WO2014136152A1 - 複層ガラス、及び複層ガラスの製造方法 - Google Patents

複層ガラス、及び複層ガラスの製造方法 Download PDF

Info

Publication number
WO2014136152A1
WO2014136152A1 PCT/JP2013/005074 JP2013005074W WO2014136152A1 WO 2014136152 A1 WO2014136152 A1 WO 2014136152A1 JP 2013005074 W JP2013005074 W JP 2013005074W WO 2014136152 A1 WO2014136152 A1 WO 2014136152A1
Authority
WO
WIPO (PCT)
Prior art keywords
spacer
glass
constricted portion
plate glass
plate
Prior art date
Application number
PCT/JP2013/005074
Other languages
English (en)
French (fr)
Inventor
阿部 裕之
瓜生 英一
長谷川 賢治
将 石橋
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2015504004A priority Critical patent/JP6124188B2/ja
Publication of WO2014136152A1 publication Critical patent/WO2014136152A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66304Discrete spacing elements, e.g. for evacuated glazing units
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/119Deposition methods from solutions or suspensions by printing
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/673Assembling the units
    • E06B3/67326Assembling spacer elements with the panes

Definitions

  • the present application relates to a double-glazed glass in which a pair of plate glasses are laminated through a space in which pressure is reduced, and a method for producing the double-glazed glass.
  • a pair of plate glasses are arranged to face each other with a predetermined gap between them, and the outer peripheral portion of the pair of plate glasses is sealed with a sealing material, thereby creating a space by a gap inside, and the space A configuration in which the internal air is exhausted and decompressed has been commercialized.
  • Multi-layer glass has spacers arranged between plate glasses, and as a method of forming the spacers, a cylindrical or frustoconical spacer made of glass or resin is formed by pattern printing using a metal mask. A method to do this has been proposed (Patent Document 1).
  • Patent Document 2 a method has been proposed in which a portion having a smaller cross-sectional area than the contact portion with glass is locally formed on the spacer.
  • the double-glazed glass of the present application is a pair of plate glasses arranged to face each other at a predetermined interval, a sealing material that seals a peripheral portion of the pair of plate glasses, and forms a sealed space in a reduced pressure state between the plate glasses; It has a spacer which is arrange
  • the spacer has a first surface and a second surface that come into contact with each of the pair of plate glasses, and a constricted portion provided between the first surface and the second surface.
  • the first surface of the spacer has a smaller contact area with the plate glass than the second surface, and the thickness from the first surface to the constricted portion is smaller than the thickness from the second surface to the constricted portion, and at least the second surface.
  • the constricted portion from the surface is formed of a material having a lower thermal conductivity than the plate glass in contact with the first surface.
  • FIG. 1 is a plan view showing a multilayer glass according to an embodiment.
  • 2 is a cross-sectional view taken along line 2-2 of FIG.
  • FIG. 3 is a cross-sectional view showing the spacer of the multilayer glass according to the embodiment.
  • FIG. 4 is a cross-sectional view showing a spacer according to another example formed by double-sided pattern printing.
  • FIG. 5 is a sectional view showing a spacer according to another example formed by photolithography.
  • FIG. 6 is an explanatory view showing a state in which spacers according to another example are arranged.
  • FIG. 7 is a cross-sectional view showing a state in which spacers are arranged.
  • reducing the space between the glasses means that the space formed between the glasses is in a state of a pressure lower than the external atmospheric pressure.
  • the reduced pressure state means that the interior of the space is lower than the external atmospheric pressure, including a so-called vacuum state in which the air inside the space is exhausted to reduce the atmospheric pressure, and the vacuum It does not depend on the degree.
  • various gases such as an inert gas are filled after exhausting the air inside the space, as long as the final gas pressure inside the space is lower than the atmospheric pressure, It is included in the decompression state in description.
  • the drawings referred to below show the double-glazed glass described in the present application and its manufacturing method in a simplified manner centering on the parts necessary for explaining the contents of the present application. . Therefore, the multilayer glass described with reference to each drawing can have an arbitrary configuration not shown in each drawing to be referred to. Moreover, the dimension of the member in each figure does not necessarily represent the dimension of an actual structural member, and the dimensional ratio of each member faithfully.
  • FIG. 1 and 2 are diagrams for explaining the structure of the multilayer glass according to Embodiment 1.
  • FIG. 1 is a plan view showing a multilayer glass according to Embodiment 1.
  • FIG. 2 is a cross-sectional view taken along line 2-2 of FIG.
  • the multilayer glass according to the first embodiment includes a plate glass 1, a plate glass 2 disposed opposite to the plate glass 1 at a predetermined interval, and a peripheral portion of the plate glass 1 and the plate glass 2. It has sealing material 4 which seals and forms sealed space 3 between plate glass 1 and plate glass 2, and the inside of sealed space 3 is made into the pressure reduction state. Between the plate glass 1 and the plate glass 2 sealed with the sealing material 4, a plurality of spacers 5 are arranged in a matrix in the vertical and horizontal directions.
  • the spacer 5 holds the space between the plate glass 1 and the plate glass 2, and is arranged at almost uniform intervals over the entire multilayer glass.
  • the exhaust port 6 is for exhausting the gas in the sealed space 3 to bring it into a decompressed state, and an exhaust pipe 7 is attached to the exhaust port 6.
  • the exhaust pipe 7 is connected to a vacuum pump, exhausts the gas in the sealed space 3 through the exhaust pipe 7 and the exhaust port 6, and after reducing the pressure in the sealed space 3, the exhaust pipe 7 is sealed.
  • the plate glass 1 and the plate glass 2 are main components constituting the double-glazed glass, respectively.
  • the plate glass 1 and the plate glass 2 are arranged with their glass surfaces substantially parallel to each other with a predetermined interval.
  • the plate glass 1 and the plate glass 2 used for the multi-layer glass various plate glasses such as soda lime glass, high strain point glass, chemically tempered glass, alkali-free glass, quartz glass, neoceram, and physically tempered glass can be used.
  • the plate glass 1 and the plate glass 2 both have the same outer shape and thickness, but the size or thickness of one plate glass is the same as the size of the other plate glass. It does not prevent the difference from the thickness.
  • the size of the plate glass can vary from one with a side of several centimeters depending on the application to one with a maximum size of about 2 to 3 m on a side for window glass. .
  • Various types of plate glass can be used from about 2 mm to about 3 mm to about 20 mm depending on the use.
  • the sealed space 3 is a space formed by the plate glass 1, the plate glass 2, the sealing material 4, and the sealed exhaust port 6 or the exhaust pipe 7.
  • the sealed space 3 is a sealed space that is decompressed by exhausting the interior of the space.
  • the sealing material 4 is provided between the plate glass 1 and the plate glass 2, adheres to the plate glass 1 and the plate glass 2, and forms a sealed space 3 between the plate glass 1 and the plate glass 2.
  • the sealing material 4 is disposed so as to adhere to the surfaces where the plate glass 1 and the plate glass 2 face each other and surround the peripheral portion of the end portion of the facing surface.
  • a frit seal or the like is used as the sealing material 4, specifically, a frit seal or the like is used.
  • a low melting point glass frit is used for the sealing material 4. More specifically, as an example, Bi 2 O 3 is 70% or more, B 2 O 3 and ZnO are each 15% or less, and a bismuth system containing a mixture of 5% or more organic substances such as ethyl cellulose and terpineol. Seal frit paste can be used. The softening point of this glass frit is 434 ° C.
