WO2014139212A1 - 封框胶组合物及其制备方法和显示装置 - Google Patents

封框胶组合物及其制备方法和显示装置 Download PDF

Info

Publication number
WO2014139212A1
WO2014139212A1 PCT/CN2013/075899 CN2013075899W WO2014139212A1 WO 2014139212 A1 WO2014139212 A1 WO 2014139212A1 CN 2013075899 W CN2013075899 W CN 2013075899W WO 2014139212 A1 WO2014139212 A1 WO 2014139212A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealant composition
mass fraction
frame sealant
silane coupling
coupling agent
Prior art date
Application number
PCT/CN2013/075899
Other languages
English (en)
French (fr)
Inventor
肖昂
宋省勳
汪姗姗
Original Assignee
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京京东方光电科技有限公司 filed Critical 北京京东方光电科技有限公司
Publication of WO2014139212A1 publication Critical patent/WO2014139212A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5006Amines aliphatic
    • C08G59/5013Amines aliphatic containing more than seven carbon atoms, e.g. fatty amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds

Definitions

  • Embodiments of the present invention relate to a sealant composition, a method of making the same, and a display device. Background technique
  • TFT-LCD Thin Film Transistor Liquid Crystal Display
  • the color film substrate and the array substrate need to be bonded to the box, and the bonding material is the frame sealant composition.
  • ODF One Drop Filling
  • the process flow is: after the color film substrate coated with the sealant composition and the array substrate with the liquid crystal added are paired, A certain amount of ultraviolet light is irradiated and then heated to effect curing of the sealant composition.
  • the sealant composition serves to bond the array substrate and the color filter substrate, and is used for sealing the liquid crystal. Therefore, the sealant composition is a key material in the process of forming the liquid crystal panel into a box.
  • the sealant composition is generally mainly composed of an acrylic resin as a photocurable resin and an epoxy resin as a thermosetting resin, but the bonding of the existing sealant composition after curing.
  • the existing frame sealant composition has poor adhesion, which easily causes liquid crystal to flow out, thereby causing a malfunction of the liquid crystal display.
  • liquid crystal panel manufacturers have higher and higher requirements on the bonding strength of the sealant composition. Therefore, how to improve the bond strength of the sealant composition is a technical problem to be solved. Summary of the invention
  • Embodiments of the present invention provide a frame sealant composition, a method of preparing the same, and a display device for improving the bond strength of the frame sealant composition and reducing the defects of the product.
  • One aspect of the invention provides a frame sealant composition comprising:
  • silane coupling agent-modified carbon having a mass fraction of 1.7% to 2.1% based on the total weight of the sealant composition nanotube.
  • the silane coupling agent-modified carbon nanotube is a silane coupling agent-modified hydroxylated carbon nanotube.
  • the hydroxylated carbon nanotubes have an outer diameter of less than 100 nm.
  • the hydroxylated carbon nanotubes have an outer diameter of 20 to 40 nm.
  • the hydroxylated carbon nanotube has an outer diameter of 20 to 40 nm, a length of 10 to 30 ⁇ m, and a hydroxyl group content of 1.6 wt%; and the silane coupling agent is mercaptoacryloxypropyltriethoxysilane.
  • the sealant composition may further include:
  • Epoxy resin with mass fraction of 10% ⁇ 15% acrylic resin with mass fraction of 60% ⁇ 70%, alkylphenone photoinitiator with mass fraction of 0.5% ⁇ 1%, mass fraction of 5% ⁇ 8 % of a polybasic amine-based thermosetting agent, a silica microsphere having a mass fraction of 5% to 10%, and a resin elastic microsphere having a mass fraction of 5% to 8%, the mass fraction being based on the sealant composition Total weight.
  • the epoxy resin is a bisphenol A type epoxy resin
  • the acrylic resin is a mercapto acrylic resin
  • the alkylphenone photoinitiator is ⁇ , ⁇ -diethoxyacetophenone, ⁇ .
  • the polybasic aliphatic amine-based thermosetting agent is one or more of hexamethylenediamine and diammonium aminopropylamine.
  • the diameter of the silica microspheres is 1 to 2 ⁇ m, and the diameter of the resin elastic microspheres is 0.1 to lum.
  • Another aspect of the invention is also directed to a display device comprising two substrates for a cassette, the two substrates of the cassette being bonded using any of the above-described frame sealant compositions.
  • a method for preparing a sealant composition comprises: a carbon nanotube modified by a silane coupling agent having a mass fraction of 1.7% to 2.1% and a mass fraction of 10% to 15%.
  • the silica microspheres with a mass fraction of 5% to 10% and the resin elastic microspheres with a mass fraction of 5% to 8% are stirred at a temperature of 10 to 30 ° C for 30 to 60 minutes to form a stirring mixture, wherein The above mass fraction is based on the total weight of the sealant composition; Mixing the stirred mixture at 30 to 50 ° C;
  • the kneaded mixture was defoamed.
  • the method before forming the stirring mixture, further comprises: ultrasonically oscillating a mixture of carbon nanotubes having a mass fraction of 0.1% to 0.2% and a silane coupling agent having a mass fraction of 1.5% to 2% for 5 to 6 hours to form a silane coupling.
  • the method for preparing the sealant composition may further comprise: adjusting the viscosity of the mixture after defoaming, and controlling the viscosity of the mixture to be 250 ⁇ 50 Pa.s at 23 to 25 °C. DRAWINGS
  • FIG. 1 is a schematic flow chart of a method for preparing a frame sealant composition of the present invention
  • FIG. 2 is a schematic diagram of the condensation reaction between TNIMH6 and KH570;
  • Figure 3 is a schematic view of the first framed glass sheet after coating the sealant composition
  • Figure 4 is a schematic illustration of a peel test using the frame sealant composition of the present invention.
  • embodiments of the present invention provide a frame sealant composition and a preparation method thereof.
  • a display device since the silane coupling agent to which the carbon nanotubes are bonded can be combined with the inorganic substrate surface and the organic sealant composition, the inside of the sealant composition and the seal are greatly enhanced. The bonding strength between the sealant composition and the substrate interface, thereby improving the yield of the product.
  • the frame sealant composition provided by the embodiment of the invention includes:
  • a silane coupling agent-modified carbon nanotube having a mass fraction of 1.7% to 2.1% based on the total weight of the sealant composition.
  • the silane coupling agent has a hydrolyzable group and an organic functional group.
  • the hydrolyzable group of the silane coupling agent is easily combined with the silicon atom on the surface of the substrate to form a siloxane, thereby joining the sealant composition and the substrate, and the organic functional group of the silane coupling agent can be organic with the sealant composition.
  • the resin reacts and combines, thereby also enhancing the adhesion inside the sealant composition; in addition, since the carbon nanotubes have high toughness, the carbon nanotubes and the sealant composition can be used by the silane coupling agent.
  • the other components are effectively combined into one body, and therefore, the toughness inside the sealant composition is enhanced, preventing the occurrence of internal agglutination damage due to impact or stretching after the frame sealant composition is cured.
  • the silane coupling agent-modified carbon nanotube is a silane coupling agent-modified hydroxylated carbon nanotube.
