WO2014136417A1 - 高強度溶融亜鉛めっき鋼板およびその製造方法 - Google Patents

高強度溶融亜鉛めっき鋼板およびその製造方法 Download PDF

Info

Publication number
WO2014136417A1
WO2014136417A1 PCT/JP2014/001108 JP2014001108W WO2014136417A1 WO 2014136417 A1 WO2014136417 A1 WO 2014136417A1 JP 2014001108 W JP2014001108 W JP 2014001108W WO 2014136417 A1 WO2014136417 A1 WO 2014136417A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
dip galvanized
hot
oxide
galvanized steel
Prior art date
Application number
PCT/JP2014/001108
Other languages
English (en)
French (fr)
Inventor
洋一 牧水
善継 鈴木
長滝 康伸
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP14760750.1A priority Critical patent/EP2942419A4/en
Priority to MX2015011581A priority patent/MX2015011581A/es
Priority to KR1020157027224A priority patent/KR101752077B1/ko
Priority to US14/772,468 priority patent/US20160017471A1/en
Priority to CN201480011994.5A priority patent/CN105026599B/zh
Publication of WO2014136417A1 publication Critical patent/WO2014136417A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0478Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • C23C8/14Oxidising of ferrous surfaces

Definitions

  • the present invention relates to a high-strength hot-dip galvanized steel sheet using a high-strength steel sheet containing Si, Mn and B as a base material and a method for producing the same.
  • hot dip galvanized steel sheets use thin steel sheets obtained by hot-rolling or cold-rolling slabs as the base material, and the base steel sheets are recrystallized and annealed in a CGL annealing furnace, and then hot-dip galvanized. Manufactured. Further, the alloyed hot-dip galvanized steel sheet is manufactured by further alloying after hot-dip galvanizing.
  • Si or Mn is effective.
  • Si and Mn are oxidized even in a reducing N 2 + H 2 gas atmosphere where Fe oxidation does not occur (reducing Fe oxide), and Si or Mn oxide is formed on the outermost surface of the steel sheet.
  • reducing Fe oxide reducing Fe oxide
  • the oxides of Si and Mn reduce the wettability between the molten zinc and the underlying steel sheet during the plating process, non-plating frequently occurs in steel sheets to which Si or Mn is added. In addition, even when non-plating is not achieved, there is a problem that plating adhesion is poor.
  • Patent Document 1 discloses a method of performing reduction annealing after forming a steel sheet surface oxide film.
  • Patent Document 1 the effect cannot be stably obtained.
  • Patent Documents 2 to 8 the oxidation rate and reduction amount are regulated, the oxide film thickness in the oxidation zone is measured, and the oxidation conditions and reduction conditions are controlled from the measurement results to stabilize the effect.
  • Such a technique is disclosed.
  • Patent Document 9 describes an alloyed hot dip galvanized steel sheet of an oxide containing Si present in a plating layer and in a ground iron. It defines the content rate.
  • patent document 10 about the hot dip galvanized steel plate and the alloyed hot dip galvanized steel plate, the content rate of the oxide containing Si which exists in a plating layer and a ground iron is prescribed
  • patent document 11 the amount of Si and Mn which exist as an oxide in a plating layer are prescribed
  • Japanese Patent Laid-Open No. 55-122865 JP-A-4-202630 Japanese Patent Laid-Open No. 4-202631 Japanese Patent Laid-Open No. 4-202632 JP-A-4-202633 Japanese Patent Laid-Open No. 4-254531 JP-A-4-254532 JP-A-7-34210 JP 2006-233333 A Japanese Patent Laid-Open No. 2007-21112 JP 2008-184642 A
  • Patent Documents 9 to 11 Although good fatigue resistance can be obtained with a hot-dip galvanized steel sheet that is not subjected to alloying treatment, it is sufficient for the alloyed hot-dip galvanized steel sheet that has been subjected to alloying treatment. It was found that fatigue resistance characteristics may not be obtained. In Patent Documents 9 and 10, the wettability of plating and phosphate treatment are improved, and fatigue resistance characteristics are not considered.
  • the present invention has been made in view of such circumstances, and provides a high-strength hot-dip galvanized steel sheet excellent in plating adhesion using a high-strength steel sheet containing Si, Mn and B as a base material and a method for producing the same. For the purpose. Furthermore, it aims at providing the high strength hot-dip galvanized steel plate which performed the alloying process excellent in the fatigue resistance, and its manufacturing method.
  • the addition of solid solution strengthening elements such as Si and Mn is effective for increasing the strength of steel. It is also known that the addition of B improves the hardenability of the steel and can obtain a good balance between strength and ductility even in high-strength steel. Particularly for high-strength steel sheets used for automobile applications, since press forming is required, there is a great demand for improving the balance between strength and ductility. However, it has been found that when B is contained in steel in addition to Si, the oxidation reaction of Si on the steel sheet surface is promoted in the annealing process.
  • the surface temperature of Si can be controlled by controlling the heating temperature in the oxidation treatment and the oxygen concentration of the atmosphere by the contents of Si and B.
  • a sufficient amount of iron oxide to suppress oxidation can be formed, and as a result, a high-strength hot-dip galvanized steel sheet with stable quality and good plating adhesion can be obtained without non-plating. I understood.
  • a high-strength hot-dip galvanized steel sheet that undergoes an oxidation treatment at a heating temperature T ° C. that satisfies the following formula for steel containing Si, Mn, and B, followed by reduction annealing and hot-dip galvanizing treatment Manufacturing method.
  • the component composition of the steel is, by mass%, C: 0.01 to 0.20%, Si: 0.1 to 2.0%, Mn: 1.0 to 3.0%, B: 0
  • oxides of oxides of 0.05 g / m 2 or more and Mn in the amount of Si in terms is included 0.05 g / m 2 or more in the amount of Mn in terms, high-strength galvanized steel sheet.
  • oxides of Si from the steel sheet surface layer of the under plating layer in the steel sheet 5 ⁇ m is 0 in the amount of Si in terms .01g / m 2 oxides of less and Mn is 0.01 g / m 2 or less in the amount of Mn in terms, high-strength galvanized steel sheet.
  • the high strength in the present invention is a steel plate having a tensile strength TS of 440 MPa or more.
  • the high-strength hot-dip galvanized steel sheet of the present invention includes both cold-rolled steel sheets and hot-rolled steel sheets.
  • a steel plate in which zinc is plated on the steel plate by a hot dipping treatment is generically called a hot dip galvanized steel plate. That is, the hot-dip galvanized steel sheet in the present invention includes both hot-dip galvanized steel sheets that have not been subjected to alloying treatment and galvannealed steel sheets that have been subjected to alloying treatment.
  • a high-strength hot-dip galvanized steel sheet having excellent plating adhesion using a high-strength steel sheet containing Si, Mn and B as a base material.
  • a high-strength hot-dip galvanized steel sheet that has been subjected to alloying treatment is also excellent in fatigue resistance.
  • FIG. 1 is a diagram showing the relationship between the oxidation furnace outlet temperature and the heating temperature obtained by the equation (1).
  • the annealing conditions before the hot dip galvanizing treatment are changed, Si and Mn are oxidized inside the steel sheet, and the oxidation on the steel sheet surface is prevented, thereby improving the plating property. It was found that the reactivity can be increased and the plating adhesion can be improved.
  • oxidation treatment is performed before the annealing process, and then reduction annealing, hot dipping, and alloying treatment are performed as necessary. It was found that it is effective and that it is necessary to obtain a certain amount or more of iron oxide by oxidation treatment.
  • oxidation is suppressed by an increase in Si content, so that it becomes difficult to obtain a necessary oxidation amount.
  • B contained it turned out that the oxidation on the steel plate surface of Si in an annealing process is accelerated
  • the oxidation furnace exit side temperature that is, the temperature reached by heating and the oxygen concentration in the atmosphere were regulated by the contents of Si and B, and appropriate oxidation treatment was performed to obtain the necessary oxidation amount.
  • FIG. 1 shows a comparison between the oxidation furnace outlet temperature described in Table 1 and the heating temperature obtained using the above formula (1).
  • a correlation coefficient R 2 is about 0.98, it is seen that very high correlation is observed.
  • the coefficient related to the B content is a very large value, and although B is a trace amount added element, the influence thereof is great, and it can be seen that it is a particularly important factor in determining the oxidation conditions.
  • the oxidation treatment is performed at the heating temperature T that satisfies the above formula (1).
  • the present invention is characterized by the fact that the oxidation condition considering the influence of B is defined, and is an important requirement. And it heats up with an oxidation furnace to the temperature which satisfy