  • a glass frit used as the sealing material 4 a lead type frit, a vanadium type frit, etc. other than the bismuth type frit illustrated above can be used.
  • a sealing material such as a low melting point metal or resin can be used.
  • the spacer 5 is an interval holding member provided in the sealed space 3 between the plate glass 1 and the plate glass 2, and is provided so that the plate glass 1 and the plate glass 2 hold a predetermined interval (distance).
  • FIG. 3 is a cross-sectional view of the spacer 5 in the first embodiment.
  • the spacer 5 includes a first surface 51 that contacts the plate glass 1, a second surface 52 that contacts the plate glass 2, and a space between the first surface 51 and the second surface 52. And a constricted portion 53 provided.
  • the first surface 51 is formed so as to have a smaller contact area than the second surface 52.
  • the thickness x from the first surface 51 to the constricted portion 53 is formed to be smaller than the thickness y from the second surface 52 to the constricted portion 53.
  • the diameter of the first surface 51 of the spacer 5 is 0.4 mm
  • the diameter of the second surface 52 is 0.7 mm
  • the thickness x is 0.1 mm
  • the thickness y is 0.5 mm.
  • the spacer 5 is not limited to a circular shape as viewed from above, and various shapes such as an elliptical shape and a rectangular shape can be used. Further, the size of the spacer 5 is not limited to the exemplified one, and can be appropriately selected according to the size and thickness of the plate glass used.
  • the exhaust port 6 is a suction port for sucking the gas remaining inside the sealed space 3 when the pressure inside the sealed space 3 is reduced.
  • the exhaust port 6 is formed so as to penetrate the plate glass 1.
  • the exhaust port 6 is formed near the corner of the glass surface of the plate glass 1.
  • the exhaust pipe 7 is a part of a suction path for exhausting the space inside the multilayer glass from the exhaust port 6 in order to depressurize the inside of the sealed space 3.
  • the exhaust pipe 7 made from glass is used as an example, and the internal diameter of the exhaust pipe 7 and the diameter of the exhaust port 6 are made into the same magnitude
  • the exhaust pipe 7 is connected to the exhaust port 6 by a known method using glass or molten metal.
  • a spacer is formed on the plate glass 2.
  • the spacer 5 is formed by pattern printing. For example, first printing is performed using a metal mask having an opening diameter of 0.5 mm and a thickness of 0.1 mm, followed by drying at 150 ° C. 55 is formed. Next, using a metal mask having an opening diameter of 0.7 mm and a thickness of 0.15 mm, the second printing is performed again by overlaying on the first spacer portion 55 printed at the first time, and then dried at 150 ° C. again. Thus, the second spacer portion 54 shown in FIG. 3 is formed. Finally, it is vitrified by firing at, for example, 600 ° C. to form a two-stage spacer 5 as shown in FIG.
  • the material of the spacer 5 can be a material having a lower thermal conductivity than the plate glass 2 or a material mainly composed of silica glass having more voids than the plate glass 2.
  • the material of the spacer is not limited to those exemplified above, and various materials that do not melt in the heating process described later can be used.
  • the spacer material is preferably a transparent material from the viewpoint of the appearance of the double-glazed glass.
  • the opening diameter of the metal mask at the second printing larger than the metal mask at the first printing, the pattern formed at the first time interferes with the metal mask at the second printing. And variation in shape can be prevented.
  • the spacer 5 has a cylindrical shape
  • ⁇ s is the thermal conductivity of the spacer
  • r is the radius of the spacer
  • h is the thickness of the spacer.
  • the spacer 5 has a thick and thick structure from the second surface 52 to the constricted portion 53 and a thin and thin structure from the first surface 51 to the constricted portion 53.
  • the spacer 5 is made of a material having a lower thermal conductivity than the plate glass 2 from the second surface 52 to the constricted portion 53, so that the multi-layer glass exhibits a higher characteristic than the average heat insulating characteristic. It becomes.
  • the thermal conductivity of the spacer 5 when the thermal conductivity of the spacer 5 is close to the thermal conductivity of the plate glass 1 and the plate glass 2, the thermal conductivity of the plate glass 1 and the plate glass 2 is used rather than using a material having a low thermal conductivity for the spacer 5. Lowering the value has a greater effect on improving the heat insulating properties.
  • the first surface 51 to the constricted portion 53 are formed to have an appropriate cross-sectional area with no problem in strength, and at least the material from the second surface 52 to the constricted portion 53 has a lower thermal conductivity than the plate glass 2.
  • the radius of the second surface 52 is large and the thickness x is small by forming a thickness of a certain degree or more, an effect close to that of reducing the thermal conductivity of the glass sheets 1 and 2 can be obtained, and heat transfer This means that a sufficient suppression effect can be obtained.
  • the part from the 2nd surface 52 to the constriction part 53 is comprised with the material whose heat conductivity is higher than the plate glass 1 and the plate glass 2, the effect which improves a heat insulation characteristic is hardly acquired.
  • the spacer 5 it is difficult to lower the thermal conductivity of the plate glass 1 and the plate glass 2 itself while sufficiently securing the conditions such as transparency, gas sealing property, and strength of the plate glass 1 and the plate glass 2.
  • the spacer 5 in the spacer 5 according to the present embodiment, an effect close to that of reducing the thermal conductivity of the glass in a pseudo manner can be obtained, and the effect that higher heat insulating properties can be obtained is exhibited.
  • the sealing material 4 is arranged so as to surround the periphery of the end portion.
  • the ultimate temperature of the melting furnace is set to a temperature higher than the softening point temperature 434 ° C. of the glass frit used for the sealing material 4, for example, 465 ° C.
  • the sealing material 4 is melted, the peripheral portions of the glass sheets 1 and 2 are sealed, and the sealed space 3 is formed between the glass sheets 1 and 2.
  • the temperature of the melting furnace is lowered to a temperature of 434 ° C. or less, which is the softening point temperature of the glass frit, for example, 400 ° C.
  • the air inside the sealed space 3 is passed through the exhaust port 6 and the exhaust pipe 7.
  • An exhaust process for exhausting by the vacuum pump is started. Since the temperature of the melting furnace is set lower than the softening point temperature of the sealing material 4, it is possible to prevent the molten glass frit from being spread inside by being pressed at atmospheric pressure and the appearance from being deteriorated. However, this is an example, and exhaust may be started at a temperature equal to or higher than the softening point.
  • the degree of vacuum in the sealed space 3 is preferably 0.1 Pa or less from the viewpoint of ensuring heat insulation as a characteristic of the double-glazed glass.
  • the higher the degree of vacuum the higher the heat insulating properties of the double-glazed glass.
  • the sealed space 3 In a state where the vacuum degree of the sealed space 3 is 0.1 Pa or less, the temperature is lowered to room temperature, the tip of the exhaust pipe 7 is sealed, and the sealed space 3 is sealed, so-called chip-off is performed. By doing in this way, even if the plate glass 1 and the plate glass 2 in the sealed state are removed from the vacuum pump, the sealed space 3 can be kept in a reduced pressure state.
  • the method of forming the spacers has been described by using the twice printing method, but the forming method is not limited to this.
  • a method of printing on both surfaces of the plate glass 1 and the plate glass 2 may be used.
  • the first spacer portion 85 from the second surface 82 to the constricted portion 83 is formed on the plate glass 2, and the second spacer portion from the first surface 81 to the constricted portion 83 is formed on the plate glass 1.
