WO2007018147A1 - 光照射により薬効を消失させる医薬二酸化チタン複合材 - Google Patents

光照射により薬効を消失させる医薬二酸化チタン複合材 Download PDF

Info

Publication number
WO2007018147A1
WO2007018147A1 PCT/JP2006/315499 JP2006315499W WO2007018147A1 WO 2007018147 A1 WO2007018147 A1 WO 2007018147A1 JP 2006315499 W JP2006315499 W JP 2006315499W WO 2007018147 A1 WO2007018147 A1 WO 2007018147A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium dioxide
titanium
dispersion
pharmaceutical compound
lesion
Prior art date
Application number
PCT/JP2006/315499
Other languages
English (en)
French (fr)
Inventor
Shuji Sonezaki
Koki Kanehira
Yumi Ogami
Toshiaki Banzai
Yoshinobu Kubota
Original Assignee
Toto Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd. filed Critical Toto Ltd.
Priority to US11/990,040 priority Critical patent/US20100136115A1/en
Publication of WO2007018147A1 publication Critical patent/WO2007018147A1/ja
Priority to US12/889,753 priority patent/US8431143B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0028Disruption, e.g. by heat or ultrasounds, sonophysical or sonochemical activation, e.g. thermosensitive or heat-sensitive liposomes, disruption of calculi with a medicinal preparation and ultrasounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/58Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. poly[meth]acrylate, polyacrylamide, polystyrene, polyvinylpyrrolidone, polyvinylalcohol or polystyrene sulfonic acid resin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6923Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Definitions

