WO2014141509A1 - 排気煙道 - Google Patents

排気煙道 Download PDF

Info

Publication number
WO2014141509A1
WO2014141509A1 PCT/JP2013/074262 JP2013074262W WO2014141509A1 WO 2014141509 A1 WO2014141509 A1 WO 2014141509A1 JP 2013074262 W JP2013074262 W JP 2013074262W WO 2014141509 A1 WO2014141509 A1 WO 2014141509A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
porous region
open end
wall portion
main body
Prior art date
Application number
PCT/JP2013/074262
Other languages
English (en)
French (fr)
Inventor
禎 大和
増田 佳文
青田 豊誠
池田 和史
崇規 伊藤
智徳 戸田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201380073956.8A priority Critical patent/CN105008695B/zh
Priority to KR1020157023213A priority patent/KR101707363B1/ko
Priority to US14/768,868 priority patent/US9970358B2/en
Priority to DE112013006822.2T priority patent/DE112013006822T5/de
Publication of WO2014141509A1 publication Critical patent/WO2014141509A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/24Heat or noise insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/94Functionality given by mechanical stress related aspects such as low cycle fatigue [LCF] of high cycle fatigue [HCF]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2213/00Chimneys or flues
    • F23J2213/50Top cover
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2900/00Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
    • F23J2900/13003Means for reducing the noise in smoke conducing ducts or systems