  • the spacer 8 having the constricted portion 83, the first surface 81 in contact with the plate glass 1, and the second surface 82 in contact with the plate glass 2 is formed by sealing with the sealing material 4. It is a thing.
  • the first surface 81 has a smaller contact area than the second surface 82. Further, the thickness x from the first surface 81 to the constricted portion 83 is formed to be smaller than the thickness y from the second surface 82 to the constricted portion 83.
  • a first spacer portion 95 from the second surface 92 to the constricted portion 93 and a second spacer portion 94 from the first surface 91 to the constricted portion 93 are formed.
  • the spacer 9 may be formed by developing and baking.
  • the first surface 91 has a smaller contact area than the second surface 92.
  • the thickness x from the first surface 91 to the constricted portion 93 is smaller than the thickness y from the second surface 92 to the constricted portion 93.
  • the same effect can be obtained when these forming methods are combined.
  • processes other than these may be used, and the constricted portion from the first surface and the constricted portion from the second surface may be formed using different types of processes.
  • the spacers are a pair of plate glass 1, the first surface and the second surface that are in contact with the plate glass 2, and between the first surface and the second surface.
  • the first surface has a smaller contact area with the glass sheet 1 than the second surface, and the thickness from the first surface to the constricted portion is from the second surface to the constricted portion.
  • the constricted portion from the second surface is made of a material having a thermal conductivity lower than that of the plate glass 2.
  • the first surface to the constricted portion is formed to have an appropriate cross-sectional area with no problem in strength, and at least the second surface to the constricted portion is made of a material having a lower thermal conductivity than the plate glass 2 to a certain degree or more. It can be formed with a thickness. Therefore, the thermal conductivity of the plate glass 1 from the plate glass 2 can be lowered.
  • a heat insulating effect close to that of a thin and high spacer can be obtained.
  • the distance between the pair of glasses can be increased, and a further heat insulating effect can be obtained.
  • a thin and thin spacer and a thick and thick spacer are relatively easy to form, it is possible to easily form a spacer that can provide a heat insulating effect.
  • a process is used in which an independent spacer 10 is manufactured in advance, and the spacer 10 is arranged on the plate glass 1 and then sealed.
  • a method for manufacturing the spacer 10 the method described in Embodiment 1 may be used.
  • a component mounting device such as a chip mounter can be used as shown in FIG.
  • This device is a device for mounting electronic components on a circuit board, and is a device for gripping the spacer 10 by the arm 11 and arranging it at a required place on the plate glass 2.
  • the spacer 10 includes a first spacer portion 105 and a second spacer portion 104, from the first surface 101 contacting the plate glass 1 to the constricted portion 103.
  • the second glass 102 is wider and thicker than the second surface 102 in contact with the glass sheet 2 to the constricted portion 103, and is made of a material having lower thermal conductivity than the glass sheets 1 and 2.
  • the width of the second surface 102 is 1 mm ⁇ 1 mm and the thickness y is 0.5 mm, and the thermal conductivity is 0.2 W / m 2 ⁇ K. It is formed with.
  • the first surface 101 has a cylindrical shape with a radius of 0.5 mm and a thickness x of 0.01 mm, and has a thermal conductivity of 0.2 W / m 2 ⁇ K. Is formed.
  • the plate glasses 1 and 2 with the spacers arranged in this manner are sealed in the same manner as in the first embodiment, and the internal space is depressurized so that the plate glasses 1 and 2 are pushed at atmospheric pressure and support the spacer 10. The position of is also fixed.
  • the spacer 10 having the rectangular parallelepiped first spacer portion 105 and the cylindrical second spacer portion 104 it is easy to arrange them on a mounting device for components such as a chip mounter, and heat transfer is sufficient.
  • a double glazing having a suppressable spacer can be formed.
  • the spacer 10 is not directly formed on the plate glass, but is manufactured independently and then arranged on the plate glass. Therefore, the spacer 10 is manufactured in advance, and a component mounting device or the like is provided. It is possible to arrange the spacers 10 freely.
  • a heat-resistant resin paste having a radius of 0.5 mm and a thickness of 0.01 mm is applied on a heat-resistant resin substrate having a thickness of 0.5 mm by pattern printing, and then dried. After baking, it can be manufactured by cutting the heat-resistant resin substrate at a size of 1 mm ⁇ 1 mm so as to include a printed pattern.
  • a transparent material is used as the resin substrate material, it is possible to prevent the appearance of the multilayer glass from deteriorating due to the visibility of the spacer. Glass may be used as a material for the heat-resistant resin substrate and the pattern portion, and the material and shape are not limited to this example.
  • the thermal conductivity from the first surface 101 to the constricted portion 103 may be higher than that of the plate glass 1 and the plate glass 2, and the thermal conductivity from the second surface 102 to the constricted portion 103 is from the plate glass 1 and the plate glass 2. If so, the thermal conductivity from the second surface 102 to the constricted portion 103 may be larger or smaller than the thermal conductivity from the first surface 101 to the constricted portion 103.
  • Embodiments 1 and 2 have been described as examples of implementation in the present application. However, the present application is not limited to this, and the present application can also be applied to embodiments in which changes, replacements, additions, omissions, and the like are made as appropriate. Moreover, it is also possible to combine each component demonstrated in the said Embodiment 1, 2 and it can be set as a new embodiment. Therefore, other embodiments will be collectively described below.
  • various optical functions such as antireflection and absorption of ultraviolet rays can be formed by appropriately forming a low emissivity organic or inorganic film on the plate glass 1 or plate glass 2.
  • functions such as heat insulating properties.
  • the emissivity is increased by forming the adsorbent by forming the sealing material 4 on the glass on which the film is not formed or the glass having a low emissivity of the plate glass 1 and the plate glass 2. Can be suppressed.
  • the plate glass 1 and the plate glass 2 itself may be a multi-layer glass, and as a whole, a multi-layer glass in which three or more plate glasses are laminated with a predetermined space therebetween may be used.
  • a multi-layer glass manufactured by the manufacturing method of the present application is laminated with a multi-layer glass in which an inert gas is sealed between the glasses, or manufactured by another method or the manufacturing method of the present application. It is good also as a structure which laminated
  • the glass may be any type of glass such as plate glass, curved glass, and polished glass.
  • a part or all of the spacer may have a gas adsorption function. Thereby, the pressure rise in the multilayer glass by aged deterioration can be suppressed.
  • the multi-layer glass produced by the multi-layer glass production method of the present application can be used favorably for window glass and the like as an eco glass having a high heat insulating effect and easy handling.
  • the double-glazed glass manufactured by the double-glazed glass manufacturing method of the present application on the door portion of the refrigerator or freezer, the internal state without interfering with the function of the refrigerator or freezer due to the heat insulation effect It can be used for home use or business use.
  • This application is applicable to double-glazed glass that has a high heat insulation effect and is easy to handle. Specifically, the present application is applicable to window glass, refrigerators, freezer doors, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Securing Of Glass Panes Or The Like (AREA)