  • the present invention relates to a complex of titanium dioxide having a photocatalytic activity and a pharmaceutical compound having a medicinal effect, and more specifically, the medicinal compound is decomposed by photoexcitation of titanium dioxide and its medicinal properties disappear. It relates to a titanium composite.
  • titanium dioxide produces an acid reduction reaction by photoexcitation. Furthermore, titanium dioxide is also used in foods, and its safety has been confirmed to a certain level. Attempts have also been made to utilize such photocatalytic activity by in vivo administration of such titanium dioxide.
  • Patent Document 1 proposes a titanium dioxide complex in which a molecule having molecular discrimination ability is bound to titanium dioxide via a hydrophilic polymer.
  • this complex is introduced into the body, it is collected in specific tissues or cells in the body by molecules with molecular discrimination ability, irradiated with light, and then the tissue or tissue is oxidized by the acid-reducing power of titanium dioxide. It tries to destroy cells.
  • this WO publication does not disclose or suggest that the molecule itself having molecular discrimination ability carried by titanium dioxide is destroyed by the redox power of titanium dioxide.
  • DDS drug delivery system
  • JP-A-7-69900 Patent Document 2
  • JP-A-5-955 Patent Document 3
  • JP-A-2-300133 Patent Document 4
  • Patent Document 5 Japanese Patent Laid-Open No. 2002-316946 (Patent Document 5) and Japanese Patent Laid-Open No. 2002-316950 (patent document 5) Permissible literature 6) discloses a technique in which a drug, particularly adriamycin, is supported on metal particles coated with titanium dioxide having photocatalytic activity and introduced into cancer cells by a gene gun.
  • a drug particularly adriamycin
  • Patent Document 5 discloses a technique in which a drug, particularly adriamycin, is supported on metal particles coated with titanium dioxide having photocatalytic activity and introduced into cancer cells by a gene gun.
  • the drug when it is desired to detoxify the drug, it is said that the drug can be decomposed with a photocatalyst by irradiating with ultraviolet rays.
  • this method is premised on the use of a special device called a gene gun, and it is versatile and stable because it only carries the drug by physical adsorption. There is room for improvement.
  • Patent Literature 1 WO2004Z087765
  • Patent Document 2 JP-A-7-69900
  • Patent Document 3 Japanese Patent Laid-Open No. 5-955
  • Patent Document 4 JP-A-2-300133
  • Patent Document 5 JP 2002-316946
  • Patent Document 6 Japanese Patent Laid-Open No. 2002-316950
  • the present inventors have found that a complex in which a pharmaceutical compound is bound to titanium dioxide having photocatalytic activity via a hydrophilic polymer is stable in an aqueous solvent and can be easily administered into the body. Furthermore, when this is administered into the body and the pharmaceutical composition does not require a medicinal effect, the titanium dioxide is photoexcited by light irradiation, and the pharmaceutical compound is decomposed to reduce its side effects. The knowledge that it can be obtained. The present invention is based on strong knowledge.
  • the present invention can be stably dispersed in an aqueous solvent, can be easily administered to the body, and can eliminate the medicinal effect of the pharmaceutical compound carried by light irradiation.
  • the present invention can be stably dispersed in an aqueous solvent, can be easily administered to the body, and can eliminate the medicinal effect of the pharmaceutical compound carried by light irradiation.
  • the titanium dioxide-titanium composite material according to the present invention has titanium dioxide particles, a hydrophilic polymer bonded to the surface of the titanium dioxide particles, and a desired medicinal effect bonded to the hydrophilic polymer. And the pharmaceutical effect is lost by the photoexcitation of the titanium diacid titanium and the pharmaceutical effect is lost.
  • the dispersant according to the present invention is obtained by dispersing the above-described titanium dioxide-dioxide composite in an aqueous solvent.
  • the dispersant is administered to an animal, and after administration, the lesioned part is treated.
  • UV irradiation Without irradiating the portion other than the lesion part including at least the periphery of the lesion site with ultraviolet rays, the titanium dioxide of the titanium dioxide composite contained in the dispersion is photoexcited, and the titanium dioxide is photoexcited by the photoexcitation of the titanium dioxide. Used in methods characterized by compound degradation and loss of efficacy.
  • the dispersion is administered to an animal including a human, and after the administration, the lesion is not irradiated with ultraviolet rays and includes at least the periphery of the lesion.
  • the other portion is irradiated with ultraviolet rays to photoexcite the titanium dioxide composite titanium oxide contained in the dispersion, and the pharmaceutical compound is decomposed by the photoexcitation of the titanium dioxide, resulting in loss of the medicinal effect. It is what.
  • the use according to the present invention is the use of the above-described titanium dioxide complex for producing a therapeutic agent for a lesion, wherein the therapeutic agent for a lesion is administered to an animal including a human,
  • the lesioned part is not irradiated with ultraviolet rays, and the part other than the lesioned part including at least the periphery of the lesioned part is irradiated with ultraviolet rays, so that the diacid-titanium composite nitric acid contained in the lesioned part therapeutic agent is irradiated.
  • It is used for a method in which titanium is photoexcited and the pharmaceutical compound is decomposed by photoexcitation of the titanium dioxide and the medicinal effect is lost.
  • FIG. 1 is a graph showing the relationship between the titanium oxide content of the polyacrylic acid-coated titanium oxide nanoparticle dispersion prepared in Example 1 and the amount of absorption of ultraviolet light.
  • FIG. 2 A graph showing changes in body weight of mice injected with an adriamycin-fixed polyacrylic acid-coated acid-titanium nanoparticle dispersion liquid in Example 3 with or without UV irradiation.
  • FIG. 3 is a graph showing the antitumor effect test results of adriamycin-fixed polyacrylic acid-coated acid titanium particles in Example 6.
  • FIG. 4 is a graph showing the antitumor effect test results of bleomycin-fixed polyacrylic acid-coated acid titanium nanoparticles in Example 9.
  • the titanium dioxide composite according to the present invention basically has titanium dioxide, a hydrophilic polymer bonded to the surface of the titanium dioxide, and a desired medicinal effect bonded to the hydrophilic polymer. And a medicinal compound.
  • Titanium dioxide constituting the composite according to the present invention is not particularly limited as long as it has photocatalytic activity, and may be, for example, anatase type or rutile type.
  • the anatase type has a higher photocatalytic activity than the rutile type, so that its use is preferred.
  • the particle diameter of the titanium dioxide-dioxide particles may be appropriately determined in consideration of being difficult to aggregate, being introduced into the body, etc. According to a preferred embodiment of the present invention, It is preferable that the particle size is 2 to 200 nm. Further, when it is desired to accumulate in a body tissue, particularly cancer cells, the particle size is preferably about 50 to 200 nm.
  • the titanium dioxide particles in the present invention are composites with other materials as long as titanium dioxide is present at least in part of the particle surface and exhibits photocatalytic activity. It may be what was done.
  • a composite material of a magnetic material and titanium dioxide may be used.
  • the hydrophilic polymer used in the present invention is preferably water-soluble, and itself has a functional group capable of binding to the surface of the titanium dioxide particles and a functional group capable of binding to a pharmaceutical compound having a medicinal effect described below. And have. In addition, it is preferable that this hydrophilic polymer has a function of stably dispersing titanium dioxide particles in water and a property of giving an appropriate pH as described later.
  • the structure and molecular weight of the hydrophilic polymer are not particularly limited as long as the above requirements are satisfied, but according to a preferred embodiment of the present invention, the hydrophilic polymer has a plurality of carboxyl groups. It is preferable to have it. Preferable specific examples thereof include carboxymethyl starch, carboxymethyl dextran, carboxymethyl cellulose, polycarboxylic acids, and a copolymer (copolymer) having a carboxyl group unit.
  • polycarboxylic acids such as polyacrylic acid and polymaleic acid
  • co-polymerization of acrylic acid Z maleic acid and attalic acid Z sulfonic acid monomers Coalescence is more preferably used.
  • the molecular weight of the hydrophilic polymer is preferably about 2,000-100,000, more preferably the lower limit is about 5,000, and the upper limit is about 30,000.
  • the binding of the hydrophilic polymer to the surface of the titanium dioxide particles is formed on the surface of the functional group of the hydrophilic polymer and titanium oxide hydrated with water in the reaction system. This can be performed by reacting with a hydroxyl group.
  • the hydrophilic polymer has a carboxyl group
  • titanium dioxide particles and a hydrophilic polymer are dispersed in dimethylformamide, and hydrothermal reaction is performed at 90 to 180 ° C for 1 to 12 hours.
  • the two can be bonded with an ester bond. Ester bond can be confirmed by various analytical methods, it is possible to check for example by infrared spectroscopy in the presence or absence of infrared absorption near 1700 ⁇ 1800Cm _1 is the absorption band of the ester bond.
  • the pharmaceutical compound used in the present invention is a compound having a predetermined medicinal effect, and is used for the treatment or prevention of an established disease.
  • anticancer agents such as anti-metabolites (5-fluorouracil, dokifluridine, UTF, methotrexate, etc.), antitumor antibiotics ( Examples include doxorubicin, mitomycin C, bleomycin, adrimamycin), gold derivatives (cisbratin nedaplatin), alkylating agents (cyclophosphamide, etc.), topoisomerase inhibitors (irinotecan, ebside, etc.), plant alkaloids (taxol, etc.) .
  • anticancer agents such as anti-metabolites (5-fluorouracil, dokifluridine, UTF, methotrexate, etc.), antitumor antibiotics ( Examples include doxorubicin, mitomycin C, bleomycin, adrimamycin), gold derivatives (cisbratin nedaplatin), alkylating agents (cyclophosphamide, etc.), topoisomerase inhibitors (ir
  • the pharmaceutical compound includes a functional group possessed by the hydrophilic polymer bonded to the surface of the titanium dioxide particles and a functional compound possessed by the pharmaceutical compound. Bonded by reacting with a group.