Definitions

  • the present invention relates to an exhaust flue for discharging exhaust gas from a gas turbine, for example.
  • General gas turbine is composed of a compressor, a combustor, and a turbine. Then, the air taken in from the air duct is compressed by the compressor to become high-temperature and high-pressure compressed air. In the combustor, fuel is supplied to the compressed air and burned, and the high-temperature and high-pressure air is burned. A combustion gas (working fluid) is obtained, a turbine is driven by the combustion gas, and a generator connected to the turbine is driven.
  • the exhaust flue for discharging the exhaust gas of such a gas turbine may emit sound having a low frequency component of several Hz or less to the outside due to resonance of the sound field inside the gas turbine.
  • low-frequency component sounds often have frequencies below human audible sounds, so it is less likely to feel abnormal noise directly, but indirectly causes rattling of the window frames of houses around the plant.
  • the exhaust flue silencer of Patent Document 1 described above can reduce the sound of low frequency components. However, in the exhaust flue described in Patent Document 1, it is necessary to enlarge the silencer in order to reduce the resonance vibration of the low-frequency sound field below the audible sound, and it takes time and cost to install the silencer. .
  • This invention solves the subject mentioned above, and aims at providing the exhaust flue which suppresses discharge
  • the exhaust flue has an exhaust chimney body that is a passage for exhaust gas exhaust, and an open end porous body that has a plurality of holes along the entire circumference of the open end side of the exhaust chimney body. And a region.
  • the exhaust flue can reduce the possibility of indirectly causing vibrations such as window frames of houses around the plant.
  • the exhaust flue only needs to open a plurality of holes along the entire periphery of the open end in the exhaust chimney body, so the construction period is short and the construction cost can be reduced.
  • the exhaust chimney body is provided with another porous region having a plurality of holes at a position different from the open end porous region.
  • an outer cylinder portion that covers the outer peripheral side of the open end porous region with a gap.
  • the exhaust chimney main body preferably includes a reinforcing rib between adjacent holes in the open end porous region or between adjacent holes in the other porous region.
  • the exhaust flue can suppress reflection of resonance vibration in the exhaust chimney main body and maintain the strength of the exhaust chimney main body at a certain level or more.
  • the exhaust chimney main body includes an outer wall portion, an inner wall portion, a connecting member that connects the outer wall portion and the inner wall portion, and a heat insulating material interposed between the outer wall portion and the inner wall portion. It is preferable that the hole is formed through the outer wall portion, the heat insulating material, and the inner wall portion.
  • the hole is preferably configured so that a cylindrical member passes through the outer wall portion, the heat insulating material, and the inner wall portion.
  • the hole is formed by the cylindrical member, the structure can be simplified, and exhaust gas can be prevented from entering between the outer wall portion and the inner wall portion to improve durability. be able to.
  • a lower end and an upper end of the gap provided between the open end porous region and the outer cylinder portion are opened to the outside.
  • the exhaust gas discharged from the exhaust chimney main body through the hole into the gap is mixed with the outside air that has entered from the lower end of the gap and cooled. Thereafter, the exhaust gas after cooling rises through the air gap and is discharged from the upper end, so that the high temperature of the outer wall portion can be suppressed.
  • the outer cylinder portion is provided with a heat insulating material on an inner surface facing the hole.
  • the exhaust gas discharged from the exhaust chimney main body through the hole into the air gap rises after colliding with the heat insulating material, and the high temperature of the outer wall portion can be suppressed.
  • the outer cylinder portion is provided with a rib on the outer surface.
  • a plurality of porous structural blocks each having a cylindrical shape having a predetermined length are connected to each other.
  • a plurality of porous structure blocks are manufactured in a factory, the plurality of porous structure blocks are transported to the site, and a plurality of porous structure blocks are connected to manufacture an exhaust flue. Simplification is possible and construction costs can be reduced.
  • the exhaust chimney includes an exhaust chimney main body that is a passage for exhaust gas exhaust, and an open end porous region having a plurality of holes in at least a part of the entire periphery on the open end side of the exhaust chimney main body. It is characterized by including.
  • the exhaust flue can reduce the possibility of indirectly causing vibrations such as window frames of houses around the plant.
  • the open end porous region is preferably provided on the open end side inside the bending direction of the exhaust chimney main body.
  • FIG. 1 is a schematic configuration diagram illustrating a gas turbine according to the first embodiment.
  • FIG. 2 is a perspective view schematically showing the exhaust flue of the first embodiment.
  • FIG. 3 is a partial cross-sectional view schematically showing an open end porous region cut by a cross section passing through the center of the hole in FIG. 2.
  • FIG. 4 is an explanatory diagram for explaining the sound pressure level of the low-frequency component radiated from the exhaust flue of the first embodiment.
  • FIG. 5 is a perspective view schematically showing an exhaust flue of the second embodiment.
  • FIG. 6 is an explanatory diagram for explaining the positions of the porous regions of the second embodiment.
  • FIG. 7 is a perspective view schematically showing an exhaust flue of the third embodiment.
  • FIG. 8 is a partial cross-sectional view showing the AA cross section of FIG.
  • FIG. 9 is a perspective view schematically showing an exhaust flue of the fourth embodiment.
  • FIG. 10 is a cross-sectional view of the open end of the exhaust flue of the fifth embodiment.
  • FIG. 11 is a cross-sectional view of the open end of the exhaust flue of the sixth embodiment.
  • FIG. 12 is a cross-sectional view of the open end of the exhaust flue of the seventh embodiment.
  • FIG. 13 is a cross-sectional view of the open end of the exhaust flue of the eighth embodiment.
  • FIG. 14 is a cross-sectional view of the open end of the exhaust flue of the ninth embodiment.
  • FIG. 15 is a perspective view schematically showing an exhaust flue of the tenth embodiment.
  • FIG. 16 is a partial cross-sectional view showing a BB cross section of FIG.
  • FIG. 1 is a schematic configuration diagram illustrating a gas turbine according to the first embodiment.
  • the gas turbine includes a compressor 11, a combustor 12, and a turbine 13.
  • a generator (not shown) is connected to the gas turbine and can generate power.
  • the compressor 11 has an intake duct 20 for taking in air, an inlet guide vane (IGV) 22 is disposed in the compressor casing 21, and a plurality of stationary vanes 23 and moving blades 24 are arranged in the front-rear direction (described later). Are arranged alternately in the axial direction of the rotor 32, and the bleed chambers 25 are provided on the outside thereof.
  • the combustor 12 is combustible by supplying fuel to the compressed air compressed by the compressor 11 and igniting it.
  • a plurality of stationary blades 27 and moving blades 28 are alternately disposed in a turbine casing 26 in the front-rear direction (the axial direction of a rotor 32 described later).
  • An exhaust chamber 30 is disposed downstream of the turbine casing 26 via an exhaust casing 29, and the exhaust chamber 30 has an exhaust diffuser 31 that is continuous with the turbine 13.
  • the rotor (main shaft) 32 is positioned so as to penetrate through the center of the compressor 11, the combustor 12, the turbine 13, and the exhaust chamber 30.
  • the end of the rotor 32 on the compressor 11 side is rotatably supported by the bearing portion 33, while the end of the exhaust chamber 30 side is rotatably supported by the bearing portion 34.
  • a plurality of rotor disks 35 to which the rotor blades 24 are mounted are stacked and fixed in the compressor 11, and a plurality of rotor disks 36 to which the rotor blades 28 are mounted in the turbine 13.
  • the driving shaft of the generator (not shown) is connected to the end on the exhaust chamber 30 side.
  • the compressor casing 21 of the compressor 11 is supported by the legs 37
  • the turbine casing 26 of the turbine 13 is supported by the legs 38
  • the exhaust chamber 30 is supported by the legs 39.
  • the air taken in from the intake duct 20 of the compressor 11 passes through the inlet guide vane 22, the plurality of stationary vanes 23, and the moving vanes 24 and is compressed to become high-temperature and high-pressure compressed air.
  • a predetermined fuel is supplied to the compressed air in the combustor 12 and burned.
  • the high-temperature and high-pressure combustion gas generated in the combustor 12 drives and rotates the rotor 32 by passing through the plurality of stationary blades 27 and the moving blades 28 constituting the turbine 13, and is connected to the rotor 32.
  • a generator (not shown) is driven.
  • the energy of the exhaust gas (combustion gas) is converted into pressure by the exhaust diffuser 31 in the exhaust chamber 30 and decelerated, and then sent to the exhaust flue described later.
  • FIG. 2 is a perspective view schematically showing the exhaust flue of the first embodiment.
  • FIG. 3 is a partial cross-sectional view schematically showing an open end porous region cut by a cross section passing through the center of the hole in FIG. 2.
  • FIG. 4 is an explanatory diagram for explaining the sound pressure level of the low-frequency component radiated from the exhaust flue of the first embodiment.
  • the exhaust flue 40 according to the first embodiment includes an exhaust duct main body 41 and an exhaust chimney main body 43.
  • the exhaust duct body 41 has a predetermined length, a sheet metal is bent into a predetermined shape, and a connection port 30a that communicates with the exhaust chamber 30 described above is formed at one end, while the other end communicates.
  • the exhaust chimney main body 43 communicates with the hole 42.
  • the exhaust chimney main body 43 is formed of a cylindrical rolled metal. The exhaust gas in the exhaust chamber 30 is taken into the exhaust flue 40 through the connection port 30a and flows in the order of the exhaust duct main body 41, the communication hole 42, and the exhaust chimney main body 43. From the open end 44 of the exhaust chimney main body 43 to the atmosphere To be released.
  • the pressure pulsation or the exhaust gas turbulence generated in the combustor 12 shown in FIG. 1 is amplified by the resonance vibration of the exhaust chimney 40, and the low frequency below the audible sound from the opening end 44 of the exhaust chimney main body 43.
  • the sound of the component may be emitted.
  • the sound of the low frequency component is several tens Hz or less (for example, about 1 Hz to 20 Hz).
  • This low-frequency component sound is often a frequency component below human audible sound, so it is less likely to feel an abnormal noise directly, but it indirectly causes vibration (rattle) of the window frame of the house around the plant. May be a factor.
  • the exhaust flue 40 includes an open end porous region 51 in which the exhaust chimney main body 43 has a plurality of holes 50 along the entire periphery of the open end 44.
  • the construction of the open end porous region 51 requires only opening a plurality of holes 50 along the entire periphery of the open end 44 in the exhaust chimney main body 43, so that the construction period is short and the construction cost can be reduced.
  • the sound of the low frequency component is amplified by the resonance vibration of the exhaust flue 40, and reflection of this resonance vibration occurs at the opening end 44.
  • the hole 50 formed in the opening end 44 becomes an acoustic resistor, and the acoustic impedance at the opening end 44 increases.
  • the amplification factor by which the pressure pulsation generated in the combustor 12 or the turbulent flow of the exhaust gas is amplified by the resonance vibration of the exhaust flue 40 is reduced, and the sound of the low frequency component radiated from the opening end 44 is suppressed.
  • the hole 50 of the open end porous region 51 is such that the sound pressure level (SPL: Sound Pressure Level) [unit: dB] of the low frequency component emitted from the open end 44 is below the target value. Further, it is calculated as appropriate from the thickness t of the exhaust chimney main body 43, the diameter D of the holes 50, the interval P between the holes 50, and the number of holes 50 in the open end porous region 51.
  • SPL Sound Pressure Level
  • the sound pressure level curve 82 in the case where there is a hole 50 in the open end porous region 51 is shown in the exhaust chimney main body 43. It is calculated from the thickness t, the diameter D of the holes 50, the interval P between the holes 50, and the number of holes 50 in the open end porous region 51. And in the frequency component fg below the audible sound shown in FIG. 4, with respect to the sound pressure level curve L1 when there is no hole 50 of the open end porous region 51, the sound pressure when the hole 50 of the open end porous region 51 is present.
  • the exhaust flue 40 according to the first embodiment is provided in the exhaust chimney main body 43 with the diameter D of the holes 50 shown in FIG. 3, the interval P between the holes 50, and the opening so that the SPL of the level curve L2 becomes the target value.
  • the number of holes 50 in the end porous region 51 is set.
  • the exhaust flue 40 includes the exhaust chimney main body 43 and the open end porous region 51.
  • the exhaust chimney main body 43 is a passage for discharging exhaust gas.
  • the open end porous region 51 is a region in which a plurality of holes 50 are formed along the entire periphery of the open end 44 of the exhaust chimney main body 43.
  • FIG. 5 is a perspective view schematically showing an exhaust flue of the second embodiment.
  • FIG. 6 is an explanatory diagram for explaining the positions of the porous regions of the second embodiment.
  • the same components as those in the above-described embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the exhaust chimney main body 43 includes an open end porous region 51, a second porous region 52, and a third porous region 53. Similar to the open end porous region 51, the second porous region 52 and the third porous region 53 are formed with a plurality of holes 50 along the periphery of the exhaust chimney main body 43. And between the open end porous region 51 and the third porous region 53, there is a region where the hole 50 is not opened. Further, there is a region where the hole 50 is not formed between the second porous region 52 and the third porous region 53.
  • the exhaust flue 40 can ensure the strength of the exhaust chimney main body 43 because there is a region where the holes 50 are not opened.
  • the position where the second porous region 52 and the third porous region 53 are provided in the exhaust chimney main body 43 is a position that becomes a node of each acoustic mode having a different sound of a low frequency component that resonates.
  • L be the acoustic length of the exhaust flue 40.
  • the acoustic length L is the length from the connection port 30a to the opening end 44.
  • the acoustic length L is the length of the resonating space, and is appropriately set depending on the facility.
  • the resonance frequency f of the exhaust flue 40 can be expressed by the following formula (1).
  • c is the speed of sound waves (for example, 340 m / s). Since c is the product of the resonance frequency f and the wavelength ⁇ , it can be expressed by the following formula (2).
  • the wavelength ⁇ can be obtained by the following equation (3) by substituting the resonance frequency f of the above equation (1) into the above equation (2).
  • the exhaust flue 40 is provided with a second porous region 52 and a third porous region 53 at a position that becomes a node of a standing wave having a wavelength ⁇ that satisfies the formula (3).
  • the position that becomes the node of the wavelength ⁇ of the primary component is the node N11 that is the same position as the opening end 44.
