WO2024106401A1 - 酸化チタン粒子、分散液、塗膜形成用塗布液、塗膜および塗膜付基材 - Google Patents

酸化チタン粒子、分散液、塗膜形成用塗布液、塗膜および塗膜付基材 Download PDF

Info

Publication number
WO2024106401A1
WO2024106401A1 PCT/JP2023/040827 JP2023040827W WO2024106401A1 WO 2024106401 A1 WO2024106401 A1 WO 2024106401A1 JP 2023040827 W JP2023040827 W JP 2023040827W WO 2024106401 A1 WO2024106401 A1 WO 2024106401A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
oxide particles
coating film
mol
mass
Prior art date
Application number
PCT/JP2023/040827
Other languages
English (en)
French (fr)
Inventor
純 山口
武洋 清水
良 村口
Original Assignee
日揮触媒化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮触媒化成株式会社 filed Critical 日揮触媒化成株式会社
Publication of WO2024106401A1 publication Critical patent/WO2024106401A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/835Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds

Definitions

  • the present invention relates to titanium oxide particles.
  • Titanium oxide is widely used as a photocatalyst, UV cut material, and a material for coating solutions for forming coating films on optical substrates.
  • Anatase, rutile, and brookite are well known crystal structures of titanium oxide, and different crystal structures have different properties.
  • anatase-type titanium oxide particles have high photocatalytic activity and are used as materials for deodorization, deodorization, and antifouling.
  • rutile-type titanium oxide particles have a high refractive index and lower photocatalytic activity than anatase-type particles, so they are used as a refractive index adjuster for coating films. For example, they are sometimes used in hard coat layers of substrates.
  • the hard coat layer contains components such as organic silicon compounds and resins, and if the photocatalytic activity of the particles is too strong, these components will be decomposed, causing cracks in the hard coat layer and reducing the adhesion between the substrate and the hard coat layer.
  • This phenomenon becomes a problem when a substrate on which a layer containing titanium oxide is formed is used in the presence of light containing ultraviolet light such as sunlight (weather resistance). This is a problem even when using normal rutile-type titanium oxide, which is generally considered to have lower photocatalytic activity than other crystal types, and various solutions have been proposed.
  • Patent Document 1 discloses that in order to provide a coating solution for forming a hard coat film having a high refractive index, transparency, weather resistance, and excellent adhesion to a substrate, the coating solution for forming the film contains composite oxide particles consisting of a titanium oxide component and an iron oxide component with a Fe2O3 / TiO2 (weight ratio) in the range of 0.0005 or more and less than 0.005.
  • Patent Document 2 also discloses a coating solution for forming a hard coat film having a high refractive index, excellent transparency, excellent hot water resistance, weather resistance, scratch resistance, abrasion resistance, and dyeability, no photochromism, and excellent adhesion to a substrate, and composite oxide particles for providing a substrate with a hard coat film having such excellent properties formed on the surface thereof.
  • the present invention discloses composite oxide particles which are composed of iron oxide, titanium oxide and silica, and in which the weight ratio Fe2O3 / TiO2 is in the range of 0.0005 or more and less than 0.005 when the iron oxide is converted to Fe2O3 , the titanium oxide is converted to TiO2 and the silica is converted to SiO2 , and the weight ratio SiO2 /( Fe2O3 + TiO2 ) is in the range of 0.001 or more and 1.0 or less.
  • the objective of the present invention is to provide titanium oxide particles with low photocatalytic activity.
  • titanium oxide particles having all of the following characteristics (1) to (3).
  • (1) It has a rutile type crystal structure.
  • (2) The unit cell of the crystal structure satisfies at least one of the following (a) and (b): (a) a-axis is 0.4594 nm or more. (b) c-axis is 0.2959 nm or more. (3) It has an energy gap of 2.90 eV or less.
  • the present invention provides titanium oxide particles with low photocatalytic activity.
  • FIG. 1 is a graph showing ultraviolet-visible absorption spectra of titanium oxides obtained in Example 5 and Comparative Example 3.
  • the crystal radius refers to the "Crystal Radius” described in Acta Crystallographica. (1976). A32, Pages 751-767.
  • the value of the crystal radius differs depending on the valence and coordination number of the element. Therefore, in this specification, the crystal radius is determined by using the valence of the element contained in the raw material and the coordination number is set to 6.
  • the expression “the unit lattice is distorted in the positive direction” means that at least one of the a-axis and c-axis values of rutile-type titanium oxide described in 01-078-1509: ICDD (PDF-2/Release 2012 RDB) is increased, based on the values.
  • the present invention relates to titanium oxide particles.
  • the titanium oxide particles of the present invention are described in detail below.
  • the titanium oxide particles of the present invention have all of the following configurations (1) to (3).
  • (1) It has a rutile type crystal structure.
  • (2) The unit cell of the crystal structure satisfies at least one of the following (a) and (b): (a) a-axis is 0.4594 nm or more. (b) c-axis is 0.2959 nm or more. (3) It has an energy gap of 2.90 eV or less.
  • the titanium oxide particles of the present invention have a rutile crystal structure. Titanium oxide with a rutile crystal structure has lower photocatalytic activity than titanium oxide with other crystal structures (e.g., anatase type). In addition, titanium oxide particles with a rutile crystal structure have a higher refractive index than titanium oxide particles with other crystal structures, and therefore can be suitably used, for example, as an optical material.
  • the crystal structure of the titanium oxide particles of the present invention can be determined by X-ray diffraction measurement.
  • the unit lattice When an element having a crystal radius different from the crystal radius of Ti contained in the crystal structure is dissolved in the titanium oxide particles of the present invention, the unit lattice is distorted.
  • solid solutions are classified into substitutional solid solutions and interstitial solid solutions.
  • the titanium oxide particles of the present invention may be either substitutional or interstitial solid solutions.
  • the unit lattice of the crystal structure when a specific element is dissolved in an inorganic compound, the unit lattice of the crystal structure is distorted in either the positive or negative direction depending on the crystal radius of the element.
  • the direction in which the crystal structure is distorted is not due solely to the crystal radius of the element, but is determined by various factors such as the electron configuration of the element and the loss of another element due to charge compensation. In the present invention, the unit lattice is distorted in the positive direction.
  • the unit cell of the rutile crystal structure satisfies at least one of the following (a) and (b): (a) a-axis is 0.4594 nm or more. (b) c-axis is 0.2959 nm or more.
  • the unit lattice is distorted in the positive direction, and the titanium oxide has an energy gap in the band gap, as described below, so that the photocatalytic activity is suppressed by the synergistic effect.
  • the a-axis is preferably in the range of 0.4600 nm or more and 0.4700 nm or less, and more preferably in the range of 0.4610 nm or more and 0.4690 nm or less.
  • the c-axis is more preferably in the range of 0.2960 nm or more and 0.3100 nm or less, and more preferably in the range of 0.2960 nm or more and less than 0.3090 nm. It is preferable that at least one of the preferred ranges of the a-axis and the c-axis is satisfied.
  • the titanium oxide particles of the present invention have an energy gap of 2.90 eV or less.
  • the titanium oxide particles of the present invention have an energy gap at a position lower than the energy level of normal titanium oxide particles, and the unit lattice is distorted in the positive direction, thereby suppressing photocatalytic activity.
  • the titanium oxide particles of the present invention preferably have an energy gap in the range of 1 eV or more and 2.90 eV or less, and preferably have an energy gap in the range of 1.5 eV or more and 2.80 eV or less.
  • the titanium oxide particles of the present invention having such an energy gap have a further suppressed photocatalytic activity.
  • the titanium oxide particles of the present invention preferably have at least one element M1 selected from Al, Mg, Nd, Zn, Nb, Sb, Mo, Zr, and Hf dissolved in the crystal structure. Furthermore, the energy gap also changes when these elements are dissolved in the crystal structure. The unit lattice of the crystal structure of the titanium oxide particles of the present invention in which these elements are dissolved is more likely to be distorted. It is more preferable that M1 is at least one element selected from Al, Mg, Nd, Zr, and Hf, and it is particularly preferable that M1 is at least one element selected from Zr, Al, Mg, and Nd. In particular, when at least one element selected from Zr, Al, Mg, and Nd is dissolved in the crystal structure, titanium oxide particles having high transparency and lower photocatalytic activity can be obtained.
  • the content of M1 contained in the titanium oxide particles of the present invention is preferably in the range of 1 mol% or more and 25 mol% or less, more preferably in the range of 1 mol% or more and 20 mol% or less, and particularly preferably in the range of 1 mol% or more and 15 mol% or less, in terms of mole percent relative to Ti.
  • titanium oxide particles having a high refractive index and lower photocatalytic activity can be obtained.
  • the titanium oxide particles of the present invention preferably have at least one element M2 selected from Ni, Mn, Cu, Fe, Co, V, Cr, Rh, and Ir dissolved in the crystal structure.
  • the titanium oxide particles of the present invention having these elements dissolved therein tend to form an energy gap at a lower energy level than that of normal titanium oxide particles having a rutile crystal structure.
  • M2 is at least one element selected from Ni, Mn, Cu, and Fe.
  • titanium oxide particles having lower photocatalytic activity can be obtained.
  • the content of M2 contained in the titanium oxide particles of the present invention is preferably in the range of 0.05 mol% or more and 5 mol% or less, more preferably in the range of 0.1 mol% or more and 3 mol% or less, and particularly preferably in the range of 0.5 mol% or more and 1.5 mol% or less, in terms of mole percent relative to Ti.
  • titanium oxide particles having a high refractive index and lower photocatalytic activity can be obtained.
  • the molar ratio (M1/M2) of M1 to M2 contained in the titanium oxide particles of the present invention is preferably greater than 1, more preferably in the range of 3 to 20, and particularly preferably in the range of 5 to 15.
  • M1/M2 is in the above-mentioned range, titanium oxide particles having lower photocatalytic activity can be obtained.
  • the titanium oxide particles of the present invention preferably contain at least one element selected from Sn, Si, Na, and K.
  • Sn has the function of increasing the crystallinity of the titanium oxide particles and suppresses the formation of crystal structures other than the rutile type, such as anatase type. This further suppresses the photocatalytic activity of the titanium oxide particles of the present invention and also increases the transparency.
  • the Sn content is preferably in the range of 1 mol% to 15 mol% inclusive, more preferably in the range of 3 mol% to 13 mol% inclusive, and particularly preferably in the range of 5 mol% to 10 mol% inclusive, relative to Ti.
  • Si can further suppress the photocatalytic activity of the titanium oxide particles and can also increase the dispersibility of the titanium oxide particles in a solvent.
  • the Si content is preferably in the range of 5 mol% to 50 mol% inclusive, more preferably in the range of 7 mol% to 40 mol% inclusive, and particularly preferably in the range of 10 mol% to 35 mol% inclusive, relative to Ti.
  • Na and K (alkali metals) maintain the balance of the charges generated by the solid solution of M1 and M2, and can also increase the dispersibility of titanium oxide particles in a solvent.
  • the content of the alkali metal is preferably in the range of 1 mol% to 10 mol% inclusive, more preferably in the range of 2 mol% to 8 mol% inclusive, and particularly preferably in the range of 3 mol% to 7 mol% inclusive, in terms of mole percent relative to Ti.
  • the titanium oxide particles of the present invention preferably have a Sn/M1 molar ratio of 3 or less, more preferably 2 or less, and particularly preferably 1.5 or less. Reducing the amount of Sn relative to M1 promotes the solid solution of M1 in the crystal structure.
  • the Si/M1 molar ratio is preferably in the range of 0.5 to 10, more preferably 1 to 8, and particularly preferably 1.5 to 7. When this molar ratio is in the aforementioned range, the distortion of the unit lattice of the crystal tends to become large in the positive direction.
  • the content of Ti in the titanium oxide particles of the present invention is preferably in the range of 40% by mass or more and 95% by mass or less, more preferably in the range of 50% by mass or more and 90% by mass or less, and particularly preferably in the range of 60% by mass or more and 85% by mass or less, calculated as TiO2, based on the total amount of the titanium oxide particles.
  • Ti content is in the above-mentioned range, titanium oxide particles having a high refractive index and lower photocatalytic activity can be obtained.
  • the titanium oxide particles of the present invention preferably have a unit cell volume of 0.0625 nm3 or more, more preferably in the range of 0.0625 nm3 or more and 0.0685 nm3 or less, and particularly preferably in the range of 0.0630 nm3 or more and 0.0680 nm3 or less.
  • the unit cell volume is derived using all the axial lengths (abc) and axial angles ( ⁇ ) of the unit cell, so that the distortion of the crystal lattice can be expressed comprehensively.
  • the titanium oxide particles of the present invention having a unit cell volume in the above-mentioned range can provide titanium oxide particles with lower photocatalytic activity.
  • the average particle diameter of the titanium oxide particles of the present invention is preferably in the range of 5 nm or more and 50 nm or less, more preferably in the range of 8 nm or more and 40 nm or less, and particularly preferably in the range of 10 nm or more and 30 nm or less. If the average particle diameter is in the above-mentioned range, a dense coating film is likely to be formed when forming a coating film containing the titanium oxide particles of the present invention. In the present invention, the value of the average particle diameter is obtained by measuring the size of the primary particles using an electron microscope and taking the average.
  • the refractive index of the titanium oxide particles of the present invention is preferably 1.8 or more, more preferably 2 or more, and particularly preferably 2.1 or more.
  • the titanium oxide particles of the present invention, which have such a high refractive index, can be suitably used as optical materials.
  • the upper limit of the refractive index is not particularly limited, but may be 3 or less.
  • the titanium oxide particles of the present invention may have a coating layer formed on their surface.
  • a coating layer containing at least one element selected from Zr, Si, Al, etc. is formed, the photocatalytic activity of the titanium oxide particles of the present invention can be further reduced.
  • the photocatalytic activity can be further reduced and dispersibility in polar solvents such as water and alcohol tends to be good.
  • the titanium oxide particles of the present invention may be used with their surfaces modified with an organosilicon compound.
  • the particles are more dispersible in the resin and organic solvent components contained in the liquid when used as a dispersion liquid or a coating liquid for forming a coating film, as described below.
  • the surface of the coating layer may be surface modified with an organosilicon compound.
  • the titanium oxide particles of the present invention may be in the form of a powder or a dispersion in a solvent.
  • the titanium oxide particles may be any of an aqueous dispersion, a dispersion in water and an organic solvent, and an organic solvent dispersion.
  • a dispersion containing an organic solvent as a dispersion medium for example, a part or all of the water contained in the dispersion may be replaced with an organic solvent by a rotary evaporator, an ultrafiltration membrane, or other known methods.