  • the functional group involved in the bond between the two may be appropriately selected.
  • the pharmaceutical compound preferably has an amino group, an aldehyde group, or the like. Even if the pharmaceutical compound does not have these appropriate functional groups, the appropriate functional group can be introduced and bound to the hydrophilic polymer as long as the drug efficacy is not affected. .
  • a pharmaceutical compound bound by such a functional group is stably supported on titanium dioxide particles even after being administered to the body of an animal as described later, and is detached and diffused before reaching the lesion. This is extremely preferable.
  • the medicinal effect of the medicinal compound is that the medicinal compound is decomposed by an oxidation-reduction reaction caused by photoexcitation of titanium dioxide, and the medicinal effect is Configured to disappear.
  • a pharmaceutical compound when bound to a water-soluble polymer via its functional group, one functional group is theoretically lost.
  • the functional group of a water-soluble polymer involved in binding is a carboxyl group
  • the loss of the carboxyl group due to the binding of a pharmaceutical compound may affect the water solubility, and thus diacids. ⁇ May affect the dispersibility of titanium composites. Therefore, in an embodiment of the present invention, it is necessary to appropriately maintain the balance between the binding of the pharmaceutical compound, the water solubility of the water-soluble polymer, and further the dispersibility of titanium dioxide.
  • an acid-titanium-polyatallylic acid complex having a particle size of 2 to 200 nm in which the pharmaceutical compound is adriamycin and the water-soluble polymer is polyacrylic acid, 1 per lg of titanium oxide. — It contains about 1, mmol mmol of free carboxyl groups.
  • the binding of the pharmaceutical compound is accompanied by the activation and substitution of this functional group. Even if about 1% of the carboxyl group is lost, the dispersibility is not substantially affected. Seem. Therefore, in this embodiment, adriamycin can be bound to about 1Z10 ⁇ -1 / l of the carboxyl group.
  • the amount of adriamycin bound per lg of titanium dioxide can be about 0.001—lOOmg, preferably about 0.1—lOmg, Preferably it is about 0.5-5 mg.
  • Titanium dioxide composite dispersion and 'treatment method using the same The titanium dioxide-dioxide composite according to the present invention can be stably dispersed in an aqueous solvent due to the hydrophilicity of the hydrophilic polymer.
  • a repulsive force derived from the negative charge of the carboxyl group acts between the complexes in the aqueous solvent and is stably dispersed. It is thought that.
  • the titanium dioxide composite material according to the present invention can stably exist in an aqueous solvent in a wide pH range, and can maintain a uniformly dispersed state without aggregation, for example, at pH 3 to 13.
  • the titanium dioxide composite according to the present invention can be in the form of a uniform and stable dispersion dispersed in water, various pH buffer solutions, infusion solutions, physiological saline, and the like. Since this dispersion does not aggregate even under physiological conditions near neutrality, it can be made into a stable oral or parenteral dosage form. In particular, it can be administered to an animal without the need for a special device or the like by injecting it directly into the lesion or by injecting it into a vein. It is also possible to apply an ointment or spray containing this dispersion directly to the affected area such as the skin.
  • the dosage form can be appropriately determined in consideration of the type of pharmaceutical compound, the disease to be treated, and the lesion, and the dispersant according to the present invention can be applied to a wide range of dosage forms.
  • an administration route capable of accumulating in the lesioned part in the diacid / titania composite material is preferable.
  • the lesion is not irradiated with ultraviolet light.
  • the part other than the lesion including at least the periphery of the lesion is irradiated with ultraviolet rays.
  • titanium dioxide is photoexcited and develops redox power.
  • This redox power decomposes the pharmaceutical compound carried by the composite material.
  • the efficacy of the pharmaceutical compound disappears and at the same time the side effects are eliminated. Therefore, according to the present invention, the medical effect of the pharmaceutical compound can be exerted only on the lesion site where the treatment is necessary, and the pharmaceutical compound is used in a place where no other pharmaceutical compound is necessary. The influence of can be eliminated.
  • the light for photoexcitation of titanium dioxide titanium is not particularly limited as long as it can photoexcite titanium dioxide, but due to the band gap of titanium dioxide.
  • the wavelength is preferably 400 nm or less, more preferably ultraviolet light having a wavelength of 280 nm. Good.
  • a specific light source and a device for irradiation may be appropriately determined, selected and designed. However, when irradiating through the skin, sunlight, a normal ultraviolet lamp, a black light, or the like can be suitably used.
  • an ultraviolet fiber can be attached to the endoscope and light can be irradiated.
  • an anti-cancer agent particularly adriamycin
  • adriamycin can be used as a pharmaceutical compound, and cancer tissue can be targeted as a lesion.
  • Titanium tetraisopropoxide (3.6 g) and isopropanol (3.6 g) were mixed and dropped into 60 ml of ultrapure water under ice cooling for hydrolysis. After dropping, the mixture was stirred at room temperature for 30 minutes. After stirring, 1 ml of 12 N nitric acid was dropped, and the mixture was stirred at 80 ° C. for 8 hours to peptize. After completion of peptidation, the solution was filtered through a 0.45 ⁇ m filter, and the solution was exchanged using a desalting column (PD10; Amersham Pharmacia Bioscience) to prepare anatase-type titanium dioxide sol with a solid content of 1%. .
  • a desalting column PD10; Amersham Pharmacia Bioscience
  • This dispersion was placed in a 100 ml vial and sonicated at 200 Hz for 30 minutes.
  • the average dispersed particle sizes before and after sonication were 36.4 nm and 20.2 nm, respectively.
  • the solution was concentrated to prepare anatase-type titanium dioxide sol with a solid content of 20%.
  • 0.75 ml of the obtained anatase-type titanium dioxide sol was dispersed in 20 ml of dimethylformamide (DMF), and after adding 10 ml of DMF in which 0.3 g of polyacrylic acid (average molecular weight: 5,000, Wako Pure Chemical Industries) was dissolved, the mixture was stirred. Mixed. The solution was transferred to a hydrothermal reactor (HU-50, Sanai Kagaku) and synthesized at 150 ° C for 5 hours. After completion of the reaction, the reaction vessel was cooled to 50 ° C or lower, and after removing the solution, 60 ml of isopropanol was added, allowed to stand for 1 hour, and then centrifuged at 4000 xg for 20 minutes.
  • DMF dimethylformamide
  • the precipitate was collected, washed with 70% ethanol, distilled water was removed, and a polyacrylic acid-coated titanium dioxide nanoparticle dispersion was prepared. It was revealed by absorption analysis that this dispersion had absorption peaks at wavelengths of 205 nm and 250 nm. The absorbance at both wavelengths shows a high correlation with the value obtained by measuring the titanium oxide content of this dispersion by incineration analysis, and the titanium oxide content in the dispersion is determined by measuring the absorption of ultraviolet light. It was quantifiable. The result was as shown in FIG.
  • the polyacrylic acid-coated titanium oxide nanoparticles prepared in Example 1 were adjusted with water to a titanium oxide concentration of 5% (w / v), and 10 ml was used for the following reaction. 800 mM 1-ethyl-3- (3-ethylaminopropyl) carbodiimide (250 ⁇ l) and lOOmM N-hydroxysuccinic acid (500 ⁇ l) were added and reacted at room temperature with stirring for 2 hours. This solution was exchanged with a 10 mM HEPES buffer (pH 8.0) using a desalting column.
  • adriamycin hydrochloride adriamycin hydrochloride dissolved in DMSO so as to be 2 mg / ml was added and reacted at 4 ° C. with stirring for 30 minutes.
  • the reaction product was sufficiently dialyzed against PBS to obtain a dispersion of adriamycin-fixed polyacrylic acid-coated titanium nanoparticles.
  • the titanium oxide content was determined by incineration analysis in the same manner as in Example 1. As a result, it was 3.67% (w / v).
  • the adriamycin content of this dispersion was 23.9 g / ml. Therefore, the ratio of adriamycin / acid titanium in this dispersion was found to be 0.653 mg / g-acid titanium.
  • Wistar rat (o 71 : 11-year-old 240-260g body weight) tongue was fixed with tweezers and 0.005% (w / v) adriamycin-fixed polyacrylic acid coated titanium nanoparticle dispersion 0.3ml was injected. .
  • one group (14 animals) was irradiated with black light with an intensity of 2500 W / cm 2 for 30 minutes on the tongue after injection.
  • the other group was powerful with ultraviolet light treatment.
  • Adriamycin-degraded polyacrylic acid-coated titanium oxide nanoparticle early piles of fl flare wounds trials T24 cells derived from human bladder cancer using F12 medium at 37 ° C and 5.5% CO gas atmosphere
  • Example 2 After culturing and inoculating the nude mice (BALB / co 71 ) with the T24 cells to form tumors, 0.05% (w / v) prepared in Example 2 was obtained when the diameter was about 5-7 mm. ) Adriamycin-fixed polyacrylic acid-coated acid-titanium nanoparticles were injected into 2001. As a control, the same operation was performed with a PBS solution. After the injection, ultraviolet rays (2500 W / cm 2 ) were irradiated for 1 minute. Tumor volume in nude mice was measured over 3 weeks. The result is shown in Figure 3.
  • the polyacrylic acid-coated titanium oxide nanoparticles prepared in Example 1 were adjusted with water to a titanium oxide concentration of 5% (w / v), and 10 ml was used for the following reaction. 800 mM 1-ethyl-3- (3-jetylaminopropyl) carbodiimide (250 ⁇ 1) and lOOmM N-hydroxysuccinic acid (500 ⁇ 1) were added and reacted at room temperature for 2 hours with stirring. Dissolve in DMSO to make lOmg / ml. 500 ⁇ l of the dissolved bleomycin hydrochloride (Wako Pure Chemical Industries, Ltd.) was added and reacted at 4 ° C with stirring for 30 minutes.
  • the reaction product was sufficiently dialyzed against PBS to obtain a dispersion of bleomycin-fixed poly (coacrylate) -titanium nanoparticles.
  • the titanium oxide concentration was determined by measuring the absorbance at 205 nm and found to be 1.14% (w / v).
  • the bleomycin titer of this dispersion was 10.5 g titer / ml. Therefore, the bleomycin / titanium oxide ratio of this dispersion was determined to be 0.921 mg titer / g-titanium oxide.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nanotechnology (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Dermatology (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

