WO2014141532A1 - 車両用電力管理システム - Google Patents

車両用電力管理システム Download PDF

Info

Publication number
WO2014141532A1
WO2014141532A1 PCT/JP2013/080274 JP2013080274W WO2014141532A1 WO 2014141532 A1 WO2014141532 A1 WO 2014141532A1 JP 2013080274 W JP2013080274 W JP 2013080274W WO 2014141532 A1 WO2014141532 A1 WO 2014141532A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
vehicle
output
storage device
power consumption
Prior art date
Application number
PCT/JP2013/080274
Other languages
English (en)
French (fr)
Inventor
雄治 五十嵐
克哉 河合
幸夫 後藤
昌彦 谷本
義人 西田
和司 白澤
松永 隆徳
昭暢 杉山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/773,944 priority Critical patent/US9707856B2/en
Priority to DE112013006804.4T priority patent/DE112013006804B4/de
Priority to CN201380074509.4A priority patent/CN105073483B/zh
Priority to JP2015505228A priority patent/JP6017017B2/ja
Publication of WO2014141532A1 publication Critical patent/WO2014141532A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a vehicle power management system for managing power for driving an electric load in a vehicle.
  • Patent Document 1 calculates the current value (electricity value) of electric power from the power supply and demand situation (total electric energy consumption of electric load, power generation cost, and power storage cost) of a running vehicle.
  • An electric vehicle system for notifying various electric loads mounted on the vehicle is disclosed.
  • Patent Document 1 Since the technology of Patent Document 1 described above is a technology that realizes energy saving operation by individual judgment based on the current price of power, that is, the power supply and demand situation at that moment, the peak value of the output load on the power storage device It is difficult to control the power supply loss, and the power supply loss (for example, the voltage generation loss of 12V supplied to the load or the power loss due to the internal resistance generated when power is supplied from the battery) cannot be reduced.
  • the power supply loss for example, the voltage generation loss of 12V supplied to the load or the power loss due to the internal resistance generated when power is supplied from the battery
  • the present invention has been made to solve the above-described problems, and suppresses power loss occurring in the power storage device by suppressing load concentration on the power storage device while the vehicle is running, It aims at providing the technique which can reduce the electric power supply loss to.
  • a vehicle power management system includes a vehicle power management device that controls a flow of electric energy of a vehicle, a vehicle route information generation device that generates a travel route of the vehicle, and drives the vehicle by consuming electric power.
  • Drive device power generation device, a plurality of electric loads, a first power storage device that stores power for driving the vehicle, and a second power storage that stores power for operation of the plurality of electric loads A vehicle, and a DC voltage conversion / output device that converts the voltage of electric power stored in the first power storage device and generates and outputs a DC voltage for the operation of the plurality of electric loads.
  • the power management device includes: a drive power consumption pattern prediction unit that predicts drive power consumption consumed by the drive device based on the travel route generated by the vehicle route information generation device; and generated power generated by the power generation device.
  • the vehicle power management device when the drive power consumption increases, the vehicle power management device stops the direct-current voltage conversion / output device from the first power storage device to a plurality of electric loads. Therefore, the cruising distance of the vehicle can be extended by reducing the power loss in the internal resistance of the first power storage device. In addition, it is possible to suppress performance degradation (decrease in power storage capacity) of the first power storage device, and it is possible to suppress shortening of the travelable distance of the vehicle.
  • FIG. 1 is a block diagram showing a configuration of a vehicle power management system according to first to third embodiments of the present invention.
  • FIG. 5 is a flowchart for explaining the operation of the vehicle power management system according to the first to third embodiments of the present invention. It is a figure which shows the prediction result in each prediction part in the electric power management system for vehicles of Embodiment 1-3 which concerns on this invention.
  • FIG. 6 is a diagram showing conversion conditions for driving power consumption, generated power, and electric load power consumption in Embodiments 1 to 3 according to the present invention. It is a figure which shows the relationship between the output current of DC voltage conversion and an output device, and power conversion efficiency. It is a block diagram which shows the structure of the power management system for vehicles of Embodiment 4 which concerns on this invention.
  • 10 is a timing chart illustrating an air conditioning output control method according to Embodiment 4.
  • 10 is a timing chart illustrating an air conditioning output control method according to Embodiment 5.
  • FIG. 1 is a block diagram showing a configuration of a vehicle power management system 100 according to Embodiment 1 of the present invention.
  • a vehicle power management system 100 shown in FIG. 1 includes a vehicle power management device 1 that controls the flow of electric energy of a vehicle, a vehicle route information generation device 2 that generates and outputs a travel route of the vehicle, and a latitude / longitude of GPS.
  • Vehicle position detecting device 3 that detects both absolute position or relative position such as cumulative travel distance
  • vehicle speed detecting device 4 that detects the speed of the vehicle such as a vehicle speed pulse value, and the like.
  • Drive device 5 power generator 6 such as an alternator and a regenerative motor
  • high voltage power storage device 7 used as a driving energy source for a vehicle such as a lithium ion battery
  • electric power such as an air conditioner or EPS (Electric Power Steering) from high voltage power storage device 7.
  • a conversion / output device 8 a low-voltage power storage device 9 connected on a power supply line to an auxiliary machine such as a lead storage battery, and an electric load device group 10 are provided.
  • the vehicle power management device 1 receives, as information input units, a travel route information input unit 101 to which travel route information output from the vehicle route information generation 2 is input and vehicle position information output from the vehicle position detection device 3.
  • a vehicle position information input unit 102 and a vehicle speed information input unit 103 to which vehicle speed information output from the vehicle speed detection device 4 is input are provided.
  • the vehicle power management device 1 travels as the prediction unit a drive power consumption pattern prediction unit 201 that predicts the drive power consumption consumed by the drive device 5 based on the travel route information, and the generated power generated by the power generation device 6.
  • a power generation pattern prediction unit 202 that predicts based on route information and an electric load power consumption pattern prediction unit 203 that predicts electric load power consumption consumed by the electric load device 10 based on travel route information are provided.
  • the vehicle power management device 1 detects, as a device information input unit, a power generation state (whether or not power generation, power generation current / voltage) of the power generation device 6 and outputs it as power generation device information, and a high voltage
  • a power storage device information input unit 402 that detects a power storage state (SOC: State Of Charge value and input / output current / voltage value) of the power storage device 7 and the low-voltage power storage device 6 and outputs it as power storage device information
  • An electrical load device information input unit 403 that detects the total power consumption current value of the group and outputs it as electrical load device information.
  • the vehicle power management apparatus 1 is the prediction result (driving power consumption, electric power generation, electric load power consumption) in each prediction part mentioned above, and each apparatus information (electric power generation device information, electrical storage apparatus) output from an apparatus information input part.
  • An output plan (control plan) of the power conversion / output device 8 is created so that the total sum of power loss (L8 (t)) is minimized, and the DC voltage conversion / output device 8 is controlled based on the created output plan.
  • a power conversion output plan creation / execution unit 301 is provided. Note that L7 (t), L8 (t), and L9 (t) represent power loss at time t.
  • FIG. 2 is a flowchart for explaining the power conversion output plan creation / execution process in the vehicle power management apparatus 1.
  • the vehicle route information generating device 2 inputs the travel route information to the vehicle power management device 1 (step S100). ).
  • a road is represented by a plurality of nodes, and each node has a relative position coordinate (cumulative travel distance from the position when the travel route information is input) and an absolute position coordinate (GPS latitude / Longitude), node attributes (intersection, T-junction, railroad crossing, tunnel), traveling direction (straight forward, right turn, left turn, U-turn) at each node, and legal speed between nodes (speed to km) is doing.
  • the vehicle route information generation device 2 may acquire the relative position coordinates and the absolute position coordinates from the vehicle position detection device 3, or the vehicle route information generation device 2 may include a GPS sensor. Moreover, you may have a speed sensor inside.
  • the vehicle route information generation device 2 is a route MPP (Most Probable Path) that has a high possibility of traveling specified by ADAS (Advanced Driver Assistance Systems Interface), or a car navigation device from the current position. It is assumed that any one of the routes to the set destination is created as travel route information and input to the vehicle power management apparatus 1.
  • ADAS Advanced Driver Assistance Systems Interface
  • the MPP described above is generated and output as travel route information in the vehicle route information generation device 2 without setting a target value.
  • the creation of the travel route information and the input to the vehicle power management device 1 in the vehicle route information generation device 2 may be input only once before the start of travel, or at any timing (the possibility of travel)
  • the route MPP or the route content up to the destination may be updated, when a predetermined time has elapsed, or when the vehicle has traveled a predetermined distance). It is assumed that the power management apparatus 1 uses the latest travel route information input from the vehicle route information generation device 2.
  • the vehicle route information input unit 101 of the vehicle power management apparatus 1 notifies the input travel route information to each of the drive power consumption pattern prediction unit 201, the power generation pattern prediction unit 202, and the electric load power consumption pattern prediction unit 203. (Step S101).
  • the driving power consumption pattern prediction unit 201, the power generation pattern prediction unit 202, and the electric load power consumption pattern prediction unit 203 predict driving power consumption, generated power, and electric load power consumption, respectively, based on the notified travel route information.
  • the result is notified to the power conversion output plan creation / execution unit 301 (step S102).
  • the drive power consumption pattern prediction unit 201 the power generation pattern prediction unit 202, and the electric load power consumption pattern prediction unit 203
  • a certain prediction accuracy is maintained, and a predetermined traveling distance is maintained.
  • the driving power, generated power and electric load power consumption are predicted for each legal speed (restricted speed), road gradient (up and down), and direction of travel (straight, right turn, left turn). Arrangements are made so that the correspondence between drive power consumption, generated power, and electric load power consumption can be understood along the travel route.
  • the driving power consumption, the generated power, and the electric load power consumption are arranged for each section in units of travel distance. That is, in FIG. 3, the driving power consumption is represented as 14 kW, the generated power is 0 kW, and the electric load power consumption is represented as 0 kW in the section where the travel distance is 0 to 100 m.
  • longitude, latitude, and travel route information are shown for each travel distance unit, and the travel route information includes information such as the vehicle traveling direction, location, speed limit, and road gradient. Is included.
  • the driving power consumption, generated power, and electric load power consumption in the driving power consumption pattern prediction unit 201, the power generation pattern prediction unit 202, and the electric load power consumption pattern prediction unit 203 are converted as shown in FIG. Predicted based on conditions.
  • the driving power consumption is estimated to consume 2 kW in consideration of the air resistance and road surface friction for 10 km / h on a flat ground, and further 2 kW per 5 degrees on the uphill. It is assumed that 2 kW is consumed for each turn.
  • weighting may be performed such that the driving power consumption increases by 2 kW every time the ascending slope increases by 5%.
  • the power conversion output plan creation / execution unit 301 creates output plan information (output conditions and output current value) based on the notified prediction result, and notifies the DC voltage conversion / output device 8 of the output current value. (Step S103).
  • vehicle position information is input from the vehicle position detection device 3 to the vehicle position information input unit 102, and vehicle speed information is periodically input from the vehicle speed detection device 4 to the vehicle speed information input unit 103. It is assumed that the power conversion output plan creation / execution unit 301 can acquire the vehicle position and speed information from the vehicle position information input unit 102 and the vehicle speed information input unit 103 as needed.
  • the current value at the time of power generation is input from the power generation device 6 to the power generation device information input unit 401, and the high voltage power storage device 7 and the low voltage power storage device 9 receive the respective values from the power storage device information input unit 402.
  • SOC7 (t) and SOC9 (t) and current input / output values I7 (t) and I9 (t) are input.
  • the total current consumption value of the electrical load is periodically input from the electrical load device group 10 to the electrical load device information input unit 403, and the power conversion output plan creation / execution unit 301 From the information input unit 401, the power storage device information input unit 402, and the electrical load device information input unit 403, the power generation timing and power generation current value of the power generation device 6, and the SOC and inflow / outflow current value of the high voltage power storage device 7 and low voltage power storage device 9, respectively. It is assumed that the total current consumption value of the electric load device group 10 can be acquired.
  • the power conversion output plan creation / execution unit 301 outputs an output current value to the DC voltage conversion / output device 8, and the DC voltage conversion / output device 8 outputs to the power conversion output plan creation / execution unit 301.
  • the current value and voltage value being output can be output.
  • step S102 the generated power predicted in step S102 is P1 (t), the drive power consumption is P2 (t), and the electric load power consumption is P3 (t).
  • P2 (t) + P3 (t) ⁇ P1 (t)> P7Max ( 25 kW) (1)
  • the power conversion is performed so that the SOC 9 (n) of the low-voltage power storage device 9 satisfies the following formula (2) so that the lower limit SOC 9min of the SOC 9 and the electric load power consumption P3 (n) can be supplied.
  • the output plan creation / execution unit 301 supplies (charges) power to the low-voltage power storage device 9 during 0 ⁇ t ⁇ n.
  • the value converted into the SOC value is SOC9discharge.