  • the positions corresponding to the nodes of the wavelength ⁇ of the secondary component are the nodes N21 and N22 that are equal to the opening end 44.
  • the positions that become the nodes of the wavelength ⁇ of the third-order component are the nodes N31, N32, and N33.
  • the exhaust flue 40 includes the exhaust chimney main body 43 and the open end porous region 51.
  • the exhaust flue 40 includes a second porous region 52 and a third porous region 53 which are other porous regions having a plurality of holes 50 at positions different from the open end porous region 51.
  • the open end porous region 51 suppresses reflection of the acoustic mode of the primary component of resonance vibration in the exhaust chimney main body 43.
  • the second porous region 52 suppresses the reflection of the acoustic mode of the secondary component of the resonance vibration in the exhaust chimney main body 43.
  • the third porous region 53 suppresses reflection of the acoustic mode of the third-order component of resonance vibration in the exhaust chimney main body 43. Since the second porous region 52 and the third porous region 53 suppress reflection of resonance vibrations of higher-order acoustic modes, the resonance of the exhaust flue 40 compared to the exhaust flue 40 of the first embodiment. The amplification factor amplified by the vibration is reduced, and the low frequency component sound radiated from the opening end 44 is suppressed.
  • the exhaust flue 40 can reduce the possibility of indirectly causing vibration (rattle) of a window frame of a house around the plant. Further, the exhaust flue 40 can be formed by a simple construction in which the second porous region 52 and the third porous region 53 open the hole 50 in the exhaust chimney main body 43.
  • the exhaust chimney main body 43 includes the second porous region 52 and the third porous region 53, but may include only the second porous region 52 or the third porous region. Only the region 53 may be provided.
  • n is 1 to 3 in the above formulas (1) to (3) is illustrated, but n may be 4 or more.
  • FIG. 7 is a perspective view schematically showing an exhaust flue of the third embodiment.
  • FIG. 8 is a partial cross-sectional view showing the AA cross section of FIG.
  • the same components as those in the above-described embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the exhaust flue 40 of Embodiment 3 includes an exhaust chimney main body 43 having an open end porous region 51 and an outer cylindrical portion 54 that covers the outer peripheral side of the open end porous region 51 with a gap 55 therebetween. As shown in FIG. 8, an air layer is formed in an annular shape in the gap 55 between the open end porous region 51 and the outer cylinder portion 54.
  • the sound of the low frequency component is amplified by the resonance vibration of the exhaust flue 40, and reflection of this resonance vibration occurs at the opening end 44.
  • the hole 50 formed in the opening end 44 becomes an acoustic resistor, and the acoustic impedance at the opening end 44 increases.
  • the air gap 55 of the present embodiment restrains the movement of the acoustic particles at the outer cylinder portion 54, the acoustic impedance at the opening end 44 is increased.
  • the amplification factor by which the pressure pulsation generated in the combustor 12 or the turbulent flow of the exhaust gas is amplified by the resonance vibration of the exhaust flue 40 is reduced, and the sound of the low frequency component radiated from the opening end 44 is suppressed.
  • FIG. 9 is a perspective view schematically showing an exhaust flue of the fourth embodiment.
  • the same components as those in the above-described embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the exhaust flue 40 of the fourth embodiment is provided with reinforcing ribs 56 on the surface of the exhaust chimney main body 43 between the adjacent holes 50 in the open end porous region 51. .
  • the strength of the exhaust chimney main body 43 tends to decrease as the number of holes 50 increases.
  • the reinforcing rib 56 can maintain the strength of the exhaust chimney main body 43 at a certain level or more even if the hole 50 is provided.
  • the reinforcing ribs 56 extend in the vertical direction of the exhaust chimney main body 43, and a plurality of reinforcing ribs 56 are arranged at predetermined intervals in the circumferential direction of the exhaust chimney main body 43. Is installed by welding.
  • the reinforcing ribs 56 may be similarly provided in the second porous region 52 or the third porous region 53 as described above in the second embodiment.
  • the exhaust chimney main body 43 includes the reinforcing rib 56 between the adjacent holes 50 in the open end porous region 51.
  • the exhaust flue 40 of Embodiment 4 may be provided with the reinforcement rib 56 between the adjacent holes 50 in the 2nd porous area
  • Reinforcing ribs 56 may be provided between adjacent holes 50 in the third porous region 53, which is a porous region.
  • FIG. 10 is a cross-sectional view of the open end of the exhaust flue of the fifth embodiment.
  • the same components as those in the above-described embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the exhaust chimney main body 43 includes an outer wall portion 61 having a cylindrical shape, an inner wall portion 62 composed of a plurality of heat insulation panels, an outer wall portion 61 and an inner wall portion 62. And a heat insulating material 64 interposed between the outer wall portion 61 and the inner wall portion 62.
  • the heat insulation panel constituting the inner wall portion 62 has a predetermined size and a curved shape corresponding to the outer wall portion 61, and has a cylindrical shape by overlapping and connecting the outer peripheral portions.
  • One end portion of the connecting member 63 is fixed to the inner surface of the outer wall portion 61 by welding, the other end portion passes through an overlapping portion of the plurality of heat insulation panels, and a nut 63a is screwed. Therefore, the inner wall 62 is configured by connecting a plurality of heat insulation panels, and the inner wall 62 is connected to the outer wall 61.
  • the exhaust chimney main body 43 is provided with an open end porous region 51 on the open end 44 side.
  • a through hole 65 penetrating the outer wall portion 61, the heat insulating material 64 and the inner wall portion 62 is formed.
  • the cylindrical member 66 is integrally formed with a flange portion 66b at the base end portion of the cylindrical portion 66a, and is fitted into the through hole 65 from the inside of the exhaust chimney main body 43.
  • the cylindrical member 66 has a flange portion 66b fixed to the inner wall portion 62 by welding, and can absorb a difference in thermal extension from the exhaust chimney main body 43 by making the tip portion free. Therefore, the inside of the cylindrical member 66 functions as the hole 50 in the open end porous region 51.
  • the tip of the cylindrical member 66 and the outer wall 61 may be fixed by welding.
  • the exhaust flue 40 of the fifth embodiment is interposed between the outer wall portion and the inner wall portion, and the connecting member 63 that connects the exhaust chimney main body 43 to both the outer wall portion 61 and the inner wall portion 62.
  • the hole 50 is formed through the outer wall portion 61, the heat insulating material 64 and the inner wall portion 62.
  • the exhaust flue 40 of the fifth embodiment configures the hole 50 by allowing the cylindrical member 66 to penetrate the inner wall portion 62, the heat insulating material 64, and the outer wall portion 61.
  • the exhaust flue 40 can easily form the hole 50 using the cylindrical member 66, and the structure can be simplified.
  • the intrusion of exhaust gas between the inner wall portion 62 and the outer wall portion 61 can be suppressed by the cylindrical member 66.
  • by fixing the flange portion 66b of the cylindrical member 66 to the inner wall portion 62 by welding an exhaust gas seal is formed, and intrusion of exhaust gas into the interior can be surely prevented. As a result, durability can be improved.
  • FIG. 11 is a cross-sectional view of the open end of the exhaust flue of the sixth embodiment.
  • the same components as those in the above-described embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the exhaust flue 40 of Embodiment 6 is provided with an outer cylinder portion 72 that covers the outer peripheral side of the open end porous region 51 with a gap 71 therebetween.
  • the air gap 71 is provided between the outside of the open end porous region 51 of the exhaust chimney main body 43 and the inside of the outer cylindrical portion 72, and is an annular air layer that opens downward and upward.
  • the outer cylinder part 72 is set to have a larger diameter than the exhaust chimney main body 43 (open end porous region 51), and is supported by the exhaust chimney main body 43 by a plurality of support members 73.
  • One end of the support member 73 is fixed to the outer surface of the exhaust chimney main body 43 (open end porous region 51) by welding, the bent portion 73a at the other end contacts the inner surface of the outer cylindrical portion 72, and the bolt 74 and Fastened with a nut 75.
  • the outer cylinder portion 72 is provided by opening the gap 71 on the outer peripheral side of the open end porous region 51 in the exhaust chimney main body 43, and the lower end and the upper end of the gap 71 are connected to the outside. Is open.
  • the exhaust gas discharged into the gap 71 through each hole 50 of the open end porous region 51 is mixed with the outside air entering from the lower end of the gap 71 and cooled. Thereafter, the exhaust gas after cooling rises through the gap 71 and is discharged from the upper end, so that the high temperature of the outer wall portion 61 can be suppressed.
  • the open end porous region 51 (each hole 50) is covered from the outside by the outer cylindrical portion 72, and the appearance quality can be improved.
  • FIG. 12 is a cross-sectional view of the open end of the exhaust flue of the seventh embodiment.
  • the same components as those in the above-described embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the exhaust flue 40 of the seventh embodiment is provided with an outer cylinder portion 72 that covers the outer peripheral side of the open end porous region 51 with a gap 71 therebetween.
  • the outer cylinder portion 72 is provided with a heat insulating material 76 on the inner surface facing the hole 50.
  • the outer cylinder portion 72 is provided on the outer peripheral side of the open end porous region 51 in the exhaust chimney main body 43, and the heat insulating material is provided on the inner surface facing the hole 50. 76 is provided.
  • FIG. 13 is a cross-sectional view of the open end of the exhaust flue of the eighth embodiment.
  • the same components as those in the above-described embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the exhaust flue 40 of the eighth embodiment is provided with an outer cylinder portion 72 that covers the outer peripheral side of the open end porous region 51 with a gap 71 therebetween. And this outer cylinder part 72 is provided with the rib 77 in the outer surface.
  • the ribs 77 are fixed orthogonally to the outer surface of the outer cylindrical portion 72, and a plurality of ribs 77 are arranged at equal intervals in the circumferential direction.
  • the rib 77 is divided
  • the rib 77 is being fixed to the outer surface of the outer cylinder part 72 along the up-down direction, you may fix along the circumferential direction and may arrange two or more at equal intervals in the up-down direction.
  • the outer cylinder part 72 is provided by opening the gap 71 on the outer peripheral side of the open end porous region 51 in the exhaust chimney main body 43, and the rib 77 on the outer surface of the outer cylinder part 72. Is provided. With this structure, the acoustic impedance at the opening end 44 can be optimized by making the dimensions and shape of the ribs 77 different.
  • FIG. 14 is a cross-sectional view of the open end of the exhaust flue of the ninth embodiment.
  • the same components as those in the above-described embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the exhaust flue 40 of the ninth embodiment is configured by connecting a plurality of porous structure blocks 40A, 40B, 40C having a cylindrical shape with a predetermined length.
  • Each porous structure block 40A, 40B, 40C includes an outer wall portion 61 having a cylindrical shape, an inner wall portion 62 composed of a plurality of heat insulation panels, a plurality of connecting members 63 that connect the outer wall portion 61 and the inner wall portion 62, and an outer wall.
  • a heat insulating material 64 interposed between the inner wall portion and the inner wall portion, and a lid member 67 for preventing the heat insulating material 64 from falling off at the upper and lower end portions of the outer wall portion 61 and the inner wall portion 62.
  • each porous structure block 40A, 40B, 40C contacts each cover member 67, and the inner peripheral surface and the outer peripheral surface are connected by welding.
  • each of the porous structure blocks 40A, 40B, 40C is provided with outer cylinder portions 81, 82, 83 that cover the outer peripheral side with a gap 71 therebetween.
  • the outer cylindrical portions 81 and 82 are formed such that large diameter portions 81a and 82a are formed at the lower end portions and overlap with the upper end portions of the outer cylindrical portions 82 and 83.
  • the outer cylinder portions 81, 82, 83 are supported by a support member 73.
  • the exhaust flue 40 of the ninth embodiment is configured by connecting a plurality of porous structure blocks 40A, 40B, 40C having a cylindrical shape with a predetermined length.
  • a plurality of porous structure blocks 40A, 40B, and 40C are manufactured at a factory, and the plurality of porous structure blocks 40A, 40B, and 40C are transported to the site, and the plurality of porous structure blocks 40A, 40B, and 40C are The exhaust flue is connected to make it possible to simplify the manufacturing process and reduce the construction cost.
  • the exhaust flue 40 By configuring the exhaust flue 40 with a plurality of porous structure blocks 40A, 40B, 40C, for example, by changing the position and size of the opening portions of the outer cylinder portions 81, 82, 83, the opening end 44
  • the acoustic impedance can be optimized.
  • FIG. 15 is a perspective view schematically showing the exhaust flue of the tenth embodiment
  • FIG. 16 is a partial cross-sectional view showing a BB cross section of FIG.
  • the exhaust flue 40 of the tenth embodiment includes an open end porous region 51 in which the exhaust chimney main body 43 has a plurality of holes 50 at least partially around the entire periphery of the open end 44. ing. Specifically, the open end porous region 51 is provided on the open end 44 side inside the bending direction of the exhaust chimney main body 43.
  • the exhaust flue 40 is bent at a substantially right angle from the exhaust duct main body 41 and connected to the exhaust chimney main body 43, and an open end porous region 51 is provided in a part of the open end 44. Since the exhaust gas is bent at a substantially right angle from the exhaust duct main body 41 and flows through the exhaust chimney main body 43, a hole 50 is formed on the opening end 44a side inside the bending direction of the exhaust chimney main body 43, and on the opening end 44b side. The hole 50 is not formed. For example, the hole 50 is formed in the angle region of ⁇ 1 on the opening end 44a side of the opening end porous region 51 in the exhaust chimney main body 43, and the hole 50 is not formed in the angle region of ⁇ 2 on the opening end 44b side.
  • the exhaust chimney main body 43 has an opening end on at least a part of the entire periphery of the opening end 44, for example, on the opening end 44 side inside the bending direction of the exhaust chimney main body 43.
  • a porous region 51 is provided. With this structure, exhaust gas discharged from the open end porous region 51 can be reduced.
  • the open end porous region 51 is provided on the inner side in the bending direction of the exhaust chimney main body 43.
  • the opening end porous region 51 is not limited to this position, and may be appropriately set according to the shape of the exhaust flue 40. It is good.
  • the exhaust flue according to each embodiment described above is applied to a gas turbine.
  • the present invention is not limited to a gas turbine, and any facility that discharges exhaust gas can be applied. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chimneys And Flues (AREA)
  • Exhaust Silencers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