 水系溶媒中に安定に分散され、かつ体内への投与が容易に行え、かつ光照射によりそれが担持する医薬化合物の薬効を消失させることができる二酸化チタン複合材およびその分散体の提供。  光触媒活性を有する二酸化チタンに、親水性高分子を介して医薬化合物を結合させた複合体を用いる。この複合体は、水系溶媒中で安定であり、かつ体内への投与が容易であって、さらにこれを体内に投与し、医薬組成物の薬効の必要の無い部位では光照射により二酸化チタンを光励起し、医薬化合物を分解してその副作用を低減させることができる。

Description

明 細 書
光照射により薬効を消失させる医薬二酸化チタン複合材
発明の背景
[0001] 発明の分野
本発明は、光触媒活性を有する二酸化チタンと、薬効を有する医薬化合物との複 合体に関し、さらに詳しくは二酸ィ匕チタンの光励起により医薬ィ匕合物が分解され、そ の薬効が消失する二酸化チタン複合体に関する。
[0002] 背景 術
二酸ィ匕チタンが光励起により酸ィ匕還元反応を生じることは周知である。さらに、二酸 化チタンは食品にも用いられておりその安全性は一定のレベルで確認されている。こ のような二酸ィ匕チタンを生体内に投与し、光触媒活性を利用しょうとする試みもなさ れている。
[0003] 例えば、 WO2004Z087765公報 (特許文献 1)には、分子識別能を有する分子を 二酸化チタンに、親水性高分子を介して結合した二酸化チタン複合体が提案されて いる。この複合体を体内に導入し、分子識別能を有する分子により体内の特定の組 織または細胞に集め、これに光照射をして二酸ィ匕チタンの酸ィ匕還元力により組織ま たは細胞を破壊しょうとするものである。しかし、この WO公報には、二酸化チタンの 酸化還元力により、それが担持する分子識別能を有する分子自体を破壊しょうとする 開示または示唆はない。
[0004] 一方で、例えば抗ガン剤などの特定の薬効を有する医薬ィ匕合物には、しばしば副 作用を伴うものあることから、患部にのみその医薬化合物を送達し、他の健常な組織 または細胞には医薬ィ匕合物が届力な 、ようにする工夫がされて 、る。 、わゆるドラッ クデリバリーシステム(DDS)と呼ばれる手法である。
[0005] 例えば、抗ガン剤であるアドリアマイシンについては、特開平 7— 69900号 (特許文 献 2)、特開平 5— 955号 (特許文献 3)、特開平 2— 300133号 (特許文献 4)などに 高分子と組み合わせた工夫が見られる力 ガン細胞への効率の良い送達、さらには 副作用の抑制など、依然として改善の余地を残すものであるといえる。
[0006] また、特開 2002— 316946号 (特許文献 5)および特開平 2002— 316950号)(特 許文献 6)には、薬剤、とりわけアドリアマイシンを、光触媒活性を有する二酸化チタン をコ一ティングした金属粒子に担持させ、遺伝子銃によりガン細胞に導入する手法が 開示されている。この手法にあっては、薬剤の無毒化を図りたいときは紫外線照射を 行い、光触媒により薬剤を分解できるとされている。しかし、この手法にあっては、遺 伝子銃という特殊な装置の利用を前提とするものであり、また薬剤の担持が単なる物 理的吸着によりなされている点で、汎用性およびその安定性において改善の余地が あるものといえる。
特許文献 1: WO2004Z087765公報
特許文献 2 :特開平 7— 69900号公報
特許文献 3:特開平 5— 955号公報
特許文献 4:特開平 2 - 300133号公報
特許文献 5 :特開 2002— 316946号
特許文献 6:特開平 2002— 316950号
発明の概要
[0007] 本発明者らは、今般、光触媒活性を有する二酸化チタンに、親水性高分子を介し て医薬化合物を結合させた複合体が水系溶媒中で安定であり、かつ体内への投与 が容易であって、さらにこれを体内に投与し、医薬組成物の薬効の必要の無い部位 では光照射により二酸ィ匕チタンを光励起し、医薬ィ匕合物を分解してその副作用を低 減させることができるとの知見を得た。本発明は力かる知見に基づくものである。
[0008] よって、本発明は、水系溶媒中に安定に分散され、かつ体内への投与が容易に行 え、かつ光照射によりそれが担持する医薬ィ匕合物の薬効を消失させることができる二 酸化チタン複合材およびその分散体の提供を目的として!ヽる。
[0009] そして、本発明による二酸ィ匕チタン複合材は、二酸化チタン粒子と、該ニ酸化チタ ン粒子の表面に結合した親水性高分子と、該親水性高分子に結合した所望の薬効 を有する医薬ィ匕合物とを含んでなり、前記二酸ィ匕チタンの光励起により前記医薬ィ匕 合物が分解され、前記薬効が消失することを特徴とするものである。
[0010] さらに、本発明による分散剤は、上記二酸ィ匕チタン複合材を水系溶媒に分散してな るであり、この分散剤は、分散体を動物に投与し、投与後、病変部には紫外線照射を せず、該病変部位の周囲を少なくとも含む該病変部以外の部分に紫外線照射して、 分散体に含まれる二酸化チタン複合材のニ酸化チタンを光励起し、該ニ酸化チタン の光励起により医薬ィヒ合物が分解され、薬効が消失することを特徴とする方法に用 いられる。
[0011] また、本発明による病変部の治療方法は、分散体を人を含む動物に投与し、投与 後、病変部には紫外線照射をせず、該病変部位の周囲を少なくとも含む該病変部以 外の部分に紫外線照射して、前記分散体に含まれる二酸化チタン複合材のニ酸ィ匕 チタンを光励起し、該ニ酸化チタンの光励起により医薬化合物が分解され、薬効が 消失することを特徴とするものである。
[0012] さらに、本発明による使用は、病変部治療剤製造のための上記二酸ィ匕チタン複合 体の使用であって、病変部治療剤が、人を含む動物に投与し、投与後、病変部には 紫外線照射をせず、該病変部位の周囲を少なくとも含む該病変部以外の部分に紫 外線照射して、前記病変部治療剤に含まれる二酸ィ匕チタン複合材のニ酸ィ匕チタンを 光励起し、該ニ酸化チタンの光励起により医薬化合物が分解され、薬効が消失する 方法に用いられるものである。
図面の簡単な説明
[0013] [図 1]実施例 1において調製されたポリアクリル酸コート酸ィ匕チタンナノ粒子分散液の 酸化チタン含有量と、紫外光の吸収量の関係を示す図である。
[図 2]実施例 3における、アドリアマイシン固定ィ匕ポリアクリル酸コート酸ィ匕チタンナノ 粒子分散液を口腔組織内に注入したマウスの紫外線照射に有無による体重変化を 示す図である。
[図 3]実施例 6における、アドリアマイシン固定ィ匕ポリアクリル酸コート酸ィ匕チタンナノ 粒子の抗腫瘍効果試験結果を示す図である。
[図 4]実施例 9における、ブレオマイシン固定ィ匕ポリアクリル酸コート酸ィ匕チタンナノ粒 子の抗腫瘍効果試験結果を示す図である。
発明の具体的説明
[0014] 本発明による二酸化チタン複合体は、基本的に、二酸化チタンと、この二酸化チタ ンの表面に結合した親水性高分子と、この親水性高分子に結合した所望の薬効を有 する医薬ィ匕合物とを含んでなる。
[0015] 二酸化チタン
本発明による複合体を構成する二酸化チタンは、光触媒活性を有するものであれ ば特に限定されず、例えばアナターゼ型、ルチル型のいずれであってもよい。一般 的にはアナターゼ型の方がルチル型よりも光触媒活性が強いので、その利用が好ま しい。
[0016] 本発明において、二酸ィ匕チタン粒子の粒径は、凝集し難いこと、体内に導入される ことなどを考慮して適宜決定されてよいが、本発明の好ましい態様によれば、その粒 経が 2〜200nmであることが好ましぐさらに体内組織への蓄積、とりわけガン細胞へ の蓄積を望む場合には、その粒経は 50〜200nm程度であることが好まし 、。
[0017] また、本発明の一つの態様によれば、本発明において二酸化チタン粒子とは、二 酸化チタンが少なくとも粒子表面の一部に存在して光触媒活性を発現する限り、他 の材料と複合されたものであってもよい。例えば、磁性材とニ酸ィ匕チタンとの複合材 であってもよい。
[0018] 親 .7k ^ >子
本発明において用いられる親水性高分子は、好ましくは水溶性であり、それに自体 が二酸化チタン粒子の表面に結合可能な官能基と、後記する薬効を有する医薬ィ匕 合物と結合可能な官能基とを有する。また、この親水性高分子は、二酸ィ匕チタン粒子 を水中に安定に分散させる機能と、さらに後記するように適切な pHを与える性質を 併せ持つものであることが好まし 、。
[0019] 上記要件を満足するものであれば、親水性高分子の構造、分子量等は特に限定さ れないが、本発明の好ましい態様によれば、親水性高分子は、複数のカルボキシル 基を有するものであることが好ましい。その好ましい具体例としては、カルボキシメチ ルデンプン、カルボキシメチルデキストラン、カルボキシメチルセルロース、ポリカルボ ン酸類、およびカルボキシル基単位を有する共重合体 (コポリマー)などが挙げられ る。より具体的には、水溶性高分子の加水分解性および溶解度の観点から、ポリアク リル酸、ポリマレイン酸等のポリカルボン酸類、およびアクリル酸 Zマレイン酸やアタリ ル酸 Zスルフォン酸系モノマーの共重合体がより好適に使用される。本発明の好まし い態様によれば、親水性高分子の分子量は 2, 000-100, 000程度であることが好 ましぐより好ましい下限は 5, 000程度であり、上限は 30, 000程度である。