  • SOC9 (n) SOC9initial + SOC9charge ⁇ SOC9discharge (3)
  • SOC9initial is calculated
  • required by the following Numerical formula (4) from the output voltage value V8 (t 0) at the time of a driving
  • SOC9initial ⁇ ⁇ (V8 (0) ⁇ V8offset) (4)
  • V8offset is the voltage of the low-voltage power storage device 8 when the SOC is 0%, and is a value obtained from an experimental value, a spec sheet of the low-voltage power storage device 8, or the like.
  • the coefficient ⁇ is a ratio of the SOC value to the voltage difference of the low-voltage power storage device 8, and is a value obtained from an experimental value, a spec sheet of the low-voltage power storage device 8, or the like.
  • the power conversion output plan creation / execution unit 301 includes the drive power consumption pattern prediction unit 201, the power generation pattern prediction unit 202, and the electric power output pattern information notified of the created output plan information in step S102. It is determined whether or not the load power consumption pattern prediction unit 203 is outside the range of the prediction result, that is, whether or not the travel route input in step S100 is out of the range (step S104). If the output plan information is outside the prediction range, it is out of the travel route, and no further processing is necessary, and the series of processing ends. On the other hand, if it is within the predicted range, the processing from step S103 is repeated on the assumption that the vehicle is not deviated from the travel route.
  • the high voltage power storage device 7 transfers to the electric load device group 10. Is stopped (the output current of the DC voltage conversion / output device 8 is set to 0), thereby reducing the value of the output current of the high-voltage power storage device 7 and reducing the power loss in the internal resistance.
  • the cruising range can be extended.
  • the power storage device (storage battery) has an internal resistance R, and a power loss of R ⁇ I2 (the square of the current value) occurs during charging (current input) and discharging (current output). By reducing this power loss, the cruising range of the vehicle can be extended.
  • a rated value (recommended value) is determined for the charge / discharge current value. Therefore, by reducing the output current value of the high-voltage power storage device 7 and operating the discharge current value of the high-voltage power storage device 7 within the rated range as described above, the performance degradation (reduction in storage capacity) of the high-voltage power storage device 7 is reduced. It is possible to suppress the vehicle travelable distance from being shortened.
  • FIG. 1 The configuration of the vehicle power management system 100 shown in FIG. 1 is the same as that in the vehicle power management system of the second embodiment.
  • FIGS. 1 and 3 used in the description of the first embodiment are the same as those in FIG. Also used in the description of the second embodiment.
  • the power conversion output plan creation / execution unit 301 can acquire the power generation timing of the power generation device 6 and the value of the generated power (current value) from the power generation device information input unit 401.
  • the power loss caused by the internal resistance of the high voltage power storage device 7 is stopped by stopping the power supply from the high voltage power storage device 7 to the low voltage side. Although it was suppressed, the suppression of the power loss that occurs when the power generated by the power generation device 6 is charged into the power storage device was not sufficient.
  • Embodiment 2 describes a method for efficiently charging while suppressing power loss that occurs when the power generated by the power generation device 6 is charged in the power storage device.
  • step S103 shown in FIG. 2 is changed to increase the charging efficiency. Only the differences from the first embodiment will be described with reference to FIG.
  • the driving power consumption pattern prediction unit 201, the power generation pattern prediction unit 202, and the electric load power consumption pattern prediction unit 203 are respectively configured to drive power consumption and power generation based on the notified travel route information.
  • the power and electric load power consumption are predicted, and the result is notified to the power conversion output plan creation / execution unit 301 (step S102).
  • the power conversion output plan creation / execution unit 301 creates output plan information (output conditions and output current value) based on the notified prediction result, and notifies the DC voltage conversion / output device 8 of the output current value. (Step S103).
  • the power conversion output plan creation / execution unit 301 creates the output plan information of the DC voltage conversion / output device 8 so that the SOC 9 (t) of the low-voltage power storage device 9 satisfies the following formula (5).
  • SOC 9a and SOC 9b are predetermined values, and the charging speed (ampere / second) to the low-voltage power storage device 9 is maximized in the range of the formula (5).
  • the SOC 9a and the SOC 9b are values obtained from an experimental value, a spec sheet of the low-voltage power storage device 8 and the like in the low-voltage power storage device 9, respectively. It is a value indicating a lower limit and an upper limit that are efficient (the charge / discharge rate is equal to or higher than a predetermined value).
  • the prediction result of the electric load device power consumption, the SOC 9 (t) of the low voltage power storage device 9 obtained from the power storage device information input unit 402, and the electric load power consumption predicted in step S102 are P3 (t).
  • the SOC value ⁇ SOC9 (t) for the low-voltage power storage device 9 of the power difference (supply power P8 (t) ⁇ P3 (t)) is It is defined by the following formula (6).
  • ⁇ SOC9 (t) ⁇ P8 (t) ⁇ P3 (t) ⁇ ⁇ P9max (6)
  • P9max is the capacity of the low-voltage power storage device 9
  • P3 (t) is a value uniquely determined from FIG.
  • SOC9 (n) SOC9 (n ⁇ 1) + ⁇ SOC9 (n) (7)
  • the power conversion output plan creation / execution unit 301 controls the current output value of the DC voltage conversion / output device 8 so as to satisfy the following formula (8). To do. SOC9a ⁇ SOC9 (n) ⁇ SOC9b (8)
  • the power conversion output plan creation / execution unit 301 keeps the SOC 9 (t) within the range of the formula (5), so that the low-voltage power storage device
  • the SOC of the low-voltage power storage device 9 can be controlled so that the battery 9 can be charged with high efficiency (short time).
  • the charging device storage battery
  • SOC filling rate
  • the performance degradation of the low-voltage power storage device 9 even when an output instruction is given to the DC voltage conversion / output device 8 at the timing when the power generation device 6 generates power.
  • the power generated by the power generation device 6 can be charged to the low-voltage power storage device 9 with high efficiency (in a short time) without generating (such as a decrease in capacity that can be stored).
  • a power loss P per unit time occurs. Since the power loss P per unit time is proportional to the square of the output current value, if the output current value I and the output time T are lowered by controlling the DC voltage conversion / output device 8, the power loss also decreases, and the power generator Even when the low-voltage power storage device 9 is charged with the power generated in 6, power loss can be suppressed and charging can be performed efficiently.
  • FIG. 1 The configuration of the vehicle power management system 100 shown in FIG. 1 is the same in the vehicle power management system of the third embodiment, and FIGS. 1 and 3 used in the description of the first embodiment are the same as those in FIG. Also used in the description of the second embodiment.
  • the power loss caused by the internal resistance of the high voltage power storage device 7 is stopped by stopping the power supply from the high voltage power storage device 7 to the low voltage side.
  • the power loss generated when the power generated by the power generation device 6 is charged into the power storage device is suppressed.
  • the power conversion loss generated by the DC voltage conversion / output device 8 is suppressed. It was not enough.
  • the power conversion loss is reduced by changing the process of step S103 shown in FIG. Only differences from Embodiment 1 will be described with reference to FIG.
  • the driving power consumption pattern prediction unit 201, the power generation pattern prediction unit 202, and the electric load power consumption pattern prediction unit 203 are respectively configured to drive power consumption and power generation based on the notified travel route information.
  • the power and electric load power consumption are predicted, and the result is notified to the power conversion output plan creation / execution unit 301 (step S102).
  • the power conversion output plan creation / execution unit 301 creates output plan information (output conditions and output current value) based on the notified prediction result, and notifies the DC voltage conversion / output device 8 of the output current value. (Step S103).
  • the input current value of the DC voltage conversion / output device 8 is I8in (t), the output current value is I8out (t), and the power conversion efficiency is ⁇ 8. This is the power conversion efficiency determined in the product specifications and the like. Here, the power conversion efficiency with respect to the output current of the DC / DC converter is shown.
  • the DC voltage conversion / output device 8 is controlled so as to output the value I8out (x).
  • the power conversion efficiency ⁇ 8 corresponding to the output current as shown in FIG. 5 is determined in advance, and the above I8out is a value that maximizes the power conversion efficiency ⁇ 8. To do.
  • the horizontal axis indicates the output current I8 and the vertical axis indicates the power conversion efficiency ⁇ 8, and the value of the power conversion efficiency ⁇ 8 accompanying the change in the output current I8 is shown.
  • the value at which the power conversion efficiency ⁇ 8 is maximized is defined as the maximum efficiency ⁇ 8max.
  • the output current value I8out (x) is the current value at the time when the power conversion efficiency ⁇ 8 is maximum.
  • a predetermined range of the power conversion efficiency for example, A maximum value ( ⁇ 8max) of power conversion efficiency and a power conversion efficiency ( ⁇ 8min) lower than that by a predetermined value are determined as ⁇ 8min ⁇ 8 ⁇ 8max shown in FIG. 5, and a current within that range (I8min in FIG. 5). (Current in the range of ⁇ I8max) may be controlled to be output from the DC voltage conversion / output device 8.
  • ⁇ 8 min is 5 to 10% lower than ⁇ 8max, for example.
  • Embodiment 4 Next, a vehicle power management system according to Embodiment 4 of the present invention will be described.
  • the configuration in which the electric load device group 10 that uses the low-voltage power storage device 9 as a power source is controlled by the power conversion output plan / execution unit 301 has been described.
  • an air conditioner 52 is cited as a high power supply voltage system electric load device (excluding the drive device 5) that uses the high-voltage power storage device 7 as a power source.
  • the drive device 5 and the air conditioner 52 draw a large amount of power from several kilowatts to several tens of kilowatts from the high-voltage power storage device 7, and the value of the current output from the high-voltage power storage device 7 at that time is several tens of kilowatts. May be amperage.
  • This Joule heat Q is also generated in a vehicle that can charge the high-voltage power storage device 7 with the electric power Pin generated by the power generation device 6.
  • the electric resistance R described above refers to the internal resistance of the high voltage power storage device 7, the resistance of the wiring connecting the high voltage power storage device 7 and the driving device 5 or the air conditioner 52, the power generator 6, and the resistance of the contactor. 7 and all or a part of the electric resistance generated when discharging or charging between the driving device 5 or the air conditioner 52 and the power generation device 6 is included.
  • an air conditioner 52 is connected to the high-voltage power storage device 7 as a high power supply voltage system electric load device other than the drive device 5, and a power generator 6 is connected as a charging device.
  • Vehicle power provided with an air conditioning output plan creation / execution unit 501 that reduces power loss (for example, Joule heat Q) generated during discharging or charging of the high-voltage power storage device 7 in the vehicle by controlling the output of the air conditioning device 52.
  • the management system 200 will be described.
  • ⁇ Device configuration> The configuration of the vehicle power management system 200 according to the fourth embodiment will be described with reference to FIG. In FIG. 6, the same components as those in the vehicle power management system 100 described with reference to FIG.
  • the vehicle power management system 200 includes an air conditioning output plan creation / execution unit 501 instead of the power conversion output plan creation / execution unit 301 in the vehicle power management system 100 shown in FIG. It further includes an air conditioner 52 that adjusts the temperature in the passenger compartment according to the air conditioning output plan information (upper limit temperature, lower limit temperature, target temperature, control time) given from the creation / execution unit 501.
  • the air-conditioning output plan creation / execution part 501 instead of the power conversion output plan creation / execution part 301 above
  • the air conditioning output plan creation / execution unit 501 includes prediction results (driving power consumption, power generation, electric load power consumption) in each prediction unit, and device information (power generation device information, power storage device information) output from the device information input unit.
  • the air conditioning output plan information (upper limit temperature, lower limit temperature, target temperature, control time, discharge limit value) is created based on the electrical load device information), and the air conditioner 52 is controlled based on the created output plan information.
  • the air conditioner 52 provides the air conditioning output plan creation / execution unit 501 with information on the vehicle interior temperature, the outside temperature, the set temperature, and the power consumption.
  • FIG. 7 is a flowchart for explaining an air conditioning output plan creation / execution process in the vehicle power management apparatus 1
  • FIG. 8 is a timing chart for explaining an air conditioning output control method based on the air conditioning output plan.
  • a timing chart showing the time change of the speed of the vehicle a timing chart showing the time change of the power consumption of the drive device 5, a timing chart showing the time change of the generated power in the power generator 6, and the electric load device
  • Timing chart showing time change of power consumption in group 10 timing chart showing time change of charging rate of high voltage power storage device 7, timing chart showing time change of power consumption of air conditioner 52, input at high voltage power storage device 7
  • the timing chart which shows the time change of output electric power, and the timing chart which shows the time change of vehicle interior temperature are shown.
  • steps S202 to S204 are executed instead of steps S102 to S104 in the method of creating a power conversion output plan in the power conversion output plan creation / execution unit 301 described with reference to FIG. ing.
  • steps S202 to S204 will be described.
  • the drive power consumption pattern prediction unit 201, the power generation pattern prediction unit 202, and the electric load power consumption pattern prediction unit 203 respectively drive power consumption based on the notified travel route information.
  • the power, generated power, and electric load power consumption are predicted, and the results are notified to the air conditioning output plan creation / execution unit 501 (step S202).
  • the air conditioning output plan creation / execution unit 501 creates air conditioning output plan information (upper limit temperature, lower limit temperature, target temperature, control time, discharge limit value) based on the notified prediction result, the information is displayed.
  • the air conditioner 52 is notified (step S203).