Abstract

 本出願の複層ガラスは、所定間隔を隔てて対向配置された一対の板ガラスと、一対の板ガラスの周縁部を封着し、板ガラスの間に減圧状態の密閉空間を形成する封着材(4)と、一対の板ガラスの間に配置され、板ガラスの間の間隔を保持するスペーサー(5)とを有している。スペーサー(5)は、一対の板ガラス各々と接触する第1の面及び第2の面と、第1の面及び第2の面の間に設けられたくびれ部とを有している。スペーサー(5)の第1の面は、第2の面よりも板ガラスとの接触面積が小さく、第1の面からくびれ部までの厚みは、第2の面からくびれ部までの厚みより小さく、少なくとも第2の面からくびれ部は、第1の面と接触している板ガラスより低い熱伝導率の材料で形成されている。

Description

複層ガラス、及び複層ガラスの製造方法
 本出願は、一対の板ガラスが間に減圧された空間を介して積層された複層ガラス、及び複層ガラスの製造方法に関する。
 複層ガラスとして、一対の板ガラスを間に所定の間隔をあけた状態で対向配置し、一対の板ガラスの外周部を封着材で密閉することにより内部に空隙部による空間を生じさせ、その空間内部の空気を排気して減圧した構成のものが商品化されている。
 複層ガラスは、板ガラスの間にスペーサーを配置しており、そのスペーサーの形成方法として、メタルマスクを用いたパターン印刷法によって、ガラスや樹脂などで構成された円柱または円錐台状のスペーサーを形成する方法が提案されている(特許文献1)。
 また、スペーサーからの熱伝達を抑制する手段として、スペーサーにガラスとの接触部より断面積の小さな部分を局部的に形成する方法が提案されている(特許文献2)。
特開2000-63157号公報 特開平11-343151号公報
 本出願の複層ガラスは、所定間隔を隔てて対向配置された一対の板ガラスと、一対の板ガラスの周縁部を封着し、板ガラスの間に減圧状態の密閉空間を形成する封着材と、一対の板ガラスの間に配置され、板ガラスの間の間隔を保持するスペーサーとを有している。スペーサーは、一対の板ガラス各々と接触する第1の面及び第2の面と、第1の面及び第2の面の間に設けられたくびれ部とを有している。スペーサーの第1の面は、第2の面よりも板ガラスとの接触面積が小さく、第1の面からくびれ部までの厚みは、第2の面からくびれ部までの厚みより小さく、少なくとも第2の面からくびれ部は、第1の面と接触している板ガラスより低い熱伝導率の材料で形成されている。
図1は実施の形態にかかる複層ガラスを示す平面図である。 図2は図1の2-2線で切断した断面図である。 図3は実施の形態にかかる複層ガラスのスペーサーを示す断面図である。 図4は両面パターン印刷で形成した他の例によるスペーサーを示す断面図である。 図5はフォトリソグラフィで形成した他の例によるスペーサーを示す断面図である。 図6は他の例によるスペーサーを配置している様子を示す説明図である。 図7はスペーサーを配置した状態を示す断面図である。
 以下、本出願による複層ガラス、及び複層ガラスの製造方法について、実施の形態を用いて説明するが、これに限定されるものではない。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。発明者らは、当業者が本出願の内容を十分に理解するために添付図面及び以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。
 なお、本出願の説明において、ガラス間の空間(密閉空間)を減圧するとは、ガラスの間に形成される空間を、外部の大気圧よりも低い圧力の状態とすることを意味するものとする。また、減圧状態とは、空間の内部が外部の大気圧よりも低い状態となっていることを意味し、空間内部の空気を排気して気圧を減じたいわゆる真空状態を含み、かつ、その真空度には左右されない。また、空間内部の空気を排気した後に不活性ガスなどの各種の気体を充填した場合でも、空間内部の最終的な気体の圧力が大気圧よりも低くなっている状態であれば、本出願の説明における減圧状態に含まれる。
 以下で参照する各図は、説明の便宜上、本出願が説明する複層ガラス、及びその製造方法について、本出願の内容を説明するために必要な部分を中心として簡略化して示したものである。従って、各図を用いて説明する複層ガラスは、参照する各図に示されていない任意の構成を備えることができる。また、各図中の部材の寸法は、実際の構成部材の寸法及び各部材の寸法比率を必ずしも忠実に表したものではない。
 (実施の形態1)
 以下、図1~図5を用いて、実施の形態1による複層ガラスについて説明する。
 図1及び図2は、実施の形態1による複層ガラスの構成を説明するための図である。図1は、実施の形態1による複層ガラスを示す平面図である。図2は、図1の2-2線で切断した断面図である。
 図1、図2に示すように、実施の形態1にかかる複層ガラスは、板ガラス1と、板ガラス1と所定間隔を隔てて対向配置された板ガラス2と、板ガラス1と板ガラス2の周縁部を封着し、板ガラス1と板ガラス2との間に密閉空間3を形成する封着材4とを有し、密閉空間3内は減圧状態とされている。封着材4で封着された板ガラス1と板ガラス2の間には、複数のスペーサー5が縦方向、横方向にマトリクス状に整列配置されている。
 スペーサー5は、板ガラス1と板ガラス2との間の間隔を保持するもので、複層ガラス全体に亘ってほぼ均一な間隔で配置されている。排気口6は、密閉空間3内の気体を排気し、減圧状態とするためのもので、排気管7が取り付けられている。排気管7は、真空ポンプに接続され、排気管7、排気口6を通して密閉空間3内の気体を排気し、密閉空間3内を減圧状態とした後、排気管7は封着される。
 板ガラス1と板ガラス2とはそれぞれ複層ガラスを構成する主要な構成要素である。板ガラス1と板ガラス2とは、それぞれのガラス表面が実質的に並行に所定の間隔を保って、配置されている。
 複層ガラスに用いる板ガラス1、板ガラス2としては、ソーダライムガラス、高歪点ガラス、化学強化ガラス、無アルカリガラス、石英ガラス、ネオセラム、物理強化ガラスなどの各種板ガラスを用いることができる。なお、本実施の形態では、板ガラス1及び板ガラス2は、いずれも同じ外形、厚みを有したものを例示しているが、一方の板ガラスの大きさ、または厚さが、他方の板ガラスの大きさや厚さと異なることを妨げるものではない。また、板ガラスの大きさは、使用用途に応じて一辺が数cm程度のものから、窓ガラス用として、一辺が最大2m~3m程度のものまで、さまざまな大きさのものを使用することができる。板ガラスの厚さも、用途に応じて、2mm~3mm程度のものから20mm程度のものまで、各種の板ガラスを用いることができる。
 密閉空間3は、板ガラス1と、板ガラス2と、封着材4と、封止された排気口6、若しくは排気管7とで形成される空間である。密閉空間3は、空間内部を排気することにより減圧された密閉空間となる。
 封着材4は、板ガラス1と板ガラス2の間に設けられ、板ガラス1と板ガラス2に接着し、板ガラス1と板ガラス2との間に密閉空間3を形成する。封着材4は、板ガラス1と板ガラス2とがそれぞれ対峙する面に接着し、対峙する面の端部の周辺部を囲うように配置される。なお、封着材4としては、具体的にはフリットシールなどが用いられる。
 本実施の形態において、封着材4には低融点ガラスフリットが用いられている。より具体的には、一例として、Biが70%以上、B及びZnOがそれぞれ15%以下、さらにエチルセルロース、テルピネオールなどの有機系物質の混合物が5%以上含まれたビスマス系シールフリットペーストを用いることができる。このガラスフリットの軟化点は、434℃である。
 なお、封着材4として用いられるガラスフリットとしては、上記例示のビスマス系フリットの他に、鉛系フリット、バナジウム系フリットなどを用いることができる。また、ガラスフリットの他に、低融点金属、樹脂などのシール材などを用いることができる。
 スペーサー5は、板ガラス1と板ガラス2の間の密閉空間3内に設けられる間隔保持部材であり、板ガラス1と板ガラス2が所定間隔(距離)を保持するように設けられる。