  • the Fe oxide is peeled off in the reducing atmosphere furnace in the subsequent reduction annealing step, which causes pickup, so the heating temperature T when performing the oxidation treatment is 850 ° C. or lower. It is preferable. Moreover, if the heating attainment temperature satisfying the formula (1) is reached, iron oxide is formed on the surface of the steel plate, so that it is not necessary to maintain at that temperature. However, when heated at an extremely high temperature increase rate, before the necessary iron oxide is formed, the process proceeds to the subsequent reduction annealing step. Therefore, the average temperature increase rate during the oxidation treatment is 50 ° C. / Sec or less is preferable. On the other hand, from the viewpoint of production efficiency, the average temperature rising rate during the oxidation treatment is preferably 1 ° C./sec or more.
  • the atmosphere of the oxidation furnace during the oxidation treatment controls the oxygen concentration as described above.
  • the oxygen concentration during the oxidation treatment satisfies the formula (1), and the oxygen concentration is preferably 0.05% or more. If it is less than 0.05%, a sufficient amount of iron oxide may not be obtained even if the formula (1) is satisfied, and 0.05% or more is preferable in order to stably obtain a sufficient amount of iron oxide.
  • N 2 , CO, CO 2 , H 2 O, unavoidable impurities, and the like are included in the atmosphere, a sufficient effect can be obtained as long as the oxygen concentration and temperature are within the specified range. .
  • the type of oxidation furnace for performing the oxidation treatment is not particularly limited, but it is preferable to use a direct-fired heating furnace equipped with a direct-fire burner.
  • a direct fire burner heats a steel sheet by directly applying a burner flame, which is burned by mixing fuel such as coke oven gas (COG), which is a by-product gas of an ironworks, and air, to the surface of the steel sheet.
  • COG coke oven gas
  • the direct fire burner has an advantage that the furnace length of the heating furnace can be shortened and the line speed can be increased because the heating rate of the steel sheet is faster than that of the radiation type heating.
  • the direct fire burner has an air ratio of 0.95 or higher and the ratio of air to fuel is increased, unburned oxygen remains in the flame, and the oxygen can promote oxidation of the steel sheet. Therefore, the oxygen concentration in the atmosphere can be controlled by adjusting the air ratio.
  • COG, liquefied natural gas (LNG), etc. can be used for the fuel of an open fire burner.
  • the steel sheet After the steel sheet is subjected to the oxidation treatment as described above, it is subjected to reduction annealing.
  • the conditions for the reduction annealing are not limited, it is preferable that the atmospheric gas introduced into the annealing furnace contains 1 to 20% by volume of H 2 in general and the balance is N 2 and inevitable impurities.
  • H 2 volume% of the atmospheric gas When the H 2 volume% of the atmospheric gas is less than 1 volume%, H 2 is insufficient to reduce the iron oxide on the steel sheet surface. If it exceeds 20% by volume, the reduction of Fe oxide is saturated, and excess H 2 is wasted.
  • the dew point exceeds 0 ° C., oxidation by H 2 O in the furnace becomes remarkable and excessive internal oxidation of Si occurs. Therefore, the dew point is preferably 0 ° C.
  • the reduction annealing is preferably performed in the range of the steel plate temperature from 700 ° C. to 900 ° C. from the viewpoint of material adjustment.
  • the soaking time is preferably 10 seconds to 300 seconds.
  • hot dip galvanizing is performed.
  • the hot dip galvanizing treatment is performed by using a plating bath having a dissolved Al amount of 0.12 to 0.22 mass% when the alloying treatment of the plating layer is not performed, and when the alloying treatment is performed after the hot dip galvanizing.
  • a plating bath having a dissolved Al amount of 08 to 0.18 mass% the steel sheet is infiltrated into the plating bath at a plate temperature of 440 to 550 ° C., and the adhesion amount is adjusted by gas wiping or the like.
  • the temperature of the hot dip galvanizing bath may be in the normal range of 440 to 500 ° C.
  • the degree of alloying (Fe% in the film) should be 7 to 15% by mass. If it is less than 7% by mass, unevenness in alloying will occur and the appearance will deteriorate, or the so-called ⁇ phase will be generated and the slidability will deteriorate. If it exceeds 15 mass%, a large amount of hard and brittle ⁇ phase is formed, and the plating adhesion deteriorates.
  • the high-strength hot-dip galvanized steel sheet of the present invention is manufactured.
  • the high-strength hot-dip galvanized steel sheet manufactured by the above manufacturing method will be described.
  • the unit of the content of each element of the steel component composition and the unit of the content of each element of the plating layer component composition are “mass%”, and are simply represented by “%” unless otherwise specified.
  • C 0.01 to 0.20% C makes it easy to improve workability by forming martensite or the like as a steel structure. For that purpose, 0.01% or more is preferable. On the other hand, if it exceeds 0.20%, the weldability deteriorates. Therefore, the C content is preferably 0.01% or more and 0.20% or less.
  • Si 0.1-2.0% Si is an element effective for strengthening steel and obtaining a good material. If Si is less than 0.1%, an expensive alloy element is required to obtain high strength, which is not economically preferable. On the other hand, if it exceeds 2.0%, the heating attainment temperature that satisfies the above-described formula (1) becomes high, and thus problems in operation may occur. Therefore, the Si content is preferably 0.1% or more and 2.0% or less.
  • Mn 1.0 to 3.0% Mn is an element effective for increasing the strength of steel. In order to ensure mechanical properties and strength, it is preferable to contain 1.0% or more. On the other hand, if it exceeds 3.0%, it may be difficult to ensure the weldability and strength ductility balance. Therefore, the amount of Mn is preferably 1.0% or more and 3.0% or less.
  • B 0.0005 to 0.005%
  • B is an element effective for improving the hardenability of steel. If it is less than 0.0005%, it is difficult to obtain a quenching effect. If it exceeds 0.005%, the temperature on the outlet side of the oxidation furnace that satisfies the above-described formula (1) becomes high, and thus an operational problem may occur. Therefore, the B content is preferably 0.0005% or more and 0.005% or less.
  • Al 0.01 to 0.1%
  • Mo 0.05 to 1.0%
  • Nb 0.005 to 0.05%
  • Ti 0.005 Requires one or more elements selected from -0.05%
  • Cu 0.05-1.0%
  • Ni 0.05-1.0%
  • Cr 0.01-0.8% It may be added depending on.
  • Al is most easily oxidized thermodynamically, it is oxidized prior to Si and Mn, thereby suppressing the oxidation of Si and Mn on the surface of the steel sheet and promoting the oxidation inside the steel sheet. This effect is obtained at 0.01% or more. If it exceeds 0.1%, the cost increases. Therefore, the Al content is preferably 0.01% or more and 0.1% or less.
  • the Mo content is less than 0.05%, it is difficult to obtain the effect of adjusting the strength and the effect of improving the plating adhesion at the time of composite addition with Nb, Ni or Cu. On the other hand, if it exceeds 1.0%, cost increases. Therefore, the Mo amount is preferably 0.05% or more and 1.0% or less.
  • the Nb content is preferably 0.005% or more and 0.05% or less.
  • the Ti content is less than 0.005%, the effect of adjusting the strength is difficult to obtain. If it exceeds 0.05%, the plating adhesion may be deteriorated. Therefore, the Ti content is preferably 0.005% or more and 0.05% or less.
  • Cu is less than 0.05%, it is difficult to obtain the effect of promoting the formation of the residual ⁇ phase and the effect of improving the plating adhesion when combined with Ni or Mo. On the other hand, if it exceeds 1.0%, the cost may increase. Therefore, Cu is preferably 0.05% or more and 1.0% or less.
  • Ni is less than 0.05%, it is difficult to obtain the effect of promoting the formation of the residual ⁇ phase and the effect of improving the plating adhesion upon the combined addition of Cu and Mo. On the other hand, if it exceeds 1.0%, the cost may increase. Therefore, Ni is preferably 0.05% or more and 1.0% or less.
  • the Cr content is preferably 0.01% or more and 0.8% or less.
  • the remainder other than the above is Fe and inevitable impurities.
  • hot-dip galvanized steel sheets are annealed in a reducing atmosphere in a continuous annealing facility, and then immersed in a galvanizing bath, galvanized, and then pulled up from the galvanized bath and coated with a gas wiping nozzle. It is manufactured by adjusting. Further, it is manufactured by subjecting the plating layer to alloying treatment in an alloying heating furnace as required. In order to increase the strength of the hot dip galvanized steel sheet, it is effective to add Si, Mn, B, etc. to the steel as described above.
  • the added Si, Mn is added to the steel sheet surface.
  • Si and Mn are oxidized inside a steel plate by oxidation treatment before reduction annealing on the oxidation conditions according to Si and B content, and the oxidation on the steel plate surface is prevented.