  • step S203 if the air conditioning output plan creation / execution unit 501 cannot create the air conditioning output plan information in step S203, the air conditioning apparatus 52 is notified that the plan cannot be created (plan creation impossible information), and the series of processing ends (step S203). S204). On the other hand, when the air-conditioning output plan information can be created, the processing after step S203 is repeated (step S204).
  • the air conditioner 52 When the air conditioning apparatus 52 receives the air conditioning output plan information from the air conditioning output plan creation / execution unit 501, the air conditioner 52 outputs the air conditioning according to the input air conditioning output plan information and notifies that the plan cannot be created (plan creation impossible information). If it is, a predetermined operation (air conditioning operation inherent to the air conditioner 52 itself) is performed.
  • vehicle position information is input from the vehicle position detection device 3 to the vehicle position information input unit 102, and vehicle speed information is transmitted from the vehicle speed detection device 4 to the vehicle speed information input unit 103.
  • the air conditioning output plan creation / execution unit 501 can acquire vehicle position and speed information from the vehicle position information input unit 102 and the vehicle speed information input unit 103 at any time. .
  • the current value at the time of power generation is input from the power generation device 6 to the power generation device information input unit 401, and the high voltage power storage device 7 and the low voltage power storage device 9 receive the respective values from the power storage device information input unit 402.
  • SOC7 (t) and SOC9 (t) and current input / output values I7 (t) and I9 (t) are input.
  • the air conditioning output plan creation / execution unit 501 can acquire the vehicle interior temperature, the vehicle exterior temperature, the set temperature, and the power consumption from the air conditioner 52 periodically or when the value is changed.
  • the air conditioning output plan creation / execution unit 501 also receives the power generation timing and power generation current value of the power generation device 6 and the high-voltage power storage from the power generation device information input unit 401, the power storage device information input unit 402, and the electrical load device information input unit 403, respectively. It is assumed that the SOC and inflow / outflow current values of the device 7 and the low-voltage power storage device 9 and the total current consumption value of the electric load device group 10 can be acquired.
  • the air conditioning output plan creation / execution unit 501 outputs air conditioning output plan information (upper limit temperature, lower limit temperature, target temperature, control time, discharge limit value) to the air conditioner 52, and the air conditioner 52 outputs the air conditioning output. It is assumed that the vehicle interior temperature or the vehicle exterior temperature can be output to the plan creation / execution unit 501.
  • the generated power predicted in step S202 is P1 (t)
  • the drive power consumption is P2 (t)
  • the electric load power consumption is P3 (t)
  • the conditions for using the generated power in the air conditioner and the generated power are air-conditioned. The conditions that are not used in the apparatus will be described.
  • the air conditioning output plan creation / execution unit 501 generates, for example, the sum of the electric load power consumption prediction result P3 (t) and the power consumption P4 (t) of the air conditioner 52 at each time as shown in FIG.
  • the predicted result P1 (t) is equal to or smaller than the predicted result P1 (t)
  • the generated power predicted result P1 (t) is directly used by the air conditioner 52 without charging the high-voltage power storage device 7.
  • the output plan information of the air conditioner 52 to be created is created.
  • the said conditions are represented by the following numerical formula (10).
  • the power generation device 6 in the present embodiment assumes power generation by regenerative braking when the vehicle is decelerated, it is assumed that power consumption of the drive device 5 and power generation of the power generation device 6 do not occur simultaneously.
  • the air conditioning output plan information is roughly divided into two elements: a temperature condition (upper limit temperature, lower limit temperature) and a control condition (target temperature and control time).
  • the air conditioning output plan creation / execution unit 501 uses an upper limit temperature (for example, the set temperature is 20 degrees) based on the set temperature (for example, the temperature set by the driver via an external input device such as a temperature setting dial). 22 degrees) and a lower limit temperature (for example, 18 degrees if the set temperature is 20 degrees), and the vehicle stops at a predetermined time (for example, a predetermined time such as 5 minutes or next intersection) Air-conditioning output plan so that the air conditioner 52 performs air-conditioning control (heating or cooling) so as to maintain the vehicle interior temperature within the above temperature range (from 18 degrees to 22 degrees).
  • a predetermined time for example, a predetermined time such as 5 minutes or next intersection
  • a value calculated as the temperature ⁇ B may be used, or an arbitrary value input using an external input device such as a temperature setting dial (for example, an input device included in the air conditioner 52) may be used. .
  • the air conditioner 52 can directly acquire the upper limit temperature and the lower limit temperature without going through the air conditioning output plan creation / execution unit 501, the air conditioning output plan creation / execution unit 501 There is no need to enter upper and lower temperature limits.
  • control time and target temperature in the air conditioning output plan information output by the air conditioning output plan creation / execution unit 501 will be described with reference to FIG.
  • the air conditioning output plan created by the air conditioning output plan creation / execution unit 501 is such that the discharge power out of the input / output power P5 (t) of the high voltage power storage device 7 has a predetermined constant value (the input of the high voltage power storage device 7 in FIG. 8). It is created so that the air conditioning output is adjusted to be equal to or less than the discharge limit power shown in the output power timing chart.
  • the drive power consumption P2 (t) is the discharge limit power. Since the value is larger, the power consumption P4 (t) of the air conditioner is reduced.
  • the power consumption P4 (t) of the air conditioner 52 Therefore, in the timing chart showing the charging rate of the high-voltage power storage device in FIG. 8, the generated power P1 (t) from time t7 to t8 when the SOC7 (n) of the high-voltage power storage device 7 is equal to or lower than the lower limit SOC7min is It is used as charging power for the high-voltage power storage device 7.
  • the air conditioning output (substantially equal to the power consumption P4 (t) of the air conditioner) at time t5 to t8 is the power required to maintain the set temperature (shown in the power consumption timing chart of FIG. 8). Therefore, the vehicle interior temperature cannot be maintained and the vehicle interior temperature continues to decrease, as shown in the vehicle interior temperature timing chart of FIG.
  • the air conditioning output plan creation / execution unit 501 uses a method described later.
  • the air conditioning output plan creation / execution unit 501 has the function of calculating the air conditioning output plan Qair [J].
  • the recommended air conditioning power may be obtained from the configuration.
  • the air conditioning output plan creation / execution unit 501 creates the air conditioning output plan so that the vehicle interior temperature reaches the upper limit temperature during the period from time t1 to time t5.
  • the vehicle interior temperature reaches the upper limit temperature, and during the subsequent time period t5 to t8, the above-described temperature condition (18 degrees to 22 degrees) is satisfied.
  • the air conditioning output plan creation / execution unit 501 creates air conditioning output plan information with the period from time t1 to t5 as the “control time” and the temperature (upper limit temperature) at time t5 as the “target temperature”. 52 is notified.
  • Air Conditioning Output Control in Air Conditioner 52 ⁇ Method of Air Conditioning Output Control in Air Conditioner 52> Next, an air conditioning output control method in the air conditioner 52 will be described with reference to FIG. Note that the air conditioner 52 can acquire the input / output power P5 (t) of the high voltage power storage device 7 from the air conditioning output plan creation / execution unit 501 or the high voltage power storage device 7.
  • the air conditioner 52 controls the output so that the discharge power of the high-voltage power storage device 7 is equal to or less than a predetermined value (discharge limit power), and this discharge limit power is the air conditioning output plan creation / execution unit 501. To the air conditioner 52 at an arbitrary timing as air conditioning output plan information.
  • the air conditioner 52 has a low discharge power of the high-voltage power storage device 7 (less than the discharge limit power) during the period of time t4 to t5 (including the period when the vehicle is stopped) in FIG. Therefore, increase the air conditioning output.
  • the discharge power of the high-voltage power storage device 7 is relatively large (for example, compared to the period from time t4 to t5), so the air conditioning output is reduced.
  • the air conditioner 52 outputs the air conditioning output in order to prevent the discharge power of the high-voltage power storage device 7 from exceeding the discharge limit power during the period of time t1 to t2 (including the period during which the vehicle is accelerating) in FIG. Keep below recommended air conditioning power.
  • the power generation device 6 such as a regenerative motor.
  • the SOC 7 (n) of the high voltage power storage device 7 is generated. Therefore, the generated power generated by the power generation device 6 is not consumed by the air conditioner 52, but is charged to the high-voltage power storage device 7 entirely. In this case, the power consumption P4 (t) of the air conditioner 52 is set to zero.
  • the maximum value (peak) of the discharge power from the high-voltage power storage device 7 is suppressed, so that the current value at the time of discharge can be suppressed and the power loss caused during the discharge such as Joule heat can be reduced.
  • the amount of electricity stored and used in the high-voltage power storage device 7 can be reduced, thereby reducing the operation of charging and discharging the high-voltage power storage device 7.
  • power loss that occurs during charging and discharging can also be reduced.
  • the air conditioner 52 discharges the high-voltage power storage device 7 based on the air conditioning output plan information given from the air conditioning output plan creation / execution unit 501.
  • a predetermined value discharge limit power
  • the generated power is temporarily charged in the high voltage power storage device 7 and discharged from the high voltage power storage device 7.
  • the power loss generated during charging and discharging is reduced, and the cruising range of the vehicle can be extended.
  • the amount of heat Qair [J] is a known value from the specifications of the air conditioner 52, and is a value uniquely determined from the power consumption P4 (t) of the air conditioner 52.
  • the heat dissipation or inflow heat quantity Qescape [J] from the vehicle interior to the vehicle exterior is assumed to be the vehicle thermal conductivity ⁇ [W / (m ⁇ K)] and the surface area when the vehicle interior temperature Tmp_indoor and the vehicle exterior temperature Tmp_outdoor [K]. From S [m 2 ] and the average thickness D [m] of the vehicle body, it is expressed by the following formula (15).
  • Qescape ⁇ ⁇ (Tmp_indoor ⁇ Tmp_outdoor) ⁇ S ⁇ / D [J] (15)
  • the air conditioning output plan creation / execution unit 501 can acquire the vehicle interior temperature Tmp_indoor and the vehicle exterior temperature Tmp_outdoor from the air conditioner 52.
  • Embodiment 5 the structure which reduces the electric power loss which generate
  • the air conditioner 52 for example, a case where a device having a mechanism for accumulating thermal energy in the apparatus and releasing the accumulated thermal energy, such as a hot water heater, is not supported.
  • FIG. 9 is a timing chart for explaining the air-conditioning output control method in the fifth embodiment, and is a diagram corresponding to FIG. 8.
  • the time change of the vehicle speed is shown. Only the timing chart showing the time change of the power consumption of the air conditioner 52, the timing chart showing the time change of the heat storage energy of the air conditioner 52, and the timing chart showing the time change of the vehicle interior temperature.
  • the device configuration is the same as that of the vehicle power management system 200 shown in FIG. 6 except that the air conditioner 52 is a device capable of storing thermal energy Qstore (t).
  • the air conditioner 52 is a device such as a hot water heater that heats the vehicle interior by boiling heat the medium (here, water) with an electric heater to make it warm water.
  • the power supply to the air conditioner 52 (here, power for producing hot water) is stopped, and the destination arrival time from time t4.
  • the heat storage energy heated in the period from time t1 to time t4 is dissipated into the passenger compartment, so that most of the power is consumed by the air conditioner 52 from time t4 to time t8, which is the arrival time of the destination. Therefore, the vehicle interior temperature can be maintained between the upper limit temperature and the lower limit temperature, and power consumption in the air conditioner 52 can be reduced.
  • the thermal energy Qstore (t) of the hot water is expressed by the following formula (16) from the weight M [g] of the hot water, the specific heat ⁇ [J / g ⁇ k], and the temperature Tmp_water (t) [K] of the hot water.
  • Qstore (t) ⁇ ⁇ M ⁇ Tmp_water (t) [J] (16)
  • the temperature Tmp_water (t) of the hot water is the temperature of the hot water at the time t
  • the air conditioning output plan / execution unit 501 can be acquired from the air conditioner 52.
  • the weight M [g] of the hot water and the specific heat ⁇ [J / g ⁇ k] can be acquired as known values in advance from the specifications of the air conditioner 52.
  • the temperature of the portion facing the air in the passenger compartment called the heater core is different from the temperature of the hot water, but here they are treated as the same for the sake of simplicity.
  • the air conditioner 52 obtains the destination arrival time (obtained in advance from the vehicle route information generation device 2) from the air conditioning output plan / execution unit 501, and the vehicle interior temperature Tmp_indoor and the vehicle exterior temperature Tmp_outdoor [K ] Can be acquired by the air conditioner 52 as in the fourth embodiment.
  • the air conditioner 52 calculates a heat radiation coefficient ⁇ Q [J / s] for calculating a time (heat radiation time Temit) in which the heat storage energy can be continuously radiated according to the value of the temperature difference ⁇ T (Tmp_indoor ⁇ Tmp_outdoor) outside the vehicle interior.
  • the information is preliminarily held, and the heat dissipation time Temit is calculated by the following formula (18).
  • Temit Qstore (t) ⁇ ⁇ Q (18)
  • the heat dissipation coefficient ⁇ Q increases as the temperature difference ⁇ T outside the vehicle interior increases.
  • the heat radiation coefficient ⁇ Q in the present embodiment is a value correlated with the amount of heat radiation energy per unit time of the vehicle obtained from an experimental value or the like, but from the vehicle interior described in the fourth embodiment to the outside of the vehicle. You may obtain
  • the air conditioner 52 can perform air conditioning (heating or cooling) in the vehicle interior using the heat storage energy by starting heat radiation before the heat radiation time Temit (predetermined time) from the destination arrival time. it can.
  • the heat energy accumulated in the air conditioner 52 is radiated into the passenger compartment before the destination arrival time, and a predetermined time at the destination arrival time. Since the power consumed by the air conditioner 52 is reduced from the front, the cruising range of the vehicle can be extended.