 図3は実施の形態1におけるスペーサー5の断面図である。図3に示すように、スペーサー5は、板ガラス1と接触する第1の面51と、板ガラス2と接触する第2の面52と、この第1の面51と第2の面52の間に設けられるくびれ部53とを有する。第1の面51は、第2の面52よりも接触面積が小さくなるように形成されている。また、第1の面51からくびれ部53までの厚みxは、第2の面52からくびれ部53までの厚みyよりも小さくなるように形成されている。一例として、スペーサー5の第1の面51の直径が0.4mm、第2の面52の直径が0.7mm、厚みxが0.1mm、厚みyが0.5mmである。
 スペーサー5としては、図1で示したように、上から見た形状が円形状のものに限らず、楕円形状や長方形形状などの各種形状のものを使用することができる。また、スペーサー5の大きさも、例示したものには限られず、使用される板ガラスの大きさや厚さなどに応じて適宜選択することができる。
 排気口6は、密閉空間3内部の気圧を減圧させる場合に、密閉空間3内部に残った気体を吸引するための吸引口である。排気口6は、板ガラス1に貫通するように形成されている。排気口6は板ガラス1のガラス表面の隅部近傍に形成されている。排気管7は、密閉空間3内部を減圧させるために、排気口6から複層ガラス内部の空間を排気するための吸引路の一部である。
 なお、本実施の形態で説明する複層ガラスでは、一例としてガラス製の排気管7が用いられ、排気管7の内径と排気口6の径とが同じ大きさとされている。排気管7は、ガラスや溶融金属などを用いる周知の方法によって、排気口6に接続されている。
 次に、本実施の形態にかかる複層ガラスの製造方法を説明する。
 本実施の形態では、最初に板ガラス2上にスペーサーを形成する。スペーサー5は、パターン印刷で形成されている。例えば、まず、開口径0.5mm、厚さ0.1mmのメタルマスクを用いて1回目の印刷を行った後、150℃で乾燥することにより、図3に示すように、第1のスペーサー部55を形成する。次に、開口径0.7mm、厚さ0.15mmのメタルマスクを用いて、1回目に印刷した第1のスペーサー部55の上から再度重ねて2回目の印刷を行い、再び150℃で乾燥することにより、図3に示す第2のスペーサー部54を形成する。最後に、例えば600℃で焼成してガラス化させ、図3に示すような2段構造のスペーサー5が形成される。
 このとき、例えば、スペーサー5の材料は板ガラス2よりも熱伝導率の小さな材料や、板ガラス2よりも空隙の多いシリカガラスを主成分とした材料を用いることができる。
 ただし、スペーサーの材料は上記例示したものに限らず、後述する加熱工程で溶融しない各種材料を用いることができる。また、スペーサーの材料は、透明性のある材料であることが複層ガラスの外観面からは望ましい。
 このように2回に分けて印刷することで、1度の印刷で厚みの大きいパターンを形成する場合と比べ、十分な厚みを確保しつつ、厚みのバラつきを抑制することができる。
 また、2回目の印刷時のメタルマスクの開口径を、1回目の印刷時のメタルマスクよりも大きくすることで、2回目の印刷時に、1回目に形成されたパターンとメタルマスクが干渉することを防ぎ、形状のばらつきを防ぐことができる。
 さらに、スペーサー5の材料として、板ガラス2より熱伝導率が小さい材料を用いることで、第2の面52の直径が大きいにも関わらず、十分な断熱特性を得ることができる。このことについて、次に説明する。
 スペーサー5が円柱形状の場合について説明する。一般に、円柱内部の熱伝達C(W/m・K)は、C=κ×πr/hで表される。ここで、κはスペーサーの熱伝導率、rはスペーサーの半径、hはスペーサーの厚みである。
 このように、スペーサー5の半径が大きくなると、熱の通る断面積が大きくなり、熱伝達は増大する。また、スペーサー5の厚みが小さくても、熱伝達は増大する。このため、細いスペーサー5でも、厚みが十分でなければ熱伝達を小さく抑えることができず、また、厚いスペーサー5でも十分幅が細くなければ、熱伝達を抑制することができない。
 一方、本実施の形態のスペーサー5は、第2の面52からくびれ部53までは、太くて厚く、第1の面51からくびれ部53までは細くて薄い構造になっている。また、スペーサー5は、第2の面52からくびれ部53までは、板ガラス2よりも熱伝導率の低い材料で構成されることにより、複層ガラスは平均の断熱特性以上の高い特性を示すこととなる。
 これは、複層ガラス全体を通過する熱流のうち、1つのスペーサー5を通過したものの寄与分が、C=2κr/(1+2κh/κπr)で表されるためである。ここで、κは板ガラス1、板ガラス2の熱伝導率である。
 前記数式から分かるように、スペーサー5の熱伝導率が板ガラス1、板ガラス2の熱伝導率と近い場合、スペーサー5に熱伝導率の低い材料を用いるよりも、板ガラス1、板ガラス2の熱伝導率を下げることの方が断熱特性の改善に対する効果が大きい。
 これは、1度、スペーサー5の部分で熱流の伝達を絞っているため、板ガラス1、板ガラス2の内部の熱流もスペーサー5の近辺に集中し、板ガラス内部においても小さい断面積で熱が流れていることによる。
 このことは、第1の面51からくびれ部53までを強度上問題ない適切な断面積になるよう形成し、少なくとも第2の面52からくびれ部53までは板ガラス2より熱伝導率の低い材料で、一定程度以上の厚みを形成することにより、第2の面52の半径が大きく、厚みxが小さくても、板ガラス1、2の熱伝導率を下げることと近い効果が得られ、熱伝達の抑制効果を十分に得られることを意味する。
 なお、第2の面52からくびれ部53までが板ガラス1、板ガラス2よりも熱伝導率の高い材料で構成した場合、断熱特性を向上させる効果がほとんど得られない。
 また、板ガラス1、板ガラス2の透明性、ガス封止性、強度などの条件を十分に確保しつつ、板ガラス1、板ガラス2自体の熱伝導率を下げることは難しい。一方、本実施の形態によるスペーサー5においては、擬似的にガラスの熱伝導率を下げることに近い効果が得られ、より高い断熱特性を得ることができるという作用効果を発揮する。なお、更なる断熱特性を向上させる効果を得るためには、厚みyをより大きく、熱伝導率をより低くすることが望ましい。
 以上のようにスペーサー5を配置した後、封着材4を端部周辺部を囲うように配置する。次に、溶融炉の到達温度を封着材4に使用されているガラスフリットの軟化点温度434℃よりも高い温度、一例として465℃とする。このとき、封着材4が溶けて板ガラス1と板ガラス2の周囲部が封着され、板ガラス1、2の間に密閉空間3が形成される。
 この後、一旦溶融炉の温度をガラスフリットの軟化点温度である434℃以下の温度、例えば400℃まで下げた状態で、密閉空間3内部の空気を排気口6及び排気管7を介して、真空ポンプにより排気する排気工程が開始される。溶融炉の温度が封着材4の軟化点温度よりも低く設定されるため、溶融したガラスフリットが大気圧で押されることにより内部に広がり、外観が悪化することを防止できる。ただし、これは一例であり、軟化点以上の温度で排気を開始してもよい。
 密閉空間3の真空度は、複層ガラスの特性としての断熱性を確保する観点から、0.1Pa以下とすることが好ましい。なお、真空度が高いほど複層ガラスとしての断熱特性は高くなるが、より高い真空度を得るためには、真空ポンプの性能を向上させたり、排気時間を長くしたりする必要があり、複層ガラスとして必要な特性を確保できる真空度にとどめることが製造コストの観点から好ましいことは言うまでもない。
 密閉空間3の真空度が0.1Pa以下の真空度になった状態で、常温まで温度を下げ、排気管7の先端部分を封着して密閉空間3を密閉する、いわゆるチップオフを行う。このようにすることで、封着された状態の板ガラス1、板ガラス2を真空ポンプから取り外しても、密閉空間3は減圧状態に保つことができる。
 なお、本実施の形態では、スペーサーの形成方法として、2回印刷による方法について説明したが、形成方法はこれに限定されない。
 例えば、図4に示すように、板ガラス1と板ガラス2の両面に印刷する方法を用いてもよい。
 図4に示す例は、板ガラス2に第2の面82からくびれ部83までの第1のスペーサー部85を形成し、板ガラス1に第1の面81からくびれ部83までの第2のスペーサー部84を形成した後、封着材4により封着することにより、くびれ部83と、板ガラス1と接触する第1の面81、板ガラス2と接触する第2の面82とを有するスペーサー8を形成したものである。
 図4において、第1の面81は第2の面82よりも接触面積が小さく形成されている。また、第1の面81からくびれ部83までの厚みxは、第2の面82からくびれ部83までの厚みyよりも小さく形成されている。