  • the selection of the carbon nanotubes may be various, as long as the carbon nanotubes can be combined with the silane coupling agent, preferably the hydroxylated carbon nanotubes, because the silane coupling agent is more than an alkane.
  • the oxy group, and the alkoxy group can react with the hydroxyl group of the hydroxylated carbon nanotube, and the alcohol is removed to form a silicon-oxygen bond, whereby the silane coupling agent is chemically bonded to the carbon nanotube.
  • the hydroxylated carbon nanotube has an outer diameter of less than 100 nm, and preferably, the hydroxylated carbon nanotube has an outer diameter of 20 to 40 nm.
  • the hydroxylated carbon nanotubes are in the form of powder, and the size thereof is not too large, and the excessively small particles may be unevenly distributed in the sealant composition, and the adhesion of the sealant composition is lowered, and the hydroxylated carbon nanotubes are If the size is too small, the price is high and the economy is lowered. Therefore, it is preferable that the outer diameter of the hydroxylated carbon nanotube is less than 100 nm, for example, the outer diameter of the hydroxylated carbon nanotube is 90 nm, 85 nm, 70 nm, 60 nm, 50 nm, 30 nm, 15 nm.
  • the preferred hydroxylated carbon nanotubes have an outer diameter of 20 to 40 nm, for example, the hydroxylated carbon nanotubes have an outer diameter of 20 nm, 32 nm, 35 nm or 40 nm.
  • the hydroxylated carbon nanotube has an outer diameter of 20 to 40 nm, a length of 10 to 30 ⁇ m, and a hydroxyl group content of 1.6 wt%; and the silane coupling agent is mercaptoacryloxypropyltriethoxylate. Silane.
  • the hydroxylated carbon nanotubes may be industrial grade multi-walled carbon nanotubes, such as multi-walled carbon nanotubes of the type TNIMH8, TNIMH6 or TNIMH4 produced by Chengdu Organic Chemistry Co., Ltd. of the Chinese Academy of Sciences, preferably TNIMH6, whose outer diameter is 20 ⁇ 40nm, length 10 ⁇ 30um, hydroxyl content 1.6wt%, its mechanical strength is high, the size is suitable, it can meet the requirements of use, and economic;
  • the hydroxyl content of hydroxylated carbon nanotubes is l ⁇ 2wt% can also be used;
  • the silane coupling agent can be commonly used in domestic KH550, KH560, KH570, etc., preferably using mercaptoacryloxypropyltriethoxysilane, mercaptoacryloxypropyltriethoxysilane
  • the oxy group can react with the hydroxyl group of the hydroxylated carbon nanotube to remove the ethanol to form a silicon-oxygen bond
  • the ethoxy group of the mercaptoacryloxypropyltriethoxysilane can also be bonded to the silicon atom on the surface of the substrate by intermolecular forces.
  • the mercaptoacryloyloxy group of mercaptoacryloxypropyltriethoxysilane is easily reactively bonded to the acrylic resin in the existing sealant composition, thereby enhancing the sealant composition and the substrate. Adhesive strength, and enhances the adhesion of the interior of the sealing frame gum composition.
  • Epoxy resin with mass fraction of 10% ⁇ 15% acrylic resin with mass fraction of 60% ⁇ 70%, alkylphenone photoinitiator with mass fraction of 0.5% ⁇ 1%, mass fraction of 5% ⁇ 8 % polyaliphatic amine thermal curing agent, silica microspheres with a mass fraction of 5% to 10%, and resin elastic microspheres with a mass fraction of 5% to 8%, wherein the above mass fraction is based on the sealant composition The total weight.
  • the epoxy resin is a bisphenol A type epoxy resin, such as epoxy resin E-44, E-51, etc.
  • the acrylic resin is a mercapto acrylic resin
  • the alkylphenone photoinitiator Is one or more of ⁇ , ⁇ -diethoxyacetophenone, ⁇ -hydroxyalkylphenone, and ⁇ -aminoalkylbenzophenone
  • the polybasic fatty amine thermosetting agent is hexamethylenediamine and dioxane One or more of propylamine.
  • the silica microspheres have a diameter of 1 to 2 ⁇ m, and the resin elastic microspheres have a diameter of 0.1 to lum.
  • the epoxy resin is used as the thermosetting resin
  • the acrylic resin is used as the photocurable resin.
  • the thermosetting resin is not limited to the epoxy resin, and other commonly used thermosetting resins may also be used.
  • Curing resin is not limited to acrylic resin, other commonly used photocurable resins
  • the alkylphenone photoinitiator is not limited to ⁇ , ⁇ -diethoxyacetophenone, ⁇ -hydroxyalkylphenone or ⁇ -aminoalkylbenzophenone, and other commonly used photoinitiators are also
  • the polybasic amine thermal curing agent is not limited to hexamethylenediamine or diammonium aminopropylamine, and other commonly used thermal curing agents are also acceptable.
  • the display device may be: a liquid crystal panel, an electronic paper, an OLED panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigation device, and the like, or any display product or component.
  • a method for preparing a frame sealant composition includes: Step 101: mixing a silane coupling agent-modified carbon nanotube and other components in a frame sealant composition to form Stir the mixture.
  • the resin elastic microspheres of 5% to 8% are stirred at a temperature of 10 to 30 ° C for 30 to 60 minutes to form a stirring mixture, wherein the above mass fraction is based on the total weight of the frame sealant composition;
  • Step 102 kneading the stirred mixture.
  • Step 103 Defoaming the kneaded mixture.
  • the method before forming the stirring mixture, further comprises: ultrasonically shaking the hydroxylated carbon nanotubes with a mass fraction of 0.1% to 0.2% and a silane coupling agent having a mass fraction of 1.5% to 2% for 5 to 6 hours to form a coupling agent.
  • the method further comprises:
  • the viscosity of the mixture after defoaming was adjusted to control the viscosity of the mixture at 250 ⁇ 50 Pa.s at 23 to 25 °C.
  • the SiC coupling agent modified carbon nanotubes are first mixed with other components in the frame sealant composition, and then kneaded, and finally defoamed.
  • a frame sealant composition is formed.
  • the carbon nanotubes are first reacted with a silane coupling agent to form a silane coupling agent-modified carbon nanotube.
  • the carbon nanotubes are hydroxylated carbon nanotubes, preferably,
  • the viscosity of the frame sealant composition formed after foaming is generally slightly higher, so it is also necessary to adjust the viscosity of the sealant composition. For example, it is preferred to adjust the viscosity using a low viscosity methacrylic resin to control the viscosity at 250 to 50 Pa.s at 23 to 25 °C.
  • the frame sealant composition of the present invention and its preparation method are further explained below by way of specific examples, but the present invention is not limited to the following examples.
  • the examples listed below use only the components of the preferred sealant composition.
  • the hydroxylated carbon nanotubes are selected from TNIMH6 (Chengdu Organic Chemical Co., Ltd., China Academy of Sciences, external diameter 20 ⁇ 40nm, purity >90%, length 10 ⁇ ) 30um, hydroxyl content 1.6wt%), silane coupling agent selected KH570 (United States Carbon Company, methacryloxypropyl triethoxysilane), epoxy resin selected bisphenol A epoxy resin (Shanghai Resin Factory) ), acrylic resin is selected from methacrylic resin (Shanghai Resin Factory), and alkyl benzophenone photoinitiator is used.
  • Polyunsaturated amine thermal curing agent is selected.
  • Silica microspheres with diameter of l ⁇ 2um are selected. It is a resin elastic microsphere of 0.1 ⁇ lum; in addition, the mass fraction of TNIMH6 in the frame sealant composition ranges from 0.1% to 0.2%, and the mass fraction of KH570 ranges from 1.5% to 2%.