Abstract

 本発明は、車両における電気負荷駆動用の電力を管理するための車両用電力管理システムに関し、車両の電気エネルギーの流れを制御する車両電力管理装置(1)と、車両の走行経路を生成する車両経路情報生成装置(2)と、電力を消費して前記車両を駆動する駆動装置(5)と、発電装置(6)と、電気負荷装置群(10)と、車両の駆動用の電力を蓄積する高圧蓄電装置(7)と、電気負荷装置群(10)の動作のための電力を蓄積する低圧蓄電装置(9)と、高圧蓄電装置(7)に蓄積された電力を電圧変換し、電気負荷装置群10の動作のための直流電圧を生成して出力する直流電圧変換・出力装置(8)とを備え、車両電力管理装置(1)は、駆動消費電力パターン予測部(201)で予測される駆動消費電力が増加する場合には、直流電圧変換・出力装置(8)を停止し、高圧蓄電装置(7)から電気負荷装置群(10)への電力供給を停止する。

Description

車両用電力管理システム
 本発明は、車両における電気負荷駆動用の電力を管理するための車両用電力管理システムに関する。
 近年、二酸化炭素の排出削減やエネルギーの効率的な利用の観点から、電気エネルギーを動力として利用する電気自動車が実用化されている。しかしながら、電気自動車用のバッテリのエネルギー密度はガソリンと比較すると小さいため満充電における航続可能距離は約100~200kmと短く、また、エアコンデショナーなどの電気負荷における電力消費によって航続可能距離はさらに短くなる。
 そこで、電気自動車の電気負荷の省エネ化を促進することで、走行中の電力消費を抑え、航続距離を延長する技術が提案されている。
 このような技術として、例えば、特許文献1には、走行中の車両の電力需給状況(電気負荷の総消費電力量と発電コストと蓄電コスト)から電力の時価(電価)を計算し、車両に搭載されている各種電気負荷に通知する車両用電力システムが開示されている。
 特許文献1の車両用電力管理システムでは、車両に搭載された電気負荷が通知された電価から車両の電力需給状況を間接的に把握することができるため、電気負荷に適切な電力購買力を設定することにより、高い電価の場合は省電力モードの動作に移行するなど、走行中の車両の電力需給状況に合わせた電気負荷の省エネ運転が実現できる。
特開2012-046171号公報
 上述した特許文献1の技術は、電力の時価、すなわち、その瞬間における電力需給状況に応じて電気負荷が個別の判断で省エネ運転を実現する技術であるため、蓄電装置にかかる出力負荷のピーク値の制御が困難であり、電力供給ロス(例えば負荷へ供給する12Vの電圧生成損失またはバッテリから電力を供給する際に生じる内部抵抗による電力損失)は低減できない。
 本発明は上記のような問題点を解消するためになされたものであり、車両の走行中に蓄電装置への負荷集中を抑制することにより蓄電装置で発生する電力損失を抑制すると共に、電気負荷への電力供給ロスを低減することが可能な技術を提供することを目的とする。
 本発明に係る車両用電力管理システムは、車両の電気エネルギーの流れを制御する車両電力管理装置と、前記車両の走行経路を生成する車両経路情報生成装置と、電力を消費して前記車両を駆動する駆動装置と、発電装置と、複数の電気負荷と、前記車両の駆動用の電力を蓄積する第1の蓄電装置と、前記複数の電気負荷の動作のための電力を蓄積する第2の蓄電装置と、前記第1の蓄電装置に蓄積された電力を電圧変換し、前記複数の電気負荷の動作のための直流電圧を生成して出力する直流電圧変換・出力装置と、を備え、前記車両電力管理装置は、前記車両経路情報生成装置で生成した前記走行経路に基づいて、前記駆動装置が消費する駆動消費電力を予測する駆動消費電力パターン予測部と、前記発電装置が発電する発電電力を予測する発電電力パターン予測部と、前記複数の電気負荷で消費する電気負荷消費電力を予測する電気負荷消費電力パターン予測部と、を有し、前記車両電力管理装置は、前記駆動消費電力パターン予測部で予測される前記駆動消費電力が増加する場合には、前記直流電圧変換・出力装置を停止し、前記第1の蓄電装置から前記複数の電気負荷への電力供給を停止する。
 本発明に係る車両用電力管理システムによれば、車両電力管理装置が、駆動消費電力が増加する場合には、直流電圧変換・出力装置を停止し、第1の蓄電装置から複数の電気負荷への電力供給を停止するので、第1の蓄電装置の内部抵抗における電力損失を低減することで、車両の航続距離を延長することができる。また、第1の蓄電装置の性能劣化(蓄電容量の低下)を抑え、車両の走行可能距離が短くなるのを抑制することができる。
本発明に係る実施の形態1~3の車両用電力管理システムの構成を示すブロック図である。 本発明に係る実施の形態1~3の車両用電力管理システムの動作を説明するフローチャートである。 本発明に係る実施の形態1~3の車両用電力管理システムにおける各予測部での予測結果を示す図である。 本発明に係る実施の形態1~3における、駆動消費電力、発電電力および電気負荷消費電力の換算条件を示す図である。 直流電圧変換・出力装置の出力電流と電力変換効率との関係を示す図である。 本発明に係る実施の形態4の車両用電力管理システムの構成を示すブロック図である。 本発明に係る実施の形態4の車両用電力管理システムの動作を説明するフローチャートである。 実施の形態4に係る空調出力制御方法を説明するタイミングチャートである。 実施の形態5に係る空調出力制御方法を説明するタイミングチャートである。
 <実施の形態1>
 <装置構成>
 図1は、本発明に係る実施の形態1の車両用電力管理システム100の構成を示すブロック図である。
 図1に示す車両用電力管理システム100は、車両の電気エネルギーの流れを制御する車両電力管理装置1と、車両の走行経路を生成し出力する車両経路情報生成装置2と、GPSの緯度・経度や累積走行距離などの両の絶対位置または相対位置を検出する車両位置検出装置3と、車速パルス値など車両の速度を検出する車両速度検出装置4と、モーターなどの電力を消費して駆動する駆動装置5と、オルタネータや回生モーターなどの発電装置6と、リチウムイオンバッテリなど車両の駆動エネルギー源として利用する高圧蓄電装置7と、高圧蓄電装置7からエアコンやEPS(Electric Power Steering)などの電気負荷装置群10(一般的に補機と呼称され複数存在する)に対して供給する12~14Vの低電圧を生成して出力する直流電圧変換・出力装置8と、鉛蓄電池など補機への電力供給ライン上に接続されている低圧蓄電装置9と、電気負荷装置群10とを備えている。
 車両電力管理装置1は、情報入力部として、車両経路情報生成2が出力する走行経路情報が入力される走行経路情報入力部101と、車両位置検出装置3が出力する車両位置情報が入力される車両位置情報入力部102と、車両速度検出装置4が出力する車両速度情報が入力される車両速度情報入力部103とを備えている。
 また、車両電力管理装置1は、予測部として、駆動装置5で消費する駆動消費電力を走行経路情報に基づいて予測する駆動消費電力パターン予測部201と、発電装置6で発電する発電電力を走行経路情報に基づいて予測する発電パターン予測部202と、電気負荷装置10で消費する電気負荷消費電力を走行経路情報に基づいて予測する電気負荷消費電力パターン予測部203とを備えている。
 また、車両電力管理装置1は、装置情報入力部として、発電装置6の発電状態(発電の有無、発電電流・電圧)を検出し、発電装置情報として出力する発電装置情報入力部401と、高圧蓄電装置7および低圧蓄電装置6の蓄電状態(SOC:State Of Chargeの値および入出力電流・電圧の値)を検出し、蓄電装置情報として出力する蓄電装置情報入力部402と、電気負荷装置10群の総電力消費電流値を検出し電気負荷装置情報として出力する電気負荷装置情報入力部403とを備えている。
 そして、車両電力管理装置1は、上述した各予測部での予測結果(駆動消費電力、発電、電気負荷消費電力)と、装置情報入力部から出力される各装置情報(発電装置情報、蓄電装置情報、電気負荷装置情報)とに基づいて、高圧蓄電装置7における電力損失(L7(t))と、低圧蓄電装置9の電力損失(L9(t))と、直流電圧変換・出力装置8の電力損失(L8(t))の総和が最小になるように電力変換・出力装置8の出力計画(制御計画)を作成し、作成した出力計画に基づいて直流電圧変換・出力装置8を制御する電力変換出力計画作成・実行部301を備えている。なお、L7(t)、L8(t)およびL9(t)は、時刻tでの電力損失を表す。
 <動作>
 次に、図1を参照しつつ、図2~図4を用いて車両用電力管理システム100の動作について説明する。
 図2は、車両電力管理装置1における電力変換出力計画作成・実行処理を説明するフローチャートである。
 イグニッションキーの投入により車両の電気系統が動作することで車両用電力管理システム100が動作を開始すると、まず、車両経路情報生成装置2が車両電力管理装置1に走行経路情報を入力する(ステップS100)。
 この走行経路情報は、例えば、道路が複数のノードで表され、各ノードは相対位置座標(走行経路情報が入力された時点の位置からの累積走行距離)と、絶対位置座標(GPSの緯度・経度)と、ノード属性(交差点、T字路、踏み切り、トンネル)と、各ノードにおける進行方向(直進、右折、左折、Uターン)と、ノード間の法定速度(時速~km)の情報を有している。なお、車両経路情報生成装置2が相対位置座標や絶対位置座標は車両位置検出装置3から取得する構成としても良いが、車両経路情報生成装置2内にGPSセンサを有した構成としても良い。また、速度センサを内部に有していても良い。
 ここで、車両経路情報生成装置2は、ADAS(Advanced Driver Assistance Systems Interface)で規定される走行する可能性が高い経路MPP(Most Probable Path)、または、カーナビゲーション装置のように現在位置からユーザーが設定した目的地までの経路のいずれかを走行経路情報として作成し、車両電力管理装置1に入力することを前提とする。
 なお、上述のMPPについては目的値の設定をしなくとも、車両経路情報生成装置2において走行経路情報として作成され出力されるものとする。
 車両経路情報生成装置2における走行経路情報の作成と車両電力管理装置1への入力は、走行開始前に1度だけ入力するようにしても良いし、走行中に任意のタイミング(走行する可能性が高い経路MPPまたは目的地までの経路内容の更新時、所定時間経過時、車両が所定距離走行した時)で行っても良い。なお、電力管理装置1は車両経路情報生成装置2から入力された最新の走行経路情報を利用するものとする。
 次に、車両電力管理装置1の車両経路情報入力部101は、入力された走行経路情報を駆動消費電力パターン予測部201、発電パターン予測部202および電気負荷消費電力パターン予測部203のそれぞれに通知する(ステップS101)。
 駆動消費電力パターン予測部201、発電パターン予測部202および電気負荷消費電力パターン予測部203は、通知された走行経路情報に基づいて、それぞれ駆動消費電力、発電電力および電気負荷消費電力を予測し、その結果を電力変換出力計画作成・実行部301に通知する(ステップS102)。
 ここで、駆動消費電力パターン予測部201、発電パターン予測部202および電気負荷消費電力パターン予測部203でのそれぞれの予測においては、一定の予測精度が保たれることを前提とし、所定の走行距離に応じて法定速度(制限速度)や道路勾配(上り、下り)、進行方向(直進、右折、左折)ごとに駆動消費電力、発電電力および電気負荷消費電力を予測し、予測結果は、車両の走行経路に沿って駆動消費電力と発電電力と電気負荷消費電力の対応関係が判るように整理される。
 例えば、図3に示されるように、走行距離単位でその区間ごとに駆動消費電力、発電電力および電気負荷消費電力が関連付けられるように整理される。すなわち、図3では、走行距離が0~100mの区間では、駆動消費電力は14kW、発電電力は0kW、電気負荷消費電力は0kWとして表されている。
 また、図3に示すように、走行距離単位ごとに、経度、緯度、走行経路情報が示されており、走行経路情報には、車両の進行方向、場所、制限速度、道路の勾配などの情報を含んでいる。
 ここで、駆動消費電力パターン予測部201、発電パターン予測部202および電気負荷消費電力パターン予測部203のそれぞれにおける駆動消費電力、発電電力および電気負荷消費電力は、図4に一例を示すような換算条件に基づいて予測される。
 すなわち、走行距離分解能が100mの場合、駆動消費電力の予測においては、平地での時速10kmについて空気抵抗、路面摩擦を考慮して2kWを消費するものとし、さらに上り坂では勾配5度につき2kWを消費するものとし、また、右左折に際しては1回につき2kWを消費するものとする。
 また、発電電力の予測においては、下り坂では勾配5度につき2kWを発電するものとし、右左折に際しては1回(減速1回)につき時速÷20kWを発電するものとする。
 また、電気負荷消費電力の予測においては、右左折に際しては1回につき1kWを消費するものとし、ヘッドライト点灯に際しては1回につき2kWを消費するものとする。
 また、上り勾配が5%上がるごとに駆動消費電力が2kWずつ増すようにするなど、重み付けを行っても良い。
 その後、電力変換出力計画作成・実行部301は、通知された予測結果に基づいて出力計画情報(出力条件および出力電流値)を作成し、直流電圧変換・出力装置8に出力電流値を通知する(ステップS103)。