[0020] 親水性高分子の二酸ィ匕チタン粒子の表面への結合は、親水性高分子が有する官 能基と、酸化チタンが反応系中の水に水和されてその表面に生成する水酸基とを反 応させて行うことが出来る。親水性高分子がカルボキシル基を有するものである場合 、例えば、二酸ィ匕チタン粒子と親水性高分子とをジメチルホルムアミドに分散させて、 90〜180°Cで、 1〜12時間水熱反応を行い、両者をエステル結合で結合させること ができる。エステル結合は種々の分析方法により確認できるが、例えば赤外分光法 によりエステル結合の吸収帯である 1700〜1800cm_1付近の赤外吸収の有無で確 認することが可能である。
[0021] 鐘 )
本発明において用いられる医薬ィ匕合物は、所定の薬効を有する化合物であり、確 立した疾病の治療またはその予防に用いられるものである。本発明にあっては、その 副作用が強ぐその結果、出来るだけ治療対象となる細胞または組織にのみ送達さ れることが望ましい医薬ィ匕合物への適用が有利である。
[0022] 本発明において利用が可能な医薬ィ匕合物の具体例としては、抗ガン剤、例えば代 謝拮抗剤(5—フルォロウラシル、ドキフルリジン、ユーティーエフ、メトトレキサート等) 、抗腫瘍性抗生物質 (ドキソルビシン、マイトマイシン C、ブレオマイシン、アドリママイ シン等)、金誘導体 (シスブラチン ネダプラチン)、アルキル化剤(シクロフォスフアミド 等)、トポイソメラーゼ阻害剤 (イリノテカン、エブシド等)、植物アルカロイド (タキソー ル等)が挙げられる。
[0023] 疎水性の医薬化合物、とりわけ多くの化合物が疎水性である抗ガン剤にあっては、 この疎水性により二酸ィ匕チタン複合材の細胞内への取り込みが効率よく行われると の利点が得られる。特に、上述のとおり、二酸ィ匕チタンの粒径がガン細胞への蓄積に 適するものとされた場合には、効率よく腫瘍細胞に本発明による二酸化チタン複合材 を集積させることができるとの利点が得られる。
[0024] 本発明による二酸ィ匕チタン複合体において、医薬ィ匕合物は、上記二酸化チタン粒 子の表面に結合された親水性高分子が有する官能基と、医薬化合物が有する官能 基とを反応させて結合される。両者の結合に関与する官能基は適宜選択されてよい 。親水性高分子力カルボキシル基を有するものである場合、医薬ィ匕合物がアミノ基、 アルデヒド基等を有するものであることが好ましい。仮に医薬ィ匕合物がこれら適当な 官能基を有していな力つたとしても、その薬効に影響を与えない限り、適当な官能基 を導入して、親水性高分子と結合させることができる。このような官能基によって結合 された医薬ィ匕合物は、後記するような動物の体内に投与されても、安定に二酸化チ タン粒子に担持され、病変部に到達する前に脱離、拡散することがないため極めて 好ましい。
[0025] さらに、本発明による二酸ィ匕チタン複合体にあっては、この医薬ィ匕合物の薬効は、 二酸化チタンの光励起によって生じる酸化還元反応により、医薬化合物が分解され 、その薬効が消失するよう構成される。
[0026] 本発明において、医薬ィ匕合物が水溶性高分子にその官能基を介して結合すると、 理論的には官能基が一つ失われることになる。例えば、結合に関与する水溶性高分 子の官能基がカルボキシル基である場合、そのカルボキシル基が医薬化合物の結 合により失われると、その水溶性に影響を与えることがあり、ひいては二酸ィ匕チタン複 合材の分散性に影響を与えることがある。よって、本発明のある態様にあっては、医 薬化合物の結合と、水溶性高分子の水溶性、さらには二酸ィ匕チタンの分散性との均 衡を適宜保つことが必要になる。例えば、医薬ィ匕合物がアドリアマイシンであり、水溶 性高分子がポリアクリル酸である、 2— 200nmの粒径を有する酸ィ匕チタン—ポリアタリ ル酸複合体とした場合、酸化チタン lgあたり 1— 1, OOOmmol程度の遊離カルボキシ ル基が含まれることになる。ここで、医薬ィ匕合物の結合にはこの官能基の活性化と置 換を伴うが、その 1 %程度のカルボキシル基が失われてもその分散性には本質的な 影響を与えないと思われる。従って、この態様にあっては、カルボキシル基の 1Z10 Ο- 1/l, 000程度に、アドリアマイシンを結合させることができる。よって、本発明の 好ましい態様によれば、二酸ィ匕チタン lgあたりのアドリアマイシンの結合量は 0. 001 — lOOmg程度とすることが可能であり、好ましくは 0. 1— lOmg程度であり、より好ま しくは 0. 5— 5mg程度である。
[0027] 二酸化チタン複合材分散体およびそれを用いた '治療方法 本発明による二酸ィ匕チタン複合材は、親水性高分子の親水性により水系溶媒中に 安定に分散可能である。本発明の好ましい態様によれば、親水性高分子がカルボキ シル基を有するものである場合、水系溶媒中ではカルボキシル基の負電荷に由来す る斥力が複合体間に作用し、安定に分散されるものと考えられる。本発明による二酸 化チタン複合材は、広範な pH領域においける水系溶媒中で安定に存在でき、例え ば pH3〜13において、凝集することなく均一に分散した状態を維持することができる
[0028] したがって、本発明による二酸化チタン複合体は、水、種々の pH緩衝液、輸液、お よび生理食塩水等に分散させた、均一で安定な分散液の形態とすることができる。こ の分散液は、中性付近の生理的条件においても凝集することがないために、安定な 経口または非経口の剤形とすることができる。特に、病変部に直接注射する注射剤と して、または静脈に注射することにより、特殊な装置等を必要とせずに、動物に投与 することが可能となる。また、この分散液を含む軟膏やスプレー剤を皮膚等の患部に 直接塗布することも可能となる。その剤形は、医薬化合物の種類、治療しょうとする疾 病、病変部を勘案して、適宜決定されてよぐまた本発明による分散剤は広範な剤形 に応用可能であるとの利点を有する。また、本発明にあっては、病変部に二酸ィ匕チタ ン複合材魏中、蓄積させることができる投与経路が好ましい。
[0029] 本発明にあっては、二酸化チタン複合材を体内に投与後、好ましくは病変部に二 酸ィ匕チタン複合材を集中、蓄積させた後、病変部には紫外線照射をせず、該病変部 位の周囲を少なくとも含む該病変部以外の部分に紫外線照射する。この光照射によ り二酸化チタンが光励起され、酸化還元力を発現する。この酸化還元力により当該 複合材が担持する医薬ィ匕合物が分解される。その結果、医薬化合物の薬効が消失 すると同時に、副作用も無くなる。従って、本発明によれば、治療の必要は病変部に お 、てのみ医薬ィ匕合物の薬効を発揮させることができ、それ以外の医薬化合物の必 要の無い箇所では医薬ィ匕合物の影響を無くすることができる。
[0030] 本発明にお 、て、二酸ィ匕チタンの光励起のための光は、二酸化チタンを光励起す ることができるものであれば、特に限定されないが、二酸化チタンのバンドギャップの 関係上その波長は 400nm以下、より好ましくは波長 280nmの紫外線であることが好 ましい。具体的な光源および照射のための装置は適宜決定、選択および設計されて よいが、皮膚を経由して照射する場合には、太陽光や通常の紫外線ランプ、ブラック ライト等を好適に使用できる。また、体内の患部に対して直接照射する場合には、例 えば、内視鏡に紫外線ファイバーを装着して、光照射することができる。
[0031] 本発明の好ましい態様によれば、医薬ィ匕合物として抗ガン剤、特にアドリアマイシン を用い、病変部としてガン組織を標的に治療を行うことが出来る。
実施例
[0032] 本発明を以下の実施例によりより詳細に説明するが、本発明はこれら実施例に限 定されるものではない。
[0033] ¾細
ポリアクリル コー卜酸化チタンナノ粒^ > 夜の
チタンテトライソプロポキシド 3.6gとイソプロパノール 3.6gとを混合し、氷冷下で 60ml の超純水に滴下して加水分解を行った。滴下後に室温で 30分間攪拌した。攪拌後、 12 N硝酸を lml滴下して、 80°Cで 8時間攪拌を行い、ぺプチゼーシヨンした。ぺプチゼ ーシヨン終了後、 0.45 μ mのフィルターで濾過し、脱塩カラム(PD10 ;アマシャムファ ルマシアバイオサイエンス)を用いて溶液交換して固形成分 1%のアナターゼ型ニ 酸ィ匕チタンゾルを調製した。
この分散液を 100 mlのバイアル瓶に入れ、 200Hzで 30分間超音波処理を行った。 超音波処理を行う前と後での平均分散粒経はそれぞれ、 36.4nm、 20.2nmであった。 超音波処理後、溶液を濃縮して固形成分 20%のアナターゼ型ニ酸ィ匕チタンゾルを 調製した。