  • the organic solvent that can be used in the dispersion liquid containing the titanium oxide particles of the present invention is Alcohols such as methanol, ethanol, ethylene glycol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, and octanol; Esters such as ethyl acetate, butyl acetate, ethyl lactate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, and ⁇ -butyrolactone; Ethers such as diethyl ether, ethylene glycol monomethyl ether (methyl cellosolve), ethylene glycol monoethyl ether (ethyl cellosolve), ethylene glycol monobutyl ether (butyl cellosolve), diethylene glycol monomethyl ether, and diethylene glycol monoethyl ether; Ketones such as acetone, methyl ethyl ketone, methyl isobut
  • titanium oxide particles according to the present invention may have their surfaces treated with an organic amine compound or a carboxylic acid compound, rather than with an organic silicon compound.
  • the organic amine compound may be ammonia; alkylamines such as ethylamine, triethylamine, isopropylamine, diisopropylamine, and n-propylamine; aralkylamines such as benzylamine; alicyclic amines such as piperidine; Alkanolamines such as monoethanolamine and triethanolamine; and Examples of the organic amine compound include quaternary ammonium salts or quaternary ammonium hydroxides such as tetramethylammonium salts and tetramethylammonium hydroxide. Among these, it is preferable to use alkylamines or quaternary ammonium hydroxides. These organic amine compounds may be used not only one type but also two or more types.
  • a conventional method can be used as a method for treating and modifying the surface of the titanium oxide particles.
  • an alkylamine when used as the organic amine compound, it can be added to an aqueous dispersion of the titanium oxide particles, heated to a temperature of about 40°C to 90°C, and stirred for about 1 hour to 20 hours, thereby bonding the alkylamine to the surface of the fine particles and modifying the surface of the fine particles.
  • the surface modification i.e., a type of surface treatment
  • it is preferable that all of the amine groups of the organic amine compound are bonded to OH groups present on the surface of the coating layer of the titanium oxide particles. However, some of them may remain unreacted.
  • the surface-modified titanium oxide particles thus prepared are usually obtained as an aqueous dispersion containing the particles, but if necessary, the water contained therein may be solvent-substituted with an organic solvent such as alcohols, such as methanol, ethanol, and propanol; ketones, such as methyl ethyl ketone and acetylacetone; esters, such as ethyl acetate and butyl acetate; and cellosolves, such as ethyl cellosolve and butyl cellosolve, using an ultrafiltration device or the like.
  • an organic solvent such as alcohols, such as methanol, ethanol, and propanol
  • ketones such as methyl ethyl ketone and acetylacetone
  • esters such as ethyl acetate and butyl acetate
  • cellosolves such as ethyl cellosolve and butyl cellosolve, using an ultrafiltration device or the like.
  • the dispersion containing the titanium oxide particles of the present invention can be made into a coating liquid for forming a coating film by adding a matrix-forming component.
  • a matrix-forming component used in a typical coating liquid for forming a coating film can be used.
  • Examples of the matrix-forming component include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, ethyltriethoxysilane, methyltriethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane, phenylmethyldimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris( ⁇ -methoxyethoxy)silane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, N
  • a coating film can be formed on various substrates such as glass or plastics using a dispersion liquid containing the titanium oxide particles of the present invention to form a substrate with a coating film.
  • the substrate with a coating film can be used as an optical substrate such as a spectacle lens, various optical lenses such as a camera, a front plate of an optical display, a show window case, a window glass, a contact glass for a copier, a light cover for an automobile, and various ultraviolet ray shielding filters.
  • the titanium oxide particles of the present invention have low photocatalytic activity, but on the other hand have UV absorbing ability, so that a coating film with high weather resistance can be obtained in any embodiment.
  • the film thickness is not particularly limited.
  • the film thickness is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, and particularly preferably 2 ⁇ m or more.
  • the upper limit of the film thickness is not particularly limited, but may be 100 ⁇ m or less, 50 ⁇ m or less, or 30 ⁇ m or less.
  • the film thickness may be less than 0.5 ⁇ m, less than 0.3 ⁇ m, or less than 0.1 ⁇ m.
  • the coating film containing the titanium oxide particles of the present invention has high weather resistance even though it is thin.
  • the titanium oxide particles of the present invention can be prepared, for example, by a production method including the following steps (1) to (3). Note that the production method of the titanium oxide particles of the present invention is not limited to the following production method. (1) Coprecipitation gel preparation step (2) Hydrothermal treatment precursor preparation step (3) Hydrothermal treatment step
  • a production method including the following steps (1) to (3) is not limited to the following production method.
  • Coprecipitation gel preparation step This step is a step of neutralizing an aqueous solution containing Ti, M1, and M2 to prepare a coprecipitation gel containing Ti, M1, and M2.
  • a coprecipitation gel containing Ti, M1, and M2 By preparing a coprecipitation gel containing Ti, M1, and M2, the solid solution of M1 and M2 in the crystal structure of the titanium oxide particles finally obtained is further promoted.
  • the aqueous solution and the coprecipitation gel may contain elements other than M1 and M2.
  • the aqueous solution containing Ti, M1, and M2 can be prepared by dissolving the Ti source, M1 source, and M2 source in water.
  • the Ti source conventionally known raw materials such as titanium tetrachloride, titanium sulfate, and titanium alkoxide can be used.
  • the M1 source and M2 source conventionally known raw materials such as chlorides, carbonates, and nitrates can be used.
  • the aqueous solution containing Ti, M1, and M2 further contains an element other than M1 and M2
  • conventionally known raw materials such as chlorides, carbonates, and nitrates containing this element can be used.
  • These raw materials are preferably water-soluble raw materials, and if they are not water-soluble, they are preferably fine enough to be uniformly dispersed in water.
  • the pH of the aqueous solution containing Ti, M1, and M2 is preferably 3 or less.
  • an alkali with a pH of 10 or more can be used to neutralize the aqueous solution containing Ti, M1, and M2.
  • an alkaline aqueous solution in which sodium hydroxide, potassium hydroxide, ammonia, or the like is dissolved in water can be used.
  • a co-precipitation gel containing Ti, M1, and M2 is generated. This co-precipitation gel can be recovered by filtration and may be washed with water, etc., if necessary.
  • Hydrothermal treatment precursor preparation step This step is a step of redispersing (deflocculating) the coprecipitated gel obtained in the previous step in water to prepare a hydrothermal treatment precursor.
  • the M1, M2 and other elements can also be added after the coprecipitated gel is peptized.
  • the coprecipitated gel can be deflocculated by any conventional method.
  • the coprecipitated gel can be dispersed in water and subjected to ultrasonic treatment, or dispersed in water using an acid or alkali. It may also be deflocculated using hydrogen peroxide. In this case, it is preferable to adjust the amount of water so that the solids concentration in the final hydrothermal treatment precursor is 10% by mass or less.
  • the average particle size of the solids contained in the hydrothermal treatment precursor obtained in this process is preferably in the range of 5 nm to 300 nm, more preferably in the range of 10 nm to 200 nm, and particularly preferably in the range of 15 nm to 150 nm. If the average particle size of the solids contained in the coprecipitated gel aqueous dispersion becomes larger, the average particle size of the titanium oxide finally obtained tends to become larger as well.
  • This step is a step of hydrothermally treating the hydrothermal treatment precursor obtained in the above step to prepare rutile-type titanium oxide particles in which M1 and M2 are dissolved.
  • the hydrothermal treatment precursor can be hydrothermally treated using conventionally known equipment such as an autoclave.
  • the temperature of the hydrothermal treatment is preferably in the range of 100°C or more and 250°C or less, more preferably in the range of 120°C or more and 220°C or less, and particularly preferably in the range of 130°C or more and 210°C or less.
  • the retention time in the aforementioned temperature range is preferably in the range of 1 hour or more and 48 hours or less, more preferably in the range of 5 hours or more and 24 hours or less, and particularly preferably in the range of 10 hours or more and 20 hours or less.
  • the liquid after the hydrothermal treatment contains the titanium oxide of the present invention, which may be separated, washed, etc., if necessary.
  • the separated titanium oxide may also be calcined to increase its crystallinity.
  • a coating layer is formed on the surface of the titanium oxide particles of the present invention, it can be formed, for example, by the method described in JP 2009-155496 A. Furthermore, when the titanium oxide particles of the present invention are dispersed in an organic solvent or in a solution in which a resin is dispersed, the surface or the surface of the coating layer can be hydrophobized (surface treated) using the method described in the same publication.
  • the dispersion liquid containing the titanium oxide particles of the present invention can be prepared by a method of dispersing the titanium oxide particles of the present invention in a solvent.
  • the method of dispersing the titanium oxide particles in a solvent can be a conventional method.
  • the dispersion liquid can be prepared by adding the titanium oxide particles of the present invention to water or an organic solvent, etc., and then carrying out a dispersion treatment such as a bead mill treatment or ultrasonic treatment.
  • the concentration of the solid content in the dispersion liquid is 50 mass% or less, the titanium oxide particles of the present invention can be more easily dispersed in the solvent.
  • the zeta potential of the titanium oxide particles of the present invention can be measured, and the pH can be adjusted to be in a range suitable for dispersion.
  • organic solvent used as a solvent for the dispersion liquid containing the titanium oxide particles of the present invention
  • the organic solvents described above can be used.
  • the coating liquid for forming a coating film containing the titanium oxide particles of the present invention can be prepared by a conventionally known method using the titanium oxide particles of the present invention. For example, it can be prepared by adding the components required for forming a coating film to the above-mentioned dispersion liquid.
  • This coating liquid for forming a coating film may be a coating liquid for forming a thermosetting coating film or a coating liquid for forming a photocurable coating film.
  • a coating liquid for forming a thermosetting coating film it can be prepared by adding a matrix-forming component and, if necessary, a thermosetting curing catalyst or additives to a dispersion liquid containing the titanium oxide particles of the present invention.
  • a coating liquid can be manufactured based on the description in JP-A-2000-204301.
  • a coating liquid for forming a photocurable coating film it can be prepared by adding a matrix-forming component and, if necessary, a photocuring catalyst, additives, etc. to a dispersion liquid containing the titanium oxide particles of the present invention.
  • a coating liquid can be manufactured based on the description in JP 2009-056387 A.
  • the matrix-forming components include those mentioned above.
  • Heat curing catalysts include: Amines such as n-butylamine, triethylamine, guanidine, and biguanidide; amino acids such as glycine; Metal acetylacetonates such as aluminum acetylacetonate, chromium acetylacetonate, titanyl acetylacetonate, and cobalt acetylacetonate; Metal salts of organic acids, such as sodium acetate, zinc naphthenate, cobalt naphthenate, zinc octoate, and stannous octoate; Perchloric acids or their salts, such as perchloric acid, ammonium perchlorate, and magnesium perchlorate; Acids such as hydrochloric acid, phosphoric acid, nitric acid, and paratoluenesulfonic acid; and Metal chlorides which are Lewis acids such as SnCl 2 , AlCl 3 , FeCl 3 , TiCl 4
  • bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide bis(2,6-dimethoxybenzoyl)-2,4,4-trimethyl-pentylphosphine oxide, 2-hydroxy-methyl-2-methyl-phenyl-propane-1-ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, and 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropane-1-one can be used. These can be used alone or in combination of two or more.
  • Additives that can be used include surfactants, leveling agents, UV absorbers, light stabilizers, diluting solvents, preservatives, antifouling agents, antibacterial agents, defoamers, UV degradation inhibitors, and dyes. These may be used alone or in combination of two or more.
  • the substrate having a coating film containing the titanium oxide particles of the present invention can be prepared by a conventional method using a substrate and the above-mentioned coating liquid for forming a coating film.
  • the thickness of the coating film formed on the substrate varies depending on the application of the substrate with the coating film, but when it is desired to obtain coating film strength, it is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, and particularly preferably 2 ⁇ m or more.
  • the upper limit of the film thickness is not particularly limited, but may be 100 ⁇ m or less, 50 ⁇ m or less, or 30 ⁇ m or less. When it is not necessary to increase the coating film strength, the film thickness may be less than 0.5 ⁇ m, less than 0.3 ⁇ m, or less than 0.1 ⁇ m.
  • thermosetting coating film-forming coating liquid When preparing a substrate with a coating film containing titanium oxide particles of the present invention using the above-mentioned thermosetting coating film-forming coating liquid, it can be produced, for example, based on the description in JP 2000-204301 A. When using the above-mentioned photocurable coating film-forming coating liquid, it can be produced, for example, based on the description in JP 2009-056387 A.
  • These coating film-forming coating liquids can be prepared by applying them to a substrate by a conventionally known method such as dipping, spraying, spinner, roll coating, or bar coater, drying, and curing by heat treatment or ultraviolet irradiation, etc.
  • the surface of the substrate may be treated in advance with an alkali, acid or surfactant, polished with inorganic or organic fine particles, or treated with a primer or plasma in order to improve adhesion between the substrate, for example a plastic substrate, and the coating film.
  • the shape of the measurement sample was observed using a scanning electron microscope (SEM) (S-5500, manufactured by Hitachi High-Technologies Corporation) at an acceleration voltage of 30 kV.
  • SEM scanning electron microscope
  • the observation sample was prepared as follows. A water-dispersed sol containing the measurement sample (inorganic oxide particles such as titanium oxide particles) was diluted with water to a solid content concentration of 0.05 mass%, and then applied to a metal grid with a collodion film (manufactured by Oken Shoji Co., Ltd.), and the solvent was evaporated by irradiating it with a 250 W infrared lamp for 30 minutes to prepare a sample for observation.
  • the obtained SEM image was printed, and the particle size of 100 primary particles was measured with a vernier caliper, and the average value was taken as the average particle size.
  • the major axis was taken as the particle size.
  • Solid content concentration The solvent of a dispersion containing a measurement sample (inorganic oxide particles such as titanium oxide particles) was removed by infrared irradiation or the like, and the residue was then calcined at 1000° C. for 1 hour to obtain an ignition residue (solid content). The ratio of the mass of the ignition residue to the mass of the sample was taken as the solid content concentration.
  • the amounts of titanium, tin, neodymium, silicon, iron and niobium in the obtained solution were measured in terms of oxide (TiO 2 , SnO 2 , Nd 2 O 3 , SiO 2 , Fe 2 O 3 and Nb 2 O 5 ), and the respective contents were calculated as a percentage of the total amount of the measurement sample contained in the aqueous dispersion.