 ここで、本実施の形態1に係る出力計画情報の作成方法について説明する。まず、車両位置検出装置3から車両位置情報入力部102に対して車両位置情報が入力され、車両速度検出装置4から車両速度情報入力部103に対して車両速度情報が周期的に入力されているものとし、電力変換出力計画作成・実行部301は、車両位置情報入力部102および車両速度情報入力部103のそれぞれから、車両の位置および速度の情報を随時取得できるものとする。
 同様に、発電装置6から発電装置情報入力部401に対して、発電時の電流値が入力され、高圧蓄電装置7および低圧蓄電装置9からは、蓄電装置情報入力部402に対して、それぞれのSOC7(t)およびSOC9(t)と、電流入出力値I7(t)およびI9(t)が入力される。
 また、電気負荷装置群10から電気負荷装置情報入力部403に対して、電気負荷の総消費電流値が周期的に入力されているものとし、電力変換出力計画作成・実行部301は、発電装置情報入力部401、蓄電装置情報入力部402および電気負荷装置情報入力部403から、それぞれ、発電装置6の発電タイミングと発電電流値、高圧蓄電装置7および低圧蓄電装置9のSOCと流入出電流値、および電気負荷装置群10の総消費電流値を取得できるものとする。
 また、電力変換出力計画作成・実行部301は、直流電圧変換・出力装置8対しては出力電流値を出力するものとし、直流電圧変換・出力装置8は電力変換出力計画作成・実行部301に対して出力中の電流値および電圧値を出力できるものとする。
 また、高圧蓄電装置7の定格出力をP7Max(=25kW)とし、この値は電力変換出力計画作成・実行部301が予め持っているものとする。
 ここで、ステップS102で予測された発電電力をP1(t)、駆動消費電力をP2(t)、電気負荷消費電力をP3(t)とする。
 電力変換出力計画作成・実行部301は、以下の数式(1)となる時刻または位置(図3のt=n)を、例えば図3の予測結果に基づいて算出し、その時点での直流電圧変換・出力装置8の出力電流値を0とするように出力計画情報を作成する。
  P2(t)+P3(t)-P1(t)>P7Max(=25kW)・・・(1)
 また、このとき低圧蓄電装置9のSOC9(n)が、SOC9の下限値SOC9minおよび電気負荷消費電力P3(n)を供給可能となるように、以下の数式(2)を満たすように、電力変換出力計画作成・実行部301が0<t<nの間に低圧蓄電装置9へ電力を供給する(充電する)。
  SOC9(n)>(ΔSOC9+1)SOC9min・・・(2)
 上記数式(2)において、ΔSOC9は、低圧蓄電装置9のSOC値への換算値であり、例えば低圧蓄電装置9の容量P9maxが10kwhの場合、P3(n)=1kwhであればΔSOC9=(P3(n)/P9max)×100=10%として計算する。
 低圧蓄電装置9への充電は、高圧蓄電装置7からの出力電流量を小さくするためには駆動消費電力量が小さい場合(例えば図3のn=2の場合)が望ましいが、高圧蓄電装置7の出力を定格出力P7Max以内とすることができれば、例えばt=nまで常時低圧蓄電装置9を充電しても良いし、直前(t=n-1)で必要な電力を充電しても良い。
 次に、低圧蓄電装置9のSOC9(n)の予測方法について説明する。直流電圧変換・出力装置8の出力電流値I8(t)、出力電圧V8(t)として、時刻t(=n)までの直流電圧変換・出力装置8の出力電力の積算値P8をP8=ΣV8(t)・I8(t)とし、この積算値P8を低圧蓄電装置9のSOC値に換算した値をSOC9chargeとする。
 また、図3において時刻t(=n)までの電気負荷の消費電力量を積算した電気負荷の総消費電力量P10をP10=ΣP10(t)とし、この総消費電力量P10を低圧蓄電装置9のSOC値に換算した値をSOC9dischargeとする。
 そして、低圧蓄電装置9の初期SOC値(例えば走行開始時の値)をSOCinitialとした場合、SOC9(n)は以下の数式(3)で算出することができる。
  SOC9(n)=SOC9initial+SOC9charge-SOC9discharge・・・(3)
 また、SOC9initialは、走行開始時の出力電圧値V8(t=0)から以下の数式(4)により求める。
  SOC9initial=α・(V8(0)-V8offset)・・・(4)
 ここで、V8offsetはSOC0%時の低圧蓄電装置8の電圧であり、実験値や低圧蓄電装置8のスペックシートなどから求められる値である。
 なお、係数αは、低圧蓄電装置8の電圧差に対するSOC値の割合であり、実験値や低圧蓄電装置8のスペックシートなどから求められる値である。
 ここで再び図2の説明に戻り、電力変換出力計画作成・実行部301は、作成した出力計画情報が、ステップS102で通知された、駆動消費電力パターン予測部201、発電パターン予測部202および電気負荷消費電力パターン予測部203における予測結果の範囲外か否か、すなわちステップS100で入力された走行経路から外れているか否かを判定する(ステップS104)。そして、出力計画情報が予測範囲外であれば走行経路から外れており、これ以上の処理は不要として一連の処理を終了する。一方、予測範囲内であれば、走行経路から外れていないものとしてステップS103以下の処理を繰り返す。
 <効果>
 以上説明したように、実施の形態1に係る車両用電力管理システムにおいては、駆動消費電力が大きく、かつ、高圧蓄電装置7の出力負荷が大きい場合、高圧蓄電装置7から電気負荷装置群10への電力供給を止める(直流電圧変換・出力装置8の出力電流を0とする)ことで高圧蓄電装置7の出力電流の値を小さくし、その内部抵抗における電力損失を低減することで、車両の航続距離を延長することができる。
 すなわち、蓄電装置(蓄電池)は内部抵抗Rを持ち、充電(電流入力)、放電(電流出力)の際にR×I2(電流値の自乗)の電力損失が発生する。この電力損失を低減することで車両の航続距離を延長することができる。
 また、電力損失は熱となり、蓄電池の劣化を引き起こすので、充放電電流値には定格値(推奨値)が決められている。従って、上記のように高圧蓄電装置7の出力電流の値を小さくし、高圧蓄電装置7の放電電流値を定格範囲で運用することにより、高圧蓄電装置7の性能劣化(蓄電容量の低下)を抑え、車両の走行可能距離が短くなるのを抑制することができる。
 <実施の形態2>
 次に本発明に係る実施の形態2の車両用電力管理システムについて説明する。なお、図1に示した車両用電力管理システム100の構成は、実施の形態2の車両用電力管理システムにおいても同じであり、実施の形態1の説明に用いた図1および図3は、本実施の形態2の説明においても使用する。また、実施の形態1と同様に電力変換出力計画作成・実行部301は発電装置情報入力部401から発電装置6の発電タイミングと発電電力(電流値)の値を取得できることを前提とする。
 実施の形態1においては、高圧蓄電装置7の出力が所定値以上の場合に、高圧蓄電装置7から低圧側への電力供給を停止することで高圧蓄電装置7の内部抵抗などで生じる電力損失を抑制していたが、発電装置6で発電した電力を蓄電装置に充電する際に生じる電力損失の抑制は充分ではなかった。
 実施の形態2においては、発電装置6で発電した電力を蓄電装置に充電する際に生じる電力損失を抑制して、効率よく充電する方法を説明する。
 より具体的には、電力変換出力計画作成・実行部301における出力計画情報の作成方法において、図2に示すステップS103のプロセスを変更することで、充電の効率を高めるものであり、以下、図2を参照して、実施の形態1と異なる点についてのみ説明する。
 まず、実施の形態1と同様に、駆動消費電力パターン予測部201、発電パターン予測部202および電気負荷消費電力パターン予測部203は、通知された走行経路情報に基づいて、それぞれ駆動消費電力、発電電力および電気負荷消費電力を予測し、その結果を電力変換出力計画作成・実行部301に通知する(ステップS102)。
 その後、電力変換出力計画作成・実行部301は、通知された予測結果に基づいて出力計画情報(出力条件および出力電流値)を作成し、直流電圧変換・出力装置8に出力電流値を通知する(ステップS103)。
 すなわち、電力変換出力計画作成・実行部301は、低圧蓄電装置9のSOC9(t)が以下の数式(5)を満たすように直流電圧変換・出力装置8の出力計画情報を作成する。
  SOC9a<SOC9(t)<SOC9b・・・(5)
 ここで、SOC9aおよびSOC9bは予め所定の値が定められており、数式(5)の範囲において低圧蓄電装置9への充電速度(アンペア/秒)は最大になるものとする。
 このSOC9aおよびSOC9bは、低圧蓄電装置9においてそれぞれ実験値や低圧蓄電装置8のスペックシートなどから求められる値であり、低圧蓄電装置9の性能(蓄電可能な容量など)が劣化せず、充放電効率の良い(充放電速度が所定値以上)となる下限および上限を示す値である。
 具体的には、電気負荷装置消費電力の予測結果と蓄電装置情報入力部402から得られる低圧蓄電装置9のSOC9(t)と、ステップS102で予測された電気負荷消費電力をP3(t)とし、直流電圧変換・出力装置8の供給電力をP8(t)とした場合、電力の差分(供給電力P8(t)-P3(t))の低圧蓄電装置9に対するSOCの値ΔSOC9(t)を以下の数式(6)で定義する。
  ΔSOC9(t)={P8(t)-P3(t)}÷P9max・・・(6)
 上記数式(6)において、P9maxは低圧蓄電装置9の容量であり、P3(t)は図3から一意に決まる値である。
 ここで、時刻t=n-1における低圧蓄電装置8のSOCをSOC9(n-1)とした場合、時刻t=nにおける低圧蓄電装置8のSOC9(n)は、以下の数式(7)で定義する。
  SOC9(n)=SOC9(n-1)+ΔSOC9(n)・・・(7)
 そして、時刻t=n-1から時刻t=nの期間において、以下の数式(8)を満たすように電力変換出力計画作成・実行部301が直流電圧変換・出力装置8の電流出力値を制御する。
  SOC9a<SOC9(n)<SOC9b・・・(8)
 さらに具体的な例を挙げて説明すると、時刻t=n-1において、t=nまでに直流電圧変換・出力装置8が出力可能な電力量をP8available(n)とすると、上述の数式(8)は、以下の数式(9)ように表すことができる。
  P8availablemin(n)<P8available(n)<P8availablemax(n)・・(9)
 そして、直流電圧変換・出力装置8の出力が電流I8(t)、電圧V8(t)である場合、P8available(n)=Σ{I8(t)・V8(t)}として求められ、電力変換出力計画作成・実行部301は上述の数式(9)を満たすように直流電圧変換・出力装置8の電流出力値を制御する。
 <効果>
 以上説明したように、実施の形態2に係る車両用電力管理システムにおいては、電力変換出力計画作成・実行部301が、SOC9(t)を数式(5)の範囲に留めることで、低圧蓄電装置9を高効率(短時間)で充電できるように低圧蓄電装置9のSOCを制御することができる。
 すなわち、充電装置(蓄電池)はその充填率(SOC)が低いと、短時間で大きな電力を充電可能となるが、SOCが低過ぎると電気負荷が必要とする電流を供給できず、電池の劣化も生じるので所定範囲内に留める必要がある。数式(5)はこれを規定しており、所定範囲は電池の特性により、事前に求まるパラメータである。
 このような規定に従って低圧蓄電装置9のSOCを制御することで、発電装置6が発電したタイミングで直流電圧変換・出力装置8に出力の指示を与えた場合にも、低圧蓄電装置9の性能劣化(蓄電可能な容量の低下など)を発生させることなく、低圧蓄電装置9に対して発電装置6が発電した電力を高効率(短時間)で充電することができる。
 また、直流電圧変換・出力装置8を介して電気負荷装置群10および低圧蓄電装置9に電力を供給すると、電力供給時間T×単位時間当たりの電力損失Pが発生する。単位時間あたりの電力損失Pは出力電流値の2乗に比例するため、直流電圧変換・出力装置8を制御して出力電流値Iと出力時間Tを下げると、電力損失も小さくなり、発電装置6で発電した電力を低圧蓄電装置9に充電する場合にも、電力損失を抑制して効率よく充電することができる。
 また、高圧蓄電装置7から低圧蓄電装置9への電力供給を常時行わないことになるので、直流電圧変換・出力装置8で生じる電力損失を低減することができ、車両の航続距離を延長することができる。
 <実施の形態3>
 次に本発明に係る実施の形態3の車両用電力管理システムについて説明する。なお、図1に示した車両用電力管理システム100の構成は、実施の形態3の車両用電力管理システムにおいても同じであり、実施の形態1の説明に用いた図1および図3は、本実施の形態2の説明においても使用する。
 実施の形態1においては、高圧蓄電装置7の出力が所定値以上の場合に、高圧蓄電装置7から低圧側への電力供給を停止することで高圧蓄電装置7の内部抵抗などで生じる電力損失を抑制し、また、実施の形態2においては、発電装置6で発電した電力を蓄電装置に充電する際に生じる電力損失を抑制したが、直流電圧変換・出力装置8で生じる電力変換損失の抑制は充分ではなかった。
 本実施の形態3においては、直流電圧変換・出力装置8の電力変換損失を低減する方法を説明する。