得られたアナターゼ型ニ酸化チタンゾル 0.75mlを 20mlのジメチルホルムアミド (DMF )に分散させ、ポリアクリル酸 (平均分子量: 5,000、和光純薬) 0.3gを溶解した DMF 10 mlを添加後、攪拌して混合した。水熱反応容器 (HU-50、三愛科学)に溶液を移し変 え、 150°Cで 5時間合成を行った。反応終了後、反応容器温度が 50°C以下になるまで 冷却し、溶液を取り出した後にイソプロパノールを 60ml添カ卩し、 1時間静置後、 4000xg で 20分間遠心分離を行った。沈殿を回収し、 70%エタノールで洗浄後、蒸留水をカロ え、ポリアクリル酸コート酸ィ匕チタンナノ粒子分散液を作成した。 この分散液は波長 205nmおよび 250nmの吸光ピークを持つことが吸光分析により明 らかになつた。両波長ピークの吸光度は、本分散液を焼却分析により酸化チタン含 量を測定した値と高い相関性を示し、分散液中の酸ィ匕チタン含量量は紫外光の吸 収を測定することで定量可能であった。結果は、図 1に示されるとおりであった。
[0034] 実施例 2
アドリアマイシン固定化ポリアクリル酸コート酸化チタンナノ粒早分散液の調製
実施例 1にて作成したポリアクリル酸コート酸ィ匕チタンナノ粒子を、酸ィ匕チタン濃度 5 %(w/v)に水で調整し、 10mlを以下の反応に用いた。 800mMの 1-ェチル -3-(3-ジェチ ルァミノプロピル)カルボジイミド 250 μ 1と lOOmM N-ヒドロキシこはく酸 500 μ 1を添カロし 、室温で攪拌しながら 2時間反応した。この溶液を脱塩カラムにより、 10mM HEPES 緩衝液 (pH 8.0)に交換した。これに 2mg/mlになるように DMSOに溶解したアドリアマ イシン塩酸塩 (SERVA)を 500 /z l加え、 4°Cで 30分間攪拌しながら反応した。反応物を PBSに対して充分透析を行い、アドリアマイシン固定ィ匕ポリアクリル酸コート酸ィ匕チタ ンナノ粒子分散液を得た。実施例 1と同様に焼却分析により酸ィ匕チタン含量を求めた ところ、 3.67%(w/v)であった。
フリーのアドリアマイシンをスタンダードとし、蛍光分光光度計(HITACHI F4010)を 用いて、励起波長 505nm蛍光波長 575nmでアドリアマイシンの濃度を測定したところ、 本分散液のアドリアマイシン含量は、 23.9 g/mlであった。従って、この分散液のアド リアマイシン/酸ィ匕チタンの比は 0.653mg/g-酸ィ匕チタンであると判明した。
[0035] 実施例 3
ポリアクリル酸コート酸化チタンナノ粒子分散液の静脈注射による安全件の評価
尺マゥス(071 :体重30〜358) 5〜10匹に対し、 PBSにて緩衝液交換した実施例 1に 記載のポリアクリル酸コート酸ィ匕チタンナノ粒子分散液を静脈内に尾静脈よりワンショ ットで注人した。
結果は、以下の表に示されるとおりであった。 l%(w/v)を lml注射しても死亡するマウ スは認められず、ポリアクリル酸コート酸ィ匕チタンナノ粒子分散液の安全性が確認さ れた。
[0036] [表 1]
Figure imgf000012_0001
実施例 4
アドリアマイシン困定化ポリアクリル酸コート酸化チタンナノ粒早の脯痕細胞への影響 対数増殖期のヒト膀胱癌由来の T24細胞を 10%牛胎児血清を含む F-12培地で培養 し、約 100細胞 /6cm dishになるように接種し、実施例 2にて作成のアドリアマイシン固 定ィ匕ポリアクリル酸コート酸ィ匕チタンナノ粒子を添カ卩し、 24時間 COインキュベーター
2
内で培養した。 24時間後、 PBSにて洗浄を行い、酸化チタン成分を除去し、 10%牛胎 児血清を含む F-12培地をカ卩え、 10日間培養後、 Giemza染色により生細胞数を把握 しコロニー形成率を求めた。なお、対象としては PBS緩衝液を用いた。
結果は、以下の表に示されるとおりであった。
本粒子は 10 μ g酸ィ匕チタン/ ml程度の非常に低 、濃度で癌細胞に対して殺傷性を 発揮することが明らかになった。
[表 2]
Figure imgf000013_0001
[0039] 実飾 15
ラット n fl^ ^lft射による副作 ffl ,験
実施例 2にて作成したアドリアマイシン固定ィ匕ポリアクリル酸コート酸ィ匕チタンナノ粒 子分散液をマウス口腔組織内に注入し、その舌の炎症を観察すること、体重を測定 することにより、本粒子の副作用の確認を行った。
Wistarラット(o71: 11齢 体重 240— 260g)の舌をピンセットで固定し、 0.005%(w/v)の アドリアマイシン固定ィ匕ポリアクリル酸コート酸ィ匕チタンナノ粒子分散液を 0.3ml注入し た。ただちに一群(14匹)は注射後の舌に、 2500 W/cm2の強度のブラックライトを 30 分間照射した。もう一方の群は紫外光処理をしな力つた。
両群を通常の飼育を 9日間行い、生存したラットに関しては 9日目までの体重の変 化を比較し、生存率の比較を行った。結果は、図 2および以下の表に示されるとおり であった。
[0040] [表 3]
UV処理なし
死亡数 6 0
死亡率 (%) 43 0 [0041] 紫外線処理を行わない場合 43%のラットが死亡した。本粒子に結合したアドリアマイ シンの作用によりラット舌部には潰瘍が形成され、餌の捕食ができない為、 3日目に かけて体重は減少した。
対照的に、紫外線照射を行った群では紫外線照射から 5時間経過した場合の比較 では、明らかに炎症が軽減されており、 1日経過後には痕跡程度にし力潰瘍は残らな かった。
従って、アドリアマイシンの持つ細胞殺傷性は 30程度の紫外線照射処理により完全 に失われたことを示している。また、紫外線照射を行った群は体重の低下も殆どなぐ 本処理が薬物による副作用低減に非常に有効であることを示している。
[0042] 実施例 6
アドリアマイシン困定化ポリアクリル酸コー卜酸化チタンナノ粒早の杭 fl重傷効菜試,験 ヒト膀胱癌由来の T24細胞に F12培地を使用して 37°C、 5.5%の COガス雰囲気下で
2
培養し、その T24細胞をヌードマウス (BALB/co71)に接種して腫瘍を形成させた後、 直径約 5— 7mmになったときに、実施例 2にて作成した 0.05%(w/v)アドリアマイシン固 定ィ匕ポリアクリル酸コート酸ィ匕チタンナノ粒子を 200 1注射した。コントロールとしては PBS溶液を同様の操作を行った。注射の後、紫外線 (2500 W/cm2)を 1分間照射し た。ヌードマウスの腫瘍体積を 3週間にわたり測定した。その結果は、図 3に示される とおりであった。
アドリアマイシン固定ィ匕ポリアクリル酸コート酸ィ匕チタンナノ粒子の場合、コントロー ルに比べて優れた抗腫瘍効果が得られた。また、その効果は紫外線照射を行った場 合には抑制された。これは光触媒作用によりアドリアマイシンの分解が起こるという上 述の結果と一致しており、実際の治療には極めて有効であると考えられる。
[0043] 実施例 7
ブレオマイシン^!定化ポリアクリル酸コート酸化チタンナノ粒子分散液の調製
実施例 1にて作成したポリアクリル酸コート酸ィ匕チタンナノ粒子を、酸ィ匕チタン濃度 5 %(w/v)に水で調整し、 10mlを以下の反応に用いた。 800mMの 1ーェチルー 3—(3— ジェチルァミノプロピル)カルボジイミド 250 μ 1と lOOmM N-ヒドロキシこはく酸 500 μ 1を 添加し、室温で攪拌しながら 2時間反応した。これに lOmg/mlになるように DMSOに溶 解したブレオマイシン塩酸塩 (和光純薬)を 500 μ 1加え、 4°Cで 30分攪拌しながら反応 した。反応物を PBSに対して充分透析を行い、ブレオマイシン固定ィ匕ポリアクリル酸コ 一ト酸ィ匕チタンナノ粒子分散液を得た。 205nmにおける吸光度を測定することにより 酸ィ匕チタン濃度を求めたところ、 1.14%(w/v)であった。ペーパー法による力価を検定 したところ、本分散液のブレオマイシン力価は 10.5 g力価/ mlであった。従って、この 分散液のブレオマイシン/酸化チタンの比は 0.921mg力価/ g-酸化チタンであると判 明した。
[0044] 実施例 8
ブレオマイシン^!定化ポリアクリル酸コート酸化チタンナノ粒子の 11重瘍細朐への影響 実施例 2にて作成したアドリアマイシン固定ィ匕ポリアクリル酸コート酸ィ匕チタンナノ粒 子に変えて、実施例 8にて作成したブレオマイシン固定ィ匕ポリアクリル酸コート酸ィ匕チ タンナノ粒子を用いた以外は、実施例 4と同様の試験を行った。結果は以下の表に 示されるとおりであった。
[表 4]
Figure imgf000015_0001
[0045] 実施例 9
ブレオマイシン^!定化ポリアクリル酸コート酸化チタンナノ粒子の杭腈瘍効果試,験 実施例 2にて作成したアドリアマイシン固定ィ匕ポリアクリル酸コート酸ィ匕チタンナノ粒 子に変えて、実施例 8にて作成したブレオマイシン固定ィ匕ポリアクリル酸コート酸ィ匕チ タンナノ粒子を用いた以外は、実施例 4と同様の試験を行った。その結果は、図 4に 示されるとおりであった。