  • aqueous dispersion containing a measurement sample (inorganic oxide particles such as titanium oxide particles) was collected on a platinum dish, hydrofluoric acid and sulfuric acid were added, and the mixture was heated, and then water was added to dissolve the inorganic oxide particles.
  • magnesium, aluminum, zirconium, nickel, manganese, and copper were measured in terms of oxide (MgO, Al 2 O 3 , ZrO 2 , NiO, MnO, and CuO) using an ICP device (Shimadzu Corporation, ICPS-8100), and the respective contents were calculated as a percentage of the total amount of the measurement sample contained in the aqueous dispersion.
  • aqueous dispersion containing a measurement sample (inorganic oxide particles such as titanium oxide particles) was collected on a platinum dish, hydrofluoric acid and sulfuric acid were added, and the mixture was heated, and then water was added to dissolve the inorganic oxide particles. After diluting the mixture with water, the amount of potassium was measured in terms of oxide (K 2 O) using an atomic absorption spectrometer (Hitachi, Ltd., Z-5300), and the respective contents were calculated as a percentage of the total amount of the measurement sample contained in the aqueous dispersion.
  • a measurement sample inorganic oxide particles such as titanium oxide particles
  • the obtained diffraction pattern was used to identify the peak positions using PDXL2 version 2.7.2.0 software, and the peak (2 ⁇ ) derived from the (110) plane of the small amount of strontium titanate mixed was corrected to 32.374 deg. Details of the measurement conditions and data analysis were as follows.
  • the length of the a-axis, the length of the c-axis, and the volume of the unit cell of the titanium oxide particles having a rutile crystal structure were calculated from the interplanar spacing of the (110) and (101) diffraction peaks derived from the rutile crystal structure obtained as described above.
  • ultraviolet rays were irradiated using an ultraviolet lamp (manufactured by AS ONE Co., Ltd., LUV-6) with a wavelength range of I-line (wavelength 365 nm) selected, with the distance adjusted so that the intensity was 0.4 mW/ cm2 (converted to a wavelength of 365 nm) on the surface of the quartz cell with a width of 1 cm and height of 5 cm.
  • an ultraviolet lamp manufactured by AS ONE Co., Ltd., LUV-6
  • I-line wavelength range of I-line (wavelength 365 nm) selected, with the distance adjusted so that the intensity was 0.4 mW/ cm2 (converted to a wavelength of 365 nm) on the surface of the quartz cell with a width of 1 cm and height of 5 cm.
  • the sample powder for measurement was placed in a sample holder with a quartz window, and the diffuse reflectance spectrum was measured in the same manner using the baseline described above.
  • the obtained diffuse reflectance spectrum was subjected to Kubelka-Munk transformation to convert it into an ultraviolet-visible absorption spectrum.
  • the ultraviolet-visible absorption spectrum thus obtained was normalized so that the maximum value of the absorption intensity was 1, and the maximum wavelength at which the normalized absorption intensity was 0.015 or more was set as the absorption edge wavelength, and the energy gap was calculated according to the following formula.
  • Example 1 (1-1) Coprecipitation gel preparation step 1322 g of titanium tetrachloride aqueous solution containing 7.75 mass% Ti in terms of TiO2 (manufactured by Osaka Titanium Technologies Co., Ltd.), 11.3 g of ferric chloride aqueous solution containing 7.75 mass% Fe in terms of Fe2O3 (manufactured by Toa Gosei Co., Ltd.), and ammonia water containing 15 mass% ammonia (manufactured by Ube Industries, Ltd.) were mixed to prepare a very pale yellow slurry with a pH of 9.5.
  • this slurry was filtered, and the residue was washed with water to obtain 115 g of a slurry with a solid content concentration of 15.5%. This was again diluted with water and dispersed to obtain 1700 g of an Mg-containing slurry with a solid content concentration of 1% by mass.
  • This deflocculating solution was orange and transparent, had a pH of 8.4, and had an average particle size of particles in the deflocculating solution (a value calculated by cumulant analysis from particle size distribution data obtained by dynamic scattering (manufactured by Otsuka Electronics Co., Ltd., ELS-Z)) of 56 nm.
  • This deflocculation liquid (1,160 g) was mixed with a cation exchange resin (manufactured by Mitsubishi Chemical Corporation), and then 145 g of an aqueous potassium stannate solution containing 1 mass % potassium stannate (manufactured by Showa Kako K.K.) calculated as SnO2 was gradually added thereto with stirring.
  • silica sol average particle size 16 nm (value obtained using a dynamic scattering method), specific surface area 375 m2 /g, pH 2.2, solid content concentration 16 mass%) and 268 g of water were added, and further mixed with 29 g of the Mg-containing slurry with a solid content concentration of 1 mass% prepared in the previous step, to prepare 1,619 g of a hydrothermal treatment precursor.
  • the particles contained in the obtained water-dispersed sol were titanium oxide particles having a rutile crystal structure and containing iron, magnesium, tin, silicon, and potassium.
  • the properties of the titanium oxide particles obtained by the above-mentioned measurement or evaluation methods are shown in Table 1.
  • Example 2 (1) Coprecipitation gel preparation step 1598 g of titanium tetrachloride aqueous solution containing 7.75 mass% Ti in terms of TiO2 (manufactured by Osaka Titanium Technologies Co., Ltd.), 14.4 g of ferric chloride aqueous solution containing 7.75 mass% Fe in terms of Fe2O3 (manufactured by Toa Gosei Co., Ltd.), 179 g of aqueous solution of neodymium ( III ) chloride hexahydrate containing 7.75 mass% Nd in terms of Nd2O5 (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), and ammonia water containing 15 mass% ammonia (manufactured by Ube Industries, Ltd.) were mixed to prepare a pale yellow slurry with a pH of 9.5. Next, after filtering this slurry, the residue was washed with water to obtain 1350 g of coprecipitation gel 2 containing Fe,
  • Step 1160 g of a deflocculation liquid of a coprecipitated gel was obtained in the same manner as in Example 1, except that coprecipitated gel 2 was used instead of coprecipitated gel 1.
  • This deflocculation liquid was orange and transparent, had a pH of 7.5, and had an average particle size of particles in the deflocculation liquid (a value calculated by cumulant analysis from particle size distribution data obtained by a dynamic scattering method (ELS-Z, manufactured by Otsuka Electronics Co., Ltd.)) of 329 nm.
  • ELS-Z dynamic scattering method
  • hydrothermal treatment precursor 2 1,590 g of hydrothermal treatment precursor 2 was obtained in the same manner, except that the Mg-containing slurry with a solids concentration of 1% by mass was not mixed.
  • the particles contained in the obtained water-dispersed sol were titanium oxide particles having a rutile crystal structure and containing iron, neodymium, tin, silicon, and potassium.
  • the properties of the titanium oxide particles obtained by the above-mentioned measurement or evaluation methods are shown in Table 1.
  • Example 3 (2) Hydrothermal Treatment Precursor Preparation Step 564 g of the deflocculation liquid of the coprecipitated gel 1 obtained in the same manner as in Example 1 was used and mixed with a cation exchange resin (manufactured by Mitsubishi Chemical Corporation), and then 73 g of an aqueous solution of potassium stannate (manufactured by Showa Kako K.K.) containing 1% by mass of potassium stannate in terms of SnO2 and 19 g of an aqueous solution of sodium aluminate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., Wako Grade 1) containing 1% by mass of sodium aluminate in terms of Al2O3 were gradually added under stirring.
  • a cation exchange resin manufactured by Mitsubishi Chemical Corporation
  • the cation exchange resin contained in the obtained deflocculating solution was separated, and then 9 g of silica sol containing 0.4 mass % aluminum calculated as Al2O3 (average particle size 16 nm (value obtained using a dynamic scattering method), specific surface area 375 m2 /g, pH 2.2, solid content concentration 16 mass %: prepared with reference to the method described in Example 1 "Preparation of Silica Sol" of JP2009-197078A) and 134 g of water were added to prepare 800 g of hydrothermal treatment precursor 3.
  • the particles contained in the obtained water-dispersed sol were titanium oxide particles having a rutile crystal structure and containing iron, aluminum, tin, silicon, aluminum and potassium.
  • the properties of the titanium oxide particles obtained by the above-mentioned measurement method or evaluation method are shown in Table 1.
  • This deflocculating solution was orange and transparent, had a pH of 8.3, and had an average particle size of particles in the deflocculating solution (a value calculated by cumulant analysis from particle size distribution data obtained by dynamic scattering (manufactured by Otsuka Electronics Co., Ltd., ELS-Z)) of 63 nm.
  • This deflocculation solution (729 g) was mixed with a cation exchange resin (manufactured by Mitsubishi Chemical Corporation), and then 91 g of an aqueous potassium stannate solution containing 1 mass % potassium stannate (manufactured by Showa Kako K.K.) calculated as SnO2 was gradually added thereto with stirring.
  • the cation exchange resin contained in the obtained deflocculation liquid was separated, and then 11 g of silica sol (average particle diameter 16 nm (value obtained using a dynamic scattering method), specific surface area 375 m2 /g, pH 2.2, solid content concentration 16 mass%) and 169 g of water were mixed to prepare hydrothermal treatment precursor 4.
  • the particles contained in the obtained water-dispersed sol were titanium oxide particles having a rutile crystal structure and containing nickel, zirconium, tin, silicon, and potassium.
  • the properties of the titanium oxide particles obtained by the above-mentioned measurement or evaluation methods are shown in Table 1.
  • Example 5 (1) Coprecipitation Gel Preparation Step A pale green slurry having a pH of 9.4 was prepared in the same manner as in Example 4, except that the amount of an aqueous solution of nickel chloride hexahydrate (Kanto Chemical Co., Ltd., Shika Grade 1) containing 7.75% by mass of Ni in terms of NiO was changed to 10.4 g. Next, the slurry was filtered, and the residue was washed with water to obtain 1000 g of coprecipitated gel 5 having a solid content of 10% by mass and containing Ni, Zr, and Ti.
  • deflocculation solution 5 of the coprecipitated gel was obtained in the same manner as in Example 4, except that coprecipitated gel 5 was used instead of coprecipitated gel 4.
  • This deflocculation solution was orange and transparent, had a pH of 8.2, and had an average particle size of particles in the deflocculation solution (a value calculated by cumulant analysis from particle size distribution data obtained by dynamic scattering (ELS-Z, manufactured by Otsuka Electronics Co., Ltd.)) of 67 nm.
  • hydrothermally treated precursor 5 was prepared in the same manner as in Example 4, except that deflocculating solution 5 was used instead of deflocculating solution 4.
  • the particles contained in the obtained water-dispersed sol were titanium oxide particles having a rutile crystal structure and containing nickel, zirconium, tin, silicon, and potassium.
  • the properties of the titanium oxide particles obtained by the above-mentioned measurement method or evaluation method are shown in Table 1.
  • the ultraviolet-visible absorption spectrum and absorption edge are also shown in Figure 1.
  • Example 6 (1) Coprecipitation gel preparation step A pale ochre slurry with a pH of 9.3 was prepared in the same manner as in Example 4, except that 10.5 g of an aqueous solution of manganese (II) chloride tetrahydrate containing 7.75% by mass of Mn in terms of MnO was added instead of an aqueous solution of nickel chloride hexahydrate (Kanto Chemical Co., Ltd., Shika Grade) containing 7.75% by mass of Ni in terms of NiO. Next, after filtering this slurry, the filtered product was washed with water to obtain 1100 g of coprecipitated gel 6 containing Mn, Zr, and Ti with a solid content concentration of 10% by mass.
  • II manganese
  • hydrothermally treated precursor 6 was prepared in the same manner as in Example 4, except that deflocculating solution 6 was used instead of deflocculating solution 4.
  • the particles contained in the obtained water-dispersed sol were titanium oxide particles having a rutile crystal structure and containing manganese, zirconium, tin, silicon, and potassium.
  • the properties of the titanium oxide particles obtained by the above-mentioned measurement or evaluation methods are shown in Table 1.
  • Example 7 (1) Coprecipitation gel preparation step Instead of an aqueous solution of nickel chloride hexahydrate (Kanto Chemical, deer grade 1) containing 7.75% by mass of Ni in terms of NiO, 11.7 g of an aqueous solution of copper (II) chloride dihydrate containing 7.75% by mass of Cu in terms of CuO was added, and instead of an aqueous ammonia solution (Ube Industries, Ltd.) containing 15% by mass of ammonia, an aqueous solution of potassium hydroxide (Kanto Chemical, deer grade 2) containing 7.5% by mass of potassium hydroxide was used. A pale blue slurry with a pH of 10.5 was prepared in the same manner as in Example 4. Next, after filtering this slurry, the residue was washed with water to obtain 1100 g of coprecipitated gel 7 containing Cu, Zr and Ti with a solid content concentration of 10% by mass.
  • deflocculation solution 7 of the coprecipitated gel was obtained in the same manner as in Example 4, except that coprecipitated gel 7 was used instead of coprecipitated gel 4.
  • This deflocculation solution was orange and transparent, had a pH of 10.5, and had an average particle size of particles in the deflocculation solution (a value calculated by cumulant analysis from particle size distribution data obtained by a dynamic scattering method (ELS-Z, manufactured by Otsuka Electronics Co., Ltd.)) of 245 nm.
  • ELS-Z dynamic scattering method
  • hydrothermally treated precursor 7 was prepared in the same manner as in Example 4, except that deflocculating solution 7 was used instead of deflocculating solution 4.
  • the particles contained in the obtained water-dispersed sol were titanium oxide particles having a rutile crystal structure and containing copper, zirconium, tin, silicon, and potassium.
  • the properties of the titanium oxide particles obtained by the above-mentioned measurement or evaluation methods are shown in Table 1.
  • Titanium oxide particles (titanium(IV) oxide, rutile type, -5 ⁇ m, 99.9% (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.)) were dispersed in water to a solid content of 10%, and the pH was adjusted to 9.5 with an aqueous solution of potassium hydroxide (manufactured by Kanto Chemical Co., Ltd., deer special grade). Dispersion treatment was then carried out for 1 hour using a horn-type ultrasonic disperser (manufactured by Kaijo Corporation, ULTRASONIC TRANSDUCER Type 5281, AUTO CHASER 300), to obtain an aqueous dispersion 8 of titanium oxide particles.
  • a horn-type ultrasonic disperser manufactured by Kaijo Corporation, ULTRASONIC TRANSDUCER Type 5281, AUTO CHASER 300
  • the particles contained in the obtained aqueous dispersion 8 were titanium oxide particles having a rutile crystal structure and containing only Ti.
  • the properties of the titanium oxide particles obtained by the above-mentioned measurement method or evaluation method are shown in Table 1.
  • Example 4 In Example 4, the same procedure was followed except that the aqueous solution of nickel chloride hexahydrate (Kanto Chemical Co., Ltd., Shikaichi Grade) was not added, to obtain 100 g of a colorless and transparent water-dispersed sol 9 having a solid content of 10 mass% and a pH of 6.8.
  • nickel chloride hexahydrate Kanto Chemical Co., Ltd., Shikaichi Grade
  • the particles contained in the obtained water-dispersed sol were titanium oxide particles having a rutile crystal structure and containing zirconium, tin, silicon, and potassium.
  • the properties of the titanium oxide particles obtained by the above-mentioned measurement or evaluation methods are shown in Table 1.
  • the cation exchange resin contained in the obtained deflocculation liquid was separated, and then 11 g of silica sol (average particle size 16 nm (value obtained using a dynamic scattering method), specific surface area 375 m2 /g, pH 2.2, solid concentration 16 mass%) and 169 g of water were added to prepare 1,000 g of hydrothermal treatment precursor 10.
  • the particles contained in the obtained water-dispersed sol were titanium oxide particles having a rutile crystal structure and containing niobium, tin, silicon, and potassium.
  • the properties of the titanium oxide particles obtained by the above-mentioned measurement method or evaluation method are shown in Table 1.
  • the ultraviolet-visible absorption spectrum and absorption edge are also shown in Figure 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