  • TNIMH6 A mixture of TNIMH6 with a mass fraction of 0.1% and KH570 with a mass fraction of 1.9% was placed in a 40 kHz/1000 W ultrasonic oscillator for ultrasonic vibration treatment for 5-6 hours to form a silane coupling agent-modified TNIMH6, which gave a mass fraction. It is 2% TNIMH6-KH570 complex.
  • TNIMH6 is a hydroxylated carbon nanotube with a strong absorption peak at 3480 cm. After KH570 modification, the absorption peak at 3480 cm is weakened, and C-0-Si is stronger at 1082 cm. Absorption peak. This indicates that after ultrasonic vibration treatment, TNIMH6 and KH570 undergo a condensation reaction as shown in Figure 2: Hydroxylated carbon nano The hydroxyl group exposed on the rice tube is dealcoholized with the ethoxy group of KH570 to form a TNIMH6-KH570 complex, which forms a silane coupling agent-modified TNIMH6.
  • the ethoxy group (a hydrolyzable group) of the TNIMH6-KH570 complex can The silicon atom with the substrate is well bonded by intermolecular forces; on the other hand, the mercaptoacryloxy group (an organic functional group) can be reactively bonded to the mercaptoacrylic resin, and the frame sealant composition is well bonded. With the surface of the substrate, it can be used to improve the bonding strength of the sealant composition.
  • the silane coupling agent is integrated with other components of the sealant composition, thereby increasing the toughness inside the sealant composition and preventing the occurrence of agglomeration damage.
  • the elastic microspheres are stirred at a temperature of 10 to 30 ° C for 30 to 60 minutes, for example, at 29 ° C for 30 minutes, at 18 ° C for 45 minutes or at 20 ° C for 60 minutes, preferably, at Stirring at 20 ° C for 60 minutes to form a stirred mixture;
  • the agitated mixture is kneaded at 30 to 50 ° C, for example, at 30 ° C, 40 ° C, 45 ° C or 50 ° C, preferably at 40 ° C for mixing and mixing.
  • the number of refining is preferably two times, and the time of each mixing is 30 minutes;
  • the kneaded mixture was defoamed using a deaerator of the type SIENOX.
  • the above preparation method may further comprise: performing a viscosity test on the defoamed mixture, and if the viscosity of the mixture after defoaming is high, adjusting the viscosity of the sealant composition using a low viscosity mercapto acrylic resin, at 23 Under the temperature of ⁇ 25 ° C, the viscosity was controlled at 250 ⁇ 50 Pa.s, and finally the impurities were removed by filtration to obtain the frame sealant composition & Example 1 of the present invention.
  • TNIMH6 TNIMH6 with a mass fraction of 0.2% and KH570 with a mass fraction of 1.5% was placed in a 40 kHz/1000 W ultrasonic oscillator for ultrasonic vibration for 5-6 hours to form a silane couple.
  • the TNIMH6 modified by the combination agent gave a TNIMH6-KH570 complex with a mass fraction of 1.7%.
  • the agitating mixture is kneaded at 30 to 50 ° C, preferably at 40 ° C, and the number of kneading is preferably twice, and the time for each kneading is 30 minutes;
  • the kneaded mixture was defoamed using a deaerator of the type SIENOX.
  • the above preparation method may further comprise: performing a viscosity test on the defoamed mixture, and if the viscosity of the mixture after defoaming is high, adjusting the viscosity of the sealant composition using a low viscosity mercapto acrylic resin, at 23 Under the temperature of ⁇ 25 ° C, the viscosity was controlled at 250 ⁇ 50 Pa.s, and finally the impurities were removed by filtration to obtain the frame sealant composition b of Example 2 of the present invention.
  • TNIMH6 TNIMH6 with a mass fraction of 0.1%
  • KH570 KH570 with a mass fraction of 2%
  • a silane coupling agent-modified TNIMH6 which gave a mass fraction. It is 2.1% TNIMH6-KH570 complex.
  • TNIMH6-KH570 with a mass fraction of 2.1% and a bisphenol A epoxy resin with a mass fraction of 15%, a mercapto acrylic resin with a mass fraction of 60%, and an alkylphenone photoinitiator with a mass fraction of 0.9% ⁇ -Aminoalkyl benzophenone, 8% polyhydric amine thermal curing agent hexamethylene diamine, 6% silica microspheres and 8% resin elastic microspheres in 10 ⁇ Stirring at a temperature of 30 ° C for 30 to 60 minutes, preferably at a temperature of 20 ° C for 30 to 60 minutes to form a stirred mixture;
  • the agitating mixture is kneaded at 30 to 50 ° C, preferably at 40 ° C, and the number of kneading is preferably twice, and the time for each kneading is 30 minutes;
  • the kneaded mixture was defoamed using a deaerator of the type SIENOX.
  • the above preparation method may further comprise: performing a viscosity test on the defoamed mixture, and if the viscosity of the mixture after defoaming is high, adjusting the viscosity of the sealant composition using a low viscosity methacrylic resin, at 23 At a temperature of ⁇ 25 ° C, the viscosity was controlled at 250 ⁇ 50 Pa.s, and finally the impurities were removed by filtration to obtain a frame sealant composition c of Example 3 of the present invention.
  • the peel strength of the sealant composition was tested using a peel test:
  • the sealant composition 2 is applied at a distance of 5 mm from the edge of the first transparent glass plate 1, and the length X of the first transparent glass plate 1 is 40 mm 36 mm, and the sealant composition is coated.
  • the cross-sectional area is 4000 ⁇ 400 um 2 , and the cross section is a cross section taken at AA' of FIG.
  • the second transparent glass plate 3 is prepared, and the length X of the second transparent glass plate 3 is also 40 mm 36 mm, and the first transparent glass plate 1 and the second transparent glass plate 3 are cross-crossed to carry out a vacuum box.
  • the gap between the two glass plates is 5 um.
  • the peel strength was measured after ultraviolet exposure and heat curing in this order, wherein the total amount of ultraviolet irradiation was 5000 mJ/cm 2 , the heat curing temperature was 120 ° C, and the heat curing time was 1 hour.
  • the specific peel strength is measured by placing the two wide sides of the second transparent glass plate 3 on the two support tables 4 as shown in FIG. 4, and the first transparent glass plate 1 is located on the two support tables 4 In the enclosed area, a downward peeling force is applied perpendicularly to one corner of the first transparent glass plate 1 by the robot arm 5 at a constant speed of 5 mm/min, so that the two glass plates are peeled off exactly, and the recording is applied at this time.
  • the peeling force and the peel strength were calculated.
  • the frame sealant composition obtained by the method for preparing the sealant composition of the present invention has higher bond strength than the existing frame sealant composition, because TNIMH6 itself has excellent toughness and passes through the silane couple.
  • Binding agent KH570 modified TNIMH6 can be combined in the sealant composition The resin component and the inorganic component on the surface of the substrate enhance the overall toughness of the sealant composition and the bond strength to the substrate interface.
  • the embodiment of the invention provides a frame sealant composition, a preparation method thereof and a display device, wherein a silane coupling agent modified carbon nanotube is added to the frame sealant composition, and the inside of the sealant composition and the frame are improved.
  • the adhesiveness of the glue composition to the substrate improves the yield of the liquid crystal panel forming process and improves the separation resistance of the liquid crystal panel. It can be known that the frame sealant of the prior art can be achieved by using less frame sealant composition. The bonding strength of the composition, therefore, can reduce the amount of the sealant composition and reduce the production cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