Claims

請求の範囲
[1] 二酸化チタン粒子と、該ニ酸化チタン粒子の表面に結合した親水性高分子と、該 親水性高分子に結合した所望の薬効を有する医薬化合物とを含んでなり、前記二酸 化チタンの光励起により前記医薬化合物が分解され、前記薬効が消失することを特 徴とする、二酸化チタン複合体。
[2] 前記親水性高分子力カルボキシル基を有する親水性高分子であり、前記カルボキ シル基が前記酸ィ匕チタン粒子の表面の水酸基とエステル結合して 、る、請求項 1に 記載の二酸ィ匕チタン複合体。
[3] 前記二酸ィ匕チタン粒子が 2〜200nmの粒径を有するものである、請求項 1または 2 に記載の二酸ィ匕チタン複合体。
[4] 前記医薬ィ匕合物が抗ガン剤である、請求項 1〜3のいずれか一項に記載の二酸ィ匕 チタン複合体。
[5] 前記抗ガン剤がアドリアマイシンまたはブレオマイシンである、請求項 4に記載に二 酸化チタン複合体。
[6] 請求項 1〜5のいずれか一項に記載の二酸ィ匕チタン複合材を水系溶媒に分散して なる、分散体。
[7] 前記水系溶媒の pHが 3〜 13である、請求項 6に記載の分散体。
[8] 前記水系溶媒力 ¾H緩衝液または生理的食塩水である、請求項 6に記載の分散体
[9] 病変部の治療方法に用いられる請求項 6〜8の 、ずれか一項に記載の分散体であ つて、
該治療方法が、前記分散体を動物に投与し、投与後、病変部には紫外線照射をせ ず、該病変部位の周囲を少なくとも含む該病変部以外の部分に紫外線照射して、前 記分散体に含まれる二酸化チタン複合材のニ酸化チタンを光励起し、該ニ酸化チタ ンの光励起により医薬ィヒ合物が分解され、薬効が消失することを特徴とする方法であ る、分散体。
[10] 前記医薬ィ匕合物が抗ガン剤であり、前記病変部がガン組織である、請求項 9に記 載の表面改質ニ酸ィ匕チタン微粒子の分散液。
[11] 病変部の治療方法であって、請求項 6〜8のいずれか一項に記載の分散体を人を 含む動物に投与し、投与後、病変部には紫外線照射をせず、該病変部位の周囲を 少なくとも含む該病変部以外の部分に紫外線照射して、前記分散体に含まれる二酸 化チタン複合材のニ酸ィ匕チタンを光励起し、該ニ酸ィ匕チタンの光励起により医薬ィ匕 合物が分解され、薬効が消失することを特徴とする方法。
[12] 前記医薬ィ匕合物が抗ガン剤であり、前記病変部がガン組織である、請求項 11に記 載の方法。
[13] 病変部治療剤製造のための請求項 1〜5のいずれか一項に記載の二酸ィ匕チタン 複合体の使用であって、前記病変部治療剤が、人を含む動物に投与し、投与後、病 変部には紫外線照射をせず、該病変部位の周囲を少なくとも含む該病変部以外の 部分に紫外線照射して、前記病変部治療剤に含まれる二酸ィ匕チタン複合材のニ酸 化チタンを光励起し、該ニ酸化チタンの光励起により医薬化合物が分解され、薬効 が消失する方法に用いられるものである、使用。
[14] 前記医薬ィ匕合物が抗ガン剤であり、前記病変部がガン組織である、請求項 13に記 載の使用。
PCT/JP2006/315499 2005-08-05 2006-08-04 光照射により薬効を消失させる医薬二酸化チタン複合材 WO2007018147A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/990,040 US20100136115A1 (en) 2005-08-05 2006-08-04 Pharmaceutical Titanium Dioxide Composite Allowing Disappearance of Drug Efficacy By Light Irradiation
US12/889,753 US8431143B2 (en) 2005-08-05 2010-09-24 Therapeutic method of administering pharmaceutical titanium dioxide composite and light irradiation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-228015 2005-08-05
JP2005228015 2005-08-05
JP2006-171781 2006-06-21
JP2006171781A JP5044150B2 (ja) 2005-08-05 2006-06-21 光照射により薬効を消失させる医薬二酸化チタン複合材