下記(1)~(3)の構成を全て備える、酸化チタン粒子。 (1)ルチル型の結晶構造を有する。 (2)前記結晶構造の単位格子が、下記(a)および(b)の少なくとも一方を満たす。 (a)a軸が0.4594nm以上。 (b)c軸が0.2959nm以上。 (3)2.90eV以下のエネルギーギャップを有する。

Description

酸化チタン粒子、分散液、塗膜形成用塗布液、塗膜および塗膜付基材
 本発明は、酸化チタン粒子に関する。
 酸化チタンは、光触媒、UVカット材、光学基材への塗膜形成用塗布液の材料等として広く使用されている。酸化チタンの結晶構造は、アナターゼ、ルチル、ブルッカイトがよく知られており、結晶構造が違えばその性質も異なる。例えば、アナターゼ型の酸化チタン粒子は、光触媒活性が高く、消臭、防臭、防汚用の材料として使用されている。一方、ルチル型の酸化チタン粒子は、屈折率が高く、アナターゼ型のものに比べて光触媒活性が低いことから、塗膜の屈折率調整材として用いられる。例えば、基材等のハードコート層に使用されることがある。ハードコート層にはルチル型の酸化チタン以外にも有機ケイ素化合物や樹脂等の成分が含まれており、当該粒子の光触媒活性が強すぎるとこれらの成分を分解してしまい、ハードコート層にクラックが生じたり、基材とハードコート層との密着性が低下してしまう要因となったりする。このような現象は、酸化チタンを含む層が形成された基材を太陽光等の紫外光を含む光の存在下で使用する際に問題となる(耐候性)。これは、一般に、他の結晶型に対して光触媒活性が低いとされる、通常のルチル型の酸化チタンを用いた場合であっても問題となり、種々の解決方法が提案されている。
 例えば、特許文献1には、屈折率が高く、透明性、耐候性、基材との密着性に優れたハードコート膜形成用塗布液を提供するために、該膜形成用塗布液に酸化チタン成分と酸化鉄成分をFe/TiO(重量比)が0.0005以上0.005未満の範囲からなる複合酸化物粒子を含有させることについて開示されている。また、特許文献2には、屈折率が高く、透明性に優れ、その上耐熱水性、耐候性、耐擦傷性、耐磨耗性、染色性に優れ、かつフォトクロミック性がなく、しかも基材との密着性にも優れたハードコート膜形成用塗布液およびこのような優れた特性を有するハードコート膜が表面に形成されたハードコート膜付基材を提供するための複合酸化物粒子が開示されている。具体的には、酸化鉄、酸化チタンおよびシリカからなり、酸化鉄をFeに換算し、酸化チタンをTiOに換算し、シリカをSiOに換算したときの重量比Fe/TiOが0.0005以上0.005未満の範囲にあり、重量比SiO/(Fe+TiO)が0.001以上1.0以下の範囲にある複合酸化物粒子が開示されている。
特開平05-002102号公報 特開平11-172152号公報
 本発明は、光触媒活性が低い酸化チタン粒子を提供することを課題とした。
 本発明の一態様によれば、下記(1)~(3)の構成を全て備える、酸化チタン粒子が提供される。
 (1)ルチル型の結晶構造を有する。
 (2)前記結晶構造の単位格子が、下記(a)および(b)の少なくとも一方を満たす。
  (a)a軸が0.4594nm以上。
  (b)c軸が0.2959nm以上。
 (3)2.90eV以下のエネルギーギャップを有する。
 本発明によれば、光触媒活性が低い酸化チタン粒子を提供できる。
実施例5および比較例3で得られた酸化チタンの紫外可視吸収スペクトルを表す図である。
 [定義]
 本明細書における「結晶半径」は、特に断りの無い限り、Acta Crystallographica.(1976).A32,Pages751~767に記載された「Crystal Radius」を意味する。なお、結晶半径の値は、元素の価数および配位数で異なる。そこで、本明細書においては、原料に含まれる元素の価数を用い、配位数を6とした結晶半径を用いた。
 本明細書において、「単位格子が正の方向に歪んだ」との記載は、特に断りのない限り、01-078-1509 : ICDD (PDF-2/Release 2012 RDB)に記載されたルチル型酸化チタンのa軸およびc軸の値を基準として、少なくとも一方が増加することを意味する。
 本発明は、酸化チタン粒子に関する。以下、本発明の酸化チタン粒子について詳述する。
 [酸化チタン粒子]
 本発明の一態様によれば、本発明の酸化チタン粒子は、下記(1)~(3)の構成を全て備える。
 (1)ルチル型の結晶構造を有する。
 (2)前記結晶構造の単位格子が、下記(a)および(b)の少なくとも一方を満たす。
  (a)a軸が0.4594nm以上。
  (b)c軸が0.2959nm以上。
 (3)2.90eV以下のエネルギーギャップを有する。
 本発明の酸化チタン粒子は、ルチル型の結晶構造を有する。ルチル型の結晶構造を有する酸化チタンは、他の結晶構造(例えば、アナターゼ型)を有する酸化チタンと比較して光触媒活性が低くなる。また、ルチル型の結晶構造を有する酸化チタン粒子は、屈折率が他の結晶構造を有する酸化チタン粒子と比較して大きいので、例えば光学材料として好適に用いることができる。本発明の酸化チタン粒子の結晶構造は、X線回折測定によって判別することができる。
 前記結晶構造に含まれるTiの結晶半径と異なる結晶半径を有する元素が本発明の酸化チタン粒子に固溶すると、その単位格子が歪む。一般に固溶とは、置換型固溶体と侵入型固溶体とに分類される。本発明の酸化チタン粒子は、置換型固溶体または侵入型固溶体のどちらであってもよい。一般的に、無機化合物において特定の元素が固溶すると、その元素の結晶半径によって、結晶構造の単位格子が正の方向にも負の方向にも歪む。結晶構造の歪む方向は、元素の結晶半径のみに起因するものではなく、元素の電子配置、電荷補償に伴う別元素の欠損等様々な要因によって決まる。本発明においては、正の方向に単位格子が歪む。
 本発明の酸化チタン粒子は、ルチル型結晶構造の単位格子が、下記(a)および(b)の少なくとも一方を満たす。
 (a)a軸が0.4594nm以上。
 (b)c軸が0.2959nm以上。
 本発明の酸化チタン粒子は、前記単位格子が正の方向に歪んでおり、かつ酸化チタンの有するバンドギャップ内に、後述のエネルギーギャップを有しているので、その相乗効果により光触媒活性が抑制される。この理由は必ずしも明確ではないが、結晶構造に含まれる原子同士の距離が拡張し、かつルチル型の結晶構造を有する通常の酸化チタン粒子のバンドギャップ内に、別の不連続なエネルギー準位を有することで、光触媒反応の発現に必要な電子の移動が阻害されたためと考えられる。本発明の酸化チタン粒子は、a軸が0.4600nm以上、0.4700nm以下の範囲にあることが好ましく、0.4610nm以上、0.4690nm以下の範囲にあることがより好ましい。また、本発明の酸化チタン粒子は、c軸が、0.2960nm以上、0.3100nm以下の範囲にあることがより好ましく、0.2960nm以上、0.3090nm未満の範囲にあることがより好ましい。前記a軸、c軸の好ましい範囲は、少なくとも一方を満たすことが好ましい。
 本発明の酸化チタン粒子は、2.90eV以下のエネルギーギャップを有する。本発明の酸化チタン粒子は、通常の酸化チタン粒子のエネルギー準位より低い位置にエネルギーギャップを有するとともに、前記単位格子が正の方向に歪むことで、光触媒活性が抑制される。本発明の酸化チタン粒子は、1eV以上、2.90eV以下の範囲にエネルギーギャップを有していることが好ましく、1.5eV以上、2.80eV以下の範囲にエネルギーギャップを有していることが好ましい。このようなエネルギーギャップを有する本発明の酸化チタン粒子は、光触媒活性がより抑制される。
 本発明の酸化チタン粒子は、前記結晶構造に、Al、Mg、Nd、Zn、Nb、Sb、Mo、Zr、およびHfから選ばれる少なくとも1種の元素M1が固溶していることが好ましい。また、これらの元素が前記結晶構造に固溶することで、そのエネルギーギャップも変化する。これらの元素が固溶した本発明の酸化チタン粒子は、前記結晶構造の単位格子がより歪みやすくなる。前記M1は、Al、Mg、Nd、Zr、およびHfから選ばれる少なくとも1種の元素であることがより好ましく、Zr、Al、Mg、およびNdから選ばれる少なくとも1種の元素であることが特に好ましい。特に、Zr、Al、Mg、およびNdから選ばれる少なくとも1種の元素が固溶していると、透明性が高く、光触媒活性がより低い酸化チタン粒子が得られる。
 本発明の酸化チタン粒子に含まれる前記M1の含有量は、Tiに対するモル%で、1モル%以上、25モル%以下の範囲にあることが好ましく、1モル%以上、20モル%以下の範囲にあることがより好ましく、1モル%以上、15モル%以下の範囲にあることが特に好ましい。前記M1の含有量が前述の範囲にあると、屈折率が高く、光触媒活性がより低い酸化チタン粒子が得られる。
 本発明の酸化チタン粒子は、前記結晶構造に、Ni、Mn、Cu、Fe、Co、V、Cr、Rh、およびIrから選ばれる少なくとも1種の元素M2が固溶していることが好ましい。これらの元素が固溶した本発明の酸化チタン粒子は、ルチル型の結晶構造を有する通常の酸化チタン粒子のエネルギー準位より低い位置にエネルギーギャップが形成されやすくなる。前記M2は、Ni、Mn、Cu、およびFeから選ばれる少なくとも1種の元素であることがより好ましい。特にNi、Mn、Cu、およびFeから選ばれる少なくとも1種の元素が固溶していると、光触媒活性がより低い酸化チタン粒子が得られる。
 本発明の酸化チタン粒子に含まれる前記M2の含有量は、Tiに対するモル%で、0.05モル%以上、5モル%以下の範囲にあることが好ましく、0.1モル%以上、3モル%以下の範囲にあることがより好ましく、0.5モル%以上、1.5モル%以下の範囲にあることが特に好ましい。前記M2の含有量が前述の範囲にあると、屈折率が高く、光触媒活性がより低い酸化チタン粒子が得られる。
 本発明の酸化チタン粒子に含まれる前記M1と前記M2とのモル比(M1/M2)は、1超であることが好ましく、3以上、20以下の範囲にあることがより好ましく、5以上、15以下の範囲にあることが特に好ましい。M1とM2とのモル比が前述の範囲にあると、より光触媒活性が低い酸化チタン粒子を得ることができる。
 本発明の酸化チタン粒子は、Sn、Si、Na、およびKから選ばれる少なくとも1種の元素を含むことが好ましい。Snは、酸化チタン粒子の結晶性を高める働きがあり、アナターゼ型等のルチル型以外の結晶構造が生成することを抑制する。これにより、本発明の酸化チタン粒子の光触媒活性がより抑制されるとともに、透明性も高くなる。Snの含有量は、Tiに対するモル%で1モル%以上、15モル%以下の範囲にあることが好ましく、3モル%以上、13モル%以下の範囲にあることがより好ましく、5モル%以上、10モル%以下の範囲にあることが特に好ましい。Siは、酸化チタン粒子の光触媒活性をより抑制することができ、また溶媒中において酸化チタン粒子の分散性を高めることもできる。Siの含有量は、Tiに対するモル%で5モル%以上、50モル%以下の範囲にあることが好ましく、7モル%以上、40モル%以下の範囲にあることがより好ましく、10モル%以上、35モル%以下の範囲にあることが特に好ましい。Na、およびK(アルカリ金属)は、前記M1および前記M2が固溶することで生成した電荷のバランスを保ち、また溶媒中において酸化チタン粒子の分散性を高めることもできる。アルカリ金属の含有量は、Tiに対するモル%で1モル%以上、10モル%以下の範囲にあることが好ましく、2モル%以上、8モル%以下の範囲にあることがより好ましく、3モル%以上、7モル%以下の範囲にあることが特に好ましい。
 本発明の酸化チタン粒子は、Sn/M1モル比が3以下であることが好ましく、2以下であることがより好ましく、1.5以下であることが特に好ましい。M1に対してSnを少なくすることで、前記結晶構造へのM1の固溶が促進される。また、Si/M1モル比は、0.5以上10以下の範囲にあることが好ましく、1以上8以下の範囲にあることがより好ましく、1.5以上7以下の範囲にあることが特に好ましい。このモル比が前述の範囲にあると、前記結晶の単位格子の歪みが正の方向に大きくなりやすい。
 本発明の酸化チタン粒子に含まれるTiの含有量は、酸化チタン粒子の全量に対して、TiO換算で40質量%以上、95質量%以下の範囲にあることが好ましく、50質量%以上、90質量%以下の範囲にあることがより好ましく、60質量%以上、85質量%以下の範囲にあることが特に好ましい。Tiの含有量が前述の範囲にあると、屈折率が高く、光触媒活性がより低い酸化チタン粒子が得られる。
 本発明の酸化チタン粒子は、単位格子体積が0.0625nm以上であることが好ましく、0.0625nm以上、0.0685nm以下の範囲にあることがより好ましく、0.0630nm以上、0.0680nm以下の範囲にあることが特に好ましい。単位格子体積は、単位格子の全ての軸長(abc)および軸角(αβγ)を使用して導かれるので、結晶格子の歪みを総合的に表すことができる。単位格子体積が前述の範囲にある本発明の酸化チタン粒子は、光触媒活性がより低い酸化チタン粒子が得られる。
 本発明の酸化チタン粒子の平均粒子径は、5nm以上、50nm以下の範囲にあることが好ましく、8nm以上、40nm以下の範囲にあることがより好ましく、10nm以上、30nm以下の範囲にあることが特に好ましい。平均粒子径が前述の範囲にあると、本発明の酸化チタン粒子を含む塗膜を形成する際に、緻密な塗膜が形成されやすい。本発明において、平均粒子径の値は、電子顕微鏡を用いて一次粒子の大きさを測定し、その平均をとったものである。