一种封框胶组合物及其制备方法以及一种显示装置。所述封框胶组合物包括:基于封框胶组合物总重的质量分数为1.7%〜2.1%的硅烷偶联剂改性的碳纳米管。所述封框胶组合物的制备方法包括,首先将硅烷偶联剂改性的碳纳米管与封框胶组合物的其它组分混合形成搅拌混合物,再将所述搅拌混合物进行混炼,最后将混炼后的混合物脱泡。采用该方法可以提高封框胶组合物的粘接强度。

Description

封框胶组合物及其制备方法和显示装置
技术领域
本发明的实施例涉及封框胶组合物及其制备方法以及一种显示装置。 背景技术
在平板显示装置中, 薄膜晶体管液晶显示器( Thin Film Transistor Liquid Crystal Display, 筒称 TFT-LCD )具有体积小、 功耗低、 制造成本相对较低和 低辐射等特点, 在当前的平板显示器市场中占据了主导地位。 在薄膜晶体管液晶显示器的制作过程中需要将彩膜基板和阵列基板进行 对盒粘结, 而起粘结作用的材料就是封框胶组合物。 目前成盒工艺多采用快 速滴注法(One Drop Filling, 筒称 ODF ), 其工艺流程为: 将已涂覆封框胶 组合物的彩膜基板和滴加液晶的阵列基板对盒后,经过一定量的紫外光照射, 再经过加热, 实现封框胶组合物的固化。 封框胶组合物起到粘接阵列基板和 彩膜基板的作用, 并用于密封液晶, 因此封框胶组合物是液晶面板成盒制作 工艺中的关键材料。 在快速滴注法中, 封框胶组合物一般主要由作为光固化 树脂的丙烯酸树脂与作为热固化树脂的环氧树脂混合而成, 但是现有的封框 胶组合物在固化后的粘结性能存在一些问题, 例如在高温高湿条件下, 现有 的封框胶组合物粘接性不良, 易造成液晶流出, 从而造成液晶显示器出现不 良。 随着液晶显示器技术的发展, 液晶面板制造商对封框胶组合物粘接强度 的要求越来越高, 因此, 如何提高封框胶组合物的粘接强度是需要解决的技 术问题。 发明内容
本发明的实施例提供一种封框胶组合物及其制备方法以及一种显示装 置, 用以提高封框胶组合物的粘结强度, 减少产品的不良。
本发明的一个方面提供了一种封框胶组合物, 包括:
基于封框胶组合物总重的质量分数为 1.7%~2.1%的硅烷偶联剂改性的碳 纳米管。
例如, 所述硅烷偶联剂改性的碳纳米管为硅烷偶联剂改性的羟基化碳纳 米管。
例如, 所述羟基化碳纳米管的外部直径小于 100nm。
例如, 所述羟基化碳纳米管的外部直径为 20~40nm。
例如, 所述羟基化碳纳米管外部直径为 20~40nm, 长度为 10~30um, 羟 基含量为 1.6wt%; 所述硅烷偶联剂为曱基丙烯酰氧丙基三乙氧基硅烷。
例如, 所述的封框胶组合物, 还可以包括:
质量分数为 10%~15%的环氧树脂、 质量分数为 60%~70%的丙烯酸树脂、 质量分数为 0.5%~1%的烷基苯酮类光引发剂、质量分数为 5%~8%的多元脂肪 胺类热固化剂、 质量分数为 5%~10%的二氧化硅微球和质量分数为 5%~8%的 树脂弹性微球, 上述质量分数是基于封框胶组合物的总重。
例如, 所述环氧树脂为双酚 A型环氧树脂, 所述丙烯酸树脂为曱基丙烯 酸树脂,所述烷基苯酮类光引发剂为 α,α-二乙氧基苯乙酮、 α-羟烷基苯酮和 α- 胺烷基苯酮中的一种或几种, 所述多元脂肪胺类热固化剂为己二胺和二曱氨 基丙胺中的一种或几种。
例如, 所述二氧化硅微球的直径为 l~2um, 所述树脂弹性微球的直径为 0.1~lum。
本发明的另一个方面还涉及一种显示装置, 包括对盒的两个基板, 所述 对盒的两个基板采用上述的任一种封框胶组合物进行粘接。
本发明的再一个方面提供了一种封框胶组合物的制备方法, 包括: 将质量分数为 1.7%~2.1%的硅烷偶联剂改性的碳纳米管及质量分数为 10%~15%的环氧树脂、 质量分数为 60%~70%的丙烯酸树脂、 质量分数为 0.5%~1%的烷基苯酮类光引发剂、 质量分数为 5%~8%的多元脂肪胺类热固化 剂、 质量分数为 5%~10%的二氧化硅微球和质量分数为 5%~8%的树脂弹性微 球在 10~30°C的温度下搅拌 30~60分钟,形成搅拌混合物,其中上述质量分数 是基于封框胶组合物的总重; 将所述的搅拌混合物在 30~50°C下混炼;
将混炼后的混合物脱泡。
例如, 在形成搅拌混合物之前还可以包括: 将质量分数为 0.1%~0.2%的 碳纳米管和质量分数为 1.5%~2%的硅烷偶联剂的混合物超声振荡 5~6小时, 形成硅烷偶联剂改性的碳纳米管, 其中上述质量分数是基于封框胶组合物的 总重。
例如, 所述的封框胶组合物的制备方法, 还可以包括: 对脱泡后的混合物进行粘度调节, 在 23~25°C下, 使混合物的粘度控制 在 250 ± 50Pa.s。 附图说明
图 1为本发明封框胶组合物制备方法流程示意图;
图 2为 TNIMH6与 KH570发生缩合反应的示意图;
图 3为在第一透明玻璃板上涂布封框胶组合物后的示意图;
图 4为采用本发明封框胶组合物进行剥离试验的示意图。
附图标记:
1-第一透明玻璃板 2-封框胶组合物 3-第二透明玻璃板 4-支撑台 5-机械手臂 具体实施方式
为了解决现有技术中存在的封框胶组合物粘接强度不高, 易造成液晶泄 露, 导致产品缺陷的技术问题, 本发明的实施例提供了一种封框胶组合物及 其制备方法以及一种显示装置。 在本发明的封框胶组合物中, 由于键合有碳 纳米管的硅烷偶联剂可以与无机基板表面和有机封框胶组合物结合, 因此, 大大增强了封框胶组合物内部和封框胶组合物与基板界面处的粘接强度, 从 而提高了产品的良率。
为使本发明的目的、 技术方案和优点更加清楚, 以下列举具体实施例对 本发明作进一步详细说明。 本发明的实施例提供的封框胶组合物, 包括:
基于封框胶组合物总重的质量分数为 1.7%~2.1%的硅烷偶联剂改性的碳 纳米管。
在本发明的实施例中, 本领域的技术人员可知, 硅烷偶联剂存在可水解 基团和有机官能团。 硅烷偶联剂的可水解基团易于与基板表面的硅原子结合 形成硅氧烷, 因此连接了封框胶组合物和基板, 硅烷偶联剂的有机官能团可 以与封框胶组合物内的有机树脂发生反应进行结合, 因此也增强了封框胶组 合物内部的粘接性; 另外, 由于碳纳米管具有较高的韧性, 并且通过硅烷偶 联剂可以将碳纳米管和封框胶组合物中其他组分有效地结合为一个整体, 因 此, 封框胶组合物内部的韧性增强, 防止了封框胶组合物固化后由于沖击或 拉伸造成的内部凝集破坏的发生。