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/990,040 A-371-Of-International US20100136115A1 (en) 2005-08-05 2006-08-04 Pharmaceutical Titanium Dioxide Composite Allowing Disappearance of Drug Efficacy By Light Irradiation
US12/889,753 Division US8431143B2 (en) 2005-08-05 2010-09-24 Therapeutic method of administering pharmaceutical titanium dioxide composite and light irradiation

Publications (1)

Publication Number Publication Date
WO2007018147A1 true WO2007018147A1 (ja) 2007-02-15

Family

ID=37727330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315499 WO2007018147A1 (ja) 2005-08-05 2006-08-04 光照射により薬効を消失させる医薬二酸化チタン複合材

Country Status (3)

Country Link
US (2) US20100136115A1 (ja)
JP (1) JP5044150B2 (ja)
WO (1) WO2007018147A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7910220B2 (en) 2007-07-25 2011-03-22 Alcoa Inc. Surfaces and coatings for the removal of carbon dioxide
US8017247B2 (en) 2007-03-30 2011-09-13 Alcoa Inc. Self cleaning aluminum alloy substrates
US8617665B2 (en) 2009-08-03 2013-12-31 Alcoa, Inc. Self-cleaning substrates and methods for making the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2458705C1 (ru) * 2011-06-17 2012-08-20 Учреждение Российской академии наук Институт химической биологии и фундаментальной медицины Сибирского отделения РАН (ИХБФМ СО РАН) Способ получения наноразмерной системы доставки антибиотиков ряда блеомицина в клетки млекопитающих

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003033143A1 (fr) * 2001-10-10 2003-04-24 Noritake Co.,Limited Matiere photocatalytique inactivant de maniere selective une substance biologiquement nocive et utilisation associee
WO2003033145A1 (fr) * 2001-10-18 2003-04-24 Noritake Co.,Limited Materiau photocatalytique et son utilisation
WO2004087577A1 (ja) * 2003-03-31 2004-10-14 Toto Ltd. 表面改質二酸化チタン微粒子とその分散液、およびその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2517760B2 (ja) 1989-05-11 1996-07-24 新技術事業団 水溶性高分子化医薬製剤
JP3310000B2 (ja) 1990-11-07 2002-07-29 靖久 桜井 水溶性高分子抗癌剤及び薬物担持用担体
US5330760A (en) * 1992-08-27 1994-07-19 Sterling Winthrop Inc. Effervescent antacid
JP3682475B2 (ja) 1993-08-31 2005-08-10 靖久 桜井 水溶性抗癌剤
US5783178A (en) * 1994-11-18 1998-07-21 Supratek Pharma. Inc. Polymer linked biological agents
US6462017B1 (en) * 2000-05-01 2002-10-08 Sciclone Pharmaceuticals, Inc. Method of reducing side effects of chemotherapy in cancer patients
JP2002316950A (ja) 2001-04-19 2002-10-31 Japan Science & Technology Corp 薬剤等の注入方法および患部打ち込み粒子の製造方法
JP2002316946A (ja) 2001-04-19 2002-10-31 Japan Science & Technology Corp 光触媒の生体内への注入方法ならびに生体内への打ち込み粒子およびその製造方法
US6780437B2 (en) * 2001-10-23 2004-08-24 Upsher-Smith Laboratories, Inc. Coated potassium chloride granules and tablets
US20060281087A1 (en) 2003-03-31 2006-12-14 Shuji Sonezaki Titanium dioxide complex having molecule distinguishability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003033143A1 (fr) * 2001-10-10 2003-04-24 Noritake Co.,Limited Matiere photocatalytique inactivant de maniere selective une substance biologiquement nocive et utilisation associee
WO2003033145A1 (fr) * 2001-10-18 2003-04-24 Noritake Co.,Limited Materiau photocatalytique et son utilisation
WO2004087577A1 (ja) * 2003-03-31 2004-10-14 Toto Ltd. 表面改質二酸化チタン微粒子とその分散液、およびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8017247B2 (en) 2007-03-30 2011-09-13 Alcoa Inc. Self cleaning aluminum alloy substrates
US7910220B2 (en) 2007-07-25 2011-03-22 Alcoa Inc. Surfaces and coatings for the removal of carbon dioxide
US8435446B2 (en) 2007-07-25 2013-05-07 Alcoa Inc. Surfaces and coatings for the removal of carbon dioxide
US8617665B2 (en) 2009-08-03 2013-12-31 Alcoa, Inc. Self-cleaning substrates and methods for making the same

Also Published As

Publication number Publication date
US20110014245A1 (en) 2011-01-20
US20100136115A1 (en) 2010-06-03
US8431143B2 (en) 2013-04-30
JP2007063253A (ja) 2007-03-15
JP5044150B2 (ja) 2012-10-10

Similar Documents

Publication Publication Date Title
Shirin et al. Advanced drug delivery applications of layered double hydroxide
Mohamed et al. Colchicine mesoporous silica nanoparticles/hydrogel composite loaded cotton patches as a new encapsulator system for transdermal osteoarthritis management
Li et al. Ultrasmall MoS2 nanodots-doped biodegradable SiO2 nanoparticles for clearable FL/CT/MSOT imaging-guided PTT/PDT combination tumor therapy
Quijia et al. Application of MIL-100 (Fe) in drug delivery and biomedicine
Chen et al. A core–shell structure QRu-PLGA-RES-DS NP nanocomposite with photothermal response-induced M2 macrophage polarization for rheumatoid arthritis therapy
KR102081666B1 (ko) 암 치료용 약학 조성물
US20040068207A1 (en) Active oxygen generator containing photosensitizer for ultrasonic therapy
CN106139144A (zh) 一种具有协同抗肿瘤特性的透明质酸修饰的金‑碳纳米球及其制备方法与应用
Rengaraj et al. Porous NH2-MIL-125 as an efficient nano-platform for drug delivery, imaging, and ROS therapy utilized low-intensity visible light exposure system
WO2007049708A1 (ja) 超音波癌治療促進剤および殺細胞剤
Zhang et al. NIR light-induced tumor phototherapy using photo-stable ICG delivery system based on inorganic hybrid
Wang et al. Facile synthesis of the Cu, N-CDs@ GO-CS hydrogel with enhanced antibacterial activity for effective treatment of wound infection
CN113751079B (zh) 一种生物材料负载的钙钛矿-二氧化钛纳米复合光催化剂及其构建方法和应用
Zhang et al. Functionalized MoS 2-erlotinib produces hyperthermia under NIR
Islam et al. Direct incorporation of nano graphene oxide (nGO) into hydrophobic drug crystals for enhanced aqueous dissolution
Chinchulkar et al. Polydopamine nanocomposites and their biomedical applications: A review
Harvey et al. Recent advances in nanoscale metal–organic frameworks towards cancer cell cytotoxicity: an overview
WO2007018147A1 (ja) 光照射により薬効を消失させる医薬二酸化チタン複合材
Wang et al. In-situ activation of CuAl-LDH nanosheets to catalyze bioorthogonal chemistry in vivo in tumor microenvironment for precise chemotherapy and chemodynamic therapy
Abdelgalil et al. Engineered sericin-tagged layered double hydroxides for combined delivery of pemetrexed and ZnO quantum dots as biocompatible cancer nanotheranostics
KR20100000203A (ko) 금나노입자를 이용한 표적지향형 항암약물전달체
CN109846857A (zh) 一种活性天然超分子光敏剂的制备方法及其应用
JP3835700B2 (ja) 分子識別能を有する二酸化チタン複合体を含む分散液
CN112546025B (zh) 一种Ce6@CMCS-DSP-IPI549抗肿瘤纳米传递系统的制备方法
Patel et al. Ordered mesoporous silica nanocarriers: An innovative paradigm and a promising therapeutic efficient carrier for delivery of drugs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11990040

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06782357

Country of ref document: EP

Kind code of ref document: A1