 また、図5に示すように、フォトリソグラフィにより、第2の面92からくびれ部93までの第1のスペーサー部95と、第1の面91からくびれ部93までの第2のスペーサー部94を個別に露光した後、現像、焼成してスペーサー9を形成してもよい。図5において、第1の面91は第2の面92よりも接触面積が小さく形成されている。また、第1の面91からくびれ部93までの厚みxは、第2の面92からくびれ部93までの厚みyよりも小さく形成されている。
 また、これらの形成方法を組み合わせた場合においても、同様の効果が得られる。また、これら以外のプロセスを用いてもよく、第1の面からくびれ部、第2の面からくびれ部をそれぞれ異なる方式のプロセスを用いて形成してもよい。
 以上のように、本実施の形態の複層ガラスにおいて、スペーサーは、一対の板ガラス1、板ガラス2に接触する第1の面及び第2の面と、第1の面と第2の面の間に形成されるくびれ部とを有し、第1の面は第2の面よりも板ガラス1との接触面積が小さく、第1の面からくびれ部までの厚みは、第2の面からくびれ部までの厚みより小さく、少なくとも第2の面からくびれ部は、板ガラス2より低い熱伝導率の材料で形成されている。
 これにより、第1の面からくびれ部までを強度上問題ない適切な断面積になるよう形成し、少なくとも第2の面からくびれ部までは板ガラス2より熱伝導率の低い材料で一定程度以上の厚みで形成することができる。従って、板ガラス2から板ガラス1の熱伝導率を下げることができる。
 すなわち、細く厚みが薄いスペーサーと、太く厚みが厚いスペーサーを組み合わせることにより、細く高いスペーサーに近い断熱効果を得ることができる。また、比較的厚みのあるスペーサーを形成することで、一対のガラス間の間隔を広げることができ、さらなる断熱効果が得られる。また、細く厚みが薄いスペーサーと、太く厚みが厚いスペーサーは比較的形成しやすいことから、断熱効果が得られるスペーサーを容易に形成することが可能となる。
 (実施の形態2)
 次に、図6、図7を用いて、本出願の実施の形態2による複層ガラスについて説明する。なお、本実施の形態において、スペーサーの形成方法以外については、実施の形態1と同様であるため、説明を省略する。
 本実施の形態においては、事前に独立したスペーサー10を製造し、それを板ガラス1上に配列した後、封止する、というプロセスを用いる。スペーサー10の製造方法は、実施の形態1で説明した方法などを用いればよい。
 スペーサー10を配列させる際には、例えば、図6に示すように、チップマウンターなどの部品の実装装置を用いることができる。この装置は、回路基板に電子部品を実装する装置であり、アーム11によりスペーサー10を掴み、板ガラス2上の必要な場所に配列する装置である。
 本実施の形態においては、図7に示すように、スペーサー10は、第1のスペーサー部105、第2のスペーサー部104を有し、板ガラス1に接する第1の面101からくびれ部103までが、板ガラス2に接する第2の面102からくびれ部103までよりも幅が大きくて厚みも厚く、板ガラス1、板ガラス2より熱伝導率の低い材料で構成されている。
 一例として、第2の面102からくびれ部103までは、第2の面102の幅が1mm×1mm、厚さyが0.5mmの直方体形状で、熱伝導率0.2W/m・Kで形成されている。また、第1の面101からくびれ部103までは、第1の面101の半径が0.5mm、厚さxが0.01mmの円柱形状で、熱伝導率0.2W/m・Kで形成されている。
 このようにスペーサーが配列された板ガラス1、2を、実施の形態1と同様に封着し、内部の空間を減圧することで、板ガラス1、2が大気圧で押され、それを支えるスペーサー10の位置も固定される。
 このように、直方体形状の第1のスペーサー部105と、円柱形状の第2のスペーサー部104を有するスペーサー10とすることにより、チップマウンターなどの部品の実装装置で並べやすく、しかも熱伝達を十分抑制可能なスペーサーを有する複層ガラスを形成することができる。本実施の形態においては、スペーサー10は、板ガラスに直接形成するのではなく、独立して製造した後、板ガラスに配列する構成であるため、スペーサー10を事前に製造し、部品の実装装置などを用いて、スペーサー10を自由に配列することが可能となる。
 なお、事前にスペーサー10を製造する方法としては、例えば、厚さ0.5mmの耐熱樹脂基板上に、パターン印刷で半径0.5mm、厚さ0.01mmの耐熱樹脂ペーストを塗布し、乾燥、焼成後、印刷されたパターンを含むように、耐熱樹脂基板を1mm×1mmのサイズで切断することにより製造することができる。また、樹脂基板材料として透明な材料を用いれば、複層ガラスにおいて、スペーサーが視認されることによる外観の悪化を防止することができる。耐熱樹脂基板やパターン部分の材料として、ガラスを用いるなどしても良く、材料や形状はこの例に限るものではない。
 また、第1の面101からくびれ部103までの熱伝導率は、板ガラス1、板ガラス2より高くてもよく、第2の面102からくびれ部103までの熱伝導率が板ガラス1、板ガラス2よりも低ければ、第2の面102からくびれ部103までの熱伝導率は第1の面101からくびれ部103までの熱伝導率よりも大きくても小さくてもよい。
 このようにすることで、断熱特性が高く、かつ製造が容易な複層ガラスを実現することができる。
 (他の実施の形態)
 以上のように、本出願における実装の例示として、実施の形態1、2を説明した。しかしながら、本出願は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、上記実施の形態1、2で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。そこで、以下、他の実施の形態についてまとめて説明する。
 上記実施の形態1及び2で説明した複層ガラスにおいて、板ガラス1または板ガラス2に、低放射率の有機もしくは無機の膜を適宜形成することにより、反射防止や紫外線の吸収などの各種光学的作用、もしくは、断熱特性などの機能を付与することが可能である。この場合、板ガラス1、板ガラス2のうち、膜が形成されていない側、または放射率の低い側のガラス上に封着材4を形成することで、吸着材を形成することによる放射率の上昇を抑制することができる。
 また、板ガラス1または板ガラス2の少なくとも一方のガラス自体を複層ガラスとし、全体として3枚以上の板ガラスがそれぞれ所定の空間を隔てて積層された複層ガラスとすることも可能である。この場合において、少なくとも厚さ方向における一部分の複層ガラスが本出願の製造方法により製造されたものであればよい。このため、例えば、本出願の製造方法により製造された複層ガラスに、ガラス間に不活性ガスが封入された複層ガラスを積層したり、別の方法または本出願の製造方法により製造された複層ガラスをさらに積層した構成としてもよい。さらに、所定間隔でガラスが積層されているのみで、密閉空間が大気圧のままの複層ガラスを積層した構成としてもよく、さまざまな形態を採ることができる。また、ガラスは、板ガラス、曲面ガラス、磨りガラスなど、いずれの種類のガラスであってもよい。
 また、スペーサーの一部、または全部は、ガス吸着機能を持つものであってもよい。これにより、経年劣化による複層ガラス内の圧力上昇を抑制することができる。
 本出願の複層ガラスの製造方法によって製造された複層ガラスは、断熱効果が高く、かつ、取り扱いが容易なエコガラスとして、窓ガラスなどに良好に使用できる。また、例えば、冷蔵庫や冷凍庫の扉部分に、本出願の複層ガラスの製造方法によって製造された複層ガラスを配置することで、断熱効果により冷蔵庫や冷凍庫の機能を妨げることなく、内部の状態を確認することができるようになるなど、家庭用もしくは業務用の用途が期待できる。
 本出願は、断熱効果が高く、取り扱い容易な複層ガラスに適用可能である。具体的には、窓ガラス、冷蔵庫や冷凍庫の扉などに、本出願は適用可能である。
 1,2 板ガラス
 3 密閉空間
 4 封着材
 5,8,9,10 スペーサー
 6 排気口
 7 排気管
 51,81,91,101 第1の面
 52,82,92,102 第2の面
 53,83,93,103 くびれ部
 54,84,94,104 第2のスペーサー部
 55,85,95,105 第1のスペーサー部