 より具体的には、電力変換出力計画作成・実行部301における出力計画情報の作成方法において、図2に示すステップS103のプロセスを変更することで、電力変換損失を低減するものであり、以下、図2を参照して、実施の形態1と異なる点についてのみ説明する。
 まず、実施の形態1と同様に、駆動消費電力パターン予測部201、発電パターン予測部202および電気負荷消費電力パターン予測部203は、通知された走行経路情報に基づいて、それぞれ駆動消費電力、発電電力および電気負荷消費電力を予測し、その結果を電力変換出力計画作成・実行部301に通知する(ステップS102)。
 その後、電力変換出力計画作成・実行部301は、通知された予測結果に基づいて出力計画情報(出力条件および出力電流値)を作成し、直流電圧変換・出力装置8に出力電流値を通知する(ステップS103)。
 ここで、直流電圧変換・出力装置8の入力電流値をI8in(t)とし、出力電流値をI8out(t)とし、その電力変換効率をμ8とする。これは、製品仕様などで定められた電力変換効率であり、ここではDC/DCコンバータの出力電流に対する電力変換効率を示すものとする。
 次に、電力変換出力計画作成・実行部301は、発電装置情報入力部401から発電装置6が発電したタイミングを検出した時点(t=x)で、電力変換効率が最も高い値となる出力電流値I8out(x)を出力するように直流電圧変換・出力装置8を制御する。
 より具体的には、直流電圧変換・出力装置8は、図5のような出力電流に応じた電力変換効率μ8が予め定められており、上述のI8outは電力変換効率μ8が最大となる値とする。
 すなわち、図5においては、横軸を出力電流I8とし、縦軸を電力変換効率μ8として、出力電流I8の変化に伴う電力変換効率μ8の値を示している。そして、図5において電力変換効率μ8が最大となる値を最大効率μ8maxとする。
 なお、上記説明では、出力電流値I8out(x)は電力変換効率μ8が最大となる時点における電流値としたが、出力可能な電流値が限定されるため、電力変換効率の所定の範囲、例えば図5に示すμ8min<μ8<μ8maxのように、電力変換効率の最大値(μ8max)と、それよりも所定値分低い電力変換効率(μ8min)とを定め、その範囲の電流(図5ではI8min~I8maxの範囲の電流)を直流電圧変換・出力装置8から出力するように制御しても良い。
 このように制御することで、直流電圧変換・出力装置8から出力可能な電流値が限定されることを抑制できる。
 なお、μ8minは、μ8maxに対して例えば5~10%低い値とすることが現実的である。
 <効果>
 以上説明したように、実施の形態3に係る車両用電力管理システムにおいては、直流電圧変換・出力装置8が発電装置6で発電した電力を電気負荷装置群10に対して供給する際の電力変換損失が低減され、車両の航続距離が延長できる。
 <実施の形態4>
 次に本発明に係る実施の形態4の車両用電力管理システムについて説明する。実施の形態1~3の車両用電力管理システムにおいては、低圧蓄電装置9を電源とする電気負荷装置群10を電力変換出力計画・実行部301により制御する構成について説明したが、電気負荷としては、図1に示したように、高圧蓄電装置7を電源とする高電源電圧系電気負荷装置(駆動装置5は除く)として空調装置52が挙げられる。
 このような車両の場合、駆動装置5と空調装置52が高圧蓄電装置7から数キロワットから数十キロワットの大きな電力を引き出すが、その際に高圧蓄電装置7から出力される電流の値は数十アンペアになることがある。
 すると、電圧V(ボルト)の高圧蓄電装置7から駆動装置5または空調装置52が電力Poutを引き出す際に生じる電気抵抗をR(オーム)とした場合、電流値I=P/V(アンペア)として表わされ、ジュール熱Q=RI(ワット)の電力が損失電力として発生する。
 このジュール熱Qは、発電装置6が発電した電力Pinを高圧蓄電装置7に充電可能な車両においても同様に発生する。
 なお、上記で説明する電気抵抗Rとは、高圧蓄電装置7の内部抵抗や高圧蓄電装置7と駆動装置5または空調装置52、発電装置6を接続する配線の抵抗およびコンタクタの抵抗など高圧蓄電装置7と駆動装置5または空調装置52、発電装置6間においての放電または充電する際に生じる電気抵抗全て、または、その一部を含むものとする。
 本実施の形態4においては、高圧蓄電装置7に対して駆動装置5以外の高電源電圧系電気負荷装置として空調装置52が接続され、また、充電装置として発電装置6が接続されてしている車両において、高圧蓄電装置7の放電または充電時に発生する損失電力(たとえばジュール熱Q)を、空調装置52の出力を制御することで低減する空調出力計画作成・実行部501を備えた車両用電力管理システム200について説明する。
 <装置構成>
 図6を用いて、実施の形態4の車両用電力管理システム200の構成について説明する。なお、図6においては、図1を用いて説明した車両用電力管理システム100と同一の構成については同一の符号を付し、重複する説明は省略する。
 実施の形態4における車両電力管理システム200は、図1に示した車両用電力管理システム100における電力変換出力計画作成・実行部301の代わりに空調出力計画作成・実行部501を備え、空調出力計画作成・実行部501より与えられた空調出力計画情報(上限温度、下限温度、目標温度、制御時間)に従って車室内の温度を調整する空調装置52をさらに備えている。なお、上記では電力変換出力計画作成・実行部301の代わりに空調出力計画作成・実行部501を備えた構成として説明したが、電力変換出力計画作成・実行部301も備えた構成としても良い。すなわち、電力変換出力計画作成・実行部30と空調出力計画作成・実行部501とを備えたシステムを構成しても良い。
 空調出力計画作成・実行部501は、各予測部での予測結果(駆動消費電力、発電、電気負荷消費電力)と、装置情報入力部から出力される各装置情報(発電装置情報、蓄電装置情報、電気負荷装置情報)とに基づいて、空調出力計画情報(上限温度、下限温度、目標温度、制御時間、放電リミット値)を作成し、作成した出力計画情報に基づいて空調装置52を制御する。一方、空調装置52は、車室内温度、車外温度、設定温度、消費電力量の情報を空調出力計画作成・実行部501に与える。
 <動作>
 次に、図7および8を用いて、空調出力計画作成・実行部501の具体的な動作について説明する。
 図7は、車両電力管理装置1における空調出力計画作成・実行処理を説明するフローチャートであり、図8は、空調出力計画に基づく空調出力制御方法を説明するタイミングチャートである。なお、図8においては、車両の速度の時間変化を示すタイミングチャート、駆動装置5の消費電力の時間変化を示すタイミングチャート、発電装置6での発電電力の時間変化を示すタイミングチャート、電気負荷装置群10での消費電力の時間変化を示すタイミングチャート、高圧蓄電装置7の充電率の時間変化を示すタイミングチャート、空調装置52の消費電力の時間変化を示すタイミングチャート、高圧蓄電装置7での入出力電力の時間変化を示すタイミングチャートおよび車室内温度の時間変化を示すタイミングチャートを示している。
 図7においては、図2を用いて説明した電力変換出力計画作成・実行部301での電力変換出力計画の作成方法における、ステップS102~S104の代わりに、ステップS202~S204を実行する構成となっている。以下、ステップS202~S204の処理フローについて説明する。
 まず、実施の形態1のステップS102と同様に、駆動消費電力パターン予測部201、発電パターン予測部202および電気負荷消費電力パターン予測部203は、通知された走行経路情報に基づいて、それぞれ駆動消費電力、発電電力および電気負荷消費電力を予測し、その結果を空調出力計画作成・実行部501に通知する(ステップS202)。
 その後、空調出力計画作成・実行部501は、通知された予測結果に基づいて空調出力計画情報(上限温度、下限温度、目標温度、制御時間、放電リミット値)を作成した場合は、当該情報を空調装置52に通知する(ステップS203)。
 一方、ステップS203で空調出力計画作成・実行部501が空調出力計画情報を作成できない場合は、計画を作成できない旨(計画作成不可情報)を空調装置52に通知し、一連の処理を終了する(S204)。一方、空調出力計画情報を作成できた場合は、ステップS203以下の処理を繰り返す(ステップS204)。
 空調装置52は、空調出力計画作成・実行部501から空調出力計画情報を通知された場合、入力された空調出力計画情報に従って空調出力を行い、計画を作成できない旨(計画作成不可情報)を通知された場合は所定の動作(空調装置52自身が本来有している空調動作)を行う。
 ここで、実施の形態4に係る空調出力計画情報の作成方法について説明する。実施の形態1と同様に、車両位置検出装置3から車両位置情報入力部102に対して車両位置情報が入力され、車両速度検出装置4から車両速度情報入力部103に対して車両速度情報が周期的に入力されているものとし、空調出力計画作成・実行部501は、車両位置情報入力部102および車両速度情報入力部103のそれぞれから、車両の位置および速度の情報を随時取得できるものとする。
 同様に、発電装置6から発電装置情報入力部401に対して、発電時の電流値が入力され、高圧蓄電装置7および低圧蓄電装置9からは、蓄電装置情報入力部402に対して、それぞれのSOC7(t)およびSOC9(t)と、電流入出力値I7(t)およびI9(t)が入力される。
 また、空調出力計画作成・実行部501は、空調装置52から車室内温度、車外温度、設定温度、消費電力量を周期的または値の変更時に取得できるものとする。また、空調出力計画作成・実行部501は、発電装置情報入力部401、蓄電装置情報入力部402および電気負荷装置情報入力部403から、それぞれ、発電装置6の発電タイミングと発電電流値、高圧蓄電装置7および低圧蓄電装置9のSOCと流入出電流値、および電気負荷装置群10の総消費電流値を取得できるものとする。
 また、空調出力計画作成・実行部501は、空調装置52対して空調出力計画情報(上限温度、下限温度、目標温度、制御時間、放電リミット値)を出力するものとし、空調装置52は空調出力計画作成・実行部501に対して車室内温度または車外温度を出力できるものとする。
 また、高圧蓄電装置7の定格出力をP7Maxとし、この値は空調出力計画作成・実行部501が予め持っているものとする。
 ここで、ステップS202で予測された発電電力をP1(t)、駆動消費電力をP2(t)、電気負荷消費電力をP3(t)として発電電力を空調装置で利用する条件および発電電力を空調装置で利用しない条件について説明する。
  <発電電力を空調装置で利用する条件>
 空調出力計画作成・実行部501は、例えば図8のような各時刻において、電気負荷消費電力の予測結果P3(t)と、空調装置52の消費電力P4(t)との和が、発電電力の予測結果P1(t)と同じ値か、またはそれよりも小さい値となる場合には、発電電力の予測結果P1(t)を高圧蓄電装置7に充電せずに空調装置52で直接に利用する空調装置52の出力計画情報を作成する。上記条件は以下の数式(10)で表される。
  P4(t)+P3(t)-P1(t)≦0・・・(10)
 なお、本実施の形態における発電装置6は車両の減速時の回生ブレーキによる発電を想定しているので、駆動装置5の電力消費と発電装置6の発電は同時に生じないものとする。
  <発電電力を空調装置で利用しない条件>
 一方、上記数式(10)を満たす場合であっても、高圧蓄電装置7のSOC7(n)が、SOC7の下限値SOC7min以下の場合は、空調装置52の消費電力P4(t)を0として発電電力を空調で使わないようにし、高圧蓄電装置7に発電装置6で発電した電力P1(t)を優先して充電する出力計画情報を作成する。また、この場合、電気負荷消費電力P3(t)も0としても良いものとすると、上記条件は以下の数式(11)~(13)で表される。
  SOC7(n)≦SOC7min・・・(11)
  P1(t)≧0・・・(12)
  P4(t)=0(またはP4(t)=0かつP3(t)=0)・・・(13)
  <空調出力計画情報の説明>
 次に、空調出力計画作成・実行部501が作成する空調出力計画情報の内容について説明する。空調出力計画情報は、大きく分けて、温度条件(上限温度、下限温度)および制御条件(目標温度と制御時間)の2つの要素を有している。
   <温度条件の説明>
 上述したように、本実施の形態においては、空調装置52を使用する場合と、使用しない場合とがあり、一定出力で使用し続けるというものではないため、車室内の温度変化が生じる。
 そのため、空調出力計画作成・実行部501は、設定温度(例えば、運転手が温度設定ダイアルなどの外部入力装置を介して設定した温度)を基準とした上限温度(例えば設定温度が20度の場合は22度)と、下限温度(例えば、設定温度が20度の場合は18度)を予め定め、所定時間(例えば、5分間などの予め定めた時間もしくは次に交差点などで車両が停止することが予測されるまでの時間)は、上記温度範囲内(18度以上~22度以下)に車室内温度を維持するように空調装置52が空調制御(暖房または冷房)を行うように空調出力計画を作成する。
 なお、上限温度と下限温度は空調装置52から取得した設定温度に対して、空調出力計画作成・実行部501が予め所定の値A、Bを与え、上限温度=設定温度+A、下限温度=設定温度-Bとして算出した値を用いても良いし、温度設定ダイアルなどの外部入力装置(例えば、空調装置52が備える入力装置)を用いて入力された任意の値を用いても良いものとする。