 本発明の酸化チタン粒子の屈折率は、1.8以上であることが好ましく、2以上であることがより好ましく、2.1以上であることが特に好ましい。このように高い屈折率を有する本発明の酸化チタン粒子は、光学材料用として好適に使用できる。屈折率の上限は、特に限定されないが、3以下であってもよい。
 本発明の酸化チタン粒子は、その表面に被覆層が形成されていてもよい。例えば、Zr、Si、およびAl等から選ばれる少なくとも1種の元素を含む被覆層が形成されていると、本発明の酸化チタン粒子の光触媒活性をより低下させることができる。特に、Si、Zrの一方またはその両方を含む被膜層が形成されていると、光触媒活性をより低下させることができ、水、アルコール等の極性溶媒中における分散性も良好になりやすい。
 本発明の酸化チタン粒子は、その表面が有機ケイ素化合物で表面改質されたものを用いることもできる。表面を有機ケイ素化合物で改質すると、後述の分散液または塗膜形成用塗布液とした際に、液中に含まれる樹脂や有機溶媒成分への分散性が高くなる。また、本発明の酸化チタン粒子の表面に被覆層が形成されている場合は、被覆層の表面が有機ケイ素化合物で表面改質されたものであってもよい。
 [酸化チタン粒子を含む分散液]
 本発明の酸化チタン粒子は、粉末であってもよく、溶媒に分散した分散液であってもよい。分散液の場合は、水分散液、水および有機溶媒の分散液または有機溶媒分散液のいずれであってもよい。分散媒に有機溶媒を含む分散液は、例えば分散液に含まれる水の一部または全部を、ロータリーエバポレーター、限外濾過膜またはその他の公知の方法で有機溶媒に置換することができる。
 本発明の酸化チタン粒子を含む分散液に用いることのできる有機溶媒としては、
 メタノール、エタノール、エチレングリコール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、およびオクタノール等のアルコール類;
 酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、およびγ-ブチロラクトン等のエステル類;
 ジエチルエーテル、エチレングリコールモノメチルエーテル(メチルセロソルブ)、エチレングリコールモノエチルエーテル(エチルセロソルブ)、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールモノメチルエーテル、およびジエチレングリコールモノエチルエーテル等のエーテル類;
 アセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、およびシクロヘキサノン等のケトン類;
 ベンゼン、トルエン、キシレン、およびエチルベンゼン等の芳香族炭化水素;
 シクロヘキサン等の環状炭化水素;並びに;
 ジメチルホルムアミド、N,N-ジメチルアセトアセトアミド、およびN-メチルピロリドン等のアミド類等が挙げられる。これらの有機溶媒は1種単独で用いてもよく、2種以上を併用してもよい。
 また、本発明に係る酸化チタン粒子は、その表面が有機ケイ素化合物ではなく、有機アミン化合物、またはカルボン酸化合物で処理されていてもよい。
 前記有機アミン化合物としては、
 アンモニア;エチルアミン、トリエチルアミン、イソプロピルアミン、ジイソプロピルアミン、およびn-プロピルアミン等のアルキルアミン;
 ベンジルアミン等のアラルキルアミン;
 ピペリジン等の脂環式アミン類;
 モノエタノールアミン、およびトリエタノールアミン等のアルカノールアミン;並びに;
 テトラメチルアンモニウム塩、およびテトラメチルアンモニウムハイドロオキサイド等の第4級アンモニウム塩または第4級アンモニウムハイドロオキサイド等が挙げられる。これらの中でも、アルキルアミン、または第4級アンモニウムハイドロオキサイド等を使用することが好ましい。また、これらの有機アミン化合物は、1種類だけでなく2種類以上を使用してもよい。
 前記酸化チタン粒子の表面を処理して修飾する方法としては、従来公知の方法を採用することができる。たとえば、前記有機アミン化合物としてアルキルアミンを用いる場合には、前記酸化チタン粒子の水分散液に添加した後、約40℃~90℃の温度に加熱して約1時間~20時間、攪拌することにより、前記微粒子の表面に前記アルキルアミンを結合させて該微粒子の表面を修飾することができる。この場合、前記表面修飾(すなわち、表面処理の一種)の操作が終了した段階では、前記有機アミン化合物の有するアミン基のすべてが、前記酸化チタン粒子の被覆層の表面に存在するOH基と結合した状態となっていることが好ましい。しかし、その一部が未反応のまま残存した状態であってもよい。
 このようにして調製される表面修飾酸化チタン粒子は、通常、該粒子を含む水分散液として得られるが、必要に応じてその中に含まれる水分を、限外濾過装置等を用いて、メタノール、エタノール、およびプロパノール等のアルコール類;メチルエチルケトン、およびアセチルアセトン等のケトン類;酢酸エチル、および酢酸ブチル等のエステル類;並びに;エチルセロソルブ、およびブチルセロソルブ等のセロソルブ類等の有機溶媒と溶媒置換しておいてもよい。
 [酸化チタン粒子を含む塗膜形成用塗布液]
 本発明の酸化チタン粒子を含む分散液は、マトリックス形成成分を加え、塗膜形成用塗布液とすることもできる。マトリックス形成成分としては、通常の塗膜形成用塗布液に用いられるマトリックス形成成分を用いることができる。マトリックス形成成分としては、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、エチルトリエトキシシラン、メチルトリエトキシシラン、フェニルトリエトキシシラン、ジメチルジメトキシシラン、フェニルメチルジメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、およびγ-メルカプトプロピルトリメトキシシラン等が挙げられる。これらは1種単独で用いてもよく、2種以上を併用してもよい。
 [酸化チタン粒子を含む塗膜および塗膜付基材]
 本発明の酸化チタン粒子を含む分散液を用いて、ガラス、またはプラスチック等の各種基材に塗膜を形成し、塗膜付基材とすることができる。この塗膜付基材は、眼鏡レンズ、およびカメラ等の各種光学レンズ、光学ディスプレイの前面板、ショーウィンドケース、窓ガラス、複写機用コンタクトガラス、自動車用ライトカバーおよび各種の紫外線遮蔽用フィルター等の光学用基材として用いることができる。本発明の酸化チタン粒子は光触媒活性が低く、その一方でUV吸収能を有することから、いずれの態様においても高い耐候性を有する塗膜を得ることができる。膜厚については特に限定されるものではない。塗膜強度を高くする場合は、膜厚が0.5μm以上であることが好ましく、1μm以上であることがより好ましく、2μm以上であることが特に好ましい。膜厚の上限は、特に限定されるものではないが、100μm以下であってもよく、50μm以下であってもよく、30μm以下であってもよい。なお、塗膜強度を高める必要がない場合は、膜厚が0.5μm未満であってもよく、0.3μm未満であってもよく、0.1μm未満であってもよい。本発明の酸化チタン粒子を含む塗膜は、膜厚が薄くても高い耐候性を有する。
 [酸化チタン粒子の製造方法]
 本発明の酸化チタン粒子は、例えば、下記(1)~(3)の工程を備える製造方法を用いて調製することができる。なお、本発明の酸化チタン粒子の製造方法は、以下の製造方法に限定されるものではない。
 (1)共沈ゲル調製工程
 (2)水熱処理前駆体調製工程
 (3)水熱処理工程
 以下、本発明の酸化チタン粒子の製造方法の一例について、詳述する。
 (1)共沈ゲル調製工程
 この工程は、Ti、M1、およびM2を含む水溶液を中和して、Ti、M1、およびM2を含む共沈ゲルを調製する工程である。Ti、M1、およびM2を含む共沈ゲルを調製することで、最終的に得られる酸化チタン粒子の結晶構造へのM1およびM2の固溶がより促進される。また、前記水溶液および前記共沈ゲルは、M1、M2以外の元素を含んでいてもよい。
 Ti、M1、およびM2を含む水溶液は、Ti源、M1源、およびM2源を水に溶解して調製することができる。Ti源として、四塩化チタン、硫酸チタン、およびチタンアルコキシド等の従来公知の原料を使用することができる。また、M1源、M2源として、塩化物、炭酸塩、および硝酸塩等の従来公知の原料を使用することができる。加えて、Ti、M1、およびM2を含む水溶液がさらにM1、M2以外の元素を含む場合、この元素を含む塩化物、炭酸塩、および硝酸塩等の従来公知の原料を使用することができる。これらの原料は、水溶性の原料であることが好ましく、水溶性でない場合は水に均一に分散する程度に微粒であることが好ましい。Ti、M1、およびM2を含む水溶液のpHは、3以下であることが好ましい。
 この工程では、Ti、M1、およびM2を含む水溶液を中和するために、pHが10以上のアルカリを使用することができる。例えば、水酸化ナトリウム、水酸化カリウム、またはアンモニア等が水に溶解したアルカリ水溶液を用いることができる。pHが4以上となるようにTi、M1、およびM2を含む水溶液とアルカリ水溶液とを混合することで、Ti、M1、およびM2を含む共沈ゲルが生成する。この共沈ゲルは、濾過により回収することができ、必要によって水等を用いて洗浄してもよい。
 (2)水熱処理前駆体調製工程
 この工程は、前述の工程で得られた共沈ゲルを水に再分散し(解膠し)、水熱処理前駆体を調製する工程である。またこの工程では、共沈ゲルを解膠した後、前記M1、前記M2および他の元素を添加することもできる。
 共沈ゲルを解膠する方法は、従来公知の方法を用いることができる。例えば、共沈ゲルを水に分散させて超音波処理する方法、酸またはアルカリを用いて水に分散させる方法等を用いることができる。また、過酸化水素水を用いて解膠してもよい。このとき、最終的に得られる水熱処理前駆体中の固形分の濃度が10質量%以下となるように、水の量を調整することが好ましい。
 この工程で得られた水熱処理前駆体に含まれる固形分の平均粒子径は、5nm以上、300nm以下の範囲にあることが好ましく、10nm以上、200nm以下の範囲にあることがより好ましく、15nm以上、150nm以下の範囲にあることが特に好ましい。共沈ゲル水分散液に含まれる固形分の平均粒子径が大きくなると、最終的に得られる酸化チタンの平均粒子径も大きくなりやすい。
 (3)水熱処理工程
 この工程は、前述の工程で得られた水熱処理前駆体を水熱処理して、M1およびM2が固溶したルチル型酸化チタン粒子を調製する工程である。
 この工程では、オートクレーブ等の従来公知の機器を用いて、水熱処理前駆体を水熱処理することができる。水熱処理の温度は、100℃以上、250℃以下の範囲にあることが好ましく、120℃以上、220℃以下の範囲にあることがより好ましく、130℃以上、210℃以下の範囲にあることが特に好ましい。前述の温度域における保持時間は、1時間以上、48時間以下の範囲であることが好ましく、5時間以上、24時間以下の範囲であることがより好ましく、10時間以上、20時間以下の範囲にあることが特に好ましい。
 水熱処理を行った後の液中には本発明の酸化チタンが含まれており、必要によって分離、洗浄等を行ってもよい。また、分離した酸化チタンを焼成して、その結晶性を高めることもできる。
 本発明の酸化チタン粒子の表面に被覆層を形成する場合は、例えば、特開2009-155496号公報に記載の方法により形成することができる。また、本発明の酸化チタン粒子を有機溶媒に、または樹脂が分散した溶液に分散させる場合には、同公報に記載の方法を用いて、その表面または被覆層の表面を疎水化処理(表面処理)することもできる。
 [酸化チタン粒子を含む分散液の製造方法]
 本発明の酸化チタン粒子を含む分散液は、本発明の酸化チタン粒子を溶媒に分散する方法で調製することができる。酸化チタン粒子を溶媒に分散する方法は、従来公知の方法を用いることができる。例えば、本発明の酸化チタン粒子が粉末状である場合は、水、または有機溶媒等に添加した後、ビーズミル処理、または超音波処理等の分散処理を行うことで、分散液を調製することができる。このとき、分散液中の固形分の濃度を50質量%以下とすると、溶媒中に本発明の酸化チタン粒子をより分散させやすくなる。また、本発明の酸化チタン粒子のゼータ電位を測定し、分散に好適な範囲となるように、pHを調整することもできる。
 本発明の酸化チタン粒子を含む分散液の溶媒として有機溶媒を用いる場合は、前述のとおりの有機溶媒を用いることができる。
 [酸化チタン粒子を含む塗膜形成用塗布液の製造方法]
 本発明の酸化チタン粒子を含む塗膜形成用塗布液は、本発明の酸化チタン粒子を用いて従来公知の方法で調製することができる。例えば、塗膜を形成するために必要な成分を前述の分散液に加えて調製することができる。この塗膜形成用塗布液は、熱硬化性塗膜形成用塗布液であってもよく、光硬化性塗膜形成用塗布液であってもよい。
 熱硬化性塗膜形成用塗布液の場合は、本発明の酸化チタン粒子を含む分散液に、マトリックス形成成分と、必要に応じて熱硬化用硬化触媒、または添加剤等を添加して、調製することができる。例えば、特開2000-204301号公報の記載に基づいて、塗布液を製造することができる。