例如, 所述硅烷偶联剂改性的碳纳米管为硅烷偶联剂改性的羟基化碳纳 米管。
在本发明的实施例中, 碳纳米管的选择方案可以有多种, 只要碳纳米管 能和硅烷偶联剂结合即可, 优选为羟基化碳纳米管, 由于硅烷偶联剂多带有 烷氧基, 而烷氧基可以与羟基化碳纳米管的羟基反应, 脱去醇形成硅氧键, 从而使硅烷偶联剂与碳纳米管通过化学键结合。
优选的, 例如, 所述羟基化碳纳米管的外部直径小于 lOOnm, 较佳的, 所述羟基化碳纳米管的外部直径为 20~40nm。
羟基化碳纳米管为粉末状, 其尺寸不易过大, 过大的小颗粒会在封框胶 组合物中分布不均匀, 降低封框胶组合物的粘接性, 而羟基化碳纳米管的尺 寸过小, 则价格较高, 经济性降低, 因此优选羟基化碳纳米管的外部直径小 于 lOOnm, 例如如羟基化碳纳米管的外部直径为 90nm、 85nm、 70nm、 60nm、 50nm、 30nm、 15nm或 5nm, 较佳的羟基化碳纳米管的外部直径为 20~40nm, 例如羟基化碳纳米管的外部直径为 20nm、 32nm、 35nm或 40nm。
优选的, 例如, 所述羟基化碳纳米管的外部直径为 20~40nm, 长度为 10~30um, 羟基含量为 1.6wt%; 所述硅烷偶联剂为曱基丙烯酰氧丙基三乙氧 基硅烷。
羟基化碳纳米管可以为工业级多壁碳纳米管, 如中国科学研究院成都有 机化学公司生产的型号为 TNIMH8、TNIMH6或 TNIMH4的多壁碳纳米管等, 优选为 TNIMH6, 它的外部直径为 20~40nm, 长度为 10~30um, 羟基含量为 1.6wt%, 它的机械强度较高, 尺寸合适, 可以达到使用要求, 并且经济; 另 夕卜, 羟基化碳纳米管的羟基含量在 l~2wt%也可用; 硅烷偶联剂可以为国内常 用的 KH550、 KH560、 KH570等,优选采用曱基丙烯酰氧丙基三乙氧基硅烷, 曱基丙烯酰氧丙基三乙氧基硅烷的乙氧基可以与羟基化碳纳米管的羟基反应 脱去乙醇形成硅氧键, 曱基丙烯酰氧丙基三乙氧基硅烷的乙氧基也可以与基 板表面的硅原子通过分子间作用力结合, 曱基丙烯酰氧丙基三乙氧基硅烷的 曱基丙烯酰氧基易于与现有封框胶组合物中的丙烯酸树脂反应键合, 从而增 强了封框胶组合物与基板的粘接强度, 并且增强了封框胶组合物内部的粘接 性。
本发明的实施例的封框胶组合物, 还可以包括:
质量分数为 10%~15%的环氧树脂、 质量分数为 60%~70%的丙烯酸树脂、 质量分数为 0.5%~1%的烷基苯酮类光引发剂、质量分数为 5%~8%的多元脂肪 胺类热固化剂、 质量分数为 5%~10%的二氧化硅微球和质量分数为 5%~8%的 树脂弹性微球, 其中上述质量分数是基于封框胶组合物的总重。
优选的,所述环氧树脂为双酚 A型环氧树脂,如环氧树脂 E-44, E-51等, 所述丙烯酸树脂为曱基丙烯酸树脂, 所述烷基苯酮类光引发剂为 α,α-二乙氧 基苯乙酮、 α-羟烷基苯酮和 α-胺烷基苯酮一种或几种, 所述多元脂肪胺类热 固化剂为己二胺和二曱 丙胺一种或几种。
优选的, 例如, 所述二氧化硅微球的直径为 l~2um, 所述树脂弹性微球 的直径为 0.1~lum。
在本发明实施例的封框胶组合物中, 环氧树脂作为热固化树脂, 丙烯酸 树脂作为光固化树脂, 当然, 热固化树脂不局限于环氧树脂, 其它常用的热 固化树脂也可, 光固化树脂也不局限于丙烯酸树脂, 其它常用的光固化树脂 也可; 烷基苯酮类光引发剂也不局限于 α,α-二乙氧基苯乙酮、 α-羟烷基苯酮或 α-胺烷基苯酮,其它常用的光引发剂也可; 多元脂肪胺类热固化剂也不局限于 己二胺或二曱氨基丙胺, 其它常用的热固化剂也可。
本发明的另一个实施例还提供一种显示装置, 其中, 该显示装置使用上 述任意一种封框胶组合物进行粘接。 所述显示装置可以为: 液晶面板、 电子 纸、 OLED 面板、 手机、 平板电脑、 电视机、 显示器、 笔记本电脑、 数码相 框、 导航仪等任何具有显示功能的产品或部件。
如图 1所示, 本发明的实施例的封框胶组合物的制备方法, 包括: 步骤 101、 将硅烷偶联剂改性的碳纳米管和封框胶组合物中其它组分混 合, 形成搅拌混合物。
例如, 将质量分数为 1.7%~2.1%的硅烷偶联剂改性的碳纳米管及质量分 数为 10%~15%的环氧树脂、 质量分数为 60%~70%的丙烯酸树脂、 质量分数 为 0.5%~1%的烷基苯酮类光引发剂、质量分数为 5%~8%的多元脂肪胺类热固 化剂、 质量分数为 5%~10%的二氧化硅微球和质量分数为 5%~8%的树脂弹性 微球在 10~30°C的温度下搅拌 30~60分钟,形成搅拌混合物,其中上述质量分 数是基于封框胶组合物的总重;
步骤 102、 将所述搅拌混合物混炼。
例如, 将所述的搅拌混合物在 30~50°C下混炼;
步骤 103、 将混炼后的混合物脱泡。
优选的, 在形成搅拌混合物之前还包括: 将质量分数 0.1%~0.2%的羟基 化碳纳米管和质量分数为 1.5%~2%的硅烷偶联剂超声振荡 5~6小时, 形成偶 联剂改性的碳纳米管, 其中上述质量分数是基于封框胶组合物的总重。
优选的, 例如, 所述将混炼后的混合物脱泡后还可以包括:
对脱泡后的混合物进行粘度调节,在 23~25°C下,使混合物的粘度控制在 250 ± 50Pa.s。
在本发明实施例的封框胶组合物的制备方法中, 首先将硅烷偶联剂改性 的碳纳米管与封框胶组合物中其他组分混合, 然后再进行混炼, 最后脱泡后 形成封框胶组合物。 优选的, 例如, 先将碳纳米管与硅烷偶联剂反应, 生成 硅烷偶联剂改性的碳纳米管, 优选的, 例如, 所述碳纳米管采用羟基化碳纳 米管, 优选的, 脱泡后形成的封框胶组合物的粘度一般稍高, 因此还需要调 节封框胶组合物的粘度。 例如, 优选采用低粘度的甲基丙烯酸树脂调节粘度, 在 23~25°C下, 使其粘度控制在 250 ± 50Pa.s。