  • the plating property is improved, the reactivity between the plating and the steel plate can be increased, and the plating adhesion can be improved.
  • the internal oxide composed of oxides of Si and Mn formed during reduction annealing remains in the steel sheet under the plating layer.
  • the internal oxide is dispersed in the plating layer. Therefore, in the hot-dip galvanized steel sheet without alloying treatment, the amount of internal oxide in the surface layer of the steel sheet under the plating layer is improved, and in the hot-dip galvanized steel sheet subjected to alloying treatment, the amount of internal oxide contained in the plating layer is improved in plating adhesion. It is thought to be related.
  • the present inventors pay attention to the oxides present in the steel sheet under the plating layer and the oxides present in the plating layer, and the oxides of Si and Mn contained therein, and the plating adhesion The relationship was investigated. As a result, in the hot dip galvanized steel sheet that is not subjected to alloying treatment, the oxides of Si and Mn contained in the 5 ⁇ m steel sheet from the surface layer of the steel sheet under the plating layer, It has been found that when the Si oxide and Mn oxide contained in the plating layer are each 0.05 g / m 2 or more, the plating adhesion is excellent.
  • the effect on each 1.0 g / m 2 exceeds is saturated, 1.0 g / m 2 or less.
  • the oxide of Si is 0.05 g / m 2 or more and 0.05 g / m 2 or more that in the Si amount conversion, the oxides of Mn 0.05 g / m 2 or more, Mn amount It is 0.05 g / m 2 or more in terms of conversion.
  • the oxide of Si and the oxide of Mn can be quantified by the method of Examples described later.
  • the fatigue resistance is closely related to the oxides of Si and Mn existing in the surface layer of the steel sheet under the plating layer. From the surface layer of the steel plate under the plating layer, it was found that the fatigue resistance is improved when the oxide of Si and the oxide of Mn contained in the 5 ⁇ m steel plate are each 0.01 g / m 2 or less.
  • the mechanism by which the fatigue resistance is improved by controlling the oxide present in the steel plate under the coating layer of the hot-dip galvanized steel sheet that has been subjected to alloying treatment is not clear, but the oxide present in this region is due to fatigue. It is thought that this is the starting point of the crack that occurs.
  • the Si amount and Mn amount of the oxide existing in the 5 ⁇ m steel plate from the steel plate surface layer satisfy 0.01 g / m 2 or less, the cracks generated in the plating layer propagate to the inside of the steel plate. It is thought that the fatigue resistance is improved.
  • the manufacturing method for realizing the state of the oxide as described above is not particularly limited, it is possible to control the steel plate temperature and the processing time in the alloying process.
  • the alloying temperature is low or the processing time is short, the progress of the alloying reaction of Fe—Zn from the interface between the plating layer and the steel sheet is insufficient, so that the oxide remaining on the steel sheet surface layer increases. Therefore, it is necessary to secure an alloying temperature and a processing time for obtaining a sufficient Fe—Zn alloying reaction.
  • the heat treatment is preferably performed at an alloying temperature of 460 to 600 ° C. and a treatment time of 10 to 60 seconds.
  • the hot dip galvanized steel sheet not subjected to alloying treatment, even when the Si amount and Mn amount of the oxide contained in the 5 ⁇ m steel plate from the surface layer of the steel plate under the plating layer are 0.01 g / m 2 or more, respectively. Good fatigue resistance can be obtained.
  • the plated layer is not alloyed and is substantially made of zinc, so that it is more ductile than the plated layer of the galvannealed steel sheet. For this reason, since no cracks are generated even when a tensile stress is applied, it is considered that the influence of oxides existing in the steel plate under the plating layer does not appear.
  • a slab obtained by melting steel having chemical components shown in Table 2 was hot-rolled, pickled, and then cold-rolled to obtain a cold-rolled steel sheet having a thickness of 1.2 mm.
  • the CGL having a DFF type oxidation furnace was appropriately changed in the oxidation furnace outlet side temperature, and the cold-rolled steel sheet was heated for oxidation treatment.
  • the direct flame burner used COG as the fuel, and adjusted the oxygen concentration in the atmosphere by adjusting the air ratio.
  • the oxidation furnace steel sheet temperature was measured with a radiation thermometer.
  • reduction annealing is performed at 850 ° C. for 20 s, and after hot-dip plating is performed in a 460 ° C. galvanizing bath in which the Al addition amount is adjusted to 0.19%, the basis weight is about 50 g / m by gas wiping. Adjusted to 2 .
  • the oxides of Si and Mn contained in the 5 ⁇ m steel sheet were quantified from the surface layer of the steel sheet below the plating layer, and the appearance and plating adhesion were evaluated. Furthermore, the tensile properties and fatigue resistance properties were investigated.
  • the measurement method and the evaluation method are shown below. Quantitative determination of oxide of Si and oxide of Mn After dissolving the plated layer of the hot-dip galvanized steel sheet obtained above with hydrochloric acid containing an inhibitor, 5 ⁇ m was dissolved from the surface layer of the steel sheet in a non-aqueous solution by constant current electrolysis. . The obtained oxide residue was filtered with a Nuclepore filter having a diameter of 50 nm, and then the oxide trapped on the filter was subjected to ICP analysis after alkali melting to determine Si and Mn.
  • Fatigue resistance test Stress ratio R Performed under the condition of 0.05, the fatigue limit (FL) was determined at 10 7 repetitions, the durability ratio (FL / TS) was determined, and a value of 0.60 or more was judged to be good fatigue resistance characteristics did.
  • the stress ratio R is a value defined by (minimum repeated stress) / (maximum repeated stress).
  • the hot-dip galvanized steel sheet (invention example) produced by the method of the present invention has excellent plating adhesion and good plating appearance despite being a high-strength steel containing Si, Mn and B. There is also good fatigue resistance.
  • the hot-dip galvanized steel sheet (comparative example) manufactured outside the scope of the present invention is inferior in any one or more of plating adhesion and plating appearance.
  • a slab obtained by melting steel having chemical components shown in Table 2 was hot-rolled, pickled, and then cold-rolled to obtain a cold-rolled steel sheet having a thickness of 1.2 mm.
  • Example 2 Thereafter, oxidation treatment and reduction annealing were performed in the same manner as in Example 1. Furthermore, after hot-dip plating was performed in a 460 ° C. zinc plating bath in which the Al addition amount was adjusted to 0.13%, the basis weight was adjusted to about 50 g / m 2 by gas wiping, and at a predetermined temperature shown in Table 4 An alloying treatment was performed for 20 to 30 seconds.
  • the Fe content in the plating layer was determined. Further, the oxides of Si and Mn contained in the 5 ⁇ m steel plate were quantified from the surface layer of the steel plate in and under the plating layer, and the appearance and plating adhesion were evaluated. Furthermore, the tensile properties and fatigue resistance properties were investigated.
  • Fe content Dissolve the plating layer of the hot-dip galvanized steel sheet obtained above with hydrochloric acid containing an inhibitor, determine the amount of plating adhesion from the mass difference before and after dissolution, and further determine the Fe content in the plating layer from the amount of Fe contained in hydrochloric acid. Asked.
  • the plating layer was dissolved in a non-aqueous solution by constant potential electrolysis, and then 5 ⁇ m from the steel sheet surface layer was dissolved in the non-aqueous solution by constant current electrolysis. After the oxide residue obtained in each dissolution step is filtered through a Nuclepore filter having a diameter of 50 nm, the oxide trapped on the filter is alkali-melted and then subjected to ICP analysis in the plating layer and below the plating layer. Quantification of Si and Mn in the oxide contained in a 5 ⁇ m steel plate from the steel plate surface layer was performed.
  • the galvannealed steel sheet produced by the method of the present invention is excellent in plating adhesion despite being a high-strength steel containing Si, Mn and B.
  • the plating appearance is also good and the fatigue resistance is also good.
  • a hot-dip galvanized steel sheet (comparative example) manufactured outside the scope of the present invention is inferior in any one or more of plating adhesion, plating appearance, and fatigue resistance.
  • the high-strength hot-dip galvanized steel sheet of the present invention is excellent in plating adhesion and fatigue resistance, and can be used as a surface-treated steel sheet for reducing the weight and strength of an automobile body itself.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