 また、光硬化性塗膜形成用塗布液の場合は、本発明の酸化チタン粒子を含む分散液に、マトリックス形成成分と、必要に応じて光硬化用硬化触媒、添加剤等を添加して、調製することができる。例えば、特開2009-056387号公報の記載に基づいて、塗布液を製造することができる。
 前記マトリックス形成成分としては、前述のとおりのものが挙げられる。
 熱硬化用硬化触媒としては、
 n-ブチルアミン、トリエチルアミン、グアニジン、およびビグアニジド等のアミン類;グリシン等のアミノ酸類;
 アルミニウムアセチルアセトナート、クロムアセチルアセトナート、チタニルアセチルアセトネート、およびコバルトアセチルアセトネート等の金属アセチルアセトナート;
 酢酸ナトリウム、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸亜鉛、およびオクチル酸スズ等の有機酸の金属塩類;
 過塩素酸、過塩素酸アンモニウム、および過塩素酸マグネシウム等の過塩素酸類あるいはその塩;
 塩酸、リン酸、硝酸、およびパラトルエンスルホン酸等の酸;並びに;
 SnCl、AlCl、FeCl、TiCl、ZnCl、およびSbCl等のルイス酸である金属塩化物等を用いることができる。これらは1種単独で用いてもよく、2種以上を併用してもよい。
 光硬化用硬化触媒としては、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド、2-ヒドロキシ-メチル-2-メチル-フェニル-プロパン-1-ケトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、および2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン等を用いることができる。これらは1種単独で用いてもよく、2種以上を併用してもよい。
 添加剤としては、界面活性剤、レベリング剤、紫外線吸収剤、光安定剤、希釈溶媒、防腐剤、防汚剤、抗菌剤、消泡剤、紫外線劣化防止剤および染料等を用いることができる。これらは1種単独で用いてもよく、2種以上を併用してもよい。
 [酸化チタン粒子を含む塗膜付基材の製造方法]
 本発明の酸化チタン粒子を含む塗膜付基材は、基材と、前述の塗膜形成用塗布液とを用いて、従来公知の方法で調製することができる。
 基材としては、ガラス、またはプラスチック等からなる各種基材が挙げられ、具体例としては光学レンズ等として使用されるプラスチック基材が挙げられる。
 基材に形成する塗膜の膜厚は、塗膜付基材の用途によって異なるが、塗膜強度を得ようとする場合は、0.5μm以上であることが好ましく、1μm以上であることがより好ましく、2μm以上であることが特に好ましい。膜厚の上限は、特に限定されるものではないが、100μm以下であってもよく、50μm以下であってもよく、30μm以下であってもよい。塗膜強度を高める必要がない場合は、膜厚が0.5μm未満であってもよく、0.3μm未満であってもよく、0.1μm未満であってもよい。
 前述の熱硬化性塗膜形成用塗布液を用いて本発明の酸化チタン粒子を含む塗膜付基材を調整する場合は、例えば、特開2000-204301号公報の記載に基づいて製造することができる。また、前述の光硬化性塗膜形成用塗布液を用いた場合は、例えば、特開2009-056387号公報の記載に基づいて、塗布液を製造することができる。これらの塗膜形成用塗布液をディッピング法、スプレー法、スピナー法、ロールコート法、またはバーコーター法等の従来公知の方法で基材に塗布し、乾燥させ、加熱処理または紫外線照射等によって硬化させる方法で調製することができる。
 本発明に係る塗膜付基材を製造するに際し、基材、例えばプラスチック基材と塗膜との密着性を向上させる目的で、基材表面を予めアルカリ、酸または界面活性剤で処理したり、無機または有機微粒子で研磨処理したり、プライマー処理またはプラズマ処理を行ってもよい。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 [測定方法または評価方法]
 各種測定または評価は以下のように行った。
 [1]平均粒子径
 測定試料(酸化チタン粒子等の無機酸化物粒子)の形状を、走査型電子顕微鏡(SEM)((株)日立ハイテクノロジーズ製、S-5500)を用いて、30kVの加速電圧で観察した。観察用の試料は、以下のように作製した。測定試料(酸化チタン粒子等の無機酸化物粒子)を含む水分散ゾルを水で固形分濃度0.05質量%となるように希釈した後、コロジオン膜付金属グリッド(応研商事(株)製)に塗布し、250Wの赤外線ランプを30分間照射して溶媒を蒸発させて観察用の試料を作成した。得られたSEM像を印刷し、一次粒子100個についてノギスにて粒子径を計測し、その平均値を平均粒子径とした。なお、粒子の形状に異方性がある場合は、その長径を粒子径とした。
 [2]固形分濃度
 測定試料(酸化チタン粒子等の無機酸化物粒子)を含む分散液の溶媒を赤外線照射等により除去した後、残渣を1000℃で1時間焼成して強熱残分(固形分)を得た。試料の質量に対する強熱残分の質量の割合を固形分濃度とした。
 [3]粒子組成の測定方法
 (チタン、スズ、ネオジム、ケイ素、鉄およびニオブ)
 測定試料(酸化チタン粒子等の無機酸化物粒子)を含む水分散液をジルコニアるつぼに採取し、赤外線照射により水分を除去した後、得られた乾燥物を、NaとNaOHを加えて加熱し、溶融させた。得られた溶融物に、さらに、硫酸および塩酸を加え、希釈のために水を加えた。
 ICP装置((株)島津製作所製、ICPS-8100)を用いて、得られた溶液中のチタン、スズ、ネオジム、ケイ素、鉄およびニオブの量を酸化物換算(TiO、SnO、Nd、SiO、FeおよびNb)で測定し、水分散液中に含まれる測定試料全量に対する割合としてそれぞれの含有量を算出した。
 (マグネシウム、アルミニウム、ジルコニウム、ニッケル、マンガンおよび銅)
 測定試料(酸化チタン粒子等の無機酸化物粒子)を含む水分散液を白金皿に採取し、フッ化水素酸と硫酸を加えて加熱した後、水を加えて、無機酸化物粒子を溶解させた。さらに、これを水で希釈した後、ICP装置((株)島津製作所製、ICPS-8100)を用いてマグネシウム、アルミニウム、ジルコニウム、ニッケル、マンガンおよび銅の量を酸化物換算(MgO、Al、ZrO、NiO、MnOおよびCuO)で測定し、水分散液中に含まれる測定試料全量に対する割合としてそれぞれの含有量を算出した。
 (カリウム)
 測定試料(酸化チタン粒子等の無機酸化物粒子)を含む水分散液を白金皿に採取し、フッ化水素酸と硫酸を加えて加熱した後、水を加えて、無機酸化物粒子を溶解させた。さらに、これを水で希釈した後、原子吸光装置((株)日立製作所製、Z-5300)を用いてカリウムの量を酸化物換算(KO)で測定し、水分散液中に含まれる測定試料全量に対する割合としてそれぞれの含有量を算出した。
 [4]粒子の結晶構造解析
 測定試料(酸化チタン粒子等の無機酸化物粒子)を含む水分散液を、磁製ルツボ(B-2型)に固形分重量として2g分得られる量を採取し、110℃で12時間乾燥させた後、残渣をデシケーターに入れて室温まで冷却した。次に、残渣と少量のチタン酸ストロンチウム((株)高純度化学研究所製)を混合して15分間粉砕した後、X線回折装置SmartLab((株)リガク製)を用いて粉末X線回折を測定した。得られた回折パターンについては、PDXL2 version2.7.2.0のソフトウェアを用いてピーク位置の特定を行い、少量混合したチタン酸ストロンチウムの(110)面に由来するピーク(2θ)が32.374degとなるように補正した。測定条件およびデータ解析の詳細については以下の通りとした。
・測定条件
 測定装置:粉末X線回折測定装置SmartLab((株)リガク製)
 X線発生装置:9kW開放管(CuKα線源、電圧45kV、電流200mA)
 Soller/PSC:5.0deg
 IS長手:10.0mm
 PSA:なし
 Soller:5.0deg
 IS:1/2
 RS1:13mm
 RS2:20mm
 スキャンステップ:0.02deg
 スキャン範囲:5-70deg
 スキャンスピード:5deg/min
 X線検出器:高速1次元X線検出器(D/TeX Ultra 250)
 測定雰囲気:大気下
 試料台:Al製試料ホルダー(底なし)
・データ解析
 解析ソフトウェア:統合粉末X線解析ソフトウェア PDXL2 Version 2.7.2.0((株)リガク製)
 平滑化:B-Splneによる平滑化(X閾値1.5)
 バックグラウンド除去:フィッティング方式
 Kα2除去:強度比0.497
 ピークサーチ:2次微分法、σカット値=3、σカット範囲0.5~20.0
 プロファイルフィッティング方法:測定データに対してフィッティング
 プロファイルフィッティング ピーク形状:分割型擬Voigt関数
 上記のようにして得られたルチル型結晶構造に由来する回折ピーク(110)面および(101)面の面間隔からルチル型結晶構造を有する酸化チタン粒子の単位格子a軸の長さ、c軸の長さ、および同単位格子の体積を求めた。
 [5]酸化チタン粒子の光触媒活性抑制効果の評価(退色速度の測定)
 TiOの質量濃度が0.335%かつ、水/メタノール=1/1(質量比)となるように、酸化チタン粒子分散液に適宜溶媒を加えた。次いで、得られた分散液と固形分濃度0.02質量%のサンセットイエローFCF染料のグリセリン溶液とを質量比(分散液質量/グリセリン溶液質量)が1/3となるように混合して試料を調製し、これを奥行き1mm、幅1cm、高さ5cmの石英セルに入れた。次に、I線(波長365nm)の波長域が選択された紫外線ランプ(アズワン(株)製、LUV-6)を用いて、前記石英セルの幅1cm×高さ5cmの面に対して強度が0.4mW/cm(波長365nm換算)となるように距離を調整し、紫外線を照射した。
 前記試料の波長490nmにおける紫外線照射前の吸光度(A0)およびn時間紫外線照射後の吸光度(An)を紫外可視分光光度計(日本分光(株)製、V-750)で測定し、以下の式からUV照射3時間時点での染料の退色率(SY退色率)を算出した。
 退色率=(An-A0)/A0×100(%)
 [6]粒子屈折率の測定方法
 特開2010-168266号公報の[0105]~[0110]に記載の方法により、酸化チタン粒子とマトリックスとの比が異なる塗膜を複数作製した。光学測定装置(オリンパス(株)製、USPM-RU III)を用いてこの塗膜の反射率スペクトルを測定し、屈折率を算出した。各塗膜の屈折率から粒子屈折率を算出した。
 [7]エネルギーギャップに由来する吸収の評価
 固形分を0.5g採取できる量の酸化チタン粒子分散液を採取し、これを温度110℃にて12時間乾燥し、固形分を得た。次いで、この固形分をめのう乳鉢にて5分間、粗粒が残らないようにすりつぶし、測定用の試料粉末を調製した。
まず、積分球付きの紫外可視分光光度計(日本分光(株)製、V-670)を用いて、積分球用標準白板(日本分光(株)製、6916-H422A)の拡散反射スペクトルを測定し、これをベースラインとした。次いで、測定用の試料粉末を石英窓付きの試料ホルダーに入れて、前述のベースラインを用い、同様の方法で、拡散反射スペクトルを測定した。得られた拡散反射スペクトルについてクベルカ―ムンク変換を行い、紫外可視吸収スペクトルに変換した。このようにして得られた紫外可視吸収スペクトルについて、吸収強度の最大値が1となるように規格化を行い、規格化後の吸収強度が0.015以上となる最大の波長を吸収端波長として、下記式により、エネルギーギャップを求めた。
 エネルギーギャップ(eV)=hν=hc/λ=1240/λ
 (λ:吸収端波長(nm))
 [実施例1]
 (1-1)共沈ゲル調製工程
 TiをTiO換算で7.75質量%含む四塩化チタン水溶液(大阪チタニウムテクノロジーズ(株)製)1322gと、FeをFe換算で7.75質量%含む塩化第二鉄水溶液(東亜合成(株)製)11.3gと、アンモニアを15質量%含むアンモニア水(宇部興産(株)製)とを混合し、pH9.5のごく淡黄色のスラリーを調製した。次いで、このスラリーを濾過した後、濾物を水で洗浄して、固形分濃度が10質量%でFeおよびTiを含む共沈ゲル1を1000g得た。
 (1-2)Mg含有スラリー調製工程
 MgをMgO換算で7.75質量%含む塩化マグネシウム・六水和物(関東化学(株)製、鹿1級)の水溶液312gと、水酸化カリウム(関東化学(株)製、鹿特級)を7.5質量%含む水酸化カリウム水溶液とを混合し、pH10.6の白色スラリーを調製した。次いで、このスラリーを濾過した後、濾物を水で洗浄して、固形分濃度15.5%のスラリー115gを得た。これを再度水で希釈して分散し、固形分濃度が1質量%のMg含有スラリーを1700g得た。
 (2)水熱処理前駆体調製工程
 前述の工程で得られた共沈ゲル116gに、過酸化水素を35質量%含む過酸化水素水(三菱瓦斯化学(株)製)199gおよび水657gを加えた後、80℃、1時間撹拌し、さらに水188gを加えて、共沈ゲル1の解膠液を1160g得た。この解膠液は、橙色透明であり、そのpHは8.4であり、解膠液中の粒子の平均粒子径(動的散乱法(大塚電子(株)製、ELS-Z)を用いて得られた粒度分布データから、キュムラント解析を用いて算出した値)は56nmであった。