 排気煙道(40)は、排気煙突本体(43)と、開口端多孔領域(51)とを含む。排気煙突本体(43)は、排気ガスを排出する通路である。開口端多孔領域(51)は、排気煙突本体(43)の開口端44の全周囲に沿って、複数の孔(50)を開けた領域である。排気煙道(40)は、排気煙突本体(43)に孔(50)を開ける簡易な施工により低周波成分の音の外部への放出を抑制することができる。

Description

排気煙道
 本発明は、例えば、ガスタービンの排気ガスを排出する排気煙道に関するものである。
 一般的なガスタービンは、圧縮機と燃焼器とタービンにより構成されている。そして、空気ダクトから取り込まれた空気が圧縮機によって圧縮されることで高温・高圧の圧縮空気となり、燃焼器にて、この圧縮空気に対して燃料を供給して燃焼させることで高温・高圧の燃焼ガス(作動流体)を得て、この燃焼ガスによりタービンを駆動し、このタービンに連結された発電機を駆動する。
 このようなガスタービンの排気ガスを排出する排気煙道は、ガスタービンの内部の音場の共鳴により、数Hz以下の低周波数成分の音が外部に放出する可能性がある。例えば低周波数成分の音は、人間の可聴音以下の周波数であることが多いので直接異音を感じることが少ないが、間接的にプラント周囲の家屋の窓枠などのガタツキを生じさせる要因となることがある。
 このような特定の低周波数成分の音を外部に放出する可能性を低減するため、サイレンサ(消音器)の技術がある(特許文献1参照)。
特開平11-159347号公報
 上述した特許文献1の排気煙道のサイレンサは、低周波数成分の音を低減することができる。しかしながら、特許文献1に記載の排気煙道においては、可聴音以下の低周波数の音場の共鳴振動を小さくするために、サイレンサを大型化させる必要があり、サイレンサの施工に期間と費用がかかる。
 本発明は、上述した課題を解決するものであり、簡易な施工により低周波数成分の音の外部への放出を抑制する排気煙道を提供することを目的とする。
 上記の目的を達成するため、排気煙道は、排気ガスを排出する通路である排気煙突本体と、前記排気煙突本体の開口端側の全周囲に沿って、複数の孔を開けた開口端多孔領域と、を含むことを特徴とする。
 上記構成により、排気煙突本体内の共鳴振動の反射が抑制される。このため、排気煙道の共鳴振動によって増幅される増幅率が低減され、開口端から放射される低周波数成分の音が抑制される。その結果、排気煙道は、間接的にプラント周囲の家屋の窓枠などの振動を生じさせる可能性を低減できる。
 上記構成により、排気煙道は、排気煙突本体に開口端の全周囲に沿って複数の孔を開けるだけですむので、施工期間は短く、施工の費用を低減できる。
 本発明において、前記排気煙突本体には、前記開口端多孔領域とは異なる位置に、複数の孔を開けた他の多孔領域を設けることが好ましい。
 上記構成により、他の多孔領域が高次成分の音響モードの共鳴振動の反射を抑制することができる。このため、排気煙突本体内の高次成分の音響モードの共鳴振動の反射が抑制される。このため、排気煙道の共鳴振動によって増幅される増幅率が低減され、開口端から放射される低周波数成分の音が抑制される。
 本発明において、前記開口端多孔領域の外周側に空隙をあけて覆う外筒部を備えることが好ましい。
 上記構成により、空隙には空気層が介在し、開口端での音響インピーダンスが大きくなる。その結果、排気煙道の共鳴振動によって増幅される増幅率が低減され、開口端から放射される低周波数成分の音が抑制される。
 本発明において、前記排気煙突本体は、前記開口端多孔領域における隣り合う孔の間または前記他の多孔領域における隣り合う孔の間に補強リブを備えていることが好ましい。
 上記構成により、排気煙道は、排気煙突本体内の共鳴振動の反射を抑制すると共に、排気煙突本体の強度を一定以上に維持することができる。
 本発明において、前記排気煙突本体は、外壁部と、内壁部と、前記外壁部と前記内壁部とを連結する連結部材と、前記外壁部と前記内壁部との間に介装される保温材とを有し、前記孔は、前記外壁部と前記保温材と前記内壁部を貫通して形成されることが好ましい。
 上記構成により、排気ガスの熱が外壁部に伝わりにくくなり、寿命を延長することができる。
 本発明において、前記孔は、円筒部材が前記外壁部と前記保温材と前記内壁部を貫通して構成されることが好ましい。
 上記構成により、円筒部材により孔を形成することとなり、構造の簡素化を可能とすることができると共に、外壁部と内壁部との間への排気ガスの侵入を防止して耐久性を向上することができる。
 本発明において、前記開口端多孔領域と前記外筒部との間に設けられる前記空隙は、下端及び上端が外部に開口することが好ましい。
 上記構成により、排気煙突本体から孔を通って空隙に排出された排気ガスは、空隙の下端から入り込んだ外気と混合して冷却される。その後、冷却後の排気ガスは、空隙を上昇して上端から排出されることとなり、外壁部の高温化を抑制することができる。
 本発明において、前記外筒部は、前記孔に対向する内面に保温材が設けられることが好ましい。
 上記構成により、排気煙突本体から孔を通って空隙に排出された排気ガスは、保温材に衝突後に上昇することとなり、外壁部の高温化を抑制することができる。
 本発明において、前記外筒部は、外面にリブが設けられることが好ましい。
 上記構成により、リブの形状や寸法を調整することで、開口端での音響インピーダンスの最適化を可能とすることができる。
 本発明において、所定長さの筒形状をなす多孔構造ブロックが複数連結されて構成されることが好ましい。
 上記構成により、例えば、工場で複数の多孔構造ブロックを製造し、この複数の多孔構造ブロックを現地まで搬送し、複数の多孔構造ブロックを連結して排気煙道を製造することとなり、製造工程の簡素化を可能とし、建設費用を低減することができる。
 また、排気煙道は、排気ガスを排出する通路である排気煙突本体と、前記排気煙突本体の開口端側の全周囲における少なくとも一部に、複数の孔を開けた開口端多孔領域と、を含むことを特徴とする。
 上記構成により、排気煙突本体内の共鳴振動の反射が抑制される。このため、排気煙道の共鳴振動によって増幅される増幅率が低減され、開口端から放射される低周波数成分の音が抑制される。その結果、排気煙道は、間接的にプラント周囲の家屋の窓枠などの振動を生じさせる可能性を低減できる。
 本発明において、前記開口端多孔領域は、前記排気煙突本体における屈曲方向の内側における開口端側に設けられることが好ましい。
 上記構成により、開口端多孔領域から排出される排気ガスを減少することができる。
 本発明によれば、簡易な施工により低周波数成分の音の外部への放出を抑制する排気煙道を提供することができる。
図1は、実施形態1に係るガスタービンを表す概略構成図である。 図2は、実施形態1の排気煙道を模式的に示す斜視図である。 図3は、図2の孔の中心を通る断面で切った開口端多孔領域を模式的に示す部分断面図である。 図4は、実施形態1の排気煙道が放射する低周波数成分の音圧レベルを説明するための説明図である。 図5は、実施形態2の排気煙道を模式的に示す斜視図である。 図6は、実施形態2の多孔領域の位置を説明する説明図である。 図7は、実施形態3の排気煙道を模式的に示す斜視図である。 図8は、図7のA-A断面を示す部分断面図である。 図9は、実施形態4の排気煙道を模式的に示す斜視図である。 図10は、実施形態5の排気煙道の開口端の断面図である。 図11は、実施形態6の排気煙道の開口端の断面図である。 図12は、実施形態7の排気煙道の開口端の断面図である。 図13は、実施形態8の排気煙道の開口端の断面図である。 図14は、実施形態9の排気煙道の開口端の断面図である。 図15は、実施形態10の排気煙道を模式的に示す斜視図である。 図16は、図15のB-B断面を示す部分断面図である。
 本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。なお、この実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。
(実施形態1)
 図1は、実施形態1に係るガスタービンを表す概略構成図である。ガスタービンは、図1に示すように、圧縮機11と燃焼器12とタービン13とを含む。このガスタービンには、図示しない発電機が連結されており、発電可能となっている。
 圧縮機11は、空気を取り込む吸気ダクト20を有し、圧縮機車室21内に入口案内翼(IGV)22が配設されると共に、複数の静翼23と動翼24が前後方向(後述するロータ32の軸方向)に交互に配設されており、その外側に抽気室25が設けられている。燃焼器12は、圧縮機11で圧縮された圧縮空気に対して燃料を供給し、点火することで燃焼可能となっている。タービン13は、タービン車室26内に複数の静翼27と動翼28が前後方向(後述するロータ32の軸方向)に交互に配設されている。このタービン車室26の下流側には、排気車室29を介して排気室30が配設されており、排気室30は、タービン13に連続する排気ディフューザ31を有している。
 また、圧縮機11、燃焼器12、タービン13、排気室30の中心部を貫通するようにロータ(主軸)32が位置している。ロータ32は、圧縮機11側の端部が軸受部33により回転自在に支持される一方、排気室30側の端部が軸受部34により回転自在に支持されている。そして、このロータ32は、圧縮機11にて、各動翼24が装着されたロータディスク35が複数重ねられて固定され、タービン13にて、各動翼28が装着されたロータディスク36が複数重ねられて固定されており、排気室30側の端部に図示しない発電機の駆動軸が連結されている。
 そして、このガスタービンは、圧縮機11の圧縮機車室21が脚部37に支持され、タービン13のタービン車室26が脚部38により支持され、排気室30が脚部39により支持されている。
 従って、圧縮機11の吸気ダクト20から取り込まれた空気が、入口案内翼22、複数の静翼23と動翼24を通過して圧縮されることで高温・高圧の圧縮空気となる。燃焼器12にて、この圧縮空気に対して所定の燃料が供給され、燃焼される。そして、この燃焼器12で生成された高温・高圧の燃焼ガスが、タービン13を構成する複数の静翼27と動翼28を通過することでロータ32を駆動回転し、このロータ32に連結された図示しない発電機を駆動する。一方、排気ガス(燃焼ガス)のエネルギは、排気室30の排気ディフューザ31により圧力に変換され減速されてから、後述する排気煙道に送られる。
 図2は、実施形態1の排気煙道を模式的に示す斜視図である。図3は、図2の孔の中心を通る断面で切った開口端多孔領域を模式的に示す部分断面図である。図4は、実施形態1の排気煙道が放射する低周波数成分の音圧レベルを説明するための説明図である。図2に示すように、実施形態1に係る排気煙道40は、排気ダクト本体41と、排気煙突本体43とを含む。