 Si、MnおよびBを含む高強度鋼板を母材としためっき密着性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法を提供する。 Si、MnおよびBを含有する鋼に対して、下式を満足する出側温度Tで酸化処理を行い、次いで、還元焼鈍、溶融亜鉛めっき処理を行う。 T≧58.65×[Si]+29440×[B]-13.59×[O]+548.1 [Si]:鋼中のSi質量% [B]:鋼中のB質量% [O]:酸化炉内雰囲気のO体積%

Description

高強度溶融亜鉛めっき鋼板およびその製造方法
 本発明は、Si、MnおよびBを含有する高強度鋼板を母材とする高強度溶融亜鉛めっき鋼板およびその製造方法に関するものである。
 近年、自動車、家電、建材等の分野において素材鋼板に防錆性を付与した表面処理鋼板、中でも防錆性に優れた溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板が使用されている。また、自動車の燃費向上および自動車の衝突安全性向上の観点から、車体材料の高強度化によって薄肉化を図り車体そのものを軽量化かつ高強度化するために、高強度鋼板の自動車への適用が促進されている。
 一般的に、溶融亜鉛めっき鋼板は、スラブを熱間圧延や冷間圧延した薄鋼板を母材として用い、母材鋼板をCGLの焼鈍炉で再結晶焼鈍し、その後、溶融亜鉛めっき処理を行い製造される。また、合金化溶融亜鉛めっき鋼板は、溶融亜鉛めっき後、さらに合金化処理を行い製造される。
 また、鋼板の強度を高めるためには、SiやMnの添加が有効である。しかし、連続焼鈍の際にSiやMnは、Feの酸化が起こらない(Fe酸化物を還元する)還元性のN+Hガス雰囲気でも酸化し、鋼板最表面にSiやMnの酸化物を形成する。SiやMnの酸化物はめっき処理時に溶融亜鉛と下地鋼板との濡れ性を低下させるため、SiやMnが添加された鋼板では不めっきが多発するようになる。また、不めっきに至らなかった場合でも、めっき密着性が悪いという問題がある。
 Siを多量に含む高強度鋼板を母材とした溶融亜鉛めっき鋼板の製造方法として、特許文献1には、鋼板表面酸化膜を形成させた後に還元焼鈍を行う方法が開示されている。しかしながら、特許文献1では効果が安定して得られない。これに対して、特許文献2~8では、酸化速度や還元量を規定したり、酸化帯での酸化膜厚を実測し、実測結果から酸化条件や還元条件を制御して効果を安定化させようとした技術が開示されている。
 また、Si、Mnを含む高強度鋼板を母材とした溶融亜鉛めっき鋼板として、特許文献9では、合金化溶融亜鉛めっき鋼板について、めっき層中および地鉄中に存在するSiを含む酸化物の含有率について規定している。また、特許文献10では、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板について、特許文献9と同様にめっき層中および地鉄中に存在するSiを含む酸化物の含有率について規定している。また、特許文献11では、めっき層中に酸化物として存在するSi量、Mn量を規定している。
特開昭55-122865号公報 特開平4-202630号公報 特開平4-202631号公報 特開平4-202632号公報 特開平4-202633号公報 特開平4-254531号公報 特開平4-254532号公報 特開平7-34210号公報 特開2006-233333号公報 特開2007-211280号公報 特開2008-184642号公報
 特許文献1~8に示されている溶融亜鉛めっき鋼板の製造方法を適用した場合、連続焼鈍において鋼板表面にSiの酸化物が形成することで、十分なめっき密着性が必ずしも得られないことが分かった。
 また、特許文献9~11に記載の製造方法では、合金化処理を行わない溶融亜鉛めっき鋼板では良好な耐疲労特性が得られるものの、合金化処理を行った合金化溶融亜鉛めっき鋼板において十分な耐疲労特性が得られない場合があることが分かった。特許文献9および10では、めっきの濡れ性やリン酸塩処理性を改善するものであり、耐疲労特性に関しては考慮されていない。
 本発明は、かかる事情に鑑みてなされたものであって、Si、MnおよびBを含む高強度鋼板を母材としためっき密着性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法を提供することを目的とする。さらには、耐疲労特性に優れた合金化処理を施した高強度溶融亜鉛めっき鋼板およびその製造方法を提供することを目的とする。
 鋼の高強度化には上述したようにSiやMn等の固溶強化元素の添加が有効である。更にBを添加することで鋼の焼入れ性を向上させ、高強度鋼においても良好な強度と延性のバランスを得ることができることも知られている。特に自動車用途に使用される高強度鋼板については、プレス成形が必要になるために強度と延性のバランスの向上に対する要求は大きい。しかしながら、Siに加えてBを鋼に含有した場合、焼鈍工程において鋼板表面でのSiの酸化反応が促進されることが分かった。
 検討を重ねた結果、Si、MnおよびBを含む高強度鋼板を母材とした場合、酸化処理における加熱到達温度と雰囲気の酸素濃度をSiとBの含有量によって制御することで、Siの表面酸化を抑制するための十分な量の鉄酸化物を形成させることができ、この結果、不めっきを伴うことなく、安定した品位でめっき密着性の良好な高強度溶融亜鉛めっき鋼板が得られることが分かった。
 また、通常、良好なめっき密着性を得るために、酸化処理を行い還元焼鈍工程後には鋼板表層の鋼板内にSiやMnの酸化物が形成する。しかし、合金化処理後にめっき層下の鋼板表層にSiやMnの酸化物が残存する場合には酸化物を起点として亀裂が進展するために耐疲労特性に劣ることが分かった。
 本発明は上記知見に基づくものであり、特徴は以下の通りである。
[1]Si、MnおよびBを含有する鋼に対して、下式を満足する加熱到達温度T℃で酸化処理を行い、次いで、還元焼鈍、溶融亜鉛めっき処理を行う、高強度溶融亜鉛めっき鋼板の製造方法。
T≧58.65×[Si]+29440×[B]-13.59×[O]+548.1
[Si]:鋼中のSi質量%
[B]:鋼中のB質量%
[O]:酸化炉内雰囲気のO体積%
[2]前記溶融亜鉛めっき処理後、更に460~600℃の温度で10~60秒間加熱する合金化処理を行う、前記[1]に記載の高強度溶融亜鉛めっき鋼板の製造方法。
[3]前記鋼の成分組成が、質量%で、C:0.01~0.20%、Si:0.1~2.0%、Mn:1.0~3.0%、B:0.0005~0.005%を含有し、残部がFeおよび不可避的不純物からなる、前記[1]または[2]に記載の高強度溶融亜鉛めっき鋼板の製造方法。
[4]前記[1]または[3]に記載の製造方法によって製造される合金化処理が行われない高強度溶融亜鉛めっき鋼板であり、めっき層下の鋼板表層から5μmの鋼板内に、Siの酸化物がSi量換算で0.05g/m以上およびMnの酸化物がMn量換算で0.05g/m以上含まれている、高強度溶融亜鉛めっき鋼板。
[5]前記[2]または[3]に記載の製造方法によって製造される合金化処理が行われる高強度溶融亜鉛めっき鋼板であり、めっき層中に、Siの酸化物がSi量換算で0.05g/m以上およびMnの酸化物がMn量換算で0.05g/m以上含まれ、さらに、めっき層下の鋼板表層から5μmの鋼板内にSiの酸化物がSi量換算で0.01g/m以下およびMnの酸化物がMn量換算で0.01g/m以下である、高強度溶融亜鉛めっき鋼板。
 なお、本発明における高強度とは、引張強度TSが440MPa以上の鋼板である。また、本発明の高強度溶融亜鉛めっき鋼板は、冷延鋼板、熱延鋼板のいずれも含むものである。また、本発明においては、合金化処理を施す、施さないにかかわらず、溶融めっき処理によって鋼板上に亜鉛をめっきした鋼板を総称して溶融亜鉛めっき鋼板と呼称する。すなわち、本発明における溶融亜鉛めっき鋼板とは、合金化処理を施していない溶融亜鉛めっき鋼板、合金化処理を施した合金化溶融亜鉛めっき鋼板いずれも含むものである。
 本発明によれば、Si、MnおよびBを含む高強度鋼板を母材としためっき密着性に優れた高強度溶融亜鉛めっき鋼板を得ることができる。また、合金化処理を行った高強度溶融亜鉛めっき鋼板にあっては、耐疲労特性にも優れることになる。
図1は、酸化炉出側温度と、式(1)により求められた加熱到達温度との関係を示した図である。
 以下、本発明について具体的に説明する。
先ず、焼鈍工程前の酸化処理について説明する。鋼板を高強度化するためには、上述したように鋼にSi、Mnなどを添加することが有効である。しかし、これらの元素を添加した鋼板は、溶融亜鉛めっき処理を施す前に実施する焼鈍過程において、鋼板表面に、Si、Mnの酸化物が生成され、Si、Mnの酸化物が鋼板表面に存在するとめっき性を確保することが困難になる。
 検討したところ、溶融亜鉛めっき処理を施す前の焼鈍条件を変化させ、SiおよびMnを鋼板内部で酸化させ、鋼板表面での酸化を防ぐことで、めっき性が向上し、更にはめっきと鋼板の反応性を高めることができ、めっき密着性を改善させることが出来ることがわかった。
 そして、SiおよびMnを鋼板内部で酸化させ、鋼板表面での酸化を防ぐためには、焼鈍工程前に酸化処理を行い、その後、還元焼鈍、溶融めっき、必要に応じて合金化処理を行うことが有効であり、さらに、酸化処理で一定量以上の鉄酸化物量を得ることが必要であることがわかった。しかしながら、Siを含有する鋼では、上記酸化処理において、Si含有量の増加によって酸化が抑制されるため、必要な酸化量を得ることが困難になる。更にBが含有した場合には、焼鈍工程でのSiの鋼板表面での酸化が促進されることも分かり、酸化処理で得られる鉄酸化物の必要量が更に増すことも分かった。
 そこで、SiおよびBの含有量によって酸化炉出側温度すなわち加熱到達温度や雰囲気中の酸素濃度を規定し、必要な酸化量を得るための適切な酸化処理を行うことを考えた。
 Si含有量およびB含有量を変化させた鋼を用いて、酸化炉内雰囲気の酸素濃度と良好なめっき密着性が得られる酸化炉出側温度を調査した。得られた結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 なお、めっき密着性の判断基準は後述する実施例と同様である。更に、重回帰解析によって、Si含有量、B含有量および酸化炉内雰囲気の酸素濃度の、酸化炉出側温度(加熱到達温度)に及ぼす影響度を解析した結果、下記式(1)が求められた。