 この解膠液(1160g)に陽イオン交換樹脂(三菱化学(株)製)を混合した後、スズ酸カリウム(昭和化工(株)製)をSnO換算で1質量%含むスズ酸カリウム水溶液145gを撹拌下で徐々に添加した。
 得られた解膠液に含まれる陽イオン交換樹脂を分離した後、シリカゾル(平均粒子径16nm(動的散乱法を用いて得られた値)、比表面積375m/g、pH2.2、固形分濃度16質量%)18gおよび水268gを加え、さらに先の工程で調製した固形分濃度1質量%のMg含有スラリーを29g混合して、水熱処理前駆体1619gを調製した。
 (3)水熱処理工程
 前述の工程で得られた水熱処理前駆体を高圧用反応分解容器(三愛科学(株)製、HU-100)に小分けして分け入れて165℃、18時間、加熱した。これを室温まで冷却して、ゾル状の反応物を回収した。この反応物を、限外濾過膜装置(旭化成(株)製、SIP-0013)で濃縮して、淡黄色透明で、固形分濃度が10質量%、pH8.4の水分散ゾル150gを得た。
 得られた水分散ゾルに含まれる粒子は、ルチル型結晶構造を有し、鉄、マグネシウム、スズ、ケイ素、およびカリウムを含む酸化チタン粒子であった。前述の測定方法または評価方法により得られた酸化チタン粒子の性状を、表1に示す。
 [実施例2]
 (1)共沈ゲル調製工程
 TiをTiO換算で7.75質量%含む四塩化チタン水溶液(大阪チタニウムテクノロジーズ(株)製)1598gと、FeをFe換算で7.75質量%含む塩化第二鉄水溶液(東亜合成(株)製)14.4gと、NdをNd換算で7.75質量%含む塩化ネオジム(III)六水和物(富士フイルム和光純薬(株)製)の水溶液179gとアンモニアを15質量%含むアンモニア水(宇部興産(株)製)とを混合し、pH9.5の淡黄色スラリーを調製した。次いで、このスラリーを濾過した後、濾物を水で洗浄して、固形分濃度が10質量%でFe、NdおよびTiを含む共沈ゲル2を1350g得た。
 (2)水熱処理前駆体調製工程
 共沈ゲル1のかわりに共沈ゲル2を用いる以外は実施例1と同様にして、共沈ゲルの解膠液を1160g得た。この解膠液は、橙色透明であり、そのpHは7.5であり、解膠液中の粒子の平均粒子径(動的散乱法(大塚電子(株)製、ELS-Z)を用いて得られた粒度分布データから、キュムラント解析を用いて算出した値)は329nmであった。
 次いで、固形分濃度1質量%のMg含有スラリーを混合しない以外は同様にして、水熱処理前駆体2を1590g得た。
 (3)水熱処理工程
 水熱処理前駆体1の代わりに、水熱処理前駆体2を用いる以外は実施例1と同様にして、淡黄色透明で、固形分濃度が10質量%、pH6.5の水分散ゾル2を150g得た。
 得られた水分散ゾルに含まれる粒子は、ルチル型結晶構造を有し、鉄、ネオジム、スズ、ケイ素、およびカリウムを含む酸化チタン粒子であった。前述の測定方法または評価方法により得られた酸化チタン粒子の性状を、表1に示す。
 [実施例3]
 (2)水熱処理前駆体調製工程
 実施1と同様にして得た共沈ゲル1の解膠液を564g用い、陽イオン交換樹脂(三菱化学(株)製)を混合した後、スズ酸カリウム(昭和化工(株)製)をSnO換算で1質量%含むスズ酸カリウム水溶液73gおよびアルミン酸ナトリウム(富士フイルム和光純薬(株)製、和光1級)をAl換算で1質量%含むアルミン酸ナトリウム水溶液19gを撹拌下で徐々に添加した。
 得られた解膠液に含まれる陽イオン交換樹脂を分離した後、アルミニウムをAl換算で0.4質量%含有するシリカゾル(平均粒子径16nm(動的散乱法を用いて得られた値)、比表面積375m/g、pH2.2、固形分濃度16質量%:特開2009-197078号公報の実施例1「シリカゾルの調製」に記載された方法を参考に調製)9gおよび水134gを加え、水熱処理前駆体3を800g調製した。
 (3)水熱処理工程
 水熱処理前駆体1の代わりに、水熱処理前駆体3を用いる以外は同様にして、淡黄色透明で、固形分濃度が10質量%、pH6.7の水分散ゾル3を80g得た。
 得られた水分散ゾルに含まれる粒子は、ルチル型結晶構造を有し、鉄、アルミニウム、スズ、ケイ素、アルミニウムおよびカリウムを含む酸化チタン粒子であった。前述の測定方法または評価方法により得られた酸化チタン粒子の性状を、表1に示す。
 [実施例4]
 (1)共沈ゲル調製工程
 TiをTiO換算で7.75質量%含む四塩化チタン水溶液(大阪チタニウムテクノロジーズ(株)製)1304gと、NiをNiO換算で7.75質量%含む塩化ニッケル・六水和物(関東化学(株)製、鹿一級)の水溶液1.1gと、ZrをZrO換算で7.75質量%含むオキシ塩化ジルコニウム(太陽鉱工(株)製)106gと、アンモニアを15質量%含むアンモニア水(宇部興産(株)製)とを混合し、pH9.5のごく淡緑色のスラリーを調製した。次いで、このスラリーを濾過した後、濾物を水で洗浄して、固形分濃度が10質量%でNi、ZrおよびTiを含む共沈ゲル4を1000g得た。
 (2)水熱処理前駆体調製工程
 前述の工程で得られた共沈ゲル4を73g計量し、過酸化水素を35質量%含む過酸化水素水(三菱瓦斯化学(株)製)116gおよび水421gを加えた後、80℃、1時間撹拌し、さらに水118gを加えて、共沈ゲルの解膠液4を720g得た。この解膠液は、橙色透明であり、そのpHは8.3であり、解膠液中の粒子の平均粒子径(動的散乱法(大塚電子(株)製、ELS-Z)を用いて得られた粒度分布データから、キュムラント解析を用いて算出した値)は63nmであった。
 この解膠液(729g)に陽イオン交換樹脂(三菱化学(株)製)を混合した後、スズ酸カリウム(昭和化工(株)製)をSnO換算で1質量%含むスズ酸カリウム水溶液91gを撹拌下で徐々に添加した。
 得られた解膠液に含まれる陽イオン交換樹脂を分離した後、シリカゾル(平均粒子径16nm(動的散乱法を用いて得られた値)、比表面積375m/g、pH2.2、固形分濃度16質量%)11gおよび水169gを混合して、水熱処理前駆体4を調製した。
 (3)水熱処理工程
 水熱処理前駆体1の代わりに、水熱処理前駆体4を用いる以外は実施例1と同様にして、わずかに黄色味のある透明で、固形分濃度が10質量%、pH7.0の水分散ゾル4を100g得た。
 得られた水分散ゾルに含まれる粒子は、ルチル型結晶構造を有し、ニッケル、ジルコニウム、スズ、ケイ素、およびカリウムを含む酸化チタン粒子であった。前述の測定方法または評価方法により得られた酸化チタン粒子の性状を、表1に示す。
 [実施例5]
 (1)共沈ゲル調製工程
 NiをNiO換算で7.75質量%含む塩化ニッケル・六水和物(関東化学(株)製、鹿一級)の水溶液の添加量を10.4gとする以外は実施例4と同様にして、pH9.4の淡緑色スラリーを調製した。次いで、このスラリーを濾過した後、濾物を水で洗浄して、固形分濃度が10質量%でNi、ZrおよびTiを含む共沈ゲル5を1000g得た。
 (2)水熱処理前駆体調製工程
 共沈ゲル4の代わりに共沈ゲル5を用いる以外は実施例4と同様にして、共沈ゲルの解膠液5を720g得た。この解膠液は、橙色透明であり、そのpHは8.2であり、解膠液中の粒子の平均粒子径(動的散乱法(大塚電子(株)製、ELS-Z)を用いて得られた粒度分布データから、キュムラント解析を用いて算出した値)は67nmであった。
 次いで、解膠液4の代わりに解膠液5を用いる以外は実施例4と同様にして、水熱処理前駆体5を調製した。
 (3)水熱処理工程
 水熱処理前駆体1の代わりに、水熱処理前駆体5を用いる以外は同様にして、黄色透明で、固形分濃度が10質量%、pH6.6の水分散ゾル5を100g得た。
 得られた水分散ゾルに含まれる粒子は、ルチル型結晶構造を有し、ニッケル、ジルコニウム、スズ、ケイ素、およびカリウムを含む酸化チタン粒子であった。前述の測定方法または評価方法により得られた酸化チタン粒子の性状を、表1に示す。また、その紫外可視吸収スペクトルおよび吸収端を図1に示す。
 [実施例6]
 (1)共沈ゲル調製工程
 NiをNiO換算で7.75質量%含む塩化ニッケル・六水和物(関東化学(株)製、鹿一級)の水溶液の代わりに、MnをMnO換算で7.75質量%含む塩化マンガン(II)四水和物の水溶液10.5g添加する以外は実施4と同様にしてpH9.3の淡い黄土色のスラリーを調製した。次いで、このスラリーを濾過した後、濾物を水で洗浄して、固形分濃度が10質量%でMn、ZrおよびTiを含む共沈ゲル6を1100g得た。
 (2)水熱処理前駆体調製工程
 共沈ゲル4の代わりに共沈ゲル6を用いる以外は実施例4と同様にして、共沈ゲルの解膠液6を720g得た。この解膠液は、橙色透明であり、そのpHは8.5であり、解膠液中の粒子の平均粒子径(動的散乱法(大塚電子(株)製、ELS-Z)を用いて得られた粒度分布データから、キュムラント解析を用いて算出した値)は68nmであった。
 次いで、解膠液4の代わりに解膠液6を用いる以外は実施例4と同様にして、水熱処理前駆体6を調製した。
 (3)水熱処理工程
 水熱処理前駆体1の代わりに、水熱処理前駆体6を用いる以外は同様にして、褐色透明で、固形分濃度が10質量%、pH7.3の水分散ゾル5を100g得た。
 得られた水分散ゾルに含まれる粒子は、ルチル型結晶構造を有し、マンガン、ジルコニウム、スズ、ケイ素、およびカリウムを含む酸化チタン粒子であった。前述の測定方法または評価方法により得られた酸化チタン粒子の性状を、表1に示す。
 [実施例7]
 (1)共沈ゲル調製工程
 NiをNiO換算で7.75質量%含む塩化ニッケル・六水和物(関東化学製、鹿一級)の水溶液の代わりに、CuをCuO換算で7.75質量%含む塩化銅(II)二水和物の水溶液11.7gを添加し、アンモニアを15質量%含むアンモニア水(宇部興産(株)製)の代わりに、水酸化カリウム(関東化学製、鹿特級)を水酸化カリウム濃度で7.5質量%含む水酸化カリウム水溶液を用いる以外は実施例4と同様にしてpH10.5の淡い水色のスラリーを調製した。次いで、このスラリーを濾過した後、濾物を水で洗浄して、固形分濃度が10質量%でCu、ZrおよびTiを含む共沈ゲル7を1100g得た。
 (2)水熱処理前駆体調製工程
 共沈ゲル4の代わりに共沈ゲル7を用いる以外は実施例4と同様にして、共沈ゲルの解膠液7を720g得た。この解膠液は、橙色透明であり、そのpHは10.5であり、解膠液中の粒子の平均粒子径(動的散乱法(大塚電子(株)製、ELS-Z)を用いて得られた粒度分布データから、キュムラント解析を用いて算出した値)は245nmであった。
 次いで、解膠液4の代わりに解膠液7を用いる以外は実施例4と同様にして、水熱処理前駆体7を調製した。
 (3)水熱処理工程
 水熱処理前駆体1の代わりに、水熱処理前駆体7を用いる以外は同様にして、淡黄色透明で、固形分濃度が10質量%、pH7.2の水分散ゾル7を100g得た。
 得られた水分散ゾルに含まれる粒子は、ルチル型結晶構造を有し、銅、ジルコニウム、スズ、ケイ素、およびカリウムを含む酸化チタン粒子であった。前述の測定方法または評価方法により得られた酸化チタン粒子の性状を、表1に示す。
 [比較例1]
 酸化チタン粒子(酸化チタン(IV)、ルチル型、-5μm、99.9%(富士フイルム和光純薬(株)製))を固形分濃度10%となるように水分散を行い、水酸化カリウム(関東化学(株)製、鹿特級)の水溶液にてpH9.5となるように調整し、ホーン型超音波分散機((株)カイジョー製、ULTRASONIC TRANSDUCER Type5281、AUTO CHASER300)で1時間分散処理を行い酸化チタン粒子の水分散体8を得た。
 得られた水分散体8に含まれる粒子は、ルチル型結晶構造を有し、Tiのみを含む酸化チタン粒子であった。前述の測定方法または評価方法により得られた酸化チタン粒子の性状を、表1に示す。
 [比較例2]
 実施例4において、塩化ニッケル・六水和物(関東化学(株)製、鹿一級)の水溶液を加えない以外は同様にして、無色透明で、固形分濃度が10質量%、pH6.8の水分散ゾル9を100g得た。
 得られた水分散ゾルに含まれる粒子は、ルチル型結晶構造を有し、ジルコニウム、スズ、ケイ素、およびカリウムを含む酸化チタン粒子であった。前述の測定方法または評価方法により得られた酸化チタン粒子の性状を、表1に示す。
 [比較例3]
 (2)水熱処理前駆体調製工程
 共沈ゲル9の解膠液を720g用い、陽イオン交換樹脂(三菱化学(株)製)を混合した後、スズ酸カリウム(昭和化工(株)製)をSnO換算で1質量%含むスズ酸カリウム水溶液91gおよびニオブ酸カリウム水溶液((株)高南無機製)をNb換算で1質量%含むニオブ酸カリウム水溶液10gを撹拌下で徐々に添加した。
 得られた解膠液に含まれる陽イオン交換樹脂を分離した後、シリカゾル(平均粒子径16nm(動的散乱法を用いて得られた値)、比表面積375m/g、pH2.2、固形分濃度16質量%)11gおよび水169gを加え、水熱処理前駆体10を1000g調製した。
 (3)水熱処理工程
 水熱処理前駆体1の代わりに水熱処理前駆体10を用いる以外は実施例1と同様にして、無色透明で、固形分濃度が10質量%、pH7.1の水分散ゾル100gを得た。
 得られた水分散ゾルに含まれる粒子は、ルチル型結晶構造を有し、ニオブ、スズ、ケイ素、およびカリウムを含む酸化チタン粒子であった。前述の測定方法または評価方法により得られた酸化チタン粒子の性状を、表1に示す。また、その紫外可視吸収スペクトルおよび吸収端を図1に示す。
Figure JPOXMLDOC01-appb-T000001