 排気ダクト本体41は、所定長さを有し、板金が所定形状に屈曲された形状をなし、一端部に上述した排気室30に連通する接続口30aが形成される一方、他端部が連通孔42を介して排気煙突本体43に連通されている。排気煙突本体43は、筒状の圧延された金属で形成されている。排気室30の排気ガスは、接続口30aを介して排気煙道40に取り込まれ、排気ダクト本体41、連通孔42、排気煙突本体43の順に流通し、排気煙突本体43の開口端44から大気に放出される。
 上述したように、図1に示す燃焼器12で発生する圧力脈動または排気ガスの乱流が排気煙道40の共鳴振動によって増幅され、排気煙突本体43の開口端44から可聴音以下の低周波数成分の音が放射されることがある。例えば低周波数成分の音は、数十Hz以下(例えば、1Hzから20Hz程度)である。この低周波数成分の音は、人間の可聴音以下の周波数成分であることが多いので直接異音を感じることが少ないが、間接的にプラント周囲の家屋の窓枠などの振動(ガタツキ)を生じさせる要因となることがある。
 図2に示すように、実施形態1に係る排気煙道40は、排気煙突本体43が開口端44の全周囲に沿って複数の孔50を開けた開口端多孔領域51を備えている。開口端多孔領域51の施工は、排気煙突本体43に開口端44の全周囲に沿って複数の孔50を開けるだけですむので、施工期間は短く、施工の費用を低減できる。
 低周波数成分の音は、排気煙道40の共鳴振動によって増幅されるが、この共鳴振動の反射は開口端44で生じる。開口端44に開けた孔50は、音響抵抗体となり、開口端44での音響インピーダンスが大きくなる。その結果、燃焼器12で発生する圧力脈動または排気ガスの乱流が排気煙道40の共鳴振動によって増幅される増幅率が低減され、開口端44から放射される低周波数成分の音が抑制される。
 図3に示すように、開口端多孔領域51の孔50は、開口端44から放出される低周波数成分の音圧レベル(SPL:Sound Pressure Level)[単位:dB]が目標値以下となるように、排気煙突本体43の厚みtと、孔50の直径Dと、孔50同士の間隔Pと、開口端多孔領域51における孔50の数とから計算して適宜開けられる。
 例えば、図4に示すように、横軸に周波数、縦軸に音圧レベル(SPL)をとる場合、開口端多孔領域51の孔50がある場合の音圧レベル曲線82を排気煙突本体43の厚みtと、孔50の直径Dと、孔50同士の間隔Pと、開口端多孔領域51における孔50の数とから計算する。そして、図4に示す可聴音以下の周波数成分fgにおいて、開口端多孔領域51の孔50がない場合の音圧レベル曲線L1に対して、開口端多孔領域51の孔50がある場合の音圧レベル曲線L2のSPLが目標値となるように、実施形態1に係る排気煙道40は、排気煙突本体43に、図3に示す孔50の直径Dと、孔50同士の間隔Pと、開口端多孔領域51における孔50の数とを設定していくことになる。
 以上説明したように、実施形態1に係る排気煙道40は、排気煙突本体43と、開口端多孔領域51とを含む。排気煙突本体43は、排気ガスを排出する通路である。開口端多孔領域51は、排気煙突本体43の開口端44の全周囲に沿って、複数の孔50を開けた領域である。この構造により、排気煙突本体43内の共鳴振動の反射が抑制される。このため、排気煙道40の共鳴振動によって増幅される増幅率が低減され、開口端44から放射される低周波数成分の音が抑制される。その結果、排気煙道40は、間接的にプラント周囲の家屋の窓枠などの振動(ガタツキ)を生じさせる可能性を低減できる。また、排気煙道40は、排気煙突本体43に孔50を開ける簡易な施工により低周波音の外部への放出を抑制することができる。
(実施形態2)
 図5は、実施形態2の排気煙道を模式的に示す斜視図である。図6は、実施形態2の多孔領域の位置を説明する説明図である。以下の説明においては、上述した実施形態と同じ構成要素には同一の符号を付して、重複する説明は省略する。
 実施形態2の排気煙道40は、排気煙突本体43が開口端多孔領域51と、第2の多孔領域52と、第3の多孔領域53とを備えている。第2の多孔領域52と、第3の多孔領域53とは、開口端多孔領域51と同様に、排気煙突本体43の周囲に沿って複数の孔50が開けられている。そして、開口端多孔領域51と、第3の多孔領域53との間は、孔50の開けられていない領域がある。また、第2の多孔領域52と、第3の多孔領域53との間は、孔50の開けられていない領域がある。このように、排気煙道40は、孔50の開けられていない領域があることで、排気煙突本体43の強度を確保することができる。
 第2の多孔領域52及び第3の多孔領域53が排気煙突本体43に設けられる位置は、共鳴する低周波数成分の音の異なる音響モードの各々の節となる位置となる。図6に示すように、排気煙道40の音響長さをLとする。音響長さLは、接続口30aから開口端44までの長さである。音響長さLは、共鳴する空間の長さであり、設備によって適宜設定される。そして、排気煙道40の共鳴周波数fは、下記式(1)で表すことができる。また、n=1は1次成分であり、n=2は2次成分であり、n=3は3次成分である。
Figure JPOXMLDOC01-appb-M000001
 例えば、上記式(1)において、cは、音波の速さ(例えば、340m/s)である。cは、共鳴周波数fと波長λの積となるので、下記式(2)で表すことができる。
Figure JPOXMLDOC01-appb-M000002
 上記式(1)の共鳴周波数fを上述した式(2)に代入して、下記式(3)により、波長λを求めることができる。
Figure JPOXMLDOC01-appb-M000003
 そして、排気煙道40は、式(3)を満たす波長λの定在波の節となる位置に第2の多孔領域52及び第3の多孔領域53を設ける。図6に示すように、1次成分の波長λの節となる位置は、開口端44と等しい位置となる節N11となる。2次成分の波長λの節となる位置は、開口端44と等しい位置となる節N21及び節N22となる。3次成分の波長λの節となる位置は、節N31、節N32、節N33となる。
 以上説明したように、実施形態2に係る排気煙道40は、排気煙突本体43と、開口端多孔領域51とを含む。そして、排気煙道40は、開口端多孔領域51とは異なる位置に、複数の孔50を開けた他の多孔領域である第2の多孔領域52及び第3の多孔領域53を備えている。この構造により、開口端多孔領域51が排気煙突本体43内の共鳴振動の1次成分の音響モードの反射を抑制する。
 また、第2の多孔領域52が排気煙突本体43内の共鳴振動の2次成分の音響モードの反射を抑制する。そして、第3の多孔領域53が排気煙突本体43内の共鳴振動の3次成分の音響モードの反射を抑制する。第2の多孔領域52及び第3の多孔領域53が、高次成分の音響モードの共鳴振動の反射を抑制するので、実施形態1の排気煙道40と比較して、排気煙道40の共鳴振動によって増幅される増幅率が低減され、開口端44から放射される低周波数成分の音が抑制される。その結果、排気煙道40は、間接的にプラント周囲の家屋の窓枠などの振動(ガタツキ)を生じさせる可能性を低減できる。また、排気煙道40は、第2の多孔領域52及び第3の多孔領域53が排気煙突本体43に孔50を開ける簡易な施工で可能である。
 実施形態2の排気煙道40は、排気煙突本体43が第2の多孔領域52及び第3の多孔領域53を備えるが、第2の多孔領域52だけを備えてもよく、または第3の多孔領域53だけを備えてもよい。また、実施形態2の排気煙道40は、上述した式(1)から式(3)において、nが1~3の場合を例示したが、nが4以上であってもよい。
(実施形態3)
 図7は、実施形態3の排気煙道を模式的に示す斜視図である。図8は、図7のA-A断面を示す部分断面図である。以下の説明においては、上述した実施形態と同じ構成要素には同一の符号を付して、重複する説明は省略する。
 実施形態3の排気煙道40は、排気煙突本体43が開口端多孔領域51と、開口端多孔領域51の外周側に空隙55をあけて覆う外筒部54とを備えている。図8に示すように、開口端多孔領域51と、外筒部54との間の空隙55に空気層が円環状に形成される。
 低周波数成分の音は、排気煙道40の共鳴振動によって増幅されるが、この共鳴振動の反射は開口端44で生じる。開口端44に開けた孔50は、音響抵抗体となり、開口端44での音響インピーダンスが大きくなる。さらに本実施形態の空隙55は、外筒部54で音響粒子の動きを拘束するため、開口端44での音響インピーダンスが大きくなる。その結果、燃焼器12で発生する圧力脈動または排気ガスの乱流が排気煙道40の共鳴振動によって増幅される増幅率が低減され、開口端44から放射される低周波数成分の音が抑制される。
(実施形態4)
 図9は、実施形態4の排気煙道を模式的に示す斜視図である。以下の説明においては、上述した実施形態と同じ構成要素には同一の符号を付して、重複する説明は省略する。
 図9に示すように、実施形態4の排気煙道40は、開口端多孔領域51において、隣り合う孔50と孔50との間の排気煙突本体43の表面に、補強リブ56を設けている。排気煙突本体43の強度は、孔50を増やすほど、低下する傾向にある。補強リブ56は、孔50があっても排気煙突本体43の強度を一定以上に維持することができる。
 実施形態4の排気煙道40は、排気煙突本体43の上下方向に補強リブ56を延在させ、排気煙突本体43の周方向に所定間隔で複数本の補強リブ56を排気煙突本体43の表面に溶接などにより立設している。補強リブ56は、実施形態2において上述したような第2の多孔領域52または第3の多孔領域53にも、同様に設けてもよい。
 上述したように、実施形態4の排気煙道40は、排気煙突本体43が開口端多孔領域51における隣り合う孔50の間に補強リブ56を備えている。また、実施形態4の排気煙道40は、排気煙突本体43が上述した他の多孔領域である第2の多孔領域52における隣り合う孔50の間に補強リブ56を備えていてもよく、他の多孔領域である第3の多孔領域53における隣り合う孔50の間に補強リブ56を備えていてもよい。この構造により、排気煙道40は、排気煙突本体43内の共鳴振動の反射を抑制すると共に、排気煙突本体43の強度を一定以上に維持することができる。
(実施形態5)
 図10は、実施形態5の排気煙道の開口端の断面図である。以下の説明においては、上述した実施形態と同じ構成要素には同一の符号を付して、重複する説明は省略する。
 図10に示すように、実施形態5の排気煙道40において、排気煙突本体43は、円筒形状をなす外壁部61と、複数の保温パネルからなる内壁部62と、外壁部61と内壁部62とを連結する複数の連結部材63と、外壁部61と内壁部62との間に介装される保温材64とから構成されている。