Claims (8)

  1.  所定間隔を隔てて対向配置された一対の板ガラスと、一対の前記板ガラスの周縁部を封着し、前記板ガラスの間に減圧状態の密閉空間を形成する封着材と、一対の前記板ガラスの間に配置され、前記板ガラスの間の間隔を保持するスペーサーとを有し、
     前記スペーサーは、一対の前記板ガラス各々と接触する第1の面及び第2の面と、前記第1の面及び前記第2の面の間に設けられたくびれ部とを有し、
     前記第1の面は前記第2の面よりも前記板ガラスとの接触面積が小さく、前記第1の面から前記くびれ部までの厚みは、前記第2の面から前記くびれ部までの厚みより小さく、少なくとも前記第2の面から前記くびれ部は、前記第1の面と接触している前記板ガラスより低い熱伝導率の材料で形成されている
    複層ガラス。
  2.  前記スペーサーの前記第2の面から前記くびれ部は、透明性の材料で形成されている
    請求項1に記載の複層ガラス。
  3.  前記スペーサーは、パターン印刷によって形成されたものである
    請求項1に記載の複層ガラス。
  4.  前記スペーサーは、一対の板ガラスの各々に、第2の面からくびれ部までの第1のスペーサー部と、第1の面からくびれ部までの第2のスペーサー部をパターン印刷することによって形成されたものである
    請求項1に記載の複層ガラス。
  5.  前記スペーサーは、フォトリソグラフィによって形成されたものである
    請求項1に記載の複層ガラス。
  6.  前記スペーサーは、独立して製造された後、板ガラスに配列することによって形成されたものである
    請求項1に記載の複層ガラス。
  7.  前記スペーサーは、一対の板ガラスの各々に、第2の面からくびれ部までの第1のスペーサー部と、第1の面からくびれ部までの第2のスペーサー部を形成することにより設けられ、前記スペーサーの第1のスペーサー部と第2のスペーサー部がそれぞれ異なる方法により形成されたものである
    請求項1に記載の複層ガラス。
  8.  所定間隔を隔てて対向配置された一対の板ガラスと、一対の板ガラスの周縁部を封着し、板ガラスの間に減圧状態の密閉空間を形成する封着材と、一対の板ガラスの間に配置され、板ガラスの間の間隔を保持するスペーサーとを有し、
     前記スペーサーは、一対の板ガラス各々と接触する第1の面及び第2の面と、第1の面及び第2の面の間に設けられたくびれ部とを有し、
     前記第1の面は前記第2の面よりも板ガラスとの接触面積が小さく、前記第1の面から前記くびれ部までの厚みは、前記第2の面から前記くびれ部までの厚みより小さく、少なくとも前記第2の面からくびれ部は、前記第1の面と接触している板ガラスより低い熱伝導率の材料で形成され、
    さらに前記スペーサーは、第2の面からくびれ部までの第1のスペーサー部と、第1の面からくびれ部までの第2のスペーサー部とに分けて形成される
    複層ガラスの製造方法。
PCT/JP2013/005074 2013-03-04 2013-08-28 複層ガラス、及び複層ガラスの製造方法 WO2014136152A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015504004A JP6124188B2 (ja) 2013-03-04 2013-08-28 複層ガラス、及び複層ガラスの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-041525 2013-03-04
JP2013041525 2013-03-04

Publications (1)

Publication Number Publication Date
WO2014136152A1 true WO2014136152A1 (ja) 2014-09-12

Family

ID=51490721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005074 WO2014136152A1 (ja) 2013-03-04 2013-08-28 複層ガラス、及び複層ガラスの製造方法

Country Status (2)

Country Link
JP (1) JP6124188B2 (ja)
WO (1) WO2014136152A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016088775A (ja) * 2014-10-30 2016-05-23 パナソニックIpマネジメント株式会社 ガラスパネルユニットの製造方法
WO2017169731A1 (ja) * 2016-03-31 2017-10-05 パナソニックIpマネジメント株式会社 ガラスパネルユニット
WO2018043376A1 (ja) * 2016-08-31 2018-03-08 パナソニックIpマネジメント株式会社 ガラスパネルユニットおよびガラス窓
WO2018062124A1 (ja) * 2016-09-28 2018-04-05 パナソニックIpマネジメント株式会社 ガラスパネルユニットの製造方法およびガラス窓の製造方法
JPWO2017043059A1 (ja) * 2015-09-08 2018-07-26 パナソニックIpマネジメント株式会社 ガラスパネルユニット
WO2018221213A1 (ja) * 2017-05-31 2018-12-06 パナソニックIpマネジメント株式会社 ピラー実装方法、ガラスパネルユニットの製造方法及びピラー実装装置
EP3521255A4 (en) * 2016-09-30 2019-09-25 Panasonic Intellectual Property Management Co., Ltd. METHOD FOR PRODUCING A GLASS WIPE AND METHOD FOR PRODUCING A GLASS WINDOW
WO2020003793A1 (ja) * 2018-06-28 2020-01-02 パナソニックIpマネジメント株式会社 ピラー供給方法、ガラスパネルユニットの製造方法、及びピラー供給装置
JP2020507544A (ja) * 2017-02-06 2020-03-12 ショット ジェムトロン コーポレイションSCHOTT Gemtron Corporation 不均一なコーティング層およびガス分子の封止されたキャビティを有する断熱ガラス積層体
WO2020162551A1 (ja) 2019-02-08 2020-08-13 日本板硝子株式会社 ガラスユニット

