101575591B1 (ko) * 2013-09-27 2015-12-08 에이스틴 주식회사 유/무기 하이브리드 이산화티탄 복합체, 이를 포함하는 화장료 조성물 및 그 제조방법
CN104031426B (zh) * 2014-05-12 2015-05-13 谷屿 一种表面改性的纳米二氧化钛及其制备方法
DE102016205389A1 (de) * 2016-03-31 2017-10-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Photokatalytisch aktive Partikel mit einer modifizierten Oberfläche und Verfahren zur Herstellung von Dispersionen dieser Partikel
KR101952580B1 (ko) * 2017-06-09 2019-02-27 코스맥스 주식회사 티타늄디옥사이드 무기분체를 이용한 유무기 복합체 및 이를 포함하는 화장료 조성물 및 이의 제조 방법
KR20210154138A (ko) 2019-02-15 2021-12-20 티오테크 에이에스 이산화티탄 구조체의 제조방법
CN111330560B (zh) * 2019-12-31 2023-05-16 沈阳中科碧奥能源科技有限公司 一种天然木质素基光催化材料的制备方法
EP4234641A1 (en) * 2022-02-25 2023-08-30 Basf Se Compositions, comprising modified titanium dioxide nanoparticles and uses thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1067516A (ja) * 1996-05-07 1998-03-10 Saga Pref Gov アナターゼ分散液およびその製造方法
JP2002316950A (ja) 2001-04-19 2002-10-31 Japan Science & Technology Corp 薬剤等の注入方法および患部打ち込み粒子の製造方法
JP2002316946A (ja) 2001-04-19 2002-10-31 Japan Science & Technology Corp 光触媒の生体内への注入方法ならびに生体内への打ち込み粒子およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3777931D1 (de) * 1986-09-22 1992-05-07 Ishihara Sangyo Kaisha Titandioxydsol und verfahren zur seiner herstellung.
GB8829402D0 (en) * 1988-12-16 1989-02-01 Tioxide Group Plc Dispersion
US5445970A (en) * 1992-03-20 1995-08-29 Abbott Laboratories Magnetically assisted binding assays using magnetically labeled binding members
US5958361A (en) * 1993-03-19 1999-09-28 Regents Of The University Of Michigan Ultrafine metal oxide powders by flame spray pyrolysis
US6599631B2 (en) * 2001-01-26 2003-07-29 Nanogram Corporation Polymer-inorganic particle composites
JP2002361950A (ja) * 2001-06-13 2002-12-18 Sato Corp ラベルプリンタ
AU785282B2 (en) * 2001-06-20 2006-12-21 Rohm And Haas Company Coating with improved hiding, compositions prepared therewith, and processes for the preparation thereof
AU2004226053A1 (en) * 2003-03-31 2004-10-14 Toto Ltd. Titanium dioxide complex having molecule distinguishability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1067516A (ja) * 1996-05-07 1998-03-10 Saga Pref Gov アナターゼ分散液およびその製造方法
JP2002316950A (ja) 2001-04-19 2002-10-31 Japan Science & Technology Corp 薬剤等の注入方法および患部打ち込み粒子の製造方法
JP2002316946A (ja) 2001-04-19 2002-10-31 Japan Science & Technology Corp 光触媒の生体内への注入方法ならびに生体内への打ち込み粒子およびその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FX PERRIN, POLYM INT, vol. 51, 2002, pages 1013 - 1022
R. CAI ET AL., CANCER RESEARCH, vol. 52, 1992, pages 2346 - 2348
See also references of EP1630136A4