以下列举具体的实施例对本发明封框胶组合物及其制备方法做进一步解 释, 但本发明并不限于以下实施例。 以下列举的实施例仅选用较优的封框胶 组合物的组分, 羟基化碳纳米管选用 TNIMH6 (中国科学研究院成都有机化 学公司, 外部直径 20~40nm, 纯度 >90%, 长度 10~30um, 羟基含量 1.6wt% ), 硅烷偶联剂选用 KH570(美国联合碳公司,甲基丙烯酰氧丙基三乙氧基硅烷 ), 环氧树脂选用双酚 A型环氧树脂(上海树脂厂 ), 丙烯酸树脂选用甲基丙烯酸 树脂(上海树脂厂), 以及选用烷基苯酮类光引发剂, 选用多元脂肪胺类热固 化剂, 选用直径为 l~2um的二氧化硅微球, 选用直径为 0.1~lum的树脂弹性 微球;另夕卜,封框胶组合物中 TNIMH6的质量分数范围为 0.1%~0.2%, KH570 的质量分数范围为 1.5%~2%。
应理解除非另外指明, 以下实施例中的所有质量分数均是基于封框胶组 合物的总重。
实施例 1
将质量分数为 0.1%的 TNIMH6与质量分数为 1.9%的 KH570的混合物放 入 40kHz/1000W的超声波振荡器进行超声波振荡处理 5~6小时, 形成硅烷偶 联剂改性的 TNIMH6, 即得到质量分数为 2%的 TNIMH6-KH570复合物。 采 用傅里叶红外光谱仪 ( FT-IR )对硅烷偶联剂改性前后的 TNIMH6进行红外光 语表征, 具体为采用溴化钾(KBr ) 压片制作样本, 测试硅烷偶联剂改性前 后的 TNIMH6 的红外光谱数据。 改性前, TNIMH6 为羟基化碳纳米管, 在 3480cm 处出现羟基的较强吸收峰; 经过 KH570改性后, 在 3480cm 处的吸 收峰减弱, 并且在 1082cm 处出现 C-0-Si的较强吸收峰。 这说明经过超声波 振荡处理后, TNIMH6与 KH570发生了如图 2所示的缩合反应: 羟基化碳纳 米管上棵露的羟基与 KH570的乙氧基发生脱醇反应, 生成 TNIMH6-KH570 复合物, 即形成了硅烷偶联剂改性的 TNIMH6。 一方面由于相对设置的上下 显示基板以形成液晶盒(cell ), 即对盒的两个基板的主要成分为二氧化硅, TNIMH6-KH570复合物的乙氧基 (一种可水解基团) 能与基板的硅原子通过 分子间作用力很好键合; 另一方面曱基丙烯酰氧基(一种有机官能团) 能与 曱基丙烯酸树脂反应键合, 很好的连接了封框胶组合物与基板表面, 所以可 以用来改善封框胶组合物的粘接强度。 另外, 由于 TNIMH6本身具有较高韧 性, 通过硅烷偶联剂与封框胶组合物的其它组分形成一个整体, 因此增加了 封框胶组合物内部的韧性, 防止了凝集破坏的发生。
将质量分数为 2%的 TNIMH6-KH570复合物、 质量分数为 12%的双酚 A 型环氧树脂、质量分数为 63%的曱基丙烯酸树脂、质量分数为 1%的烷基苯酮 类光引发剂 α,α-二乙 ^^苯乙酮、 质量分数为 7%的多元脂肪胺类热固化剂己 二胺、 质量分数为 10%的二氧化硅微球和质量分数为 5%的树脂弹性微球在 10~30°C的温度下搅拌 30~60分钟, 例如在 29 °C下搅拌 30分钟, 在 18°C下搅 拌 45分钟或在 20 °C下搅拌 60分钟, 优选的, 在 20 °C温度下搅拌 60分钟, 形成搅拌混合物;
将上述搅拌混合物在 30~50°C下进行混炼, 例如在 30°C、 40°C、 45°C或 50°C下进行混炼, 优选在 40 °C的条件下进行混炼, 混炼次数优选为两次, 每 次混炼的时间为 30分钟;
使用型号为 SIENOX的脱泡机将混炼后的混合物进行脱泡。
优选的, 上述制备方法还可以包括: 对脱泡后的混合物进行粘度测试, 若脱泡后的混合物的粘度较高, 则使用低粘度曱基丙烯酸树脂调节封框胶组 合物的粘度, 在 23~25°C温度条件下, 使其粘度控制在 250 ± 50Pa.s, 最后过 滤除去杂质, 得到本发明实施例 1的封框胶组合物&。
实施例 2
将质量分数为 0.2%的 TNIMH6与质量分数为 1.5%的 KH570的混合物放 入 40kHz/1000W的超声波振荡器进行超声波振荡处理 5~6小时, 形成硅烷偶 联剂改性的 TNIMH6, 即得到质量分数为 1.7%的 TNIMH6-KH570复合物。 将质量分数为 1.7%的 TNIMH6-KH570复合物、质量分数为 10%的双酚 A 型环氧树脂、 质量分数为 70%的曱基丙烯酸树脂、 质量分数为 0.5%的烷基苯 酮类光引发剂 α-羟烷基苯酮、质量分数为 5%的多元脂肪胺类热固化剂二曱氨 基丙胺、 质量分数为 5%的二氧化硅微球和质量分数为 7.8%的树脂弹性微球 在 10~30°C的温度下搅拌 30~60分钟, 优选的, 在 20 °C温度下搅拌 60分钟, 形成搅拌混合物;
将上述搅拌混合物在 30~50°C下进行混炼, 优选在 40 °C的条件下进行混 炼, 混炼次数优选为两次, 每次混炼的时间为 30分钟;
使用型号为 SIENOX的脱泡机将混炼后的混合物进行脱泡。
优选的, 上述制备方法还可以包括: 对脱泡后的混合物进行粘度测试, 若脱泡后的混合物的粘度较高, 则使用低粘度曱基丙烯酸树脂调节封框胶组 合物的粘度, 在 23~25°C温度条件下, 使其粘度控制在 250 ± 50Pa.s, 最后过 滤除去杂质, 得到本发明实施例 2的封框胶组合物 b。
实施例 3
将质量分数为 0.1%的 TNIMH6与质量分数为 2%的 KH570的混合物放入 40kHz/1000W的超声波振荡器进行超声波振荡处理 5-6小时, 形成硅烷偶联 剂改性的 TNIMH6, 即得到质量分数为 2.1%的 TNIMH6-KH570复合物。
将质量分数为 2.1%的 TNIMH6-KH570和质量分数为 15%的双酚 A型环 氧树脂、 质量分数为 60%的曱基丙烯酸树脂、 质量分数为 0.9%的烷基苯酮类 光引发剂 α-胺烷基苯酮、质量分数为 8%的多元脂肪胺类热固化剂己二胺、质 量分数为 6%的二氧化硅微球和质量分数为 8%的树脂弹性微球在 10~30°C的 温度下搅拌 30~60分钟, 优选在 20°C温度下搅拌 30~60分钟, 形成搅拌混合 物;
将上述搅拌混合物在 30~50°C下进行混炼, 优选在 40 °C的条件下进行混 炼, 混炼次数优选为两次, 每次混炼的时间为 30分钟;
使用型号为 SIENOX的脱泡机将混炼后的混合物进行脱泡。 优选的, 上述制备方法还可以包括: 对脱泡后的混合物进行粘度测试, 若脱泡后的混合物的粘度较高, 则使用低粘度甲基丙烯酸树脂调节封框胶组 合物的粘度, 在 23~25°C温度条件下, 使其粘度控制在 250 ± 50Pa.s, 最后过 滤除去杂质, 得到本发明实施例 3的封框胶组合物 c。