 後者の場合(外部入力装置を用いる場合)は、上限温度と下限温度を空調出力計画作成・実行部501を介さず空調装置52が直接に取得可能なため、空調出力計画作成・実行部501から上限温度と下限温度を入力する必要がなくなる。
   <制御時間と目標温度の説明>
 次に、図8を用いて、空調出力計画作成・実行部501が出力する空調出力計画情報のうち、制御時間と目標温度について説明する。
 空調出力計画作成・実行部501が作成する空調出力計画は、高圧蓄電装置7の入出力電力P5(t)のうち、放電電力が、予め定めた一定値(図8の高圧蓄電装置7の入出力電力のタイミングチャートに示される放電リミット電力)以下となるように空調出力が調整されるように作成される。
 従って、車両が加速している期間である時刻t1~t2、および車両が加速し、その後高速走行を維持している期間である時刻t5~t7では、駆動消費電力P2(t)が放電リミット電力より大きな値となるため、空調装置の消費電力P4(t)が小さくなる。
 さらに、上述の「発電電力を空調装置で利用しない条件」に基づけば、高圧蓄電装置7のSOC7(n)が、SOC7の下限値SOC7min以下の場合は、空調装置52の消費電力P4(t)を0とするので、図8の高圧蓄電装置の充電率を示すタイミングチャートにおいて、高圧蓄電装置7のSOC7(n)が下限値SOC7min以下となる時刻t7~t8における発電電力P1(t)は、高圧蓄電装置7への充電電力として利用される。
 このため、時刻t5~8では空調出力(空調装置の消費電力P4(t)に略等しい)が、設定温度を維持するのに必要な電力(図8の空調装置の消費電力のタイミングチャートに示される推奨空調電力)より小さくなるので、図8の車室内の温度のタイミングチャートに示されるように、車室内の温度を維持できずに車室内温度は減少し続ける。
 なお、上述の車室内を空調装置52の設定温度で維持すために必要な電力(推奨空調電力)は、後述する車室内の温度変化ΔTmp=0となる空調出力Qair[J]と同意であり、後述する方法を用いて空調出力計画作成・実行部501で算出されるものである。
 なお、空調装置52が車室内の温度変化ΔTmp=0となる空調出力Qair[J](推奨空調電力と等価)を計算する機能を持つ場合は、空調出力計画作成・実行部501は空調装置52から推奨空調電力を取得する構成とすれば良い。
 上記のような空調出力を実現するように、空調出力計画作成・実行部501は時刻t1~t5の期間で車室内温度が上限温度に達するように空調出力計画を作成することで、時刻t5において車室内温度が上限温度に達し、以降の時刻t5~t8の期間では、上述した温度条件(18度以上~22度以下)を満たすこととなる。
 この場合、空調出力計画作成・実行部501は、時刻t1~t5の期間を「制御時間」として、時刻t5における温度(上限温度)を「目標温度」として空調出力計画情報を作成し、空調装置52に通知する。
  <空調装置52における空調出力制御の方法>
 次に、空調装置52における空調出力制御方法について図8を用いて説明する。なお、空調装置52は、空調出力計画作成・実行部501または高圧蓄電装置7から高圧蓄電装置7の入出力電力P5(t)を取得することができるものとする。
 また、空調装置52は、高圧蓄電装置7の放電電力が予め定めた一定値(放電リミット電力)以下となるように出力を制御するものとし、この放電リミット電力は空調出力計画作成・実行部501から空調装置52に空調出力計画情報として任意のタイミングで通知される。
 このような構成を採ることで、空調装置52は、図8の時刻t4~t5の期間(車両が停車中の期間を含む)においては、高圧蓄電装置7の放電電力が小さい(放電リミット電力未満)ため、空調出力を大きくする。一方、図8の時刻t2~t3の期間においては、高圧蓄電装置7の放電電力が比較的大きい(例えば、時刻t4~t5の期間に比べて)ので、空調出力を小さくする。
 また、空調装置52は、図8の時刻t1~t2の期間(車両が加速中の期間を含む)においては、高圧蓄電装置7の放電電力が放電リミット電力を超えないようにするため、空調出力を推奨空調電力以下に保つ。
 また、図8の時刻t3~t4の期間(車両が減速中の期間を含む)においては、回生モーターなどの発電装置6による発電が行われるが、この期間は高圧蓄電装置7のSOC7(n)が下限値SOC7minを超えおり、かつ上述した数式(10)も満たしているので、発電装置6で発電した発電電力は、全て空調装置52で消費し、高圧蓄電装置7には充電しない。このため、空調出力は最大値(ピーク)に達する。
 一方、図8の時刻t7~t8の期間(車両が減速中の期間を含む)においては、回生モーターなどの発電装置6による発電が行われるが、この期間は高圧蓄電装置7のSOC7(n)が下限値SOC7min以下となるので、発電装置6で発電した発電電力は空調装置52では消費せず、全て高圧蓄電装置7に充電する。また、この場合は、空調装置52の消費電力P4(t)を0とする。
 以上説明した制御により、高圧蓄電装置7からの放電電力の最大値(ピーク)を抑制することで、放電時の電流値を抑制し、ジュール熱など放電時に生じる電力損失を低減することができる。
 また、回生モーターでの発電電力などを空調装置で直接利用することで、高圧蓄電装置7に蓄電して利用する量を減らすことができるため、高圧蓄電装置7に充電し放電するという動作を削減して、充放電の際に生じる電力損失も低減できる。
 <効果>
 以上説明したように、実施の形態4に係る車両用電力管理システムにおいては、空調装置52が、空調出力計画作成・実行部501から与えられる空調出力計画情報に基づいて、高圧蓄電装置7の放電電力が予め定めた一定値(放電リミット電力)以下となるように空調出力を制御することで、高圧蓄電装置7の放電時の電流値を抑制し、放電時における電力損失量が低減され、車両の航続距離を延長できる。
 また、高圧蓄電装置7を介さず発電装置6で発電した電力を空調装置52で直接に利用することにより、発電した電力を一旦、高圧蓄電装置7に充電し、高圧蓄電装置7から放電させて空調装置52で使用する場合と比較して、充放電時に生じる電力損失が低減され、車両の航続距離を延長できる。
 なお、本実施の形態においては、空調出力計画作成・実行部501は時刻t=nにおける車室内温度を計算できることを前提としている。
 具体的には車両の熱容量をC[J/K]とした場合、時刻tにおける空調装置52の車室内に出力する熱量Qair[J]と、時刻tにおける車室内から車外への放熱または流入熱量をQescape[J](車内への放熱を正の値、車外への吸熱を負の値)とすると、熱エネルギーが一様に分散していると仮定した場合、車室内の温度変化ΔTmpは以下の数式(14)で表される。
  ΔTmp=(Qair[J]-Qescape[J])÷C [K]・・・(14)
 なお、熱量Qair[J]は空調装置52のスペックから既知の値であり、空調装置52の消費電力P4(t)から一意に決まる値である。
 また、車室内から車外への放熱または流入熱量Qescape[J]は、車室内温度Tmp_indoorと車外温度Tmp_outdoor[K]とした場合、車両の熱伝導率λ[W/(m・K)]と表面積S[m]、車体の平均厚さD[m]から、以下の数式(15)で表される。
  Qescape={λ・(Tmp_indoor-Tmp_outdoor)・S}/D[J]・・・(15)
 なお、空調出力計画作成・実行部501は、車室内温度Tmp_indoorと車外温度Tmp_outdoorは空調装置52から取得することができる。
 <実施の形態5>
 以上説明した実施の形態4においては、空調出力計画・実行部501が空調装置52の出力と出力タイミングを制御することで高圧蓄電装置7の充放電時に発生する電力損失を低減する構成を採っていたが、空調装置52として、例えば、温水ヒータなどのように装置内に熱エネルギーを蓄積し、蓄積した熱エネルギーを放出する機構を持つ機器を利用する場合には対応していない。
 本実施の形態5においては、空調装置52が、内部に熱エネルギーを蓄積し放熱可能な機器である場合の車両用電力管理システム200における空調出力制御方法について図9を用いて説明する。図9は、実施の形態5における空調出力制御方法を説明するタイミングチャートであり、図8に対応する図であるが、本実施の形態の特徴を端的に説明するため、車両の速度の時間変化を示すタイミングチャート、空調装置52の消費電力の時間変化を示すタイミングチャート、空調装置52の蓄熱エネルギーの時間変化を示すタイミングチャートおよび車室内温度の時間変化を示すタイミングチャートのみを示している。
 装置構成は、図6に示した車両用電力管理システム200と同じであるが、空調装置52が熱エネルギーQstore(t)を蓄積することができる機器であるという点が異なっている。
 具体的には、空調装置52は、温水式ヒータなど、電熱ヒータで媒体(ここでは水)を沸かして温水にし、温水からの放熱により車室内を暖房するような機器である。
 このような構成を採ることで、図9に示すように、時刻t4になると空調装置52への電力供給(ここでは温水を作るための電力)を停止し、時刻t4から目的地到着時刻である時刻t8までは、時刻t1~t4の期間で暖めた温水の蓄熱エネルギーを車室内に放熱することで、時刻t4から目的地到着時刻である時刻t8までは、空調装置52で電力を殆ど消費することなく、車室内温度を上限温度と下限温度の間に維持でき、空調装置52での電力消費を低減できる。
 次に、具体的な蓄熱エネルギーの計算方法と車室内への放熱方法について説明する。温水の熱エネルギーQstore(t)は、温水の重量M[g]、比熱ρ[J/g・k]、温水の温度Tmp_water(t)[K]から以下の数式(16)で表される。
  Qstore(t)=ρ・M・Tmp_water(t)[J]・・・(16)
 ここで、温水の温度Tmp_water(t)は、時刻tにおける温水の温度であり、空調出力計画・実行部501は空調装置52から取得できる。また、温水の重量M[g]、比熱ρ[J/g・k]は空調装置52のスペックなどから予め既知の値として取得できる。実際には、ヒータコアと呼ばれる車室内の空気と面した部分の温度と温水の温度とは異なるが、ここでは説明を簡略化するために同じものとして扱う。
  <蓄熱エネルギーの放熱条件>
 温水から車室内への放熱が有効なタイミングは、車室内温度Tmp_indoorが温水の温度Tmp_water(t)より小さい場合に可能であり、車室内への放熱条件は以下の数式(17)で表される。
  Tmp_indoor<Tmp_water(t)・・・(17)
  <蓄熱エネルギーの放熱の方法>
 蓄熱エネルギーを放熱するには、空調装置52において、温水を温めるヒータへの電力供給を停止し、放熱ファンのみを回して車室内へ暖気の送風を行う。
 <蓄熱エネルギーの放熱タイミングの決定方法>
 次に、空調出力計画・実行部501が蓄熱エネルギーの放熱を開始する時刻を決定する方法について説明する。
 具体的には、上述した蓄熱エネルギーの放熱条件(数式(17))を満たし、かつ、目的地到着時刻まで所定時間以内である場合とする。
 ここで、空調装置52は、空調出力計画・実行部501から目的地到着時刻(車両経路情報生成装置2から事前に取得しているもの)を取得し、車室内温度Tmp_indoorと車外温度Tmp_outdoor[K]は実施の形態4と同様に空調装置52が取得できるものとする。
 空調装置52は、車室内外の温度差ΔT(Tmp_indoor-Tmp_outdoor)の値に応じた、蓄熱エネルギーを放熱し続けられる時間(放熱時間Temit)を算出するための放熱係数ΔQ[J/s]の情報を予め持っているものとし、以下の数式(18)により放熱時間Temitを計算する。
  Temit=Qstore(t)÷ΔQ・・・(18)
 なお、車室内外の温度差ΔT([K])と放熱係数ΔQとの関係は、以下の表1のように表される。
Figure JPOXMLDOC01-appb-T000001
 上記表1より、車室内外の温度差ΔTが大きくなるにつれて放熱係数ΔQが大きくなる。なお、本実施の形態での放熱係数ΔQは、実験値などから得られた車両の単位時間当たりの放熱エネルギー量と相関した値であるが、実施の形態4で説明した車室内から車外への放熱または流入熱量Qescape[J]のように計算により求めても良い。
 以上説明したように、空調装置52は目的地到着時刻よりも放熱時間Temit(所定時間)前に放熱を開始することで、蓄熱エネルギーを用いて車室内の空調(暖房または冷房)を行うことができる。
 なお、上記説明においては空調装置52が暖房を行う場合を説明したが、蓄熱エネルギーとして融解潜熱を用いて冷房を行う場合にも同様に対応できる。
 すなわち、温水の代わりに蓄冷剤(冷水など)を用いる場合、蓄熱エネルギーの放熱条件は以下の数式(19)で表され、数式(17)とは反対になるが、蓄熱エネルギーの放熱タイミングの決定方法などは暖房の場合と同じである。
  Tmp_indoor>Tmp_water(t)・・・(19)
 <効果>
 以上説明したように、実施の形態5に係る車両用電力管理システムにおいては、空調装置52が内部に蓄積した熱エネルギーを目的地到着時刻前に車室内に放熱し、目的地到着時刻の所定時間前から空調装置52で消費する電力を低減するので、車両の航続距離が延長できる。
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。