T≧58.65×[Si]+29440×[B]-13.59×[O]+548.1 式(1)
但し、T:酸化処理における加熱到達温度℃、[Si]:鋼中のSi質量%、[B]:鋼中のB質量%、[O]:酸化炉内雰囲気のO体積%である。
 ここで、表1に記載した酸化炉出側温度と、上記式(1)を用いて求められた加熱到達温度を比較したものを図1に示す。相関係数Rは約0.98と、非常に高い相関が認められることが分かる。また、B含有量に係る係数は非常に大きな値になっており、Bは微量添加元素でありながら、その影響は大きく、酸化条件を決定する際に特に重要な因子であることが分かる。
 以上より、本発明では上記式(1)を満足する加熱到達温度Tで酸化処理を行うこととする。このように、本発明は、Bの影響を考慮した酸化条件を規定した点が最大の特徴であり、重要な要件である。そして、焼鈍工程前に上記式(1)を満足する温度まで酸化炉で昇温させる、すなわち加熱到達温度をTとすることで、SiおよびBを含む高強度鋼板で良好なめっき密着性を得ることができることになる。しかし、過度に酸化させると、次の還元焼鈍工程において還元性雰囲気炉でFe酸化物が剥離し、ピックアップの原因となるので、上記酸化処理を行う際の加熱到達温度Tは850℃以下であることが好ましい。また、式(1)を満足する加熱到達温度に達すれば、鉄酸化物は必要量鋼板表面に形成されるため、その温度で保持する必要はない。但し、極めて速い昇温速度で加熱されると必要な鉄酸化物が形成される前に、その後の還元焼鈍の工程に移ってしまうために、酸化処理を行う際の平均昇温速度は50℃/sec以下が好ましい。一方で、生産効率の観点から、酸化処理を行う際の平均昇温速度は1℃/sec以上が好ましい。
 なお、酸化処理を行う際の酸化炉の雰囲気は上述したように酸素濃度を制御する。酸化処理を行う際の酸素濃度は式(1)を満足するとともに、酸素濃度が0.05%以上であることが好ましい。0.05%未満では式(1)を満足しても十分な鉄酸化物量を得られない場合があり、安定的に十分な鉄酸化物量を得るためには0.05%以上が好ましい。ここで、雰囲気中にN、CO、CO、HOおよび不可避的不純物などが含まれていても、酸素濃度と温度が規定される範囲にあれば、十分な効果を得ることができる。
 また、酸化処理を行う酸化炉の種類は特に限定するものではないが、直火バーナを備えた直火式の加熱炉を使用することが好適である。直火バーナとは、製鉄所の副生ガスであるコークス炉ガス(COG)等の燃料と空気を混ぜて燃焼させたバーナ火炎を直接鋼板表面に当てて鋼板を加熱するものである。直火バーナは、輻射方式の加熱よりも鋼板の昇温速度が速いため、加熱炉の炉長を短くしたり、ラインスピードを速く出来る利点がある。さらに、直火バーナは空気比を0.95以上とし、燃料に対する空気の割合を多くすると、未燃の酸素が火炎中に残存し、その酸素で鋼板の酸化を促進することが可能となる。そのため、空気比を調整すれば、雰囲気の酸素濃度を制御することが可能である。また、直火バーナの燃料は、COG、液化天然ガス(LNG)等を使用できる。
 鋼板に上記のような酸化処理を施した後、還元焼鈍する。還元焼鈍の条件については限定するものではないが、焼鈍炉に導入する雰囲気ガスは、一般的な1~20体積%のHを含み、残部がNおよび不可避的不純物からなることが好ましい。雰囲気ガスのH体積%が1体積%未満では鋼板表面の鉄酸化物を還元するのにHが不足する。20体積%を超えると、Fe酸化物の還元は飽和するため、過分のHが無駄になる。また、露点が0℃超になると炉内のHOによる酸化が著しくなりSiの内部酸化が過度に起こるため、露点は0℃以下が好ましい。これにより、焼鈍炉内は、Feの還元性雰囲気となり、酸化処理で生成した鉄酸化物の還元が起こる。このとき、還元によりFeと分離された酸素が、一部鋼板内部に拡散し、SiおよびMnと反応することにより、SiおよびMnの内部酸化が起こる。SiおよびMnが鋼板内部で酸化し、溶融めっきと接触する鋼板表面のSi酸化物およびMn酸化物が減少するため、めっき密着性は良好となる。
 還元焼鈍は、材質調整の観点から、鋼板温度が700℃から900℃の範囲内で行われるのが好ましい。均熱時間は10秒から300秒が好ましい。
 還元焼鈍後、440~550℃の温度域の温度に冷却した後、溶融亜鉛めっき処理を施す。例えば、溶融亜鉛めっき処理は、めっき層の合金化処理を行わない場合は0.12~0.22質量%の溶解Al量のめっき浴を、溶融亜鉛めっき後合金化処理を行う場合は0.08~0.18質量%の溶解Al量のめっき浴を、それぞれ用いて、板温440~550℃で鋼板をめっき浴中に浸入させて行い、ガスワイピングなどで付着量を調整する。溶融亜鉛めっき浴温度は通常の440~500℃の範囲であればよく、さらに合金化処理を施す場合には鋼板を460~600℃で10~60秒間加熱して処理することが望ましい。600℃超になるとめっき密着性が劣化し、460℃未満では合金化が進行しない。
 合金化処理する場合、合金化度(皮膜中Fe%)は7~15質量%になるようにする。7質量%未満は合金化ムラが生じ外観性が劣化したり、いわゆるζ相が生成して摺動性が劣化する。15質量%超えは硬質で脆いΓ相が多量に形成しめっき密着性が劣化する。
 以上により、本発明の高強度溶融亜鉛めっき鋼板が製造される。
 次に、上記製造方法によって製造される高強度溶融亜鉛めっき鋼板について説明する。なお、以下の説明において、鋼成分組成の各元素の含有量、めっき層成分組成の各元素の含有量の単位はいずれも「質量%」であり、特に断らない限り単に「%」で示す。
 先ず好適な鋼成分組成について説明する。
C:0.01~0.20%
Cは、鋼組織として、マルテンサイトなどを形成させることで加工性を向上しやすくする。そのためには0.01%以上が好ましい。一方、0.20%を超えると溶接性が劣化する。したがって、C量は0.01%以上0.20%以下が好ましい。
 Si:0.1~2.0%
Siは鋼を強化して良好な材質を得るのに有効な元素である。Siが0.1%未満では高強度を得るために高価な合金元素が必要になり、経済的に好ましくない。一方、2.0%を超えると上述した式(1)を満足する加熱到達温度が高温になるために操業上の問題が起きる場合がある。したがって、Si量は0.1%以上2.0%以下が好ましい。
 Mn:1.0~3.0%
Mnは鋼の高強度化に有効な元素である。機械特性や強度を確保するためは1.0%以上含有させることが好ましい。一方、3.0%を超えると溶接性や強度延性バランスの確保が困難になる場合がある。したがって、Mn量は1.0%以上3.0%以下が好ましい。
 B:0.0005~0.005%
Bは鋼の焼入れ性を向上させるのに有効な元素である。0.0005%未満では焼き入れ効果が得られにくい。0.005%を超えると上述した式(1)を満足する酸化炉出側温度が高温になるために操業上の問題が起きる場合がある。したがって、B量は0.0005%以上0.005%以下が好ましい。
 なお、強度と延性のバランスを制御するため、Al:0.01~0.1%、Mo:0.05~1.0%、Nb:0.005~0.05%、Ti:0.005~0.05%、Cu:0.05~1.0%、Ni:0.05~1.0%、Cr:0.01~0.8%のうちから選ばれる元素の1種以上を必要に応じて添加してもよい。
 これらの元素を添加する場合における適正添加量の限定理由は以下の通りである。
Alは熱力学的に最も酸化しやすいため、Si、Mnに先だって酸化し、Si、Mnの鋼板表面での酸化を抑制し、鋼板内部での酸化を促進する効果がある。この効果は0.01%以上で得られる。0.1%を超えるとコストアップになる。したがって、Al量は0.01%以上0.1%以下が好ましい。
 Moは0.05%未満では強度調整の効果やNb、またはNiやCuとの複合添加時におけるめっき密着性改善効果が得られにくい。一方、1.0%超えではコストアップを招く。したがって、Mo量は0.05%以上1.0%以下が好ましい。
 Nbは0.005%未満では強度調整の効果やMoとの複合添加時におけるめっき密着性改善効果が得られにくい。一方、0.05%超えではコストアップを招く。したがって、Nb量は0.005%以上0.05%以下が好ましい。
 Tiは0.005%未満では強度調整の効果が得られにくい。0.05%超えではめっき密着性の劣化を招く場合がある。したがって、Ti量は0.005%以上0.05%以下が好ましい。
 Cuは0.05%未満では残留γ相形成促進効果やNiやMoとの複合添加時におけるめっき密着性改善効果が得られにくい。一方、1.0%超えではコストアップを招く場合がある。したがって、Cuは0.05%以上1.0%以下が好ましい。
 Niは0.05%未満では残留γ相形成促進効果やCuとMoとの複合添加時におけるめっき密着性改善効果が得られにくい。一方、1.0%超えではコストアップを招く場合がある。したがって、Niは0.05%以上1.0%以下が好ましい。
 Crは0.01%未満では焼き入れ性が得られにくく強度と延性のバランスが劣化する場合がある。一方、0.8%超えではコストアップを招く。したがって、Cr量は0.01%以上0.8%以下が好ましい。
 上記以外の残部はFeおよび不可避的不純物である。
 次に、酸化処理に引き続いて、還元焼鈍、溶融亜鉛めっき、必要に応じて合金化処理を行った後に形成されるSiおよびMnの内部酸化物について説明する。
通常、溶融亜鉛めっき鋼板は、母材鋼板を連続焼鈍設備において還元雰囲気中で焼鈍した後、亜鉛めっき浴に浸漬して亜鉛めっき処理を施し、亜鉛めっき浴から引き上げてガスワイピングノズルでめっき付着量を調整して製造される。また、更に、必要に応じて合金化加熱炉でめっき層の合金化処理を施して製造される。そして、溶融亜鉛めっき鋼板を高強度化するためには、上述したように鋼にSi、MnおよびBなどを添加することが有効であるが、焼鈍過程において、鋼板表面に、添加したSi、Mnが酸化物として生成し、良好なめっき密着性を確保することが困難になる。これに対し、本発明では、SiおよびB含有量に応じた酸化条件で還元焼鈍前に酸化処理を行うことで、SiおよびMnを鋼板内部で酸化させ、鋼板表面での酸化を防ぐ。その結果、めっき性が向上し、更にはめっきと鋼板の反応性を高めることができ、めっき密着性を改善させることが出来る。合金化処理を行わない溶融亜鉛めっき鋼板では、還元焼鈍時に形成したSiおよびMnの酸化物から成る内部酸化物はめっき層下の鋼板内に留まるが、合金化処理を施した溶融亜鉛めっき鋼板においては、めっき層と鋼板の界面からFe-Znの合金化反応が進行するために、内部酸化物は、めっき層中に分散する。よって、合金化処理を行わない溶融亜鉛めっき鋼板ではめっき層下の鋼板表層の内部酸化物量が、合金化処理を施した溶融亜鉛めっき鋼板ではめっき層中に含まれる内部酸化物量がめっき密着性に関係してくると考えられる。