 内壁部62を構成する保温パネルは、所定の大きさで外壁部61に対応した湾曲形状をなし、外周部が重なり合って連結することで円筒形状をなす。連結部材63は、一端部が外壁部61の内面に溶接により固定され、他端部が複数の保温パネルの重なり部分を貫通し、ナット63aが螺合している。そのため、複数の保温パネルが連結されることで内壁部62が構成され、外壁部61に対して内壁部62が連結される。
 排気煙突本体43は、開口端44側に開口端多孔領域51が設けられている。この開口端多孔領域51において、外壁部61と保温材64と内壁部62を貫通する貫通孔65が形成されている。円筒部材66は、円筒部66aの基端部に鍔部66bが一体に形成されてなり、排気煙突本体43の内側から貫通孔65に嵌入している。そして、円筒部材66は、鍔部66bが溶接により内壁部62に固定されており、先端部をフリーとすることで排気煙突本体43との熱延び差を吸収できる。そのため、開口端多孔領域51にて、円筒部材66の内部が孔50として機能する。なお、円筒部材66の先端と外壁部61を溶接により固定してもよい。
 上述したように、実施形態5の排気煙道40は、排気煙突本体43を外壁部61と内壁部62との両者を連結する連結部材63と、外壁部と内壁部との間に介装される保温材64とにより構成し、外壁部61と保温材64と内壁部62を貫通して孔50を形成している。この構造により、排気煙道40は、保温材64により排気ガスの熱が外壁部61に伝わりにくくなり、外壁部61の劣化を防止して排気煙突本体43の寿命を延長することができる。
 また、実施形態5の排気煙道40は、円筒部材66が内壁部62と保温材64と外壁部61とを貫通することで、孔50を構成している。この構造により、排気煙道40は、円筒部材66を用いて容易に孔50を形成することができ、構造の簡素化を可能とすることができる。また、円筒部材66により内壁部62と外壁部61との間への排気ガスの侵入を抑制することができる。ここで、円筒部材66の鍔部66bを溶接により内壁部62に固定することで、排ガスシールを構成することとなり、確実に内部への排気ガスの侵入を防止することができる。その結果、耐久性を向上することができる。
(実施形態6)
 図11は、実施形態6の排気煙道の開口端の断面図である。以下の説明においては、上述した実施形態と同じ構成要素には同一の符号を付して、重複する説明は省略する。
 図11に示すように、実施形態6の排気煙道40は、開口端多孔領域51の外周側に空隙71をあけて覆う外筒部72が設けられている。この空隙71は、排気煙突本体43の開口端多孔領域51の外側と外筒部72の内側との間に設けられ、下方及び上方が開口した円環状の空気層となっている。
 外筒部72は、排気煙突本体43(開口端多孔領域51)より大径に設定され、複数のサポート部材73により排気煙突本体43に支持されている。このサポート部材73は、一端部が排気煙突本体43(開口端多孔領域51)の外面に溶接により固定され、他端部の折曲部73aが外筒部72の内面に接触し、ボルト74及びナット75により締結されている。
 排気煙突本体43の開口端多孔領域51を上昇する高温の排気ガスは、その一部が各孔50を通って空隙71に排出され、この空隙71を上昇する。一方、空隙71は、下端から外気が入り込み、排気ガスと混合して上昇する。そして、外気に冷却された排気ガスが空隙71の上端から排出される。
 上述したように、実施形態6の排気煙道40は、排気煙突本体43における開口端多孔領域51の外周側に空隙71をあけて外筒部72を設け、この空隙71の下端及び上端を外部に開口している。この構造により、開口端多孔領域51の各孔50を通って空隙71に排出された排気ガスは、この空隙71の下端から入り込んだ外気と混合して冷却される。その後、冷却後の排気ガスは、空隙71を上昇して上端から排出されることとなり、外壁部61の高温化を抑制することができる。また、外筒部72により開口端多孔領域51(各孔50)を外部から被覆することとなり、外観品質を向上することができる。
(実施形態7)
 図12は、実施形態7の排気煙道の開口端の断面図である。以下の説明においては、上述した実施形態と同じ構成要素には同一の符号を付して、重複する説明は省略する。
 図12に示すように、実施形態7の排気煙道40は、開口端多孔領域51の外周側に空隙71をあけて覆う外筒部72が設けられている。この外筒部72は、孔50に対向する内面に保温材76が設けられている。なお、図示しないが、外筒部72を支持するサポート部材にも保温材を設けることが好ましい。
 排気煙突本体43の開口端多孔領域51を上昇する高温の排気ガスは、その一部が各孔50を通って空隙71に排出され、この空隙71を上昇する。このとき、開口端多孔領域51から各孔50を通って空隙71に入った排気ガスは、保温材76に衝突して上昇する。一方、空隙71は、下端から外気が入り込み、排気ガスと混合して上昇する。そして、外気に冷却された排気ガスが空隙71の上端から排出される。
 上述したように、実施形態7の排気煙道40は、排気煙突本体43における開口端多孔領域51の外周側に空隙71をあけて外筒部72を設け、孔50に対向する内面に保温材76を設けている。この構造により、開口端多孔領域51の各孔50を通って空隙71に排出された排気ガスは、保温材76に衝突してからこの空隙71を上昇することとなり、外壁部61の高温化を抑制することができる。
(実施形態8)
 図13は、実施形態8の排気煙道の開口端の断面図である。以下の説明においては、上述した実施形態と同じ構成要素には同一の符号を付して、重複する説明は省略する。
 図13に示すように、実施形態8の排気煙道40は、開口端多孔領域51の外周側に空隙71をあけて覆う外筒部72が設けられている。そして、この外筒部72は、外面にリブ77が設けられている。なお、このリブ77は、外筒部72の外面に対して直交して固定されており、周方向に均等間隔で複数配置されている。また、リブ77は、上下方向に複数に分割されて設けられているが、一体に設けてもよい。また、リブ77は、外筒部72の外面に上下方向に沿って固定されているが、周方向に沿って固定し、且つ、上下方向に均等間隔に複数配置してもよい。
 上述したように、実施形態8の排気煙道40は、排気煙突本体43における開口端多孔領域51の外周側に空隙71をあけて外筒部72を設け、外筒部72の外面にリブ77を設けている。この構造により、リブ77の寸法や形状を異ならせることで、開口端44での音響インピーダンスの最適化を可能とすることができる。
(実施形態9)
 図14は、実施形態9の排気煙道の開口端の断面図である。以下の説明においては、上述した実施形態と同じ構成要素には同一の符号を付して、重複する説明は省略する。
 図14に示すように、実施形態9の排気煙道40は、所定長さの筒形状をなす多孔構造ブロック40A,40B,40Cが複数連結されて構成されている。各多孔構造ブロック40A,40B,40Cは、円筒形状をなす外壁部61と、複数の保温パネルからなる内壁部62と、外壁部61と内壁部62とを連結する複数の連結部材63と、外壁部と内壁部との間に介装される保温材64と、外壁部61と内壁部62の上下端部で保温材64の脱落を防止する蓋部材67とから構成されている。そして、各多孔構造ブロック40A,40B,40Cは、各蓋部材67が接触し、内周面及び外周面が溶接により連結されている。
 また、各多孔構造ブロック40A,40B,40Cは、外周側に空隙71をあけて覆う外筒部81,82,83が設けられている。そして、この外筒部81,82は、下端部に大径部81a,82aが形成され、外筒部82,83の上端部に重なり合うように形成されている。なお、この外筒部81,82,83は、サポート部材73により支持されている。
 上述したように、実施形態9の排気煙道40は、所定長さの筒形状をなす多孔構造ブロック40A,40B,40Cが複数連結されて構成されている。この構造により、例えば、工場で複数の多孔構造ブロック40A,40B,40Cを製造し、この複数の多孔構造ブロック40A,40B,40Cを現地まで搬送し、複数の多孔構造ブロック40A,40B,40Cを連結して排気煙道を製造することとなり、製造工程の簡素化を可能とし、建設費用を低減することができる。
 複数の多孔構造ブロック40A,40B,40Cにより排気煙道40を構成することで、例えば、外筒部81,82,83同士の開口部の位置や大きさを異ならせることで、開口端44での音響インピーダンスの最適化を可能とすることができる。
(実施形態10)
 図15は、実施形態10の排気煙道を模式的に示す斜視図、図16は、図15のB-B断面を示す部分断面図である。以下の説明においては、上述した実施形態と同じ構成要素には同一の符号を付して、重複する説明は省略する。
 図15及び図16に示すように、実施形態10の排気煙道40は、排気煙突本体43が開口端44の全周囲における少なくとも一部に複数の孔50を開けた開口端多孔領域51を備えている。具体的に、開口端多孔領域51は、排気煙突本体43における屈曲方向の内側における開口端44側に設けられている。
 排気煙道40は、排気ダクト本体41からほぼ直角に屈曲して排気煙突本体43が接続され、開口端44の一部に開口端多孔領域51が設けられている。排気ガスは、排気ダクト本体41からほぼ直角に屈曲して排気煙突本体43を流れることから、排気煙突本体43における屈曲方向の内側の開口端44a側に孔50を形成し、開口端44b側に孔50を形成していない。例えば、排気煙突本体43における開口端多孔領域51の開口端44a側にθ1の角度領域で孔50を形成し、開口端44b側にθ2の角度領域で孔50を形成しない。
 上述したように、実施形態10の排気煙道40は、排気煙突本体43が開口端44の全周囲における少なくとも一部、例えば、排気煙突本体43における屈曲方向の内側の開口端44側に開口端多孔領域51を設けている。この構造により、開口端多孔領域51から排出される排気ガスを減少することができる。
 なお、この実施形態10では、排気煙突本体43における屈曲方向に内側に開口端多孔領域51を設けたが、この位置に限定されるものではなく、排気煙道40の形状に応じて適宜設定すればよいものである。
 また、上述した各実施形態に係る排気煙道をガスタービンに適用して説明したが、ガスタービンに限らず、排気ガスを放出するものであれば、いずれの設備でも適用することが可能である。
 11 圧縮機
 12 燃焼器
 13 タービン
 20 吸気ダクト
 21 圧縮機車室
 30 排気室
 30a 接続口
 31 排気ディフューザ
 40 排気煙道
 41 排気ダクト本体
 42 連通孔
 43 排気煙突本体
 44 開口端
 50 孔
 51 開口端多孔領域
 52 第2の多孔領域
 53 第3の多孔領域
 54 外筒部
 55 空隙
 56 補強リブ
 61 外壁部
 62 内壁部
 63 連結部材
 64 保温材
 66 円筒部材
 71 空隙
 72 外筒部
 76 保温材
 77 リブ
 81,82,83 外筒部
 N11,N21,N22,N31,N32,N33 節