Claims (15)

  1.  下記(1)~(3)の構成を全て備える、酸化チタン粒子。
     (1)ルチル型の結晶構造を有する。
     (2)前記結晶構造の単位格子が、下記(a)および(b)の少なくとも一方を満たす。
      (a)a軸が0.4594nm以上。
      (b)c軸が0.2959nm以上。
     (3)2.90eV以下のエネルギーギャップを有する。
  2.  前記結晶構造に、Al、Mg、Nd、Zn、Nb、Sb、Mo、Zr、およびHfから選ばれる少なくとも1種の元素M1が固溶している、請求項1に記載の酸化チタン粒子。
  3.  前記M1の含有量が、前記酸化チタン粒子に含まれるTiに対するモル%で、1モル%以上、25モル%以下の範囲にある、請求項2に記載の酸化チタン粒子。
  4.  前記結晶構造に、Ni、Mn、Cu、Fe、Co、V、Cr、Rh、およびIrから選ばれる少なくとも1種の元素M2が固溶している、請求項3に記載の酸化チタン粒子。
  5.  前記M2の含有量が、前記酸化チタン粒子に含まれるTiに対するモル%で、0.05モル%以上、5モル%以下の範囲にある、請求項4に記載の酸化チタン粒子。
  6.  前記M2と前記M1とのモル比(M1/M2)が、1超である、請求項5に記載の酸化チタン粒子。
  7.  前記結晶構造に、Ni、Mn、Cu、Fe、Co、V、Cr、Rh、およびIrから選ばれる少なくとも1種の元素M2が固溶している、請求項1に記載の酸化チタン粒子。
  8.  前記M2の含有量が、前記酸化チタン粒子に含まれるTiに対するモル%で、0.05モル%以上、5モル%以下の範囲にある、請求項7に記載の酸化チタン粒子。
  9.  前記結晶構造に、Al、Mg、Nd、Zn、Nb、Sb、Mo、Zr、Hfから選ばれる少なくとも1種の元素M1が固溶している、請求項8に記載の酸化チタン粒子。
  10.  前記M1の含有量が、前記酸化チタン粒子に含まれるTiに対するモル%で、1モル%以上、25モル%以下の範囲にある、請求項9に記載の酸化チタン粒子。
  11.  前記M2と前記M1とのモル比(M1/M2)が、1超である、請求項10に記載の酸化チタン粒子。
  12.  請求項1~請求項11のいずれか1項に記載の酸化チタン粒子を含む、分散液。
  13.  請求項1~請求項11のいずれか1項に記載の酸化チタン粒子を含む、塗膜形成用塗布液。
  14.  請求項1~請求項11のいずれか1項に記載の酸化チタン粒子を含む、塗膜。
  15.  請求項1~請求項11のいずれか1項に記載の酸化チタン粒子を含む、塗膜付基材。
PCT/JP2023/040827 2022-11-16 2023-11-13 酸化チタン粒子、分散液、塗膜形成用塗布液、塗膜および塗膜付基材 WO2024106401A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022183301A JP2024072473A (ja) 2022-11-16 2022-11-16 酸化チタン粒子、分散液、塗膜形成用塗布液、塗膜および塗膜付基材
JP2022-183301 2022-11-16

Publications (1)

Publication Number Publication Date
WO2024106401A1 true WO2024106401A1 (ja) 2024-05-23

Family

ID=91084793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/040827 WO2024106401A1 (ja) 2022-11-16 2023-11-13 酸化チタン粒子、分散液、塗膜形成用塗布液、塗膜および塗膜付基材

Country Status (2)

Country Link
JP (1) JP2024072473A (ja)
WO (1) WO2024106401A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141992A1 (ja) * 2013-03-15 2014-09-18 株式会社ダイセル 酸化チタン分散液、酸化チタン塗布液、及び光触媒塗膜
WO2021200135A1 (ja) * 2020-03-31 2021-10-07 日揮触媒化成株式会社 ジルコニア被覆酸化チタン微粒子の製造方法、ジルコニア被覆酸化チタン微粒子およびその用途

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141992A1 (ja) * 2013-03-15 2014-09-18 株式会社ダイセル 酸化チタン分散液、酸化チタン塗布液、及び光触媒塗膜
WO2021200135A1 (ja) * 2020-03-31 2021-10-07 日揮触媒化成株式会社 ジルコニア被覆酸化チタン微粒子の製造方法、ジルコニア被覆酸化チタン微粒子およびその用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERDOGAN NURSEV; PARK JONGEE; OZTURK ABDULLAH: "Synthesis and enhanced photocatalytic activity of molybdenum, iron, and nitrogen triple-doped titania nanopowders", CERAMICS INTERNATIONAL, ELSEVIER, AMSTERDAM., NL, vol. 42, no. 15, 27 July 2016 (2016-07-27), NL , pages 16766 - 16774, XP029732346, ISSN: 0272-8842, DOI: 10.1016/j.ceramint.2016.07.158 *

Also Published As

Publication number Publication date
JP2024072473A (ja) 2024-05-28

Similar Documents

Publication Publication Date Title
JP5557662B2 (ja) コアシェル型無機酸化物微粒子の分散液、その製造方法および該分散液を含む塗料組成物
EP0992456B1 (en) Process for producing composite sols, coating composition, and optical member
CN110809561B (zh) 含铁金红石型氧化钛微粒分散液的制造方法、含铁金红石型氧化钛微粒及其用途
JP5182533B2 (ja) 金属酸化物複合ゾル、コーティング組成物及び光学部材
KR101437200B1 (ko) 표면 피복된 이산화티탄졸, 그 제조법 및 그것을 포함한 코팅 조성물
EP1775120A1 (en) Fine particles of tin-modified rutile-type titanium dioxide
WO2004005577A2 (de) Substrate mit photokatalytischer tio2-schicht
JP2007246351A (ja) 表面処理された酸化チタンゾルおよびその製造法
WO2021200135A1 (ja) ジルコニア被覆酸化チタン微粒子の製造方法、ジルコニア被覆酸化チタン微粒子およびその用途
CN111684033A (zh) 包含含有含氮环的硅烷化合物的涂布组合物
WO2024106401A1 (ja) 酸化チタン粒子、分散液、塗膜形成用塗布液、塗膜および塗膜付基材
JP2005008515A (ja) 金属酸化物粒子及びその製造方法
KR102559967B1 (ko) 질소함유환을 포함하는 실란 화합물로 피복된 무기산화물입자, 및 코팅 조성물
WO2022239788A1 (ja) ルチル型酸化チタン粒子、分散液、塗膜形成用塗布液、および塗膜付基材
WO2024071312A1 (ja) 結晶性酸化チタンコアシェル粒子およびそれを含む分散液
JP2023111520A (ja) 塗料組成物
JP2024072474A (ja) プライマー層形成用塗料組成物
KR102680899B1 (ko) 질소함유환을 포함하는 실란 화합물을 포함하는 코팅 조성물
JP2017039880A (ja) 赤外線遮蔽材料微粒子とその製造方法、および、赤外線遮蔽材料微粒子分散体とこの分散体から製造された赤外線遮蔽体