 本発明者らは、めっき層下の鋼板内に存在する酸化物およびめっき層中に存在する酸化物に着目して、それぞれに含まれるSiの酸化物およびMnの酸化物と、めっき密着性の関係について調査した。その結果、合金化処理を行わない溶融亜鉛めっき鋼板ではめっき層下の鋼板表層から5μmの鋼板内に含まれるSiの酸化物およびMnの酸化物が、合金化処理を施した溶融亜鉛めっき鋼板ではめっき層中に含まれるSiの酸化物およびMnの酸化物が、それぞれ0.05g/m以上になるとめっき密着性に優れることを見出した。Siの酸化物およびMnの酸化物がそれぞれ0.05g/m未満の場合には、溶融亜鉛めっき処理を施す前の鋼板表面状態は、SiやMnの内部酸化がおこらずに鋼板表面に酸化物として濃化しており、良好なめっき密着性が得られないと考えられる。また、SiまたはMnのいずれか一方だけが、本発明の要件を満たしている場合でも、その一方の元素だけが内部酸化して、もう一方の元素は表面に濃化し、めっき性およびめっき密着性に悪影響を及すと考えられる。そのために、SiおよびMnの両方が内部酸化している必要がある。上記領域に含まれるSiの酸化物およびMnの酸化物がそれぞれ0.05g/m以上存在することが、本発明の特徴であり、重要な要件である。上記領域に含まれるSiの酸化物およびMnの酸化物の上限については特に限定しないが、それぞれ1.0g/m超えで効果が飽和するので、1.0g/m以下が好ましい。なお、Siの酸化物が0.05g/m以上とは、Si量換算で0.05g/m以上のことであり、Mnの酸化物が0.05g/m以上とは、Mn量換算で0.05g/m以上のことである。また、Siの酸化物およびMnの酸化物は、後述する実施例の方法で定量することができる。
 更に、合金化処理を施した溶融亜鉛めっき鋼板においては、耐疲労特性がめっき層下の鋼板表層に存在するSiの酸化物およびMnの酸化物と密接な関係にあることを見出した。めっき層下の鋼板表層から5μmの鋼板内に含まれるSiの酸化物およびMnの酸化物が、それぞれ0.01g/m以下の場合に、耐疲労特性が向上することがわかった。合金化処理を施した溶融亜鉛めっき鋼板のめっき層下の鋼板内に存在する酸化物を制御することで耐疲労特性が向上するメカニズムは明らかではないが、該領域に存在する酸化物は疲労によって発生するクラックの起点になっていると考えられる。そして、このようなクラックの起点になっている酸化物が存在すると、合金化処理を施した溶融亜鉛めっき鋼板はめっき層が硬く脆いために引張り応力が加わるとクラックが発生しやすくなると考えられる。このクラックはめっき表層からめっき層と鋼板の界面まで進展するが、この時にめっき層下の鋼板表層から5μmの鋼板内に酸化物が存在している場合には、酸化物が起点となり更にクラックが進展すると考えられる。一方で、鋼板表層から5μmの鋼板内に存在する酸化物のSi量およびMn量が、それぞれ0.01g/m以下を満たしていれば、めっき層に発生したクラックは鋼板の内部まで進展せずに耐疲労特性が向上すると考えられる。
 上記のような酸化物の存在状態を実現するための製造方法は特に限定はしないが、合金化処理での鋼板温度と処理時間を制御することで可能である。合金化温度が低かったり、処理時間が短い場合には、めっき層と鋼板の界面からFe-Znの合金化反応の進行が不十分なために鋼板表層に残留する酸化物が多くなってしまう。そのため、十分なFe-Znの合金化反応を得るための合金化温度、処理時間を確保することが必要である。望ましくは上述したように、合金化温度が460~600℃で処理時間が10~60秒間で加熱処理するのが好ましい。
 また、合金化処理を行わない溶融亜鉛めっき鋼板では、めっき層下の鋼板表層から5μmの鋼板内に含まれる酸化物のSi量およびMn量が、それぞれ0.01g/m以上の場合においても、良好な耐疲労特性が得られる。溶融亜鉛めっき鋼板ではめっき層は合金化しておらず、ほぼ亜鉛から成るために、合金化溶融亜鉛めっき鋼板のめっき層に比べ延性に富んでいる。そのために、引張り応力が加わった際にもクラックが発生しないために、めっき層下の鋼板内に存在する酸化物の影響が表れないと考えられる。
 表2に示す化学成分の鋼を溶製して得た鋳片を熱間圧延、酸洗後、冷間圧延によって板厚1.2mmの冷延鋼板とした。
Figure JPOXMLDOC01-appb-T000002
 その後、DFF型酸化炉を有するCGLで酸化炉出側温度を適宜変更して上記冷延鋼板を加熱し酸化処理を行った。直火バーナは燃料にCOGを使用し、空気比を調整することで雰囲気の酸素濃度を調整した。酸化炉出側鋼板温度は放射温度計で測定した。次いで、還元帯で、850℃、20sで還元焼鈍し、Al添加量を0.19%に調整した460℃の亜鉛めっき浴で溶融めっきを施した後、ガスワイピングで目付け量を約50g/mに調整した。
 以上により得られた溶融亜鉛めっき鋼板について、めっき層下の鋼板表層から5μmの鋼板内に含まれるSiの酸化物およびMnの酸化物の定量を行うとともに、外観性およびめっき密着性について評価した。更に、引張特性、耐疲労特性について調査した。
 以下に、測定方法および評価方法を示す。
Siの酸化物およびMnの酸化物の定量
上記により得られた溶融亜鉛めっき鋼板のめっき層をインヒビターを含んだ塩酸によって溶解させた後に、非水溶液中で鋼板表層から5μmを定電流電解によって溶解した。得られた酸化物の残渣を50nmの径を有するニュークリポアフィルターでろ過した後に、フィルターに捕捉された酸化物をアルカリ融解後にICP分析し、SiおよびMnの定量を行った。
 外観性
不めっきなどの外観不良が無い場合は外観良好(記号○)、ある場合は外観不良(記号×)と判定した。
 めっき密着性
ボールインパクト試験を行い、加工部をテープ剥離し、めっき層の剥離有無を目視判定した。
○:めっき層の剥離無し
×:めっき層が剥離
 引張特性
圧延方向を引張方向としてJIS5号試験片を用いてJISZ2241に準拠した方法で行った。
 耐疲労試験
応力比R:0.05の条件で行い、繰り返し数10で疲労限(FL)を求め、耐久比(FL/TS)を求め、0.60以上の値が良好な耐疲労特性と判断した。なお、応力比Rとは、(最少繰り返し応力)/(最大繰り返し応力)で定義されている値である。
 以上により得られた結果を製造条件と併せて表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3より、本発明法で製造された溶融亜鉛めっき鋼板(発明例)は、Si、MnおよびBを含有する高強度鋼であるにもかかわらず、めっき密着性に優れ、めっき外観も良好であり、耐疲労特性も良好である。一方、本発明法の範囲外で製造された溶融亜鉛めっき鋼板(比較例)は、めっき密着性、めっき外観のいずれか一つ以上が劣る。
 表2に示す化学成分の鋼を溶製して得た鋳片を熱間圧延、酸洗後、冷間圧延によって板厚1.2mmの冷延鋼板とした。
 その後、実施例1と同様な方法で酸化処理および還元焼鈍を実施した。さらに、Al添加量を0.13%に調整した460℃の亜鉛めっき浴で溶融めっきを施した後、ガスワイピングで目付け量を約50g/mに調整し、表4に示す所定の温度で20~30秒の合金化処理を施した。
 以上により得られた溶融亜鉛めっき鋼板について、めっき層中のFe含有量を求めた。更にめっき層中およびめっき層下の鋼板表層から5μmの鋼板内に含まれるSiの酸化物およびMnの酸化物の定量を行うとともに、外観性およびめっき密着性について評価した。さらに、引張特性、耐疲労特性について調査した。
 以下に、測定方法および評価方法を示す。
Fe含有量(Fe含有率)
上記により得られた溶融亜鉛めっき鋼板のめっき層をインヒビターを含んだ塩酸によって溶解させ、溶解前後の質量差からめっき付着量を求め、さらに塩酸に含まれるFe量からめっき層中のFe含有率を求めた。
 Siの酸化物およびMnの酸化物の定量
非水溶液中でめっき層を定電位電解によって溶解させ、更にその後、非水溶液中で鋼板表層から5μmを定電流電解によって溶解した。それぞれの溶解工程で得られた酸化物の残渣を50nmの径を有するニュークリポアフィルターでろ過した後に、フィルターに捕捉された酸化物をアルカリ融解後にICP分析によって、めっき層中、およびめっき層下の鋼板表層から5μmの鋼板内に含まれる酸化物中のSiおよびMnの定量を行った。
 外観性
合金化処理後の外観を目視観察し、合金化ムラ、不めっきがないものを○、合金化ムラや不めっきがあるものは×とした。
 めっき密着性
めっき鋼板にセロテープ(登録商標)を貼りテープ面を90°曲げ曲げ戻しをしたときの単位長さ当たりの剥離量を蛍光X線によりZnカウント数を測定し、下記の基準に照らしてランク1~3のものを良好(○)、4以上のものを不良(×)と評価した。
蛍光X線カウント数     ランク
0-500未満        :1(良)
500-1000未満  :2
1000-2000未満:3
2000-3000未満:4
3000以上          :5(劣)
 引張り特性および耐疲労特性は実施例1と同様な方法で評価した。
 以上により得られた結果を製造条件と併せて表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4から明らかなように、本発明法で製造された合金化溶融亜鉛めっき鋼板(発明例)は、Si、MnおよびBを含有する高強度鋼であるにもかかわらずめっき密着性に優れ、めっき外観も良好であり、耐疲労特性も良好である。一方、本発明法の範囲外で製造された溶融亜鉛めっき鋼板(比較例)は、めっき密着性、めっき外観、耐疲労特性のいずれか一つ以上が劣る。
 本発明の高強度溶融亜鉛めっき鋼板は、めっき密着性および耐疲労特性に優れ、自動車の車体そのものを軽量化かつ高強度化するための表面処理鋼板として利用することができる。