Claims (12)

  1.  排気ガスを排出する通路である排気煙突本体と、
     前記排気煙突本体の開口端側の全周囲に沿って、複数の孔を開けた開口端多孔領域と、
     を含むことを特徴とする排気煙道。
  2.  前記排気煙突本体には、前記開口端多孔領域とは異なる位置に、複数の孔を開けた他の多孔領域を設けることを特徴とする請求項1に記載の排気煙道。
  3.  前記開口端多孔領域の外周側に空隙をあけて覆う外筒部を備えることを特徴とする請求項1または請求項2に記載の排気煙道。
  4.  前記排気煙突本体は、前記開口端多孔領域における隣り合う孔の間または前記他の多孔領域における隣り合う孔の間に補強リブを備えていることを特徴とする請求項1から請求項3のいずれか1項に記載の排気煙道。
  5.  前記排気煙突本体は、外壁部と、内壁部と、前記外壁部と前記内壁部とを連結する連結部材と、前記外壁部と前記内壁部との間に介装される保温材とを有し、前記孔は、前記外壁部と前記保温材と前記内壁部を貫通して形成されることを特徴とする請求項1から請求項4のいずれか1項に記載の排気煙道。
  6.  前記孔は、円筒部材が前記外壁部と前記保温材と前記内壁部を貫通して構成されることを特徴とする請求項5に記載の排気煙道。
  7.  前記開口端多孔領域と前記外筒部との間に設けられる前記空隙は、下端及び上端が外部に開口することを特徴とする請求項3に記載の排気煙道。
  8.  前記外筒部は、前記孔に対向する内面に保温材が設けられることを特徴とする請求項3または請求項7に記載の排気煙道。
  9.  前記外筒部は、外面にリブが設けられることを特徴とする請求項1または請求項7または請求項8のいずれか1項に記載の排気煙道。
  10.  所定長さの筒形状をなす多孔構造ブロックが複数連結されて構成されることを特徴とする請求項1から請求項9のいずれか1項に記載の排気煙道。
  11.  排気ガスを排出する通路である排気煙突本体と、
     前記排気煙突本体の開口端側の全周囲における少なくとも一部に、複数の孔を開けた開口端多孔領域と、
     を含むことを特徴とする排気煙道。
  12.  前記開口端多孔領域は、前記排気煙突本体における屈曲方向の内側における開口端側に設けられることを特徴とする請求項11に記載の排気煙道。
PCT/JP2013/074262 2012-03-14 2013-09-09 排気煙道 WO2014141509A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380073956.8A CN105008695B (zh) 2012-03-14 2013-09-09 排气烟道
KR1020157023213A KR101707363B1 (ko) 2012-03-14 2013-09-09 배기 연도
US14/768,868 US9970358B2 (en) 2012-03-14 2013-09-09 Exhaust flue
DE112013006822.2T DE112013006822T5 (de) 2012-03-14 2013-09-09 Abgaszug

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012057809 2012-03-14
JP2013-049576 2013-03-12
JP2013049576A JP6071664B2 (ja) 2012-03-14 2013-03-12 排気煙道

Publications (1)

Publication Number Publication Date
WO2014141509A1 true WO2014141509A1 (ja) 2014-09-18

Family

ID=49589725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074262 WO2014141509A1 (ja) 2012-03-14 2013-09-09 排気煙道

Country Status (6)

Country Link
US (1) US9970358B2 (ja)
JP (1) JP6071664B2 (ja)
KR (1) KR101707363B1 (ja)
CN (1) CN105008695B (ja)
DE (1) DE112013006822T5 (ja)
WO (1) WO2014141509A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5578384B1 (ja) * 2013-11-15 2014-08-27 株式会社東洋新薬 N−アセチルグルコサミンを含む風味改善方法及び風味改善用組成物
JP6302238B2 (ja) * 2013-12-20 2018-03-28 三菱重工業株式会社 排気装置及びガスタービン
JP6618780B2 (ja) * 2015-11-13 2019-12-11 三菱日立パワーシステムズ株式会社 煙突騒音低減装置
JP6649119B2 (ja) * 2016-02-26 2020-02-19 三菱重工業株式会社 排気ガス消音器、ガスタービン設備、及び原子力プラント
CN106121189A (zh) * 2016-06-24 2016-11-16 陈桂霞 一种排气烟道
US12116913B2 (en) * 2018-09-13 2024-10-15 The University Of Adelaide Exhaust gas assembly