采用剥离试验测试封框胶组合物的剥离强度:
分别利用实施例 1~3制备的封框胶组合物 a、 b、 c和市售的封框胶组合 物 UR-2920 (三井化学株式会社制)进行以下剥离试验。
如图 3所示,在第一透明玻璃板 1的四周离边缘 5mm处涂布封框胶组合 物 2, 第一透明玻璃板 1的长 X宽为 40mm 36mm, 涂布封框胶组合物的截 面面积为 4000 ± 400um2, 所述截面为在图 3的 A-A' 处截取的截面。 如图 4 所示,准备第二透明玻璃板 3 ,第二透明玻璃板 3的长 X宽也为 40mm 36mm, 将第一透明玻璃板 1与第二透明玻璃板 3十字交叉进行真空对盒, 使两块玻 璃板的间隙为 5um。 在依次经过紫外线曝光和热固化之后测定剥离强度, 其 中, 紫外线照射总量为 5000mJ/cm2, 热固化温度为 120°C , 热固化时间为 1 小时。 具体的剥离强度的测定方法为, 如图 4所示, 将第二透明玻璃板 3的 两个宽边分别放置在两个支撑台 4上,则第一透明玻璃板 1位于两个支撑台 4 围成的区域内, 利用机械手臂 5以恒定的速度 5mm/min向第一透明玻璃板 1 的一个角垂直施加一个向下的剥离力, 以使两片玻璃板恰好剥离, 记录此时 所施加的剥离力, 并计算出剥离强度。 对封框胶组合物 a、 b、 c和市售的封 框胶组合物 UR-2920这四种封框胶组合物中的每一种都进行五次试验, 并取 其平均值作为该封框胶组合物在玻璃板的某一角的剥离强度。 结果发现, 实 施例 1制备的封框胶组合物 a的剥离强度为 18.7N/mm; 实施例 2制备的封框 胶组合物 b的剥离强度为 19.3N/mm; 实施例 3制备的封框胶组合物 c的剥离 强度为 18.05N/mm; 而市售的封框胶组合物 UR-2920 的剥离强度为 10.78N/mm。可知,采用本发明封框胶组合物制备方法得到的封框胶组合物相 对于现有封框胶组合物具有更高的粘接强度, 这是由于 TNIMH6本身具有极 好的韧性,经过硅烷偶联剂 KH570改性的 TNIMH6能联结封框胶组合物中的 树脂成分和基板表面的无机成分, 从而增强了封框胶组合物的整体韧性强度 和对基板界面的粘接强度。
本发明的实施例提供了封框胶组合物及其制备方法和显示装置, 封框胶 组合物中添加了硅烷偶联剂改性的碳纳米管, 提高了封框胶组合物内部及封 框胶组合物与基板的粘接性, 提高液晶面板成盒工艺的良率, 提高了液晶面 板的抗分离能力, 可知, 采用较少的封框胶组合物就可以达到现有技术的封 框胶组合物的粘接强度, 因此, 可以减少封框胶组合物的用量, 降低生产成 本。
发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权利要求书
1、 一种封框胶组合物, 包括:
基于所述封框胶组合物总重的质量分数为 1.7%~2.1%的硅烷偶联剂改性 的碳纳米管。
2、 如权利要求 1所述的封框胶组合物, 其中, 所述硅烷偶联剂改性的碳 纳米管为硅烷偶联剂改性的羟基化碳纳米管。
3、 如权利要求 2所述的封框胶组合物, 其中, 所述羟基化碳纳米管的外 部直径小于 100nm。
4、 如权利要求 3所述的封框胶组合物, 其中, 所述羟基化碳纳米管的外 部直径为 20~40nm。
5、 如权利要求 4所述的封框胶组合物, 其中, 所述羟基化碳纳米管外部 直径为 20~40nm, 长度为 10~30um, 羟基含量为 1.6wt%; 所述硅烷偶联剂为 曱基丙烯酰氧丙基三乙氧基硅烷。
6、 如权利要求 1~4任一项所述的封框胶组合物, 还包括:
质量分数为 10%~15%的环氧树脂、 质量分数为 60%~70%的丙烯酸树脂、 质量分数为 0.5%~1%的烷基苯酮类光引发剂、质量分数为 5%~8%的多元脂肪 胺类热固化剂、 质量分数为 5%~10%的二氧化硅微球和质量分数为 5%~8%的 树脂弹性微球, 上述质量分数是基于所述封框胶组合物的总重。
7、 如权利要求 6所述的封框胶组合物, 其中, 所述环氧树脂为双酚 A型 环氧树脂, 所述丙烯酸树脂为曱基丙烯酸树脂, 所述烷基苯酮类光引发剂为 α,α-二乙氧基苯乙酮、 α-羟烷基苯酮和 α-胺烷基苯酮中的一种或几种, 所述多 元脂肪胺类热固化剂为己二胺和二曱氨基丙胺中的一种或几种。
8、 如权利要求 6所述的封框胶组合物, 其中, 所述二氧化硅微球的直径 为 l~2um, 所述树脂弹性 球的直径为 0.1~lum。
9、 一种显示装置, 包括对盒的两个基板, 其中, 所述对盒的两个基板采 用如权利要求 1~8任一项所述的封框胶组合物进行粘接。
10、 一种封框胶组合物的制备方法, 包括:
将质量分数为 1.7%~2.1%的硅烷偶联剂改性的碳纳米管及质量分数为 10%~15%的环氧树脂、 质量分数为 60%~70%的丙烯酸树脂、 质量分数为 0.5%~1%的烷基苯酮类光引发剂、 质量分数为 5%~8%的多元脂肪胺类热固化 剂、 质量分数为 5%~10%的二氧化硅微球和质量分数为 5%~8%的树脂弹性微 球在 10~30°C的温度下搅拌 30~60分钟, 形成搅拌混合物;
将所述的搅拌混合物在 30~50°C下混炼;
将混炼后的混合物脱泡。
11、 如权利要求 10所述的封框胶组合物的制备方法, 其中, 在形成搅拌 混合物之前还包括: 将质量分数为 0.1%~0.2%的碳纳米管和质量分数为
1.5%~2%的硅烷偶联剂的混合物超声振荡 5~6小时, 形成硅烷偶联剂改性的 碳纳米管。
12、 如权利要求 10或 11所述的封框胶组合物的制备方法, 还包括: 对脱泡后的混合物进行粘度调节,在 23~25°C下,使混合物的粘度控制在 250 ± 50Pa.s。
PCT/CN2013/075899 2013-03-13 2013-05-20 封框胶组合物及其制备方法和显示装置 WO2014139212A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310079997.XA CN103173159B (zh) 2013-03-13 2013-03-13 封框胶组合物及其制备方法和显示装置
CN201310079997.X 2013-03-13