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8182786B2 (en) 2003-12-11 2012-05-22 The Trustees Of Columbia University In The City Of New York Nano-sized particles, processes of making, compositions and uses thereof
JP2006213592A (ja) * 2005-01-06 2006-08-17 Hitachi Software Eng Co Ltd 半導体ナノ粒子表面修飾方法
WO2007018147A1 (ja) * 2005-08-05 2007-02-15 Toto Ltd. 光照射により薬効を消失させる医薬二酸化チタン複合材
JP2007063253A (ja) * 2005-08-05 2007-03-15 Toto Ltd 光照射により薬効を消失させる医薬二酸化チタン複合材
US8431143B2 (en) 2005-08-05 2013-04-30 Toto Ltd. Therapeutic method of administering pharmaceutical titanium dioxide composite and light irradiation
WO2007034586A1 (ja) * 2005-09-22 2007-03-29 Toto Ltd. 光触媒性二酸化チタン微粒子、その分散液、およびその製造方法
CN104688773A (zh) * 2005-10-26 2015-06-10 Toto株式会社 杀细胞剂
CN104688773B (zh) * 2005-10-26 2017-11-03 Toto株式会社 杀细胞剂
US20090130050A1 (en) * 2006-03-24 2009-05-21 Toto Ltd. Titanium Oxide Composite Particles, Dispersion Liquid Thereof, and Process for Producing Them
US20150352227A1 (en) * 2006-03-24 2015-12-10 Toto Ltd. Method for accumulating titanium oxide composite particles into a cancer tissue
WO2007122956A1 (ja) * 2006-03-24 2007-11-01 Toto Ltd. 酸化チタン複合体粒子、その分散液、およびそれらの製造方法
WO2009144775A1 (ja) 2008-05-29 2009-12-03 Toto株式会社 抗腫瘍剤
WO2011058084A1 (en) 2009-11-14 2011-05-19 F. Hoffmann-La Roche Ag Biomarkers for predicting rapid response to hcv treatment
WO2011067195A1 (en) 2009-12-02 2011-06-09 F. Hoffmann-La Roche Ag Biomarkers for predicting sustained response to hcv treatment
JP2012056793A (ja) * 2010-09-09 2012-03-22 Seiko Epson Corp 有機修飾無機微粒子の製造方法
JP2013104004A (ja) * 2011-11-15 2013-05-30 Toyota Industries Corp フィラーおよびその製造方法
WO2014141992A1 (ja) * 2013-03-15 2014-09-18 株式会社ダイセル 酸化チタン分散液、酸化チタン塗布液、及び光触媒塗膜
US9440221B2 (en) 2013-03-15 2016-09-13 Daicel Corporation Titanium oxide dispersion liquid, titanium oxide coating liquid, and photocatalyst coating film
JPWO2014141992A1 (ja) * 2013-03-15 2017-02-16 株式会社ダイセル 酸化チタン分散液、酸化チタン塗布液、及び光触媒塗膜
WO2014148949A1 (ru) 2013-03-22 2014-09-25 Асави, Ллс Алкил 2-{[(2r,3s,5r)-5-(4-амино-2-оксо-2н-пиримидин-1-ил)-3-гидрокси-тетрагидро-фуран-2-илметокси]-фенокси-фосфориламино}-пропионаты, нуклеозидные ингибиторы рнк-полимеразы hcv ns5b, способы их получения и применения

Also Published As

Publication number Publication date
AU2004226052A1 (en) 2004-10-14
JPWO2004087577A1 (ja) 2006-06-29
JP3775432B2 (ja) 2006-05-17
US20060264520A1 (en) 2006-11-23
EP1630136A4 (en) 2009-01-21
EP1630136A1 (en) 2006-03-01
EP1630136B1 (en) 2012-07-11
AU2004226052B2 (en) 2009-06-11

Similar Documents

Publication Publication Date Title
WO2004087577A1 (ja) 表面改質二酸化チタン微粒子とその分散液、およびその製造方法
EP2000150B1 (en) Titanium oxide complex particle, dispersion solution of the particle, and process for production of the particle
Lim et al. Functional graphene oxide-based nanosheets for photothermal therapy
Pomogailo Polymer sol-gel synthesis of hybrid nanocomposites
Lakshminarayanan et al. Selective nucleation of calcium carbonate polymorphs: role of surface functionalization and poly (vinyl alcohol) additive
US8333993B1 (en) Synthesis of polymer coated ceria nanoparticles for biomedical applications
WO2007034586A1 (ja) 光触媒性二酸化チタン微粒子、その分散液、およびその製造方法
Guo et al. Easy fabrication of poly (butyl acrylate)/silicon dioxide core-shell composite microspheres through ultrasonically initiated encapsulation emulsion polymerization
CN109045298A (zh) 一种靶向-光热-光动力的金丝桃素-叶酸-氟化石墨烯聚合物纳米复合材料的制备方法
Lv et al. Functionalized boron nanosheets with near-infrared-triggered photothermal and nitric oxide release activities for efficient antibacterial treatment and wound healing promotion
JP2005289660A (ja) 表面改質二酸化チタン微粒子とその分散液、およびその製造方法
EP2421644A2 (en) Nanocrystalline photocatalytic colloid, a method of producing it and its use
CN100497181C (zh) 表面改性二氧化钛微粒和其分散液及其制备方法
CN110917350B (zh) 一种黑色二氧化锡纳米光热材料的制备及其应用
CN109133162A (zh) 一种大比表面超薄二维氧化钛纳米片材料及制备方法
JP2009073784A (ja) 酸化チタン複合体粒子、その分散液、およびそれらの製造方法
Luginina et al. Laser damage threshold of hydrophobic up-conversion carboxylated nanocellulose/SrF 2: Ho composite films functionalized with 3-aminopropyltriethoxysilane
JP4169078B2 (ja) 酸化チタン複合体粒子、その分散液、およびそれらの製造方法
JP4423677B2 (ja) 殺細胞剤
JP2006150345A (ja) 光触媒性二酸化チタン微粒子
JP3826402B2 (ja) 光触媒性二酸化チタン複合微粒子を含む分散液
Purohit et al. Nanoceria: A Rare-Earth Nanoparticle for Tissue Engineering Applications
CN108904472A (zh) 石墨烯改性的光敏剂纳米复合材料及其应用
CN115400212B (zh) 有机室温磷光纳米颗粒及其应用
Sharma et al. Bio-Synthesis and Characterization of CS–Ag Nano Hydrogel for Antibacterial Application

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005504273

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048080617

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004226052

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2004724741

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2004226052

Country of ref document: AU

Date of ref document: 20040331

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004226052

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2004724741

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006264520

Country of ref document: US

Ref document number: 10551071

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10551071

Country of ref document: US