Claims (5)

  1.  Si、MnおよびBを含有する鋼に対して、下式を満足する加熱到達温度T℃で酸化処理を行い、次いで、還元焼鈍、溶融亜鉛めっき処理を行う、高強度溶融亜鉛めっき鋼板の製造方法。
    T≧58.65×[Si]+29440×[B]-13.59×[O]+548.1
    [Si]:鋼中のSi質量%
    [B]:鋼中のB質量%
    [O]:酸化炉内雰囲気のO体積%
  2.  前記溶融亜鉛めっき処理後、更に460~600℃の温度で10~60秒間加熱する合金化処理を行う、請求項1に記載の高強度溶融亜鉛めっき鋼板の製造方法。
  3.  前記鋼の成分組成が、質量%で、C:0.01~0.20%、Si:0.1~2.0%、Mn:1.0~3.0%、B:0.0005~0.005%を含有し、残部がFeおよび不可避的不純物からなる、請求項1または2に記載の高強度溶融亜鉛めっき鋼板の製造方法。
  4.  請求項1または3に記載の製造方法によって製造される合金化処理が行われない高強度溶融亜鉛めっき鋼板であり、
    めっき層下の鋼板表層から5μmの鋼板内に、Siの酸化物がSi量換算で0.05g/m以上およびMnの酸化物がMn量換算で0.05g/m以上含まれている、高強度溶融亜鉛めっき鋼板。
  5.  請求項2または3に記載の製造方法によって製造される合金化処理が行われる高強度溶融亜鉛めっき鋼板であり、
    めっき層中に、Siの酸化物がSi量換算で0.05g/m以上およびMnの酸化物がMn量換算で0.05g/m以上含まれ、
    さらに、めっき層下の鋼板表層から5μmの鋼板内に、Siの酸化物がSi量換算で0.01g/m以下およびMnの酸化物がMn量換算で0.01g/m以下である、高強度溶融亜鉛めっき鋼板。
PCT/JP2014/001108 2013-03-05 2014-02-28 高強度溶融亜鉛めっき鋼板およびその製造方法 WO2014136417A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14760750.1A EP2942419A4 (en) 2013-03-05 2014-02-28 HIGH-STRENGTH HOT-DIP GALVANIZED STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME
MX2015011581A MX2015011581A (es) 2013-03-05 2014-02-28 Lamina de acero galvanizada de alta resistencia y metodo para la produccion de la misma.
KR1020157027224A KR101752077B1 (ko) 2013-03-05 2014-02-28 고강도 용융 아연 도금 강판 및 그 제조 방법
US14/772,468 US20160017471A1 (en) 2013-03-05 2014-02-28 High-strength galvanized steel sheet and production method therefor
CN201480011994.5A CN105026599B (zh) 2013-03-05 2014-02-28 高强度熔融镀锌钢板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013042854A JP5920249B2 (ja) 2013-03-05 2013-03-05 めっき密着性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP2013-042854 2013-03-05

Publications (1)

Publication Number Publication Date
WO2014136417A1 true WO2014136417A1 (ja) 2014-09-12

Family

ID=51490953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001108 WO2014136417A1 (ja) 2013-03-05 2014-02-28 高強度溶融亜鉛めっき鋼板およびその製造方法

Country Status (7)