Publications (1)

Publication Number Publication Date
WO2014139212A1 true WO2014139212A1 (zh) 2014-09-18

Family

ID=48633369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075899 WO2014139212A1 (zh) 2013-03-13 2013-05-20 封框胶组合物及其制备方法和显示装置

Country Status (2)

Country Link
CN (1) CN103173159B (zh)
WO (1) WO2014139212A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10669460B2 (en) 2017-04-04 2020-06-02 3M Innovative Properties Company Epoxy-silicone hybrid sealant composition with low shrinkage and lower postcuring properties with chemical resistance for aerospace applications

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103436203B (zh) * 2013-07-08 2015-06-03 北京京东方光电科技有限公司 封框胶及其制备方法和显示装置
CN104327772B (zh) 2013-07-22 2016-10-26 北京京东方光电科技有限公司 封框胶组合物及其制备方法、液晶面板
CN103468160A (zh) * 2013-09-05 2013-12-25 北京京东方光电科技有限公司 一种改性碳纳米管功能母粒、封框胶及它们的制备方法、液晶显示面板和液晶显示器
CN103788880B (zh) * 2014-01-27 2015-08-19 北京京东方光电科技有限公司 一种封框胶组合物及其制备方法
CN104375329A (zh) * 2014-03-31 2015-02-25 中能柔性光电(滁州)有限公司 一种高密封强度的柔性液晶盒及其制造方法
CN106752701A (zh) * 2016-12-15 2017-05-31 天长市金陵电子有限责任公司 一种含改性碳纳米管的静电喷涂涂料
CN107022332A (zh) * 2017-03-29 2017-08-08 京东方科技集团股份有限公司 封框胶及其制备方法、显示面板和显示装置
KR102136705B1 (ko) * 2017-06-02 2020-07-22 주식회사 엘지화학 이액형 접착제 조성물
CN107964382A (zh) * 2017-12-27 2018-04-27 成都新柯力化工科技有限公司 一种液晶显示电路用巯基碳纳米管微球导电胶的制备方法
CN108594541B (zh) * 2018-05-04 2021-03-16 京东方科技集团股份有限公司 一种封框胶及其制备方法、液晶显示面板
CN111338137B (zh) * 2020-04-14 2022-02-22 Tcl华星光电技术有限公司 显示面板及其制作方法
CN113637428B (zh) * 2021-08-18 2022-05-10 惠科股份有限公司 封框胶及其制备方法、显示面板
CN113801613B (zh) * 2021-10-14 2022-11-25 常州邦瑞新材料科技有限公司 一种汽车用超强粘性纳米胶及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258785A (ja) * 1999-03-12 2000-09-22 Sumitomo Bakelite Co Ltd プラスティック基板液晶表示素子用シール材組成物及びそれを用いた液晶表示素子
CN1682149A (zh) * 2002-09-19 2005-10-12 三井化学株式会社 液晶密封剂组合物及使用它的液晶显示板的制造方法
JP2010072212A (ja) * 2008-09-17 2010-04-02 Kyoritsu Kagaku Sangyo Kk 液晶表示装置用シール剤組成物
CN102888199A (zh) * 2012-09-17 2013-01-23 北京京东方光电科技有限公司 封框胶及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118192A1 (ja) * 2010-03-25 2011-09-29 三井化学株式会社 液晶シール剤、それを用いた液晶表示パネルの製造方法、および液晶表示パネル

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258785A (ja) * 1999-03-12 2000-09-22 Sumitomo Bakelite Co Ltd プラスティック基板液晶表示素子用シール材組成物及びそれを用いた液晶表示素子
CN1682149A (zh) * 2002-09-19 2005-10-12 三井化学株式会社 液晶密封剂组合物及使用它的液晶显示板的制造方法
JP2010072212A (ja) * 2008-09-17 2010-04-02 Kyoritsu Kagaku Sangyo Kk 液晶表示装置用シール剤組成物
CN102888199A (zh) * 2012-09-17 2013-01-23 北京京东方光电科技有限公司 封框胶及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAO, JIE ET AL.: "Experimental study on epoxy resin adhesive modified by multi-walled carbon nanotubes", ACTAMATERIAE COMPOSITAE SINICA, vol. 28, no. 3, June 2011 (2011-06-01), pages 20 - 26 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10669460B2 (en) 2017-04-04 2020-06-02 3M Innovative Properties Company Epoxy-silicone hybrid sealant composition with low shrinkage and lower postcuring properties with chemical resistance for aerospace applications

Also Published As

Publication number Publication date
CN103173159A (zh) 2013-06-26
CN103173159B (zh) 2015-08-05

Similar Documents

Publication Publication Date Title
WO2014139212A1 (zh) 封框胶组合物及其制备方法和显示装置
CN103146310B (zh) 封框胶及其制备方法
WO2016041307A1 (zh) 基板贴合方法、触控基板、显示装置
TWI612368B (zh) 觸控顯示裝置
CN106281364B (zh) 自取向液晶介质组合物、液晶显示面板及其制作方法
CN102634286B (zh) 一种光热双重固化型异方性导电膜的制备方法
JP2014130313A (ja) タッチスクリーンモジュールのベゼル用感光性樹脂組成物及びこれから製造されたタッチスクリーンモジュール用ベゼル
TW201234079A (en) Liquid crystal display module and liquid crystal display including the same
TWM440475U (en) Touch device
JPWO2009005130A1 (ja) 接着剤組成物、接着剤組成物を用いた接着部材、半導体搭載用支持部材、半導体装置とそれらの製造方法
CN104479366B (zh) 自吸附自排气硅胶、制备方法及其应用的钢化玻璃保护膜
CN103205216B (zh) 封框胶及其制备方法
CN104342058A (zh) 一种光固化异方性导电膜及其制备方法
WO2020133794A1 (zh) 窄边框显示屏的制作方法及显示装置
WO2015003468A1 (zh) 封框胶及其制备方法和含该封框胶的显示装置
CN103788880A (zh) 一种封框胶组合物及其制备方法
CN105566917A (zh) 触摸屏贴合用光学透明树脂及贴合工艺
CN109796889A (zh) 一种3d曲面手机后盖内防爆膜及其制备方法
CN114350266A (zh) 一种液态光学胶及其制备方法和应用方法
CN105802559B (zh) 一种封框胶及其制备方法、液晶显示装置
CN109634463A (zh) 触控显示装置及其制作方法
CN103468160A (zh) 一种改性碳纳米管功能母粒、封框胶及它们的制备方法、液晶显示面板和液晶显示器
JP5238594B2 (ja) 表示素子用基板およびその製造方法
CN102566126A (zh) 柔性液晶显示器液晶盒成盒方法
CN101210169A (zh) 一种液晶密封剂组合物及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13878430

Country of ref document: EP

Kind code of ref document: A1