Claims (9)

  1.  車両の電力を管理する車両用電力管理システムであって、
     前記車両の電気エネルギーの流れを制御する車両電力管理装置と、
     前記車両の走行経路を生成する車両経路情報生成装置と、
     電力を消費して前記車両を駆動する駆動装置と、
     発電装置と、
     複数の電気負荷と、
     前記車両の駆動用の電力を蓄積する第1の蓄電装置と、
     前記複数の電気負荷の動作のための電力を蓄積する第2の蓄電装置と、
     前記第1の蓄電装置に蓄積された電力を電圧変換し、前記複数の電気負荷の動作のための直流電圧を生成して出力する直流電圧変換・出力装置と、を備え、
     前記車両電力管理装置は、
     前記車両経路情報生成装置で生成した前記走行経路に基づいて、前記駆動装置が消費する駆動消費電力を予測する駆動消費電力パターン予測部と、
     前記発電装置が発電する発電電力を予測する発電電力パターン予測部と、
     前記複数の電気負荷で消費する電気負荷消費電力を予測する電気負荷消費電力パターン予測部と、を有し、
     前記車両電力管理装置は、
     前記駆動消費電力パターン予測部で予測される前記駆動消費電力が増加する場合には、前記直流電圧変換・出力装置を停止し、前記第1の蓄電装置から前記複数の電気負荷への電力供給を停止する、車両用電力管理システム。
  2.  前記車両電力管理装置は、
     前記駆動消費電力パターン予測部で予測された前記駆動消費電力と、電気負荷消費電力パターン予測部で予測された前記電気負荷消費電力との合計電力と、前記発電電力パターン予測部で予測された前記発電電力との差の電力が、前記第1の蓄電装置の定格出力に基づいて設定された閾値よりも大きくなる場合に、前記直流電圧変換・出力装置を停止する、請求項1記載の車両用電力管理システム。
  3.  前記車両電力管理装置は、
     前記第2の蓄電装置の充填率が、充放電速度が所定値以上となる下限値および上限値の間の値となるように前記直流電圧変換・出力装置の出力制御を行う、請求項1記載の車両用電力管理システム。
  4.  前記車両電力管理装置は、
     前記直流電圧変換・出力装置の電力変換効率が最も高い値となる電流値を出力するように前記直流電圧変換・出力装置の出力制御を行う、請求項1記載の車両用電力管理システム。
  5.  前記車両電力管理装置は、
     前記直流電圧変換・出力装置の電力変換効率が最も高い第1の値となる第1の電流値と、前記第1の値よりも所定値分低い第2の値となる第2の電流値との間の電流値を出力するように前記直流電圧変換・出力装置の出力制御を行う、請求項1記載の車両用電力管理システム。
  6.  前記車両用電力管理システムは、
     前記第1の蓄電装置から電力を供給される空調装置をさらに備え、
     前記車両電力管理装置は、
     前記駆動消費電力パターン予測部で予測される前記駆動消費電力、前記発電電力パターン予測部で予測される前記発電電力、前記電気負荷消費電力パターン予測部で予測される前記電気負荷消費電力に基づいて、
     前記第1の蓄電装置の放電電力が予め定めた閾値以下となるように前記空調装置が空調出力を調整すると共に、所定の条件下では、前記発電電力を前記空調装置で直接に利用するように空調出力計画を作成する、請求項1記載の車両用電力管理システム。
  7.  前記所定の条件は、
     前記空調装置の消費電力と、前記電気負荷消費電力との合計電力が、前記発電電力以下であり、かつ、前記第1の蓄電装置の蓄電状態が、予め定めた下限値を超える場合である、請求項6記載の車両用電力管理システム。
  8.  前記車両用電力管理システムは、
     前記第1の蓄電装置から電力を供給され、該電力により発生する熱エネルギーを蓄熱し、蓄熱した熱エネルギーにより空調を行う空調装置をさらに備え、
     前記車両電力管理装置は、
     前記車両経路情報生成装置から取得した目的地到着時刻より所定時間前に前記空調装置への前記第1の蓄電装置から電力供給を停止し、前記空調装置に蓄熱した熱エネルギーの放熱を開始するように空調出力計画を作成する、請求項1記載の車両用電力管理システム。
  9.  前記所定時間は、
     前記空調装置に蓄熱した前記熱エネルギーを放熱し続けられる時間により規定される、請求項8記載の車両用電力管理システム。
PCT/JP2013/080274 2013-03-11 2013-11-08 車両用電力管理システム WO2014141532A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/773,944 US9707856B2 (en) 2013-03-11 2013-11-08 Vehicle power management device
DE112013006804.4T DE112013006804B4 (de) 2013-03-11 2013-11-08 Fahrzeugenergiemanagementsystem
CN201380074509.4A CN105073483B (zh) 2013-03-11 2013-11-08 车辆电力管理装置
JP2015505228A JP6017017B2 (ja) 2013-03-11 2013-11-08 車両電力管理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013047443 2013-03-11
JP2013-047443 2013-03-11

Publications (1)

Publication Number Publication Date
WO2014141532A1 true WO2014141532A1 (ja) 2014-09-18

Family

ID=51536219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080274 WO2014141532A1 (ja) 2013-03-11 2013-11-08 車両用電力管理システム

Country Status (5)

Country Link
US (1) US9707856B2 (ja)
JP (1) JP6017017B2 (ja)
CN (1) CN105073483B (ja)
DE (1) DE112013006804B4 (ja)
WO (1) WO2014141532A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106257738A (zh) * 2015-06-19 2016-12-28 丰田自动车株式会社 用于锂离子二次电池的控制器及车辆
US10486489B2 (en) 2016-01-07 2019-11-26 Mitsubishi Electric Corporation Vehicle air-conditioning system
JP7429839B2 (ja) 2019-12-19 2024-02-09 スズキ株式会社 車両用制御装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160146616A1 (en) * 2014-11-21 2016-05-26 Alpine Electronics, Inc. Vehicle positioning by map matching as feedback for ins/gps navigation system during gps signal loss
US10483903B2 (en) * 2016-08-05 2019-11-19 Lg Electronics Inc. Control device of home energy management system
DE102016215328A1 (de) * 2016-08-17 2018-02-22 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Steuerung des elektrischen Ladens einer Gruppe von Fahrzeugen
CN110015196B (zh) * 2017-09-30 2021-02-23 比亚迪股份有限公司 电动汽车、电池热管理供电系统及其控制方法
JP6372606B1 (ja) * 2017-12-27 2018-08-15 トヨタ自動車株式会社 車両運行管理装置
CN110277808A (zh) * 2018-03-13 2019-09-24 中车株洲电力机车研究所有限公司 一种用于储能列车充电站的能源互联网系统
CN110031769B (zh) * 2019-04-24 2021-10-15 合肥国轩高科动力能源有限公司 锂电池的电池包容量测算方法
CN110816286A (zh) * 2019-09-29 2020-02-21 浙江合众新能源汽车有限公司 一种电动汽车整车用电控制系统
US11577578B2 (en) * 2020-03-02 2023-02-14 Ford Global Technologies, Llc Smart vehicle heating and cooling systems and methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253126A (ja) * 2004-03-01 2005-09-15 Nissan Motor Co Ltd ハイブリッド車両の制動力制御装置および該制御装置を搭載した車両
JP2011160613A (ja) * 2010-02-03 2011-08-18 Hino Motors Ltd バッテリ制御装置およびハイブリッド自動車
JP2012115065A (ja) * 2010-11-25 2012-06-14 Denso Corp 電力情報処理装置
JP2012249462A (ja) * 2011-05-30 2012-12-13 Hitachi Automotive Systems Ltd 電動車両制御装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19519107C1 (de) 1995-05-24 1996-04-04 Daimler Benz Ag Fahrtroutenratgebereinrichtung
CN2582249Y (zh) 2002-07-12 2003-10-22 罗冬 智能多功能启动电池充电器
US7360615B2 (en) 2004-06-09 2008-04-22 General Motors Corporation Predictive energy management system for hybrid electric vehicles
JP4281725B2 (ja) * 2005-09-01 2009-06-17 トヨタ自動車株式会社 ハイブリッド自動車
JP2009516829A (ja) 2005-11-21 2009-04-23 フォード モーター カンパニー 車両用ナビゲーション・システム
JP4245624B2 (ja) 2006-09-20 2009-03-25 トヨタ自動車株式会社 ハイブリッド車両の電源制御装置および電源制御方法
CN100430259C (zh) 2006-11-08 2008-11-05 北京理工大学 混合动力车辆用的一体化电源控制平台
JP4228086B1 (ja) * 2007-08-09 2009-02-25 トヨタ自動車株式会社 車両
US7975757B2 (en) 2008-07-21 2011-07-12 GM Global Technology Operations LLC Vehicle HVAC and RESS thermal management
DE102008041539A1 (de) 2008-08-26 2010-03-04 Robert Bosch Gmbh Shuntwiderstand mit Auswerteschaltung
US20100289447A1 (en) * 2009-05-18 2010-11-18 Dobson Eric L System and method for power management of energy storage devices
US20110184642A1 (en) 2009-12-18 2011-07-28 Daimler Trucks North America Llc Fuel efficient routing system and method
JP5771902B2 (ja) 2010-04-14 2015-09-02 ソニー株式会社 経路案内装置、経路案内方法及びコンピュータプログラム
JP4957827B2 (ja) 2010-04-14 2012-06-20 トヨタ自動車株式会社 電源システムおよびそれを搭載する車両
JP5168308B2 (ja) * 2010-04-14 2013-03-21 トヨタ自動車株式会社 電源システムおよびそれを搭載する車両
JP5163768B2 (ja) 2010-07-27 2013-03-13 株式会社デンソー 車両用電力管理システム、車両用電力情報管理装置、及び車両用電気負荷
DE102011004831A1 (de) 2011-02-28 2012-08-30 Bayerische Motoren Werke Aktiengesellschaft Energiemanagement für ein Kraftfahrzeug mit Heiz- oder Klimatisierungssystem
US8963365B2 (en) * 2011-08-12 2015-02-24 General Electric Company System and method for optimizing energy storage device cycle life
CN103733459B (zh) 2011-08-23 2016-04-06 富士通株式会社 电力平准化控制装置以及电力平准化控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253126A (ja) * 2004-03-01 2005-09-15 Nissan Motor Co Ltd ハイブリッド車両の制動力制御装置および該制御装置を搭載した車両
JP2011160613A (ja) * 2010-02-03 2011-08-18 Hino Motors Ltd バッテリ制御装置およびハイブリッド自動車
JP2012115065A (ja) * 2010-11-25 2012-06-14 Denso Corp 電力情報処理装置
JP2012249462A (ja) * 2011-05-30 2012-12-13 Hitachi Automotive Systems Ltd 電動車両制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106257738A (zh) * 2015-06-19 2016-12-28 丰田自动车株式会社 用于锂离子二次电池的控制器及车辆
US10170803B2 (en) 2015-06-19 2019-01-01 Toyota Jidosha Kabushiki Kaisha Controller for lithium ion secondary battery that sets and modifies a lower limit state of charge, and vehicle
US10486489B2 (en) 2016-01-07 2019-11-26 Mitsubishi Electric Corporation Vehicle air-conditioning system
JP7429839B2 (ja) 2019-12-19 2024-02-09 スズキ株式会社 車両用制御装置

Also Published As

Publication number Publication date
CN105073483A (zh) 2015-11-18
DE112013006804T5 (de) 2015-12-03
US20160016484A1 (en) 2016-01-21
US9707856B2 (en) 2017-07-18
JPWO2014141532A1 (ja) 2017-02-16
CN105073483B (zh) 2017-09-26
JP6017017B2 (ja) 2016-10-26
DE112013006804B4 (de) 2022-12-29

Similar Documents

Publication Publication Date Title
JP6017017B2 (ja) 車両電力管理装置
US9987944B2 (en) Electric vehicle opportunistic charging systems and methods
JP5642253B1 (ja) 車両用エネルギーマネジメント装置
CN107571860B (zh) 用于运行电驱动的或能电驱动的车辆的方法及车辆
US10464547B2 (en) Vehicle with model-based route energy prediction, correction, and optimization
US9849871B2 (en) Electric vehicle opportunistic charging systems and methods
US9126498B2 (en) Method and system for distributing a recuperation for a vehicle
CN105270412B (zh) 利用动能变化补偿的剩余能量可行驶距离预测
JP5595456B2 (ja) バッテリ充放電システム
CN110857102A (zh) 自主车辆路线规划
CN104044479A (zh) 用于在充电时控制电动车辆的方法
CN104272554A (zh) 用于插入式或混合动力电动车辆的可电气再充电的双化学成分的电池系统
KR101407401B1 (ko) 주행정보를 이용한 하이브리드 차량의 동력 제어 방법 및 시스템
JP2018107923A (ja) バッテリ冷却装置
CN116101077A (zh) 用于车辆的能量存储系统的能量管理系统
JP2015070722A (ja) 電気自動車のバッテリ冷却装置
JP5518147B2 (ja) バッテリ充放電システム
JP2016122494A (ja) バッテリ冷却装置
JP2013060034A (ja) 車両および車両の制御方法
WO2017168875A1 (ja) 切換制御装置および切換制御方法
JP2015209096A (ja) 走行制御装置
KR102237065B1 (ko) 하이브리드 차량의 제어 시스템 및 그 제어 방법
CN213228372U (zh) 一种车辆控制系统和车辆
Gajdáč et al. The Energy Assist for the Electric Car Edison
US11891043B2 (en) Control system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380074509.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877548

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015505228

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14773944

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013006804

Country of ref document: DE

Ref document number: 1120130068044

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13877548

Country of ref document: EP

Kind code of ref document: A1