Country Link
US (1) US20160017471A1 (ja)
EP (1) EP2942419A4 (ja)
JP (1) JP5920249B2 (ja)
KR (1) KR101752077B1 (ja)
CN (1) CN105026599B (ja)
MX (1) MX2015011581A (ja)
WO (1) WO2014136417A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195946A1 (ja) * 2019-03-22 2020-10-01 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板及びその製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6237937B2 (ja) * 2016-03-11 2017-11-29 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法
CN106191663B (zh) * 2016-08-26 2018-05-01 武汉钢铁有限公司 一种屈服强度为280MPa级的铁-锌镀层钢板及生产方法
CN106119714B (zh) * 2016-08-26 2018-08-07 武汉钢铁有限公司 一种屈服强度为310MPa级的铁-锌镀层钢板及生产方法
CN106086633B (zh) * 2016-08-26 2018-05-01 武汉钢铁有限公司 一种屈服强度为210MPa级的铁-锌镀层钢板及生产方法
CN106222541B (zh) * 2016-08-26 2018-06-08 武汉钢铁有限公司 一种屈服强度为250MPa级的铁-锌镀层钢板及生产方法
CN106367690A (zh) * 2016-08-31 2017-02-01 宁波耐可邦制冷配件有限公司 一种制冷压缩机用滚动活塞及其制造方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122865A (en) 1979-03-12 1980-09-20 Nippon Steel Corp Molten zinc plating method for difficult plating steel sheet
JPH04202632A (ja) 1990-11-30 1992-07-23 Nippon Steel Corp 高Si含有鋼の高張力溶融亜鉛めっき鋼板の製造方法
JPH04202630A (ja) 1990-11-30 1992-07-23 Nippon Steel Corp めっき密着性の良好な高Si含有高張力溶融亜鉛めっき鋼板の製造方法
JPH04202631A (ja) 1990-11-30 1992-07-23 Nippon Steel Corp P含有高張力合金化溶融亜鉛めっき鋼板の製造方法
JPH04202633A (ja) 1990-11-30 1992-07-23 Nippon Steel Corp 高Si含有高張力溶融亜鉛めっき鋼板の製造方法
JPH04254531A (ja) 1991-02-01 1992-09-09 Nippon Steel Corp 高Si含有高張力鋼の溶融亜鉛めっき前の焼鈍方法
JPH04254532A (ja) 1991-02-01 1992-09-09 Nippon Steel Corp 加工性の優れた合金化溶融亜鉛めっき鋼板の製造方法
JPH0734210A (ja) 1993-07-14 1995-02-03 Kawasaki Steel Corp 高張力溶融または合金化溶融亜鉛めっき鋼板の製造方法
JP2006233333A (ja) 2005-01-31 2006-09-07 Nippon Steel Corp 外観が良好な高強度合金化溶融亜鉛めっき鋼板及びその製造方法と製造設備
JP2007211280A (ja) 2006-02-08 2007-08-23 Nippon Steel Corp 成形性と穴拡げ性に優れた高強度溶融亜鉛めっき鋼板と高強度合金化溶融亜鉛めっき鋼板及び高強度溶融亜鉛めっき鋼板の製造方法並びに高強度合金化溶融亜鉛めっき鋼板の製造方法
JP2008184642A (ja) 2007-01-29 2008-08-14 Kobe Steel Ltd リン酸塩処理性に優れた高強度合金化溶融亜鉛めっき鋼板
JP2011026674A (ja) * 2009-07-28 2011-02-10 Jfe Steel Corp 耐めっき剥離性に優れる高強度溶融亜鉛めっき鋼板
JP2011117063A (ja) * 2009-11-02 2011-06-16 Kobe Steel Ltd 溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板の製造方法
JP2011127216A (ja) * 2009-11-19 2011-06-30 Kobe Steel Ltd めっき鋼板、およびその製造方法
JP2011214042A (ja) * 2010-03-31 2011-10-27 Kobe Steel Ltd 合金化溶融亜鉛めっき鋼板の製造方法
JP2013014834A (ja) * 2011-06-07 2013-01-24 Jfe Steel Corp めっき密着性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2339804T3 (es) * 2006-04-26 2010-05-25 Thyssenkrupp Steel Europe Ag Procedimiento para el recubrimiento por inmersion en baño fundido de un producto plano hecho de acero de gran resistencia.
EP2009129A1 (en) * 2007-06-29 2008-12-31 ArcelorMittal France Process for manufacturing a galvannealed steel sheet by DFF regulation
EP2009127A1 (en) * 2007-06-29 2008-12-31 ArcelorMittal France Process for manufacturing a galvanized or a galvannealed steel sheet by DFF regulation

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122865A (en) 1979-03-12 1980-09-20 Nippon Steel Corp Molten zinc plating method for difficult plating steel sheet
JPH04202632A (ja) 1990-11-30 1992-07-23 Nippon Steel Corp 高Si含有鋼の高張力溶融亜鉛めっき鋼板の製造方法
JPH04202630A (ja) 1990-11-30 1992-07-23 Nippon Steel Corp めっき密着性の良好な高Si含有高張力溶融亜鉛めっき鋼板の製造方法
JPH04202631A (ja) 1990-11-30 1992-07-23 Nippon Steel Corp P含有高張力合金化溶融亜鉛めっき鋼板の製造方法
JPH04202633A (ja) 1990-11-30 1992-07-23 Nippon Steel Corp 高Si含有高張力溶融亜鉛めっき鋼板の製造方法
JPH04254531A (ja) 1991-02-01 1992-09-09 Nippon Steel Corp 高Si含有高張力鋼の溶融亜鉛めっき前の焼鈍方法
JPH04254532A (ja) 1991-02-01 1992-09-09 Nippon Steel Corp 加工性の優れた合金化溶融亜鉛めっき鋼板の製造方法
JPH0734210A (ja) 1993-07-14 1995-02-03 Kawasaki Steel Corp 高張力溶融または合金化溶融亜鉛めっき鋼板の製造方法
JP2006233333A (ja) 2005-01-31 2006-09-07 Nippon Steel Corp 外観が良好な高強度合金化溶融亜鉛めっき鋼板及びその製造方法と製造設備
JP2007211280A (ja) 2006-02-08 2007-08-23 Nippon Steel Corp 成形性と穴拡げ性に優れた高強度溶融亜鉛めっき鋼板と高強度合金化溶融亜鉛めっき鋼板及び高強度溶融亜鉛めっき鋼板の製造方法並びに高強度合金化溶融亜鉛めっき鋼板の製造方法
JP2008184642A (ja) 2007-01-29 2008-08-14 Kobe Steel Ltd リン酸塩処理性に優れた高強度合金化溶融亜鉛めっき鋼板
JP2011026674A (ja) * 2009-07-28 2011-02-10 Jfe Steel Corp 耐めっき剥離性に優れる高強度溶融亜鉛めっき鋼板
JP2011117063A (ja) * 2009-11-02 2011-06-16 Kobe Steel Ltd 溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板の製造方法
JP2011127216A (ja) * 2009-11-19 2011-06-30 Kobe Steel Ltd めっき鋼板、およびその製造方法
JP2011214042A (ja) * 2010-03-31 2011-10-27 Kobe Steel Ltd 合金化溶融亜鉛めっき鋼板の製造方法
JP2013014834A (ja) * 2011-06-07 2013-01-24 Jfe Steel Corp めっき密着性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195946A1 (ja) * 2019-03-22 2020-10-01 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板及びその製造方法

Also Published As

Publication number Publication date
KR20150123919A (ko) 2015-11-04
EP2942419A4 (en) 2016-02-24
JP5920249B2 (ja) 2016-05-18
JP2014169489A (ja) 2014-09-18
EP2942419A1 (en) 2015-11-11
MX2015011581A (es) 2015-12-09
KR101752077B1 (ko) 2017-06-28
US20160017471A1 (en) 2016-01-21
CN105026599B (zh) 2017-10-10
CN105026599A (zh) 2015-11-04

Similar Documents

Publication Publication Date Title
JP5206705B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP6172297B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法及び製造設備
JP5920249B2 (ja) めっき密着性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5966528B2 (ja) めっき密着性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5962582B2 (ja) 高強度合金化溶融亜鉛めっき鋼板の製造方法
JP5982905B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法
WO2015087549A1 (ja) 高強度合金化溶融亜鉛めっき鋼板の製造方法
WO2015037242A1 (ja) 外観性とめっき密着性に優れる溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板ならびにそれらの製造方法
JP5552863B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5842942B2 (ja) めっき密着性に優れた合金化溶融亜鉛めっき鋼板およびその製造方法
JP5552859B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2004263271A (ja) 高張力溶融亜鉛めっき鋼板の製造方法
JP5593771B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法
JP6323628B1 (ja) 高強度溶融亜鉛めっき鋼板の製造方法
JP6237937B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法
CN108474094B (zh) 含Mn合金化熔融镀锌钢板及其制造方法
JP6052270B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5593770B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法
WO2017154494A1 (ja) 高強度溶融亜鉛めっき鋼板の製造方法
JP2011026674A (ja) 耐めっき剥離性に優れる高強度溶融亜鉛めっき鋼板
JP5552860B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2010222668A (ja) 高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板の製造方法
JP2010255108A (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480011994.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760750

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014760750

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14772468

Country of ref document: US

Ref document number: MX/A/2015/011581

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157027224

Country of ref document: KR

Kind code of ref document: A