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11343151A (ja) * 1998-06-01 1999-12-14 Nippon Sheet Glass Co Ltd ガラスパネルの間隔保持部材
JP2000054746A (ja) * 1998-08-05 2000-02-22 Nippon Sheet Glass Co Ltd ガラスパネルの間隔保持部材
JP2000063157A (ja) * 1998-08-11 2000-02-29 Nippon Sheet Glass Co Ltd ガラスパネル及びその製造方法
JP2003026453A (ja) * 2001-07-10 2003-01-29 Naoyoshi Kayama ペアガラス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11343151A (ja) * 1998-06-01 1999-12-14 Nippon Sheet Glass Co Ltd ガラスパネルの間隔保持部材
JP2000054746A (ja) * 1998-08-05 2000-02-22 Nippon Sheet Glass Co Ltd ガラスパネルの間隔保持部材
JP2000063157A (ja) * 1998-08-11 2000-02-29 Nippon Sheet Glass Co Ltd ガラスパネル及びその製造方法
JP2003026453A (ja) * 2001-07-10 2003-01-29 Naoyoshi Kayama ペアガラス

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016088775A (ja) * 2014-10-30 2016-05-23 パナソニックIpマネジメント株式会社 ガラスパネルユニットの製造方法
JPWO2017043059A1 (ja) * 2015-09-08 2018-07-26 パナソニックIpマネジメント株式会社 ガラスパネルユニット
US10619403B2 (en) 2016-03-31 2020-04-14 Panasonic Intellectual Property Management Co., Ltd. Glass panel unit
WO2017169731A1 (ja) * 2016-03-31 2017-10-05 パナソニックIpマネジメント株式会社 ガラスパネルユニット
TWI628348B (zh) * 2016-03-31 2018-07-01 松下知識產權經營股份有限公司 玻璃平板單元
JPWO2017169731A1 (ja) * 2016-03-31 2019-02-14 パナソニックIpマネジメント株式会社 ガラスパネルユニット
WO2018043376A1 (ja) * 2016-08-31 2018-03-08 パナソニックIpマネジメント株式会社 ガラスパネルユニットおよびガラス窓
JP2018035042A (ja) * 2016-08-31 2018-03-08 パナソニックIpマネジメント株式会社 ガラスパネルユニットおよびガラス窓
US10787856B2 (en) 2016-08-31 2020-09-29 Panasonic Intellectual Property Management Co., Ltd. Glass panel unit and glass window
US11187027B2 (en) 2016-09-28 2021-11-30 Panasonic Intellectual Property Management Co., Ltd. Manufacturing method of glass panel unit and manufacturing method of glass window
JPWO2018062124A1 (ja) * 2016-09-28 2019-07-18 パナソニックIpマネジメント株式会社 ガラスパネルユニットの製造方法およびガラス窓の製造方法
WO2018062124A1 (ja) * 2016-09-28 2018-04-05 パナソニックIpマネジメント株式会社 ガラスパネルユニットの製造方法およびガラス窓の製造方法
EP3521255A4 (en) * 2016-09-30 2019-09-25 Panasonic Intellectual Property Management Co., Ltd. METHOD FOR PRODUCING A GLASS WIPE AND METHOD FOR PRODUCING A GLASS WINDOW
US11299422B2 (en) 2016-09-30 2022-04-12 Panasonic Intellectual Property Management Co., Ltd. Method for producing insulating glass unit and method for producing glass window
JP7060604B2 (ja) 2017-02-06 2022-04-26 ショット ジェムトロン コーポレイション 不均一なコーティング層およびガス分子の封止されたキャビティを有する断熱ガラス積層体
JP2020507544A (ja) * 2017-02-06 2020-03-12 ショット ジェムトロン コーポレイションSCHOTT Gemtron Corporation 不均一なコーティング層およびガス分子の封止されたキャビティを有する断熱ガラス積層体
WO2018221213A1 (ja) * 2017-05-31 2018-12-06 パナソニックIpマネジメント株式会社 ピラー実装方法、ガラスパネルユニットの製造方法及びピラー実装装置
JPWO2018221213A1 (ja) * 2017-05-31 2020-04-02 パナソニックIpマネジメント株式会社 ピラー実装方法、ガラスパネルユニットの製造方法及びピラー実装装置
US11396477B2 (en) 2017-05-31 2022-07-26 Panasonic Intellectual Property Management Co., Ltd. Pillar mounting method, method for manufacturing glass panel unit, and pillar mounting device
JPWO2020003793A1 (ja) * 2018-06-28 2021-08-02 パナソニックIpマネジメント株式会社 ピラー供給方法、ガラスパネルユニットの製造方法、及びピラー供給装置
JP7033753B2 (ja) 2018-06-28 2022-03-11 パナソニックIpマネジメント株式会社 ピラー供給方法、ガラスパネルユニットの製造方法、及びピラー供給装置
WO2020003793A1 (ja) * 2018-06-28 2020-01-02 パナソニックIpマネジメント株式会社 ピラー供給方法、ガラスパネルユニットの製造方法、及びピラー供給装置
US11911850B2 (en) 2018-06-28 2024-02-27 Panasonic Intellectual Property Management Co., Ltd. Pillar delivery method, method for manufacturing glass panel unit, and pillar delivery apparatus
WO2020162551A1 (ja) 2019-02-08 2020-08-13 日本板硝子株式会社 ガラスユニット

Also Published As

Publication number Publication date
JPWO2014136152A1 (ja) 2017-02-09
JP6124188B2 (ja) 2017-05-10

Similar Documents

Publication Publication Date Title
JP6124188B2 (ja) 複層ガラス、及び複層ガラスの製造方法
JP6146595B2 (ja) 複層ガラス、及び複層ガラスの製造方法
JP6471917B2 (ja) 複層ガラスの製造方法
JP6601781B2 (ja) ガラスパネルユニットの製造方法およびガラス窓の製造方法
JP6635386B2 (ja) 真空ガラスパネルの製造方法
WO2013132866A1 (ja) 複層ガラス
EP3508460B1 (en) Glass panel unit and glass window
WO2016051787A1 (ja) ガラスパネルユニット、ガラスパネルユニットの仮組立て品、ガラスパネルユニットの組立て品、ガラスパネルユニットの製造方法
WO2016051714A1 (ja) ガラスパネルユニット及びその検査方法
CN107074642B (zh) 玻璃面板单元的制造方法
JP6775205B2 (ja) ガラスパネルユニットの製造方法、およびガラス窓の製造方法
JP7126130B2 (ja) ガラスパネルユニット及びガラス窓
JP6771183B2 (ja) ガラスパネルユニットおよびこれを備えたガラス窓
KR101082020B1 (ko) 진공창의 제조방법
WO2019208017A1 (ja) ガラスパネルユニット及びガラス窓
US20200039866A1 (en) Glass panel unit manufacturing method, glass panel unit, and glass window with same
JP7133792B2 (ja) ガラスパネルユニットの製造方法
WO2020217728A1 (ja) ガラスパネルユニットの製造方法
JP7228819B2 (ja) ガラスパネルユニットを得るための組立て品及びガラスパネルユニットの製造方法
CA2966027A1 (en) Energy-saving plate and method for manufacturing the same
JPWO2019207971A1 (ja) ガラスパネルユニット、ガラスパネルユニットの仕掛り品、ガラスパネルユニットの組立て品、ガラスパネルユニットの製造方法
WO2015056599A1 (ja) 真空複層ガラスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877017

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015504004

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13877017

Country of ref document: EP

Kind code of ref document: A1