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132722U (ja) * 1986-02-17 1987-08-21
JPH043240U (ja) * 1990-04-13 1992-01-13
JPH05321482A (ja) * 1992-05-19 1993-12-07 Ohbayashi Corp 既存鋼製煙突の補強方法
JPH10205169A (ja) * 1997-01-21 1998-08-04 Mitsubishi Heavy Ind Ltd 煙突筒身の建付け方法及び煙突筒身ブロック
JPH10325533A (ja) * 1997-05-28 1998-12-08 Babcock Hitachi Kk ダクトの補強構造
JPH11159347A (ja) * 1997-09-25 1999-06-15 Mitsubishi Heavy Ind Ltd ガスタービン排気煙道
JP2000314512A (ja) * 2000-01-01 2000-11-14 Koichi Horie 蓄糞等の燃焼装置及び燃焼方法
JP2001090522A (ja) * 1999-09-21 2001-04-03 Kubota Corp エンジン
JP2003120025A (ja) * 2001-10-11 2003-04-23 Chikara Miyamoto プラスチック製多孔型枠
JP2004094065A (ja) * 2002-09-03 2004-03-25 Kawasaki Heavy Ind Ltd 騒音低減装置および排気装置
JP2009198092A (ja) * 2008-02-21 2009-09-03 Mitsubishi Heavy Ind Ltd グランドフレア
JP2010127246A (ja) * 2008-11-28 2010-06-10 Mitsubishi Heavy Ind Ltd 排気ダクト

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2869671A (en) * 1953-08-31 1959-01-20 Karl E Schlachter Gas turbine muffler
US3187835A (en) * 1960-02-08 1965-06-08 Cloyd D Smith Jet engine noise suppressor
US3196977A (en) * 1960-04-27 1965-07-27 Industrial Acoustics Co Sound attenuation control means including diffuser for high velocity streams
US3159238A (en) * 1960-12-01 1964-12-01 Curtiss Wright Corp Diffuser screen with heat-insulating rungs for exhaust noise suppressor for reactionengines
US3688865A (en) * 1970-11-17 1972-09-05 Cloyd D Smith Jet engine noise suppressor
JPS5121409Y2 (ja) * 1973-01-19 1976-06-03
JPS5249004Y2 (ja) * 1973-12-03 1977-11-08
US3894610A (en) * 1974-08-20 1975-07-15 Burgess Ind Gas stream silencer
US4180141A (en) 1975-11-24 1979-12-25 Judd Frederick V H Distributor for gas turbine silencers
FR2589195B1 (fr) * 1985-10-25 1989-07-28 Vibrasonic Cheminee insonorisee pour gaz chauds ejectes d'un tube d'echappement
JPS62132722A (ja) 1985-12-02 1987-06-16 Ise Kagaku Kogyo Kk 脱鉄精製法
JPH01273909A (ja) * 1988-04-27 1989-11-01 Matsushita Electric Ind Co Ltd 燃焼排気装置
CA1277604C (en) * 1988-09-30 1990-12-11 Heinz H. Rieger Fireplace flue ambient noise reducing device
JP2818265B2 (ja) 1989-06-28 1998-10-30 アウシモント、ソチエタ、ア、レスポンサビリタ、リミタータ ブロモジフルオロアセチルフルオリドの製造方法
JPH0338543U (ja) * 1989-08-02 1991-04-15
JPH043240A (ja) 1990-04-20 1992-01-08 Hitachi Zosen Corp ニューラルネット学習方法
JP3325991B2 (ja) 1994-01-31 2002-09-17 株式会社東芝 排気サイレンサ
JPH087232A (ja) 1994-06-23 1996-01-12 Murata Mfg Co Ltd 磁気センサ装置
US5837890A (en) * 1994-12-12 1998-11-17 Aero Systems Engineering, Inc. Jet engine test cell structure
JPH09112244A (ja) 1995-10-23 1997-04-28 Hitachi Ltd 消音装置
US5960787A (en) * 1997-05-06 1999-10-05 Teledyne Industries, Inc. Gas appliance combustion systems
US6161646A (en) * 1999-08-17 2000-12-19 Eaton Aeroquip Inc. Turbo-generator exhaust noise silencer
US7104065B2 (en) 2001-09-07 2006-09-12 Alstom Technology Ltd. Damping arrangement for reducing combustion-chamber pulsation in a gas turbine system
US7707818B2 (en) * 2008-02-11 2010-05-04 General Electric Company Exhaust stacks and power generation systems for increasing gas turbine power output
US8240427B2 (en) * 2008-10-01 2012-08-14 General Electric Company Sound attenuation systems and methods
JP5404031B2 (ja) * 2008-12-26 2014-01-29 三菱重工業株式会社 グランドフレア
CN102518499A (zh) 2011-11-29 2012-06-27 中国商用飞机有限责任公司 一种消音器

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132722U (ja) * 1986-02-17 1987-08-21
JPH043240U (ja) * 1990-04-13 1992-01-13
JPH05321482A (ja) * 1992-05-19 1993-12-07 Ohbayashi Corp 既存鋼製煙突の補強方法
JPH10205169A (ja) * 1997-01-21 1998-08-04 Mitsubishi Heavy Ind Ltd 煙突筒身の建付け方法及び煙突筒身ブロック
JPH10325533A (ja) * 1997-05-28 1998-12-08 Babcock Hitachi Kk ダクトの補強構造
JPH11159347A (ja) * 1997-09-25 1999-06-15 Mitsubishi Heavy Ind Ltd ガスタービン排気煙道
JP2001090522A (ja) * 1999-09-21 2001-04-03 Kubota Corp エンジン
JP2000314512A (ja) * 2000-01-01 2000-11-14 Koichi Horie 蓄糞等の燃焼装置及び燃焼方法
JP2003120025A (ja) * 2001-10-11 2003-04-23 Chikara Miyamoto プラスチック製多孔型枠
JP2004094065A (ja) * 2002-09-03 2004-03-25 Kawasaki Heavy Ind Ltd 騒音低減装置および排気装置
JP2009198092A (ja) * 2008-02-21 2009-09-03 Mitsubishi Heavy Ind Ltd グランドフレア
JP2010127246A (ja) * 2008-11-28 2010-06-10 Mitsubishi Heavy Ind Ltd 排気ダクト

Also Published As

Publication number Publication date
JP2013217369A (ja) 2013-10-24
US20150377139A1 (en) 2015-12-31
KR101707363B1 (ko) 2017-02-15
CN105008695B (zh) 2018-02-16
KR20150111997A (ko) 2015-10-06
DE112013006822T5 (de) 2015-12-10
US9970358B2 (en) 2018-05-15
JP6071664B2 (ja) 2017-02-01
CN105008695A (zh) 2015-10-28

Similar Documents

Publication Publication Date Title
WO2014141509A1 (ja) 排気煙道
KR101723323B1 (ko) 가스 터빈용 소음기 및 이 소음기를 구비한 가스 터빈
CN108626747B (zh) 燃烧器声阻尼结构
JP4942594B2 (ja) ヘリコプター用ガスタービンエンジンの消音のための装置、およびそのようにして得られるエンジン
EP2402658B1 (en) Combustor and gas turbine with same
CN112543843B (zh) 具有柔性配件的排气锥
CN103140716B (zh) 消音器、燃烧器以及燃气轮机
US20130306403A1 (en) Method for the production of a sound absorber, especially for a gas turbine exhaust cone
US9291104B2 (en) Damping device and gas turbine combustor
JP3999644B2 (ja) ガスタービン燃焼器、及びこれを備えたガスタービン
GB2390150A (en) Reheat combustion system for a gas turbine including an accoustic screen
GB2443418A (en) Acoustic arrangement for silencing high pressure gas flow, eg in a gas turbine engine
US20130306402A1 (en) Method for the production of a sound absorber, especially for a gas turbine exhaust cone
JP2019526028A (ja) 共振器リングを備えるガスタービンエンジン
RU2451193C2 (ru) Вертолетный газотурбинный двигатель с уровнем шума, понижаемым с помощью шумоглушительного оборудования для эжектора
JP2009197623A (ja) 遠心送風機
US20140064928A1 (en) Engine casing of an aircraft gas turbine having sound-absorbing elements in the fan inflow region
JP5972619B2 (ja) 吸気ダクト
JP6640581B2 (ja) 音響ダンパ、燃焼器およびガスタービン
JP2008064405A (ja) ガスタービン燃焼器
JP3999646B2 (ja) ガスタービン燃焼器、及びこれを備えたガスタービン
JP6104657B2 (ja) 排気装置
US11898752B2 (en) Thermo-acoustic damper in a combustor liner
JP6302238B2 (ja) 排気装置及びガスタービン
JP2019143494A (ja) 軸流送風機及びボイラシステム並びに軸流送風機の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878183

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14768868

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157023213

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120130068222

Country of ref document: DE

Ref document number: 112013006822

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13878183

Country of ref document: EP

Kind code of ref document: A1